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1. Introduction 

The rapid evolution of technology has profoundly impacted various sectors, including 

marketing, where visual content plays a pivotal role in shaping brand perceptions. 

Research in the domain of computer vision and deep learning for highly performant 

models, surpassing levels of interpretability, would help in proper image classification. 

The comparative abilities of Transformer models are explored through the 

BrandImageNet framework for the classification of images in the domain of visual 

marketing (Liu et al., 2020).  

One of the primary reasons for conducting such a study is the massive impact that the 

use of visual content, increased with the advent of image-based social media, creates in 

the way it organizes perceptions of consumers regarding a brand. The use of more precise 

model to analyse and classify images can aim business giving important insight on how 

the brand is perceived by the consumer and on the brand’s portrayal on social media 

platforms. Nowadays visual marketing plays a pivotal role in the strategies of businesses. 

With the use of visual content, brands can communicate messages, engage consumers and 

influence their spending behaviour. This is possible due to the increasing use and power 

that social media have in the life of every person. Every day we are exposed to an 

increasing number of ads and other types of graphic content, so the understanding of how 

the brand is perceived by users becomes crucial.  

The model that we use as a benchmark is the BrandImageNet. It is a multi-label deep 

convolutional neural network model for predicting the perceptual brand attributes from 

the consumer-generated images shared on social media. The model will support firms in 

understanding the portrayal of their brands through attributes such as "glamorous", 

"rugged", "healthy" or "fun". In this way, they will track current brand portrayal and get 

precise insights into consumer perception and attitudes. Despite its innovative approach, 

BrandImageNet has a few important weaknesses. The main limitations concerning the 

model are the computational expense and complexity of training it. Furthermore, CNN 

models have been prohibitive for any smaller firm or individual researcher, without large 

resources. These reasons underline the need of better scalable and efficient models. 

A great advance in the natural language processing (NLP) field is made by the 

Transformer-based model. This advance is enabled thanks to their particular architecture, 
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specially by their self-attention mechanism, which gives the possibility to efficiently 

capture dependencies across two elements in a sequence, regardless of their range. That 

innovation allows the parallel processing of input, facilitating quicker training times and 

better performance compared to RNNs and CNNs. The use of Transformer models has 

been expanded by researchers who have hypothesized that the self-attention mechanism 

inherent in Transformers could also be advantageous for image classification tasks. To 

implement Transformers for image classification task, some adjustments have been made 

to their architecture. After the adaptation was introduced the Vision Transformer that 

outperformed all the state-of-the-art models with CNNs and RNNs in image 

classification. Its ability to pre-train on huge datasets and then fine-tune on smaller, task-

specific datasets guarantees strong performance in different contexts. 

To overcome the limitations of traditional CNNs, various Transformer models have 

been developed for computer vision tasks. Architecture in any model comes up with 

addressing the challenges of image processing in detail. Some of the key models include 

Pyramid Vision Transformer (PvT), Convolutional Vision Transformer (CvT), Vision 

Transformer (ViT), and Swin Transformer. Each model has peculiar characteristics that 

make it specific for a different type of task: 

• Pyramid Vision Transformer (PvT): by using the pyramid architecture, it 

builds multi-scale feature maps that outperform in tasks, especially in detection 

and segmentation. 

• Convolutional Vision Transformer (CvT): this introduces convolutions 

into the ViT model to capture local details and deal more reasonably with 

computational constraints. 

• Vision Transformer (ViT): it breaks the input images into fixed-size 

patches and processes them through a series of Transformer blocks using global 

self-attention mechanisms to classify the images. 

• Swin Transformer: this is the hierarchical design using shifted windows 

for local self-attention. It allows efficient applications for object detection and 

image segmentation capabilities by reducing computational complexity. 

The main aim of this research is to compare the performances of Vision Transformers 

and Swin Transformers with BrandImageNet in classifying pictures for visual marketing, 
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highlighting the potential of advanced Transformers. To do so, these models are trained 

on a dataset of images that are labelled according to brand attributes, and comparing them 

according to accuracy, specificity, and overall model performance. By overcoming the 

limitations of traditional CNNs and utilizing the advantages of Transformers, this research 

aims to develop more effective and scalable models for analysing brand perception 

through social media imagery. 

2. Related Literature and Transformer for Images 

The main stream research of the paper concerns the impact that visual marketing could 

have on brand perception. This is enabled using computer vision and deep learning 

models, specifically Transformer models and BrandImageNet. 

Transformers have become the preferred models for performing Natural Language 

Processing (NLP) tasks by effectively capturing long-range dependencies through self-

attention mechanisms (Vaswani et al. 2017). Unlike recurrent neural networks (RNNs) 

and convolutional neural networks (CNNs), transformers' advantage is due to the parallel 

process of input data that enables faster training times and better performance on large 

datasets. They offer the possibility to be adapted to different tasks and computational 

efficiency, allowing models to be trained with more than a hundred billion parameters 

without saturating model performance. Inspired by the success of the transformers applied 

to NLP and assuming that the self-attention mechanism could also be beneficial for image 

classification tasks, it was proposed to use the same architecture, with few modifications, 

to perform image classification (Dosovitskiy et al. 2020). The properties of transformers 

are being used also in this context. In fact, Transformers model can be pre-trained on a 

large dataset and then used in a smaller dataset. This allows us to outperform state-of-the-

art of the base CNN and RNN on image classification.  

2.1 BrandImageNet 

BrandImageNet is a model developed to help firms monitor their brand portrayal on 

social media by mapping images to specific perceptual attributes. This model allows firms 

to measure how their brands are perceived along various attributes such as "glamorous", 

"rugged", “healthy” and “fun”. For instance, if consumer images tagged with a fashion 
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brand frequently score high for "glamorous" in the BrandImageNet model, it indicates 

that consumers perceive the brand as glamorous. Conversely, images tagged with an 

outdoor apparel brand might frequently score high for "rugged," aligning with a different 

brand identity. The practical application of this technology is significant for brand 

management, allowing companies to see how their branding efforts are perceived and 

potentially adjust their strategies based on real-time data from social media imagery (Liu 

et al., 2020). 

2.1.1 Model architecture 

It was developed using a multi-label convolutional neural network (ConvNet), which 

was fine-tuned from the Berkeley Vision and Learning Center (BVLC) Reference 

CaffeNet model. To be more precise, the BrandImageNet model has four key attributes: 

glamorous, rugged, healthy, and fun. These attributes were chosen as they are relevant to 

both the apparel and beverage sectors, for which the model is targeted, for a meaningful 

differentiation of brands and were available attributes from Y&R's BAV 

(BrandAssetValuator) consumer-brand-perception survey. 

The BrandImageNet model begins by resizing images to 227x227 pixels with three 

colour channels (RGB), aligning with the input dimensions required by the pre-trained 

model used for initialization. This preprocessing step ensures compatibility with the 

subsequent layers. For feature extraction, the model employs five convolutional layers. 

These layers apply various filters to detect essential features such as edges, textures, and 

shapes within the images. To introduce non-linearity, ReLU (Rectified Linear Unit) 

activation functions are interspersed between the convolutional layers. After specific 

convolutional layers, max-pooling layers are incorporated to reduce the spatial 

dimensions of the feature maps. This reduction helps control overfitting and decreases the 

computational load. Once feature extraction is complete, the resulting feature maps are 

flattened and passed through three fully connected layers. These layers learn higher-level 

representations of the input data by combining features detected in the earlier layers. The 

fully connected layers enhance the model's ability to make accurate predictions. 

Finally, the output layer uses sigmoid activation functions such that the architecture 

can predict by generating probabilities corresponding to each brand attribute. This design 
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will let the model easily take care of multi-label classification since all of the attributes 

will be taken separately to predict multiple labels for a single image. 

2.1.2 BrandImageNet Limitations 

BrandImageNet has some significant limitations, especially when compared to 

transformer-based models. Identifying brand attributes in images is a quite subjective 

task, which means different people might have different opinions about what attributes 

are the right ones for the specific image. This subjectivity can cause inconsistencies in the 

data labels, which makes it a problem for the model. (Liu et al., 2020). 

Scalability and efficiency are additional issues, since, nonetheless their great power, 

they can be computationally expensive to train and scale. Deep networks with many 

layers require substantial computational resources, making the training process time-

consuming and costly. This can hinder the scalability of the model for larger datasets or 

more complex tasks (Goodfellow, Bengio, & Courville, 2016). Finally, the complexity 

and resource requirements of implementing and fine-tuning deep CNN models require 

expertise in deep learning and access to substantial computational resources. This 

complexity can limit the accessibility of the model for smaller firms or individual 

researchers, presenting a barrier to its broader applicability (LeCun, Bengio, & Hinton, 

2015). 

2.2 Different Transformer models 

Until now, the management of self-attention has been a challenge while developing 

the transformer models under computer vision. Various transformer models have evolved 

to support the special challenges under tasks of image processing that keep changing 

quickly. These models in the computer vision domain use the self-attention mechanism 

developed for the natural language processing domain to improve their performance over 

tasks like image classification, object detection, and segmentation. This section further 

explores some of the leading transformer models in this domain: Pyramid Vision 

Transformer (PvT), Convolutional Vision Transformer (CvT), Vision Transformer (ViT), 

and Swin Transformer. In so doing, they help us find the architectural innovations in 

processing visual data and the certain advantages they have. 
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2.2.1 Pyramid Vision Transformer 

Pyramid Vision Transformer (PvT) (Wang et al. 2021) generates multi-scale feature 

maps through a pyramid structure. This architecture is particularly effective for tasks that 

require multi-scale representations, enhancing performance in object detection and 

segmentation. PVT is an efficient model similar to a Vision Transformer but equipped 

with a pyramid structure, making it very efficient for tasks requiring detailed predictions. 

This design is particularly useful for detailed prediction tasks because it allows the model 

to handle more precise inputs effectively. The processing of deeper layers by the model 

leads to shorter input sequences and a corresponding reduction in computational 

requirements. Additionally, it used a special layer called the "spatial-reduction attention 

layer" to minimize the resources needed when dealing with high-resolution features. 

2.2.2 Convolutional Vision Transformer 

Convolutional Vision Transformer (CvT) (Wu et al. 2021) design introduces 

convolutions into the ViT architecture. This design features a hierarchical structure where 

each stage starts with a convolutional embedding that reshapes and processes token 

sequences. This method captures local information and reduces sequence length while 

increasing token feature dimensions, similar to CNNs. Additionally, CvT replaces the 

linear projection in self-attention blocks with a convolutional projection, enhancing local 

spatial context and managing computational complexity. With this approach, there's an 

improvement in efficiency with a small impact on performance. 

2.2.3 Vision transformer 

The Vision Transformer (ViT) (Han et al.,2020) architecture utilizes self-attention 

mechanisms for image processing. It begins by dividing an image into fixed-size patches, 

each of which is embedded into a high-dimensional vector. These embeddings are then 

input into a series of transformer blocks that comprise a multi-head self-attention layer 

and a feed-forward layer. The self-attention layer calculates attention weights for each 

pixel by examining its relationship with all other pixels in the image. More specifically, 

this process gives the possibility for the model to focus on different parts of the input 

sequence simultaneously. The feed-forward layer applies a non-linear transformation to 
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the output from the self-attention layer, enhancing the representation. The multi-head 

attention mechanism allows the model to attend to various segments of the image 

simultaneously, providing a comprehensive understanding of the image's content. 

Furthermore, the ViT architecture includes a patch embedding layer that divides the image 

into smaller patches, mapping each one to a high-dimensional vector. These patch 

embeddings are then processed through the transformer blocks. The final output of the 

ViT architecture is a class prediction, obtained by passing the output of the last 

transformer block through a classification head, which typically consists of a single fully 

connected layer. This approach allows the Vision Transformer (ViT) to use its self-

attention mechanism effectively for image classification, achieving top performance on 

many benchmark tests.  

2.2.4 Swin Transformer 

The Swin Transformer (Liu et al., 2021) is a variant of the Vision Transformer that 

builds a feature map hierarchy by re-arranging image patches in deeper layers. Moreover, 

it achieves linear computational complexity concerning input image size by carrying out 

self-attention only within each local window. This special structure of the model makes 

it versatile and suitable for image classification and tasks that require detailed recognition. 

The main difference with the original ViT is that the former one produces feature maps 

of a single low resolution and with quadratic computation complexity to input image size 

due to computation of self-attention globally, while the Swin Transformer hierarchical 

approach produces multi-scale feature maps that make it notably effective for tasks such 

as object detection and image segmentation. Swin transformer development is a big step 

for Transformer-based models, offering a scalable and efficient approach to image 

processing tasks. Its peculiar combination of local attention mechanisms with a 

hierarchical architecture provides a flexible framework to achieve state-of-the-art results 

across several computer vision applications.  
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2.3 Transformer Application 

Transformers have been adapted to process image data, offering new capabilities in 

computer vision. With them it's possible to perform various visual tasks:  

• Image Classification: Vision Transformers (ViT) and its variants have 

achieved great performance such as those of ImageNet. 

• Object Detection: The DEtection TRansformer (DETR) (Carion et al. 

2020) offers a novel approach to object detection, using a simpler process and 

increasing detection accuracy.  

• Image Segmentation: recently researchers have extended transformers to 

medical image segmentation tasks, resulting in good models. (Pu et al. 2024) 

Transformer models have significantly affected the performance on image 

processing tasks. This is made possible due to their new architecture and methods that 

outperform the classic CNN and RNN not only in performance but also in efficiency. 

In this paper, we focus on the image classification task by using two types of models: 

ViT and Swin Transformer.  

Figure 1 Swin transformer vs Vision Transformer architecture 
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Table 1: Transformer Characteristic comparison 

Feature 

Convolutional 

Vision 

Transformer  

Pyramid Vision 

Transformer  

Vision 

Transformer  

Swin 

Transformer 

Architecture 

Combines 

convolutional 

layers with 

transformers for 

local and global 

feature 

extraction 

Uses a pyramid 

structure with 

progressive 

resizing and 

down sampling 

of features 

Uses 

transformer 

blocks directly 

on image 

patches with 

global self-

attention 

Hierarchical 

structure with 

shifted windows 

for local self-

attention 

Attention 

Mechanism 

Convolutional 

projections 

before self-

attention layers 

Spatial-

reduction 

attention layers 

to manage high-

resolution 

features 

Global self-

attention over 

all patches 

Local self-

attention within 

shifted windows 

Image 

Representation 

Maintains 

spatial structure 

via 

convolutional 

layers 

Multi-scale 

feature maps 

with spatial 

down sampling 

Image divided 

into fixed-size 

patches 

Hierarchical 

representation 

captures both 

local and global 

contexts 

Training 

Efficiency 

Improved 

efficiency due to 

convolutional 

layers reducing 

sequence length 

Reduced 

computational 

cost with 

spatial-

reduction 

attention layers 

Requires large 

datasets and 

computational 

resources for 

optimal 

performance 

More efficient 

training with 

local attention 

and shifted 

window 

mechanism 

Performance 

Good 

performance on 

both local and 

global feature 

extraction tasks 

Effective for 

prediction tasks 

(e.g., object 

detection, 

segmentation) 

State-of-the-art 

performance on 

image 

classification 

benchmarks like 

ImageNet 

High 

performance on 

image 

classification, 

object detection, 

and 

segmentation 

Applications 

Suitable for 

tasks requiring 

both local and 

global feature 

extraction 

Dense 

prediction tasks, 

such as object 

detection and 

segmentation 

Primarily image 

classification; 

can be fine-

tuned for other 

tasks 

Versatile for 

image 

classification, 

object detection, 

and 

segmentation 

Limitations 

Still 

computationally 

intensive, 

complexity in 

combining CNN 

and transformer 

layers 

Can be complex 

due to multi-

scale and 

spatial-

reduction 

mechanisms 

High 

computational 

cost, requires 

large datasets 

Complexity in 

window shifting 

mechanism, still 

computationally 

demanding 
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3. Empirical Study (Data, Model, Results) 

3.1 Data 

To train a multi-label image-classification model of brand attributes we need an 

annotated data set consisting of images labelled with the respective attribute that they 

represent. Since we are not performing an object-detection task, which is typically trained 

on large public data sets of labelled images, there's no existing data set that is annotated 

with brand attributes for each image. To have a fair comparison between the two 

transformer models and the BrandImageNet, I use the same images (Liu et al., 2020) that 

have been used to implement the last cited model. 

 To develop models, researchers created an annotated dataset using images from 

Flickr, a popular online photo-sharing platform. Flickr has been used in numerous 

research in visual and social networks (e.g. McAuley and Leskovec, 2012)   because it 

allows users to share photos with titles, descriptions and free from tags. Another 

advantage that Flickr has compared to other social networks is its advanced search engine, 

which utilizes user-provided text labels, image content, and clickstream data (Stadlen 

2015), which made Flickr an ideal source for gathering relevant images with specific 

requisites. The search engine's ability to rank images based on a large user consensus 

helps ensure that the top search results strongly associate with the search terms. 

For each brand attribute (glamorous, rugged, fun, healthy) the researchers queried the 

relevant term on Flickr and collected approximately 2,000 images from the top search 

results as positive examples (i.e., images depicting the attribute). They also collected 

negative examples (i.e., images not depicting the attribute) by querying antonyms of each 

attribute (e.g., "drab" for "glamorous," "gentle" for "rugged," "unhealthy" for "healthy," 

and "dull" for "fun") and again gathered about 2,000 top-ranked images.  
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Figure 2 Attributes Category distribution 

 

 

Additionally, images collected for other attributes and their antonyms were used as 

negative examples, provided they were not already included as positives for the current 

attribute. For instance, for the attribute "healthy," they used "healthy" to collect positive 

examples and "unhealthy" along with other unrelated terms like "glamorous," "rugged," 

"fun," "drab," "gentle," and "dull" for negative examples. This method ensured a 

comprehensive set of negative instances. In total, the annotated dataset consisted of 

16,360 images, each labelled for brand attributes. 

3.2 Vision Transformer Model 

The Vision Transformer (ViT) applies the transformer architecture, originally 

designed for natural language processing, to image classification tasks. The input image 

is divided into N patches, each of size P×P pixels. If the image size is 𝐻×𝑊 (height × 

width), the number of patches N is calculated as: 

𝑁 =  
𝐻 × 𝑊

𝑃2
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(e.g. the input image is divided into fixed-size patches, typically 16 × 16 pixels. For an 

image sized 224 × 224, this results in 196 patches). 

Each patch is then flattened into a vector and linearly projected into a higher-

dimensional embedding space of size D (𝑃×𝑃×C where C is the number of channels, 

typically 3 for RGB images). For a 16 × 16  RGB patch, this would be a vector of length 

768 (16 * 16 * 3). These vectors are then projected into a higher-dimensional space, using 

a linear transformation that generates an embedding vector for each patch. Since 

transformers lose the spatial knowledge of an image, positional encodings of patch 

embeddings are added to the patch embeddings. This information helps the model 

understand the order and relative positioning of those patches within the original image.  

The transformer encoder further proceeds from the sequence of patch embeddings 

with positional encodings included. The encoder consists of multiple transformer blocks, 

where each block contains a multi-head self-attention mechanism and a feed-forward 

neural network. This part in each transformer block allows the model to address different 

parts of the images simultaneously.  

Self-attention calculates attention scores between all pairs of patches, allowing the 

network to evaluate the attention that needs to be given to each patch with respect to other 

patches. This involves calculating query (Q), key (K), and value (V) matrices. The 

attention score for each pair of patches is computed using the dot product of the query 

and key vectors, then scales and applies a soft-max to get the attention weights, which are 

finally used to create a weighted sum of value vectors. 

After the self-attention layer, a feed-forward neural network is applied element-wise 

to each of the patch embeddings by passing them concentratedly through two linear 

transformations with the application of a ReLU activation function in between.  Each self-

attention and feed-forward network is followed by layer normalization and residual 

connections. The main purpose of the residual connection is to avoid vanishing gradients 

and improve the gradient flow during optimization. After these steps, there's the 

transformer encoder. The transformer encoder is essentially a stack of these blocks, which 

process embeddings from the previous block, allowing the model to learn increasingly 

complex representations. A special classification token (CLS token) is added to the 

beginning of the sequence of patch embeddings at the input stage. This token aggregates 

information from all patches through the self-attention mechanism. The final embedding 
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of the CLS token, after passing through all the transformer blocks, is used as the image 

representation for classification. This last portion is then passed through a fully connected 

(dense) layer to get output class probabilities. Usually, ViT models are pre-trained on huge 

datasets to learn robust features. Pretraining helps the model capture general visual 

features useful for a wide range of tasks. Then the model can be fine-tuned on a specific 

dataset, which is smaller and more specialized than the dataset used for pretraining. This 

fine-tuning process allows the model to adjust to the specific details of the classification 

task, leading to improved accuracy and performance. Utilizing the capabilities of the 

transformer architecture, ViT models attain state-of-the-art results in image classification 

tasks, showcasing their robustness and versatility over a wide range of datasets and 

applications. For the image classification task performed, the model has been pre-trained 

with “google/vit-base-patch16-224” checkpoints. Vision Transformer (ViT) with the 

aforementioned checkpoint, is pre-trained on ImageNet-21k (14 million images, 21,843 

classes) at resolution 224x224, and fine-tuned on ImageNet (1 million images, 1,000 

classes) at resolution 224x224. 

 

 

3.3 Swin Transformer Model 

The Swin Transformer (Shifted Window Transformer) is a hierarchical vision 

transformer which processes images in a completely new way with the help of shifted 

windows. The process begins by partitioning the input image into non-overlapping 

patches and embedding it into a higher-dimensional space, after which the resulting 

Figure 3 Vision Transformer architecture 
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patches are flattened and projecting it using a trainable linear layer, resulting in patch 

embeddings. 

The model employs a series of patch merging layers, which progressively merge 

adjacent patches to reduce spatial dimensions while increasing feature dimensions. This 

hierarchical structure creates representations similar to the multi-scale feature maps in 

convolutional neural networks (CNNs). Unlike the Vision Transformer (ViT), which uses 

global self-attention, the Swin Transformer adopts locally self-attention in non-

overlapping windows, which attends to only a small part of the image in one step for high 

efficiency. In each stage, the input is partitioned into non-overlapping windows, and self-

attention computation is operated within each window independently. This reduces 

computational complexity from quadratic to linear with respect to the input size, making 

the model more efficient. To facilitate cross-window connections and improve the 

modelling of relationships between distant patches, the windows are shifted in subsequent 

layers. For instance, the first layer of windows will cover certain areas, and the next layer 

will shift these windows by a fixed number of pixels to achieve an overlap and interaction 

between neighbouring patches. 

Inside each window, we compute multi-head self-attention: first, for the patches inside 

the window, we compute three matrices—query (Q), key (K), and value (V)—and then 

attention scores are computed on them to determine how important each patch is with 

respect to the other patches. After the self-attention layer, the output passes through a 

feed-forward network, consisting of two linear layers with a ReLU activation function in 

between. This network adds non-linearity and further processes the features. Each self-

attention and feed-forward block is followed by layer normalization and residual 

connections, which help stabilize training and improve convergence. 

For classification tasks, the final output features are pooled using global average 

pooling to create a single feature vector for the entire image. This feature vector is then 

passed through a fully connected layer to obtain the final class probabilities. Swin 

Transformer hierarchically represents the input image and combines the shifted window 

mechanism to achieve high efficiency and performance in different computer vision tasks. 

For the image classification task implemented in this paper, the “swin-base-patch4-

window7-224” checkpoint model pretrained on large datasets is used to learn robust 

features. This pretraining helps the model capture general visual features, which can then 
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be fine-tuned on specific tasks with smaller datasets, ensuring high accuracy and 

performance. 

 

3.4 Models train 

After importing the images and pre-processing them as mentioned in sections 3.2 and 

3.3 to apply the ViT and Swin Transformer, the training part of the two models starts. To 

train the model effectively, begin by defining the loss function and selecting an optimizer.  

The loss function measures the discrepancy between the model's predictions and the 

actual labels, guiding the optimization process. For classification tasks, Cross-Entropy 

Loss is commonly used due to its effectiveness in handling probabilistic outputs. This 

loss function increases as the predicted probability diverges from the actual label, 

providing a clear signal for the model to adjust its parameters and improve accuracy 

(Goodfellow, Bengio, & Courville, 2016). 

Once the loss function is defined, an optimizer to update the model parameters during 

training is chosen. The Adam optimizer is a popular choice because it adapts the learning 

rate for each parameter based on the first and second moments of the gradients. This 

adaptive approach combines the benefits of AdaGrad and RMSProp, leading to efficient 

and robust performance across various problems (Kingma & Ba, 2014). The optimizer's 

role is crucial as it determines how the model's parameters are adjusted in response to the 

computed gradients, aiming to minimize the loss function. 

In order to improve the robustness of the model and to prevent overfitting, The 

dropout regularization is used. It is a popular regularization technique used to prevent 

overfitting in neural networks. During the training process, dropout works by randomly 

Figure 4:  Swin Transformer architecture 
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setting a fraction of the input units to zero at each update cycle.  This ensures that the 

model does not depend too much on some units by randomly deactivating a proportion of 

the input units to zero whenever a model is being updated. In other words, it basically 

forces more general features so that a model does not rely heavily on one predetermined 

feature. The dropout rate determines the fraction of units to drop; for example, a dropout 

rate of 0.1 means that 10% of the units will be set to zero during each forward pass 

(Srivastava et al., 2014). For purposes of the Swin Transformer model, dropout is applied 

over hidden layers and attention mechanisms. By using the dropout, the model can 

prevent overfitting and improve generalization. 

The training process involves a structured loop where the model learns from the data 

iteratively. In each epoch, which constitutes a complete pass through the training dataset, 

the model processes batches of images. During this phase, the input data is passed through 

the model to generate predictions. The loss is then computed by comparing these 

predictions to the true labels using the pre-defined Cross-Entropy Loss function. With the 

gradients computed, the optimizer updates the model parameters to minimize the loss. 

Adam, in particular, adjusts the learning rate for each parameter individually, which can 

lead to faster convergence and better overall performance (Kingma & Ba, 2014). Tracking 

the loss after each batch helps monitor training progress and ensures that the model is 

learning effectively. If the loss decreases consistently, it indicates that the model is 

improving its predictions. 

Adjustments to the learning rate, batch size, or other hyperparameters may be 

necessary based on the results (Bishop, 2006). For this purpose, a grid search to find the 

best hyperparameters is performed, finding that the best parameters for the models are: 

• Epochs: 6, 

• Batch size: 12, 

• Learning rate: 0.001. 

A grid search is also performed to choose between the two models, Vision Transformer 

and Swin Transformer. With the above hyperparameters, the best performing model is the 

Swin transformer, so the following discussion of the results is made using the last cited 

model. This iterative approach ensures that the model learns effectively from the data, 
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optimizing its parameters to improve predictions and generalize well to new, unseen data 

(Aggarwal, 2023). 

3.5 Results 

After training the Swin Transformer model, it is crucial to analyse and discuss the 

results to point out its performance, strengths, and weaknesses and further propose any 

improvement areas. Key evaluation metrics such as accuracy, specificity, AUC and ROC 

are used to assess the performance of the model. With these evaluation metrics we provide 

a global perspective of the model's effectiveness in the classification task. High accuracy 

indicates that the model is correctly classifying a large portion of the test samples, while 

specificity evaluates the ability of a test to recognize properly the negative cases and 

exclude them without falsely identifying them. 

3.5.1 ROC and AUC 

The two most common performance measurements for classification problems are the 

AUC and ROC curve. The ROC (Receiver Operating Characteristics) curve is the 

graphical representation of the effectiveness of the binary classification model. This 

provides a description of the true positive rate versus the false positive rate at different 

classification thresholds.  AUC (Area Under the Curve), which represents the area under 

the ROC curve, measures the overall performance of the binary classification model. As 

both true positive rate and false positive rate range between 0 to 1, the area will always 

lie between 0 and 1, and greater value of AUC denotes better model performance. The 

AUC measures the probability that the model will assign a randomly chosen positive 

instance a higher predicted probability compared to a randomly chosen negative instance. 

Since the model is performing a multi-label task, the ROC and AUC represent whether 

an image belongs to a specific category or not. 

The ROC curve for the "Fun" class indicates moderate performance with an AUC of 

0.84. This curve suggests that the model can reasonably differentiate the "Fun" class from 

other classes, although this is the lowest value of the AUC, suggesting a potential for 

enhancement.  

The ROC curve for the "glamorous" class demonstrates excellent performance, with 

an AUC of 0.85. This high AUC attests that the model is very proficient at distinguishing 
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the "Glamorous" class from the others, with minimal overlap between true positive and 

false positive rates. 

The ROC curve for the "healthy" class shows good performance with an AUC of 0.87. 

The model performs well in picking out class "healthy" from other classes, demonstrating 

a high degree specificity. 

The ROC curve for the "rugged" class also indicates strong performance, since its 

AUC is 0.88. This curve suggests that the model is effective at identifying the "Rugged" 

class, maintaining a fair balance between both false positive and true positive rates. 

Overall, the Swin Transformer model is performing pretty well across all classes, as 

indicated by the high AUC values for most classes (0.86 on average). With these results, 

the Swin Transformer states that it is a robust model for multi-class classification tasks.  
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Figure 5: ROC and AUC 
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3.5.2 Accuracy and Specificity 

Accuracy is a metric used to evaluate the performance of a classification model. It 

measures the proportion of all correct predictions (both true positives and true negatives) 

out of the total number of predictions made. Accuracy gives a straightforward assessment 

of how often the model is correct. Accuracy is calculated using the following formula: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁) + 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 
 

 

Specificity, also known as the true negative rate, is a measure used to evaluate the 

performance of a binary classification test. It measures the proportion of actual negatives 

that are correctly identified by the test. Specificity is calculated using the following 

formula: 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃) 
 

 

For the category “fun,” the model achieves a specificity of 95.5%, indicating that it 

accurately identifies 95.5% of the negative cases for the "fun" class. This high specificity 

means that the model is highly effective at distinguishing "fun" from non-"fun" instances. 

The corresponding accuracy for this category is 90.1%, suggesting that the model 

generally classifies "fun" instances correctly, both in identifying true positives and true 

negatives. 

For the category “glamorous,” the model attains a specificity of 97.6%, meaning it 

successfully identifies 97.6% of the negative cases for the "glamorous" class. This high 

specificity shows that the model is proficient at differentiating "glamorous" from non-

"glamorous" instances. The corresponding accuracy for this category is 91.6%, indicating 

that while the model is generally effective, its performance is slightly lower compared to 

other classes, potentially due to a higher rate of false positives or false negatives. 

For the category “healthy,” the model achieves a specificity of 93.7%, indicating it 

correctly identifies 93.7% of the negative cases for the "healthy" class. This high 

specificity suggests that the model is very adept at distinguishing "healthy" from non-
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"healthy" instances. The corresponding accuracy for this category is 89.7%, which means 

the model correctly classifies "healthy" instances most of the time, identifying both true 

positives and true negatives. 

For the category “rugged,” the model reaches a specificity of 95.7%, indicating it 

accurately identifies 95.7% of the negative cases for the "rugged" class. This high 

specificity demonstrates that the model is very effective at distinguishing "rugged" from 

non-"rugged" instances. The corresponding accuracy for this category is 90.8%, the 

highest among the four classes, indicating that the model excels in correctly classifying 

"rugged" instances. From them, we can conclude that the Swin Transformer achieves 

better results compared with BrandImageNet, in fact, both the overall accuracy (90.5% 

for the Swin Transformer and 90.25% for the BrandImageNet) and the AUC (0.87 for the 

Swin Transformer and 0.85 for the BrandImageNet) are higher for the transformer-based 

model. 

 

Table 2 Comparison of the results using different algorithms 

 

 

Brand Attribute Algorithm AUC Accuracy 

Rugged 

BrandImageNet 0.88 0.91 

Swin Transformer 0.88 0.908 

Fun 

BrandImageNet 0.81 0.91 

Swin Transformer 0.84 0.901 

Glamorous 

BrandImageNet 0.85 0.88 

Swin Transformer 0.85 0.916 

Healthy 

BrandImageNet 0.86 0.91 

Swin Transformer 0.87 0.897 

Overall 

BrandImageNet 0.85 0.9025 

Swin Transformer 0.86 0.905 
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4. Conclusion and further research 

4.1 Limitations of Transformer-based models  

Transformer-based models, while powerful and versatile, have several limitations that 

need to be addressed. One of the biggest limitations is that they are computationally 

expensive. Transformers, particularly in their standard form such as Vision Transformers, 

demand substantial computational resources. The central operation of a Transformer is 

self-attention, which, in practice, has complexity that is quadratic in the length of the 

sequence and when scaling, this makes the models very expensive in terms of 

computation and memory. Another limitation is the requirement for huge datasets. In fact, 

transformers generally need massive amounts of labelled data to achieve high 

performance.  This requirement can pose a considerable challenge for tasks where 

labelled data is limited or costly to acquire. Although pretraining on extensive datasets 

followed by fine-tuning can help address this problem but, doing so introduces additional 

complexity and increases computational costs. Transformers are also prone to overfitting 

due to their high capacity and flexibility, especially during training in small or noisy 

datasets. To make the model less predisposed to overfitting, can be used regularization 

techniques such as dropout, data augmentation, and careful hyperparameter tuning. 

Another disadvantage of this type of model is interpretability. The self-attention 

mechanism, while powerful, complicates the interpretability of decisions made within the 

model. Unlike simpler models where feature importance could be understood very easily, 

a Transformer model often acts like a black box, where understanding and explaining its 

behaviour is hard. Scalability is a further concern. While Transformers excel in capturing 

dependencies in sequential data, handling very long sequences can be problematic. Swin 

Transformer, that uses windowed attention, and memory efficient attention developed 

techniques take on this challenge but with the trade-off to the complexity and 

performance. An additional problem deriving from transformer is adapting them to 

different domains. While they are highly effective in domains where they have been pre-

trained, transferring them to significantly different domains might not always yield the 

same level of performance. Domain-specific adaptations and fine-tuning are necessary, 

which can be resource-intensive. 
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Nevertheless, the benefits provided by Transformer-based models many times surpass 

the challenges related to them, especially in those tasks where great accuracy and ability 

to capture complex patterns is fundamental. Further research can try to find ways to 

overcome these limitations by developing more efficient architecture, improving 

interpretability, and reducing the computational load related to training and deploying 

these models. 

4.2 Conclusion 

In this research, the potential of Transformer-based models has been explored, 

specifically Vision Transformers (ViT) and Swin Transformers, toward image 

classification tasks in visual marketing compared to traditional BrandImageNet. The 

results deriving from the two Transformer-based models clearly outperformed the 

BrandImageNet model in every evaluation metrics as shown in the Table 2. This gives an 

indication on how Transformers model made an advancement in the computer vision 

domain, especially in dealing with image classification tasks.  

In conclusion, the use of Transformer-based model instead of CNN-based marks a 

significantly growth in the field of image classification for visual marketing. The higher 

performance of Vision Transformers and Swin Transformers creates new opportunity for 

businesses to gain more insights of brand perception and consumer behaviour through 

social media imagery. Future research could focus on further optimization of these 

models, exploring their applications with other attributes different from the ones used is 

this paper, and addressing any remaining limitations that they have concerning 

computational efficiency and scalability. 
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