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Introduction 
 

Artificial Intelligence (AI) is transforming business, necessitating a robust environmental 

sustainability framework to fully comprehend its impact. Indeed, AI increases operational 

efficiency and decision-making, enhancing also sustainability; however, it raises substantial 

environmental concerns due to its energy consumption and resource use across production, 

usage, and disposal phases. Focusing on usage, current frameworks often miss AI’s full 

environmental impact, both positive and negative, especially in business where it significantly 

alters processes. Traditional models primarily address the direct consequences of technology 

usage, such as CO2 emissions and energy consumption, but tend to neglect the broader effects 

of AI when integrated into processes, such as enhanced efficiency, leading to a significant 

underestimation of AI's environmental impact, particularly in industries undergoing major 

process changes. This research advocates for a comprehensive and adaptable AI sustainability 

framework, that details environmental impacts, considering benefit and costs, and supports 

virtuous adoption strategies in companies to balance its negative effects. The analysis is 

conducted through a case study on VHIT, a manufacturing company that integrates AI into its 

production process. This approach evaluates the applicability of various indices, assesses their 

calculation feasibility, and consequently, explores the development of an integrated framework 

that could be used by both the company and policy makers. This study lays the foundation for 

a tool to assess the integrated environmental impact of AI in corporate processes, aimed at 

promoting a virtuous implementation and management of AI and fostering a synergistic 

development of the two components of the Twin Transition without them hindering each other. 

This approach aids sustainable AI deployment and enhance understanding of AI's 

environmental role, influencing future strategies and policies to align AI with environmental 

objectives.  

 

Literature Review 
 
 

1. Artificial Intelligence: An Overview  
 

This first chapter intends to provide a theoretical foundation upon which to build the 

analytical framework. By elucidating the fundamental concepts and the reference scenario 

through a review of existing literature, it seeks to define and relate these key concepts to the 
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findings of this study. This approach ensures a clear and coherent basis for the subsequent 

analysis. As stated in the introduction and implied by the research question and its sub-

questions, the theme of this thesis revolves around the key concepts of AI, AI adoption into 

industry process, and AI’s overall environmental impact, encompassing both positive and 

negative effects. To leverage existing knowledge, this chapter explores these concepts and their 

subfields to enhance understanding and support further analysis. 

 

1.1 Artificial Intelligence  
 

Defining AI is a challenging and widely debated issue, due to its intrinsic ambiguous nature. 

Indeed, the term ‘AI’ has been used with many different senses, both within the field and 

outside it (Wang, 2019). The formal term Artificial Intelligence can be traced back to the mid 

1950’s, to the scientific journal collection made into the book Automata Studies No. 34 

(Shannon & McCarthy, 1956). Included in this collection, the American (born Russian) 

scientist John McCarthy discussed the theories and science of intelligent machines and their 

possibilities to conduct complex tasks and create solutions that are too complex for human 

beings to understand. McCarthy (2007), today considered as the father of AI, defined AI as “the 

science and engineering of making intelligence, machines, especially intelligent computer 

programs. It is related to the similar task of using computers to understand human intelligence, 

but AI does not have to confine itself to methods that are biologically observable” (p.2). 

One commonly accepted definition comes from the Oxford English Dictionary, which states 

that AI is “the capacity of computers, or other machines, to exhibit intelligent behavior” 

(Oxford English Dictionary, 2023). This indicates that AI systems can simulate cognitive 

thinking, learning, and actions, sometimes surpassing human capabilities. Specifically, they are 

capable of analyzing large datasets, solving intricate problems, making decisions, and 

performing creative tasks.  

Similarly, Haenlein and Kaplan (2019) defines AI as “a system’s ability to interpret external 

data correctly, to learn from such data, and to use those learnings to achieve specific goals and 

tasks through flexible adaptation” (p.5). The evolving nature of AI technology contributes to 

the difficulty in pinning down a definitive description. As the technology advances, the 

definitions and capabilities associated with AI also evolve, adding layers of complexity to its 

characterization. In this context, it is generally accepted that intelligence serves as a general 
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concept encompassing multiple special cases, each differing in certain aspects while 

maintaining a common underlying nature (Wang, 2019).  

In any case, without a clear, common definition, policymakers face significant challenges in 

forecasting AI’s potential and establishing a framework for desirable AI systems. As Bhatnagar 

et al. (2018) highlight, the lack of a standard definition complicates the assessment of future 

AI capabilities and the determination of desirable outcomes. Nonetheless, the European 

Union’s AI Act offers a practical definition: “an ‘AI system’ is a machine-based system 

designed to operate with varying levels of autonomy, exhibiting adaptiveness post-deployment, 

and generating outputs—such as predictions, content, recommendations, or decisions—that 

influence physical or virtual environments” (European Commission, 2024). 

The difficulty in defining AI is closely linked to the evolution of the discipline itself. For this 

reason, a brief historical overview not only provides essential context for understanding AI but 

also sets the stage for the next chapter, which explores AI’s applications. As technologies and 

capabilities advance, definitions continue to evolve, reinforcing the dynamic nature of this field 

(Sheikh, Prins & Schrijvers, 2023). 

 

1.2 A Brief History of AI  
 

The early references to AI as a field of study can be traced back to Alan Turing. The 

mathematician and philosopher, reflecting on his creation Colossus, a code-breaking machine 

built for the British government to decipher the German Enigma code during World War II, 

was particularly struck by the machine’s ability to accomplish a task that had been impossible 

for even the best human mathematicians. This led Turing to ponder the intelligence of such 

machines. These reflections culminated in Turing's 1950 research paper titled “Computing 

Machinery and Intelligence”, in which he described the process of creating intelligent machines 

and proposed a method to test their intelligence, now known as the Turing Test. This test 

remains a benchmark for assessing artificial intelligence: if a human interacts with both another 

human and a machine but cannot distinguish between the two, the machine is considered 

intelligent. Thanks to this seminal work, the British mathematician is often credited with laying 

the foundational ideas of AI (Haenlein et al., 2019). 

The more formal inception of modern AI as a scientific discipline was marked by the 

Dartmouth Summer Research Project on Artificial Intelligence (DSRPAI) in 1956, held at 

Dartmouth College, New Hampshire. This pivotal conference was organized by John 
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McCarthy, a computer scientist from Stanford, and Marvin Minsky, along with other notable 

participants including Nathaniel Rochester, who later designed the IBM 701 - the first 

commercial scientific computer - and Claude Shannon, the founder of information theory. The 

primary objective of this conference was to bring together researchers from various fields to 

establish a new research area focused on the development of machines capable of mimicking 

every aspect of human intelligence. This assembly of eminent scholars, who would later be 

recognized as the founding fathers of AI, unified under a shared vision to pioneer this 

innovative area of research. (Haenlein et al., 2019). It was precisely during this approximately 

eight-week-long workshop, funded by the Rockefeller Foundation, that McCarthy officially 

coined the term Artificial Intelligence and its definition.  

Progress in the AI field in the following years was astonishing. Throughout the 1960s and 

1970s, AI research flourished in various domains such as problem-solving, theorem proving, 

and natural language processing (NLP). Many scientists and researchers focused on automated 

reasoning and applied AI for proving of mathematical theorems and solving of algebraic 

problems. One notable example is the Logic Theorist, a computer program developed by Allen 

Newell, Herbert A. Simon, and Cliff Shaw. This program proved 38 of the first 52 theorems in 

Principia Mathematica and even provided more elegant proofs for some (Xu, Liu & Cao, 

2021). This was later surpassed by the General Problem Solver program, also created by the 

same scientists, which was more advanced and capable of automatically solving certain types 

of simple problems (Haenlein et al., 2019). Other pioneering systems from this era include 

ELIZA1, a natural language processing tool able to simulate a conversation with a human (Xu 

et al., 2021). These achievements made many AI researchers extremely optimistic. For 

instance, scholars like Minsky hypothesized that a machine with the general intelligence of an 

average human being could be developed within three to eight years (Kaplan, 2022). 

Consequently, substantial funding was allocated to AI research, leading to the initiation of 

numerous projects.  

However, these early AI systems were largely rule-based, relying on hard-coded responses 

and lacking the ability to learn from interactions or adapt to new situations. Consequently, these 

logic-based programs were unable to solve more complex problems and lacked the 

computational resources necessary for such tasks (Xu et al., 2021). As these limitations became 

apparent by the early 1970s, scholars like the British mathematician James Lighthill asserted 

 
1ELIZA, developed by Joseph Weizenbaum at MIT between 1964 and 1966, was a pioneering computer program in natural 
language processing. It could simulate human conversation and was among the first programs to attempt to pass the Turing 
Test. To experience ELIZA, visit: https://www.masswerk.at/elizabot/. 
 

https://www.masswerk.at/elizabot/


 7 

that machines would never surpass the level of an “experienced amateur” in games like chess 

and that common-sense reasoning would remain perpetually out of their reach (Haenlein et al., 

2019). Furthermore, due to computational power not advancing as quickly as anticipated, AI-

driven applications failed to meet expectations, leading to a decrease in both public and 

institutional support. This ultimately marked the onset of the first “AI winter”, a period 

characterized by a significant decline in advances and interest in AI research. 

In the 1980s, however, faith in AI's potential was rekindled, leading to significant inventions 

such as XCON, designed by Carnegie Mellon University, and MYCIN, designed by Stanford 

University. These systems predominantly relied on Expert Systems, which were collections of 

rules derived from expert knowledge aimed at helping non-experts make decisions, thereby 

solving real-world problems for the first time through a series of “if-then” statements (Haenlein 

et al., 2019). These expert systems operated on the assumption that human intelligence could 

be formalized and reconstructed using a top-down approach (Xu et al., 2021). 

Although these systems performed well in structured domains, they faltered in areas requiring 

more nuanced, unstructured reasoning. For instance, as Hutson (2018) notes, they struggled 

with tasks such as facial recognition or distinguishing between images of “muffins and 

Chihuahuas”, which require the ability to interpret external data flexibly, learn from it, and 

apply those learnings adaptively—capabilities fundamental to true AI that aims to mimic 

human intelligence. This highlighted a significant discrepancy between the potential of expert 

systems and the broader demands of real-world applications, underscoring the challenges of 

simulating human intelligence through rigid, rule-based systems. As a result, funding for AI 

research was once again withdrawn, marking the onset of the “second winter” period in the 

field's history (Xu et al., 2021). 

Other statistical methods aiming to achieve “true AI” were already being discussed in the 

1940s. During that period, Canadian psychologist Donald Hebb proposed a theory of learning 

called Hebbian Learning, which replicated the process of neurons in the human brain (Haenlein 

et al., 2019). This insight led to the exploration and development of Artificial Neural Networks 

(ANNs). However, research into neural networks faced significant hurdles. In 1969, Marvin 

Minsky and Seymour Papert demonstrated that computers lacked the processing power 

necessary to handle the demands of such networks, further contributing to the challenges faced 

during the AI winters (Minsky & Papert, 1969). 

The second revival of AI came in the late 1990s and early 2000s, spurred by greater 

computational power and the advent of the internet, which provided vast amounts of data and 

a new playground for AI applications (Öztürk, 2021). A landmark event was in 1997 when 
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IBM’s chess expert system, Deep Blue, managed to beat the reigning world champion, Gary 

Kasparov, by predicting the game 20 moves ahead. Deep Blue achieved this feat by processing 

around 200 million possible moves at a speed of approximately 2.5 million positions per 

second. This demonstration of a computer's ability to outperform the world chess champion 

sparked anew interest in AI and its potential for the 21st century (Haenlein et al., 2019). 

The advancements in neural networks further propelled AI's resurgence, leading to significant 

improvements in processing power and the emergence of technologies such as deep learning 

(DL). In 2006, indeed, Geoffrey Hinton and his collaborators made a breakthrough by 

proposing an approach for building deeper neural networks, known as deep learning. This 

specific type of artificial neural network marked a definitive moment for AI’s resurgence when, 

in 2015, AlphaGo, an AI-driven program created by Google DeepMind using deep learning 

techniques, defeated the world champion in the highly complex board game Go. This 

achievement was notable because it had been widely considered impossible for a computer to 

defeat a human master in Go until then (Kaplan, 2022). 

Today, artificial neural networks and deep learning constitute the foundation of most 

applications commonly recognized as AI, such as speech recognition, image recognition, and 

autonomous vehicles. These applications showcase AI's ability to perform tasks that were 

previously deemed exclusive to human intelligence. This resurgence marked a major shift from 

the previous limitations of AI, propelling the field into a new era of innovation and practical 

application (Xu et al., 2021). 

 

1.3 AI in the Market  
 

Building on the historical context of AI's development, despite the long-standing existence 

of certain AI technologies, recent years have witnessed unprecedented advancements. These 

breakthroughs, as outlined in the previous section, were primarily driven by significant 

improvements in computing power, the proliferation of vast datasets, and the development of 

innovative software algorithms. Key technologies enabling these advancements include cloud 

computing, Internet of Things (IoT) sensors, and Application Programming Interfaces (APIs). 

When integrated into enterprise systems, these technologies facilitate the collection, 

processing, and exchange of data, thereby optimizing information flow and operational 

efficiency. As a result, AI has transitioned from a purely research-focused domain to a 

pervasive presence in our society. This transition, which gained momentum around 2010, 
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marks a pivotal shift in the field of AI, characterized by a surge in scientific activity and 

practical applications, as evidenced by various metrics and trends. Indeed, to gauge the 

magnitude of this movement, The World Intellectual Property Organization release a study 

showing a considerable increase in AI-related publications over the past 20 years, with an 

average annual increase of 8% between 1996 and 2001, rising to 18% between 2002 and 2007. 

After 2015, annual growth surged again to 23%, and by 2018, AI-related papers accounted for 

2-3% of all published articles worldwide—almost three times the proportion in the late 1990s 

(WIPO, 2019). 

Furthermore, this period also experienced significant increase in AI-related patents. Between 

2006 and 2011, AI patent growth averaged 8% annually, surging to 28% between 2012 and 

2017. In fact, half of all AI patents were registered between 2013 and 2018. The proportion of 

new patents related to AI increased significantly in the final two years of this period, rising 

from less than 1.5% to nearly 2.5%. Remarkably, half of all AI inventions ever patented were 

registered between 2013 and 2018. Particularly, machine learning (ML) dominated the patent 

landscape, representing 40% of all AI patents. Notably, within this domain, deep learning has 

seen a notable increase, with patent approvals rising by 175% between 2013 and 2016. 

Regarding the fields of applications, image processing and computer vision accounted for about 

half of these patents. This surge in both scientific literature and patents reflects the growing 

interest in AI within both academic circles and business community. Indeed, Big tech 

companies like Google, IBM, and Microsoft have integrated advanced neural networks for 

functions such as speech recognition, with significant acquisitions like Google's purchase of 

the British company DeepMind and Intel's acquisition of Mobileye underscoring this trend 

(Baruffaldi et al., 2020). The rise in AI start-up acquisitions from less than 10 in 2010 to over 

240 in 2019 (CB Insights, 2021), alongside the recruitment of top AI scientists by these 

companies, further highlights the sector's expansion. Prominent corporate leaders have publicly 

emphasized AI's crucial role in their strategic pivots towards AI-centric operations, a sentiment 

echoed by global investment trends that show a robust increase in funding for AI across various 

industries (Baruffaldi et al., 2020). 

Numerous consultancy firms have projected the consequences of AI's definitive integration 

into society, anticipating that, due to its versatile nature, this technology will impact nearly 

every business sector and exert a significant economic influence. In line with these predictions, 

Zhang et al. (2021) observe that the demand for AI experts is growing in the job market, with 

more PhD graduates in the field finding employment in the commercial sector. Governments 
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are also responding to this trend, with more than sixty countries having developed national AI 

strategies (Sheikh et al., 2023). 

These indicators collectively demonstrate that AI has entered a new chapter in its history. 

The growing number of patent approvals, the rising level of private investment, the emergence 

of new business models, the expansion of AI-related employment, and the implementation of 

national strategies are all signal that AI has firmly embedded itself in society. Many of the 

capabilities that scholars at the Dartmouth Conference in 1956 dared to attribute to future 

intelligent machines are now within reach. In various aspects, machines can “use language, 

form abstractions and concepts, solve kinds of problems now reserved for humans, and improve 

themselves” (McCarthy, Minsky, Rochester & Shannon, 1955, p.2).  

 

1.4 Which 'Intelligencies'? A Summary of AI Types 

 

Artificial Intelligence encompasses a wide range of applications and techniques, making it a 

multifaceted field. To fully grasp its potential and particularly understand its diverse business 

applications, it's crucial to delve into its various categories, components, and methodologies. 

This comprehensive understanding enables businesses to effectively harness AI's capabilities, 

driving innovation and efficiency across industries. By exploring the different dimensions of 

AI, from how it learns to its functional and capability-based classifications, we can appreciate 

the full spectrum of AI's transformative power in the business world. 

AI can be classified based on its capabilities, learning methods, and functionalities. 

Concerning capabilities, AI can be categorized into three types: Artificial Narrow Intelligence 

(ANI), Artificial General Intelligence (AGI), and Artificial Super Intelligence (ASI). ANI, also 

known as Weak AI, is designed to perform specific tasks such as spam filtering or autonomous 

driving. These systems are the most common today and include examples like Apple's Siri, 

Amazon's Alexa and self-driving vehicles. AGI, also referred to as Strong AI, seeks to perform 

any intellectual task that a human can, applying knowledge across various domains. AGI 

remains a theoretical goal, though researchers continue to explore this field. ASI represents a 

hypothetical future where AI surpasses human intelligence in all aspects, potentially leading to 

a “singularity” where AI's growth becomes uncontrollable (Di Berardo, 2023). 

Currently, the AI systems we encounter daily, such as Apple's Siri, Amazon's Alexa, IBM 

Watsonx™, and self-driving vehicles, are categorized as Narrow AI. These systems can learn 

in various ways, leading us to the classification based on learning methods. Machine Learning 
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is a subset of AI focused on algorithms that enable computers to learn from data, including 

techniques such as supervised learning, unsupervised learning, and reinforcement learning 

(RL). Deep Learning (DL), a subset of ML, utilizes neural networks with multiple layers to 

learn from vast amounts of data. DL algorithms, modeled after the decision-making processes 

of the human brain, consist of layers of interconnected nodes that extract features from data 

and make predictions. While classic ML algorithms typically use neural networks with one or 

two hidden layers and require labeled data (supervised learning), DL employs Deep Neural 

Networks (DNNs) with many hidden layers, enabling unsupervised learning from unstructured 

data. This capability allows DL to scale and improve its performance with increasing data 

quality and quantity (Plathottam et al., 2023; IBM, (n.d.)). 

AI's functionalities include generative AI (GenAI), computer vision, natural language 

processing (NLP), speech recognition, and robotics. Generative AI involves deep-learning 

models that generate new content based on raw data. These models, such as variational 

autoencoders (VAEs), have extended to images, speech, and other complex data types, 

revolutionizing fields like image and voice recognition and text generation. Computer vision 

applies AI in the analysis and interpretation of visual data, such as facial recognition or 

identifying traffic signs. NLP is designed to understand and interpret human language, integral 

to technologies like chatbots and language translation. Speech recognition focuses on 

processing spoken language, exemplified by voice-controlled assistants, while robotics 

integrates various AI functionalities with physical operations, enabling robots to perform tasks 

like transporting goods within warehouses (Agrawal, Gans & Goldfarb, 2022; IBM, (n.d.)). 

The terms artificial intelligence, machine learning, and deep learning have been used 

interchangeably at times, but it is important to distinguish between them. To summarize, AI is 

the most general term, referring to the development of computer systems able to perform tasks 

by mimicking human intelligence, such as visual perception, decision-making, and voice 

recognition. Machine learning, a subfield of AI, allows computers to improve at performing 

tasks with experience, while deep learning, a further subfield of ML, uses multi-layered neural 

networks for feature extraction and transformation. Deep learning's advancements have led to 

algorithms that match and exceed human capabilities in specific datasets, particularly in 

computer vision and natural language processing. The continuous improvement in computing 

power, availability of big data, and innovative neural network structures has propelled DL's 

representative learning ability into broader applications, showcasing AI's value in scientific 

research and real-world scenarios (Nuzzi, Boscia, Marolo & Ricardi, 2021). 
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In conclusion, understanding the different facets of AI, from its foundational technologies to 

its applications, enables us to appreciate and harness its full potential in driving business and 

societal progress. 

 

1.5 Predictive Machines 
 

The primary potential that can be harnessed in AI applications lies in its predictive power. 

Although predictive modeling was already feasible through regression-based tools, the surge 

in computing power and the vast availability of data have enabled AI tools to surpass traditional 

systems, sometimes even outperforming humans in accuracy. This enhanced predictive 

accuracy is predominantly driven by advancements in machine learning, which facilitate 

efficient, data-driven forecasts. Unlike traditional statistical models that require specific input 

assumptions, machine learning techniques in AI accommodate more complex models with 

extensive variable interactions, significantly enhancing the quality of predictions. Indeed, in 

complex environments, traditional statistical methods and algorithms based on “if-then” 

instruction sequences are insufficient (Agrawal et al., 2022). 

Historically, the preferred methodology for forecasting relied primarily on regression 

techniques. Research focused on improving these methods, with hundreds of techniques 

proposed and tested in scientific journals and in the field. Regression identifies a prediction 

based on the average, providing a more precise calculation of the mean of past events. It 

constructs models capable of managing contextual data through the conditional mean, which 

considers multiple variables, though it proved complicated. Before the advent of machine 

learning, multivariate regression represented an efficient means of performing such 

calculations without the need to determine numerous conditional means. Regression utilizes 

data to identify the outcome that minimizes prediction errors, maximizing the model's goodness 

of fit. This method reduces errors relative to the mean, penalizing larger errors more heavily, 

and is particularly effective for small datasets, offering reliable forecasts. Regression models 

strive to generate objective results, ensuring that with a sufficient number of predictions, these 

are, on average, accurate. However, this average accuracy can imply errors in every single 

prediction. In contrast, machine learning predictions might be slightly off on average, but the 

errors are generally minor, significantly reducing variance. Moreover, while effective for 

relatively small datasets, regression models often fail to capture more complex interactions, 

limiting prediction accuracy. The advent of machine learning introduced a more efficient 



 13 

method capable of discerning subtle and significant predictive insights. Unlike regression, 

machine learning handles large quantities of data and identifies relevant and unexpected 

variable combinations without requiring explicit programming for each possible interaction 

(Spiliotis, 2023).  

In reality, between the late 1990s and the early 2000s, machine learning methods were 

advancing, but regression models continued to yield better results. This scenario changed in 

2016, when the increased availability of data and computing power allowed machine learning, 

and particularly deep learning models, to become predominant. These models are flexible and 

capable of handling vast amounts of data, including texts and images, offering more accurate 

and adaptable predictions. Agrawal et al. (2022) underscored the 2008 financial crisis as an 

example of the limitations of regression-based prediction models, which faltered not due to a 

lack of data but because of inappropriate use of the data.  

In light of the aforementioned points, it is evident that machine learning models excel in 

identifying relevant variables and recognizing that unexpected elements can be crucial for 

accurate predictions. As these models learn and adapt, their prediction accuracy improves, 

enabling them to perform tasks traditionally associated with human intelligence, such as object 

recognition. This modern approach to AI goes beyond following predefined rules by utilizing 

data patterns to predict outcomes. The strategy involves programming computers to “learn” 

from sample data or experiences. For instance, in facial recognition, where it is difficult to 

predetermine decision rules, machine learning bridges the gap by correlating name data with 

facial images to predict identities. At the core of these recent advancements is the concept of 

deep learning. As previously introduced, this method, which utilizes an approach known as 

backpropagation, enables systems to learn through examples in a manner akin to the human 

brain, thereby facilitating automatic learning. Similarly, in autonomous driving, continuous 

data analysis informs operational decisions without human input. In fraud detection, algorithms 

independently identify potentially fraudulent activities (Agrawal et al., 2022). 

Therefore, innovations in predictive technology are revolutionizing areas traditionally 

associated with forecasts and estimates, from financial markets to meteorology. As a matter of 

fact, credit card fraud detection has significantly improved due to machine learning, increasing 

accuracy from 80% in the 1990s to 98-99.9% today, drastically reducing errors and associated 

costs. Beyond fraud detection, machine learning enhances predictive accuracy in fields such as 

creditworthiness evaluation, health insurance, and inventory management, showcasing its 

versatility and effectiveness across diverse domains (Agrawal et al., 2022).  
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1.6 From Prediction to Business Decisions 
 

In the rapidly evolving business environment, the advanced predictive capabilities of AI are 

fundamentally transforming the landscape of decision-making. By leveraging complex, data-

intensive models that surpass conventional statistical methods, AI acts as a “predictive 

machine” (Agrawal et al., 2022), utilizing diverse data sources to forecast future scenarios with 

unprecedented precision. As Agrawal et al. (2022) assert, “Better prediction means better 

information, which means better decision making. […] Better predictions lead to better 

outcomes” (p. 39). This transformation compels a re-evaluation of traditional theories, business 

models and strategies in business management, as AI's integration enhances processes, 

products, and applications (Rajagopal et al., 2022). 

Decision-making within organizational frameworks is a complex process involving 

numerous choices across all departments and hierarchical levels. Each task in a company, from 

automated processes to manual actions, is built upon sequential decisions. Seminal works like 

Simon's Administrative Behavior highlight the importance of these decisions, which underpin 

all business operations. In fact, tasks can vary from being automated—leveraging technological 

advancements—to being manually executed by human agents, sometimes evolving into routine 

actions that can either be individual or collective in nature. Essentially, even the production 

processes within these organizations are underpinned by decisions, whether regarding resource 

allocation, workflow management, or quality control. (Kaggwa et al., 2024) 

In this context, AI acts as a catalyst because it refines forecasting, thereby enhancing the 

foundation of decision-making. Indeed, aggregating decentralized information and producing 

data-driven insights with lower costs of information processing, AI's predictive power 

significantly impacts corporate decision-making by assisting human decisions (Liu, 2023). 

While AI excels in predictive capabilities, it lacks the nuanced judgment required for high-

stakes executive decisions, such as mergers, innovations, and strategic partnerships. This 

limitation often necessitates managers to make satisficing decisions—those that are “good 

enough” under constrained information scenarios (Simon, 1956). However, advancements in 

predictive machines are expected to reduce this reliance, refining risk management and 

enabling more accurate decision-making. (Pessot et al., 2023).  

To assist human decisions, AI aggregates decentralized information and produces data-driven 

insights with lower costs of information processing. On a strategic level, AI integration 

involves deconstructing workflows into discrete tasks, evaluating the potential return on 
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investment for AI applications, and prioritizing implementation based on projected returns. 

This systematic approach not only streamlines operations but can also modifies them, 

potentially restructuring organizational hierarchies to optimize decision-making by shifting 

value towards roles requiring intricate judgment (Kaggwa et al., 2024). 

Moreover, Kaggwa et al. (2024) underscore the importance of AI in corporate decision-

making, indicating that integrating AI into strategic planning significantly influences corporate 

profitability and success. This integration enables companies to navigate complex 

environments and make effective decisions, driving successful business outcomes. However, 

as Trunk, Birkel and Hartmann (2020) emphasize, successfully leveraging this technology 

requires human decision-makers to evolve their roles. They must become translators and 

interpreters of AI-generated results rather than merely supervising the machine's execution of 

predefined processes. This shift also entails an increase in responsibility and a change in the 

necessary skill set. 

In conclusion, AI's advanced predictive capabilities are reshaping the core of decision-

making in business. By providing better forecasts and reducing reliance on human prediction, 

AI enhances the quality and effectiveness of decisions. As businesses continue to integrate AI 

into their strategic planning and operations, they must carefully balance the benefits and 

challenges to fully harness the transformative power of AI in decision-making (Kaggwa et al., 

2024). 

With this conceptual framework in mind, the present work now shifts towards examining 

specifically the modalities of AI integration within enterprises, identifying prevalent 

trajectories and their subsequent impact on corporate functions.  

 

 

2. AI Adoption in Business 
 

AI has been successfully employed in various areas within the business sector to significantly 

enhance efficiency and profitability. According to a McKinsey (2022) survey, the global 

adoption of AI is currently 2.5 times higher than it was in 2017, though it has stabilized over 

the past few years. The percentage of organizations implementing AI tools has remained 

constant since 2022, with adoption primarily concentrated in a few business functions. 

Additionally, since the advent of generative AI, 60 percent of organizations with reported AI 

adoption are using this technology. Moreover, 40 percent of these organizations plan to 
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increase their overall AI investments due to GenAI, and 28 percent have already included its 

use on their board's agenda (McKinsey, 2023). Statista (2024) estimates that AI market size is 

projected to rise from 241.8 billion U.S. dollars in 2023 to almost 740 billion U.S. dollars in 

2030, accounting for a compound annual growth rate of 17.3%. 

However, Brynjolfsson, Rock and Syverson (2019) highlight a paradox: while AI has the 

potential to substantially increase productivity, overall productivity growth has declined in 

recent decades. This indicates that AI possesses both transformative and disruptive qualities, 

providing a competitive edge to businesses that integrate it, while those that fail to do so may 

face obsolescence. Despite the significant initial investments required for AI implementation, 

the anticipated efficiency and profitability gains are expected to materialize in the coming 

years. 

Generally speaking, the use of AI in business settings can be classified into two distinct 

categories: AI for automation and AI for augmentation. Automation through AI involves 

systems designed to take over tasks previously performed by humans, thereby streamlining 

operations. In such instances, both the predictive and decision-making components are 

automated. On the other hand, augmentation uses AI to enhance human capabilities by 

offering insights that support and improve decision-making processes. In this scenario, only 

the predictive aspect is artificially enhanced. Both forms of AI are integral to various 

organizational operations and significantly impact customers by either introducing new 

products and services or enhancing existing ones through the integration of AI technologies 

(Enholm et al., 2022). Although task automation and labor augmentation might appear to be 

mutually exclusive, they are not necessarily opposites, as noted by economists Agrawal, 

Gans, and Goldfarb (2023). In fact, automating certain tasks can result in the augmentation 

of labor in other areas. 

 

2.1 Automation 
 

Automation through AI is an evolution of the traditional concept where machines replace 

human labor, such as robots on assembly lines. However, contemporary advancements in AI 

push beyond mere task replacement; they enable machines to learn, evolve, and thereby 

enhance their performance over time, allowing them to undertake more complex cognitive 

tasks involving learning and problem-solving (Lee, Suh, Roy & Baucus, 2019). This 

advanced form of automation, often termed Intelligent Automation, extends to areas 
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previously deemed too challenging for mechanization, such as knowledge-based and service-

oriented tasks. For example, AI-driven virtual robots are now capable of processing emails 

autonomously (Wamba-Taguimdje, Wamba, Kamdjoug & Wanko et al., 2020). 

In practical applications within the manufacturing and construction sectors, AI automates 

functions such as budgeting, planning, inventory management, and replenishment processes 

(Wamba-Taguimdje et al., 2020). In the realm of services, AI-enhanced digital and robotic 

services significantly influence customer experiences, exemplified by the deployment of 

chatbots. These conversational agents simulate human interaction capabilities to assist 

customers via voice or text communications, handling queries, managing insurance claims, 

facilitating sales, and ensuring appropriate insurance coverage. Moreover, AI facilitates the 

creation of innovative products and services, automating tasks for consumers directly. Notable 

examples include conversational intelligent agents like Apple’s Siri and Amazon’s Alexa, 

which manage everyday tasks such as text composition, call initiation, and media control 

through voice commands. These technologies integrate with devices for smart home 

automation and are also utilized in securing devices through facial recognition technologies, 

simplifying user authentication processes (Enholm, 2022). 

 

2.2 Augmentation 
 

Augmentation involves leveraging AI to enhance human decision-making and operational 

efficiency. AI's capacity to rapidly process and analyze extensive datasets, coupled with its 

predictive analytics that forecast outcomes and recommend proactive measures, enables it to 

support complex decision-making processes. This capability provides insights that surpass 

human cognitive abilities (Jarrahi, 2018). 

In line with recent scholarly perspectives, Acemoglu (2021a) advocates for a more human-

centric approach in AI research, emphasizing augmentation over automation. The researcher 

argues that AI should aim to enhance human capabilities, enabling individuals to accomplish 

tasks that were previously unattainable. This approach would foster a synergistic relationship 

between AI applications and human skills, creating opportunities for both to complement each 

other effectively. From this perspective, augmentation is characterized as a co-evolutionary 

process where humans and machines mutually learn from each other (Raisch & Krakowski, 

2020). 
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For instance, the following applications of AI illustrate this synergy. In healthcare, it 

processes medical imaging like MRI scans to identify minute anomalies, assists in cancer 

detection, and supports surgeons with robotic technology during complex operations (Jarrahi, 

2018). In public relations and marketing, AI tools monitor social media trends and enable 

precise customer segmentation based on detailed preferences and behaviors (Mishra & Pani, 

2021). In the fashion industry, AI anticipates consumer patterns and optimizes recommendation 

systems to forecast trends, significantly enhancing customer engagement (Wamba-Taguimdje 

et al., 2020). Furthermore, in service offerings, AI's capability to personalize experiences is 

epitomized by systems like Netflix's recommendation engine. This system utilizes diverse 

customer data metrics to tailor content suggestions, thus augmenting the consumer's decision-

making process, engagement and satisfaction (Enholm, 2022). 

 

2.3 AI Applications in Business Functions  
 

AI can be applied in various business areas such as accounting and finance, customer service, 

recruitment, cybersecurity, sales and marketing, supply chain and logistics, information 

technology (IT) operations, and legal. This chapter delves into the applications of AI that 

contribute most significantly to creating value for the company (Agrawal et al., 2022). 

 

2.3.1 Human Resources  
 

The incorporation of AI in Human Resources (HR) significantly enhances functions such as 

learning and development (L&D), talent development and management, and workforce 

planning. AI tools are instrumental in transforming HR practices, focusing on precision, 

personalization, and predictive capabilities (Agarwal, Gupta & Roshani, 2023). 

In learning and development, AI leverages machine learning and natural language processing 

to analyze employee feedback and performance data, which facilitates a nuanced understanding 

of individual learning needs. For example, Bhatt and Muduli (2022) reported that AI 

innovations like natural language processing, artificial neural networks, and robots 

significantly enhance L&D process efficiency, evaluate learning aptitude, and track learning 

progress. This capability ensures that training programs are not only relevant but also tailored 

to enhance learning outcomes. Moreover, AI supports adaptive methods that align training with 

changing business environments and employee career (Ekuma, 2024). 
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AI's role extends significantly into talent development and management, where technologies 

such as personalized learning systems and predictive analytics help identify highly skilled 

individuals, while natural language processing, machine vision, automation, and augmentation 

improve efficiency and reduce costs. These tools automate routine tasks, including training and 

assessments, and allow HR professionals to analyze extensive data to effectively identify and 

develop top talent. Machine learning algorithms are particularly valuable in predicting 

employee performance and success, enabling tailored development plans and more strategic 

management decisions (Agrawal et al., 2023).  

In the realm of workforce planning, AI's predictive analytics are crucial for anticipating hiring 

needs and identifying potential skill gaps. This foresight helps align workforce capabilities with 

strategic business objectives, enhancing organizational preparedness and reducing the risk of 

talent shortages (Ekuma, 2024). Furthermore, the implementation of AI and automation has 

fostered more informed decision-making and improved resource allocation, as noted by Ekuma 

(2024). This integration not only supports strategic alignment but also optimizes the 

deployment of resources across the organization.  

Additionally, automation within AI applications improves operational efficiency by 

streamlining routine administrative tasks. This shift allows HR professionals to focus more on 

strategic HRD initiatives, such as developing innovative talent development programs and 

engaging employees more effectively (Agarwal et al., 2023). 

AI's transformative impact in HR is evident not only in enhancing existing processes but also 

in pioneering new methods for managing and developing human capital. Technologies such as 

adaptive learning systems, virtual classrooms, and AI-powered analytics platforms enable HR 

departments to become pivotal contributors to organizational resilience and adaptability 

(Huang, Saleh & Liu, 2021). 

Largely, AI technologies such as machine learning, deep learning, and neural networks 

redefine the landscape of human resource management by enriching specific HR functions like 

personalized learning and talent analytics. These innovations ensure that HR operations are not 

only more efficient but also strategically aligned with future business needs, marking a 

significant shift towards more dynamic and responsive HR practices (Huang et al., 2021). 
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2.3.2 Marketing, Sales, and Customer Service 
 

The utilization of AI in marketing, sales, and customer service has not only enhanced existing 

functions but also introduced novel capabilities that significantly improve operational 

efficiency and customer satisfaction. Specifically, AI technologies such as machine learning, 

deep learning, and neural networks are tailored to optimize particular aspects of each domain. 

In marketing, AI's capability to analyze data has transformed how campaigns are tailored to 

meet customer needs. For instance, deep learning algorithms excel in identifying patterns and 

predicting future behaviors from massive datasets, allowing for the dynamic personalization of 

content. This means that AI in digital marketing aids marketers in optimizing email campaigns, 

enhancing outcomes with effective conversion strategies, thus improving open rates and 

engagement by aligning with the evolving interests of consumers (Halem et al., 2022). The 

ultimate advantage in this context is AI’s ability to provide actionable insights that are 

grounded in comprehensive data analysis, ensuring that marketers can reach their target 

audience with the right message at the right time. The predictive analytics used in these 

processes are similar to those employed by Amazon, where complex recommendation 

algorithms account for a significant portion, near 36%, of sales by suggesting products based 

on user behavior and preferences. Further, 90% of customer support at Amazon is also 

automated (Kreutzer & Sirrenberg, 2020). 

Concerning sales, neural networks play a crucial role in enhancing the purchase process 

through language-based AI tools. These tools function as advanced sales assistants, payment 

processors, and engagement managers, significantly improving the user experience. By 

processing natural language, these systems manage customer interactions more effectively, 

“learning” from each customer interaction to optimize future responses. This ability to optimize 

automatically after each interaction makes the sales process smoother and more intuitive for 

customers, who no longer need to navigate complex purchasing steps on their own (Halem et 

al., 2022). 

In customer service, AI technologies considerably improve service delivery. The trend is 

towards automated customer service. Chatbots and digital personal assistants, which are central 

to modern customer service strategies, leverage ML to offer timely and accurate responses to 

customer inquiries. These systems enhance interaction quality by employing voice 

identification and emotion analysis, thus adjusting responses based on the customer’s mood 

and context (Kreutzer & Sirrenberg, 2020). The AI not only understands what is said, through 
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the natural language processing (NLP), but also identifies who is speaking, which is crucial for 

personalizing interactions and ensuring security in transactions. This process is called speaker 

verification or speaker authentication and is important for the identification of customer when 

security-relevant processes or important transactions (e.g., telephone banking) are controlled 

via voice —for example via a digital personal assistant (Kaltschmidt, 2017). Therefore, AI 

tools predict customer issues and initiate proactive service measures. This approach not only 

anticipates the needs of customers but also addresses them pre-emptively, enhancing customer 

satisfaction and loyalty. 

AI-driven website optimization tools like EyeQuant demonstrate how AI can enhance 

marketing efficiency by evaluating the visual impact of website designs in real-time, without 

the need for user testing. By applying findings from neuroscientific research, these tools predict 

how small changes to a website’s design, such as typography and contrast, can affect user 

engagement and conversion rates (Kreutzer & Sirrenberg, 2020). 

Furthermore, AI platforms for media planning like the Albert AI and Lucy take on roles 

traditionally handled by human media planners. These platforms use algorithms to sift through 

vast amounts of data, identifying the best media buying strategies and optimizing advertisement 

placements without human input. As highlighted by Kreutzer and Sirrenberg (2020), this not 

only speeds up the process but also reduces the likelihood of human error, ensuring that 

marketing budgets are used more effectively. 

Overall, AI's integration into marketing, sales, and customer service is distinguished by its 

ability to take on complex, data-intensive tasks with high efficiency and accuracy. Through 

predictive analytics, personalized content delivery, and enhanced customer interaction, AI is 

not merely supporting existing functions but transforming them into more customer-centric and 

adaptive components of business strategy. Thus, improving the quality of customer interactions 

and driving business growth by fostering deeper customer relationships and loyalty (Halem et 

al., 2022). 

 

2.3.3 Operations  
 

In contemporary manufacturing and operations management, AI is a cornerstone technology, 

dramatically altering how tasks are managed across numerous facets of production. Through 

various AI applications, organizations can now optimize complex, interconnected systems that 

were once heavily reliant on manual intervention and traditional methodologies. This 
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integration of AI has brought forth unparalleled levels of efficiency, predictive accuracy, and 

process refinement, which are crucial for competitive advantage in today's market 

environments. Reinforcement Learning, for example, has been employed to optimize the 

hydrometallurgical separation process, resulting in enhanced design efficiency, while hybrid 

support vector and evolutionary algorithms have achieved a 45% reduction in energy 

consumption in carbon fiber manufacturing (Plathottam et al., 2023).  

One of the pivotal roles of AI in operations is embodied by predictive maintenance. This 

application is particularly transformative in sectors such as aerospace, automotive, and 

electronics manufacturing, where equipment downtime is extremely costly. AI-driven systems 

analyze data from sensors installed on equipment to predict failures before they occur, allowing 

maintenance to be scheduled at optimal times without disrupting production flow. For instance, 

typical manufacturing plants can experience up to 15 hours of downtime weekly, which can 

equate to financial losses of approximately $20,000 per minute, particularly in large-scale 

operations like those found in the automotive industry (Brosset, Thieullent, Patsko & Ravix, 

2019). By predicting potential failures, AI not only saves substantial costs but also enhances 

operational safety and reduces the environmental risks associated with sudden industrial 

stoppages (Plathottam et al., 2023). 

Furthermore, AI greatly advances quality assurance (QA) capabilities in manufacturing. 

Employing techniques such as computer vision, AI systems surpass human accuracy in 

detecting defects and irregularities in products. For example, in semiconductor manufacturing, 

AI-powered computer vision models analyze electron microscope images and wafer maps to 

identify defects that could impact performance. These capabilities are crucial for maintaining 

high standards of product quality and reliability, which directly influence consumer satisfaction 

while simultaneously curtailing costs and minimizing waste (Frittoli et al., 2021). 

Energy consumption forecasting is another critical application where AI makes significant 

contributions. Manufacturing facilities, especially those in energy-intensive industries like 

steel production or chemical processing, can leverage AI to better predict and manage energy 

usage, thus enhancing sustainability practices. Deep neural networks excel in this domain, 

especially when they are trained with historical time-series data from numerous devices, like 

smart energy meters. Similarly, Support Vector Machines (SVMs) are well-suited for short-

term electricity consumption forecasting and they are particularly effective in scenarios with 

fewer samples and high-dimensional inputs, such as small datasets but complex variables. AI 

models process diverse data from sensors that monitor temperature, humidity, and machine 

operations, to predict energy needs and dynamically adjust processes. This capability not only 
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reduces operational costs but also aids in achieving broader environmental goals by reducing 

the carbon footprint of these activities (Plathottam et al., 2023). 

AI's influence extends also deeply into supply chain management, where it transforms 

traditional logistics into dynamic, data-driven systems. Through the analysis of both real-time 

data streams and historical data, AI models furnish insights that assist companies in managing 

inventory levels, optimizing production schedules, and preempting supply chain disruptions 

that could have significant impacts (Toorajipour et al., 2021). This proactive approach is crucial 

for sustaining the flow of goods in global markets, where delays or shortages can precipitate 

cascading effects on production and sales. In particular, natural language processing (NLP) 

enhances this data-driven management by extracting critical information from news feeds, thus 

offering market insights and digitizing physical documents like invoices with greater speed and 

precision than manual data entry. Similarly, AI/ML-powered industry robots and drones, 

equipped with computer vision, operate in warehouses under minimal supervision, providing 

an unprecedented accuracy level. These technologies not only track and retrieve inventory but 

also support tasks such as waste reduction and real-time monitoring during logistical 

operations, further automating routine tasks to curtail errors and elevate productivity. 

Additionally, reinforcement learning (RL) is applied to refine production pathways and 

scheduling, which helps in minimizing delays and maximizing efficiency, also minimizing 

unnecessary stops and avoiding interference with human operators, ensuring an optimized 

productivity flow throughout the supply chain (Plathottam et al., 2023). Amine Belhadi et al. 

(2022) concentrate on utilizing AI to enhance the resilience of supply chains. They introduce 

an integrated multi-criteria decision-making approach driven by AI algorithms to formulate 

strategies for supply chain resilience. Their research underscores AI's pivotal role in optimizing 

supply chain management, a vital component of business operations. By employing fuzzy logic 

programming, machine learning, and agent-based systems, the study illustrates the flexibility 

of AI in tackling complex business issues. 

Additionally, the concept of digital twins represents a forward-thinking application of AI in 

operations management. These virtual replicas of physical systems allow companies to 

simulate and analyze operations, test changes, and predict outcomes in a virtual setting before 

implementing them in the real world. This technology drastically reduces the resources and 

time needed for experimentation and enables more precise control over complex manufacturing 

processes. Further, digital twins are employed to monitor parts and offer insightful analysis and 

data-driven choices. AI has the capability to utilize digital twins, product manuals, disassembly 
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guides, and recycling value chain information to efficiently monitor every component along 

the product lifespan (Shennib & Schmitt, 2021).  

AI also enhances operational safety and security within industrial environments. Intelligent 

access control systems employing AI enhance safety by ensuring only authorized personnel 

can access critical areas, effectively reducing the risk of accidents or unauthorized entry. Deep 

learning-based computer vision specifically targets the detection of risky behavior by 

employees and the identification of unpermitted entrants in facilities, thereby maintaining a 

secure working environment (Sen & Ravikiran, 2019). Moreover, in the realm of cybersecurity, 

AI and ML serve as the backbone for advanced intrusion detection systems that scrutinize user 

behavior and network traffic for irregularities, thus safeguarding networked devices within 

manufacturing plants from cyber threats (Bécue, Praça & Gama, 2021). 

In conclusion, AI’s integration into operations management is profound, driving 

improvements across preventive maintenance, quality assurance, energy management, supply 

chain optimization, and security and safety protocols. As AI technology continues to evolve, 

its potential to further transform these areas will undoubtedly increase, offering even greater 

accuracy, efficiency, and cost-effectiveness in manufacturing and beyond. This strategic 

adoption of AI not only supports operational goals but also enhances competitive positioning 

in a rapidly changing industrial landscape (Dogru & Keskin, 2020). 

 

 

3. Sustainable AI  
 

As observed, AI is, and will continue to, transform the economic and industrial world. In 

previous chapters, AI has been presented as a rapidly evolving family of technologies that, by 

improving prediction and decision-making and optimizing operations and resource allocation, 

can provide key competitive advantages to enterprises. AI adoption can, directly or indirectly, 

also contribute to a wide range of economic, environmental, and social benefits across various 

industries and social activities (Artificial Intelligence Act, 2024b). For instance, AI’s predictive 

prowess extends to sectors like healthcare, where it increases diagnostic precision, and 

environmental management, where it streamlines resource use and minimizes waste.  

Among the societal advantages of its adoption, the EU highlights the benefits that AI can 

bring on an environmental level. Indeed, AI is delivering numerous improvements to processes, 

products, and applications, enhancing sustainability and reducing environmental impact 
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primarily through optimization. Specifically, AI enables more efficient management of 

infrastructure, transport/logistics, resources, and energy; improves environmental monitoring; 

supports the conservation and restoration of biodiversity and ecosystems; and effectively 

intervenes in climate change mitigation and adaptation (OHCHR, 2021). 

Thanks to its broad field of application, AI is increasingly framed as a promising tool to 

enhance sustainable development. For example, AI-driven systems are instrumental in 

forecasting energy demand for more efficient grid operations and in predicting agricultural 

yields to reduce inputs and increase productivity (Agrawal et al., 2022, Walker et al., 2024). 

Therefore, as highlighted by the European Commission, AI is recognized as a vital tool for 

achieving sustainability goals, such as diminishing environmental impacts through enhanced 

optimization and propelling climate change policies (Gailhofer et al., 2021). The European 

Commission sees AI as one of the digital technologies that are a “critical enabler for attaining 

the sustainability goals of the Green Deal” by accelerating and maximizing “the impact of 

policies to deal with climate change and protect the environment” (European Commission, 

2019, p.9). 

At the same time, however, depending on the circumstances regarding its specific application, 

use, and level of technological development, AI adoption can generate indirect societal risks 

and cause harm to public interests and fundamental rights (OHCHR, 2021). Therefore, despite 

its benefits, AI also poses significant challenges and risks across multiple domains. Ethical 

concerns include privacy issues, biases, and lack of transparency in decision-making processes, 

while socially, AI’s impact may intensify issues such as job displacement and inequality. From 

an environmental perspective, AI’s development requires extensive resource consumption and 

energy, leading to considerable carbon emissions, especially during the training of large models 

(Van Wynsberghe, 2021). 

These concerns have led to an increasing amount of research examining AI's role in achieving 

the Sustainable Development Goals (SDGs). There are ongoing debates about whether AI 

systems facilitate or hinder the SDGs, how these systems should be regulated, and the 

reliability and suitability of such evaluations. The relationship between AI and the SDGs is 

complex and unclear because the same technology can serve opposing purposes. For instance, 

AI systems can utilize remote-sensing algorithms to analyze satellite imagery, collect data on 

agricultural productivity, and predict the energy consumption of buildings, but they can also 

be employed to accelerate oil and gas exploration (Rohde et al., 2023). 

It is due to these concerns that many countries are adopting legislative measures on the matter. 

Given the significant impact that AI can have on society and the need to build trust, it is 
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considered vital for AI to have a regulatory framework (Agrawal et al., 2022). Due to growing 

concerns about ethical, legal, and social issues around AI systems, both private corporations 

and public institutions have started developing quality and trustworthiness certifications for AI 

over the past few years. In the EU, the proposal of the “Artificial Intelligence Act” (2024), 

which includes “standards, conformity assessment, certificates, and registration” as a means to 

manage “high-risk AI systems” (Artificial Intelligence, 2024b), published in April 2021, was 

definitively approved on March 13, 2024. A Union legal framework that establishes 

harmonized rules on AI is therefore generally deemed necessary to promote the development, 

use, and adoption of AI in the internal market while simultaneously ensuring a high level of 

protection for public interests that may be affected by externalities generated by the use of AI 

by private entities (Genovesi & Mönig, 2022). 

Focusing solely on the dual role, both positive and negative, that AI plays concerning 

environmental sustainability, Perucica and Andjelkovic's research (2022, as cited in Kaggwa 

et al., 2024) explores the interconnectedness of AI and environmental sustainability within the 

European Union (EU). Their study emphasizes the necessity for comprehensive sustainable AI 

policy initiatives, showcasing the EU’s approach as a model that balances technological 

advancement with environmental stewardship. This viewpoint is essential for understanding 

how AI can be developed and applied in a way that is both technologically advanced and 

environmentally conscientious. The concept sustainable by design AI, introduced by Perucica 

and Andjelkovic, highlights the importance of developing AI systems that are transparent, 

responsible, and aligned with human values, ensuring that AI contributes positively to 

environmental sustainability (Kaggwa et al., 2024). 

In this regard, the definition of sustainability, or more precisely, sustainable development, is 

often quoted from the Brundtland Report (1987), also known as “Our Common Future”: 

“Sustainable development is development that meets the needs of the present without 

compromising the ability of future generations to meet their own needs” (p.41). 

Referring exclusively to environmental sustainability, achieving this requires the creation of 

a comprehensive evaluation framework that assesses AI’s total resultant environmental impacts 

and can be used as a tool to guide responsible AI development (Van Wynsberghe, 2021). The 

following paragraphs, and more generally this thesis, aim to evaluate how AI adoption in 

business meets the Brundtland sustainability definition and positively contributes to the 

environmental aspect of sustainability. Specifically, the discussion articulates around the 

concept of sustainable innovation, seeking to understand how and in which cases it can be 

applied to AI. Subsequently, the two fundamental dimensions of AI for sustainability and the 
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sustainability of AI are explored within this definition. This approach identifies the 

environmental externalities related to the corporate use of AI innovations, investigating how 

they can be balanced with the benefits that the use of AI in business processes simultaneously 

brings to the environment. The framework is thus proposed and subsequently tested and 

evaluated empirically to become a tool for assessing the sustainability of AI adoption in 

companies, thus encouraging potential strategies to balance the negative and positive effects of 

the technology, orienting the adoption of AI in business towards sustainability improvement. 

 

3.1 AI for Environmental Sustainability and the Environmental 

Sustainability of AI 
 

Sustainability is an increasingly important consideration in business practices, and AI offers 

both opportunities and risks in this regard. On the one hand, AI can contribute to sustainability 

goals by optimizing resource use, reducing waste, and improving efficiency. On the other hand, 

the deployment of AI systems can have negative environmental impacts, such as high energy 

consumption for computing power. Therefore, businesses must adopt a balanced approach to 

AI, ensuring that its use aligns with sustainability principles and contributes positively to 

environmental and social goals by developing comprehensive strategies that address these 

dimensions to harness the full potential of AI in a responsible and sustainable manner (Walker 

et al., 2024). 

To achieve this, a multi-faceted approach is required, starting from the consideration of all 

aspects of sustainability related to a specific technological innovation. To develop an effective 

framework for assessing or measuring the overall sustainability of technological innovation, it 

is crucial to understand the concept of sustainable innovation. In the existing literature, two 

terms—eco-innovations and sustainable innovations—are often used interchangeably, 

although they have distinct meanings. Eco-innovations, also known as green, ecological, or 

environmental innovations, focus mainly on environmental sustainability. In contrast, 

sustainable innovations encompass environmental, societal, and economic dimensions, making 

them broader in scope. Interestingly, the motivation behind these innovations does not have to 

be purely environmental or social; they can also stem from economic objectives, such as cost 

reduction or market share improvement. Therefore, innovations can be classified as sustainably 

motivated innovations or sustainably beneficial normal innovations. Regardless of their 
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motivation, sustainable innovations contribute to sustainable development by generating 

ecological and social benefits (Gunarathne, 2019).  

In 2021, van Wynsberghe laid the foundation for a perspective on AI sustainability, focusing 

on sustainability in the development and use of AI systems. In this context the researcher 

presented the concept of sustainable AI and applied it to AI applications. The term sustainable 

AI is not about simply maintaining the development of AI, but refers to the development of AI 

systems that are compatible with the sustainability of environmental resources for current and 

future generations; economic models for societies; and fundamental social values for a given 

society. To capture the concept of sustainable AI, the author introduces a distinction between 

two fundamental dimensions: AI for sustainability (i.e., the capability to achieve sustainable 

development goals) and sustainability of AI (i.e., the impact of AI production and use on the 

environment). This perspective on AI sustainability highlights the need to promote changes 

throughout the entire life cycle of AI products (Van Wynsberghe, 2021). Following the 

subdivision proposed by Van Wynsberghe, the discussion on sustainable AI in the following 

paragraph is divided into AI for sustainability and the sustainability of AI. 

 

3.2 AI for Environmental Sustainability  
 

AI for sustainability is a concept that has been increasingly explored over the past years. The 

capacity of AI to tackle complex environmental and societal issues and support the 

achievement of the United Nations SDGs and the 2030 Agenda is being advocated by various 

entities, ranging from private non-profit organizations like AI4Good2 to sophisticated 

academic frameworks such as the AI4People ethical framework developed by Floridi et al. 

(2018). At the European level, the European Commission's White Paper (2020) on AI already 

explicitly highlighted the importance of AI in fostering sustainable economic growth and 

societal well-being. It emphasized AI's role in achieving the Green Deal objectives (European 

Commission, 2019) and advancing circularity within the single market as outlined in its 

Circular Economy Action Plan. 

Looking at the generic use of technology, there are numerous ways in which AI can mitigate 

environmental problems and human-induced impacts. For instance, AI can be employed to 

generate and analyze large-scale interconnected datasets, facilitating a more sensitive 

 
2A non-profit organization that brings together the best minds and technologies to solve the world's most urgent 
challenges. For further information, see https://ai4good.org/ 

https://ai4good.org/
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understanding of Earth and predicting environmental behavior across various scenarios. This 

would enable a better understanding of environmental processes, allowing for more informed 

decisions. AI can also simulate the results of harmful activities, such as deforestation, soil 

erosion, flooding, and increased greenhouse gases (GHG) in the atmosphere. Moreover, these 

technologies hold great potential to improve the understanding and direct control of the 

environment (Budennyy et al., 2022). 

Regarding more practical applications, AI has been used effectively in various domains, such 

as discovering new electrocatalysts for efficient and scalable ways to store and use renewable 

energy (Huang et al., 2021), animal conservation, and forest fire management (Schwartz et al., 

2020). Additionally, numerous AI-based solutions are being developed to achieve carbon 

neutrality as part of the concept of Green AI. The final goal of these solutions is the reduction 

of GHG emissions. AI can help reduce the effects of the climate crisis through smart grid 

design, developing low-emission infrastructure, and modeling climate changes (Budennyy et 

al., 2022). 

Given these broad potential and application prospects for sustainability, one of the greatest 

opportunities for enhancing sustainability through AI usage is within business processes, which 

are significant contributors to environmental pollution. AI has enormous potential to help 

mitigate climate change and address further environmental and societal challenges by 

enhancing the ability of businesses to operate more sustainably. Indeed, it is in the corporate 

environment that AI adoption is recognized as a vital tool for achieving sustainability goals, 

such as diminishing environmental impacts through enhanced optimization (Gailhofer et al., 

2021). 

Specifically, AI can enhance waste management and recycling by automating sorting, 

preventing contamination, and predicting maintenance requirements. This not only increases 

recycling efficiency but also contributes to sustainability by advancing a circular economy. 

Moreover, accurate life cycle predictions for equipment can significantly improve 

sustainability. Most companies have equipment that cannot afford downtime, making it 

difficult to store replacements. Consequently, perfectly functional systems are often scrapped 

or sold when they reach their nominal end of life. Enhancing life cycle predictions and 

extending the use of systems can substantially diminish the environmental impact of this 

practice (Abdallah et al., 2020). 

In supply chain management, AI-driven inventory optimization and execution can reduce 

excess inventory, optimize transportation, and enhance factory-supplier alignment and 

collaboration. This enables global manufacturers to align their operations around priorities that 
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matter for efficient production and on-time delivery, thus lowering waste and improving 

sustainability across the supply chain and in manufacturing (Toorajipour et al., 2021). 

AI can also be leveraged for real-time monitoring and control of energy and resource 

consumption, which is crucial for sustainability. AI-powered systems can continuously analyze 

data from sensors and devices to optimize energy usage, water consumption, and resources, 

reducing waste and carbon footprints. Moreover, AI can help address environmental risks, 

ensuring companies meet sustainability goals effectively (Forbes Technology Council, 2023). 

Furthermore, AI can predict renewable energy availability in advance to improve energy 

utilization and it can also be leveraged to develop sustainable new products since large datasets 

can be analyzed to identify sustainable design and packaging for shipping new products. 

Finally, AI can explore ways to use more renewable materials in the new product development 

process, aiding in improved sustainability (Ogundipe, Babatunde, & Abaku, 2024). 

In conclusion, AI offers vast potential for enhancing sustainability in and of business 

processes. By aligning AI adoption with sustainability principles, businesses can achieve 

significant environmental, societal, and economic benefits, thereby contributing positively to 

the broader goals of sustainable development. 

 

3.3 Environmental Sustainability of AI  
 

Despite the common perception of AI as intangible and non-physical, its substantial effects 

on the physical world are undeniable. Kate Crawford, in her book Atlas of AI, highlights that 

the terminology used, such as algorithms and the cloud, can make AI seem non-physical 

(Crawford, 2021). Indeed, AI is often perceived as intangible due to the nature of its operations, 

which involve data processing and decision-making in ways not immediately visible to users. 

This perception is further reinforced by the illusion of objectivity, where AI systems are seen 

as neutral and omnipresent, despite reflecting the biases and limitations inherent in their 

training data (Messeri & Crockett, 2024).  Additionally, the complexity and abstract nature of 

AI algorithms contribute to the sense that AI lacks a physical presence (Weissinger, 2022). In 

contrast, implementing AI requires extensive resources, including data centers, chips, 

computers, and other physical components, which together form a network of “invisible 

factories” (Crawford, 2021). This integration of intangible perceptions with substantial 

physical requirements highlights the duality of AI's impact, making it crucial to recognize that, 

while AI operates through digital and algorithmic processes, its implementation heavily relies 
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on tangible and physical infrastructure, thus rendering its impacts visible and significant in the 

real world. 

Discussions on environmental sustainability often overlook the role of technology and the 

accompanying increase in digitalization, despite its significant impact. A crucial aspect of the 

physicality of AI that warrants attention is its carbon footprint and its implications for climate 

change (Okafor-Yarwood & Adewumi, 2020). For instance, data centers consume vast 

amounts of energy and water, and the computational power required to support AI systems 

leads to considerable environmental impacts. 

Recent research has begun to uncover the environmental costs associated with the materiality 

of AI, particularly focusing on energy consumption and GHG emissions from training, fine-

tuning, and operating AI systems (Li, Yang, Islam & Ren, 2023). One of the pioneering studies 

revealing the real impact is by Strubell, Ganesh & McCallum (2019). This study highlights that 

training a single large natural language processing (NLP) model can have a carbon footprint 

equivalent to 125 round-trip flights from New York to Beijing. Furthermore, as AI models 

become more complex and larger, their carbon footprint will continue to grow, even with the 

adoption of mitigation measures such as cleaner energy sources. 

Estimates vary, from researchers like Belkhir and Elmeligi (2018, as cited in Crawford, 

2021), who predict that the tech sector will contribute 14% of global GHG emissions by 2040, 

to a Swiss working group's forecast that the electricity demand of data centers alone will 

increase approximately fifteenfold by 2030. Examining the computational capacity needed to 

build AI models reveals how the goal of exponential improvements in speed and accuracy 

comes at a high environmental cost. The processing requirements for training AI models, and 

consequently their energy consumption, represent an emerging area of investigation, but 

quantifying the true impact remains a significant challenge. Indeed, the exact amount of energy 

consumption by AI models in the tech sector is unknown, as such information is protected as 

highly confidential corporate secrets (Crawford, 2021). 

The environmental impact of AI goes beyond mere energy consumption, including the 

depletion of physical resources needed for its infrastructure and its footprint on the planet. The 

materiality of AI requires significant planetary resources, including the extraction of minerals 

such as gold and tungsten for hardware, lithium—often called “grey gold” —from Bolivia for 

batteries and chips, and cobalt from the Democratic Republic of Congo for AI components 

(Crawford, 2021). These countries in the Global South are rich in raw materials, making them 

targets for resource extraction.  
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Thus, AI is a true “extractive industry”, with supply chains that wrap around the entire planet 

(Crawford, 2021). The type of raw materials extracted is crucial: in 2020, scientists from the 

US Geological Survey published a short list of 23 minerals that pose a high supply risk to 

producers. This means that if they became unavailable, entire industries, including the 

technology sector, would grind to a halt (Nassar et al., 2020). There are 17 elements classified 

as rare earth elements (REEs): lanthanum, cerium, praseodymium, neodymium, promethium, 

samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, 

lutetium, scandium, and yttrium. Once processed, these elements are incorporated into 

electronic devices, making them smaller and lighter. These elements can be found in color 

displays, speakers, camera lenses, rechargeable batteries, hard drives, and many other 

components (Crawford, 2021). 

Therefore, based on the preceding discussion, it becomes evident that AI relies on a vast and 

complex infrastructure, involving extraction, assembly, cooling, and electronic waste disposal. 

These processes present significant environmental risks that often go unnoticed and 

unquantified. Cooling data centers requires substantial amounts of water sourced from public 

infrastructures, and powering these centers depends on electricity supplied through publicly 

funded grids (van Wynsberghe et al., 2022).  

Furthermore, the deployment of AI alters the material conditions of its environment, 

potentially leading to rebound and propagation effects despite the efficiency gains it brings 

(van Wynsberghe et al., 2022). Every object in the extensive network of an AI system, from 

network routers to batteries and data centers, is made using elements that took billions of years 

to form within the earth. From a deep-time perspective, we are extracting the geological history 

of the earth to satisfy a fraction of a second of contemporary technological time, creating 

devices that are often designed to last only a few years. This cycle of obsolescence drives 

device purchases, multiplies profits, and increases incentives for unsustainable extraction 

practices. After a slow development process, these minerals, elements, and materials undergo 

an extraordinarily rapid period of excavation, processing, mixing, smelting, and logistical 

transport, traveling thousands of kilometers to be transformed. What begins as ore removed 

from the ground, with residues and “tailings” eliminated, is eventually transformed into devices 

that are first used and then discarded, ending up buried in electronic waste landfills (van 

Wynsberghe et al., 2022). 

Another critical aspect to consider in the sustainability of AI is that the minerals required for 

its infrastructure are often sourced through supply chains marked by severe environmental 

degradation and harsh labor conditions. These realities are frequently obscured to maintain 



 33 

public enthusiasm for AI (Crawford, 2021). For instance, the chips in smartphones, essential 

components for AI, are likely extracted under deplorable conditions, including child labor in 

Congo. Young (2020) emphasizes that resource exploitation in these countries involves 

difficult working conditions, without the local populations benefiting from the technology, and 

electronic waste is often dumped back in these regions. 

The lifecycle of an AI system, from inception to disposal, involves complex supply chains 

characterized by the exploitation of both human labor and natural resources, as well as 

significant concentrations of corporate and geopolitical power. Throughout the entire chain, 

continuous and massive energy consumption sustains the process. Rare earth elements, water, 

coal, and oil: the tech industry consumes the earth's resources to fuel its high-energy 

infrastructures (Crawford, 2021). 

The ecological footprint of AI is rarely fully acknowledged or explained by the tech sector, 

which simultaneously expands data center networks and assists the oil and gas industry in 

locating and exploiting remaining fossil fuel reserves. The opacity of the broader computing 

systems supply chain, particularly that of AI, fits into a well-established business model of 

extracting value from common goods without bearing the cost of long-term damage (Crawford, 

2021). 

Minerals are the backbone of AI, but its lifeblood remains electricity. Advanced computing 

is seldom assessed in terms of carbon emissions, fossil fuels, and pollution. Metaphors like 

“the cloud” suggest something floating and delicate, within a natural and green industry. 

Servers are hidden in anonymous data centers, and their polluting characteristics are far less 

visible than the smoke from coal-fired power plants. The technology sector actively promotes 

its environmental policies, sustainability initiatives, and climate problem-solving projects, 

leveraging AI as a key tool. This effort is part of a deliberate strategy to construct a public 

image of a sustainable, carbon-neutral industry. However, in reality, substantial energy is 

necessary to power the computing infrastructures of services such as Amazon Web Services 

and Microsoft Azure. Consequently, the ecological footprint of the AI systems operating on 

these platforms is increasing (Crawford, 2021). 

Managing this high-energy infrastructure has become a significant challenge, and the 

industry has made considerable efforts to increase the energy efficiency of data centers and to 

adopt renewable energy sources. However, the carbon dioxide emissions from the global 

computational infrastructure now equal those of the aviation industry at its peak and are 

growing at an accelerating rate. Although AI's carbon emissions may not surpass those of other 

industries, its environmental impacts are substantial, drawing increasing attention to their 
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consideration in cost-benefit analyses of AI services and products. The hidden materiality of 

AI leads to a lack of understanding of the extensive physical infrastructure supporting it, which 

does not imply that AI is worse than other industries in terms of carbon emissions. Instead, it 

highlights the significant environmental impact of AI, making its inclusion in comprehensive 

assessments of AI technologies and effective mitigation measures necessary. For instance, 

Dauvergne (2022) notes that efficiency gains from AI do not necessarily reduce resource use; 

rather, they can lead to increased production and further extraction of natural resources. 

Recognizing AI as a physical infrastructure with profound consequences is vital. Addressing 

its carbon footprint and the planetary resources it exploits is crucial to confronting 

contemporary colonialism and the unjust distribution of AI's benefits and burdens (Young, 

2020). Indeed, this technological exploitation exacerbates socio-economic disparities between 

nations. As we advance technologically, it is imperative to ensure that progress is accompanied 

by ethical and equitable practices, fostering a world where the benefits of AI are shared by all 

(Crawford, 2021). 

In order to comprehensively evaluate the costs associated with an AI application, it is 

imperative to examine the individual processes inherent in the rise of AI. Thus, attention must 

be directed towards the costs incurred in hardware production and running algorithms, data 

collection and transmission, computational resources for model training, hardware 

decommissioning, and ensuring the ethical alignment of algorithms. Robbins and van 

Wynsberghe (2022) have delineated several of these processes along with their respective 

considerations. Therefore, the following paragraphs reference their work. While not 

exhaustive, their exposition aims to illustrate the complexity and requisite effort involved in 

making informed decisions regarding AI use. 

 

3.3.1 Hardware Production  
 

The energy consumption associated with hardware utilized in the AI lifecycle is substantial. 

This encompasses not only the obvious components like servers, hard drives, and GPUs, 

essential for algorithm execution and large-scale data storage, but also numerous data 

collection devices, such as video cameras, lidar sensors, and motion detectors. Research 

indicates that the manufacturing of these devices, rather than their operational use and energy 

consumption, is primarily responsible for the carbon emissions attributed to hardware systems. 

The advent of edge computing has further amplified the proliferation of these devices. Edge 

computing refers to technologies that enable data processing at the network's edge, closer to 
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the data source, rather than relying on centralized cloud servers. This approach, for instance, 

allows facial recognition to be processed on a smart CCTV camera itself, rather than 

transmitting the video footage to the cloud. While this reduces data transfer costs and 

diminishes the reliance on energy-intensive cloud servers, it necessitates increasingly 

sophisticated and complex devices. As previously discussed, many of these advanced 

technological devices incorporate rare earth elements, which are integral to hybrid vehicles, 

rechargeable batteries, wind turbines, mobile phones, flat-screen displays, compact fluorescent 

light bulbs, laptop computers, disk drives, and catalytic converters. The production of such 

devices has profound environmental and human rights implications. Although the full extent 

of the environmental impacts remains unclear, it is known that REE mining and refining 

generate substantial liquid and solid waste, with potentially harmful environmental effects. The 

demand for REEs is expected to rise as their irreplaceable role in many technological sectors 

continues. As the reliance on AI-driven technologies grows, so does the demand for REEs and 

the environmentally detrimental processes required to produce them. These processes 

significantly harm both the environment and the laborers in the mining industry, a cost that 

should be considered when evaluating the overall benefits and consequences of expanding AI 

applications (Robbins & van Wynsberghe, 2022). 

 

3.3.2 Data Collection and Transmission 
 

AI applications necessitate the processing of input data, which can originate from various 

sources. Security services utilize video feeds for facial recognition algorithms, while biometric 

sensors, such as smartwatches, collect and transmit data to healthcare AI systems to identify 

conditions like heart problems. Smart cities employ an extensive network of sensors and 

devices to gather data for numerous AI algorithms aimed at urban improvement. 

Internet use has been estimated to have a carbon footprint between 28 to 63 grams of CO2 

equivalent per gigabyte. The energy required to keep sensors operational and to transmit data 

is significant. According to The Shift Project, the digital era accounted for 4% of greenhouse 

gas emissions in 2020, a figure comparable to pre-COVID-19 commercial aviation emissions. 

The Shift Project also projects an annual increase of 8% in digital era emissions due to factors 

like the growth of the IoT and the surge in data traffic. Increasing dependence on AI will 

amplify these factors. The transmission of vast amounts of data, such as video, images, 

pollution levels, temperature readings, biometric data, radar, and lidar, to cloud servers for AI 

processing consumes considerable energy. As society becomes more reliant on AI, the 
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necessity for extensive data transmission networks grows. It is crucial to understand the energy 

costs associated with these processes to responsibly assess the viability and sustainability of 

various AI applications (Robbins & van Wynsberghe, 2022). 

 

3.3.3 AI Model Creation and Data Processing 
 

Large AI models can emit over 626,000 pounds of carbon dioxide, which is equivalent to five 

times the lifetime emissions of an automobile. Although this figure can be significantly lower 

when only fine-tuning pre-trained models, the demand for computing power in AI is 

undeniably escalating. Once trained, AI models require substantial input data for processing, 

including videos, images, text, and sound. This data classification incurs significant costs, 

especially for video inputs. To mitigate these costs, strategies such as processing only specific 

frames of video are being explored. After the hardware setup, coding, and initial training on 

collected data, the challenge remains that AI systems require continuous updates. The COVID-

19 pandemic illustrated this need as drastic human behavioral changes rendered many machine 

learning models ineffective. Consequently, new behaviors necessitate the development of new 

models, which in turn exacerbates the environmental impact due to repeated processes and 

additional carbon emissions (Robbins & van Wynsberghe, 2022). 

 

3.3.4 Hardware disposal 
 

The issue of recycling and disposing of hardware is another crucial issue. In 2019, the global 

production of e-waste was 53.6 million metric tons and is projected to increase to 74.7 million 

metric tons by 2030. This encompasses all types of e-waste, including appliances and personal 

devices, not solely AI-related hardware. The growing reliance on AI will inevitably lead to an 

increase in e-waste. While it might seem reasonable for those designing AI applications to 

overlook this, ignoring the disposal issue while developing a society increasingly dependent 

on AI would be a significant oversight. AI demands substantial computational power, 

necessitating not only more hardware but also newer hardware. Consequently, any system 

reliant on computer hardware must consider the costs associated with its disposal and recycling. 

There is a burgeoning demand for specialized hardware accelerators with optimized memory 

hierarchies to meet the extensive compute and memory requirements of machine learning. A 

report by McKinsey highlights that AI-related semiconductors are expected to grow by 

approximately 18 percent annually over the next few years—five times the growth rate of 
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semiconductors used in non-AI applications. This trend underscores the increasing production 

of hardware specifically designed for AI. Therefore, there must be a comprehensive plan for 

recycling all this hardware, and the environmental costs associated with such recycling must 

be accounted for in the development of an AI-dependent society (Robbins & van Wynsberghe, 

2022). 

 

3.4 Measuring AI Impact 
 

In the contemporary corporate landscape, major corporations are increasingly required to 

account for and report on their environmental and social footprints through various standards, 

frameworks, and metrics related to Environmental, Social, and Governance (ESG) principles, 

which have largely superseded the traditional concept of Corporate Social Responsibility 

(CSR). However, none of these frameworks sufficiently capture the sustainability-related 

impacts of AI (Jiang et al., 2021). 

In the previous chapter, it was observed that the impact of sustainable AI, as a 

multidimensional concept, should be measured holistically by integrating parameters that span 

multiple levels. AI literature mostly addresses a small part of direct impacts and often neglects 

production and end-of-life consequences. The challenge of evaluating AI impact involves 

establishing a layered approach to address the impacts on the micro, meso, and macro levels, 

able to distinguish and capture both direct and indirect effects, which Kaack et al. (2021) 

advocate considering (e.g., behavioral or societal changes due to AI) when evaluating AI 

services. 

Focusing on environmental sustainability, evaluating the environmental impact of a service 

requires multiple impact criteria as reported by ISO, which states that “the selection of impact 

categories shall reflect a comprehensive set of environmental issues related to the system being 

studied, taking the goal and scope into consideration” (Van Wynsberghe et al., 2022, p.125). 

As observed in previous chapters, the negative impact of AI spans three dimensions: 

production, use, and waste, while the positive impact mainly concerns its use. Since the goal 

of this work is to assess how to calculate the total impact (costs and benefits) of AI 

implementation in a company—specifically in a production process—from an environmental 

sustainability perspective, the analysis continues by focusing on the environmental assessment 

of the adoption and integration of this socio-technical infrastructure. 
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First and foremost, it is essential to note that while a summary indicator—an index—is 

needed for assessing the sustainability of AI applications in processes, it is insufficient to 

simply list the benefits and associated costs of AI use from an environmental perspective 

(Rohde et al., 2023). In response to these challenges, there is a growing emphasis on the 

development and integration of new evaluative metrics that better reflect the multifaceted 

nature of AI’s effects. These new metrics should ideally assess sustainable AI by integrating 

multidimensional parameters that holistically address both direct and indirect impacts (Kaack 

et al., 2021). 

Indeed, while the existing AI literature predominantly focuses on direct impacts like 

operational energy consumption, it frequently neglects the full lifecycle impacts, including 

production, use, waste, and end-of-life stages, as well as the less tangible but equally significant 

behavioral or societal changes induced by AI technologies (Sætra, 2021). This endeavor 

involves not only quantifying these effects but also critically evaluating their varying degrees 

of influence on society and the environment. The hope underlying this work is that by adopting 

such a layered and comprehensive approach to evaluation, corporations can more accurately 

gauge the broader sustainability impacts of AI integration in production processes, ensuring 

that their governance frameworks evolve to effectively incorporate these advanced 

technologies into their sustainable strategies. By putting forward this comprehensive 

assessment for sustainable AI, this research aims not only to raise awareness among developers, 

companies, policymakers, and the public but also to provide an assessment framework that 

enables actors to develop concrete measures to improve AI deployment. 

In general, one of the main methodologies used to propose a unique holistic perspective to 

facilitate and structure the discourse on sustainable innovation for processes is Life Cycle 

Assessment (LCA). Ligozat et al. (2023) address different methodologies used to assess AI 

impacts and, in particular, propose a framework that applies life cycle assessment to AI services 

without focusing on the use of AI in companies or its integration into production processes. 

Rohde et al. (2023), on the other hand, propose a framework that focuses more on evaluating 

and disclosing ESG-related AI impacts based on the United Nation’s SDGs, thus proposing a 

more holistic yet pragmatic approach. However, this framework, in terms of environmental 

sustainability, refers only to the environmental impact of AI technology itself and not to the 

impact that the technology has on the process in which it is integrated; not considering its 

indirect positive and negative effects, which would be useful to consider in AI applications 

such as operations. Therefore, it can be hypothesized that in functions like marketing or human 

resources, not focusing on process change after the implementation of AI might be irrelevant, 
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but in a production process, it is certainly important to observe the changes that have occurred 

since the technology was integrated. 

Integrating Rhode et al. (2023)'s proposal with a more engineering-focused perspective from 

Calik (2024) and Bardudeen (2016), this research attempts to propose to managers and 

policymakers a framework more centered on the production process, capable of capturing its 

changes with the adoption of AI. A framework capable of addressing the complexity of this 

evaluation, deriving not only from the multiple dimensions involved but also from practical 

difficulties that hinder the quantification of the total impact, such as considering emissions 

from data centers due to AI use, which corresponds to a considerable fraction of the energy 

usage stemming from data transfer—a variable not easily quantifiable solely from the AI’s 

architecture. 

To propose an evaluation framework suitable for a comprehensive assessment and capable 

of effectively addressing the complexity of the task, this work suggests using Calik and 

Bardudeen (2016)'s approach, which includes, expands, and enriches Rhode et al. (2023)'s 

framework that uses ESG as a parameter for evaluating AI impact. Calik and Bardudeen (2016) 

propose six elements to consider, evaluate, and calculate through specific KPIs for each 

sustainable process innovation: material usage, energy usage, other resource usage, life 

management, certification and eco-labels, and waste, emission, and pollution. 

The following sections lists these elements, presenting the rationale and general methodology 

for evaluating each element for a generic process innovation. Focusing on AI, for each element, 

a way to calculate is proposed by tracing specific KPIs in the literature that can be used to 

capture the specificities of this technology and calculate its impact on each of these elements. 

Within these dimensions, “Material Usage”, “Energy Usage”, and “Other Resource Usage” 

describe the methods and practices applied by companies to reduce resources in their 

production and improve and renew processes in the context of the techniques developed. 

Additionally, the “Waste, Emissions, Pollution” sub-dimension examines the studies carried 

out by companies on environmental waste and pollution and the practices adopted to improve 

processes in order to reduce the number of substances used or developed that have a harmful 

effect on the environment. Moreover, the “End of Life Management” sub-dimension refers to 

the process's capacity to allow the reuse, recycling, and remanufacturing of product 

components. Finally, the “Certification” sub-dimension covers the redesign and development 

of processes to adapt to new environmental directives and criteria; the production process 

should adopt environmental procedures like the Eco-Management and Audit Scheme (EMAS) 

and the International Standard ISO 14001 (Calik & Bardudeen, 2016; Calik 2024). 
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Specifically, “material usage” refers to observing how process innovation has made it more 

efficient, thus examining the actual capacity of a production system to process and create the 

outputs required by sales while utilizing available resources in the best possible way. Therefore, 

to calculate the Overall Equipment Effectiveness (OEE), three factors must be combined: 

availability, performance, and quality, resulting in the following formula: OEE  =

 Availability  × Performance  ×  Quality. Additionally, the variation in the quality of the product 

resulting from the process is also observed. Regarding the innovation examined in this study 

that is AI, to observe how AI adopted in the process has influenced this index, it is necessary 

to calculate the index concerning the time period before and after the integration of AI into the 

process. It is also essential to observe any potential variation caused by the impact of the AI 

system on product quality (Rhode et al., 2023).  

As “Energy usage - CO2”, indicators that evaluate energy efficiency include measuring 

parameters that capture model efficiency, considering methods for efficient training, and 

measures to reduce the amount of data. This indicator is also calculated by directly examining 

CO2 and GHG emissions, considering carbon footprint, carbon efficiency, energy losses and 

costs, and emission compensation (Rhode et al., 2023). Generally, Energy Usage indicator aims 

to measure overall energy costs, consumption, shares, and CO2 emissions holistically. The 

literature highlights that this index is influenced by many other factors, such as adaptation to 

demand changes and market trends, making it difficult to isolate the value linked to AI. Bunse 

et al. (2011, as cited in Schmidt et al., 2016) stated that a low status of energy management and 

a lack of data for efficiency measure payback calculations are barriers to energy efficiency. 

Lindberg et al. (2023, as cited in Schmidt et al., 2016) emphasize the importance of 

benchmarking KPIs for monitoring performance and identifying improvement potentials. They 

recommend identifying process signals strongly correlated with the KPI for process 

improvements. The successful application of a KPI depends on its continuous measurability. 

Additionally, data accuracy and timely availability are important for calculating indicators 

regularly. However, not all companies consistently monitor these KPIs, making it difficult to 

calculate variations between pre- and post-AI implementation. For AI, the specific energy 

consumption of the hardware used must be considered, whether the data is linked to local data 

centers or the cloud. If on the cloud, the indirect energy consumption must refer to the external 

provider, while local methods look at efficiency metrics for data centers (e.g., power-/water-

/carbon usage effectiveness) (Rhode et al., 2023). García-Martín, Rodrigues, Riley, and Grahn 

(2019, as cited in Ligozat et al., 2023) reviewed methods to estimate energy consumption from 

computer architecture, distinguishing between different levels of description, 



 41 

software/hardware level, instruction/application level, and considering how those methods can 

monitor training and inference phases in machine learning. Several tools have been proposed 

to make the impacts of training models more visible, calculating their carbon footprint. They 

can be schematically divided into: 

• Integrated tools, such as Experiment Impact Tracker 

(https://github.com/Breakend/experiment-impact-tracker), Carbon Tracker 

(https://github.com/lfwa/carbontracker), and CodeCarbon (https://codecarbon.io/), 

which are Python packages reporting measured energy consumption and associated 

carbon footprint. 

• Online tools, such as Green Algorithms (http://www.green-algorithms.org/) and ML 

CO2 impact (https://mlco2.github.io/impact/#compute), which require only a few 

parameters, such as training duration, material, and location but are less accurate.  

Moreover, physically measuring the performance of on-site energy generation requires 

specific assessment methods. Regarding the adoption of AI in the process, it is necessary to 

observe calculations before and after integrating AI. This can be done by applying smart 

sensors directly on the machinery to understand its consumption, or by extracting data from 

monthly bills and compare it to pre-algorithm consumption. While the first technique is very 

accurate and is able to capture the exact amount of energy generated, the second method is not 

always able to extract the AI-usage energy generated (Budennyy et al., 2022). 

Referring to “other resource usage”, the total use of water, land, or energy is a widely used 

method in the literature for analyzing process impact. For example, the indicators “reduce water 

consumption” and “reduce energy consumption” have been used in some studies to assess the 

sustainability of the sector's production processes and whether companies attempt to fulfill 

green requirements (García-Granero, Piedra-Muñoz, & Galdeano-Gómez, 2018). In general, 

for a process, the calculation is: Water usage KPI [L of production water / L produced]. In this 

case, to understand if there has been a variation with the introduction of AI in the processes, 

the indicator should be observed before and after the AI implementation in the process. 

Additionally, parameters such as hardware recycling rate, hardware reuse rate, and the use of 

waste disposal scenarios for hardware are also examined (Rhode et al., 2023). 

Regarding the analysis class related to “Waste, Emissions, Pollution”, the actual quantities 

of waste generated by the process are analyzed by referring to the correspondence between 

initial inputs and final outputs. Therefore, with the adoption of AI, this input-output variation 

must be observed to see if it has decreased or increased. Generally, for every innovative 

process, relevant emissions for each phase of the process are considered (regarding only CO2 
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emissions, this is already addressed in the calculation of the element energy usage, a point 

previously mentioned). Additionally, all substances that have a negative impact when released 

into the environment are identified, including not only CO2 emissions but also any possible 

chemicals used directly in the process and their impact. The degree of toxicity for both 

terrestrial and aquatic organisms exposed to these substances is also assessed, covering aspects 

such as ozone depletion, photochemical ozone formation, acidification, eutrophication, human 

toxicity (including cancer and non-cancer effects), and ecotoxicity (European Commission, 

Joint Research Centre 2012). In reference to the adoption of AI, the variation in overall 

emissions due to AI should be analyzed by observing changes in the use of these chemicals – 

whether their consumption has decreased, increased, or been entirely eliminated – since the 

whole process has been revolutionized. 

Among the methods for observing “the end-of-life management” related to a process 

innovation, the reduction of resource consumption in processes is generally considered. 

Material-saving is a key performance indicator that can be viewed from two perspectives. On 

one hand, the reuse of components or materials is seen as a positive way to enhance the 

greenness of the manufacturing process. On the other hand, recycling waste, water, materials, 

or inputs is another means of reducing negative environmental impact. Thus, some authors 

introduce the indicator “recycled waste, water, and materials” in their studies. Observing this 

indicator in relation to AI adoption in the process, it evaluates whether the integration of AI 

has allowed for more material savings, better waste disposal, or increased reuse of materials 

that were previously discarded (García-Granero et al., 2018).  

Regarding “certifications”, it is generally observed if the process has certifications that align 

with sustainability plans, such as the previously mentioned ISO certifications. In reference to 

AI implementation, it should be assessed if “Certified hardware” and “Certified data centers” 

are adopted for the process (Rhode et al., 2023).  

Finally, this work also considers whether the implemented AI is defined as Green AI or Red 

AI. Green AI refers to AI improvement that yields novel results while considering 

computational cost, encouraging a reduction in resources spent. In contrast, Red AI has led to 

rapidly escalating computational (and thus carbon) costs, while Green AI promotes approaches 

that have favorable performance/efficiency trade-offs (Schwartz et al., 2020). This distinction 

can be made by considering the Pareto Frontier. The Pareto frontier defines the optimal trade-

off between cost and prediction performance, delineating a boundary in the objective space 

where any further improvement in one metric necessitates a compromise in the other. This 

frontier serves as a valuable guide for decision-makers, allowing them to balance the 
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computational cost of an algorithm against its predictive accuracy, facilitating more informed 

and sustainable choices in model selection and deployment. For example, Ofek and Maimon 

(2023) examine points along the Pareto frontier to identify algorithms that offer the most 

favorable trade-offs, thereby optimizing the allocation of computational resources without 

sacrificing prediction quality. In general, to determine if AI is Green or Red, the cost of training, 

size of data, and carbon emissions are calculated. 

 

Case Study 
 
 

4. Measuring AI Environmental Hidden Costs and Values in a 

Production Process: The Case of VHIT 
 

4.1 Purpose of the Analysis  
 

The objective of this thesis is to examine the use of AI to determine if it is possible to calculate 

the net environmental impact—resulting from both positive and negative implications—

associated with its implementation in a company. This goal aims to better inform managers 

who seek to integrate AI into their businesses and evaluate its sustainability. Specifically, it 

assesses whether AI contributes to sustainability and to what extent. Additionally, this research 

aims to guide policymakers by highlighting gaps that such an analysis may reveal, thereby 

informing their directives on AI and sustainability. 

Generally, AI's negative impacts span production, usage, and disposal, while its positive 

impacts are primarily observed during its operational phase (Rhode et al., 2023). This research 

focuses on AI's application and usage, moving beyond merely listing environmental benefits 

and associated costs. Specifically, it aims to evaluate existing indices and determine what can 

be effectively measured within a company to develop a holistic sustainability index for AI 

applications in processes, capturing the total environmental impact (an aggregated measure that 

encompasses both costs and benefits) of AI integration. 

In the previous chapter, existing models, such as the one proposed by Rhode et al. (2023), 

often focus solely on the operational impacts of AI technology, neglecting broader 

implications, including both direct and indirect effects on integrated processes. This narrow 
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focus can lead to a significant underestimation of AI's true impact, particularly in contexts 

where the technology drives substantial process transformation, such as in production. 

Conversely, areas like marketing or human resources may not require as rigorous a focus on 

process adaptation, but understanding and managing transformations is crucial in production 

settings. Building on this theoretical foundation, this research adopts a more engineering-

oriented perspective, as suggested by Calik and Bardudeen (2016), which forms the structure 

of the proposed operational framework to better capture the complexities of AI impacts in 

production environments. This framework is primarily integrated with the investigative model 

proposed by Rhode et al. (2023) and other models from the literature to create an operative 

tool. 

Therefore, this research aims to address the following primary question: How can the 

environmental impact of adopting AI in business processes be measured?  

This overarching research question is explored through the integration and validation of the 

proposed framework directly in conjunction with the case study of VHIT. Specifically, the 

research addresses the following sub-questions: 

1. How is VHIT applying AI in its processes? 

2. To what extent are the existing methodologies applicable for calculating AI's total 

impact? 

3. What are the advantages and challenges of adopting the evaluation framework 

developed based on existing literature and methodologies? 

 

4.2 Research Methodology 
 

To comprehensively address the research objectives, a case study approach was employed. 

This method allows for an in-depth analysis of a specific instance to derive general conclusions 

about the observed phenomenon. The selected case study focuses on VHIT, a company that 

integrates AI into a specific production process. The analysis conducted is qualitative, 

leveraging multiple sources of data including documentation, archival records, surveys, and 

interviews. However, data collection primarily relied on interviews, a strategy that facilitated 

direct information gathering from the actors involved and enabled the posing of targeted 

questions most relevant to the study. Engaging in individual discussions with company 

representatives is recognized as one of the most authoritative ways to explore the real-world 

applications of AI. This methodology yields more valuable insights than multiple-choice 
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questionnaires and is based on existing use case rather than hypothetical scenario like 

controlled experiment. To enrich and contextualize the findings, secondary sources such as 

official reports were also utilized. 

More precisely the research follows the subsequent steps:  

1. The first step in this research involves developing a comprehensive framework to 

address all identified limitations and aim at answering the primary research question.  

2. Following the development of this framework, it is integrated and tested within 

business settings to validate its effectiveness. This process includes conducting a case 

study to observe the framework's practicality and applicability across different 

corporate contexts. During this phase, both quantitative and qualitative data were 

meticulously collected and analyzed. 

Qualitative data were collected via interviews and surveys with managers involved in VHIT 

AI integration in business processes. An interview with the Head of Digital Transformation 

and the Sustainability Representative at VHIT was conducted to gain insights into the 

efficiency of the enterprise and the use of technologies within the organization. They were also 

requested to provide precise quantitative data in order to attempt to calculate key metrics such 

as energy usage- CO2, resource efficiency, and waste management, among others. 

Ultimately, through more general questions posed to the interviewed managers, this research 

aims not only to assess the overall environmental impacts of AI but also to explore the strategies 

used for sustainable AI development and deployment. The goal is to facilitate informed 

decision-making within corporations and to support policymakers by identifying regulatory 

gaps and objectives to incentivize. 

 

4.3 VHIT Case Study 
 

In light of the complexities previously examined in the literature regarding metrics and their 

integration, this study addresses the gaps in existing indices. Many indices do not exist for 

numerous aspects, and those that do exist pertain to different factors on varying scales. 

Therefore, this research adopts a more practical and applied approach to derive insights on the 

utilization of AI. The objective is to provide valuable perspectives on how to evaluate the 

impact of AI and suggest potential models for effective implementation and regulation. 
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4.3.1 VHIT Overview 
 

The case study focuses on VHIT, a prominent Italian enterprise in the automotive sector, with 

over sixty years of history and now part of the Weifu High-Technology Co., Ltd. Group. 

Specializing in the research, development, production, and commercialization of mechatronic 

products, the company excels in vacuum, lubrication, and cooling systems for internal 

combustion and electric vehicle powertrains, as well as hydraulic applications for commercial 

vehicles. 

Founded in 1958 by Domenico Bonaldi in Offanengo (CR, Italy), VHIT began by producing 

the Hydrovac brake booster under license from the American company Bendix. Over the years, 

VHIT has navigated through various acquisitions and ownership changes, including its time 

under the Bosch Group and its recent integration into the Weifu Group, significantly expanding 

its market impact. 

Today, VHIT employs approximately 500 people and is distinguished not only by the quality 

of its products but also by its commitment to sustainability and technological innovation. The 

digitalization of production processes and the integration of AI and Industry 4.0 models are 

key aspects of the company's innovative approach. 

The company's philosophy is encapsulated in its vision: “Smart, Global, Mechatronics & 

Beyond”. Smart denotes the intelligent use of advanced technologies, Global signifies the 

international expansion of its products, and Mechatronics reflects advanced mechanical and 

electronic expertise, enabling VHIT to effectively address current and future market 

challenges. 

VHIT is also committed to promoting sustainable mobility through active collaboration with 

stakeholders and customers and fostering a stimulating and flexible work environment 

recognized as young and dynamic, where employees can grow professionally. 

In recent years, the company has inaugurated La Bottega delle Idee, a creative hub that 

encourages dialogue and collaboration between internal and external teams, stimulating open 

innovation. This multifunctional space serves as a laboratory for prototype development and 

as a reflection area on sustainable future themes and emerging technologies. 

VHIT's global presence extends well beyond Italy, with products distributed across Europe, 

Central and South America, and Asia, consolidating its reputation as a reliable supplier for 

major global automotive manufacturers. 
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Looking ahead, VHIT continues to expand its portfolio with products and services that meet 

the needs of a rapidly evolving market, increasingly focusing on electrified solutions and 

advanced systems for hybrid and electric vehicles. The company's goal is not only to maintain 

but to elevate its standard of excellence, consolidating its position as an innovative leader in 

the global automotive sector and as a top-choice workplace for industry talent.3 

 

4.4 Adopted Evaluation Framework and Interviews  
 

The framework developed to address the primary research question—namely, assessing the 

environmental impact of AI in business processes—analyzes six specific areas: material usage; 

energy usage - CO2; other resource usage, waste, emissions, and pollution; end-of-life 

management; and certifications (Calik & Bardudeen, 2016). The evaluation criteria for each 

area were established by integrating models proposed by Rhode et al. (2023) with existing 

studies in the field. This framework was incorporated into a questionnaire, which served as the 

foundational structure for conducting interviews. 

The questionnaire, detailed in the appendix of this thesis, is divided into four major sections 

to facilitate a smooth, comprehensible, and uninterrupted interview process. The initial section, 

comprising questions 1 to 6, is preparatory and focuses on general issues regarding the various 

applications of AI within the company, exploring its management and implementation. These 

preliminary questions are designed to guide the investigation towards a process that effectively 

examines the framework in the subsequent sections of the questionnaire. 

The second section, encompassing questions 7 to 30, delves into more detailed issues related 

to the implementation of AI in a specific business process. This part explores all technical 

aspects related to the technology employed, with questions covering a wide range of topics, 

from a detailed description of the process to the type of hardware used, from the frequency of 

use to data storage systems, from energy consumption to variations in output, resources used, 

and waste produced. 

The third section, comprising questions 31 to 51, investigates aspects related to the 

sustainability of the deployed AI, examining corporate strategies and potential methodologies 

for measuring impact and adopting circular economy practices. 

 
3For comprehensive details about VHIT, please refer to their official website at https://vhit-weifu.com/. 
 

https://vhit-weifu.com/
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Finally, the fourth and last section, consisting of questions 52 to 62, explores sustainability 

from a broader perspective, focusing on the company's general sustainability goals, 

communication strategies, and certifications obtained in this area. 

These four sections encompass the evaluation measures related to the six aforementioned 

areas. Specifically, issues concerning “material usage” are addressed in questions 10, 20, 21, 

22, 24, while those concerning “energy usage – CO2” are covered in questions 11-19, 29, 30, 

47, 48. Similarly, “other resource usage” is referenced in questions 26-28, 36-38; “waste, 

emissions, and pollution” in questions 23, 40, 49, 50; “end-of-life management” in questions 

25, 34, 39, 51; and “certifications” in questions 60-62. 

Additionally, generic questions not directly related to these six areas were included to assess 

the company's environmental awareness, their strategic perspective, and the potential for their 

business model to contribute to positive outcomes in the analysis conducted with this 

framework. This evaluation determines whether AI offers competitive advantages while 

simultaneously supporting environmentally beneficial outcomes proposing a virtuous business 

model example. 

 

4.5 Analysis and Discussion of Results 
 

This paragraph presents an analysis of the results based on the evaluation obtained through 

the application of the framework, derived from interviews with the Head of Digital 

Transformation and the Sustainability Representative at VHIT. 

 

4.5.1 VHIT Approach to AI Integration 
 

The company VHIT has integrated AI into its business processes for approximately 3-5 years 

(Q1), falling within the 58% of companies that had adopted AI in at least one business area by 

2019 (McKinsey, 2022). The company utilizes AI across various strategic functions, including 

production, logistics, quality management, maintenance, and research and development (Q2). 

In the production domain, VHIT has adopted technologies such as computer vision, neural 

networks, and time series analysis using regression and clustering algorithms like DBScan. 

These tools automate and enhance production processes, increasing efficiency and reducing 

operational costs. Indeed, the digitalization of production processes at VHIT minimizes low-

value-added activities, allowing the company to focus on challenging goals, product 
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innovation, and responding to the rapidly changing market demands. VHIT is increasingly 

becoming a data-driven company, with the primary goal of offering high-quality products that 

evolve with market needs, anticipating customer requirements (VHIT Weifu, n.d.). 

Regarding logistics, VHIT employs natural language processing and autonomous guided 

vehicles (AGVs). Implemented in the plants for a couple of years, these AGVs simplify 

logistics processes by automating the movement of products from the production area to the 

finished goods warehouse. The AGVs are directly connected to the company's management 

system, allowing fully automated material retrieval and empty packaging return. 

In quality management, VHIT uses computer vision and neural networks to enhance the 

accuracy and efficiency of quality controls. 

In the maintenance sector, VHIT uses generative AI (GenAI) and neural networks for 

predictive maintenance. For instance, the use of GenAI through tools like ChatGPT provides 

support in diagnosing and solving problems, reducing intervention times, and assisting less 

experienced staff, particularly during night shifts. 

In research and development, VHIT primarily employs generative AI to accelerate innovation 

and the development of new products (Q4). 

Regarding AI model training, VHIT prefers to internalize these processes when feasible to 

contain costs and maintain greater control over the models. However, when the technology is 

new or not well understood internally, the company resorts to outsourcing. For example, in 

logistics, VHIT opted to directly purchase an application (Q5). 

Data management and storage for AI implementation vary by application. VHIT 

predominantly uses a cloud system for most data, while computer vision applications are 

managed on local systems, such as computers connected to machinery. NLP and maintenance 

with GenAI are managed on the cloud, whereas R&D activities remain local (Q6). 

This integrated strategy allows VHIT to maximize AI’s potential, improving operational 

efficiency and promoting innovation within the company, thereby strengthening its competitive 

position in the market (Q3). 

 

4.5.2 The AI Adoption in VHIT’s Production Process  
 

The analysis proceeds by examining the adoption of AI in VHIT's process. According to the 

company's Head of Digital Transformation, this integration has led to significant improvements 

in production processes. Primarily, there has been a notable increase in efficiency. AI has 
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reduced the time required for various production stages, enhancing both the speed and accuracy 

of operations. This improvement is accompanied by a significant reduction in operational costs, 

achieved by eliminating many inefficiencies and optimizing resource usage. 

In this context, to more precisely assess the benefits and costs of AI in a single process 

following the devised framework, the interviewee was asked to present and describe a specific 

case in detail. The reported process pertains to the quality control of filters used in oil and 

vacuum pumps, serving as an emblematic example of AI's effectiveness. Before the 

introduction of AI (Q8), this process was performed manually: an operator visually inspected 

each filter to determine whether it was acceptable or should be discarded. This approach 

presented two main issues. Firstly, it required employing a person for a low-value-added task, 

resulting in significant human resource costs. It is important to consider that this inspection 

was carried out across all 20-25 production lines, each operating three shifts per day, with one 

dedicated operator per shift. Consequently, three operators were needed per day for each line. 

The second issue concerned the nature of the task itself, which was tiring and exhausting for 

the operators, leading to an inevitable decline in performance over the eight-hour shift, causing 

quality issues in the production process. 

As an initial step towards automating quality control processes, VHIT implemented an optical 

inspection system utilizing grayscale imaging. The algorithm analyzed the pixels of filter 

images, determining whether a filter was good or defective according to predefined rules. 

However, this system required the definition of numerous rules for every possible variation in 

the filters and lighting conditions, resulting in numerous false positives, where good parts were 

erroneously classified as rejects. Additionally, this led to significant economic impact due to 

the substantial waste of resources such as labor, energy, and materials. This waste occurred 

because all components used to produce the part were considered scrap, even though the part 

actually met quality standards, being wrongly classified as defective due to a system error. 

The implementation of an AI-based solution (Q9) brought about a radical change. The neural 

network, trained internally with approximately 300-400 labeled images of good and defective 

filters, reduced false positives from 2.3% to 0.2%. The system, consisting of a camera, an 

illuminator, and a computer with standard hardware (Intel Xeon E5), significantly improved 

process efficiency and reduced waste by fully automating quality control and freeing human 

resources for other value-added activities. 

In accordance with the devised framework, the analysis proceeds by dividing into six areas: 

material usage; energy usage – CO2; other resource usage; waste, emissions, and pollution; 

end-of-life management; certifications. 
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4.5.2.1 Material Usage Index   
 

The adoption of AI in the company's production process has led to significant changes in 

material usage, as indicated by responses to the corporate questionnaire (Q7). A key aspect of 

this improvement is the reduction in false positives, which decreased from 2.3% to 0.2% (Q20). 

This outcome is significant because it demonstrates the direct impact of AI on increasing 

efficiency, reducing resource usage, lowering costs, and enhancing product quality, which in 

turn affects the overall sustainability of the production process (Q10). Therefore, the 

elimination of false positives, achieved through AI, has substantially reduced material ad 

energy waste. Previously, false positives led to the unnecessary scrapping of material and 

inefficient energy use in producing and assembling components that were ultimately discarded. 

With the introduction of AI, this issue has been minimized, leading to a 2.1% reduction in false 

positives. This improvement is significant as it contributes to more efficient and sustainable 

resource utilization (Q22). 

Quantitatively, output has remained stable at 7 million units, but the reduction in false 

positives has increased the actual usable output. The interviewee also indicated that this 

variation in output is directly correlated with the implementation of AI, without the influence 

of other significant innovations (Q21). Although there has been no change in the total 

consumption of raw materials, the increase in efficiency and reduction in waste represent a 

tangible improvement in material utilization (Q24). 

In summary, the adoption of AI has made the production process more sustainable through 

optimized resource management and significant waste reduction, demonstrating the 

effectiveness of advanced technologies in optimizing industrial processes and their related 

sustainability. 

 

4.5.2.2 Energy Usage – CO2 Index   
 

The analysis of the company's responses to the questionnaire reveals significant details 

regarding energy usage in relation to the implementation of AI. The hardware used to manage 

the production process includes various types of Intel Xeon processors, along with standard 

PCs like Lenovo Tiny, demonstrating that the company did not resort to particularly specialized 

solutions (Q11). This hardware was utilized for in-house training of the AI model (Q12), a 
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process that took approximately six months and involved multiple cycles of trials and 

improvements (Q13). Indeed, developing the model often involves numerous experiments to 

tune its hyperparameters. Moreover, the AI model operates daily across three shifts, covering 

25 assembly lines with an average cycle time of 20 seconds per filter, functioning for about 23 

hours a day, five days a week, nearly year-round (Q14). 

Since all operations are managed internally, and there are no external components such as 

data, data centers, or hardware to consider, the energy study can focus solely on the company's 

operational activities. The most accurate method for performing the calculation would involve 

obtaining consumption data from all involved equipment, utilizing integrated tools such as 

Experiment Impact Tracker, Carbon Tracker, and CodeCarbon, as well as online tools like 

Green Algorithms and ML CO2 Impact, or other instruments such as sensors directly installed 

on the machines. However, VHIT does not use any of these tools, as it does not calculate the 

impact of the current process or the AI implementation (Q16, Q17). Therefore, precise and 

accurate energy measurements directly correlated to AI implementation are challenging 

without such tools.  

Nonetheless, following the devised framework, data were requested to estimate the energy 

usage and subsequent emissions resulting from AI use in the specific process considered. 

An initial micro-level approach, adopting a more targeted perspective, calculates the volume 

of data generated during training and daily usage. To calculate the data flow used during AI 

model training, the average size of a single photograph and the total number of photographs 

used were considered. Each photograph used by the company is approximately 500 kilobytes 

in size. Thus, multiplying this size by the number of photographs used for training, which is 

400, the calculation proceeds as follows: 

• 500 𝑘𝑖𝑙𝑜𝑏𝑦𝑡𝑒𝑠/𝑝ℎ𝑜𝑡𝑜 ×  400 𝑝ℎ𝑜𝑡𝑜𝑠 =  200,000 𝑘𝑖𝑙𝑜𝑏𝑦𝑡𝑒𝑠. 

• Converting kilobytes to megabytes (considering 1 megabyte = 1,000 

kilobytes): 200,000 𝑘𝑖𝑙𝑜𝑏𝑦𝑡𝑒𝑠 ÷  1,000 =  200 𝑚𝑒𝑔𝑎𝑏𝑦𝑡𝑒𝑠. 

Therefore, the total training data volume is about 200 MB.  

For daily usage, the implemented AI generates approximately 12.42 TB of data annually, 

collected and managed locally. Specifically: 

1. Calculating daily operations: 

• There are 24 hours in a day, each composed of 60 minutes, and each 

minute has 60 seconds: 24 ℎ𝑜𝑢𝑟𝑠 ×  60 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 ×  60 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 =

 86,400 𝑠𝑒𝑐𝑜𝑛𝑑𝑠/𝑑𝑎𝑦. 
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• The average cycle is 20 seconds, so the number of operations per day 

is: 86,400 𝑠𝑒𝑐𝑜𝑛𝑑𝑠/𝑑𝑎𝑦 ÷  20 𝑠𝑒𝑐𝑜𝑛𝑑𝑠/𝑐𝑦𝑐𝑙𝑒 =  4,320 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠/

𝑑𝑎𝑦. 

2. Calculating annual operations across all lines: 

• There are 25 assembly lines: 4,320 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠/𝑑𝑎𝑦 ×  25 𝑙𝑖𝑛𝑒𝑠 =

 108,000 𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑖𝑙𝑦 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠. 

• The number of working days annually is 230: 

108,000 𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑖𝑙𝑦 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ×  230 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑑𝑎𝑦𝑠 =

 24,840,000 𝑎𝑛𝑛𝑢𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠. 

3. Calculating data volume: 

• Each photograph is 500 kilobytes: 24,840,000 𝑎𝑛𝑛𝑢𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ×

 500 𝑘𝑖𝑙𝑜𝑏𝑦𝑡𝑒𝑠/𝑝ℎ𝑜𝑡𝑜 =  12,420,000,000 𝑘𝑖𝑙𝑜𝑏𝑦𝑡𝑒𝑠. 

4. Converting to megabytes, gigabytes, and terabytes: 

• Converting kilobytes to megabytes: 12,420,000,000 𝑘𝑖𝑙𝑜𝑏𝑦𝑡𝑒𝑠 ÷

 1,000 =  12,420,000 𝑚𝑒𝑔𝑎𝑏𝑦𝑡𝑒𝑠. 

• Converting megabytes to gigabytes: 12,420,000 𝑚𝑒𝑔𝑎𝑏𝑦𝑡𝑒𝑠 ÷

 1,000 =  12,420 𝑔𝑖𝑔𝑎𝑏𝑦𝑡𝑒𝑠. 

• Converting gigabytes to terabytes: 12,420 𝑔𝑖𝑔𝑎𝑏𝑦𝑡𝑒𝑠 ÷  1,000 =

 12.42 𝑡𝑒𝑟𝑎𝑏𝑦𝑡𝑒𝑠. 

Therefore, the total annual data volume generated during the use of the AI model is 

approximately 12.42 TB. Thus, it can be concluded that the AI-implemented production 

process generates a significant volume of data. 

To calculate the actual environmental impact, i.e., the amount of CO₂ corresponding to the 

data volume processed, totalling 200 MB of training data and 12.42 TB of annual data, it is 

necessary to consider the carbon footprint associated with data storage and processing. Indeed, 

CO₂ emissions vary depending on storage technologies, energy sources used, and data center 

efficiency. Since these specific data are unavailable for the company, this analysis could only 

estimate the CO₂ emissions during training using the online tool CodeCarbon. 

This tool uses various parameters for calculation: type of hardware, in the case of VHIT, an 

Intel-E5; the provider, considered as private infrastructure; hours of use, which for the company 

is 6 months; a carbon efficiency value, which is the 2014 OECD annual average of 0.432 kg 

CO₂eq/kWh, indicating the carbon intensity of the network connected to the infrastructure; the 

percentage of energy consumption offset by the company.  

Entering the required data, the calculation proceeds as follows: 
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• 𝑃𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ×  𝑇𝑖𝑚𝑒 ×

 𝐶𝑎𝑟𝑏𝑜𝑛 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝐵𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝐿𝑜𝑐𝑎𝑙 𝑃𝑜𝑤𝑒𝑟 𝐺𝑟𝑖𝑑 =  145𝑊 ×  100ℎ =

 14.5 𝑘𝑊ℎ ×  0.432 𝑘𝑔 𝑒𝑞. 𝐶𝑂₂/𝑘𝑊ℎ =  6.26 𝑘𝑔 𝑒𝑞. 𝐶𝑂₂ 

To contextualize, 6.26 kg of CO₂eq is equivalent to: 

• 25.3 km driven by an average ICE car, 

• 3.13 kg of coal burned, 

• 0.1 tree seedlings sequestering carbon for 10 years. 

However, this approach does not allow for calculating the CO₂ impact of AI in use, which is 

the main objective of this research, during which only the annual data volume can be measured. 

To address the lack of specific data needed for a comprehensive analysis, a second macro-

level approach was attempted by requesting energy bills (Q18) to identify the aggregate energy 

variation coinciding with the AI implementation in the process (Fig. 1, Fig. 2).  

 

 

 

 
Figure 1. Consumption by range (kWh) from November 2021 to February 2024 and energy 

costs (€) from 2019 to 2024. Source: VHIT.  
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Figure 2. Detailed consumption by range (kWh) from January 2019 to February 2024. Source: 

VHIT.  

 

 

The AI model implemented by VHIT was initially introduced on a single production line 

before the pandemic and gradually extended to the remaining production lines. There is no 

precise date for its complete implementation. Observing the charts, it is evident that energy 

consumption, starting from 2019, has decreased, excluding the year of the Covid-19 pandemic. 

This decrease is not due to reduced production but rather to the increased energy costs, which 

necessitated the adoption of energy-saving measures. In the post-pandemic period, beginning 

in 2021, energy consumption has shown monthly variations attributable to product seasonality. 

Furthermore, since 2021, the cost of energy has significantly increased due to inflation. For a 

more plausible comparison, the data from 2019 and 2022 can be considered: in 2019, AI was 

operational on a single line, while in 2022, it was extended to all lines. During this period, there 

was a reduction in energy consumption by 700,000 units, although, as noted by the interviewee, 

this decrease cannot be solely attributed to the implementation of AI (Q19). 

In summary, these data do not elucidate the impact of AI, as variations in consumption are 

influenced by numerous factors, including changes in the number of units produced, inflation, 

and infrastructural modifications such as the introduction of heat pumps and electric forklifts. 

According to the interviewee, the impact of AI on the energy bill is truly a minor factor (Q19). 

This further confirms the complexity of extrapolating data directly correlated to the energy 

consumption resulting from AI use and adoption in a specific process, whether adopting a 

micro or macro perspective. 

Although the actual energy consumed was not calculated, which would have been useful for 

balancing the positive contributions of renewable solutions, it is important to note that the 

company has adopted various measures to reduce its environmental impact (Q47). Specifically, 

photovoltaic panels have been installed, covering approximately 10% of the energy 
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requirement. Additionally, the remaining energy consumption is offset by using energy from 

renewable sources and carbon credits, demonstrating a commitment to carbon neutrality (Q48). 

Finally, from the comparison with the interviewee, it emerged that the energy consumption 

of the AI system is indeed higher compared to human labor, while the optical system adopted 

subsequently, in the intermediate phase before AI, and the AI adopted eventually have a nearly 

similar consumption.  

 

4.5.2.3 Other Resources Usage Index 
 

The analysis of the questionnaire responses provided by VHIT reveals an interesting picture 

regarding the use of resources other than energy in the production process under study. When 

asked about additional resources used beyond energy, VHIT stated that they do not use 

significant additional resources (Q26). However, with the introduction of AI in the process, the 

company observed a reduction in raw material usage due to an increase in the percentage of 

recycled materials from waste (Q27). This practice significantly contributes to the 

sustainability of the company's processes by reducing the need for new raw materials and 

improving material efficiency. 

Although VHIT cannot quantify the exact change in the use of other resources before and 

after the implementation of AI (Q28), they have adopted circular economy practices for 

hardware waste disposal (Q36). VHIT described their process post-AI implementation as 

circular, where all waste materials are reused since the AI was introduced, making the entire 

production process more sustainable. The practices implemented include reuse, recycling, and 

disassembly (Q37). These practices also pertain to hardware. In this context, the “hardware 

recycling rate” and “hardware reuse rate” are key parameters for assessing the impact of AI on 

the production process, though the percentage of hardware processed through these practices 

relative to the total discarded hardware is not available (Q38). 

In conclusion, within the framework devised and considering the parameter “Other Resources 

Usage”, which includes the total use of water, land, or energy as commonly used methods in 

the literature to analyze the impact of processes, the information provided by VHIT indicates 

a trend towards resource consumption reduction and increased efficiency through recycling 

and reuse. Although the lack of quantitative data limits the analysis, VHIT's commitment to 

sustainable and circular practices represents a positive step towards reducing the overall 

environmental impact. 
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4.5.2.4 Waste-Emission-Pollution Index 
 

In the context of the Waste-Emissions-Pollution index, the adoption of AI by VHIT has led 

to significant reductions in production waste and improved resource management, 

demonstrating a positive impact on the sustainability of the production process. Prior to the 

adoption of AI, indeed, the company's data on average monthly waste due to quality issues 

showed variability. For instance, in March 2019, waste due to quality was 2%, whereas in 

March 2021, it had decreased to 1.40%. Overall, there was an average reduction of 0.3% from 

2019 to 2021, although this improvement cannot be entirely attributed to the introduction of 

AI (Q23). 

Post-AI implementation, VHIT reported an average monthly waste of 2.89% out of a total of 

7 million units produced, highlighting a general improvement in waste reduction and 

production efficiency (Q23). Additional benefits cited by the company include better resource 

management and increased reuse of waste materials (Q40). Despite these advantages, VHIT 

does not specifically monitor the impact of its process on critical environmental areas such as 

ozone layer depletion, photochemical ozone formation, acidification, eutrophication, human 

toxicity, and ecotoxicity (Q49). Consequently, the impact of AI on these environmental aspects 

remains unassessed and unmonitored (Q50). 

The lack of monitoring of emissions and the effects of chemicals on the environment limits 

the comprehensive understanding of the overall environmental impact. For a more accurate 

assessment, it would be necessary to consider the entire life cycle of the resources used and to 

monitor CO2 emissions, as well as other potential chemical pollutants and their effects on 

terrestrial and aquatic organisms. 

 

4.5.2.5 End-of-Life Management and Certifications Indexes  
 

The implementation of AI in VHIT's process has led to substantial improvements in material 

lifecycle management and operational circularity. After AI integration, VHIT has achieved 

nearly 100% recycling of waste materials, reintroducing them into the production flow. For 

example, discarded pumps are disassembled to recover reusable components, while non-

reusable parts are remelted (Q25). Before AI adoption, a significant portion of discarded parts, 

approximately 30-40 thousand annually, was not recovered. Due to the reduction of false 
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positives achieved with AI, it is no longer necessary to request these parts from external 

suppliers, thereby improving the overall efficiency of the process. Thus, AI has notably 

increased the circularity of VHIT's operations, leading to more efficient resource use and waste 

reduction (Q34). The percentage of recycled materials has risen significantly since AI 

implementation, reaching nearly 100% (Q39). Regarding hazardous waste, although VHIT 

does not recycle it, the firm is committed to reducing and properly disposing of it in accordance 

with current regulations, demonstrating responsible management (Q51). 

To summarize, within the end-of-life management evaluation framework, the adoption of AI 

has enabled VHIT to conserve materials and improve waste disposal. AI has facilitated the 

reuse of materials previously considered waste, thus reducing environmental impact. 

Concerning certifications, VHIT has been ISO 14001 certified for environmental 

management for over 15 years (Q60). However, the company has not provided additional data 

necessary for a comprehensive assessment of the environmental impact of AI adoption in its 

production process. Specifically, information on certified hardware meeting energy and 

resource efficiency criteria (Q61) and certified data centers adhering to standards of 

transparency and efficiency (Q62) is unavailable. These gaps limit the ability to fully assess 

the certification parameter and its contribution to overall environmental sustainability of the 

process under consideration. 

 

4.5.3 Final Insights  
 

In light of the detailed analysis of the implementation methods of AI in a specific production 

process, and the associated environmental costs and benefits, it is observed that the adoption 

of the technology by VHIT has led to significant improvements, primarily in efficiency, cost 

reduction, and product quality. While the energy consumption of the AI system is comparable 

to that of the previous optical system, the reduction in waste has been a notable advantage in 

terms of sustainability. VHIT has observed an overall decrease in energy consumption due to 

various energy-saving initiatives, not directly attributable to AI. However, the reduction in 

waste has contributed to the overall sustainability of the production process. Additionally, the 

reduction of false positives has had a direct impact on sustainability by decreasing waste and 

optimizing resource use. The internal implementation of the AI system has allowed VHIT to 

maintain control over data and tailor the model to the company's specific needs, underscoring 

the importance of AI as a strategic tool for innovation and operational efficiency. 
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In overall terms, the integration of IA into VHIT's business process partially aligns with the 

corporate sustainability plan (Q31), but is not part of a broader sustainability strategy (Q32). 

The sustainability benefits derived from AI are secondary effects rather than primary 

objectives. In this perspective, VHIT primarily uses AI to enhance production efficiency, 

evaluating its benefits more in economic and efficiency terms rather than sustainability (Q41). 

Indeed, no significant challenges have been identified in harmonizing AI use with sustainability 

goals, as the two aspects are not directly correlated (Q33). 

Shifting the focus to the critical and widely discussed topic in the literature concerning AI 

and the significant negative impact of its supporting infrastructure, namely data centers, the 

company acknowledges that it has not considered the potential increase in emissions resulting 

from the intensive use of AI and the consequent increase in data collection and processing 

(Q42). However, it believes the negative impact is outweighed by the benefits (Q44) and does 

not see the need to adopt methodologies to quantify the environmental impact of AI relative to 

its benefits (Q45). 

According to the interviewee, indirect sustainability benefits from AI include greater 

production efficiency, resulting in reduced human and energy resource consumption and 

minimized environmental impact (Q52). Additionally, the overall sustainability benefits are 

communicated to customers occasionally and mainly upon request (Q58), through customized 

reports (Q59). 

Furthermore, despite not giving greater consideration to the direct and indirect impact of AI 

use, the company pursues commendable general sustainability goals focusing on reducing its 

ecological footprint and responsible management through technological innovation, waste 

reduction, and the use of renewable energy, with the aim of achieving carbon neutrality. 

However, it does not follow any more specific goals. In fact, the company is carrying out 

various assessments to identify areas for improvement and more specific objectives (Q53). To 

pursue its general goals, VHIT also evaluates the overall environmental impact of the company 

through continuous emission monitoring, material recycling and reuse, and process 

digitalization for greater efficiency, not involving AI in these measurements (Q55). For 

example, the digitalization of data collection processes via dedicated apps allows monitoring 

of waste production and reduction of low-value-added activities. Atmospheric emissions are 

controlled and verified annually based on provincial authorizations and the Integrated 

Environmental Authorization (AUA) in compliance with current regulations. The company has 

invested in a new industrial process to eliminate wastewater in the washing cycles of reusable 

packaging. Additionally, in the energy domain, the company employs a problem analysis and 
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resolution methodology to reduce energy consumption, called the “Green Line”. Concrete 

examples include the installation of photovoltaic systems, LED lighting, inverter technologies, 

and the optimization of heating and cooling systems through AI algorithms (Q54), improving 

key indicators such as the Carbon Footprint (Q57).  

In conclusion, although AI is primarily used to enhance process efficiency, its impact on 

environmental sustainability is considered a secondary benefit. This is further evidenced by the 

limited attention to quantifying the direct and indirect costs associated with AI use in company 

processes. Though, adopting a truly sustainable infrastructure requires significant resources. 

As noted by the interviewee, such adoption is often perceived as costly and time-consuming. 

Furthermore, the lack of sufficient national incentive mechanisms makes this transition even 

more challenging for many companies (Q45). 

 

 

Conclusion 
 
Focusing on AI adoption in business operations, current methodologies often overlook AI’s 

full hidden environmental impact, both positive (values) and negative (costs), especially in 

production processes where the technology significantly alters the process itself. Traditional 

models primarily address the direct consequences of technology usage, such as CO2 emissions 

and energy consumption, but tend to neglect the broader effects of AI integration, such as 

enhanced efficiency, leading to a significant underestimation of AI's environmental impact, 

particularly in industries undergoing major process changes. 

Integrating diverse insights and methods from the literature in economics, management, and 

engineering, this research proposes a holistic framework for assessing the environmental 

impact of AI in business processes. This framework primarily references the work of Calik & 

Bardudeen (2016) and analyzes six specific areas: material usage, energy usage, other resource 

usage, waste, emissions and pollution, end-of-life management, and certifications. 

The effectiveness, exhaustiveness, and adoptability of this potentially comprehensive AI 

sustainability framework were tested through a case study on VHIT, a manufacturing company 

that integrates AI into its production process. This methodology enabled a multifaceted 

evaluation of the environmental impact of AI integration in a production process, specifically 

regarding the quality control of filters used in oil and vacuum pumps, and assessed the 

sustainability of AI in that specific context of business adoption. 
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Regarding the “Material Usage” parameter, it emerged that AI adoption has made the 

production process more sustainable through optimized resource management and significant 

waste reduction. The information provided by VHIT concerning “Other Resource Usage” also 

indicates a trend towards reduced resource consumption and increased efficiency through 

recycling and reuse. In the context of the “Waste-Emissions-Pollution” index, AI adoption by 

VHIT has led to significant reductions in production waste and improved resource 

management, demonstrating a positive impact on the sustainability of the production process. 

Finally, within the “End-of-Life Management” evaluation framework, AI adoption has enabled 

VHIT to conserve and reuse more materials and improve waste disposal. However, concerning 

certifications, the company has not provided additional data necessary for a comprehensive 

assessment of the environmental impact of AI adoption in its production process. 

The area of “Energy Usage” - and consequently CO2 emissions - is simultaneously the most 

critical for understanding AI’s environmental impact and the most challenging to calculate, 

presenting difficulties for this framework as well as any other possible methodology. Unlike 

other areas, where it is sufficient to consider the situation before and after AI introduction, the 

energy aspect is more complex and faces practical impediments related to the collection of 

relevant data within the company. In the case study, since data centers are internal to the 

company, a comprehensive local evaluation was in principle possible, and therefore different 

calculation strategies were adopted based on available data. 

The best method for precisely calculating the energy consumption resulting from AI usage, and 

consequently the associated CO2 emissions, would involve applying (smart) sensors to 

understand the consumption of the involved machinery. However, it is very rare to find such 

sensors in companies, and even VHIT has none. Alternatively, a first micro-level targeted 

approach involves calculating the volume of data generated during training and daily usage. In 

VHIT’s case, daily usage generates about 12.42 TB of data annually. To calculate the actual 

environmental impact, i.e., the amount of CO₂ corresponding to the processed data volume, 

totaling 200 MB of training data and 12.42 TB of annual data, it is necessary to consider the 

carbon footprint associated with data storage and processing. Indeed, CO₂ emissions vary 

depending on storage technologies, energy sources used, and data center efficiency. Since these 

specific data were unavailable for VHIT, and are difficult to obtain for any company, this type 

of analysis could only estimate the CO₂ emissions during training using online tools such as 

CodeCarbon. However, this approach does not allow for calculating the CO₂ impact of AI in 

use, which is the main objective of this research, where only the annual data volume can be 

measured. 
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To address the lack of specific data needed for a comprehensive analysis, a second macro-level 

approach was attempted by requesting energy bills to identify the aggregate energy variation 

coinciding with AI implementation in the process. However, these data do not elucidate the 

impact of AI, as variations in consumption are influenced by numerous factors, including 

changes in the number of units produced, inflation, and infrastructural modifications such as 

the introduction of heat pumps and electric forklifts. This further confirms the complexity of 

extrapolating data directly correlated to the energy consumption resulting from AI use and 

adoption in a specific process, whether adopting a micro or macro perspective. 

In general, the proposed framework proves promising for evaluating the sustainability of AI 

usage, allowing for the development of effective policies that foster a synergistic development 

of the two components of the Twin Transition without hindering each other. However, this tool 

needs improvement and refinement to enable the use of the most appropriate calculation 

methodologies for each area—especially energy—to address the concrete obstacles related to 

obtaining relevant data during the use of AI in a specific production process of a specific 

company. This awareness also reflects a fundamental indication for managers and decision-

makers. To implement and manage sustainable AI virtuously, they must ensure the conditions 

for collecting and processing relevant data for evaluating the sustainability of technology 

usage, such as installing sensors that monitor the specific energy consumption of AI. 

The case study also provided other interesting insights into the AI integration strategy in the 

operations of a manufacturing company in the automotive sector and the company's general 

attention to sustainability. 

Finally, it is worth noting that this research adopts a partial perspective as it focuses only on 

the usage phase of the AI lifecycle. Consequently, for a comprehensive evaluation, albeit 

challenging, future research should also consider the production and disposal phases, as well 

as the infrastructural nature of this technology. 
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Appendix  
 

 

Questionnaire 
Section 1: Utilization of Artificial Intelligence in the Company 

1. How long has AI been integrated into your business processes? 

2. In which business functions is AI applied within your company? 

3. What were the main factors driving your company towards adopting AI? 

4. For each application area listed in question 2, which specific AI models or technologies 

have you adopted? (e.g., machine learning, deep learning, generative AI) 

5. For each AI application mentioned in questions 2-3, is the model training conducted in-

house or outsourced to external partners? What criteria guided your decision between 

internalizing and outsourcing this process? 

6. Where and how are the data used for implementing AI in the various functions 

mentioned earlier managed and stored? (e.g., on-premise systems, cloud storage, data 

warehouses, data lakes, databases) 

Section 2: AI in the Production Process 

7. What changes have you observed in your production processes following the adoption 

of AI? 

8. Please describe in detail how a specific production process was organized before the 

introduction of AI, including the process objectives, main operational steps, 

technologies and systems used, and any operational challenges or inefficiencies 

encountered. 

9. Describe how the production process mentioned in the previous question has changed 

after the implementation of AI. Include details about the AI model used, including its 

underlying technologies and model architecture, the changes made to the process, 

improvements in production, waste reduction, or other operational benefits, and how 

AI has influenced the entire process from both technical and organizational 

perspectives. 

10. Do you believe that the previously described improvements have made the process 

more sustainable? If yes, could you provide some data to support this statement? 

11. What types of hardware have you implemented to support the AI operations described 

in question 9? 
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Please select the appropriate options from the list provided below: A100 PCIe 40/80GB, 

AGX Xavier, AMD EPYC 7763, AMD RX480, GTX 1080, GTX 1080 Ti, GTX 750, 

GTX TITAN X, Intel Xeon E5-2630v4, Intel Xeon E5-2650, Intel Xeon E5-2699, Intel 

Xeon Gold 5220, Intel Xeon Gold 6148, Quadro K6000, Quadro P6000, RTX 2080, 

RTX 2080 Ti, RTX 3080, RTX 3080 Ti, RTX 3090, RTX 8000, RTX A4000, RTX 

A5000, RTX A6000, T4, TITAN X Pascal, TPUv2 Chip, TPUv3 Chip, Tesla K40c, 

Tesla K80, Tesla M40 24GB, Tesla P100, Tesla P40, Tesla V100-PCIE-16GB, Tesla 

V100-SXM2-16GB, Tesla V100-SXM2-32GB, Titan RTX, Titan V, Titan Xp. 

Other: 

12. Did you train the AI model described in question 9 within your organization, or did you 

opt for outsourcing to external partners? 

13. If the training was conducted internally, how many hours were required to complete the 

training of this model? 

14. How frequently is the AI model used in your processes? 

15. Describe the data flow associated with the production process where AI has been 

implemented. How much data is collected from this process? 

16. How much energy is consumed by the specific process under consideration?  

a. Not measured  

b. Measured 

If measured, please specify the amount:  

Before the implementation of AI:  

After the implementation of AI:  

17. Do you have specific methodologies or tools to calculate the environmental impact of 

your process? 

If yes, which of the following tools do you use?  

a. Integrated tools (e.g., Experiment Impact Tracker, Carbon Tracker, CodeCarbon)  

b. Online tools (e.g., Green Algorithms, ML CO2 Impact)  

c. Other tools (e.g., sensors directly installed on the machines, etc.), please specify:  

d. We do not use specific tools 

18. Could you provide your electricity and gas bills (total company consumption) before 

and after the implementation of AI?  

a. Yes  

b. No 

If yes, please specify the total consumption:  
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Before the implementation of AI:  

After the implementation of AI: 

19. Additionally, could you indicate if the change in consumption is exclusively 

attributable to the implementation of AI, or if other significant changes have been made 

that might have affected it? 

20. Could you provide the total amount of output (pieces) produced through the process 

mentioned in question 9 before and after the introduction of AI?  

a. Yes 

b. No 

If yes, please indicate the quantity of output:  

Before the implementation of AI:  

After the implementation of AI: 

21. Do you believe that any variation in output can be directly correlated to the introduction 

of AI, or have other innovations also influenced production levels? 

22. In which of the following indices do you believe AI has contributed to improvements?  

a. Output/time  

b. Output/resources used  

c. Output/cost  

d. Output/quality  

e. Other: 

Have you calculated the respective changes before and after AI implementation? If so, 

could you provide these data? 

23. Could you provide the total amount of waste and scrap produced by the process 

mentioned in question 9, before and after the introduction of AI? 

Before the implementation of AI:  

After the implementation of AI: 

24. Could you indicate the total consumption of raw materials used for the process 

mentioned in question 9, before and after the introduction of AI? 

25. Regarding the above, could you specify what percentage of the raw materials used 

comes from external purchases and what percentage comes from internal recycling of 

waste materials or other forms of reuse post-AI introduction (referring to the process 

mentioned in question 9)? 

26. What resources, besides energy, are used in the process?  

a. No additional resources  
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b. Water  

c. Oil  

d. Soil  

e. Other resources (please specify) 

27. With the introduction of AI in the process, have you noticed any changes in the quantity 

or type of “other” resources used? 

28. Can you quantify the variation in the use of “other” resources before and after the 

implementation of AI?  

a. No  

b. Yes (provide specific data, e.g., water consumption before = ___ L per unit of 

production, after = ___ L per unit of production) 

Please answer questions 29 and 30 only if the example provided of AI implementation relies 

on external clouds for data management and storage. 

29. What types of hardware have you implemented to support the AI operations described 

in question 11? 

Please select the appropriate options from the list provided below: A100 PCIe 40/80GB, 

AGX Xavier, AMD EPYC 7763, AMD RX480, GTX 1080, GTX 1080 Ti, GTX 750, 

GTX TITAN X, Intel Xeon E5-2630v4, Intel Xeon E5-2650, Intel Xeon E5-2699, Intel 

Xeon Gold 5220, Intel Xeon Gold 6148, Quadro K6000, Quadro P6000, RTX 2080, 

RTX 2080 Ti, RTX 3080, RTX 3080 Ti, RTX 3090, RTX 8000, RTX A4000, RTX 

A5000, RTX A6000, T4, TITAN X Pascal, TPUv2 Chip, TPUv3 Chip, Tesla K40c, 

Tesla K80, Tesla M40 24GB, Tesla P100, Tesla P40, Tesla V100-PCIE-16GB, Tesla 

V100-SXM2-16GB, Tesla V100-SXM2-32GB, Titan RTX, Titan V, Titan Xp. 

Other: 

30. Provider:  

a. Google Cloud Platform  

b. Amazon Web Services  

c. Azure  

d. OVHCloud  

e. Scaleway  

f. CoreWeave 

Section 3: AI Implementation and Sustainability 

31. How does the integration of AI into your process align with your company's 

sustainability plan?  
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a. Fully aligns  

b. Partially aligns  

c. Does not align  

d. Not applicable/We do not have a sustainability plan  

e. Any comments: 

32. Is the integration of AI into the process an integral part of a broader corporate 

sustainability strategy? If so, could you briefly describe this strategy? 

33. What have been the main challenges in harmonizing the use of AI with your 

sustainability goals? 

34. Does the AI adopted in the process contribute to the circularity of your operations?  

a. Yes, significantly  

b. Yes, moderately  

c. No  

d. I don't know  

e. Any comments: 

35. If applicable, describe examples of AI applied to operations/processes to promote a 

circular economy model within the company (if the example corresponds to that 

mentioned in question 9, detail how it contributes to circularity). 

36. Do you adopt circular economy practices for the disposal of hardware used in your 

processes? 

37. If yes, which of the following practices have you implemented?  

a. Reuse  

b. Recycling  

c. Disassembly  

d. Refurbishing  

e. Other (please specify) 

38. If applicable, could you indicate the percentage of hardware treated through circular 

practices relative to the total hardware disposed of?  

a. Less than 25%  

b. 25% - 50%  

c. 51% - 75% 

d. More than 75%  

e. Not available 
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39. What has been the percentage change in reused resources (scrap, water, and other 

materials) before and after the implementation of AI? Please specify for each resource:  

Before the implementation of AI:  

After the implementation of AI: 

40. What are the sustainability benefits of your AI solution?  

a. Energy efficiency  

b. Waste reduction  

c. Better resource management  

d. Increased production efficiency  

e. Improved waste disposal  

f. Increased reuse of scrap materials  

g. Reuse and remanufacturing of components  

h. Reduction in pollutant emissions  

i. We have not observed improvements  

j. Other: 

41. How do you monitor and measure these benefits? 

42. Have you considered that intensive use of AI and the consequent increase in data 

collected and processed might lead to a potential increase in emissions?  

a. Yes  

b. No 

43. If you answered yes, have you evaluated any measures to mitigate this environmental 

impact? Could you provide specific examples of such initiatives? 

44. Do you believe that any negative impact is still outweighed by the benefits it brings?  

a. Yes  

b. No  

c. I don't know  

d. Any comments: 

45. Do you rely on any methodology to quantify the environmental impact of AI relative 

to its benefits?  

a. Yes, we have specific methods  

b. No, but we would like to develop them  

c. No, we do not consider it necessary 

If yes, which ones? If no, why not? 
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46. If you have such methodologies, could you provide a concrete quantitative example? 

(Preferably related to the impact of AI on the processes mentioned in questions 9 or 30) 

47. Does your company employ renewable energy sources, such as photovoltaic systems, 

for sustainable energy production? If yes, could you specify which technologies you 

use? 

48. Could you provide, if possible, a percentage of your infrastructure's energy 

consumption that you manage to offset? 

49. Do you evaluate and monitor the impact of your process on the following environmental 

areas: ozone layer depletion, photochemical ozone formation, acidification, 

eutrophication, human toxicity (including carcinogenic and non-carcinogenic effects), 

and ecotoxicity? If yes, specify which topics are monitored. 

50. Has the implementation of AI had an impact in terms of reducing or increasing the 

environmental impact of the process concerning the above-mentioned topics?  

a. Reduction  

b. Increase  

c. No impact  

d. Not applicable/Not monitored 

51. If possible, indicate the percentage of hazardous waste recycled. 

Before the implementation of AI:  

After the implementation of AI: 

Section 4: Sustainability Goals, Impact Assessment, and Communication of Benefits 

52. What specific sustainability benefits are derived from your AI solutions? 

53. What are your overall sustainability goals? 

54. How do you assess your environmental impact? 

55. Do you use AI in this process?  

a. Yes, AI is a central element  

b. Yes, but only as a support tool  

c. No, we use other methods  

d. We do not conduct environmental impact assessments  

e. Comments: 

56. Describe one or more examples, if any, of AI primarily aimed at making the company 

sustainable or assessing its environmental impact. 
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57. Does the AI mentioned in the previous question help improve key indicators (specific 

KPIs for sustainability, life cycle analysis, carbon footprint analysis, etc.) through 

which corporate sustainability is measured?  

a. Yes  

b. No 

If yes, which ones and how? (please specify): 

58. Do you communicate the sustainability benefits to your customers?  

a. Yes, regularly  

b. Yes, occasionally  

c. No  

d. Any comments: 

59. How do you communicate the sustainability benefits of your AI solutions to customers?  

a. Sustainability reports  

b. Marketing communications  

c. Customized reports  

d. Not communicated  

e. Any comments: 

60. Have you obtained certifications that align with your sustainability plan to meet new 

environmental criteria or directives? 

61. Do you have certified hardware that meets energy and resource efficiency criteria? 

62. Do you have a certified data center that adheres to standards of transparency, energy 

efficiency, and resource efficiency? 
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