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 Abstract 

 This  thesis  presents  the  development  of  an  advanced  question-answering  AI 

 chatbot,  leveraging  state-of-the-art  information  retrieval  technologies  and  machine 

 learning  models.  The  chatbot  utilizes  the  Haystack  framework  to  retrieve  answers  from 

 the  Google  Books  API,  ensuring  access  to  a  vast  repository  of  textual  data.  Additionally, 

 the  system  integrates  a  recommendation  engine  that  harnesses  transformers  to  compute 

 semantic similarity between books, providing users with relevant reading suggestions. 

 The  research  showcases  the  capabilities  of  modern  machine  learning  techniques, 

 particularly  focusing  on  the  transformative  power  of  transformers  from  Hugging  Face.  It 

 delves  into  various  natural  language  processing  methodologies,  including  named  entity 

 recognition  and  retrieval-augmented  generation  (RAG).  Furthermore,  the  thesis  includes 

 fine-tuning  processes  of  transformer  models  to  enhance  their  performance  in  specific 

 tasks. 

 By  combining  advanced  NLP  techniques,  information  retrieval,  and  recommendation 

 systems,  this  work  demonstrates  the  potential  of  contemporary  machine  learning 

 technologies  in  creating  sophisticated,  intelligent  systems.  The  findings  underscore  the 

 importance  of  these  technologies  in  developing  practical  applications  that  can 

 understand and respond to user inquiries while o�ering personalized recommendations. 
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 1.  Introduction 
 Artificial  Intelligence  has  been  emerging  in  so  many  di�erent  aspects  of  our  lives 

 completely  reshaping  the  world  and  rebuilding  our  day-to-day  tasks  by  integrating 

 technologies  like  machine  learning  and  natural  language  processing  to  drive  e�ciency 

 and  innovation.  This  technological  constellation  unlocks  unprecedented  possibilities, 

 transcending  traditional  boundaries  in  leveraging  data,  knowledge  extraction,  and  task 

 automation. 

 At  its  core,  AI  is  founded  on  formal  reasoning,  which  aims  to  mechanize  human 

 cognition  and  replicate  logical  inference  artificially.  Formal  reasoning,  in  this  context, 

 refers  to  using  logical  rules  and  algorithms  to  make  decisions  and  draw  conclusions, 

 mirroring  the  way  humans  reason.  This  principle  underpins  the  development  of  AI 

 systems,  enabling  them  to  process  information,  learn  from  data,  and  perform  complex 

 tasks autonomously. 

 AI's  propensity  to  appear  intelligent  has  roots  tracing  back  to  the  1960s,  notably 

 exemplified  by  Joseph  Weizenbaum's  creation  of  the  ELIZA  chatbot  (Weizenbaum, 

 1983).  Though  basic  compared  to  today's  standards,  it  showed  how  AI  could  simulate 

 human-like  interactions  and  understanding  using  simple  patterns  and  pre-written 

 responses.  Its  introduction  sparked  widespread  interest  in  AI  and  raised  deep  questions 

 about  how  humans  interact  with  computers.  The  "Eliza  e�ect"  refers  to  users  seeing  AI 

 systems  as  more  human-like,  even  though  they  simply  follow  pre-defined  rules  and 

 algorithms. 

 As  AI  permeates  society,  it  challenges  conventional  views  of  human  capabilities  and 

 machine  limitations.  Its  fusion  with  disciplines  like  data  science  and  natural  language 

 processing heralds a new era of innovation, shaping how we interact with technology. 

 This  thesis  embarks  on  a  journey  to  explore  AI's  convergence  with  machine  learning  and 

 natural  language  processing  in  the  realm  of  book-related  inquiries.  Through  the 
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 development  of  an  AI-driven  question-answering  system  and  a  novel  book 

 recommendation  engine,  we  aim  to  uncover  AI's  potential  in  enriching  our  interaction 

 with  literary  content.  By  leveraging  formal  reasoning  principles  and  state-of-the-art 

 methodologies,  we  seek  to  bridge  the  gap  between  human  intellect  and  artificial 

 intelligence. 

 In  the  realm  of  book-related  domains,  existing  AI  applications  are  harnessing  the  power 

 of  integrations  with  APIs  such  as  the  Google  Books  API  to  enhance  user  experiences 

 and  access  to  literary  content.  These  integrations  span  across  various  platforms,  each 

 o�ering unique features and functionalities: 

 Goodreads,  a  popular  platform  for  readers  to  discover,  review,  and  recommend  books, 

 integrates  with  the  Google  Books  API  to  access  its  wealth  of  user-generated  data.  AI 

 applications  leveraging  this  integration  can  tap  into  Goodreads'  repository  of  book 

 ratings,  reviews,  and  reading  preferences  to  provide  personalized  reading  suggestions 

 based on individual tastes and interests. 

 WorldCat,  the  world's  largest  network  of  library  content  and  services,  o�ers  access  to 

 millions  of  bibliographic  records.  Integration  with  the  Google  Books  API  enables  AI 

 applications  to  tap  into  WorldCat's  extensive  database  of  library  collections  and 

 holdings.  AI-driven  search  tools  can  utilize  this  integration  to  facilitate  access  to  a  wide 

 range of scholarly resources and academic literature available in libraries worldwide. 

 University  Libraries,  which  have  digitized  their  collections  and  made  them  accessible 

 through  online  repositories,  integrate  with  the  Google  Books  API  to  provide  access  to 

 scholarly  literature  and  academic  publications.  AI-driven  tools  can  assist  researchers  and 

 students  in  discovering  relevant  literature,  conducting  literature  reviews,  and  accessing 

 scholarly resources for their academic endeavors. 
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 1.1  Problem Statement 

 In  today's  digital  age,  access  to  vast  repositories  of  information,  including  books, 

 has  become  increasingly  accessible.  However,  navigating  this  wealth  of  knowledge 

 e�ciently  remains  a  challenge.  Users  often  encounter  di�culties  in  obtaining  relevant 

 information  about  books,  whether  it  be  searching  for  specific  titles,  understanding  their 

 content,  or  discovering  new  reads.  Traditional  search  engines  and  library  catalogs  may 

 provide  basic  information,  but  they  often  fall  short  in  addressing  nuanced  queries  or 

 o�ering personalized recommendations. 

 Identification  of  the  need  for  an  AI  system  that  can  e�ectively  respond  to  questions 

 about  books  arises  from  these  challenges.  Such  a  system  would  not  only  streamline  the 

 process  of  accessing  book-related  information  but  also  enhance  the  user  experience  by 

 providing  tailored  responses  and  recommendations.  However,  developing  such  a  system 

 presents several challenges: 

 Natural  Language  Understanding:  Understanding  user  queries  in  natural  language  poses 

 a  significant  challenge  due  to  the  complexity  and  ambiguity  inherent  in  human 

 language.  A  robust  AI  system  must  be  able  to  parse  and  interpret  various  forms  of 

 queries accurately. 

 Content  Understanding:  Extracting  relevant  information  from  books  requires  the  AI 

 system  to  comprehend  the  content  e�ectively.  This  involves  tasks  such  as  named  entity 

 recognition,  summarization,  and  sentiment  analysis  to  extract  key  information  and 

 provide meaningful responses. 

 Data  Availability  and  Quality:  Access  to  comprehensive  and  high-quality  data  is  crucial 

 for  training  and  evaluating  AI  models.  However,  book-related  datasets  may  be  limited  in 

 size and diversity, posing challenges in model development and evaluation. 
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 1.2  Objectives 

 The  primary  goal  of  this  thesis  is  to  address  the  identified  need  for  an  AI  system 

 that  can  e�ectively  respond  to  questions  about  books.  To  achieve  this  goal,  the  following 

 objectives are outlined: 

 Development  of  an  AI-powered  Book  Question-Answering  System:  The  thesis  aims  to 

 develop  an  AI  system  capable  of  understanding  natural  language  queries  about  books 

 and  providing  accurate  and  informative  responses.  This  involves  leveraging  techniques 

 from  natural  language  processing  and  machine  learning  to  build  a  robust 

 question-answering pipeline. 

 Creation  of  a  Book  Recommendation  System:  In  addition  to  answering  specific  queries,  the 

 thesis  also  aims  to  build  a  book  recommendation  system  that  can  propose  relevant  books 

 based  on  their  similarity  with  other  titles.  This  involves  examining  book  metadata  and 

 leveraging modern NLP and machine learning techniques. 
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 2.  Literature Review 

 2.1.  Natural Language Processing 

 Natural  Language  Processing  (NLP)  has  seen  significant  advancements  in  recent 

 years,  particularly  with  the  development  of  transformer  models  and  the  integration  of 

 various  machine  learning  techniques.  This  review  examines  key  literature  on  NLP  and 

 its  associated  methodologies,  drawing  from  influential  texts  and  recent  articles  to  provide 

 a comprehensive overview of the current state of the field. 

 NLP's  evolution  has  been  marked  by  significant  milestones,  particularly  the  introduction 

 of  transformer  models  such  as  BERT  and  GPT-3.  These  models  have  revolutionized  the 

 field  by  enabling  machines  to  process  and  generate  human-like  text  with  remarkable 

 accuracy.  Transformer  architectures,  characterized  by  their  self-attention  mechanisms, 

 have  surpassed  traditional  models  in  tasks  like  translation,  summarization,  and 

 question-answering (Kumar & Singh, 2024). 

 Natural  Language  Understanding  and  Natural  Language  Generation  are  two  primary 

 components  of  NLP.  NLU  focuses  on  interpreting  and  deriving  meaning  from  human 

 language,  enabling  machines  to  understand  context,  sentiment,  and  intent.  NLG,  on  the 

 other  hand,  is  the  process  of  producing  phrases,  sentences,  and  paragraphs  that  are 

 meaningful from an internal representation (Khurana et al., 2023). 

 The  significance  of  NLP  permeates  modern  life,  shaping  interactions  in  sectors  as  varied 

 as  retail  and  medicine.  Retail  giants  employ  customer  service  chatbots,  while  medical 

 professionals  rely  on  NLP  to  interpret  and  summarize  electronic  health  records.  Smart 

 assistants  like  Amazon's  Alexa  and  Apple's  Siri  harness  NLP  to  interpret  user  queries, 

 while  advanced  models  such  as  GPT-3  produce  coherent  prose  across  diverse  subjects.  In 
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 the  realm  of  information  retrieval,  Google  leverages  NLP  to  refine  search  results,  while 

 social media platforms employ it to identify and mitigate hate speech. 

 Despite  remarkable  progress,  challenges  persist.  Bias  and  incoherence  plague  current 

 systems,  occasionally  yielding  unpredictable  behavior.  Yet,  these  hurdles  o�er 

 opportunities  for  machine  learning  engineers  to  refine  and  advance  NLP  applications, 

 increasingly integral to societal functioning. 

 In  their  book  ‘Natural  Language  Processing:  Python  and  NLTK,  Hardeniya  et  al.  o�er  a 

 comprehensive  overview  of  di�erent  techniques  used  in  NLP  models.  Let  us  go  through 

 some of the techniques that are fundamental in building our AI. 

 2.1.1.  Tokenization 

 Hardeniya  et  al.  define  tokenization  as  the  process  of  breaking  down  raw  text  into 

 smaller,  meaningful  units  known  as  tokens.  These  tokens,  which  encompass  words, 

 phrases,  or  even  entire  sentences,  play  a  crucial  role  in  aiding  data  scientists  to  grasp  the 

 context  during  the  development  of  NLP  models.  By  breaking  down  text  into  tokens, 

 tokenization  facilitates  the  conversion  of  unstructured  data  into  a  numerical  format, 

 which  is  essential  for  machine  learning  applications.  The  authors  emphasize  the 

 fundamental  role  tokenization  plays  in  enabling  machines  to  comprehend  and  process 

 raw text. Figure 1-1 illustrates the tokenization process. 
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 Figure 1-1: Upon receiving a corpus of documents, a tokenizer assigns a unique index to each word, thereby 

 enabling the translation of any document into a sequential arrangement of numbers. 

 2.1.2.  Named Entity Recognition 

 Named  Entity  Recognition  is  a  core  element  of  this  thesis.  It’s  a  fundamental  task 

 in  natural  language  processing  that  plays  a  pivotal  role  in  identifying  specific  categories 

 of  entities  within  textual  data.  Tunstall  et  al.  describe  NER  in  their  book  ‘Natural 

 Language  Processing  with  Transformers:  Building  Language  Applications  with  Hugging 

 Face’  as  the  process  of  extracting  real-world  objects  like  products,  places,  and  people 

 from  text.  Essentially,  it  involves  analyzing  text  at  various  levels  (sentences,  paragraphs, 

 or  entire  documents)  to  pinpoint  and  classify  entities  based  on  their  respective 

 categories. 

 Organizations  employing  NER  for  extracting  insights  from  unstructured  data  utilize  a 

 variety  of  methodologies.  In  their  overview  of  NER,  IBM  categorizes  these 

 methodologies  into  three  main  approaches:  rule-based,  machine  learning,  and  hybrid 

 methods. 
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 Rule-based  approaches  entail  the  formulation  of  grammatical  rules  specific  to  the 

 language  being  analyzed.  These  rules  guide  the  identification  of  entities  within  the  text 

 based  on  their  structural  and  grammatical  characteristics.  While  e�ective,  these 

 approaches can be labor-intensive and may struggle to generalize well to unseen data. 

 Machine  learning  approaches  involve  training  AI-driven  models  on  labeled  datasets  using 

 sophisticated  algorithms  such  as  conditional  random  fields  and  maximum  entropy.  These 

 techniques  span  from  traditional  machine  learning  methods  like  decision  trees  and 

 support  vector  machines  to  more  advanced  deep  learning  techniques  such  as  recurrent 

 neural  networks  (RNNs)  and  transformers.  While  these  methods  tend  to  perform  better 

 on  unseen  data,  they  necessitate  a  substantial  volume  of  labeled  training  data  and  can  be 

 computationally intensive. 

 Hybrid  approaches  combine  the  strengths  of  both  rule-based  and  machine  learning 

 methodologies.  They  employ  rule-based  systems  to  swiftly  identify  easily  recognizable 

 entities  and  machine  learning  systems  to  detect  more  intricate  entities.  This 

 hybridization optimally balances e�ciency and accuracy in entity recognition tasks. 

 Over  the  course  of  NER's  development,  notable  methodological  advancements  have 

 emerged,  particularly  in  the  realm  of  deep  learning  techniques.  Some  of  the  latest 

 advancements encompass: 

 Recurrent  Neural  Networks  (RNNs)  and  Long  Short-Term  Memory  (LSTM)  :  RNNs  are 

 specialized  neural  networks  adept  at  sequence  prediction  tasks.  LSTMs,  a  variant  of 

 RNNs,  excel  in  capturing  temporal  patterns  and  retaining  information  across  extended 

 sequences.  This  capability  proves  invaluable  for  contextual  understanding  and  entity 

 identification (Salehinejad et al, 2017). 

 Transformers  and  BERT  :  Transformer  architectures,  notably  exemplified  by  BERT 

 (Bidirectional  Encoder  Representations  from  Transformers),  have  revolutionized  NER 

 methodologies.  Through  a  self-attention  mechanism,  BERT  e�ectively  weighs  the 

 10 



 relevance  of  individual  words,  accounting  comprehensively  for  contextual  cues  by 

 examining preceding and subsequent words (Devlin et al., 2018). 

 These  advancements  underscore  the  evolution  of  NER  techniques,  showcasing  the 

 e�cacy  of  deep  learning-based  approaches  in  enhancing  the  extraction  of  book  titles 

 from user queries. 

 2.1.2.1.  The NER process 

 IBM's  overview  of  NER  provides  a  detailed  explanation  of  the  NER  process  which 

 comprises  a  series  of  steps,  each  pivotal  in  extracting  meaningful  insights  from  textual 

 data. 

 Data  Acquisition:  The  foundation  of  NER  lies  in  assembling  an  annotated  dataset, 

 wherein  text  passages  are  labeled  to  denote  the  presence  and  classification  of  named 

 entities. This dataset acquisition can entail manual annotation or automated techniques. 

 Data  Preprocessing:  This  phase  encompasses  text  cleansing  and  formatting  procedures, 

 encompassing  tasks  such  as  character  removal,  text  normalization,  and  segmentation 

 into cohesive units like sentences or tokens. 

 Feature  Engineering:  At  the  heart  of  NER  lies  the  extraction  of  features  from  the 

 preprocessed  text.  These  features  span  several  elements,  including  part-of-speech 

 tagging,  word  embeddings,  and  contextual  insights.  The  selection  of  features  is  tailored 

 to the specific NER model under consideration. 

 Model  Training:  The  NER  model  undergoes  training,  leveraging  the  annotated  dataset 

 and  extracted  features.  Through  this  process,  the  model  discerns  patterns  and 

 interrelations  within  the  text,  thereby  learning  to  accurately  identify  and  categorize 

 named entities. 

 Model  Evaluation:  The  e�cacy  of  the  trained  NER  model  is  scrutinized  through 

 comprehensive  evaluation  measures.  Metrics  such  as  precision,  recall,  and  F1  score  serve 

 to assess the model’s aptitude to label and categorize named entities. 
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 Model  Refinement:  Building  upon  evaluation  insights,  iterative  refinement  endeavors 

 ensue  to  enhance  the  model's  performance.  This  iterative  process  may  involve 

 hyperparameter  tuning,  dataset  modifications,  and  integration  of  advanced  techniques 

 such as ensembling or domain adaptation. 

 Inference:  We  now  have  a  great  model!  It  can  be  used  to  analyze  new  text  we  haven't 

 seen  before.  The  model  will  clean  up  the  text,  find  important  features,  and  predict  the 

 named entities. 

 2.1.2.2.  Challenges in NER Adoption 

 Despite  significant  advancements  and  widespread  adoption,  NER  faces  several 

 notable challenges worth considering: 

 1.  Language  Specificity:  Dr.  W.J.B.  Mattingly,  in  his  book  "Introduction  to  Named  Entity 

 Recognition,"  highlights  a  key  challenge  in  NLP:  handling  documents  written  in 

 multiple  languages.  While  NER  performs  well  for  languages  like  English  with  abundant 

 labeled  data,  its  accuracy  su�ers  for  others.  This  is  where  advancements  like  BERT  and 

 transformer-based  models  come  in  potentially  being  key  to  overcoming  this  language 

 barrier. 

 2.  Domain-specific  Challenges:  Beyond  language  barriers,  another  challenge  noted  in 

 IBM’s  NER  overview  is  domain  specificity.  General  NER  models  might  misidentify 

 entities specific to certain fields, like technical terms or, in our case, book titles. 

 Despite  these  challenges,  ongoing  advancements  in  NER  technology  are  steadily 

 enhancing  its  accuracy  and  applicability,  promising  to  narrow  existing  technology  gaps 

 and broaden its impact across various domains. 

 Let us take a look at an example of an NER annotation process: 
 “Harry  Po�er  ,  a  student  at  Hogwarts  School  of  Witchcra�  and  Wizardry  ,  lives  in  the  magical  world  of 

 Hogwarts  , where he learns spells and encounters mythical  creatures like  dragons  .” 
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 NER Annotations: 

 Person: "Harry Potter" 

 Organization: "Hogwarts School of Witchcraft and Wizardry", "Hogwarts" 

 Location: "Hogwarts" 

 Miscellaneous: "dragons" 

 These  annotations  highlight  the  named  entities  present  in  the  sentence,  including  names 

 of  individuals  (e.g.,  "Harry  Potter"),  organizations  (e.g.,  "Hogwarts  School  of  Witchcraft 

 and  Wizardry"),  and  locations  (e.g.,  "Hogwarts").  Additionally,  the  term  "dragons"  is 

 annotated as a miscellaneous entity, indicating its significance within the contex  t. 

 2.1.3.  Information Retrieval 

 Information  retrieval  stands  as  one  of  the  most  prevalent  and  widely  utilized 

 applications  in  modern  computing.  A  quintessential  example  of  IR  in  action  is  Google 

 Search,  where,  upon  receiving  a  user's  query,  the  retrieval  algorithm  endeavors  to  fetch 

 information pertinent to that query. 

 Hardeniya  et  al.  describe  information  retrieval  as  the  process  of  finding  the  most  relevant 

 information  needed  by  the  user.  There  are  di�erent  ways  to  express  the  user's 

 information  needs  to  the  system,  but  the  main  goal  is  always  the  same:  to  retrieve  the 

 most relevant information. 

 They  explain  that  a  typical  IR  system  generates  an  indexing  mechanism  called  an 

 inverted  index.  This  is  similar  to  a  book's  index,  listing  words  found  throughout.  An  IR 

 system's inverted index posting list typically looks like this: 
 <Term, DocFreq, [DocId1, DocId2]> 

 {"Reading", 2 ---> [1, 2]} 

 {"is", 2 ---> [1,2]} 

 {"cool", 1 ---> [2]} 
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 Here,  if  a  word  appears  in  both  document  1  and  document  2,  the  posting  list  will  contain 

 a  list  of  documents  referencing  terms.  With  this  data  structure  in  place,  various  retrieval 

 models can be introduced, each tailored to di�erent types of data. 

 Vector space model: 

 Hardeniya  et  al.  (2016,  Natural  Language  Processing  with  Python  and  NLTK) 

 e�ectively  explain  the  concept  of  Vector  Space  Model.  VSM  represents  documents  and 

 vocabulary  terms  as  vectors  in  a  high-dimensional  space.  Each  document  is  essentially  a 

 unique  vector  in  this  space.  While  various  methods  exist  for  representing  these 

 document  vectors,  TF-IDF  (Term  Frequency-Inverse  Document  Frequency)  is  a  popular 

 and  e�cient  approach.  TF-IDF  considers  both  the  frequency  of  a  term  within  a 

 document  and  its  importance  across  the  entire  document  collection.  This  helps  us 

 distinguish between common words and those specific to a document's content. 

 Given  a  term  and  a  corpus,  we  can  calculate  the  term  frequency  (TF)  and  inverse 

 document frequency (IDF) using the following formula: 

 𝑡𝑓 ( 𝑡 ,  𝑑 ) =  0 .  5 +  0 . 5    ×    𝑓 ( 𝑡 , 𝑑 )
 𝑚𝑎𝑥    { 𝑓 ( 𝑤 , 𝑑 )   :    𝑤    ∈    𝑑 }

 TF,  or  Term  Frequency,  simply  denotes  the  frequency  of  a  term  within  a  document. 

 Conversely,  IDF,  or  Inverse  Document  Frequency,  represents  the  reciprocal  of  document 

 frequency, indicating the number of documents in the corpus where the term appears. 

 𝑖𝑑𝑓 ( 𝑡 ,  𝐷 ) =  𝑙𝑜𝑔  𝑁 
{ 𝑑 ∈    𝐷    :    𝑡    ∈    𝑑 }| |

 Numerous  normalization  variants  exist,  yet  by  integrating  both  Term  Frequency  (TF) 

 and  Inverse  Document  Frequency  (IDF),  we  can  devise  a  more  robust  scoring 

 mechanism  for  assessing  the  significance  of  each  term  within  a  document.  To  compute  a 

 TF-IDF score, we simply multiply these two scores together. 

 𝑡𝑓𝑖𝑑𝑓 ( 𝑡 ,  𝑑 ,  𝐷 ) =  𝑡𝑓 ( 𝑡 ,  𝑑 ) ×  𝑖𝑑𝑓 ( 𝑡 ,  𝐷 )
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 In  TF-IDF,  we  evaluate  a  term  based  on  its  presence  within  the  current  document  and  its 

 distribution  across  the  corpus.  This  approach  identifies  terms  that  are  uncommon  across 

 corpora  yet  have  a  high  frequency  wherever  they  occur,  making  them  discriminative  for 

 document  retrieval.  This  scoring  can  represent  documents  as  vectors.  Once  all 

 documents are vectorized, the Vector Space Model can be constructed. 

 2.1.4.  Question Answering 

 As  data  scientists  and  researchers,  we  often  find  ourselves  wading  through  oceans 

 of  documents  to  find  the  information  we  seek.  Search  engines  like  Google  continually 

 enhance  the  e�ciency  of  this  process  by  highlighting  specific  answers  to  our  questions 

 whenever  possible.  For  example,  when  querying  'When  did  Richard  Feynman  win  his 

 first  Nobel  Prize?'  on  Google,  the  correct  answer—'October  21,  1965'—is  immediately 

 provided, as illustrated in the Figure below. 

 Figure 1-3:  A Google search query and corresponding  answer snippet. 
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 In  this  example,  Google  first  retrieved  around  125,000  documents  that  were  relevant  to 

 the  query,  and  then  performed  an  additional  processing  step  to  extract  the  answer 

 snippet  with  the  corresponding  passage  and  web  page.  It’s  not  hard  to  see  why  these 

 answer  snippets  are  useful.  For  example,  if  we  search  for  a  trickier  question  like  “Which 

 guitar  tuning  is  the  best?”  Google  doesn’t  provide  an  answer,  and  instead  we  have  to 

 click on one of the web pages returned by the search engine to find it ourselves. 

 The  general  approach  behind  this  technology  is  called  question  answering  (QA). 

 Tunstall  et  al.  in  their  book  Natural  Language  Processing  with  Transformers  provide  a 

 deep  dive  into  extractive  QA  which  is  the  most  common  type  of  Question  Answering. 

 They  explain  that  extractive  QA  involves  questions  whose  answers  can  be  identified  as  a 

 span  of  text  in  a  document,  where  the  document  might  be  a  web  page,  legal  contract,  or 

 news  article.  The  two-stage  process  of  first  retrieving  relevant  documents  and  then 

 extracting  answers  from  them  is  also  the  basis  for  many  modern  QA  systems,  including 

 semantic search engines, intelligent assistants, and automated information extractors. 

 Existing QA systems employ various methodologies, including: 

 2.1.4.1.  Information Retrieval-based Systems 

 Information  Retrieval-based  Systems  have  a  primary  objective:  to  e�ciently  locate 

 and  retrieve  relevant  information  from  a  large  collection  of  text  data  in  response  to  a 

 user's  query.  This  query  can  take  various  forms,  including  keywords,  phrases,  or  even 

 natural  language  questions.  Operating  on  a  corpus  of  text,  IR  functions  within  a  vast 

 collection  of  documents  or  passages  containing  sought-after  information.  This  corpus 

 encompasses  diverse  text  data  types,  such  as  articles,  reports,  web  pages,  or  academic 

 papers (Hambarde & Proença, 2023). 

 The  process  of  information  retrieval  involves  finding  the  documents  most  relevant  to  a 

 query,  a  challenge  faced  by  every  search  and  recommendation  system.  Document 

 retrieval systems primarily execute two processes: indexing and matching. 
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 These  systems  may  also  utilize  similarity  measures  to  assess  the  resemblance  between  the 

 user's  query  and  the  content  of  the  documents  in  the  corpus.  These  measures  consider 

 factors  such  as  semantic  relevance,  context,  and  document  structure  to  identify  relevant 

 documents. 

 Indexing  techniques  are  essential  for  e�cient  retrieval  in  IR.  By  creating  an  index  or 

 catalog  of  terms,  keywords,  or  features  present  in  the  documents  along  with  their 

 corresponding  locations,  indexing  enables  rapid  lookup  and  retrieval  of  relevant 

 documents during query processing. 

 Once  potential  documents  or  passages  are  identified,  IR  may  employ  ranking  algorithms 

 to  prioritize  the  results  based  on  their  relevance  to  the  user's  query.  Documents  closely 

 matching  the  query  terms  or  exhibiting  higher  similarity  scores  are  typically  ranked 

 higher in the list of results. 

 2.1.4.2.  Neural Network-based Systems 

 These  systems  employ  deep  learning  architectures,  such  as  recurrent  neural 

 networks  (RNNs)  or  transformer  models,  to  learn  the  mapping  between  questions  and 

 answers  from  large  datasets.  Example:  OpenAI's  GPT  (Generative  Pre-trained 

 Transformer) models, such as GPT-3. 

 2.1.4.3.  Domain-specific QA Systems 

 Designed  to  answer  questions  within  specific  domains,  such  as  medical,  legal,  or 

 technical.  Example:  IBM  Watson  for  Oncology,  which  assists  oncologists  in  treatment 

 decisions. 

 2.1.4.4.  Hybrid QA Systems 

 Combining  multiple  approaches  for  improved  performance  and  robustness. 

 Example:  IBM  Watson,  which  incorporates  various  techniques  including  NLP,  machine 

 learning, and information retrieval. 

 17 



 2.2.  Transformers 

 In  2017,  Google  researchers  introduced  a  new  way  to  understand  and  process 

 language  called  the  Transformer.  This  approach  was  a  big  improvement  over  older 

 methods  like  recurrent  neural  networks  (RNNs),  especially  for  translating  languages.  At 

 the  same  time,  another  method  called  ULMFiT  showed  that  by  using  a  lot  of  di�erent 

 texts,  computers  could  get  really  good  at  understanding  and  classifying  language,  even 

 with only a little bit of labeled data. 

 The  success  of  Transformer  and  ULMFiT  led  to  the  creation  of  today’s  most  well-known 

 transformers:  GPT  and  BERT.  By  blending  the  Transformer  architecture  with 

 unsupervised  learning,  these  models  eliminated  the  requirement  to  build  specific 

 architectures  for  each  task  from  the  ground  up.  This  breakthrough  allowed  them  to 

 surpass  nearly  every  standard  in  NLP  by  a  considerable  margin.  Since  the  debut  of  GPT 

 and  BERT,  a  multitude  of  transformer  models  have  surfaced,  showcasing  a  diverse  range 

 of capabilities. A timeline featuring the most notable entries is depicted in Figure 2-1. 

 Figure 2-1: The Transformers timeline (From Natural Language Processing with Transformers by Leandro 

 von Werra, Lewis Tunstall, and Thomas Wolf). 

 To  understand  what  transformers  bring  to  the  table,  Tunstall  et  al.  provide  an 

 introduction  to  the  core  concepts  underlying  transformers,  starting  with  the 

 encoder-decoder framework. 
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 2.2.1.  The Encoder-Decoder Framework 

 Before  transformers,  recurrent  architectures  such  as  LSTMs  were  the  state  of  the 

 art  in  NLP.  Tunstall  et  al.  (2022)  state  that  these  architectures  contain  a  feedback  loop  in 

 the  network  connections  that  allows  information  to  propagate  from  one  step  to  another, 

 making them ideal for modeling sequential data like text. 

 As  illustrated  on  the  left  side  of  Figure  2-2,  an  RNN  receives  some  input  (a  word  or 

 character),  feeds  it  through  the  network,  and  outputs  a  vector  called  the  hidden  state. 

 The  model  sends  information  back  to  itself  via  the  feedback  loop,  which  it  can  then 

 utilize in the subsequent step. 

 This  becomes  clearer  when  we  "unroll"  the  loop,  as  demonstrated  on  the  right  side  of 

 Figure  2-2:  the  RNN  transfers  information  about  its  state  at  each  step  to  the  following 

 operation  in  the  sequence.  This  enables  an  RNN  to  maintain  a  record  of  information 

 from previous steps and employ it for its output predictions. 

 Figure 2-2: Unrolling an RNN in time. 

 These  architectures  are  still  extensively  utilized  for  NLP  tasks,  speech  processing,  and 

 time series analysis. 

 Typically, the encoder and decoder components can encompass any neural network 

 architecture capable of sequence modeling. This concept is exemplified using a pair of 

 RNNs in Figure 2-3, where the English sentence "Transformers are great!" is encoded 

 into a hidden state vector, which is then decoded to yield the German translation 
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 "Transformer sind grossartig!" Input words are sequentially processed through the 

 encoder, while output words are generated sequentially, top to bottom, by the decoder. 

 Figure 2-3: Simplified encoder-decoder architecture with a pair of RNNs (Adapted from Natural Language 

 Processing with Transformers by Leandro von Werra, Lewis Tunstall, and Thomas Wolf). 

 A  drawback  of  this  architecture  is  that  it  creates  an  information  bottleneck  at  the 

 encoder's  final  hidden  state.  This  single  state  must  encapsulate  the  meaning  of  the  entire 

 input  sequence,  as  it  is  the  only  information  the  decoder  can  access  during  output 

 generation.  This  issue  is  especially  problematic  with  lengthy  sequences,  as  information 

 from  the  beginning  of  the  sequence  may  be  lost  when  compressing  everything  into  a 

 single, fixed representation. 

 Tunstall  et  al.  propose  an  attention  mechanism  that  enables  the  decoder  to  access  all  of 

 the  encoder’s  hidden  states.  They  specify  that  this  mechanism  is  a  cornerstone  of  many 

 modern  neural  network  architectures.  Understanding  the  development  of  attention 

 within  RNNs  lays  the  groundwork  for  comprehending  one  of  the  key  elements  of  the 

 Transformer architecture. 

 2.2.2.  Attention Mechanisms 

 The  main  idea  behind  attention  mechanisms  is  to  give  the  decoder  access  to 

 multiple  hidden  states  generated  by  the  encoder  at  each  step  of  the  input  sequence. 
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 However,  utilizing  all  states  simultaneously  could  overwhelm  the  decoder,  so  a 

 mechanism  is  needed  to  prioritize  them.  Attention  allows  the  decoder  to  assign  di�erent 

 levels  of  importance,  or  "attention,"  to  each  encoder  state  during  each  decoding  step. 

 This  process  is  illustrated  in  Figure  2-4,  which  shows  how  attention  helps  in  predicting 

 the third token in the output sequence. 

 Figure 2-4: Attention Mechanism in Predicting the Third Token (Adapted from Natural Language 

 Processing with Transformers by Leandro von Werra, Lewis Tunstall, and Thomas Wolf). 

 Attention-based  models  focus  on  determining  the  most  relevant  input  tokens  at  each 

 timestep,  facilitating  the  learning  of  complex  alignments  between  words  in  generated 

 translations  and  those  in  the  source  sentence.  For  instance,  Figure  2-5  illustrates 

 attention  weights  in  an  English-to-French  translation  model,  with  each  pixel 

 representing  a  weight.  This  visualization  demonstrates  the  decoder's  ability  to  accurately 

 align words like "zone" and "Area," despite their di�ering order in the two languages. 

 21 



 Figure 2-5: RNN encoder-decoder alignment of words in English and the generated translation in French 

 (credits. Dzmitry Bahdanau). 

 While attention mechanisms significantly improved translation quality, a major 

 drawback persisted with recurrent models for the encoder and decoder: their 

 computations are inherently sequential and cannot be parallelized across the input 

 sequence. Tunstall et al. noted that introducing the transformer model brought a new 

 paradigm by completely abandoning recurrence and relying solely on a specialized form 

 of attention known as self-attention. 

 2.2.3.  Transfer Learning in NLP 

 In  the  years  2017  and  2018,  a  breakthrough  occurred  when  research  groups 

 introduced  new  approaches  that  made  transfer  learning  work  for  NLP.  This 

 advancement  began  with  a  pivotal  insight  from  OpenAI  researchers,  who  achieved 

 notable  performance  in  sentiment  analysis  through  the  utilization  of  features  derived 

 from  unsupervised  pretraining.  Subsequently,  the  ULMFiT  (Universal  Language  Model 
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 Fine-tuning)  method  emerged,  presenting  a  versatile  framework  for  adapting  pre-trained 

 Long Short-Term Memory (LSTM) models to diverse tasks. 

 ULMFiT comprises three principal stages, as depicted in Figure 2-7. 

 Figure 2-7: ULMFiT stages. 

 Tunstall et al. describe the stages as follows: 

 Pretraining:  Initially,  the  model  undergoes  pretraining  wherein  it  learns  to  predict  the 

 subsequent  word  based  on  preceding  words,  a  task  known  as  language  modeling. 

 Remarkably,  this  process  requires  no  labeled  data  and  capitalizes  on  the  vast  amount  of 

 available text, such as that found in Wikipedia. 

 Domain  Adaptation:  Here,  the  focus  shifts  to  adapting  the  model  to  a  specific  domain 

 corpus  (e.g.,  from  Wikipedia  to  IMDb  movie  reviews).  This  phase  still  involves  language 

 modeling but with the objective of predicting the next word within the target corpus. 

 Fine-tuning:  The  final  step  involves  fine-tuning  the  language  model  with  a  classification 

 layer  tailored  to  the  target  task  (e.g.,  sentiment  classification  of  movie  reviews).  This 

 fine-tuning process further refines the model's performance for the specific task at hand. 

 ULMFiT  played  a  pivotal  role  in  advancing  pretraining  and  transfer  learning  within 

 NLP,  filling  a  critical  gap  and  facilitating  the  widespread  adoption  of  transformer 

 models.  In  2018,  the  emergence  of  two  influential  transformer  architectures  marked  a 

 significant milestone in NLP: 

 1.  GPT:  This  transformer  model  exclusively  employs  the  decoder  component  of 

 the  architecture  and  adopts  a  language  modeling  approach  similar  to  ULMFiT.  GPT's 
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 pretraining  was  conducted  on  the  BookCorpus,  a  dataset  comprising  7,000  unpublished 

 books spanning various genres. 

 2.  BERT:  BERT  utilizes  the  encoder  segment  of  the  transformer  architecture  and 

 employs  a  specialized  form  of  language  modeling  known  as  masked  language  modeling. 

 This  approach  involves  predicting  masked  words  within  a  text,  enhancing  contextual 

 understanding.  BERT's  pretraining  utilized  both  the  BookCorpus  and  English  Wikipedia 

 (Devlin et al., 2018). 

 The  release  of  Transformers,  as  noted  by  Tunstall  et  al.,  ushered  in  a  unified  API 

 encompassing  over  50  architectures.  This  library  acted  as  a  catalyst  for  the  surge  in 

 transformer-focused  research  and  quickly  spread  through  the  NLP  community, 

 streamlining the integration of these models into various real-world applications. 

 2.2.4.  The Hugging Face Ecosystem 

 As  highlighted  by  Tunstall  et  al.,  applying  new  machine  learning  architectures  to 

 NLP  tasks  can  be  cumbersome.  Traditionally,  researchers  publish  code  alongside  their 

 work,  but  adapting  this  code  can  be  time-consuming.  HuggingFace  Transformers  o�er  a 

 standardized  interface  for  various  transformer  models,  along  with  tools  to  adapt  them  to 

 new  tasks.  The  library  supports  multiple  frameworks  (PyTorch,  TensorFlow,  etc)  and 

 simplifies  fine-tuning  for  tasks  like  text  classification  and  question  answering.  This 

 significantly  reduces  the  time  and  e�ort  needed  for  training  and  testing  di�erent  models. 

 The  Hugging  Face  ecosystem  comprises  primarily  two  components:  a  suite  of  libraries 

 and  the  Hub,  illustrated  in  Figure  2-8.  The  libraries  o�er  the  necessary  code,  whereas  the 

 Hub  supplies  pre-trained  model  weights,  datasets,  evaluation  metric  scripts,  and 

 additional  resources.  In  this  section,  we  will  provide  a  concise  overview  of  these  di�erent 

 components. 
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 Figure 2-8: The Hugging Face Ecosystem (From Natural Language Processing with Transformers by 

 Leandro von Werra, Lewis Tunstall, and Thomas Wolf). 

 The Hugging Face hub hosts over 600,000 pre-trained models. The integration of 

 pipelines makes loading a wide range of models and experimenting with them very 

 simple, allowing us to focus on the domain-specific parts of the project. 

 Figure 2-9: The Models section of the Hugging Face hub. 
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 2.2.4.1.  Hugging Face Tokenizers 

 Hugging  Face  Tokenizers  library  o�ers  a  plethora  of  tokenization  strategies  and 

 boasts  remarkable  speed  in  text  tokenization,  attributed  to  its  Rust  backend.  Additionally, 

 it  handles  all  preprocessing  and  postprocessing  tasks,  including  input  normalization  and 

 output  transformation  to  the  desired  format.  Similar  to  loading  pre-trained  model 

 weights with Transformers, Tokenizers allow us to e�ortlessly load a tokenizer. 

 2.2.4.2.  Hugging Face Datasets 

 Hugging  Face  datasets  simplifies  the  process  of  loading,  processing,  and  storing  a 

 dataset  by  providing  a  standard  interface  for  thousands  of  datasets  that  can  be  found  on 

 the  Hub.  It  includes  smart  caching  to  avoid  redundant  preprocessing,  while  also 

 overcoming  RAM  limitations  through  memory  mapping.  The  library  seamlessly 

 integrates  with  popular  frameworks  like  Pandas  and  NumPy,  ensuring  compatibility  with 

 familiar data manipulation tools. 

 2.2.4.3.  Hugging Face Accelerate 

 Hugging  Face  Accelerate  adds  a  layer  of  abstraction  to  training  loops  that  takes 

 care  of  all  the  custom  logic  necessary  for  the  training  infrastructure.  This  accelerates  the 

 workflow by simplifying the change of infrastructure when necessary. 

 2.2.5.  Limitations of Transformers 

 Tunstall  et  al.  explain  several  challenges  associated  with  using  Transformers.  One 

 challenge  is  language:  most  NLP  research  focuses  on  English,  making  it  di�cult  to  find 

 pre-trained  models  for  less  common  languages.  Another  issue  is  data  availability;  despite 

 the  use  of  transfer  learning  to  reduce  data  requirements,  models  still  need  significantly 

 more  labeled  data  than  humans  to  perform  the  same  tasks.  Additionally,  while 

 self-attention  is  e�ective  for  short  paragraphs,  it  becomes  costly  when  working  with 

 longer  documents.  The  interpretability  of  Transformers  is  also  a  concern,  as  these 
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 models,  like  other  deep  learning  models,  lack  transparency,  making  it  di�cult  to 

 understand  their  predictions.  Lastly,  bias  is  a  significant  challenge,  as  transformer  models 

 pre-trained  on  internet  text  inherit  biases,  complicating  e�orts  to  ensure  fairness  and 

 inclusivity in their outputs. 

 2.3.  Book Recommendation Systems 

 Book  recommendation  systems  aim  to  provide  tailored  suggestions  to  users, 

 enhancing their experience and facilitating the discovery of new content. 

 In  their  paper,  "Recommendation  System  Development  Based  on  Intelligent  Search,  NLP, 

 and  Machine  Learning  Methods,  "  Balush  et  al.  categorize  recommender  systems  into  three 

 main types: 

 2.3.1.  Collaborative Filtering 

 This  approach  recommends  items  based  on  the  preferences  of  similar  users. 

 Collaborative filtering methods include: 

 ●  User-based:  Recommends  books  based  on  the  preferences  of  users  with  similar 

 tastes. Example: Amazon's "Customers who bought this item also bought" feature. 

 ●  Item-based:  Recommends  books  similar  to  those  the  user  has  previously 

 interacted  with.  Example:  Netflix's  recommendation  system  for  movies  and  TV 

 shows. 

 2.3.2.  Content-based Filtering 

 This  approach  recommends  items  by  analyzing  the  similarity  between  item 

 features  and  user  preferences.  Content-based  methods  examine  attributes  such  as  genre, 

 author, and plot summary. Example: Goodreads' recommendation system. 
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 2.3.3.  Hybrid Methods 

 These  methods  combine  collaborative  filtering  and  content-based  filtering 

 techniques  to  provide  more  accurate  and  diverse  recommendations  by  leveraging  both 

 user  preferences  and  item  attributes.  Example:  Netflix's  hybrid  recommendation  system, 

 which  integrates  collaborative  filtering  with  content  analysis  of  movies  and  user 

 behaviors. 
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 3.  Methodology 
 In  the  Literature  review  section,  we  covered  several  techniques  used  in  NLP  as 

 well  as  di�erent  approaches  that  can  be  implemented  to  build  question-answering  and 

 recommendation systems. 

 The  methodology  section  of  the  thesis  navigates  through  the  development  of  an 

 AI-powered  assistant  tailored  for  readers,  encompassing  an  array  of  techniques  in 

 Natural  Language  Processing  and  methodologies  for  constructing  question-answering 

 and  recommendation  systems.  This  segment  explores  the  entire  project  lifecycle,  from 

 data  collection  to  the  intricate  implementation  of  named  entity  recognition,  information 

 retrieval,  and  question-answering  systems,  and  culminating  in  the  integration  of  a 

 recommendation  mechanism.  The  analysis  traverses  through  the  strategic  maneuvers 

 employed,  the  technical  methodologies  deployed,  the  encountered  challenges,  and 

 potential pathways for enhancements. 

 3.1.  Named Entity Recognition 

 To  develop  a  robust  AI  system  capable  of  e�ectively  addressing  user  queries,  it's 

 paramount  to  train  it  to  accurately  recognize  book  titles.  This  task  requires  attention  to 

 two critical factors: precision and dynamism. 

 As  discussed  previously,  Named  entity  recognition  is  an  NLP  technology  that  empowers 

 systems  to  extract  names  of  individuals,  locations,  organizations,  quantities,  monetary 

 values,  and  percentages,  among  others.  Unfortunately,  “book_title”  is  not  one  of  those 

 entities  that  NER  is  trained  to  detect.  This  calls  for  the  need  to  train  a  custom  NER 

 model that is specialized in book title detection. 

 To  initiate  the  model-building  process,  we  begin  by  compiling  a  diverse  array  of  book 

 titles  that  vary  in  structure  and  format.  These  titles  are  chosen  to  represent  the  broad 

 spectrum  of  formats  found  in  book  titles.  Following  this,  a  dataset  containing  frequently 

 asked  questions  about  books  is  created  and  stored.  Each  question  in  this  dataset  is 
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 designed  to  abstractly  reference  a  specific  book  title,  such  as  "Who  is  the  author  of 

 {title}?", ensuring the questions are adaptable to various titles. 

 Next,  NLP  techniques  are  applied  to  each  collected  book  title.  This  step  ensures  that  the 

 model  can  identify  the  titles  from  contextual  cues  rather  than  relying  solely  on  factors 

 like  capitalization  or  special  formatting.  The  cleaned  title  then  replaces  the  placeholder 

 {title}  in  each  question.  After  applying  all  questions  to  the  collected  book  titles,  an 

 annotated  dataset  is  generated.  This  dataset  maps  annotations  to  each  question, 

 indicating  the  start  and  end  indices  of  the  book  title  referenced  in  every  question.  This 

 annotation  process  enhances  the  model's  ability  to  accurately  identify  and  respond  to 

 inquiries  regarding  various  book  titles,  which  will  later  prove  crucial  for  the  e�ectiveness 

 of our AI assistant. 

 Let us break down the steps involved in training the custom entity recognition model. 

 We  begin  by  importing  the  necessary  libraries,  including  spaCy  and  Hugging  Face's 

 Transformers,  and  load  a  pre-trained  NER  model  based  on  BERT  from  Hugging  Face's 

 Transformers library. 

 The  main  library  used  for  this  task  is  spaCy,  which  stands  out  as  a  leading  open-source 

 toolkit  for  NLP.  With  support  for  over  75  languages  and  84  trained  pipelines  across  25 

 languages,  spaCy  o�ers  a  comprehensive  suite  of  functionalities  for  diverse  NLP  tasks.  It 

 incorporates  multi-task  learning  capabilities  with  pre-trained  transformers  like  BERT, 

 enabling  sophisticated  processing  of  text  data.  Additionally,  spaCy  provides  pre-trained 

 word  vectors  and  boasts  state-of-the-art  speed,  making  it  an  e�cient  choice  for  NLP 

 applications. 

 Furthermore,  spaCy's  production-ready  training  system  facilitates  the  development  of 

 custom  models,  leveraging  linguistically-motivated  tokenization  and  components  for 

 various  tasks  such  as  named  entity  recognition,  part-of-speech  tagging,  dependency 

 parsing,  and  more.  Its  architecture  is  easily  extensible  with  custom  components  and 

 attributes,  supporting  integration  with  frameworks  like  PyTorch  and  TensorFlow.  spaCy 
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 also  o�ers  built-in  visualizers  for  syntax  and  NER,  aiding  in  model  interpretation  and 

 debugging. 

 We  use  our  annotated  data  to  fine-tune  the  pre-trained  spaCy  model,  training  it  to  detect 

 the  BOOK_TITLE  label  in  text.  To  further  enhance  the  training  process,  we  leverage  a 

 transformer  imported  from  Hugging  Face  known  as  DistilBERT.  The  pre-trained  BERT 

 model  serves  as  a  feature  extractor,  enhancing  the  model's  ability  to  capture  contextual 

 information  relevant  to  book  title  recognition.  DistilBERT,  a  distilled  version  of  the 

 BERT  model,  retains  much  of  its  performance  while  being  computationally  more 

 e�cient.  It  achieves  this  by  reducing  the  number  of  parameters  and  employing  various 

 optimization  techniques.  DistilBERT  is  well-suited  for  scenarios  where  computational 

 resources  are  limited,  making  it  an  appropriate  choice  for  training  our  custom  NER 

 model on book titles. 

 Below is a demonstration of the implementation of the custom NER model: 

 User input: 

 “who wrote the lonely polygamist?” 

 Extracted entities from the model: 

 [('the lonely polygamist', 'BOOK_TITLE')] 

 In  this  example,  the  user  is  asking  for  the  author  of  the  book  “The  Lonely  Polygamist”. 

 The  NER  model  successfully  identifies  the  book  title  from  the  query  and  feeds  the 

 information  to  the  API  call.  Subsequently,  data  about  the  book  in  question  is  fetched 

 from the Google Books API to be leveraged for our Question Answering models. 

 3.2.  Data Collection 

 The  data  collection  stage  involved  two  di�erent  stages.  The  first  one  being  the 

 curation  of  a  bestseller  dataset  to  collect  book  titles  that  would  later  be  used  to  build  the 
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 named  entity  recognition  models  in  order  to  accurately  identify  and  classify  book  titles 

 within  queries.  The  second  and  main  data  collection  stage  aims  to  enable  the 

 development  and  real-time  implementation  of  the  question-answering  and  information 

 retrieval  system  by  leveraging  data  from  the  Google  Books  API  both  for  training  and 

 testing the Information Retrieval models. 

 The  new  Google  Books  API  o�ers  programmatic  access  to  a  myriad  of  operations 

 available  on  the  Google  Books  website,  enabling  developers  to  create  robust  applications 

 with  deeper  integration.  Key  features  include  search  and  browse  functionality  to  explore 

 books  matching  specific  queries,  access  to  detailed  book  information  such  as  metadata, 

 availability, price, and preview links, and the management of personalized bookshelves. 

 To  collect  information  about  a  specific  book,  we  send  a  request  to  the  Google  Books  API 

 including the book title provided by the user: 

 h�ps://www.googleapis.com/books/v1/volumes?q=intitle:{title}&langRestrict=en&orderBy=relevance&printType=books 

 We  use  the  “intitle”  parameter  to  make  sure  the  API  only  returns  results  where  the  title 

 provided by the user is found in the book title returned by the API. 

 We  also  restrict  the  API  to  only  return  results  in  the  English  language  by  assigning  the 

 value “en” to the  “langRestrict”  parameter. 

 The  “orderBy”  parameter  is  used  to  order  the  results  by  relevance  so  we  can  guarantee 

 receiving the most relevant books to the user’s query. 

 The  “printType”  parameter  ensures  the  results  contain  only  books  as  opposed  to  other 

 types of prints like magazines. 

 We  may  also  specify  the  maximum  number  of  results  to  return  by  using  the 

 “maxResults”  parameter. 

 Retrieving  volume  information  from  the  Google  Books  API  does  not  require 

 authentication, so we do not have to provide an API key when sending a request. 

 Since  the  data  collection  process  is  dynamic,  meaning  that  it  depends  on  users'  queries, 

 we  will  not  be  storing  data  locally,  hence  the  non-explicit  specification  of  the  scale  of 
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 data  collection.  This  allows  us  to  be  scalable  but  most  importantly  it  does  not  limit  the 

 amount of data available to the AI. 

 The  Google  Books  API  o�ers  access  to  an  extensive  repository  of  literary  works,  serving 

 as  a  rich  source  of  textual  data.  The  data  retrieved  from  the  API  is  formatted  as  a  JSON 

 containing  a  list  of  dictionaries  with  key-value  pairs  that  vary  for  each  book.  Typically, 

 the  returned  data  includes,  but  is  not  limited  to,  the  book's  title,  author,  description, 

 publisher, publication date, edition, page count, and text snippets. 

 3.3.  Information Retrieval-based Question-Answering 

 We  previously  went  over  the  various  approaches  for  building  question-answering 

 systems.  The  data  fetched  from  the  API  provides  a  solid  ground  for  the  implementation 

 of  an  information  retrieval  system  where  answers  to  user  queries  are  extracted  from  the 

 fetched data corpus. 

 The  first  thing  we’ll  need  for  our  QA  system  is  to  find  a  way  to  identify  a  potential 

 answer  as  a  span  of  text  in  a  JSON  text.  For  example,  if  we  have  a  question  like  “Who 

 wrote  To  Kill  a  Mockingbird?”  and  the  returned  textual  data  contains  “Voted  America's 

 Best-Loved  Novel  in  PBS's  The  Great  American  Read  Harper  Lee's  Pulitzer 

 Prize-winning  masterwork…”  or  simply  "authors":  ["Harper  Lee"],  then  the  model  should 

 output “Harper Lee”. To do this we’ll need to understand how to: 

 ●  Frame the supervised learning problem. 

 ●  Tokenize and encode text for QA tasks. 

 ●  Deal with long passages that exceed a model’s maximum context size. 

 Let’s start by taking a look at how to frame the problem. 

 The  most  common  way  to  extract  answers  from  text  is  by  framing  the  problem  as  a  span 

 classification  task,  where  the  start  and  end  tokens  of  an  answer  span  act  as  the  labels  that 

 a model needs to predict. This process is illustrated in the figure 3-1. 
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 Figure 3-1:  Span classification head for QA tasks (From Natural Language Processing with Transformers 

 by Leandro von Werra, Lewis Tunstall, and Thomas Wolf). 

 Given  the  scale  of  this  project,  a  good  strategy  is  to  start  with  a  language  model  that  has 

 already  been  fine-tuned  on  a  large-scale  QA  dataset  like  WikiAnswers,  SQuAD,  and 

 GOOAQ.  In  general,  these  models  have  strong  reading  comprehension  capabilities  and 

 serve as a good baseline upon which to build a more accurate system. 

 The  choice  of  the  QA  model  depends  on  various  factors  like  whether  the  corpus  is  mono 

 or multilingual and the constraints of running the model in a production environment. 
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 Figure 3-2: Performance of SentenceTransformers models on Sentence Embedding and Semantic Search 

 (Source: https://www.sbert.net/docs/pretrained_models.html). 

 For  the  thesis,  we  use  a  fine-tuned  SentenceTransformers  model  designed  for  semantic 

 search.  The  all-*  models  were  trained  on  all  available  training  data  (more  than  1  billion 

 training  pairs)  and  are  designed  as  general-purpose  models.  While  the 

 "all-mpnet-base-v2"  model  boasts  the  highest  performance,  we  prioritize  speed  for  our 

 project.  Therefore,  we've  opted  for  the  "all-MiniLM-L6-v2"  model,  which  o�ers  a 

 compelling balance between speed (being 5 times faster) and performance. 

 3.3.1.  Extractive QA with Haystack 

 Haystack  is  a  complete  framework  for  creating  robust  Pipelines  using  Large 

 Language  Models  for  various  search  purposes.  Whether  it's  retrieval-augmented 

 generation  (RAG),  question  answering,  or  semantic  document  search,  Haystack  utilizes 

 cutting-edge  LLMs  and  NLP  models  to  o�er  tailored  search  experiences,  enabling  users 

 to query in natural language. 

 Its  modularity  allows  us  to  combine  powerful  technologies  from  OpenAI,  Chroma,  and 

 other open-source projects, like Hugging Face's Transformers. 
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 We  leverage  Haystack  2.0,  a  significant  upgrade  that  redesigns  various  components, 

 including  Document  Stores  and  Pipelines.  Unlike  its  predecessor,  Haystack  1.x,  where 

 pipelines  were  constructed  by  sequentially  adding  nodes,  in  Haystack  2.0,  this  process 

 undergoes  a  two-step  evolution.  Initially,  components  are  added  to  the  pipeline  without 

 any  predetermined  order  using  the  add_component  method.  Then,  to  establish  the  final 

 graph,  these  components  must  be  explicitly  connected  through  the  connect  method. 

 The  Pipeline  concept  is  a  fundamental  requirement  and  an  optimal  fit  for  building 

 applications  with  LLMs,  which  is  why  Pipelines  and  Components  are  still  the 

 foundation of Haystack 2.0. 

 In  practice,  users  typically  ask  questions  about  books,  so  we  need  some  way  of  selecting 

 relevant  passages  from  all  the  book  info  we  gather.  One  approach  is  to  fetch  all  the 

 responses  from  the  Google  Books  API  for  a  query  and  feed  them  to  the  model  as  one 

 long  context.  But  this  can  slow  things  down  a  lot  and  introduce  an  unacceptable  latency 

 for  our  users’  queries.  As  an  example,  let’s  suppose  that  on  average,  each  book  query 

 returns  50  results  in  Google  Books  and  each  result  takes  100  milliseconds  to  process.  If  we 

 need  to  process  all  the  reviews  to  get  an  answer,  this  would  result  in  an  average  latency 

 of  5  seconds  per  query—much  too  long  for  a  chatbot  interaction!  Let  us  look  at  how  to 

 handle this by dissecting Haystack components. 

 3.3.1.1.  Haystack Components 

 Haystack  o�ers  various  components,  each  performing  di�erent  kinds  of  tasks. 

 These are often powered by the latest LLMs and transformer models. 

 3.3.1.2.  Document Store 

 The  Document  Store  is  like  a  container  for  documents  in  Haystack.  While  it’s  not 

 actually  considered  a  component  as  it  doesn’t  have  the  run()  method  used  in  all  Haystack 

 components,  it's  more  like  an  interface  to  our  database  where  we  can  store  information 
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 and  search  through  it.  So,  it's  not  a  part  of  the  Pipeline;  rather,  it's  a  tool  that 

 components within the pipeline can use and interact with. 

 Choosing  the  right  document  store  is  a  crucial  step  because  it  determines  where  we  store 

 the  information  we  fetch  from  the  API.  The  table  below  provides  a  quick  summary  of 

 di�erent Document Stores available in Haystack. 

 Figure 3-3: Haystack 2.0 Document stores. 

 After  exploring  di�erent  options,  the  in-memory  document  store  makes  the  most  sense 

 to  use.  Given  that  we’ll  be  storing  information  about  the  book  queried  by  the  user  in  real 

 time,  we  are  looking  for  a  fast  and  minimalistic  option  that  doesn’t  use  up  a  lot  of 

 resources.  Haystack  ships  with  an  ephemeral  document  store  that  relies  on  pure  Python 

 data  structures  stored  in  memory,  so  it  doesn’t  fall  into  any  of  the  vector  database 

 categories  above.  This  special  Document  Store  is  ideal  for  creating  quick  prototypes  with 

 small  datasets.  It  doesn’t  require  any  special  setup,  and  it  can  be  used  right  away  without 

 installing additional dependencies. 

 3.3.1.3.  Embedders 

 The  embeddings  generated  by  Haystack  embedders  consist  of  fixed-length 

 vectors.  They  encapsulate  contextual  information  and  semantic  connections  within  the 

 text.  The  main  aim  of  these  embeddings  is  to  convert  text  into  a  format  that  enables  the 
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 language  model  to  comprehend  and  analyze  it  with  greater  nuance  and  contextual 

 awareness. 

 We  use  “SentenceTransformersTextEmbedder”  for  query  embedding  and 

 “SentenceTransformersDocumentEmbedder”  to  embed  a  list  of  documents  with  a 

 Sentence Transformer model. 

 3.3.1.4.  Retrievers 

 Retrievers  are  in  charge  of  finding  relevant  documents  for  a  given  query.  They 

 come  in  two  types:  sparse  and  dense.  Sparse  retrievers  use  word  frequencies  to  represent 

 documents  and  queries  as  sparse  vectors.  Relevance  is  determined  by  calculating  the 

 inner  product  of  these  vectors.  Dense  retrievers,  however,  use  encoders  like  transformers 

 to  represent  the  query  and  document  as  contextualized  embeddings  (which  are  dense 

 vectors).  This  allows  them  to  understand  query  content  better  and  improve  search 

 accuracy (Zhao et al., 2022). 

 Retrievers  go  through  all  the  Documents  in  a  Document  Store,  select  the  ones  that 

 match  the  user  query,  and  pass  it  on  to  the  next  component.  Various  Retrievers  are 

 customized  for  specific  Document  Stores.  For  our  AI  assistant,  we  used  The 

 InMemoryEmbeddingRetriever,  an  embedding-based  Retriever  compatible  with  the 

 InMemoryDocumentStore.  It  compares  the  query  and  Document  embeddings  and 

 fetches  the  Documents  most  relevant  to  the  query  from  the  InMemoryDocumentStore 

 based on the outcome. 

 3.3.1.5.  Readers 

 Readers  extract  answers  from  the  documents  retrieved  by  the  retriever.  They're 

 typically  reading  comprehension  models,  though  some  models  can  generate  free-form 

 answers.  They  evaluate  answers  by  assigning  them  a  probability  score  ranging  from  0  to 

 1,  indicating  how  closely  they  match  the  query.  A  score  closer  to  1  signifies  higher 

 confidence  in  the  answer's  relevance.  Answers  are  then  sorted  based  on  these  probability 
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 scores,  with  the  highest  probabilities  listed  first.  Optionally,  you  can  specify  the 

 maximum number of answers returned by the Reader using the top_k parameter. 

 We  can  use  these  probability  scores  to  establish  quality  standards  for  our  system.  By 

 adjusting  the  confidence_score  parameter  of  the  Reader,  we  can  set  a  probability 

 threshold  for  answers.  For  instance,  setting  confidence_threshold  to  0.6  ensures  that  only 

 answers with probabilities greater than 0.6 are considered. 

 Figure  3-4  demonstrates  how  additional  components  can  perform  post-processing  on  the 

 documents  retrieved  by  the  retriever  or  the  answers  extracted  by  the  reader.  For  instance, 

 retrieved  documents  might  require  reranking  to  remove  noisy  or  irrelevant  ones,  which 

 could  otherwise  confuse  the  reader.  Likewise,  post-processing  of  the  reader's  answers  is 

 often necessary when the correct answer spans multiple passages in a lengthy document. 

 Figure 3-4: The retriever-reader architecture for modern QA systems (Adaprted from Natural Language 

 Processing with Transformers by Leandro von Werra, Lewis Tunstall, and Thomas Wolf). 

 3.3.1.6.  Generators 

 Generators  produce  text  responses  based  on  prompts  provided  to  them.  They  are 

 tailored  for  each  LLM  technology,  such  as  OpenAI,  Cohere,  local  models,  and  others. 

 Generators come in two types: chat and non-chat. 

 Chat  generators  are  geared  towards  conversational  interactions,  allowing  for  chat 

 completion. They work with a list of messages to engage with the user. 
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 Non-chat  generators  use  LLMs  for  simpler  text  generation  tasks,  such  as  translation  or 

 summarization. 

 3.3.1.7.  Pipelines 

 Pipelines  allow  us  to  integrate  various  components,  Document  Stores,  and 

 integrations,  creating  robust  and  customized  systems.  They  o�er  great  flexibility, 

 enabling simultaneous flows, standalone components, loops, and diverse connections. 

 The  diagram  illustrated  in  Figure  3-5  provides  a  comprehensive  summary  of  the 

 information retrieval process. 

 Figure 3-5: Overview of the Haystack information retrieval process. 
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 3.4.  Book Recommendation System 

 Integrating  a  recommender  system  into  the  chatbot  project  stems  from  the  initial 

 motive  of  creating  an  AI  assistant  that  mimics  a  librarian.  The  goal  is  to  suggest  books 

 similar  to  what  users  like,  whether  by  recommending  a  list  based  on  a  single  title 

 provided  by  a  user  or  by  browsing  their  personal  library.  The  recommender  engine 

 adopts  the  content-based  filtering  approach,  utilizing  the  content  or  attributes  of  the 

 item  and  a  notion  of  similarity  to  generate  similar  items  with  respect  to  the  given  item. 

 Two  methods  have  been  adopted  for  building  the  book  recommender:  one  leveraging 

 cosine similarity and the other based on a Hugging Face transformer. 

 3.4.1.  Cosine Similarity Approach 

 Cosine  similarity  quantifies  the  similarity  between  two  non-zero  vectors  in  an 

 inner  product  space  by  measuring  the  cosine  of  the  angle  between  them.  It  equals  1 

 when the angle is 0° and decreases for any other angle, never exceeding 1. 

 𝑐𝑜𝑠 (θ) =  𝑖 = 1 
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 Figure 3-5: Cosine Similarity 

 Example: Let us assume A = [2, 1, 0, 1, 0, 1, 1, 2], B = [2, 1, 1, 1, 1, 0, 1, 2] are the two vectors 

 and we would like to calculate the cosine similarity: 

 𝑖 = 1 

 𝑛 

∑  𝐴 
 𝑖 
 𝐵 

 𝑖 
= (( 2 ×  2 ) + ( 1 ×  1 ) + ( 0 ×  1 ) + ( 1 ×  1 ) + ( 0 ×  1 ) + ( 1 ×  0 ) + ( 1 ×  1 ) + ( 2 ×  2 )) =  11 

 𝑖 = 1 

 𝑛 

∑  𝐴 
 𝑖 
 2 = ( 2² +  1² +  0² +  1² +  0² +  1² +  1² +  2² ) =  3 .  46 

 𝑖 = 1 

 𝑛 

∑  𝐵 
 𝑖 
 2 = ( 2² +  1² +  1² +  1² +  1² +  0² +  1² +  2² ) =  3 .  60 

 𝐶𝑜𝑠𝑖𝑛𝑒  𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 :     𝑐𝑜𝑠 (θ) =  11 
 3 . 46 ∗ 3 . 60 =  0 .  88 

 A  value  of  0.88  signifies  significant  similarity  between  the  two  vectors,  nearing  the 

 highest  possible  score  of  1.  When  computing  similarities  between  books,  cosine  similarity 

 is  applied  to  their  TF-IDF  vectors.  These  vectors  are  then  arranged  in  descending  order 

 based  on  their  cosine  similarity  scores,  e�ectively  organizing  all  other  items  by  their 

 proximity to the vector under comparison. 
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 Breaking down the process: 

 The  TF-IDF  matrix,  essential  for  analyzing  textual  content,  is  computed  for  all 

 book  data  collected  from  the  API.  TF-IDF,  a  statistical  measure  covered  in  the  Literature 

 Review,  evaluates  the  significance  of  words  within  a  document  concerning  a  broader 

 collection  (corpus)  of  documents.  Leveraging  the  TfidfVectorizer  tool  from  scikit-learn, 

 this matrix translates textual attributes into a numerical format. 

 To  ensure  consistency  and  accuracy  in  analysis,  text  preprocessing  is  employed  before 

 generating  the  TF-IDF  matrix.  This  preprocessing  step  encompasses  various  techniques 

 such  as  tokenization,  lowercasing,  punctuation  removal,  stopword  elimination,  and 

 lemmatization.  By  standardizing  the  textual  data,  the  recommender  system  optimizes  its 

 ability to detect similarities e�ectively. 

 Once  the  TF-IDF  matrices  for  both  the  fetched  book  and  the  collected  data  are  prepared, 

 cosine  similarity  is  computed  between  their  respective  TF-IDF  vectors.  Cosine  similarity 

 measures  the  cosine  of  the  angle  between  two  vectors,  providing  a  quantifiable  metric  for 

 their textual resemblance. 

 Based  on  the  computed  cosine  similarity  scores,  the  system  identifies  the  indices  of 

 books  most  akin  to  the  fetched  book.  These  indices  serve  as  a  reference  to  extract  similar 

 books  from  the  DataFrame,  allowing  the  system  to  compile  a  curated  list  of 

 recommendations closely aligned with the user's preferences. 

 3.4.2.  Transformer-based Approach 

 The  second  approach  to  calculating  similarity  between  books  involves  using  a 

 Hugging  Face  transformer  model,  which  maps  returned  contexts  from  the  API  into  a 

 high-dimensional  vector  space.  This  approach  is  the  principal  method  adopted  for  our 

 recommendation  engine  due  to  its  superior  ability  to  capture  semantic  relationships 

 between collected book data. 
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 We  leverage  the  pre-trained  transformer  model  "all-MiniLM-L6-v2,"  which  we  also 

 employed  for  the  Question  Answering  model.  This  model  is  part  of  the  MiniLM  family, 

 designed  to  provide  e�cient  and  e�ective  embeddings  while  maintaining  a  small 

 footprint suitable for practical applications. 

 The  book  descriptions  are  fed  into  the  all-MiniLM-L6-v2  model,  which  converts  each 

 description  into  a  dense  vector  representation  (embedding).  These  embeddings  capture 

 rich semantic information by considering the context in which words appear. 

 The  transformer  model  employs  a  self-attention  mechanism,  which  enables  it  to  weigh 

 the  importance  of  di�erent  words  in  a  sentence  relative  to  one  another,  capturing 

 relationships  and  dependencies  that  traditional  vectorization  methods  (like  TF-IDF) 

 might miss. 

 After  obtaining  the  embeddings  for  all  book  descriptions,  we  calculate  the  cosine 

 similarity  between  the  embedding  of  a  reference  book  and  the  embeddings  of  other 

 books in the dataset. 

 Unlike  traditional  vectorization  methods,  transformer  embeddings  can  understand  the 

 context  in  which  words  are  used,  making  them  adept  at  capturing  the  nuances  of 

 language.  For  example,  the  model  can  di�erentiate  between  polysemous  words  (words 

 with multiple meanings) based on the surrounding text (Ethayarajh, 2019). 

 The  embeddings  produced  by  the  transformer  model  are  dense  and  continuous, 

 e�ectively  encoding  semantic  relationships.  This  results  in  more  accurate  similarity 

 measurements,  as  books  with  similar  themes,  genres,  or  topics  will  have  closer 

 embeddings in the vector space. 

 The  transformer  model  is  pre-trained  on  a  large  and  diverse  corpus,  allowing  it  to 

 generalize  well  across  di�erent  types  of  text.  This  enables  it  to  leverage  a  vast  amount  of 

 linguistic knowledge when generating embeddings. 

 Using  the  transformer-based  approach,  we  expect  a  notable  improvement  in  the  quality 

 of  recommendations  compared  to  the  traditional  cosine  similarity  method,  given  the 

 model's ability to capture deeper semantic connections between book descriptions. 
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 4.  Implementation 
 In  this  section,  a  demonstration  of  the  beta  version  of  the  AI  is  given  covering  a 

 practical representation of the features and technologies described in the methodology. 

 4.1.  Demonstration of the AI assistant 

 We  start  with  a  quick  introduction  to  Gradio  -  a  tool  that’s  been  rising  in 

 popularity  for  its  ease  of  use  in  building  interactive  interfaces  for  machine  learning 

 models.  Gradio  enables  developers  to  create  intuitive  user  interfaces  that  allow  users  to 

 interact  with  AI  models  through  web  browsers,  enabling  seamless  experimentation  and 

 showcasing  of  AI  capabilities.  ChatInterface  is  Gradio's  high-level  abstraction  for 

 creating  chatbot  UIs,  and  allows  us  to  create  a  web-based  demo  around  a  chatbot  model 

 in a few lines of code. 

 As  mentioned  before,  the  data  fetched  from  the  API  is  stored  in  a  context  that’s 

 forwarded  to  a  document  store.  To  achieve  a  better  user  experience  and  faster  runtimes, 

 the  AI  is  built  to  persist  the  context  whilst  the  kernel  is  running.  If  the  user’s  queries 

 switch  to  a  di�erent  book,  the  AI  is  able  to  recognize  that  and  act  accordingly.  Similarly, 

 if  the  user  keeps  asking  questions  about  the  same  book  the  AI  retrieves  the  answers  from 

 the same context. 

 The  AI  is  also  capable  of  persisting  context  to  carry  out  a  conversation  about  the  same 

 book without the need to repeatedly mention the book of interest. 

 Figure  4-1  illustrates  the  chat  interface  and  demonstrates  the  AI's  ability  to  dynamically 

 adapt to context changes. 
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 Figure 4-1: Demonstration of the chatbot. 

 4.1.1.  Integrated Recommendation System 

 In  order  to  make  use  of  the  built-in  recommendation  system,  users  simply  input  a 

 book  title.  The  recommender  tool  outputs  a  curated  list  of  10  similar  books  ordered  by 

 their  cosine  similarity  scores.  Here  is  an  overview  of  how  the  recommendation  tool 

 works: 
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 Input:  When  a  user  enters  a  book  title,  the  tool  queries  the  Google  Books  API  to  retrieve 

 pertinent  details.  These  include  the  book's  title,  author,  and  description,  all  of  which  are 

 preprocessed for enhanced e�ciency and model performance. 

 Embeddings  Generation:  Pre-trained  sentence  transformer  models  are  employed  to 

 generate  semantic  embeddings  for  the  queried  book.  This  process  encapsulates  the 

 book's essence in a mathematical representation. 

 Similarity  Computation:  Utilizing  cosine  similarity,  the  tool  calculates  the  resemblance 

 between  the  embeddings  of  the  queried  book  and  the  existing  dataset.  This  step 

 determines  the  closeness  in  meaning  between  the  queried  book  and  others  in  the 

 collection. 

 Ranking  and  Output:  The  books  in  the  dataset  are  then  ranked  based  on  their  cosine 

 similarity  to  the  queried  book,  and  the  top  10  most  similar  books  are  presented  to  the 

 user. 

 The integrated recommendation engine is illustrated in Figure 4-2. 

 Figure 4-2. The integrated recommendation engine. 
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 4.1.2.  Model Evaluation 

 To  evaluate  both  the  NER  and  question-answering  models,  Haystack  o�ers  tools 

 to  assess  entire  pipelines  or  individual  components  like  Retrievers,  Readers,  or 

 Generators.  In  this  case,  we  are  interested  in  evaluating  the  NER  model’s  capacity  in 

 detecting  book  titles  from  queries  as  well  as  the  question-answering  model’s  accuracy  in 

 fetching the right information. 

 One  of  Haystack’s  Evaluation  models,  the  "SASEvaluator"  (Semantic  Answer  Evaluator), 

 is  used  to  evaluate  answers  predicted  by  Haystack  pipelines.  This  evaluation  involves 

 checking  the  semantic  similarity  between  a  predicted  answer  and  the  ground  truth 

 answer using a fine-tuned language model. 

 Let’s  go  over  the  evaluation  process  of  the  Named  Entity  Recognition  model.  We  begin 

 by  generating  queries  for  100  random  book  titles  and  we  compare  the  extracted  titles 

 obtained  using  the  custom  NER  to  the  actual  book  titles.  Additionally,  to  better 

 understand  the  performance  of  our  NER  model  specifically  built  for  detecting  books,  we 

 run  the  same  evaluation  experiment  using  a  baseline  NER  model  pre-trained  for 

 extracting  general  entities  instead  of  book  titles.  This  comparison  will  provide  a  clearer 

 perspective  on  how  well  our  custom  model  performs  relative  to  a  general-purpose  entity 

 recognition model. 
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 The table below presents the evaluation results for both models. 

 Custom NER model trained 
 for book detec�on  Baseline NER Model 

 Features 

 Pre-trained  ✔  ✔ 

 En�ty 
 recogni�on  ✔  ✔ 

 Fine-tuned on 
 book labels  ✔  ✘ 

 Performance 

 Accuracy  0.98  0.05 

 F1 Score  0.96  0.03 

 Seman�c 
 evalua�on score  0.96  0.533 

 The  performance  metrics  reveal  a  strong  contrast  between  the  two  models.  Our  custom 

 NER  model  achieves  an  impressive  accuracy  of  0.98  and  an  F1  Score  of  0.96,  reflecting  its 

 high  precision  and  recall  in  identifying  book  titles.  In  contrast,  the  baseline  model  scores 

 a  mere  0.05  in  accuracy  and  0.03  in  F1  Score,  indicating  poor  performance.  Additionally, 

 the  custom  model's  semantic  evaluation  score  of  0.96  demonstrates  a  strong 

 understanding  of  the  context  and  meaning  of  book  titles,  whereas  the  baseline  model 

 scores  only  0.533.  This  significant  disparity  underscores  the  e�ectiveness  of 

 domain-specific  fine-tuning,  as  the  custom  NER  model  consistently  outperforms  the 

 baseline model across all metrics. 

 The  question-answering  model,  on  the  other  hand,  is  assessed  by  generating  questions 

 about  random  books  and  comparing  the  chatbot’s  answers  to  the  ground-truth  values 

 that  are  structurally  extracted  from  the  key-value  pairs  found  in  the  API  response.  The 

 QA model demonstrated a semantic evaluation score of 81.56% during testing. 

 Evidently,  deployment  of  the  AI  will  provide  room  for  more  extensive  testing  which 

 eventually contributes to further performance improvements. 
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 4.1.3.  Evaluation of the Recommendation Engines. 

 To  evaluate  the  recommendation  engine,  we  compare  the  Transformer-based 

 approach with the traditional Cosine Similarity approach. 

 The  system  calculates  the  similarity  between  each  reference  book’s  description  and  all 

 descriptions  available  in  our  dataset.  For  each  reference  book,  the  10  books  with  the 

 highest  similarity  scores  are  added  to  a  dataframe.  This  process  is  repeated  for  all  10 

 reference books, resulting in a final dataframe containing 100 recommendations. 

 Once  the  recommendations  are  collected,  we  evaluate  and  compare  both  approaches 

 based  on  two  main  metrics:  the  similarity  score  and  a  generated  relevance  score  that 

 measures how relevant the recommended books are to the reference books. 

 To  obtain  the  relevance  score,  we  implement  a  feature  extraction  transformer  model 

 called  “distilbert-base-uncased”  to  extract  the  10  most  important  keywords  for  all  the 

 books  in  our  evaluation  dataframe.  We  then  examine  the  author  and  genre  for  each 

 recommended book and compare them against their corresponding reference book. 

 A recommendation is deemed “relevant” if one of the following conditions are met: 

 ●  The similarity score of the recommendation is higher than or equal to 0.5 (50%). 

 ●  There  is  a  presence  of  common  keywords  between  the  reference  book  and  the 

 recommendation. 

 ●  The author of the recommended book is also the author of the reference book. 

 ●  The recommendation and the reference book share the same genre. 

 The  relevance  score  is  then  obtained  by  computing  the  ratio  of  relevant 

 recommendations in the dataframe. 

 A  snapshot  is  provided  in  the  following  table  depicting  the  results  of  running  both 

 recommendation engines on an example reference book (“1984”). 
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 Reference 
 Book  Recommenda�on  Similarity Score  Relevance 

 “1984” 

 Tradi�onal 
 Cosine 

 Similarity 
 Transformer 

 Tradi�onal 
 Cosine 

 Similarity 
 Transformer 

 Tradi�onal 
 Cosine 

 Similarity 
 Transformer 

 On Nineteen 
 Eighty-Four 

 On Nineteen 
 Eighty-Four  28%  70%  False  True 

 Nothing to Envy  The Heart of the 
 Ma�er  10%  43%  False  True 

 Brave New 
 World 

 The Seventh 
 Cross  9%  43%  True  True 

 You Can't Go 
 Home Again  SS-GB  9%  41%  True  True 

 The Talisman  The Marriage 
 Plot  8%  41%  True  True 

 Betrayal in the 
 City  Nothing to Envy  8%  40%  False  False 

 World at Risk  The Spy Story  7%  40%  False  False 

 The Stars Look 
 Down 

 You Can't Go 
 Home Again  7%  40%  True  True 

 The Testaments  Notes of a 
 Na�ve Son  7%  40%  True  True 

 Tenth of 
 December  A Column of Fire  7%  39%  True  True 

 Average  10%  44%  60%  80% 

 In  this  example  snapshot,  the  Transformer  model  consistently  produces  higher  similarity 

 scores,  with  an  average  of  44%,  compared  to  the  Cosine  Similarity  approach's  average  of 

 10%.  In  terms  of  relevance,  the  Transformer  model  achieves  an  80%  relevance  rate, 

 indicating  that  8  out  of  10  recommendations  meet  the  relevance  criteria.  This  pattern  of 

 higher  similarity  and  relevance  scores  is  consistent  across  most  recommendations, 

 illustrating the superior performance of the Transformer-based model. 
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 The  following  table  provides  a  comprehensive  comparative  evaluation  for  the  two 

 recommendation approaches tested on 10 di�erent reference books. 

 Tradi�onal Cosine Similarity 
 Approach  Transformer Based Approach 

 Average Similarity Score  11%  44% 

 Recommenda�on Relevance Score  49%  68% 

 Overlapping Recommenda�ons  15% 

 We  can  clearly  see  that  by  using  the  transformer-based  approach,  we  had  a  notable 

 improvement  in  the  quality  of  recommendations.  The  similarity  scores  obtained  are 

 significantly  higher  compared  to  the  traditional  cosine  similarity  method,  reflecting  the 

 model's  ability  to  capture  deeper  semantic  connections  between  book  descriptions.  This 

 results  in  a  recommendation  engine  that  is  more  e�ective  at  identifying  books  with 

 similar  content,  themes,  and  styles,  thereby  providing  users  with  more  relevant  and 

 satisfying suggestions. 

 The  integration  of  the  “  all-MiniLM-L6-v2”  transformer  model  into  our  recommendation 

 system  represents  a  substantial  advancement  over  traditional  methods.  By  leveraging  the 

 model's  advanced  text  representation  capabilities,  we  achieve  a  more  accurate  and 

 contextually  aware  similarity  assessment,  enhancing  the  overall  performance  of  the  AI 

 with better book recommendations. 
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 5.  Conclusions 
 This  thesis  demonstrated  the  e�ectiveness  of  consolidating  new  technologies  in 

 building  state-of-the-art  AI  systems.  By  leveraging  advanced  NLP  techniques,  such  as 

 Haystack  2.0,  Hugging  Face  transformers,  and  Named  Entity  Recognition,  we 

 successfully  developed  an  information  retrieval-based  question-answering  system 

 integrated  with  a  book  recommendation  engine.  This  approach  not  only  showcased  the 

 capabilities  of  modern  AI  frameworks  but  also  highlighted  the  synergy  achieved  through 

 their integration. 

 The primary contributions of this work include: 

 1.  Development  of  an  Intelligent  QA  System:  By  integrating  information  retrieval 

 techniques  with  modern  NLP  frameworks,  we  built  a  chatbot  capable  of  understanding 

 and  responding  to  user  queries  about  books.  The  system  utilizes  the  Google  Books  API 

 to  collect  relevant  information,  ensuring  the  responses  are  up-to-date  and 

 comprehensive. 

 2.  Implementation  of  NER  for  Query  Understanding:  The  adoption  of  NER 

 played  a  crucial  role  in  extracting  book  titles  from  user  queries.  This  step  was  vital  for 

 the  accurate  retrieval  of  information  and  recommendations.  Despite  the  challenges  in 

 implementing  NER,  such  as  handling  ambiguous  and  complex  queries,  the  system 

 demonstrated robust performance in identifying relevant entities. 

 3.  Incorporation  of  a  Recommendation  Engine:  Alongside  the  QA  capabilities,  a 

 recommendation  system  was  integrated  to  recommend  books  based  on  their  similarity  to 

 other  titles.  By  employing  pre-trained  transformers  from  HuggingFace,  the  system  could 

 o�er  personalized  and  contextually  relevant  book  recommendations  that  perform 

 significantly better than traditional methods. 
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 5.1.  Key Findings 

 Comprehensive  Coverage  of  AI  Technologies:  Through  detailed  exploration,  this 

 thesis  provided  a  comprehensive  understanding  of  various  technologies  and  frameworks 

 pervasive  for  building  AI  systems.  Concepts  such  as  Transformers,  which  revolutionize 

 natural  language  processing  tasks,  were  unveiled,  along  with  insights  into  the  Hugging 

 Face  ecosystem,  showcasing  its  pivotal  role  in  facilitating  NLP  model  development  and 

 deployment.  Similarly,  by  examining  the  modular  components  and  methodologies 

 within  Haystack  2.0,  we  gained  valuable  insights  into  its  architecture  and  its  applicability 

 in constructing robust and scalable AI systems. 

 Accuracy  and  Performance:  The  system  showed  a  high  degree  of  accuracy  in  extracting 

 book  titles  and  retrieving  relevant  information.  The  use  of  transformers  and  advanced 

 embedding  techniques  significantly  enhanced  the  precision  of  responses.  Similarly, 

 leveraging  transformers  to  build  the  recommendation  system  demonstrated  huge 

 improvements compared to traditional methods. 

 Scalability  and  Flexibility:  The  modular  design  of  the  system,  particularly  the  use  of 

 Haystack  2.0  components,  ensures  scalability  and  flexibility.  This  allows  for  easy  updates 

 and  enhancements,  making  the  system  adaptable  to  evolving  needs  and  technological 

 advancements. 

 5.2.  Technical challenges and future improvements 

 Limitation of computational power and resources: 

 Developing  AI  systems  faces  significant  constraints,  particularly  in  accessing  high 

 computing  resources  necessary  for  working  with  large-scale  data.  Limited  access  to 

 high-performance  computing  infrastructure  hampers  the  ability  to  process  vast  datasets 
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 e�ciently,  hindering  the  AI's  capability  to  learn  from  diverse  and  extensive  information 

 sources. 

 Incorporating  LLMs  such  as  OpenAI’s  GPT  can  significantly  enhance  chatbot 

 responses,  fostering  more  natural  conversations  with  users.  This  integration  is  facilitated 

 by  implementing  a  haystack  GenerativeQAPipeline  component,  combining  a  Retriever 

 and  a  Generator  to  e�ectively  address  user  queries.  By  leveraging  these  advanced 

 language  models,  chatbots  can  better  understand  and  respond  to  user  inputs,  enriching 

 the overall conversational experience. 

 Dependency on External APIs: 

 Reliance  on  the  Google  Books  API  algorithm  may  occasionally  lead  to  inaccuracies, 

 particularly  when  fetching  information  related  to  the  wrong  book,  such  as  works 

 analyzing the main book in question. 

 Runtime E�ciency: 

 While  e�cient  runtimes  were  achieved  for  the  question  answering  and  Named  Entity 

 Recognition  models,  the  integrated  recommendation  system's  runtime  could  be 

 improved. Therefore, further optimization is needed before deployment. 

 Data Limitations: 

 The  dataset  used  to  test  the  recommendation  system  is  currently  limited  in  scope.  To 

 ensure robustness and accuracy in deployment, a larger-scale database is essential. 

 Model Recency and Documentation: 

 Some  of  the  models  used  in  building  the  AI  are  very  recent.  Haystack  2.0  for  instance 

 was  first  released  in  December  2023  and  the  pipelines  integrated  in  the  AI  are 

 continuously  being  updated.  While  this  is  a  positive  aspect,  it  may  pose  challenges  in 

 finding  documentation  or  support  for  building  machine  learning  systems  with  the 
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 Haystack  2.0  framework.  Additionally,  compatibility  issues  with  older  packages  persist, 

 necessitating migration to the latest versions of the framework. 

 5.3.  Conclusion 

 In  summary,  the  thesis  demonstrated  the  potential  of  integrating  advanced  NLP 

 techniques  with  information  retrieval  systems  to  create  a  sophisticated  QA  system  with 

 an  embedded  recommendation  engine.  The  developed  AI  assistant  provides  accurate  and 

 relevant  responses  to  book-related  queries  along  with  o�ering  an  integrated 

 state-of-the-art  book  recommendation  system,  thereby  enhancing  the  overall  user 

 experience.  The  insights  gained  and  the  challenges  encountered  during  this  research  lay 

 a  solid  foundation  for  delving  into  the  intricacies  of  building  intelligent  QA  systems.  As 

 the  field  continues  to  evolve,  the  groundwork  laid  here  serves  as  a  fundamental  starting 

 point for advancing the capabilities and e�ectiveness of intelligent QA systems. 
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