
LUISS iiiiii

Master of Science in Data Science and Management

Course of Data Science in Action

Transformative AI for Readers: Leveraging NLP,
Transformers, and Retrieval-Augmented Generation
to Build an AI-Driven Book Companion

Prof. Alessio Martino

SUPERVISOR

Academic Year 2023/2024

Prof. Irene Finocchi

CO-SUPERVISOR

Adib Menchali

CANDIDATE

Adib
Line

Adib
Line

Adib
Line

 Abstract

 This thesis presents the development of an advanced question-answering AI

 chatbot, leveraging state-of-the-art information retrieval technologies and machine

 learning models. The chatbot utilizes the Haystack framework to retrieve answers from

 the Google Books API, ensuring access to a vast repository of textual data. Additionally,

 the system integrates a recommendation engine that harnesses transformers to compute

 semantic similarity between books, providing users with relevant reading suggestions.

 The research showcases the capabilities of modern machine learning techniques,

 particularly focusing on the transformative power of transformers from Hugging Face. It

 delves into various natural language processing methodologies, including named entity

 recognition and retrieval-augmented generation (RAG). Furthermore, the thesis includes

 fine-tuning processes of transformer models to enhance their performance in specific

 tasks.

 By combining advanced NLP techniques, information retrieval, and recommendation

 systems, this work demonstrates the potential of contemporary machine learning

 technologies in creating sophisticated, intelligent systems. The findings underscore the

 importance of these technologies in developing practical applications that can

 understand and respond to user inquiries while o�ering personalized recommendations.

 Acknowledgements

 I would like to express my deepest gratitude to my research supervisor, Professor

 Alessio Martino, whose continuous guidance and invaluable expertise have been

 indispensable in shaping this thesis. Your support and insights have profoundly

 influenced my academic journey, and for that, I am eternally grateful.

 To all the friends I’ve met along the way during this international journey, thank you for

 making this experience both memorable and enriching. Your camaraderie made every

 challenge surmountable and every triumph sweeter. You made me feel at home, and I

 will forever cherish the memories we created together.

 Finally, to the light of my life, my full-time supporter, my mother. You are the serene

 answer to all my doubts. Your unwavering belief in me has been the foundation of my

 strength and the source of my inspiration. Your presence in my life has made all the

 di�erence, and my success is a testament to your enduring support and love.

 Table of Contents
 Table of Contents 1
 1. Introduction 3

 1.1 Problem Statement 5
 1.2 Objectives 6

 2. Literature Review 7
 2.1. Natural Language Processing 7

 2.1.1. Tokenization 8
 2.1.2. Named Entity Recognition 9

 2.1.2.1. The NER process 11
 2.1.2.2. Challenges in NER Adoption 12

 2.1.3. Information Retrieval 13
 2.1.4. Question Answering 15

 2.1.4.1. Information Retrieval-based Systems 16
 2.1.4.2. Neural Network-based Systems 17
 2.1.4.3. Domain-specific QA Systems 17
 2.1.4.4. Hybrid QA Systems 17

 2.2. Transformers 18
 2.2.1. The Encoder-Decoder Framework 19
 2.2.2. Attention Mechanisms 21
 2.2.3. Transfer Learning in NLP 22
 2.2.4. The Hugging Face Ecosystem 24

 2.2.4.1. Hugging Face Tokenizers 26
 2.2.4.2. Hugging Face Datasets 26
 2.2.4.3. Hugging Face Accelerate 26

 2.2.5. Limitations of Transformers 26
 2.3. Book Recommendation Systems 27

 2.3.1. Collaborative Filtering 27
 2.3.2. Content-based Filtering 27
 2.3.3. Hybrid Methods 28

 3. Methodology 29
 3.1. Named Entity Recognition 29
 3.2. Data Collection 31
 3.3. Information Retrieval-based Question-Answering 33

 1

 3.3.1. Extractive QA with Haystack 35
 3.3.1.1. Haystack Components 36

 3.3.1.2. Document Store 36
 3.3.1.3. Embedders 37
 3.3.1.4. Retrievers 38
 3.3.1.5. Readers 38
 3.3.1.6. Generators 39
 3.3.1.7. Pipelines 40

 3.4. Book Recommendation System 41
 3.4.1. Cosine Similarity Approach 41
 3.4.2. Transformer-based Approach 43

 4. Implementation 45
 4.1. Demonstration of the AI assistant 45

 4.1.1. Integrated Recommendation System 46
 4.1.2. Model Evaluation 48
 4.1.3. Evaluation of the Recommendation Engines. 50

 5. Conclusions 53
 5.1. Key Findings 54
 5.2. Technical challenges and future improvements 54
 5.3. Conclusion 56

 Bibliography 57

 2

 1. Introduction
 Artificial Intelligence has been emerging in so many di�erent aspects of our lives

 completely reshaping the world and rebuilding our day-to-day tasks by integrating

 technologies like machine learning and natural language processing to drive e�ciency

 and innovation. This technological constellation unlocks unprecedented possibilities,

 transcending traditional boundaries in leveraging data, knowledge extraction, and task

 automation.

 At its core, AI is founded on formal reasoning, which aims to mechanize human

 cognition and replicate logical inference artificially. Formal reasoning, in this context,

 refers to using logical rules and algorithms to make decisions and draw conclusions,

 mirroring the way humans reason. This principle underpins the development of AI

 systems, enabling them to process information, learn from data, and perform complex

 tasks autonomously.

 AI's propensity to appear intelligent has roots tracing back to the 1960s, notably

 exemplified by Joseph Weizenbaum's creation of the ELIZA chatbot (Weizenbaum,

 1983). Though basic compared to today's standards, it showed how AI could simulate

 human-like interactions and understanding using simple patterns and pre-written

 responses. Its introduction sparked widespread interest in AI and raised deep questions

 about how humans interact with computers. The "Eliza e�ect" refers to users seeing AI

 systems as more human-like, even though they simply follow pre-defined rules and

 algorithms.

 As AI permeates society, it challenges conventional views of human capabilities and

 machine limitations. Its fusion with disciplines like data science and natural language

 processing heralds a new era of innovation, shaping how we interact with technology.

 This thesis embarks on a journey to explore AI's convergence with machine learning and

 natural language processing in the realm of book-related inquiries. Through the

 3

 development of an AI-driven question-answering system and a novel book

 recommendation engine, we aim to uncover AI's potential in enriching our interaction

 with literary content. By leveraging formal reasoning principles and state-of-the-art

 methodologies, we seek to bridge the gap between human intellect and artificial

 intelligence.

 In the realm of book-related domains, existing AI applications are harnessing the power

 of integrations with APIs such as the Google Books API to enhance user experiences

 and access to literary content. These integrations span across various platforms, each

 o�ering unique features and functionalities:

 Goodreads, a popular platform for readers to discover, review, and recommend books,

 integrates with the Google Books API to access its wealth of user-generated data. AI

 applications leveraging this integration can tap into Goodreads' repository of book

 ratings, reviews, and reading preferences to provide personalized reading suggestions

 based on individual tastes and interests.

 WorldCat, the world's largest network of library content and services, o�ers access to

 millions of bibliographic records. Integration with the Google Books API enables AI

 applications to tap into WorldCat's extensive database of library collections and

 holdings. AI-driven search tools can utilize this integration to facilitate access to a wide

 range of scholarly resources and academic literature available in libraries worldwide.

 University Libraries, which have digitized their collections and made them accessible

 through online repositories, integrate with the Google Books API to provide access to

 scholarly literature and academic publications. AI-driven tools can assist researchers and

 students in discovering relevant literature, conducting literature reviews, and accessing

 scholarly resources for their academic endeavors.

 4

 1.1 Problem Statement

 In today's digital age, access to vast repositories of information, including books,

 has become increasingly accessible. However, navigating this wealth of knowledge

 e�ciently remains a challenge. Users often encounter di�culties in obtaining relevant

 information about books, whether it be searching for specific titles, understanding their

 content, or discovering new reads. Traditional search engines and library catalogs may

 provide basic information, but they often fall short in addressing nuanced queries or

 o�ering personalized recommendations.

 Identification of the need for an AI system that can e�ectively respond to questions

 about books arises from these challenges. Such a system would not only streamline the

 process of accessing book-related information but also enhance the user experience by

 providing tailored responses and recommendations. However, developing such a system

 presents several challenges:

 Natural Language Understanding: Understanding user queries in natural language poses

 a significant challenge due to the complexity and ambiguity inherent in human

 language. A robust AI system must be able to parse and interpret various forms of

 queries accurately.

 Content Understanding: Extracting relevant information from books requires the AI

 system to comprehend the content e�ectively. This involves tasks such as named entity

 recognition, summarization, and sentiment analysis to extract key information and

 provide meaningful responses.

 Data Availability and Quality: Access to comprehensive and high-quality data is crucial

 for training and evaluating AI models. However, book-related datasets may be limited in

 size and diversity, posing challenges in model development and evaluation.

 5

 1.2 Objectives

 The primary goal of this thesis is to address the identified need for an AI system

 that can e�ectively respond to questions about books. To achieve this goal, the following

 objectives are outlined:

 Development of an AI-powered Book Question-Answering System: The thesis aims to

 develop an AI system capable of understanding natural language queries about books

 and providing accurate and informative responses. This involves leveraging techniques

 from natural language processing and machine learning to build a robust

 question-answering pipeline.

 Creation of a Book Recommendation System: In addition to answering specific queries, the

 thesis also aims to build a book recommendation system that can propose relevant books

 based on their similarity with other titles. This involves examining book metadata and

 leveraging modern NLP and machine learning techniques.

 6

 2. Literature Review

 2.1. Natural Language Processing

 Natural Language Processing (NLP) has seen significant advancements in recent

 years, particularly with the development of transformer models and the integration of

 various machine learning techniques. This review examines key literature on NLP and

 its associated methodologies, drawing from influential texts and recent articles to provide

 a comprehensive overview of the current state of the field.

 NLP's evolution has been marked by significant milestones, particularly the introduction

 of transformer models such as BERT and GPT-3. These models have revolutionized the

 field by enabling machines to process and generate human-like text with remarkable

 accuracy. Transformer architectures, characterized by their self-attention mechanisms,

 have surpassed traditional models in tasks like translation, summarization, and

 question-answering (Kumar & Singh, 2024).

 Natural Language Understanding and Natural Language Generation are two primary

 components of NLP. NLU focuses on interpreting and deriving meaning from human

 language, enabling machines to understand context, sentiment, and intent. NLG, on the

 other hand, is the process of producing phrases, sentences, and paragraphs that are

 meaningful from an internal representation (Khurana et al., 2023).

 The significance of NLP permeates modern life, shaping interactions in sectors as varied

 as retail and medicine. Retail giants employ customer service chatbots, while medical

 professionals rely on NLP to interpret and summarize electronic health records. Smart

 assistants like Amazon's Alexa and Apple's Siri harness NLP to interpret user queries,

 while advanced models such as GPT-3 produce coherent prose across diverse subjects. In

 7

 the realm of information retrieval, Google leverages NLP to refine search results, while

 social media platforms employ it to identify and mitigate hate speech.

 Despite remarkable progress, challenges persist. Bias and incoherence plague current

 systems, occasionally yielding unpredictable behavior. Yet, these hurdles o�er

 opportunities for machine learning engineers to refine and advance NLP applications,

 increasingly integral to societal functioning.

 In their book ‘Natural Language Processing: Python and NLTK, Hardeniya et al. o�er a

 comprehensive overview of di�erent techniques used in NLP models. Let us go through

 some of the techniques that are fundamental in building our AI.

 2.1.1. Tokenization

 Hardeniya et al. define tokenization as the process of breaking down raw text into

 smaller, meaningful units known as tokens. These tokens, which encompass words,

 phrases, or even entire sentences, play a crucial role in aiding data scientists to grasp the

 context during the development of NLP models. By breaking down text into tokens,

 tokenization facilitates the conversion of unstructured data into a numerical format,

 which is essential for machine learning applications. The authors emphasize the

 fundamental role tokenization plays in enabling machines to comprehend and process

 raw text. Figure 1-1 illustrates the tokenization process.

 8

 Figure 1-1: Upon receiving a corpus of documents, a tokenizer assigns a unique index to each word, thereby

 enabling the translation of any document into a sequential arrangement of numbers.

 2.1.2. Named Entity Recognition

 Named Entity Recognition is a core element of this thesis. It’s a fundamental task

 in natural language processing that plays a pivotal role in identifying specific categories

 of entities within textual data. Tunstall et al. describe NER in their book ‘Natural

 Language Processing with Transformers: Building Language Applications with Hugging

 Face’ as the process of extracting real-world objects like products, places, and people

 from text. Essentially, it involves analyzing text at various levels (sentences, paragraphs,

 or entire documents) to pinpoint and classify entities based on their respective

 categories.

 Organizations employing NER for extracting insights from unstructured data utilize a

 variety of methodologies. In their overview of NER, IBM categorizes these

 methodologies into three main approaches: rule-based, machine learning, and hybrid

 methods.

 9

 Rule-based approaches entail the formulation of grammatical rules specific to the

 language being analyzed. These rules guide the identification of entities within the text

 based on their structural and grammatical characteristics. While e�ective, these

 approaches can be labor-intensive and may struggle to generalize well to unseen data.

 Machine learning approaches involve training AI-driven models on labeled datasets using

 sophisticated algorithms such as conditional random fields and maximum entropy. These

 techniques span from traditional machine learning methods like decision trees and

 support vector machines to more advanced deep learning techniques such as recurrent

 neural networks (RNNs) and transformers. While these methods tend to perform better

 on unseen data, they necessitate a substantial volume of labeled training data and can be

 computationally intensive.

 Hybrid approaches combine the strengths of both rule-based and machine learning

 methodologies. They employ rule-based systems to swiftly identify easily recognizable

 entities and machine learning systems to detect more intricate entities. This

 hybridization optimally balances e�ciency and accuracy in entity recognition tasks.

 Over the course of NER's development, notable methodological advancements have

 emerged, particularly in the realm of deep learning techniques. Some of the latest

 advancements encompass:

 Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) : RNNs are

 specialized neural networks adept at sequence prediction tasks. LSTMs, a variant of

 RNNs, excel in capturing temporal patterns and retaining information across extended

 sequences. This capability proves invaluable for contextual understanding and entity

 identification (Salehinejad et al, 2017).

 Transformers and BERT : Transformer architectures, notably exemplified by BERT

 (Bidirectional Encoder Representations from Transformers), have revolutionized NER

 methodologies. Through a self-attention mechanism, BERT e�ectively weighs the

 10

 relevance of individual words, accounting comprehensively for contextual cues by

 examining preceding and subsequent words (Devlin et al., 2018).

 These advancements underscore the evolution of NER techniques, showcasing the

 e�cacy of deep learning-based approaches in enhancing the extraction of book titles

 from user queries.

 2.1.2.1. The NER process

 IBM's overview of NER provides a detailed explanation of the NER process which

 comprises a series of steps, each pivotal in extracting meaningful insights from textual

 data.

 Data Acquisition: The foundation of NER lies in assembling an annotated dataset,

 wherein text passages are labeled to denote the presence and classification of named

 entities. This dataset acquisition can entail manual annotation or automated techniques.

 Data Preprocessing: This phase encompasses text cleansing and formatting procedures,

 encompassing tasks such as character removal, text normalization, and segmentation

 into cohesive units like sentences or tokens.

 Feature Engineering: At the heart of NER lies the extraction of features from the

 preprocessed text. These features span several elements, including part-of-speech

 tagging, word embeddings, and contextual insights. The selection of features is tailored

 to the specific NER model under consideration.

 Model Training: The NER model undergoes training, leveraging the annotated dataset

 and extracted features. Through this process, the model discerns patterns and

 interrelations within the text, thereby learning to accurately identify and categorize

 named entities.

 Model Evaluation: The e�cacy of the trained NER model is scrutinized through

 comprehensive evaluation measures. Metrics such as precision, recall, and F1 score serve

 to assess the model’s aptitude to label and categorize named entities.

 11

 Model Refinement: Building upon evaluation insights, iterative refinement endeavors

 ensue to enhance the model's performance. This iterative process may involve

 hyperparameter tuning, dataset modifications, and integration of advanced techniques

 such as ensembling or domain adaptation.

 Inference: We now have a great model! It can be used to analyze new text we haven't

 seen before. The model will clean up the text, find important features, and predict the

 named entities.

 2.1.2.2. Challenges in NER Adoption

 Despite significant advancements and widespread adoption, NER faces several

 notable challenges worth considering:

 1. Language Specificity: Dr. W.J.B. Mattingly, in his book "Introduction to Named Entity

 Recognition," highlights a key challenge in NLP: handling documents written in

 multiple languages. While NER performs well for languages like English with abundant

 labeled data, its accuracy su�ers for others. This is where advancements like BERT and

 transformer-based models come in potentially being key to overcoming this language

 barrier.

 2. Domain-specific Challenges: Beyond language barriers, another challenge noted in

 IBM’s NER overview is domain specificity. General NER models might misidentify

 entities specific to certain fields, like technical terms or, in our case, book titles.

 Despite these challenges, ongoing advancements in NER technology are steadily

 enhancing its accuracy and applicability, promising to narrow existing technology gaps

 and broaden its impact across various domains.

 Let us take a look at an example of an NER annotation process:
 “Harry Po�er , a student at Hogwarts School of Witchcra� and Wizardry , lives in the magical world of

 Hogwarts , where he learns spells and encounters mythical creatures like dragons .”

 12

 NER Annotations:

 Person: "Harry Potter"

 Organization: "Hogwarts School of Witchcraft and Wizardry", "Hogwarts"

 Location: "Hogwarts"

 Miscellaneous: "dragons"

 These annotations highlight the named entities present in the sentence, including names

 of individuals (e.g., "Harry Potter"), organizations (e.g., "Hogwarts School of Witchcraft

 and Wizardry"), and locations (e.g., "Hogwarts"). Additionally, the term "dragons" is

 annotated as a miscellaneous entity, indicating its significance within the contex t.

 2.1.3. Information Retrieval

 Information retrieval stands as one of the most prevalent and widely utilized

 applications in modern computing. A quintessential example of IR in action is Google

 Search, where, upon receiving a user's query, the retrieval algorithm endeavors to fetch

 information pertinent to that query.

 Hardeniya et al. describe information retrieval as the process of finding the most relevant

 information needed by the user. There are di�erent ways to express the user's

 information needs to the system, but the main goal is always the same: to retrieve the

 most relevant information.

 They explain that a typical IR system generates an indexing mechanism called an

 inverted index. This is similar to a book's index, listing words found throughout. An IR

 system's inverted index posting list typically looks like this:
 <Term, DocFreq, [DocId1, DocId2]>

 {"Reading", 2 ---> [1, 2]}

 {"is", 2 ---> [1,2]}

 {"cool", 1 ---> [2]}

 13

 Here, if a word appears in both document 1 and document 2, the posting list will contain

 a list of documents referencing terms. With this data structure in place, various retrieval

 models can be introduced, each tailored to di�erent types of data.

 Vector space model:

 Hardeniya et al. (2016, Natural Language Processing with Python and NLTK)

 e�ectively explain the concept of Vector Space Model. VSM represents documents and

 vocabulary terms as vectors in a high-dimensional space. Each document is essentially a

 unique vector in this space. While various methods exist for representing these

 document vectors, TF-IDF (Term Frequency-Inverse Document Frequency) is a popular

 and e�cient approach. TF-IDF considers both the frequency of a term within a

 document and its importance across the entire document collection. This helps us

 distinguish between common words and those specific to a document's content.

 Given a term and a corpus, we can calculate the term frequency (TF) and inverse

 document frequency (IDF) using the following formula:

 𝑡𝑓 (𝑡 , 𝑑) = 0 . 5 + 0 . 5 × 𝑓 (𝑡 , 𝑑)
 𝑚𝑎𝑥 { 𝑓 (𝑤 , 𝑑) : 𝑤 ∈ 𝑑 }

 TF, or Term Frequency, simply denotes the frequency of a term within a document.

 Conversely, IDF, or Inverse Document Frequency, represents the reciprocal of document

 frequency, indicating the number of documents in the corpus where the term appears.

 𝑖𝑑𝑓 (𝑡 , 𝐷) = 𝑙𝑜𝑔 𝑁
{ 𝑑 ∈ 𝐷 : 𝑡 ∈ 𝑑 }| |

 Numerous normalization variants exist, yet by integrating both Term Frequency (TF)

 and Inverse Document Frequency (IDF), we can devise a more robust scoring

 mechanism for assessing the significance of each term within a document. To compute a

 TF-IDF score, we simply multiply these two scores together.

 𝑡𝑓𝑖𝑑𝑓 (𝑡 , 𝑑 , 𝐷) = 𝑡𝑓 (𝑡 , 𝑑) × 𝑖𝑑𝑓 (𝑡 , 𝐷)

 14

 In TF-IDF, we evaluate a term based on its presence within the current document and its

 distribution across the corpus. This approach identifies terms that are uncommon across

 corpora yet have a high frequency wherever they occur, making them discriminative for

 document retrieval. This scoring can represent documents as vectors. Once all

 documents are vectorized, the Vector Space Model can be constructed.

 2.1.4. Question Answering

 As data scientists and researchers, we often find ourselves wading through oceans

 of documents to find the information we seek. Search engines like Google continually

 enhance the e�ciency of this process by highlighting specific answers to our questions

 whenever possible. For example, when querying 'When did Richard Feynman win his

 first Nobel Prize?' on Google, the correct answer—'October 21, 1965'—is immediately

 provided, as illustrated in the Figure below.

 Figure 1-3: A Google search query and corresponding answer snippet.

 15

 In this example, Google first retrieved around 125,000 documents that were relevant to

 the query, and then performed an additional processing step to extract the answer

 snippet with the corresponding passage and web page. It’s not hard to see why these

 answer snippets are useful. For example, if we search for a trickier question like “Which

 guitar tuning is the best?” Google doesn’t provide an answer, and instead we have to

 click on one of the web pages returned by the search engine to find it ourselves.

 The general approach behind this technology is called question answering (QA).

 Tunstall et al. in their book Natural Language Processing with Transformers provide a

 deep dive into extractive QA which is the most common type of Question Answering.

 They explain that extractive QA involves questions whose answers can be identified as a

 span of text in a document, where the document might be a web page, legal contract, or

 news article. The two-stage process of first retrieving relevant documents and then

 extracting answers from them is also the basis for many modern QA systems, including

 semantic search engines, intelligent assistants, and automated information extractors.

 Existing QA systems employ various methodologies, including:

 2.1.4.1. Information Retrieval-based Systems

 Information Retrieval-based Systems have a primary objective: to e�ciently locate

 and retrieve relevant information from a large collection of text data in response to a

 user's query. This query can take various forms, including keywords, phrases, or even

 natural language questions. Operating on a corpus of text, IR functions within a vast

 collection of documents or passages containing sought-after information. This corpus

 encompasses diverse text data types, such as articles, reports, web pages, or academic

 papers (Hambarde & Proença, 2023).

 The process of information retrieval involves finding the documents most relevant to a

 query, a challenge faced by every search and recommendation system. Document

 retrieval systems primarily execute two processes: indexing and matching.

 16

 These systems may also utilize similarity measures to assess the resemblance between the

 user's query and the content of the documents in the corpus. These measures consider

 factors such as semantic relevance, context, and document structure to identify relevant

 documents.

 Indexing techniques are essential for e�cient retrieval in IR. By creating an index or

 catalog of terms, keywords, or features present in the documents along with their

 corresponding locations, indexing enables rapid lookup and retrieval of relevant

 documents during query processing.

 Once potential documents or passages are identified, IR may employ ranking algorithms

 to prioritize the results based on their relevance to the user's query. Documents closely

 matching the query terms or exhibiting higher similarity scores are typically ranked

 higher in the list of results.

 2.1.4.2. Neural Network-based Systems

 These systems employ deep learning architectures, such as recurrent neural

 networks (RNNs) or transformer models, to learn the mapping between questions and

 answers from large datasets. Example: OpenAI's GPT (Generative Pre-trained

 Transformer) models, such as GPT-3.

 2.1.4.3. Domain-specific QA Systems

 Designed to answer questions within specific domains, such as medical, legal, or

 technical. Example: IBM Watson for Oncology, which assists oncologists in treatment

 decisions.

 2.1.4.4. Hybrid QA Systems

 Combining multiple approaches for improved performance and robustness.

 Example: IBM Watson, which incorporates various techniques including NLP, machine

 learning, and information retrieval.

 17

 2.2. Transformers

 In 2017, Google researchers introduced a new way to understand and process

 language called the Transformer. This approach was a big improvement over older

 methods like recurrent neural networks (RNNs), especially for translating languages. At

 the same time, another method called ULMFiT showed that by using a lot of di�erent

 texts, computers could get really good at understanding and classifying language, even

 with only a little bit of labeled data.

 The success of Transformer and ULMFiT led to the creation of today’s most well-known

 transformers: GPT and BERT. By blending the Transformer architecture with

 unsupervised learning, these models eliminated the requirement to build specific

 architectures for each task from the ground up. This breakthrough allowed them to

 surpass nearly every standard in NLP by a considerable margin. Since the debut of GPT

 and BERT, a multitude of transformer models have surfaced, showcasing a diverse range

 of capabilities. A timeline featuring the most notable entries is depicted in Figure 2-1.

 Figure 2-1: The Transformers timeline (From Natural Language Processing with Transformers by Leandro

 von Werra, Lewis Tunstall, and Thomas Wolf).

 To understand what transformers bring to the table, Tunstall et al. provide an

 introduction to the core concepts underlying transformers, starting with the

 encoder-decoder framework.

 18

 2.2.1. The Encoder-Decoder Framework

 Before transformers, recurrent architectures such as LSTMs were the state of the

 art in NLP. Tunstall et al. (2022) state that these architectures contain a feedback loop in

 the network connections that allows information to propagate from one step to another,

 making them ideal for modeling sequential data like text.

 As illustrated on the left side of Figure 2-2, an RNN receives some input (a word or

 character), feeds it through the network, and outputs a vector called the hidden state.

 The model sends information back to itself via the feedback loop, which it can then

 utilize in the subsequent step.

 This becomes clearer when we "unroll" the loop, as demonstrated on the right side of

 Figure 2-2: the RNN transfers information about its state at each step to the following

 operation in the sequence. This enables an RNN to maintain a record of information

 from previous steps and employ it for its output predictions.

 Figure 2-2: Unrolling an RNN in time.

 These architectures are still extensively utilized for NLP tasks, speech processing, and

 time series analysis.

 Typically, the encoder and decoder components can encompass any neural network

 architecture capable of sequence modeling. This concept is exemplified using a pair of

 RNNs in Figure 2-3, where the English sentence "Transformers are great!" is encoded

 into a hidden state vector, which is then decoded to yield the German translation

 19

 "Transformer sind grossartig!" Input words are sequentially processed through the

 encoder, while output words are generated sequentially, top to bottom, by the decoder.

 Figure 2-3: Simplified encoder-decoder architecture with a pair of RNNs (Adapted from Natural Language

 Processing with Transformers by Leandro von Werra, Lewis Tunstall, and Thomas Wolf).

 A drawback of this architecture is that it creates an information bottleneck at the

 encoder's final hidden state. This single state must encapsulate the meaning of the entire

 input sequence, as it is the only information the decoder can access during output

 generation. This issue is especially problematic with lengthy sequences, as information

 from the beginning of the sequence may be lost when compressing everything into a

 single, fixed representation.

 Tunstall et al. propose an attention mechanism that enables the decoder to access all of

 the encoder’s hidden states. They specify that this mechanism is a cornerstone of many

 modern neural network architectures. Understanding the development of attention

 within RNNs lays the groundwork for comprehending one of the key elements of the

 Transformer architecture.

 2.2.2. Attention Mechanisms

 The main idea behind attention mechanisms is to give the decoder access to

 multiple hidden states generated by the encoder at each step of the input sequence.

 20

 However, utilizing all states simultaneously could overwhelm the decoder, so a

 mechanism is needed to prioritize them. Attention allows the decoder to assign di�erent

 levels of importance, or "attention," to each encoder state during each decoding step.

 This process is illustrated in Figure 2-4, which shows how attention helps in predicting

 the third token in the output sequence.

 Figure 2-4: Attention Mechanism in Predicting the Third Token (Adapted from Natural Language

 Processing with Transformers by Leandro von Werra, Lewis Tunstall, and Thomas Wolf).

 Attention-based models focus on determining the most relevant input tokens at each

 timestep, facilitating the learning of complex alignments between words in generated

 translations and those in the source sentence. For instance, Figure 2-5 illustrates

 attention weights in an English-to-French translation model, with each pixel

 representing a weight. This visualization demonstrates the decoder's ability to accurately

 align words like "zone" and "Area," despite their di�ering order in the two languages.

 21

 Figure 2-5: RNN encoder-decoder alignment of words in English and the generated translation in French

 (credits. Dzmitry Bahdanau).

 While attention mechanisms significantly improved translation quality, a major

 drawback persisted with recurrent models for the encoder and decoder: their

 computations are inherently sequential and cannot be parallelized across the input

 sequence. Tunstall et al. noted that introducing the transformer model brought a new

 paradigm by completely abandoning recurrence and relying solely on a specialized form

 of attention known as self-attention.

 2.2.3. Transfer Learning in NLP

 In the years 2017 and 2018, a breakthrough occurred when research groups

 introduced new approaches that made transfer learning work for NLP. This

 advancement began with a pivotal insight from OpenAI researchers, who achieved

 notable performance in sentiment analysis through the utilization of features derived

 from unsupervised pretraining. Subsequently, the ULMFiT (Universal Language Model

 22

 Fine-tuning) method emerged, presenting a versatile framework for adapting pre-trained

 Long Short-Term Memory (LSTM) models to diverse tasks.

 ULMFiT comprises three principal stages, as depicted in Figure 2-7.

 Figure 2-7: ULMFiT stages.

 Tunstall et al. describe the stages as follows:

 Pretraining: Initially, the model undergoes pretraining wherein it learns to predict the

 subsequent word based on preceding words, a task known as language modeling.

 Remarkably, this process requires no labeled data and capitalizes on the vast amount of

 available text, such as that found in Wikipedia.

 Domain Adaptation: Here, the focus shifts to adapting the model to a specific domain

 corpus (e.g., from Wikipedia to IMDb movie reviews). This phase still involves language

 modeling but with the objective of predicting the next word within the target corpus.

 Fine-tuning: The final step involves fine-tuning the language model with a classification

 layer tailored to the target task (e.g., sentiment classification of movie reviews). This

 fine-tuning process further refines the model's performance for the specific task at hand.

 ULMFiT played a pivotal role in advancing pretraining and transfer learning within

 NLP, filling a critical gap and facilitating the widespread adoption of transformer

 models. In 2018, the emergence of two influential transformer architectures marked a

 significant milestone in NLP:

 1. GPT: This transformer model exclusively employs the decoder component of

 the architecture and adopts a language modeling approach similar to ULMFiT. GPT's

 23

 pretraining was conducted on the BookCorpus, a dataset comprising 7,000 unpublished

 books spanning various genres.

 2. BERT: BERT utilizes the encoder segment of the transformer architecture and

 employs a specialized form of language modeling known as masked language modeling.

 This approach involves predicting masked words within a text, enhancing contextual

 understanding. BERT's pretraining utilized both the BookCorpus and English Wikipedia

 (Devlin et al., 2018).

 The release of Transformers, as noted by Tunstall et al., ushered in a unified API

 encompassing over 50 architectures. This library acted as a catalyst for the surge in

 transformer-focused research and quickly spread through the NLP community,

 streamlining the integration of these models into various real-world applications.

 2.2.4. The Hugging Face Ecosystem

 As highlighted by Tunstall et al., applying new machine learning architectures to

 NLP tasks can be cumbersome. Traditionally, researchers publish code alongside their

 work, but adapting this code can be time-consuming. HuggingFace Transformers o�er a

 standardized interface for various transformer models, along with tools to adapt them to

 new tasks. The library supports multiple frameworks (PyTorch, TensorFlow, etc) and

 simplifies fine-tuning for tasks like text classification and question answering. This

 significantly reduces the time and e�ort needed for training and testing di�erent models.

 The Hugging Face ecosystem comprises primarily two components: a suite of libraries

 and the Hub, illustrated in Figure 2-8. The libraries o�er the necessary code, whereas the

 Hub supplies pre-trained model weights, datasets, evaluation metric scripts, and

 additional resources. In this section, we will provide a concise overview of these di�erent

 components.

 24

 Figure 2-8: The Hugging Face Ecosystem (From Natural Language Processing with Transformers by

 Leandro von Werra, Lewis Tunstall, and Thomas Wolf).

 The Hugging Face hub hosts over 600,000 pre-trained models. The integration of

 pipelines makes loading a wide range of models and experimenting with them very

 simple, allowing us to focus on the domain-specific parts of the project.

 Figure 2-9: The Models section of the Hugging Face hub.

 25

 2.2.4.1. Hugging Face Tokenizers

 Hugging Face Tokenizers library o�ers a plethora of tokenization strategies and

 boasts remarkable speed in text tokenization, attributed to its Rust backend. Additionally,

 it handles all preprocessing and postprocessing tasks, including input normalization and

 output transformation to the desired format. Similar to loading pre-trained model

 weights with Transformers, Tokenizers allow us to e�ortlessly load a tokenizer.

 2.2.4.2. Hugging Face Datasets

 Hugging Face datasets simplifies the process of loading, processing, and storing a

 dataset by providing a standard interface for thousands of datasets that can be found on

 the Hub. It includes smart caching to avoid redundant preprocessing, while also

 overcoming RAM limitations through memory mapping. The library seamlessly

 integrates with popular frameworks like Pandas and NumPy, ensuring compatibility with

 familiar data manipulation tools.

 2.2.4.3. Hugging Face Accelerate

 Hugging Face Accelerate adds a layer of abstraction to training loops that takes

 care of all the custom logic necessary for the training infrastructure. This accelerates the

 workflow by simplifying the change of infrastructure when necessary.

 2.2.5. Limitations of Transformers

 Tunstall et al. explain several challenges associated with using Transformers. One

 challenge is language: most NLP research focuses on English, making it di�cult to find

 pre-trained models for less common languages. Another issue is data availability; despite

 the use of transfer learning to reduce data requirements, models still need significantly

 more labeled data than humans to perform the same tasks. Additionally, while

 self-attention is e�ective for short paragraphs, it becomes costly when working with

 longer documents. The interpretability of Transformers is also a concern, as these

 26

 models, like other deep learning models, lack transparency, making it di�cult to

 understand their predictions. Lastly, bias is a significant challenge, as transformer models

 pre-trained on internet text inherit biases, complicating e�orts to ensure fairness and

 inclusivity in their outputs.

 2.3. Book Recommendation Systems

 Book recommendation systems aim to provide tailored suggestions to users,

 enhancing their experience and facilitating the discovery of new content.

 In their paper, "Recommendation System Development Based on Intelligent Search, NLP,

 and Machine Learning Methods, " Balush et al. categorize recommender systems into three

 main types:

 2.3.1. Collaborative Filtering

 This approach recommends items based on the preferences of similar users.

 Collaborative filtering methods include:

 ● User-based: Recommends books based on the preferences of users with similar

 tastes. Example: Amazon's "Customers who bought this item also bought" feature.

 ● Item-based: Recommends books similar to those the user has previously

 interacted with. Example: Netflix's recommendation system for movies and TV

 shows.

 2.3.2. Content-based Filtering

 This approach recommends items by analyzing the similarity between item

 features and user preferences. Content-based methods examine attributes such as genre,

 author, and plot summary. Example: Goodreads' recommendation system.

 27

 2.3.3. Hybrid Methods

 These methods combine collaborative filtering and content-based filtering

 techniques to provide more accurate and diverse recommendations by leveraging both

 user preferences and item attributes. Example: Netflix's hybrid recommendation system,

 which integrates collaborative filtering with content analysis of movies and user

 behaviors.

 28

 3. Methodology
 In the Literature review section, we covered several techniques used in NLP as

 well as di�erent approaches that can be implemented to build question-answering and

 recommendation systems.

 The methodology section of the thesis navigates through the development of an

 AI-powered assistant tailored for readers, encompassing an array of techniques in

 Natural Language Processing and methodologies for constructing question-answering

 and recommendation systems. This segment explores the entire project lifecycle, from

 data collection to the intricate implementation of named entity recognition, information

 retrieval, and question-answering systems, and culminating in the integration of a

 recommendation mechanism. The analysis traverses through the strategic maneuvers

 employed, the technical methodologies deployed, the encountered challenges, and

 potential pathways for enhancements.

 3.1. Named Entity Recognition

 To develop a robust AI system capable of e�ectively addressing user queries, it's

 paramount to train it to accurately recognize book titles. This task requires attention to

 two critical factors: precision and dynamism.

 As discussed previously, Named entity recognition is an NLP technology that empowers

 systems to extract names of individuals, locations, organizations, quantities, monetary

 values, and percentages, among others. Unfortunately, “book_title” is not one of those

 entities that NER is trained to detect. This calls for the need to train a custom NER

 model that is specialized in book title detection.

 To initiate the model-building process, we begin by compiling a diverse array of book

 titles that vary in structure and format. These titles are chosen to represent the broad

 spectrum of formats found in book titles. Following this, a dataset containing frequently

 asked questions about books is created and stored. Each question in this dataset is

 29

 designed to abstractly reference a specific book title, such as "Who is the author of

 {title}?", ensuring the questions are adaptable to various titles.

 Next, NLP techniques are applied to each collected book title. This step ensures that the

 model can identify the titles from contextual cues rather than relying solely on factors

 like capitalization or special formatting. The cleaned title then replaces the placeholder

 {title} in each question. After applying all questions to the collected book titles, an

 annotated dataset is generated. This dataset maps annotations to each question,

 indicating the start and end indices of the book title referenced in every question. This

 annotation process enhances the model's ability to accurately identify and respond to

 inquiries regarding various book titles, which will later prove crucial for the e�ectiveness

 of our AI assistant.

 Let us break down the steps involved in training the custom entity recognition model.

 We begin by importing the necessary libraries, including spaCy and Hugging Face's

 Transformers, and load a pre-trained NER model based on BERT from Hugging Face's

 Transformers library.

 The main library used for this task is spaCy, which stands out as a leading open-source

 toolkit for NLP. With support for over 75 languages and 84 trained pipelines across 25

 languages, spaCy o�ers a comprehensive suite of functionalities for diverse NLP tasks. It

 incorporates multi-task learning capabilities with pre-trained transformers like BERT,

 enabling sophisticated processing of text data. Additionally, spaCy provides pre-trained

 word vectors and boasts state-of-the-art speed, making it an e�cient choice for NLP

 applications.

 Furthermore, spaCy's production-ready training system facilitates the development of

 custom models, leveraging linguistically-motivated tokenization and components for

 various tasks such as named entity recognition, part-of-speech tagging, dependency

 parsing, and more. Its architecture is easily extensible with custom components and

 attributes, supporting integration with frameworks like PyTorch and TensorFlow. spaCy

 30

 also o�ers built-in visualizers for syntax and NER, aiding in model interpretation and

 debugging.

 We use our annotated data to fine-tune the pre-trained spaCy model, training it to detect

 the BOOK_TITLE label in text. To further enhance the training process, we leverage a

 transformer imported from Hugging Face known as DistilBERT. The pre-trained BERT

 model serves as a feature extractor, enhancing the model's ability to capture contextual

 information relevant to book title recognition. DistilBERT, a distilled version of the

 BERT model, retains much of its performance while being computationally more

 e�cient. It achieves this by reducing the number of parameters and employing various

 optimization techniques. DistilBERT is well-suited for scenarios where computational

 resources are limited, making it an appropriate choice for training our custom NER

 model on book titles.

 Below is a demonstration of the implementation of the custom NER model:

 User input:

 “who wrote the lonely polygamist?”

 Extracted entities from the model:

 [('the lonely polygamist', 'BOOK_TITLE')]

 In this example, the user is asking for the author of the book “The Lonely Polygamist”.

 The NER model successfully identifies the book title from the query and feeds the

 information to the API call. Subsequently, data about the book in question is fetched

 from the Google Books API to be leveraged for our Question Answering models.

 3.2. Data Collection

 The data collection stage involved two di�erent stages. The first one being the

 curation of a bestseller dataset to collect book titles that would later be used to build the

 31

 named entity recognition models in order to accurately identify and classify book titles

 within queries. The second and main data collection stage aims to enable the

 development and real-time implementation of the question-answering and information

 retrieval system by leveraging data from the Google Books API both for training and

 testing the Information Retrieval models.

 The new Google Books API o�ers programmatic access to a myriad of operations

 available on the Google Books website, enabling developers to create robust applications

 with deeper integration. Key features include search and browse functionality to explore

 books matching specific queries, access to detailed book information such as metadata,

 availability, price, and preview links, and the management of personalized bookshelves.

 To collect information about a specific book, we send a request to the Google Books API

 including the book title provided by the user:

 h�ps://www.googleapis.com/books/v1/volumes?q=intitle:{title}&langRestrict=en&orderBy=relevance&printType=books

 We use the “intitle” parameter to make sure the API only returns results where the title

 provided by the user is found in the book title returned by the API.

 We also restrict the API to only return results in the English language by assigning the

 value “en” to the “langRestrict” parameter.

 The “orderBy” parameter is used to order the results by relevance so we can guarantee

 receiving the most relevant books to the user’s query.

 The “printType” parameter ensures the results contain only books as opposed to other

 types of prints like magazines.

 We may also specify the maximum number of results to return by using the

 “maxResults” parameter.

 Retrieving volume information from the Google Books API does not require

 authentication, so we do not have to provide an API key when sending a request.

 Since the data collection process is dynamic, meaning that it depends on users' queries,

 we will not be storing data locally, hence the non-explicit specification of the scale of

 32

 data collection. This allows us to be scalable but most importantly it does not limit the

 amount of data available to the AI.

 The Google Books API o�ers access to an extensive repository of literary works, serving

 as a rich source of textual data. The data retrieved from the API is formatted as a JSON

 containing a list of dictionaries with key-value pairs that vary for each book. Typically,

 the returned data includes, but is not limited to, the book's title, author, description,

 publisher, publication date, edition, page count, and text snippets.

 3.3. Information Retrieval-based Question-Answering

 We previously went over the various approaches for building question-answering

 systems. The data fetched from the API provides a solid ground for the implementation

 of an information retrieval system where answers to user queries are extracted from the

 fetched data corpus.

 The first thing we’ll need for our QA system is to find a way to identify a potential

 answer as a span of text in a JSON text. For example, if we have a question like “Who

 wrote To Kill a Mockingbird?” and the returned textual data contains “Voted America's

 Best-Loved Novel in PBS's The Great American Read Harper Lee's Pulitzer

 Prize-winning masterwork…” or simply "authors": ["Harper Lee"], then the model should

 output “Harper Lee”. To do this we’ll need to understand how to:

 ● Frame the supervised learning problem.

 ● Tokenize and encode text for QA tasks.

 ● Deal with long passages that exceed a model’s maximum context size.

 Let’s start by taking a look at how to frame the problem.

 The most common way to extract answers from text is by framing the problem as a span

 classification task, where the start and end tokens of an answer span act as the labels that

 a model needs to predict. This process is illustrated in the figure 3-1.

 33

 Figure 3-1: Span classification head for QA tasks (From Natural Language Processing with Transformers

 by Leandro von Werra, Lewis Tunstall, and Thomas Wolf).

 Given the scale of this project, a good strategy is to start with a language model that has

 already been fine-tuned on a large-scale QA dataset like WikiAnswers, SQuAD, and

 GOOAQ. In general, these models have strong reading comprehension capabilities and

 serve as a good baseline upon which to build a more accurate system.

 The choice of the QA model depends on various factors like whether the corpus is mono

 or multilingual and the constraints of running the model in a production environment.

 34

 Figure 3-2: Performance of SentenceTransformers models on Sentence Embedding and Semantic Search

 (Source: https://www.sbert.net/docs/pretrained_models.html).

 For the thesis, we use a fine-tuned SentenceTransformers model designed for semantic

 search. The all-* models were trained on all available training data (more than 1 billion

 training pairs) and are designed as general-purpose models. While the

 "all-mpnet-base-v2" model boasts the highest performance, we prioritize speed for our

 project. Therefore, we've opted for the "all-MiniLM-L6-v2" model, which o�ers a

 compelling balance between speed (being 5 times faster) and performance.

 3.3.1. Extractive QA with Haystack

 Haystack is a complete framework for creating robust Pipelines using Large

 Language Models for various search purposes. Whether it's retrieval-augmented

 generation (RAG), question answering, or semantic document search, Haystack utilizes

 cutting-edge LLMs and NLP models to o�er tailored search experiences, enabling users

 to query in natural language.

 Its modularity allows us to combine powerful technologies from OpenAI, Chroma, and

 other open-source projects, like Hugging Face's Transformers.

 35

 We leverage Haystack 2.0, a significant upgrade that redesigns various components,

 including Document Stores and Pipelines. Unlike its predecessor, Haystack 1.x, where

 pipelines were constructed by sequentially adding nodes, in Haystack 2.0, this process

 undergoes a two-step evolution. Initially, components are added to the pipeline without

 any predetermined order using the add_component method. Then, to establish the final

 graph, these components must be explicitly connected through the connect method.

 The Pipeline concept is a fundamental requirement and an optimal fit for building

 applications with LLMs, which is why Pipelines and Components are still the

 foundation of Haystack 2.0.

 In practice, users typically ask questions about books, so we need some way of selecting

 relevant passages from all the book info we gather. One approach is to fetch all the

 responses from the Google Books API for a query and feed them to the model as one

 long context. But this can slow things down a lot and introduce an unacceptable latency

 for our users’ queries. As an example, let’s suppose that on average, each book query

 returns 50 results in Google Books and each result takes 100 milliseconds to process. If we

 need to process all the reviews to get an answer, this would result in an average latency

 of 5 seconds per query—much too long for a chatbot interaction! Let us look at how to

 handle this by dissecting Haystack components.

 3.3.1.1. Haystack Components

 Haystack o�ers various components, each performing di�erent kinds of tasks.

 These are often powered by the latest LLMs and transformer models.

 3.3.1.2. Document Store

 The Document Store is like a container for documents in Haystack. While it’s not

 actually considered a component as it doesn’t have the run() method used in all Haystack

 components, it's more like an interface to our database where we can store information

 36

 and search through it. So, it's not a part of the Pipeline; rather, it's a tool that

 components within the pipeline can use and interact with.

 Choosing the right document store is a crucial step because it determines where we store

 the information we fetch from the API. The table below provides a quick summary of

 di�erent Document Stores available in Haystack.

 Figure 3-3: Haystack 2.0 Document stores.

 After exploring di�erent options, the in-memory document store makes the most sense

 to use. Given that we’ll be storing information about the book queried by the user in real

 time, we are looking for a fast and minimalistic option that doesn’t use up a lot of

 resources. Haystack ships with an ephemeral document store that relies on pure Python

 data structures stored in memory, so it doesn’t fall into any of the vector database

 categories above. This special Document Store is ideal for creating quick prototypes with

 small datasets. It doesn’t require any special setup, and it can be used right away without

 installing additional dependencies.

 3.3.1.3. Embedders

 The embeddings generated by Haystack embedders consist of fixed-length

 vectors. They encapsulate contextual information and semantic connections within the

 text. The main aim of these embeddings is to convert text into a format that enables the

 37

 language model to comprehend and analyze it with greater nuance and contextual

 awareness.

 We use “SentenceTransformersTextEmbedder” for query embedding and

 “SentenceTransformersDocumentEmbedder” to embed a list of documents with a

 Sentence Transformer model.

 3.3.1.4. Retrievers

 Retrievers are in charge of finding relevant documents for a given query. They

 come in two types: sparse and dense. Sparse retrievers use word frequencies to represent

 documents and queries as sparse vectors. Relevance is determined by calculating the

 inner product of these vectors. Dense retrievers, however, use encoders like transformers

 to represent the query and document as contextualized embeddings (which are dense

 vectors). This allows them to understand query content better and improve search

 accuracy (Zhao et al., 2022).

 Retrievers go through all the Documents in a Document Store, select the ones that

 match the user query, and pass it on to the next component. Various Retrievers are

 customized for specific Document Stores. For our AI assistant, we used The

 InMemoryEmbeddingRetriever, an embedding-based Retriever compatible with the

 InMemoryDocumentStore. It compares the query and Document embeddings and

 fetches the Documents most relevant to the query from the InMemoryDocumentStore

 based on the outcome.

 3.3.1.5. Readers

 Readers extract answers from the documents retrieved by the retriever. They're

 typically reading comprehension models, though some models can generate free-form

 answers. They evaluate answers by assigning them a probability score ranging from 0 to

 1, indicating how closely they match the query. A score closer to 1 signifies higher

 confidence in the answer's relevance. Answers are then sorted based on these probability

 38

 scores, with the highest probabilities listed first. Optionally, you can specify the

 maximum number of answers returned by the Reader using the top_k parameter.

 We can use these probability scores to establish quality standards for our system. By

 adjusting the confidence_score parameter of the Reader, we can set a probability

 threshold for answers. For instance, setting confidence_threshold to 0.6 ensures that only

 answers with probabilities greater than 0.6 are considered.

 Figure 3-4 demonstrates how additional components can perform post-processing on the

 documents retrieved by the retriever or the answers extracted by the reader. For instance,

 retrieved documents might require reranking to remove noisy or irrelevant ones, which

 could otherwise confuse the reader. Likewise, post-processing of the reader's answers is

 often necessary when the correct answer spans multiple passages in a lengthy document.

 Figure 3-4: The retriever-reader architecture for modern QA systems (Adaprted from Natural Language

 Processing with Transformers by Leandro von Werra, Lewis Tunstall, and Thomas Wolf).

 3.3.1.6. Generators

 Generators produce text responses based on prompts provided to them. They are

 tailored for each LLM technology, such as OpenAI, Cohere, local models, and others.

 Generators come in two types: chat and non-chat.

 Chat generators are geared towards conversational interactions, allowing for chat

 completion. They work with a list of messages to engage with the user.

 39

 Non-chat generators use LLMs for simpler text generation tasks, such as translation or

 summarization.

 3.3.1.7. Pipelines

 Pipelines allow us to integrate various components, Document Stores, and

 integrations, creating robust and customized systems. They o�er great flexibility,

 enabling simultaneous flows, standalone components, loops, and diverse connections.

 The diagram illustrated in Figure 3-5 provides a comprehensive summary of the

 information retrieval process.

 Figure 3-5: Overview of the Haystack information retrieval process.

 40

 3.4. Book Recommendation System

 Integrating a recommender system into the chatbot project stems from the initial

 motive of creating an AI assistant that mimics a librarian. The goal is to suggest books

 similar to what users like, whether by recommending a list based on a single title

 provided by a user or by browsing their personal library. The recommender engine

 adopts the content-based filtering approach, utilizing the content or attributes of the

 item and a notion of similarity to generate similar items with respect to the given item.

 Two methods have been adopted for building the book recommender: one leveraging

 cosine similarity and the other based on a Hugging Face transformer.

 3.4.1. Cosine Similarity Approach

 Cosine similarity quantifies the similarity between two non-zero vectors in an

 inner product space by measuring the cosine of the angle between them. It equals 1

 when the angle is 0° and decreases for any other angle, never exceeding 1.

 𝑐𝑜𝑠 (θ) = 𝑖 = 1

 𝑛

∑ 𝐴
 𝑖
 𝐵

 𝑖

 𝑖 = 1

 𝑛

∑ 𝐴
 𝑖
 2

 𝑖 = 1

 𝑛

∑ 𝐵
 𝑖
 2

 In this context, represents a component of vector A, and represents a component of 𝐴
 𝑖

 𝐵
 𝑖

 vector B.

 41

 Figure 3-5: Cosine Similarity

 Example: Let us assume A = [2, 1, 0, 1, 0, 1, 1, 2], B = [2, 1, 1, 1, 1, 0, 1, 2] are the two vectors

 and we would like to calculate the cosine similarity:

 𝑖 = 1

 𝑛

∑ 𝐴
 𝑖
 𝐵

 𝑖
= ((2 × 2) + (1 × 1) + (0 × 1) + (1 × 1) + (0 × 1) + (1 × 0) + (1 × 1) + (2 × 2)) = 11

 𝑖 = 1

 𝑛

∑ 𝐴
 𝑖
 2 = (2² + 1² + 0² + 1² + 0² + 1² + 1² + 2²) = 3 . 46

 𝑖 = 1

 𝑛

∑ 𝐵
 𝑖
 2 = (2² + 1² + 1² + 1² + 1² + 0² + 1² + 2²) = 3 . 60

 𝐶𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 : 𝑐𝑜𝑠 (θ) = 11
 3 . 46 ∗ 3 . 60 = 0 . 88

 A value of 0.88 signifies significant similarity between the two vectors, nearing the

 highest possible score of 1. When computing similarities between books, cosine similarity

 is applied to their TF-IDF vectors. These vectors are then arranged in descending order

 based on their cosine similarity scores, e�ectively organizing all other items by their

 proximity to the vector under comparison.

 42

 Breaking down the process:

 The TF-IDF matrix, essential for analyzing textual content, is computed for all

 book data collected from the API. TF-IDF, a statistical measure covered in the Literature

 Review, evaluates the significance of words within a document concerning a broader

 collection (corpus) of documents. Leveraging the TfidfVectorizer tool from scikit-learn,

 this matrix translates textual attributes into a numerical format.

 To ensure consistency and accuracy in analysis, text preprocessing is employed before

 generating the TF-IDF matrix. This preprocessing step encompasses various techniques

 such as tokenization, lowercasing, punctuation removal, stopword elimination, and

 lemmatization. By standardizing the textual data, the recommender system optimizes its

 ability to detect similarities e�ectively.

 Once the TF-IDF matrices for both the fetched book and the collected data are prepared,

 cosine similarity is computed between their respective TF-IDF vectors. Cosine similarity

 measures the cosine of the angle between two vectors, providing a quantifiable metric for

 their textual resemblance.

 Based on the computed cosine similarity scores, the system identifies the indices of

 books most akin to the fetched book. These indices serve as a reference to extract similar

 books from the DataFrame, allowing the system to compile a curated list of

 recommendations closely aligned with the user's preferences.

 3.4.2. Transformer-based Approach

 The second approach to calculating similarity between books involves using a

 Hugging Face transformer model, which maps returned contexts from the API into a

 high-dimensional vector space. This approach is the principal method adopted for our

 recommendation engine due to its superior ability to capture semantic relationships

 between collected book data.

 43

 We leverage the pre-trained transformer model "all-MiniLM-L6-v2," which we also

 employed for the Question Answering model. This model is part of the MiniLM family,

 designed to provide e�cient and e�ective embeddings while maintaining a small

 footprint suitable for practical applications.

 The book descriptions are fed into the all-MiniLM-L6-v2 model, which converts each

 description into a dense vector representation (embedding). These embeddings capture

 rich semantic information by considering the context in which words appear.

 The transformer model employs a self-attention mechanism, which enables it to weigh

 the importance of di�erent words in a sentence relative to one another, capturing

 relationships and dependencies that traditional vectorization methods (like TF-IDF)

 might miss.

 After obtaining the embeddings for all book descriptions, we calculate the cosine

 similarity between the embedding of a reference book and the embeddings of other

 books in the dataset.

 Unlike traditional vectorization methods, transformer embeddings can understand the

 context in which words are used, making them adept at capturing the nuances of

 language. For example, the model can di�erentiate between polysemous words (words

 with multiple meanings) based on the surrounding text (Ethayarajh, 2019).

 The embeddings produced by the transformer model are dense and continuous,

 e�ectively encoding semantic relationships. This results in more accurate similarity

 measurements, as books with similar themes, genres, or topics will have closer

 embeddings in the vector space.

 The transformer model is pre-trained on a large and diverse corpus, allowing it to

 generalize well across di�erent types of text. This enables it to leverage a vast amount of

 linguistic knowledge when generating embeddings.

 Using the transformer-based approach, we expect a notable improvement in the quality

 of recommendations compared to the traditional cosine similarity method, given the

 model's ability to capture deeper semantic connections between book descriptions.

 44

 4. Implementation
 In this section, a demonstration of the beta version of the AI is given covering a

 practical representation of the features and technologies described in the methodology.

 4.1. Demonstration of the AI assistant

 We start with a quick introduction to Gradio - a tool that’s been rising in

 popularity for its ease of use in building interactive interfaces for machine learning

 models. Gradio enables developers to create intuitive user interfaces that allow users to

 interact with AI models through web browsers, enabling seamless experimentation and

 showcasing of AI capabilities. ChatInterface is Gradio's high-level abstraction for

 creating chatbot UIs, and allows us to create a web-based demo around a chatbot model

 in a few lines of code.

 As mentioned before, the data fetched from the API is stored in a context that’s

 forwarded to a document store. To achieve a better user experience and faster runtimes,

 the AI is built to persist the context whilst the kernel is running. If the user’s queries

 switch to a di�erent book, the AI is able to recognize that and act accordingly. Similarly,

 if the user keeps asking questions about the same book the AI retrieves the answers from

 the same context.

 The AI is also capable of persisting context to carry out a conversation about the same

 book without the need to repeatedly mention the book of interest.

 Figure 4-1 illustrates the chat interface and demonstrates the AI's ability to dynamically

 adapt to context changes.

 45

 Figure 4-1: Demonstration of the chatbot.

 4.1.1. Integrated Recommendation System

 In order to make use of the built-in recommendation system, users simply input a

 book title. The recommender tool outputs a curated list of 10 similar books ordered by

 their cosine similarity scores. Here is an overview of how the recommendation tool

 works:

 46

 Input: When a user enters a book title, the tool queries the Google Books API to retrieve

 pertinent details. These include the book's title, author, and description, all of which are

 preprocessed for enhanced e�ciency and model performance.

 Embeddings Generation: Pre-trained sentence transformer models are employed to

 generate semantic embeddings for the queried book. This process encapsulates the

 book's essence in a mathematical representation.

 Similarity Computation: Utilizing cosine similarity, the tool calculates the resemblance

 between the embeddings of the queried book and the existing dataset. This step

 determines the closeness in meaning between the queried book and others in the

 collection.

 Ranking and Output: The books in the dataset are then ranked based on their cosine

 similarity to the queried book, and the top 10 most similar books are presented to the

 user.

 The integrated recommendation engine is illustrated in Figure 4-2.

 Figure 4-2. The integrated recommendation engine.

 47

 4.1.2. Model Evaluation

 To evaluate both the NER and question-answering models, Haystack o�ers tools

 to assess entire pipelines or individual components like Retrievers, Readers, or

 Generators. In this case, we are interested in evaluating the NER model’s capacity in

 detecting book titles from queries as well as the question-answering model’s accuracy in

 fetching the right information.

 One of Haystack’s Evaluation models, the "SASEvaluator" (Semantic Answer Evaluator),

 is used to evaluate answers predicted by Haystack pipelines. This evaluation involves

 checking the semantic similarity between a predicted answer and the ground truth

 answer using a fine-tuned language model.

 Let’s go over the evaluation process of the Named Entity Recognition model. We begin

 by generating queries for 100 random book titles and we compare the extracted titles

 obtained using the custom NER to the actual book titles. Additionally, to better

 understand the performance of our NER model specifically built for detecting books, we

 run the same evaluation experiment using a baseline NER model pre-trained for

 extracting general entities instead of book titles. This comparison will provide a clearer

 perspective on how well our custom model performs relative to a general-purpose entity

 recognition model.

 48

 The table below presents the evaluation results for both models.

 Custom NER model trained
 for book detec�on Baseline NER Model

 Features

 Pre-trained ✔ ✔

 En�ty
 recogni�on ✔ ✔

 Fine-tuned on
 book labels ✔ ✘

 Performance

 Accuracy 0.98 0.05

 F1 Score 0.96 0.03

 Seman�c
 evalua�on score 0.96 0.533

 The performance metrics reveal a strong contrast between the two models. Our custom

 NER model achieves an impressive accuracy of 0.98 and an F1 Score of 0.96, reflecting its

 high precision and recall in identifying book titles. In contrast, the baseline model scores

 a mere 0.05 in accuracy and 0.03 in F1 Score, indicating poor performance. Additionally,

 the custom model's semantic evaluation score of 0.96 demonstrates a strong

 understanding of the context and meaning of book titles, whereas the baseline model

 scores only 0.533. This significant disparity underscores the e�ectiveness of

 domain-specific fine-tuning, as the custom NER model consistently outperforms the

 baseline model across all metrics.

 The question-answering model, on the other hand, is assessed by generating questions

 about random books and comparing the chatbot’s answers to the ground-truth values

 that are structurally extracted from the key-value pairs found in the API response. The

 QA model demonstrated a semantic evaluation score of 81.56% during testing.

 Evidently, deployment of the AI will provide room for more extensive testing which

 eventually contributes to further performance improvements.

 49

 4.1.3. Evaluation of the Recommendation Engines.

 To evaluate the recommendation engine, we compare the Transformer-based

 approach with the traditional Cosine Similarity approach.

 The system calculates the similarity between each reference book’s description and all

 descriptions available in our dataset. For each reference book, the 10 books with the

 highest similarity scores are added to a dataframe. This process is repeated for all 10

 reference books, resulting in a final dataframe containing 100 recommendations.

 Once the recommendations are collected, we evaluate and compare both approaches

 based on two main metrics: the similarity score and a generated relevance score that

 measures how relevant the recommended books are to the reference books.

 To obtain the relevance score, we implement a feature extraction transformer model

 called “distilbert-base-uncased” to extract the 10 most important keywords for all the

 books in our evaluation dataframe. We then examine the author and genre for each

 recommended book and compare them against their corresponding reference book.

 A recommendation is deemed “relevant” if one of the following conditions are met:

 ● The similarity score of the recommendation is higher than or equal to 0.5 (50%).

 ● There is a presence of common keywords between the reference book and the

 recommendation.

 ● The author of the recommended book is also the author of the reference book.

 ● The recommendation and the reference book share the same genre.

 The relevance score is then obtained by computing the ratio of relevant

 recommendations in the dataframe.

 A snapshot is provided in the following table depicting the results of running both

 recommendation engines on an example reference book (“1984”).

 50

 Reference
 Book Recommenda�on Similarity Score Relevance

 “1984”

 Tradi�onal
 Cosine

 Similarity
 Transformer

 Tradi�onal
 Cosine

 Similarity
 Transformer

 Tradi�onal
 Cosine

 Similarity
 Transformer

 On Nineteen
 Eighty-Four

 On Nineteen
 Eighty-Four 28% 70% False True

 Nothing to Envy The Heart of the
 Ma�er 10% 43% False True

 Brave New
 World

 The Seventh
 Cross 9% 43% True True

 You Can't Go
 Home Again SS-GB 9% 41% True True

 The Talisman The Marriage
 Plot 8% 41% True True

 Betrayal in the
 City Nothing to Envy 8% 40% False False

 World at Risk The Spy Story 7% 40% False False

 The Stars Look
 Down

 You Can't Go
 Home Again 7% 40% True True

 The Testaments Notes of a
 Na�ve Son 7% 40% True True

 Tenth of
 December A Column of Fire 7% 39% True True

 Average 10% 44% 60% 80%

 In this example snapshot, the Transformer model consistently produces higher similarity

 scores, with an average of 44%, compared to the Cosine Similarity approach's average of

 10%. In terms of relevance, the Transformer model achieves an 80% relevance rate,

 indicating that 8 out of 10 recommendations meet the relevance criteria. This pattern of

 higher similarity and relevance scores is consistent across most recommendations,

 illustrating the superior performance of the Transformer-based model.

 51

 The following table provides a comprehensive comparative evaluation for the two

 recommendation approaches tested on 10 di�erent reference books.

 Tradi�onal Cosine Similarity
 Approach Transformer Based Approach

 Average Similarity Score 11% 44%

 Recommenda�on Relevance Score 49% 68%

 Overlapping Recommenda�ons 15%

 We can clearly see that by using the transformer-based approach, we had a notable

 improvement in the quality of recommendations. The similarity scores obtained are

 significantly higher compared to the traditional cosine similarity method, reflecting the

 model's ability to capture deeper semantic connections between book descriptions. This

 results in a recommendation engine that is more e�ective at identifying books with

 similar content, themes, and styles, thereby providing users with more relevant and

 satisfying suggestions.

 The integration of the “ all-MiniLM-L6-v2” transformer model into our recommendation

 system represents a substantial advancement over traditional methods. By leveraging the

 model's advanced text representation capabilities, we achieve a more accurate and

 contextually aware similarity assessment, enhancing the overall performance of the AI

 with better book recommendations.

 52

 5. Conclusions
 This thesis demonstrated the e�ectiveness of consolidating new technologies in

 building state-of-the-art AI systems. By leveraging advanced NLP techniques, such as

 Haystack 2.0, Hugging Face transformers, and Named Entity Recognition, we

 successfully developed an information retrieval-based question-answering system

 integrated with a book recommendation engine. This approach not only showcased the

 capabilities of modern AI frameworks but also highlighted the synergy achieved through

 their integration.

 The primary contributions of this work include:

 1. Development of an Intelligent QA System: By integrating information retrieval

 techniques with modern NLP frameworks, we built a chatbot capable of understanding

 and responding to user queries about books. The system utilizes the Google Books API

 to collect relevant information, ensuring the responses are up-to-date and

 comprehensive.

 2. Implementation of NER for Query Understanding: The adoption of NER

 played a crucial role in extracting book titles from user queries. This step was vital for

 the accurate retrieval of information and recommendations. Despite the challenges in

 implementing NER, such as handling ambiguous and complex queries, the system

 demonstrated robust performance in identifying relevant entities.

 3. Incorporation of a Recommendation Engine: Alongside the QA capabilities, a

 recommendation system was integrated to recommend books based on their similarity to

 other titles. By employing pre-trained transformers from HuggingFace, the system could

 o�er personalized and contextually relevant book recommendations that perform

 significantly better than traditional methods.

 53

 5.1. Key Findings

 Comprehensive Coverage of AI Technologies: Through detailed exploration, this

 thesis provided a comprehensive understanding of various technologies and frameworks

 pervasive for building AI systems. Concepts such as Transformers, which revolutionize

 natural language processing tasks, were unveiled, along with insights into the Hugging

 Face ecosystem, showcasing its pivotal role in facilitating NLP model development and

 deployment. Similarly, by examining the modular components and methodologies

 within Haystack 2.0, we gained valuable insights into its architecture and its applicability

 in constructing robust and scalable AI systems.

 Accuracy and Performance: The system showed a high degree of accuracy in extracting

 book titles and retrieving relevant information. The use of transformers and advanced

 embedding techniques significantly enhanced the precision of responses. Similarly,

 leveraging transformers to build the recommendation system demonstrated huge

 improvements compared to traditional methods.

 Scalability and Flexibility: The modular design of the system, particularly the use of

 Haystack 2.0 components, ensures scalability and flexibility. This allows for easy updates

 and enhancements, making the system adaptable to evolving needs and technological

 advancements.

 5.2. Technical challenges and future improvements

 Limitation of computational power and resources:

 Developing AI systems faces significant constraints, particularly in accessing high

 computing resources necessary for working with large-scale data. Limited access to

 high-performance computing infrastructure hampers the ability to process vast datasets

 54

 e�ciently, hindering the AI's capability to learn from diverse and extensive information

 sources.

 Incorporating LLMs such as OpenAI’s GPT can significantly enhance chatbot

 responses, fostering more natural conversations with users. This integration is facilitated

 by implementing a haystack GenerativeQAPipeline component, combining a Retriever

 and a Generator to e�ectively address user queries. By leveraging these advanced

 language models, chatbots can better understand and respond to user inputs, enriching

 the overall conversational experience.

 Dependency on External APIs:

 Reliance on the Google Books API algorithm may occasionally lead to inaccuracies,

 particularly when fetching information related to the wrong book, such as works

 analyzing the main book in question.

 Runtime E�ciency:

 While e�cient runtimes were achieved for the question answering and Named Entity

 Recognition models, the integrated recommendation system's runtime could be

 improved. Therefore, further optimization is needed before deployment.

 Data Limitations:

 The dataset used to test the recommendation system is currently limited in scope. To

 ensure robustness and accuracy in deployment, a larger-scale database is essential.

 Model Recency and Documentation:

 Some of the models used in building the AI are very recent. Haystack 2.0 for instance

 was first released in December 2023 and the pipelines integrated in the AI are

 continuously being updated. While this is a positive aspect, it may pose challenges in

 finding documentation or support for building machine learning systems with the

 55

 Haystack 2.0 framework. Additionally, compatibility issues with older packages persist,

 necessitating migration to the latest versions of the framework.

 5.3. Conclusion

 In summary, the thesis demonstrated the potential of integrating advanced NLP

 techniques with information retrieval systems to create a sophisticated QA system with

 an embedded recommendation engine. The developed AI assistant provides accurate and

 relevant responses to book-related queries along with o�ering an integrated

 state-of-the-art book recommendation system, thereby enhancing the overall user

 experience. The insights gained and the challenges encountered during this research lay

 a solid foundation for delving into the intricacies of building intelligent QA systems. As

 the field continues to evolve, the groundwork laid here serves as a fundamental starting

 point for advancing the capabilities and e�ectiveness of intelligent QA systems.

 56

 Bibliography
 1. Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional

 Transformers for Language Understanding. ArXiv . /abs/1810.04805

 2. Ethayarajh, Kawin. (2019). How Contextual are Contextualized Word Representations? Comparing

 the Geometry of BERT, ELMo, and GPT-2 Embeddings. 55-65. 10.18653/v1/D19-1006.

 3. Gradio. (2024). Gradio Documentation . Retrieved from https://www.gradio.app/docs .

 4. Hambarde, Kailash & Proença, Hugo. (2023). Information Retrieval: Recent Advances and Beyond.

 IEEE Access. PP. 1-1. 10.1109/ACCESS.2023.3295776.

 5. Haystack. (2024). Haystack Documentation . Retrieved from https://docs.haystack.deepset.ai/docs.

 6. Hugging Face. (2024). Hugging Face Documentation . Retrieved from https://huggingface.co/docs.

 7. IBM. (2023). Named Entity Recognition . Retrieved from

 https://www.ibm.com/topics/named-entity-recognition .

 8. Joseph Weizenbaum. 1983. ELIZA — a computer program for the study of natural language

 communication between man and machine. Commun. ACM 26, 1 (Jan. 1983), 23–28.

 https://doi.org/10.1145/357980.357991

 9. Khurana, D., Koli, A., Khatter, K. et al. Natural language processing: state of the art, current

 trends and challenges. Multimed Tools Appl 82, 3713–3744 (2023).

 https://doi.org/10.1007/s11042-022-13428-4

 10. Kumar, Deepak & Singh, Shoumya. (2024). ADVANCEMENTS IN TRANSFORMER

 ARCHITECTURES FOR LARGE LANGUAGE MODEL: FROM BERT TO GPT-3 AND

 BEYOND. International Research Journal of Modernization in Engineering Technology and

 Science. 06. 2582-5208. 10.56726/IRJMETS55985.

 11. Lewis Tunstall, Leandro von Werra, & Thomas Wolf. (2022). Natural Language Processing with

 Transformers: Building Language Applications with Hugging Face .

 12. Liu, Z., Jiang, F., Hu, Y., Shi, C., & Fung, P. (2021). NER-BERT: A Pre-trained Model for

 Low-Resource Entity Tagging. ArXiv. /abs/2112.00405

 57

https://www.gradio.app/docs
https://www.ibm.com/topics/named-entity-recognition
https://doi.org/10.1007/s11042-022-13428-4

 13. Mattingly, William. Introduction to Named Entity Recognition, 2021 (2nd ed.).

 ner.pythonhumanities.com.

 14. Nitin Hardeniya, Jacob Perkins, Deepti Chopra, Nisheeth Joshi, & Iti Mathur. (2016). Natural

 Language Processing with Python and NLTK .

 15. Pratap Danget. (2017). Statistics for Machine Learning: Build Supervised, Unsupervised, and

 Reinforcement Learning Models using both Python and R .

 16. Salehinejad, H., Sankar, S., Barfett, J., Colak, E., & Valaee, S. (2017). Recent Advances in Recurrent

 Neural Networks. ArXiv . /abs/1801.01078

 17. Shelar, H., Kaur, G., Heda, N., & Agrawal, P. (2020). Named Entity Recognition Approaches and

 Their Comparison for Custom NER Model. Science & Technology Libraries, 39(3), 324–337.

 https://doi.org/10.1080/0194262X.2020.1759479

 18. Zhao, W. X., Liu, J., Ren, R., & Wen, J. (2022). Dense Text Retrieval based on Pretrained Language

 Models: A Survey. ArXiv. /abs/2211.14876

 58

https://doi.org/10.1080/0194262X.2020.1759479

