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Abstract

This thesis presents the development of an advanced question-answering Al
chatbot, leveraging state-of-the-art information retrieval technologies and machine
learning models. The chatbot utilizes the Haystack framework to retrieve answers from
the Google Books API, ensuring access to a vast repository of textual data. Additionally,
the system integrates a recommendation engine that harnesses transformers to compute

semantic similarity between books, providing users with relevant reading suggestions.

The research showcases the capabilities of modern machine learning techniques,
particularly focusing on the transformative power of transformers from Hugging Face. It
delves into various natural language processing methodologies, including named entity
recognition and retrieval-augmented generation (RAG). Furthermore, the thesis includes
fine-tuning processes of transformer models to enhance their performance in specific

tasks.

By combining advanced NLP techniques, information retrieval, and recommendation
systems, this work demonstrates the potential of contemporary machine learning
technologies in creating sophisticated, intelligent systems. The findings underscore the
importance of these technologies in developing practical applications that can

understand and respond to user inquiries while offering personalized recommendations.
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1. Introduction

Artificial Intelligence has been emerging in so many different aspects of our lives
completely reshaping the world and rebuilding our day-to-day tasks by integrating
technologies like machine learning and natural language processing to drive efficiency
and innovation. This technological constellation unlocks unprecedented possibilities,
transcending traditional boundaries in leveraging data, knowledge extraction, and task
automation.

At its core, Al is founded on formal reasoning, which aims to mechanize human
cognition and replicate logical inference artificially. Formal reasoning, in this context,
refers to using logical rules and algorithms to make decisions and draw conclusions,
mirroring the way humans reason. This principle underpins the development of Al
systems, enabling them to process information, learn from data, and perform complex
tasks autonomously.

Al's propensity to appear intelligent has roots tracing back to the 1960s, notably
exemplified by Joseph Weizenbaum's creation of the ELIZA chatbot (Weizenbaum,
1983). Though basic compared to today's standards, it showed how Al could simulate
human-like interactions and understanding using simple patterns and pre-written
responses. Its introduction sparked widespread interest in Al and raised deep questions
about how humans interact with computers. The "Eliza effect" refers to users seeing Al
systems as more human-like, even though they simply follow pre-defined rules and
algorithms.

As Al permeates society, it challenges conventional views of human capabilities and
machine limitations. Its fusion with disciplines like data science and natural language

processing heralds a new era of innovation, shaping how we interact with technology.

This thesis embarks on a journey to explore Al's convergence with machine learning and

natural language processing in the realm of book-related inquiries. Through the



development of an Al-driven question-answering system and a mnovel book
recommendation engine, we aim to uncover Al's potential in enriching our interaction
with literary content. By leveraging formal reasoning principles and state-of-the-art
methodologies, we seek to bridge the gap between human intellect and artificial

intelligence.

In the realm of book-related domains, existing Al applications are harnessing the power
of integrations with APIs such as the Google Books API to enhance user experiences
and access to literary content. These integrations span across various platforms, each
offering unique features and functionalities:

Goodreads, a popular platform for readers to discover, review, and recommend books,
integrates with the Google Books API to access its wealth of user-generated data. Al
applications leveraging this integration can tap into Goodreads' repository of book
ratings, reviews, and reading preferences to provide personalized reading suggestions
based on individual tastes and interests.

WorldCat, the world's largest network of library content and services, offers access to
millions of bibliographic records. Integration with the Google Books API enables Al
applications to tap into WorldCat's extensive database of library collections and
holdings. Al-driven search tools can utilize this integration to facilitate access to a wide
range of scholarly resources and academic literature available in libraries worldwide.
University Libraries, which have digitized their collections and made them accessible
through online repositories, integrate with the Google Books API to provide access to
scholarly literature and academic publications. Al-driven tools can assist researchers and
students in discovering relevant literature, conducting literature reviews, and accessing

scholarly resources for their academic endeavors.



1.1 Problem Statement

In today's digital age, access to vast repositories of information, including books,
has become increasingly accessible. However, navigating this wealth of knowledge
efficiently remains a challenge. Users often encounter difficulties in obtaining relevant
information about books, whether it be searching for specific titles, understanding their
content, or discovering new reads. Traditional search engines and library catalogs may
provide basic information, but they often fall short in addressing nuanced queries or

offering personalized recommendations.

Identification of the need for an Al system that can effectively respond to questions
about books arises from these challenges. Such a system would not only streamline the
process of accessing book-related information but also enhance the user experience by
providing tailored responses and recommendations. However, developing such a system

presents several challenges:

Natural Language Understanding: Understanding user queries in natural language poses
a significant challenge due to the complexity and ambiguity inherent in human
language. A robust Al system must be able to parse and interpret various forms of
queries accurately.

Content Understanding: Extracting relevant information from books requires the Al
system to comprehend the content effectively. This involves tasks such as named entity
recognition, summarization, and sentiment analysis to extract key information and
provide meaningful responses.

Data Availability and Quality: Access to comprehensive and high-quality data is crucial
for training and evaluating Al models. However, book-related datasets may be limited in

size and diversity, posing challenges in model development and evaluation.



1.2 Objectives

The primary goal of this thesis is to address the identified need for an Al system
that can effectively respond to questions about books. To achieve this goal, the following

objectives are outlined:

Development of an Al-powered Book Question-Answering System: The thesis aims to
develop an Al system capable of understanding natural language queries about books
and providing accurate and informative responses. This involves leveraging techniques
from natural language processing and machine learning to build a robust

question-answering pipeline.

Creation of a Book Recommendation System: In addition to answering specific queries, the
thesis also aims to build a book recommendation system that can propose relevant books
based on their similarity with other titles. This involves examining book metadata and

leveraging modern NLP and machine learning techniques.



2. Literature Review
2.1.  Natural Language Processing

Natural Language Processing (NLP) has seen significant advancements in recent
years, particularly with the development of transformer models and the integration of
various machine learning techniques. This review examines key literature on NLP and
its associated methodologies, drawing from influential texts and recent articles to provide

a comprehensive overview of the current state of the field.

NLP's evolution has been marked by significant milestones, particularly the introduction
of transformer models such as BERT and GPT-3. These models have revolutionized the
field by enabling machines to process and generate human-like text with remarkable
accuracy. Transformer architectures, characterized by their self-attention mechanisms,
have surpassed traditional models in tasks like translation, summarization, and

question-answering (Kumar & Singh, 2024).

Natural Language Understanding and Natural Language Generation are two primary
components of NLP. NLU focuses on interpreting and deriving meaning from human
language, enabling machines to understand context, sentiment, and intent. NLG, on the
other hand, is the process of producing phrases, sentences, and paragraphs that are

meaningful from an internal representation (Khurana et al., 2022).
g p ) 2023

The significance of NLP permeates modern life, shaping interactions in sectors as varied
as retail and medicine. Retail giants employ customer service chatbots, while medical
professionals rely on NLP to interpret and summarize electronic health records. Smart
assistants like Amazon's Alexa and Apple's Siri harness NLP to interpret user queries,

while advanced models such as GP'T-3 produce coherent prose across diverse subjects. In



the realm of information retrieval, Google leverages NLP to refine search results, while

social media platforms employ it to identify and mitigate hate speech.

Despite remarkable progress, challenges persist. Bias and incoherence plague current
systems, occasionally yielding unpredictable behavior. Yet, these hurdles offer
opportunities for machine learning engineers to refine and advance NLP applications,

increasingly integral to societal functioning.

In their book ‘Natural Language Processing: Python and NLTK, Hardeniya et al. offer a
comprehensive overview of different techniques used in NLP models. Let us go through

some of the techniques that are fundamental in building our Al

2.1.1. Tokenization

Hardeniya et al. define tokenization as the process of breaking down raw text into
smaller, meaningful units known as tokens. These tokens, which encompass words,
phrases, or even entire sentences, play a crucial role in aiding data scientists to grasp the
context during the development of NLP models. By breaking down text into tokens,
tokenization facilitates the conversion of unstructured data into a numerical format,
which is essential for machine learning applications. The authors emphasize the
fundamental role tokenization plays in enabling machines to comprehend and process

raw text. Figure 1-1 illustrates the tokenization process.
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Figure 1-1: Upon receiving a corpus of documents, a tokenizer assigns a unique index to each word, thereby

enabling the translation of any document into a sequential arrangement of numbers.

2..2. Named Entity Recognition

Named Entity Recognition is a core element of this thesis. It’s a fundamental task
in natural language processing that plays a pivotal role in identifying specific categories
of entities within textual data. Tunstall et al. describe NER in their book ‘Natural
Language Processing with 1ransformers: Building Language Applications with Hugging
Face’ as the process of extracting real-world objects like products, places, and people
from text. Essentially, it involves analyzing text at various levels (sentences, paragraphs,
or entire documents) to pinpoint and classify entities based on their respective
categories.

Organizations employing NER for extracting insights from unstructured data utilize a
variety of methodologies. In their overview of NER, IBM categorizes these
methodologies into three main approaches: rule-based, machine learning, and hybrid

methods.



Rule-based approaches entail the formulation of grammatical rules specific to the

language being analyzed. These rules guide the identification of entities within the text
based on their structural and grammatical characteristics. While effective, these

approaches can be labor-intensive and may struggle to generalize well to unseen data.

Machine learning approaches involve training Al-driven models on labeled datasets using
sophisticated algorithms such as conditional random fields and maximum entropy. These
techniques span from traditional machine learning methods like decision trees and
support vector machines to more advanced deep learning techniques such as recurrent
neural networks (RNNs) and transformers. While these methods tend to perform better
on unseen data, they necessitate a substantial volume of labeled training data and can be

computationally intensive.

Hybrid approaches combine the strengths of both rule-based and machine learning
methodologies. They employ rule-based systems to swiftly identify easily recognizable
entities and machine learning systems to detect more intricate entities. This

hybridization optimally balances efficiency and accuracy in entity recognition tasks.

Over the course of NER's development, notable methodological advancements have
emerged, particularly in the realm of deep learning techniques. Some of the latest
advancements encompass:

Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM): RNNs are

specialized neural networks adept at sequence prediction tasks. LSTMs, a variant of
RNNs, excel in capturing temporal patterns and retaining information across extended
sequences. This capability proves invaluable for contextual understanding and entity

identification (Salehinejad et al, 2017).

Transformers and BERT: Transformer architectures, notably exemplified by BERT
(Bidirectional Encoder Representations from Transformers), have revolutionized NER

methodologies. Through a self-attention mechanism, BERT effectively weighs the
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relevance of individual words, accounting comprehensively for contextual cues by
examining preceding and subsequent words (Devlin et al., 2018).

These advancements underscore the evolution of NER techniques, showcasing the
efficacy of deep learning-based approaches in enhancing the extraction of book titles

from user queries.

2..2.1.  The NER process

IBM's overview of NER provides a detailed explanation of the NER process which
comprises a series of steps, each pivotal in extracting meaningful insights from textual
data.

Data Acquisition: The foundation of NER lies in assembling an annotated dataset,
wherein text passages are labeled to denote the presence and classification of named
entities. This dataset acquisition can entail manual annotation or automated techniques.

Data Preprocessing: This phase encompasses text cleansing and formatting procedures,
encompassing tasks such as character removal, text normalization, and segmentation
into cohesive units like sentences or tokens.

Feature Engineering: At the heart of NER lies the extraction of features from the
preprocessed text. These features span several elements, including part-of-speech
tagging, word embeddings, and contextual insights. The selection of features is tailored
to the specific NER model under consideration.

Model Training: The NER model undergoes training, leveraging the annotated dataset
and extracted features. Through this process, the model discerns patterns and
interrelations within the text, thereby learning to accurately identify and categorize
named entities.

Model Evaluation: The efficacy of the trained NER model is scrutinized through
comprehensive evaluation measures. Metrics such as precision, recall, and F1 score serve

to assess the model’s aptitude to label and categorize named entities.

11



Model Refinement: Building upon evaluation insights, iterative refinement endeavors
ensue to enhance the model's performance. This iterative process may involve
hyperparameter tuning, dataset modifications, and integration of advanced techniques
such as ensembling or domain adaptation.

Inference: We now have a great model! It can be used to analyze new text we haven't
seen before. The model will clean up the text, find important features, and predict the

named entities.

2.1.2.2.  Challenges in NER Adoption

Despite significant advancements and widespread adoption, NER faces several

notable challenges worth considering:

1. Language Specificity: Dr. W.J.B. Mattingly, in his book "Introduction to Named Entity
Recognition," highlights a key challenge in NLP: handling documents written in
multiple languages. While NER performs well for languages like English with abundant
labeled data, its accuracy suffers for others. This is where advancements like BERT and
transformer-based models come in potentially being key to overcoming this language
barrier.

2. Domain-specific Challenges: Beyond language barriers, another challenge noted in
IBM’s NER overview is domain specificity. General NER models might misidentify
entities specific to certain fields, like technical terms or, in our case, book titles.

Despite these challenges, ongoing advancements in NER technology are steadily
enhancing its accuracy and applicability, promising to narrow existing technology gaps

and broaden its impact across various domains.

Let us take a look at an example of an NER annotation process:

“Harry Potter, a student at Hogwarts School of Wiitchcrafi and Wizardry, lives in the magical world of

Hogwarts, where he learns spells and encounters mythical creatures like dragons.”

12



NER Annotations:

Person: "Harry Potter"

Organization: "Hogwarts School of Witchcraft and Wizardry", "Hogwarts"
Location: "Hogwarts"

Miscellaneous: "dragons”

These annotations highlight the named entities present in the sentence, including names
of individuals (e.g., "Harry Potter"), organizations (e.g., "Hogwarts School of Witchcraft
and Wizardry"), and locations (e.g., "Hogwarts"). Additionally, the term "dragons" is

annotated as a miscellaneous entity, indicating its significance within the context.

2.1.3. Information Retrieval

Information retrieval stands as one of the most prevalent and widely utilized
applications in modern computing. A quintessential example of IR in action is Google
Search, where, upon receiving a user's query, the retrieval algorithm endeavors to fetch
information pertinent to that query.

Hardeniya et al. describe information retrieval as the process of finding the most relevant
information needed by the user. There are different ways to express the user's
information needs to the system, but the main goal is always the same: to retrieve the
most relevant information.

They explain that a typical IR system generates an indexing mechanism called an
inverted index. This is similar to a book's index, listing words found throughout. An IR

system's inverted index posting list typically looks like this:
<Term, DocFreq, [Docldi, Docld2]>
{"Reading", 2 ---> [1, 2]}
{"is", 2 —> [1,2]}

{"cool", 1 ---> [2]}

13



Here, if a word appears in both document 1 and document 2, the posting list will contain
a list of documents referencing terms. With this data structure in place, various retrieval

models can be introduced, each tailored to different types of data.

Vector space model:

Hardeniya et al. (2016, Natural Language Processing with Python and NLTK)
effectively explain the concept of Vector Space Model. VSM represents documents and
vocabulary terms as vectors in a high-dimensional space. Each document is essentially a
unique vector in this space. While various methods exist for representing these
document vectors, TF-IDF (Term Frequency-Inverse Document Frequency) is a popular
and efficient approach. TF-IDF considers both the frequency of a term within a
document and its importance across the entire document collection. This helps us
distinguish between common words and those specific to a document's content.

Given a term and a corpus, we can calculate the term frequency (TF) and inverse

document frequency (IDF) using the following formula:

0.5 X £(t,d)

tft,d) = 0.5 + o wed

TF, or Term Frequency, simply denotes the frequency of a term within a document.
Conversely, IDF, or Inverse Document Frequency, represents the reciprocal of document

frequency, indicating the number of documents in the corpus where the term appears.

. N
idf(t,D) = log [{de D : t € d}|

Numerous normalization variants exist, yet by integrating both Term Frequency (TF)
and Inverse Document Frequency (IDF), we can devise a more robust scoring
mechanism for assessing the significance of each term within a document. To compute a

TF-IDF score, we simply multiply these two scores together.

tfidf(t,d, D) = tf(t d) x idf(t, D)

14



In TF-IDF, we evaluate a term based on its presence within the current document and its
distribution across the corpus. This approach identifies terms that are uncommon across
corpora yet have a high frequency wherever they occur, making them discriminative for
document retrieval. This scoring can represent documents as vectors. Once all

documents are vectorized, the Vector Space Model can be constructed.

2.1.4.  Question Answering

As data scientists and researchers, we often find ourselves wading through oceans
of documents to find the information we seek. Search engines like Google continually
enhance the efficiency of this process by highlighting specific answers to our questions
whenever possible. For example, when querying 'When did Richard Feynman win his
first Nobel Prize?' on Google, the correct answer—'October 21, 1965'—is immediately

provided, as illustrated in the Figure below.

when did richard feynman win the nobel prize

A 5 ds)

October 21, 1965

Fifty years ago on October 21, 1965, Caltech's Richard

Feynman shared the Nobel Prize in Physics with Julian
Schwinger and Sin-Itiro Tomonaga. The three independently
brokered workable marriages between 20th-century
guantum mechanics and 19th-century electromagnetic field
theory. )15

Caltech

hitps:/lwww. caltech_edu » feynmans-nobel-year-48524  §

Feynman's Nobel Year - Caltech

Figure 1-3: A Google search query and corresponding answer snippet.
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In this example, Google first retrieved around 125,000 documents that were relevant to
the query, and then performed an additional processing step to extract the answer
snippet with the corresponding passage and web page. It’s not hard to see why these
answer snippets are useful. For example, if we search for a trickier question like “Which
guitar tuning is the best?” Google doesn’t provide an answer, and instead we have to
click on one of the web pages returned by the search engine to find it ourselves.

The general approach behind this technology is called question answering (QA)
Tunstall et al. in their book Natural Language Processing with Transformers provide a
deep dive into extractive QA which is the most common type of Question Answering.
They explain that extractive QA involves questions whose answers can be identified as a
span of text in a document, where the document might be a web page, legal contract, or
news article. The two-stage process of first retrieving relevant documents and then
extracting answers from them is also the basis for many modern QA systems, including
semantic search engines, intelligent assistants, and automated information extractors.

Existing QA systems employ various methodologies, including:

2.1.4.1.  Information Retrieval-based Systems

Information Retrieval-based Systems have a primary objective: to efficiently locate
and retrieve relevant information from a large collection of text data in response to a
user's query. This query can take various forms, including keywords, phrases, or even
natural language questions. Operating on a corpus of text, IR functions within a vast
collection of documents or passages containing sought-after information. This corpus
encompasses diverse text data types, such as articles, reports, web pages, or academic
papers (Hambarde & Proenca, 2023).
The process of information retrieval involves finding the documents most relevant to a
query, a challenge faced by every search and recommendation system. Document

retrieval systems primarily execute two processes: indexing and matching.

16



These systems may also utilize similarity measures to assess the resemblance between the
user's query and the content of the documents in the corpus. These measures consider
factors such as semantic relevance, context, and document structure to identify relevant
documents.

Indexing techniques are essential for efficient retrieval in IR. By creating an index or
catalog of terms, keywords, or features present in the documents along with their
corresponding locations, indexing enables rapid lookup and retrieval of relevant
documents during query processing.

Once potential documents or passages are identified, IR may employ ranking algorithms
to prioritize the results based on their relevance to the user's query. Documents closely
matching the query terms or exhibiting higher similarity scores are typically ranked

higher in the list of results.

2.1.4.2.  Neural Network-based Systems

These systems employ deep learning architectures, such as recurrent neural
networks (RNNs) or transformer models, to learn the mapping between questions and
answers from large datasets. Example: OpenAl's GPT (Generative Pre-trained

Transformer) models, such as GPT-3.

2.1.4.3.  Domain-specific QA Systems
Designed to answer questions within specific domains, such as medical, legal, or

technical. Example: IBM Watson for Oncology, which assists oncologists in treatment

decisions.

2.1.44.  Hybrid QA Systems

Combining multiple approaches for improved performance and robustness.
Example: IBM Watson, which incorporates various techniques including NLP, machine

learning, and information retrieval.
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2.2. Transformers

In 2017, Google researchers introduced a new way to understand and process
language called the Transformer. This approach was a big improvement over older
methods like recurrent neural networks (RNNs), especially for translating languages. At
the same time, another method called ULMFIT showed that by using a lot of different
texts, computers could get really good at understanding and classifying language, even
with only a little bit of labeled data.

The success of Transformer and ULMFIT led to the creation of today’s most well-known
transformers: GPT and BERT. By blending the Transformer architecture with
unsupervised learning, these models eliminated the requirement to build specific
architectures for each task from the ground up. This breakthrough allowed them to
surpass nearly every standard in NLP by a considerable margin. Since the debut of GPT
and BERT, a multitude of transformer models have surfaced, showcasing a diverse range

of capabilities. A timeline featuring the most notable entries is depicted in Figure 2-1.

ULMFIT BERT RoBERTa XLM-R  DeBERTa  GPT-Neo
Transformer GPT GPT-2 DistilBERT  GPT-3[T5 GPT-J
2017 2018 2019 2020 2021

Figure 2-1: The Transformers timeline (From Natural Language Processing with Transformers by Leandro

von Werra, Lewis Tunstall, and Thomas Wolf).
To understand what transformers bring to the table, Tunstall et al. provide an

introduction to the core concepts underlying transformers, starting with the

encoder-decoder framework.
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2.2.1. The Encoder-Decoder Framework

Before transformers, recurrent architectures such as LSTMs were the state of the
art in NLP. Tunstall et al. (2022) state that these architectures contain a feedback loop in
the network connections that allows information to propagate from one step to another,
making them ideal for modeling sequential data like text.

As illustrated on the left side of Figure 2-2, an RNN receives some input (a word or
character), feeds it through the network, and outputs a vector called the hidden state.
The model sends information back to itself via the feedback loop, which it can then
utilize in the subsequent step.

This becomes clearer when we "unroll" the loop, as demonstrated on the right side of
Figure 2-2: the RNN transfers information about its state at each step to the following
operation in the sequence. This enables an RNN to maintain a record of information

from previous steps and employ it for its output predictions.

State t [ State 1 ] [ State 2 ] [ State 3 ] State t

Input t

18

Input 3 Input t

Figure 2-2: Unrolling an RNN in time.

These architectures are still extensively utilized for NLP tasks, speech processing, and
time series analysis.

Typically, the encoder and decoder components can encompass any neural network
architecture capable of sequence modeling. This concept is exemplified using a pair of
RNNs in Figure 2-3, where the English sentence "Transformers are great!" is encoded

into a hidden state vector, which is then decoded to yield the German translation
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"I'ransformer sind grossartig!" Input words are sequentially processed through the

encoder, while output words are generated sequentially, top to bottom, by the decoder.

) )
Transformers —» RNN cell RNN cell —» Transformer
are —» RNN cell RNN cell —» sind
great —» RNN cell RNN cell —> grossartig
I — RNN cell RNN cell — !
— -
Encoder block Decoder block

Figure 2-3: Simplified encoder-decoder architecture with a pair of RNNs (Adapted from Natural Language

Processing with Transformers by Leandro von Werra, Lewis Tunstall, and Thomas Wolf).

A drawback of this architecture is that it creates an information bottleneck at the
encoder's final hidden state. This single state must encapsulate the meaning of the entire
input sequence, as it is the only information the decoder can access during output
generation. This issue is especially problematic with lengthy sequences, as information
from the beginning of the sequence may be lost when compressing everything into a
single, fixed representation.

Tunstall et al. propose an attention mechanism that enables the decoder to access all of
the encoder’s hidden states. They specify that this mechanism is a cornerstone of many
modern neural network architectures. Understanding the development of attention
within RNNs lays the groundwork for comprehending one of the key elements of the

Transformer architecture.

2.2.2. Attention Mechanisms

The main idea behind attention mechanisms is to give the decoder access to

multiple hidden states generated by the encoder at each step of the input sequence.

20



However, utilizing all states simultaneously could overwhelm the decoder, so a

mechanism is needed to prioritize them. Attention allows the decoder to assign different

levels of importance, or "attention,” to each encoder state during each decoding step.

This process is illustrated in Figure 2-4, which shows how attention helps in predicting

the third token in the output sequence.

)
Transformers — RNN cell
are —» RNN cell
great —> RNN cell
I — RNN cell
—

Encoder block

-

Attention

&

—» RNNcell

—» RNNcell

—» RNNcell

—» RNNcell

o

/

Decoder block

—» Transformer

—» sind

—» grossartig

- !

Figure 2-4: Attention Mechanism in Predicting the Third Token (Adapted from Natural Language

Processing with Transformers by Leandro von Werra, Lewis Tunstall, and Thomas Wolf).

Attention-based models focus on determining the most relevant input tokens at each

timestep, facilitating the learning of complex alignments between words in generated

translations and those in the source sentence. For instance, Figure 2-5 illustrates

attention weights in an English-to-French translation model, with each pixel

representing a weight. This visualization demonstrates the decoder's ability to accurately

align words like "zone" and "Area," despite their differing order in the two languages.

21



The
agreement
on

the
European
Economic
Area

was
signed

in

August
1992
<end>

accord

la

zone
économique
européenne
a

été

signé

en

ao(t

1992

<end>

Figure 2-5: RNN encoder-decoder alignment of words in English and the generated translation in French

(credits. Dzmitry Bahdanau).

While attention mechanisms significantly improved translation quality, a major
drawback persisted with recurrent models for the encoder and decoder: their
computations are inherently sequential and cannot be parallelized across the input
sequence. Tunstall et al. noted that introducing the transformer model brought a new

paradigm by completely abandoning recurrence and relying solely on a specialized form

of attention known as self-attention.

2.2.9. Transfer Learning in NLP

In the years 2017 and 2018, a breakthrough occurred when research groups
introduced new approaches that made transfer learning work for NLP. This
advancement began with a pivotal insight from OpenAl researchers, who achieved
notable performance in sentiment analysis through the utilization of features derived

from unsupervised pretraining. Subsequently, the ULMFiT (Universal Language Model
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Fine-tuning) method emerged, presenting a versatile framework for adapting pre-trained
Long Short-Term Memory (LSTM) models to diverse tasks.

ULMIFiIT comprises three principal stages, as depicted in Figure 2-7.

Language
Model

Figure 2-7: ULMFIT stages.

Tunstall et al. describe the stages as follows:

Pretraining: Initially, the model undergoes pretraining wherein it learns to predict the
subsequent word based on preceding words, a task known as language modeling.
Remarkably, this process requires no labeled data and capitalizes on the vast amount of
available text, such as that found in Wikipedia.

Domain Adaptation: Here, the focus shifts to adapting the model to a specific domain
corpus (e.g., from Wikipedia to IMDb movie reviews). This phase still involves language
modeling but with the objective of predicting the next word within the target corpus.
Fine-tuning: The final step involves fine-tuning the language model with a classification
layer tailored to the target task (e.g., sentiment classification of movie reviews). This
fine-tuning process further refines the model's performance for the specific task at hand.
ULMEIT played a pivotal role in advancing pretraining and transfer learning within
NLP, filling a critical gap and facilitating the widespread adoption of transformer
models. In 2018, the emergence of two influential transformer architectures marked a

significant milestone in NLP:

1. GPT: This transformer model exclusively employs the decoder component of

the architecture and adopts a language modeling approach similar to ULMFT. GPT's
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pretraining was conducted on the BookCorpus, a dataset comprising 7,000 unpublished
books spanning various genres.

2. BERT: BERT utilizes the encoder segment of the transformer architecture and
employs a specialized form of language modeling known as masked language modeling.
This approach involves predicting masked words within a text, enhancing contextual
understanding. BERT"s pretraining utilized both the BookCorpus and English Wikipedia
(Devlin et al., 2018).

The release of Transformers, as noted by Tunstall et al., ushered in a unified API
encompassing over 5o architectures. This library acted as a catalyst for the surge in
transformer-focused research and quickly spread through the NLP community,

streamlining the integration of these models into various real-world applications.

2.2.4.  The Hugging Face Ecosystem

As highlighted by Tunstall et al., applying new machine learning architectures to
NLP tasks can be cumbersome. Traditionally, researchers publish code alongside their
work, but adapting this code can be time-consuming. HuggingFace Transformers offer a
standardized interface for various transformer models, along with tools to adapt them to
new tasks. The library supports multiple frameworks (PyTorch, TensorFlow, etc) and
simplifies fine-tuning for tasks like text classification and question answering. This
significantly reduces the time and effort needed for training and testing different models.
The Hugging Face ecosystem comprises primarily two components: a suite of libraries
and the Hub, illustrated in Figure 2-8. The libraries offer the necessary code, whereas the
Hub supplies pre-trained model weights, datasets, evaluation metric scripts, and
additional resources. In this section, we will provide a concise overview of these different

Components.
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Figure 2-8: The Hugging Face Ecosystem (From Natural Language Processing with Transformers by

Leandro von Werra, Lewis Tunstall, and Thomas Wolf).

The Hugging Face hub hosts over 600,000 pre-trained models. The integration of
pipelines makes loading a wide range of models and experimenting with them very

simple, allowing us to focus on the domain-specific parts of the project.
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Figure 2-g9: The Models section of the Hugging Face hub.
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2.2.4.1.  Hugging Face Tokenizers
Hugging Face Tokenizers library offers a plethora of tokenization strategies and
boasts remarkable speed in text tokenization, attributed to its Rust backend. Additionally,
it handles all preprocessing and postprocessing tasks, including input normalization and
output transformation to the desired format. Similar to loading pre-trained model

weights with Transformers, Tokenizers allow us to effortlessly load a tokenizer.

2.2.4.2. Hugging Face Datasets
Hugging Face datasets simplifies the process of loading, processing, and storing a
dataset by providing a standard interface for thousands of datasets that can be found on
the Hub. It includes smart caching to avoid redundant preprocessing, while also
overcoming RAM limitations through memory mapping. The library seamlessly
integrates with popular frameworks like Pandas and NumPy, ensuring compatibility with

familiar data manipulation tools.

2.2.4.3. Hugging Face Accelerate

Hugging Face Accelerate adds a layer of abstraction to training loops that takes
care of all the custom logic necessary for the training infrastructure. This accelerates the

workflow by simplifying the change of infrastructure when necessary.

2.2.5. Limitations of Transformers

Tunstall et al. explain several challenges associated with using Transformers. One
challenge is language: most NLP research focuses on English, making it difficult to find
pre-trained models for less common languages. Another issue is data availability; despite
the use of transfer learning to reduce data requirements, models still need significantly
more labeled data than humans to perform the same tasks. Additionally, while
self-attention is effective for short paragraphs, it becomes costly when working with

longer documents. The interpretability of Transformers is also a concern, as these
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models, like other deep learning models, lack transparency, making it difficult to
understand their predictions. Lastly, bias is a significant challenge, as transformer models
pre-trained on internet text inherit biases, complicating efforts to ensure fairness and

inclusivity in their outputs.

2.3. Book Recommendation Systems

Book recommendation systems aim to provide tailored suggestions to users,
enhancing their experience and facilitating the discovery of new content.
In their paper, "Recommendation System Development Based on Intelligent Search, NLE
and Machine Learning Methods," Balush et al. categorize recommender systems into three

main types:

2.3.1.  Collaborative Filtering

This approach recommends items based on the preferences of similar users.
Collaborative filtering methods include:

e User-based: Recommends books based on the preferences of users with similar

tastes. Example: Amazon's "Customers who bought this item also bought" feature.

e [tem-based: Recommends books similar to those the user has previously

interacted with. Example: Netflix's recommendation system for movies and TV

shows.

2.3.2. Content-based Filtering

This approach recommends items by analyzing the similarity between item
features and user preferences. Content-based methods examine attributes such as genre,

author, and plot summary. Example: Goodreads' recommendation system.
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2.3.3.  Hybrid Methods

These methods combine collaborative filtering and content-based filtering
techniques to provide more accurate and diverse recommendations by leveraging both
user preferences and item attributes. Example: Netflix's hybrid recommendation system,
which integrates collaborative filtering with content analysis of movies and user

behaviors.
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3. Methodology

In the Literature review section, we covered several techniques used in NLP as
well as different approaches that can be implemented to build question-answering and
recommendation systems.

The methodology section of the thesis navigates through the development of an
Al-powered assistant tailored for readers, encompassing an array of techniques in
Natural Language Processing and methodologies for constructing question-answering
and recommendation systems. This segment explores the entire project lifecycle, from
data collection to the intricate implementation of named entity recognition, information
retrieval, and question-answering systems, and culminating in the integration of a
recommendation mechanism. The analysis traverses through the strategic maneuvers
employed, the technical methodologies deployed, the encountered challenges, and

potential pathways for enhancements.

3.1.  Named Entity Recognition

To develop a robust Al system capable of effectively addressing user queries, it's
paramount to train it to accurately recognize book titles. This task requires attention to
two critical factors: precision and dynamism.

As discussed previously, Named entity recognition is an NLP technology that empowers
systems to extract names of individuals, locations, organizations, quantities, monetary
values, and percentages, among others. Unfortunately, “book_title” is not one of those
entities that NER is trained to detect. This calls for the need to train a custom NER
model that is specialized in book title detection.

To initiate the model-building process, we begin by compiling a diverse array of book
titles that vary in structure and format. These titles are chosen to represent the broad
spectrum of formats found in book titles. Following this, a dataset containing frequently

asked questions about books is created and stored. Each question in this dataset is
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designed to abstractly reference a specific book title, such as "Who is the author of
{title}?", ensuring the questions are adaptable to various titles.

Next, NLP techniques are applied to each collected book title. This step ensures that the
model can identify the titles from contextual cues rather than relying solely on factors
like capitalization or special formatting. The cleaned title then replaces the placeholder
{title} in each question. After applying all questions to the collected book titles, an
annotated dataset is generated. This dataset maps annotations to each question,
indicating the start and end indices of the book title referenced in every question. This
annotation process enhances the model's ability to accurately identify and respond to
inquiries regarding various book titles, which will later prove crucial for the effectiveness
of our Al assistant.

Let us break down the steps involved in training the custom entity recognition model.
We begin by importing the necessary libraries, including spaCy and Hugging Face's
Transformers, and load a pre-trained NER model based on BERT from Hugging Face's
Transformers library.

The main library used for this task is spaCy, which stands out as a leading open-source
toolkit for NLP. With support for over 75 languages and 84 trained pipelines across 25
languages, spaCy offers a comprehensive suite of functionalities for diverse NLP tasks. It
incorporates multi-task learning capabilities with pre-trained transformers like BERT,
enabling sophisticated processing of text data. Additionally, spaCy provides pre-trained
word vectors and boasts state-of-the-art speed, making it an efficient choice for NLP
applications.

Furthermore, spaCy's production-ready training system facilitates the development of
custom models, leveraging linguistically-motivated tokenization and components for
various tasks such as named entity recognition, part-of-speech tagging, dependency
parsing, and more. Its architecture is easily extensible with custom components and

attributes, supporting integration with frameworks like Py Torch and TensorFlow. spaCy
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also offers built-in visualizers for syntax and NER, aiding in model interpretation and
debugging.
We use our annotated data to fine-tune the pre-trained spaCy model, training it to detect
the BOOK_TITLE label in text. To further enhance the training process, we leverage a
transformer imported from Hugging Face known as DistilBERT. The pre-trained BERT
model serves as a feature extractor, enhancing the model's ability to capture contextual
information relevant to book title recognition. DistilBERT, a distilled version of the
BERT model, retains much of its performance while being computationally more
efficient. It achieves this by reducing the number of parameters and employing various
optimization techniques. DistilBERT is well-suited for scenarios where computational
resources are limited, making it an appropriate choice for training our custom NER
model on book titles.
Below is a demonstration of the implementation of the custom NER model:

User input:

“who wrote the lonely polygamist?”

Extracted entities from the model:

[(the lonely polygamist, BOOK_TITLE)]

In this example, the user is asking for the author of the book “The Lonely Polygamist”.
The NER model successfully identifies the book title from the query and feeds the
information to the API call. Subsequently, data about the book in question is fetched

from the Google Books API to be leveraged for our Question Answering models.

3.2. Data Collection

The data collection stage involved two different stages. The first one being the

curation of a bestseller dataset to collect book titles that would later be used to build the
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named entity recognition models in order to accurately identify and classify book titles
within queries. The second and main data collection stage aims to enable the
development and real-time implementation of the question-answering and information
retrieval system by leveraging data from the Google Books API both for training and
testing the Information Retrieval models.

The new Google Books API offers programmatic access to a myriad of operations
available on the Google Books website, enabling developers to create robust applications
with deeper integration. Key features include search and browse functionality to explore
books matching specific queries, access to detailed book information such as metadata,
availability, price, and preview links, and the management of personalized bookshelves.
To collect information about a specific book, we send a request to the Google Books API
including the book title provided by the user:
We use the “intirle” parameter to make sure the APL only returns results where the ttle.
provided by the user is found in the book title returned by the APIL

We also restrict the API to only return results in the English language by assigning the
value “en” to the “langRestrict” parameter.

The “orderBy” parameter is used to order the results by relevance so we can guarantee
receiving the most relevant books to the user’s query.

The “printType” parameter ensures the results contain only books as opposed to other
types of prints like magazines.

We may also specify the maximum number of results to return by using the
“maxResults” parameter.

Retrieving volume information from the Google Books API does not require
authentication, so we do not have to provide an API key when sending a request.

Since the data collection process is dynamic, meaning that it depends on users' queries,

we will not be storing data locally, hence the non-explicit specification of the scale of
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data collection. This allows us to be scalable but most importantly it does not limit the
amount of data available to the Al.

The Google Books API offers access to an extensive repository of literary works, serving
as a rich source of textual data. The data retrieved from the API is formatted as a JSON
containing a list of dictionaries with key-value pairs that vary for each book. Typically,
the returned data includes, but is not limited to, the book's title, author, description,

publisher, publication date, edition, page count, and text snippets.

3.3. Information Retrieval-based Question-Answering

We previously went over the various approaches for building question-answering
systems. The data fetched from the API provides a solid ground for the implementation
of an information retrieval system where answers to user queries are extracted from the
fetched data corpus.

The first thing we’ll need for our QA system is to find a way to identify a potential
answer as a span of text in a JSON text. For example, if we have a question like “Who
wrote To Kill a Mockingbird?” and the returned textual data contains “Voted America's
Best-Loved Novel in PBS's The Great American Read Harper Lee's Pulitzer
Prize-winning masterwork...” or simply "authors": ["Harper Lee"], then the model should
output “Harper Lee”. To do this we’ll need to understand how to:

e Irame the supervised learning problem.

e 'Tokenize and encode text for QA tasks.

e Deal with long passages that exceed a model’s maximum context size.
Let’s start by taking a look at how to frame the problem.
The most common way to extract answers from text is by framing the problem as a span
classification task, where the start and end tokens of an answer span act as the labels that

a model needs to predict. This process is illustrated in the figure g-1.
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Figure g-1: Span classification head for QA tasks (From Natural Language Processing with Transformers

by Leandro von Werra, Lewis Tunstall, and Thomas Wolf).

Given the scale of this project, a good strategy is to start with a language model that has
already been fine-tuned on a large-scale QA dataset like WikiAnswers, SQuAD, and

GOOAQ. In general, these models have strong reading comprehension capabilities and

serve as a good baseline upon which to build a more accurate system.

The choice of the QA model depends on various factors like whether the corpus is mono

or multilingual and the constraints of running the model in a production environment.



Performance Sentence Performance Semantic Search 15 Avg. Speed Model
Model Name Embeddings (14 Datasets) (6 Datasets) Performance Size
all-mpnet-base-v2 69.57 57.02 63.30 2800 420 MB
multi-qa-mpnet-base-dot-v1 66.76 57.60 62.18 2800 420 MB
all-distilroberta-v1 68.73 50.94 59.84 4000 290 MB
all-MiniLM-L12-v2 68.70 50.82 59.76 7500 120 MB
multi-ga-distilbert-cos-v1 65.98 52.83 59.41 4000 250 MB
all-MiniLM-L6-v2 68.06 49.54 58.80 14200 80 MB
multi-ga-MiniLM-L6-cos-v1 64.33 51.83 58.08 14200 80 MB
paraphrase-multilingual-mpnet-base-v2 65.83 41.68 53.75 2500 970 MB
paraphrase-albert-small-v2 64.46 40.04 52.25 5000 43 MB
paraphrase-multilingual-MiniLM-L12-v2 64.25 39.19 51.72 7500 420 MB
paraphrase-MiniLM-L3-v2 62.29 39.19 50.74 19000 61 MB
distiluse-base-multilingual-cased-v1 61.30 29.87 45.59 4000 480 MB
distiluse-base-multilingual-cased-v2 60.18 27.35 43.77 4000 480 MB

Figure 3-2: Performance of SentenceTransformers models on Sentence Embedding and Semantic Search

(Source: https://www.sbert.net/docs/pretrained_models.html).

For the thesis, we use a fine-tuned SentenceTransformers model designed for semantic
search. The all-* models were trained on all available training data (more than 1 billion
training pairs) and are designed as general-purpose models. While the
"all-mpnet-base-v2" model boasts the highest performance, we prioritize speed for our
project. Therefore, we've opted for the "all-MiniLM-L6-v2" model, which offers a

compelling balance between speed (being 5 times faster) and performance.

3.3.1.  Extractive QA with Haystack

Haystack is a complete framework for creating robust Pipelines using Large
Language Models for various search purposes. Whether it's retrieval-augmented
generation (RAG), question answering, or semantic document search, Haystack utilizes
cutting-edge LLMs and NLP models to offer tailored search experiences, enabling users
to query in natural language.

Its modularity allows us to combine powerful technologies from OpenAl, Chroma, and

other open-source projects, like Hugging Face's Transformers.



We leverage Haystack 2.0, a significant upgrade that redesigns various components,
including Document Stores and Pipelines. Unlike its predecessor, Haystack 1.x, where
pipelines were constructed by sequentially adding nodes, in Haystack 2.0, this process
undergoes a two-step evolution. Initially, components are added to the pipeline without
any predetermined order using the add_component method. Then, to establish the final
graph, these components must be explicitly connected through the connect method.
The Pipeline concept is a fundamental requirement and an optimal fit for building
applications with LLMs, which is why Pipelines and Components are still the
foundation of Haystack 2.0.

In practice, users typically ask questions about books, so we need some way of selecting
relevant passages from all the book info we gather. One approach is to fetch all the
responses from the Google Books API for a query and feed them to the model as one
long context. But this can slow things down a lot and introduce an unacceptable latency
for our users’ queries. As an example, let’s suppose that on average, each book query
returns 5o results in Google Books and each result takes 100 milliseconds to process. If we
need to process all the reviews to get an answer, this would result in an average latency
of 5 seconds per query—much too long for a chatbot interaction! Let us look at how to

handle this by dissecting Haystack components.

3.3.1.1.  Haystack Components

Haystack offers various components, each performing different kinds of tasks.

These are often powered by the latest LLMs and transformer models.

3-3-1.2. Document Store

The Document Store is like a container for documents in Haystack. While it’s not
actually considered a component as it doesn’t have the run() method used in all Haystack

components, it's more like an interface to our database where we can store information



and search through it. So, it's not a part of the Pipeline; rather, it's a tool that
components within the pipeline can use and interact with.

Choosing the right document store is a crucial step because it determines where we store
the information we fetch from the API. The table below provides a quick summary of

different Document Stores available in Haystack.

Type Best for
Vector libraries Managing hardware resources effectively.
Pure vector DBs Managing lots of high-dimensional data.

Vector-capable SGLDBs  Lower maintenance costs with focus on structured data and less on vectors.

Vector-capable NoSQL Combining vectors with structured data without the limitations of the traditional
DBs relational model.

Full-text search DBs Superior full-text search, reliable for production.

In-memory Fast, minimal prototypes on small datasets.

Figure 3-3: Haystack 2.0 Document stores.

After exploring different options, the in-memory document store makes the most sense
to use. Given that we’ll be storing information about the book queried by the user in real
time, we are looking for a fast and minimalistic option that doesn’t use up a lot of
resources. Haystack ships with an ephemeral document store that relies on pure Python
data structures stored in memory, so it doesn’t fall into any of the vector database
categories above. This special Document Store is ideal for creating quick prototypes with
small datasets. It doesn’t require any special setup, and it can be used right away without

installing additional dependencies.

3.3.1.3.  Embedders

The embeddings generated by Haystack embedders consist of fixed-length
vectors. They encapsulate contextual information and semantic connections within the

text. The main aim of these embeddings is to convert text into a format that enables the
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language model to comprehend and analyze it with greater nuance and contextual
awareness.

We use “SentencelransformersTextEmbedder” for query embedding and
“SentenceTransformersDocumentEmbedder” to embed a list of documents with a

Sentence Transformer model.

3.3.1.4.  Retrievers

Retrievers are in charge of finding relevant documents for a given query. They
come in two types: sparse and dense. Sparse retrievers use word frequencies to represent
documents and queries as sparse vectors. Relevance is determined by calculating the
inner product of these vectors. Dense retrievers, however, use encoders like transformers
to represent the query and document as contextualized embeddings (which are dense
vectors). This allows them to understand query content better and improve search
accuracy (Zhao et al., 2022).
Retrievers go through all the Documents in a Document Store, select the ones that
match the user query, and pass it on to the next component. Various Retrievers are
customized for specific Document Stores. For our Al assistant, we used The
InMemoryEmbeddingRetriever, an embedding-based Retriever compatible with the
InMemoryDocumentStore. It compares the query and Document embeddings and
fetches the Documents most relevant to the query from the InMemoryDocumentStore

based on the outcome.

3.3..0.  Readers

Readers extract answers from the documents retrieved by the retriever. They're
typically reading comprehension models, though some models can generate free-form
answers. They evaluate answers by assigning them a probability score ranging from o to

1, indicating how closely they match the query. A score closer to 1 signifies higher

confidence in the answer's relevance. Answers are then sorted based on these probability

38



scores, with the highest probabilities listed first. Optionally, you can specify the
maximum number of answers returned by the Reader using the top_k parameter.

We can use these probability scores to establish quality standards for our system. By
adjusting the confidence_score parameter of the Reader, we can set a probability
threshold for answers. For instance, setting confidence_threshold to 0.6 ensures that only
answers with probabilities greater than 0.6 are considered.

Figure 3-4 demonstrates how additional components can perform post-processing on the
documents retrieved by the retriever or the answers extracted by the reader. For instance,
retrieved documents might require reranking to remove noisy or irrelevant ones, which
could otherwise confuse the reader. Likewise, post-processing of the reader's answers is

often necessary when the correct answer spans multiple passages in a lengthy document.

A «
|

v
Q: When did Richard Feynman A: October 21,
win his Nobel Prize? 1965
Document Answer

postprocessing

Unstructured Relevant
documents documents
(Wikipedia, internet,...)

Figure 3-4: The retriever-reader architecture for modern QA systems (Adaprted from Natural Language

Processing with Transformers by Leandro von Werra, Lewis Tunstall, and Thomas Wolf).

3.3.1.6. Generators

Generators produce text responses based on prompts provided to them. They are
tailored for each LLM technology, such as OpenAl, Cohere, local models, and others.
Generators come in two types: chat and non-chat.

Chat generators are geared towards conversational interactions, allowing for chat

completion. They work with a list of messages to engage with the user.
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Non-chat generators use LLMs for simpler text generation tasks, such as translation or

summarization.

3.3.1.7.  Pipelines
Pipelines allow us to integrate various components, Document Stores, and
integrations, creating robust and customized systems. They offer great flexibility,
enabling simultaneous flows, standalone components, loops, and diverse connections.

The diagram illustrated in Figure 3-5 provides a comprehensive summary of the

User query
NER

Book title

H
’:
4

Data converted _.-~" . Book data
todocuments _-- :

- Embedder
Haystack 20, Pt
Pipelines

store

information retrieval process.

Figure 3-5: Overview of the Haystack information retrieval process.
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3.4. Book Recommendation System

Integrating a recommender system into the chatbot project stems from the initial
motive of creating an Al assistant that mimics a librarian. The goal is to suggest books
similar to what users like, whether by recommending a list based on a single title
provided by a user or by browsing their personal library. The recommender engine
adopts the content-based filtering approach, utilizing the content or attributes of the
item and a notion of similarity to generate similar items with respect to the given item.
Two methods have been adopted for building the book recommender: one leveraging

cosine similarity and the other based on a Hugging Face transformer.

3.4.1.  Cosine Similarity Approach

Cosine similarity quantifies the similarity between two non-zero vectors in an
inner product space by measuring the cosine of the angle between them. It equals 1

when the angle is 0° and decreases for any other angle, never exceeding 1.

cos(8) = =

oy o
A B
i=1 " V=1 '

In this context, A represents a component of vector A, and B ,Tepresents a component of

vector B.
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Figure 3-5: Cosine Similarity

Example: Let us assume A =[2,1,0,1,0,1,1, 2], B=1[2,1,1, 1,1, 0, 1, 2] are the two vectors

and we would like to calculate the cosine similarity:

%AiBiz((2x2)+(1><1)+(0><1)+(1><1)+(Ox1)+(1><0)+(1><1)+(2><2))=11
i=1

n
A =\@F 12+ 07+ 12+ 0% + 17 + 12 + 2%) = 3.46
i=1

n
SB =A@+ 1P+ 12+ 12+ 12 + 02 + 17 + 22) = 3.60
i=1

11
3.46%3.60 0.88

Cosine similarity: cos(0) =
A value of 0.88 signifies significant similarity between the two vectors, nearing the
highest possible score of 1. When computing similarities between books, cosine similarity
is applied to their TF-IDF vectors. These vectors are then arranged in descending order
based on their cosine similarity scores, effectively organizing all other items by their

proximity to the vector under comparison.
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Breaking down the process:

The TF-IDF matrix, essential for analyzing textual content, is computed for all
book data collected from the API. TF-IDF, a statistical measure covered in the Literature
Review, evaluates the significance of words within a document concerning a broader
collection (corpus) of documents. Leveraging the TfidfVectorizer tool from scikit-learn,
this matrix translates textual attributes into a numerical format.

To ensure consistency and accuracy in analysis, text preprocessing is employed before
generating the TF-IDF matrix. This preprocessing step encompasses various techniques
such as tokenization, lowercasing, punctuation removal, stopword elimination, and
lemmatization. By standardizing the textual data, the recommender system optimizes its
ability to detect similarities effectively.

Once the TF-IDF matrices for both the fetched book and the collected data are prepared,
cosine similarity is computed between their respective TF-IDF vectors. Cosine similarity
measures the cosine of the angle between two vectors, providing a quantifiable metric for
their textual resemblance.

Based on the computed cosine similarity scores, the system identifies the indices of
books most akin to the fetched book. These indices serve as a reference to extract similar
books from the DataFrame, allowing the system to compile a curated list of

recommendations closely aligned with the user's preferences.

3.4.2.  Transformer-based Approach

The second approach to calculating similarity between books involves using a
Hugging Face transformer model, which maps returned contexts from the API into a
high-dimensional vector space. This approach is the principal method adopted for our
recommendation engine due to its superior ability to capture semantic relationships

between collected book data.
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We leverage the pre-trained transformer model "all-MiniLM-L6-v2," which we also
employed for the Question Answering model. This model is part of the MiniLM family,
designed to provide efficient and effective embeddings while maintaining a small
footprint suitable for practical applications.

The book descriptions are fed into the all-MiniLM-L6-v2 model, which converts each
description into a dense vector representation (embedding). These embeddings capture
rich semantic information by considering the context in which words appear.

The transformer model employs a self-attention mechanism, which enables it to weigh
the importance of different words in a sentence relative to one another, capturing
relationships and dependencies that traditional vectorization methods (like TF-IDF)
might miss.

After obtaining the embeddings for all book descriptions, we calculate the cosine
similarity between the embedding of a reference book and the embeddings of other
books in the dataset.

Unlike traditional vectorization methods, transformer embeddings can understand the
context in which words are used, making them adept at capturing the nuances of
language. For example, the model can differentiate between polysemous words (words
with multiple meanings) based on the surrounding text (Ethayarajh, 2019).

The embeddings produced by the transformer model are dense and continuous,
effectively encoding semantic relationships. This results in more accurate similarity
measurements, as books with similar themes, genres, or topics will have closer
embeddings in the vector space.

The transformer model is pre-trained on a large and diverse corpus, allowing it to
generalize well across different types of text. This enables it to leverage a vast amount of
linguistic knowledge when generating embeddings.

Using the transformer-based approach, we expect a notable improvement in the quality
of recommendations compared to the traditional cosine similarity method, given the

model's ability to capture deeper semantic connections between book descriptions.

44



4. Implementation

In this section, a demonstration of the beta version of the Al is given covering a

practical representation of the features and technologies described in the methodology:.

4.1. Demonstration of the Al assistant

We start with a quick introduction to Gradio - a tool that’s been rising in
popularity for its ease of use in building interactive interfaces for machine learning
models. Gradio enables developers to create intuitive user interfaces that allow users to
interact with Al models through web browsers, enabling seamless experimentation and
showcasing of Al capabilities. Chatlnterface is Gradio's high-level abstraction for
creating chatbot Uls, and allows us to create a web-based demo around a chatbot model
in a few lines of code.

As mentioned before, the data fetched from the API is stored in a context that’s
forwarded to a document store. To achieve a better user experience and faster runtimes,
the Al is built to persist the context whilst the kernel is running. If the user’s queries
switch to a different book, the Al is able to recognize that and act accordingly. Similarly,
if the user keeps asking questions about the same book the Al retrieves the answers from
the same context.

The Al is also capable of persisting context to carry out a conversation about the same
book without the need to repeatedly mention the book of interest.

Figure 4-1 illustrates the chat interface and demonstrates the Al's ability to dynamically

adapt to context changes.
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Chatbot

who wrote norwegian wood?

Haruki Murakami.

what is it about?

'Poignant, romantic and hopeless, it beautifully encapsulates the heartbreak and loss of faith' Sunday
Times 'This book is undeniably hip, full of student uprisings, free love, booze and 1960s pop, it's also
genuinely emotionally engaging, and describes the highs of adolescence as well as the lows.

who is the author of thinking fast and slow?

Daniel Kahneman.

who published it?

Farrar, Straus and Giroux.

Figure 4-1: Demonstration of the chatbot.

411. Integrated Recommendation System

In order to make use of the built-in recommendation system, users simply input a
book title. The recommender tool outputs a curated list of 10 similar books ordered by
their cosine similarity scores. Here is an overview of how the recommendation tool

works:
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Input: When a user enters a book title, the tool queries the Google Books API to retrieve
pertinent details. These include the book's title, author, and description, all of which are
preprocessed for enhanced efficiency and model performance.

Embeddings Generation: Pre-trained sentence transformer models are employed to
generate semantic embeddings for the queried book. This process encapsulates the
book's essence in a mathematical representation.

Similarity Computation: Utilizing cosine similarity, the tool calculates the resemblance
between the embeddings of the queried book and the existing dataset. This step
determines the closeness in meaning between the queried book and others in the
collection.

Ranking and Output: The books in the dataset are then ranked based on their cosine
similarity to the queried book, and the top 10 most similar books are presented to the
user.

The integrated recommendation engine is illustrated in Figure 4-2.

= Chatbot

Thinking fast and slow

These are the recommended books:

The Millionaire Mind by Thomas J. Stanley

Skin in the Game by Nassim Nicholas Taleb

The Magic of Thinking Big by David J. Schwartz
Debunking the Top 9 Self-Help Myths by Aaron A. Andrews
Leap of Faith by Sumer Sethi, MD

A Curious Mind by Brian Grazer, Charles Fishman
The Winner Effect by lan H. Robertson

The Spike by Mark Humphries

The Nature of the Beast by David J. Anderson
The Driving Force by Peter Schutz

Figure 4-2. The integrated recommendation engine.
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4.1.2. Model Evaluation

To evaluate both the NER and question-answering models, Haystack offers tools
to assess entire pipelines or individual components like Retrievers, Readers, or
Generators. In this case, we are interested in evaluating the NER model’s capacity in
detecting book titles from queries as well as the question-answering model’s accuracy in

fetching the right information.

One of Haystack’s Evaluation models, the "SASEvaluator" (Semantic Answer Evaluator),
is used to evaluate answers predicted by Haystack pipelines. This evaluation involves
checking the semantic similarity between a predicted answer and the ground truth
answer using a fine-tuned language model.

Let’s go over the evaluation process of the Named Entity Recognition model. We begin
by generating queries for 100 random book titles and we compare the extracted titles
obtained using the custom NER to the actual book titles. Additionally, to better
understand the performance of our NER model specifically built for detecting books, we
run the same evaluation experiment using a baseline NER model pre-trained for
extracting general entities instead of book titles. This comparison will provide a clearer
perspective on how well our custom model performs relative to a general-purpose entity

recognition model.
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The table below presents the evaluation results for both models.

Custom NER model trained
Baseline NER M I
for book detection aseline ode
Pre-trained v v
Entity
Features recognition v v
Fine-tuned on
book labels v X
Accuracy 0.98 0.05
Performance F1 Score 0.96 0.03
Semantic
evaluation score 0.96 0.533

The performance metrics reveal a strong contrast between the two models. Our custom
NER model achieves an impressive accuracy of 0.98 and an F1 Score of 0.96, reflecting its
high precision and recall in identifying book titles. In contrast, the baseline model scores
a mere 0.0 in accuracy and 0.03 in F1 Score, indicating poor performance. Additionally,
the custom model's semantic evaluation score of 0.96 demonstrates a strong
understanding of the context and meaning of book titles, whereas the baseline model
scores only 0.533. This significant disparity underscores the effectiveness of
domain-specific fine-tuning, as the custom NER model consistently outperforms the
baseline model across all metrics.

The question-answering model, on the other hand, is assessed by generating questions
about random books and comparing the chatbot’s answers to the ground-truth values
that are structurally extracted from the key-value pairs found in the API response. The
QA model demonstrated a semantic evaluation score of 81.56% during testing.

Evidently, deployment of the AI will provide room for more extensive testing which

eventually contributes to further performance improvements.
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4.1.3. Evaluation of the Recommendation Engines.

To evaluate the recommendation engine, we compare the Transformer-based
approach with the traditional Cosine Similarity approach.
The system calculates the similarity between each reference book’s description and all
descriptions available in our dataset. For each reference book, the 10 books with the
highest similarity scores are added to a dataframe. This process is repeated for all 10

reference books, resulting in a final dataframe containing 100 recommendations.

Once the recommendations are collected, we evaluate and compare both approaches
based on two main metrics: the similarity score and a generated relevance score that

measures how relevant the recommended books are to the reference books.

To obtain the relevance score, we implement a feature extraction transformer model
called “distilbert-base-uncased” to extract the 10 most important keywords for all the
books in our evaluation dataframe. We then examine the author and genre for each
recommended book and compare them against their corresponding reference book.
A recommendation is deemed “relevant” if one of the following conditions are met:

e The similarity score of the recommendation is higher than or equal to 0.5 (50%).

e There is a presence of common keywords between the reference book and the

recommendation.

e 'The author of the recommended book is also the author of the reference book.

e The recommendation and the reference book share the same genre.
The relevance score is then obtained by computing the ratio of relevant
recommendations in the dataframe.
A snapshot is provided in the following table depicting the results of running both

recommendation engines on an example reference book (“1984”).
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Reference

Book Recommendation Similarity Score Relevance
Traditional Traditional Traditional
Cosine Transformer Cosine Transformer Cosine Transformer
Similarity Similarity Similarity
On Nineteen On Nineteen o o
Eighty-Four Eighty-Four 28% 70% False True
The Heart of th
Nothing to Envy | ¢ ,\;Z;e‘if € 10% 43% False True
B
rave New The Seventh 9% 43% True True
World Cross
You Can't G
outant®o SS-GB 9% 41% True True
Home Again
" n i
1984 The Talisman The ,\F/,,Z)Tage 8% 41% True True
Bet linth
€ ra}ézym € Nothing to Envy 8% 40% False False
World at Risk The Spy Story 7% 40% False False
The Stars Look You Can't G
€ otars Loo outant®o 7% 40% True True
Down Home Again
The Testaments Ilvvzgffe[;}; Z 7% 40% True True
Tenth
D:c,:?tmg)efr A Column of Fire 7% 39% True True
Average 10% 44% 60% 80%

In this example snapshot, the Transformer model consistently produces higher similarity

scores, with an average of 44%, compared to the Cosine Similarity approach's average of

10%. In terms of relevance, the Transformer model achieves an 80% relevance rate,

indicating that 8 out of 10 recommendations meet the relevance criteria. This pattern of

higher similarity and relevance scores is consistent across most recommendations,

illustrating the superior performance of the Transformer-based model.
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The following table provides a comprehensive comparative evaluation for the two

recommendation approaches tested on 10 different reference books.

Traditional Cosine Similarity Transformer Based Approach
Approach
Average Similarity Score 11% 44%
Recommendation Relevance Score 49% 68%
Overlapping Recommendations 15%

We can clearly see that by using the transformer-based approach, we had a notable
improvement in the quality of recommendations. The similarity scores obtained are
significantly higher compared to the traditional cosine similarity method, reflecting the
model's ability to capture deeper semantic connections between book descriptions. This
results in a recommendation engine that is more effective at identifying books with
similar content, themes, and styles, thereby providing users with more relevant and

satisfying suggestions.

The integration of the “all-MiniLM-L6-v2” transformer model into our recommendation
system represents a substantial advancement over traditional methods. By leveraging the
model's advanced text representation capabilities, we achieve a more accurate and
contextually aware similarity assessment, enhancing the overall performance of the Al

with better book recommendations.
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5. Conclusions

This thesis demonstrated the effectiveness of consolidating new technologies in
building state-of-the-art Al systems. By leveraging advanced NLP techniques, such as
Haystack 2.0, Hugging Face transformers, and Named Entity Recognition, we
successfully developed an information retrieval-based question-answering system
integrated with a book recommendation engine. This approach not only showcased the
capabilities of modern Al frameworks but also highlighted the synergy achieved through
their integration.

The primary contributions of this work include:

1. Development of an Intelligent QA System: By integrating information retrieval
techniques with modern NLP frameworks, we built a chatbot capable of understanding
and responding to user queries about books. The system utilizes the Google Books API
to collect relevant information, ensuring the responses are up-to-date and

comprehensive.

2. Implementation of NER for Query Understanding: The adoption of NER
played a crucial role in extracting book titles from user queries. This step was vital for
the accurate retrieval of information and recommendations. Despite the challenges in
implementing NER, such as handling ambiguous and complex queries, the system

demonstrated robust performance in identifying relevant entities.

3. Incorporation of a Recommendation Engine: Alongside the QA capabilities, a
recommendation system was integrated to recommend books based on their similarity to
other titles. By employing pre-trained transformers from HuggingFace, the system could
offer personalized and contextually relevant book recommendations that perform

significantly better than traditional methods.



5.1.  Key Findings

Comprehensive Coverage of Al Technologies: Through detailed exploration, this
thesis provided a comprehensive understanding of various technologies and frameworks
pervasive for building Al systems. Concepts such as Transformers, which revolutionize
natural language processing tasks, were unveiled, along with insights into the Hugging
Face ecosystem, showcasing its pivotal role in facilitating NLP model development and
deployment. Similarly, by examining the modular components and methodologies
within Haystack 2.0, we gained valuable insights into its architecture and its applicability

in constructing robust and scalable Al systems.

Accuracy and Performance: The system showed a high degree of accuracy in extracting
book titles and retrieving relevant information. The use of transformers and advanced
embedding techniques significantly enhanced the precision of responses. Similarly,
leveraging transformers to build the recommendation system demonstrated huge

improvements compared to traditional methods.

Scalability and Flexibility: 'The modular design of the system, particularly the use of
Haystack 2.0 components, ensures scalability and flexibility. This allows for easy updates
and enhancements, making the system adaptable to evolving needs and technological

advancements.

5.2.  Technical challenges and future improvements

Limitation of computational power and resources:
Developing Al systems faces significant constraints, particularly in accessing high
computing resources necessary for working with large-scale data. Limited access to

high-performance computing infrastructure hampers the ability to process vast datasets
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efficiently, hindering the Al's capability to learn from diverse and extensive information
sources.

Incorporating LLMs such as OpenAl’s GPT can significantly enhance chatbot
responses, fostering more natural conversations with users. This integration is facilitated
by implementing a haystack GenerativeQAPipeline component, combining a Retriever
and a Generator to effectively address user queries. By leveraging these advanced
language models, chatbots can better understand and respond to user inputs, enriching

the overall conversational experience.

Dependency on External APIs:
Reliance on the Google Books API algorithm may occasionally lead to inaccuracies,
particularly when fetching information related to the wrong book, such as works

analyzing the main book in question.

Runtime Efficiency:
While efficient runtimes were achieved for the question answering and Named Entity
Recognition models, the integrated recommendation system's runtime could be

improved. Therefore, further optimization is needed before deployment.

Data Limitations:
The dataset used to test the recommendation system is currently limited in scope. To

ensure robustness and accuracy in deployment, a larger-scale database is essential.

Model Recency and Documentation:

Some of the models used in building the AI are very recent. Haystack 2.0 for instance
was first released in December 2023 and the pipelines integrated in the AI are
continuously being updated. While this is a positive aspect, it may pose challenges in

finding documentation or support for building machine learning systems with the
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Haystack 2.0 framework. Additionally, compatibility issues with older packages persist,

necessitating migration to the latest versions of the framework.

5.3. Conclusion

In summary, the thesis demonstrated the potential of integrating advanced NLP
techniques with information retrieval systems to create a sophisticated QA system with
an embedded recommendation engine. The developed Al assistant provides accurate and
relevant responses to book-related queries along with offering an integrated
state-of-the-art book recommendation system, thereby enhancing the overall user
experience. The insights gained and the challenges encountered during this research lay
a solid foundation for delving into the intricacies of building intelligent QA systems. As
the field continues to evolve, the groundwork laid here serves as a fundamental starting

point for advancing the capabilities and effectiveness of intelligent QA systems.
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