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ABSTRACT 
 

Nowadays, many investors decide to invest in a passive strategy, such as an ETF, 

which replicates exactly an index, without incurring in any cost related to manage-

ment fees.  

The objective of this study is to verify whether an active portfolio outperforms a 

passive strategy and if it is reasonable to invest in a portfolio which is characterized 

by active allocation. 

Active portfolio management involves two areas: market timing and stock selec-

tion.  While market timing and fundamental analysis skills can be assessed, evalu-

ating stock selection ability remains challenging. In this paper we propose a frame-

work to estimate the value of security analysis.  

The primary aim of asset managers is to maximize returns while minimizing 

risks, safeguarding against inflation. With an array of strategies and techniques 

available for constructing and managing investment portfolios, the challenge of 

selecting the optimal investment remains pertinent for investors.  

Additionally, a common goal for portfolio investors is to attain a greater risk–

adjusted return compared to investing in a single asset. Diversifying assets into a 

portfolio presents the opportunity for reducing risk while also potentially increas-

ing returns compared to investing in individual assets.  

In the early 1950s, Harry Markowitz introduced a groundbreaking model em-

phasizing the importance of diversification in risk reduction. 

In our study, we use Sharpe's Index Model to create an optimal portfolio. We 

favor this model over the Markowitz Model due to its simplicity, requiring fewer 

inputs and offering easier computation. Through this model, we determine the al-

location of investment proportions for each stock within the optimal portfolio.  

However, because of its simplifying assumptions, the index model may fail to 

capture important nuances and complexities of the market, including the impact of 

industry-specific factors and other sources of risk. This can limit its effectiveness 

in portfolio allocation, especially in environments where these factors play a sig-

nificant role in asset pricing. To overcome this limit, we extend the analysis to the 

case in which the error terms of the securities are correlated, using the so-called 

SURE methodology. 
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I. INTRODUCTION 
 

In the realm of investment management, the pursuit of optimal portfolio perfor-

mance has been a central theme for practitioners and academics.  

Within the investment context, the Index Model has emerged as a prominent tool 

for portfolio optimization, offering a streamlined approach to portfolio construc-

tion. This study seeks to delve deeper into the empirical application of this frame-

work and its efficacy in constructing optimal portfolios.  

The primary objective of this analysis is to assess whether an optimal active 

portfolio outperforms a passive strategy that invests in a market index. 

In the first part of this study, we present the literature review of portfolio alloca-

tion, discussing the main theories on which this study is based. In particular, in 

subsection II.A, the Efficient Market Hypothesis is described, with its implications 

for portfolio management and the ongoing debate surrounding market efficiency. 

This is followed by an overview of the Capital Asset Pricing Model (II.B), explain-

ing its assumptions, applications, and limitations in predicting expected returns. 

Next, we illustrate the Security Market Line (II.C), with a focus on its role in the 

CAPM framework and its utility in determining the relationship between expected 

return and systematic risk. In subsection II.D, the Index Model is examined, detail-

ing its methodology and significance in the context of portfolio optimization and 

performance evaluation. 

The discussion then moves to “Performance Analysis” (II.E), where we delve 

into the methodologies used to assess the performance of investment portfolios, 

offering an overview of key performance metrics and their relevance. The subsec-

tion on Risk-Adjusted Measures of Performance (II.F) explains the various 

measures used to evaluate investment performance by adjusting for risk, such as 

the Sharpe Ratio, Treynor Ratio, and Jensen's Alpha.  

The literature review ends with an overview on the costs of active management 

(II.G) and a comparison between passive and active strategies (II.H). 

The second, and central part, of this study is dedicated to the data methodology, 

where we analyze the descriptive statistical profiles of twenty stocks selected from 

the NYSE and the NASDAQ (III.A). We explore three different approaches to port-

folio allocation and their implications for investment outcomes. In subsection III.B, 

our first aim is to identify the optimal allocation strategy that maximizes returns 



while minimizing risks, considering an optimal portfolio with fixed weights. Then, 

we illustrate the estimation of the model applied to our selection of 20 stocks (III.C).  

Building upon this strategy, we describe the rolling-window model, assuming 

that the active portfolio can be rebalanced as new data becomes available to the 

potential investor (III.D). 

Lastly, since the Index Model presents some limitations in considering the risks 

of real financial markets, we implement the model using the SURE methodology, 

assuming that the error terms of the selected assets could be correlated (III.E). 

Furthermore, in subsection III.F, we describe the multivariate regression model, 

through which we have derived the formulas of the assets ‘weights for the SURE 

methodology extension. Then, in the following section (III.G), we estimate the op-

timal allocation of the portfolio considering possible correlation between the error 

terms. 

For each estimation model, we compare various performance measures to assess 

whether the optimal active portfolio is more efficient compared to a passive strategy 

that invests in the S&P 500 index. 

II. LITERATURE REVIEW 
 

Modern portfolio analysis is concerned with grouping individual securities into 

an efficient set of portfolios1. A portfolio is defined efficient if it provides the largest 

expected return than any other portfolio with comparable risk. Return realization 

and expected return from portfolio are a weighted average of individual securities 

returns. The portfolio’s return can be calculated using the following formula2: 

𝑟!	#	∑ (&!	'	(!)"
!#$

 

Where w! is the weight or proportion of the portfolio's total value that is invested 

in the i-th asset and ri is the return of the i-th individual asset. 

 
1 Farrell, J. L. (1976). The multi-index model and practical portfolio analysis. The Financial Analy-
sis Research Foundation, Charlottesville, Virginia. https://www.cfainstitute.org/-/media/docu-
ments/book/rf-publication/1976/rf-v1976-n3-4732-pdf.pdf 
2 Gustyana, T., & Wijayangka, C. (2021). Optimal portfolio using single-index model and capital 
asset pricing model (CAPM) in COVID-19 pandemic era. IEOM Society International. 

https://www.cfainstitute.org/-/media/documents/book/rf-publication/1976/rf-v1976-n3-4732-pdf.pdf
https://www.cfainstitute.org/-/media/documents/book/rf-publication/1976/rf-v1976-n3-4732-pdf.pdf


The basic framework for modern portfolio analysis was established by Mar-

kovitz3, whose Modern Portfolio Theory laid the groundwork for portfolio optimi-

zation techniques. His work emphasized the importance of considering both risk 

and return when constructing portfolios. However, the size and complexity of the 

model makes it inapplicable for practical use.  

William Sharpe4 started from the Markovitz model to circumvent the difficulties 

of dealing with a great number of covariances among assets and introduced the 

single-index model. The fundamental concept of this simplified approach is that the 

only form of co-movement between securities comes from a common response to 

a general market index, such as the S&P 500. In particular, Sharpe’s model assumes 

that the return (ri) on any stock is given by random factors and a linear relationship 

with the market index (rm).  

Moreover, Sharpe and Lintner5 developed the Capital Asset Pricing Model6 

(CAPM), which laid the foundation for understanding how systematic risk influ-

ences asset pricing and portfolio construction7. Lintner extended the work of Sharpe 

by introducing the concept of beta, which measures an asset's sensitivity to market 

movements within the framework of the single-index model. His research provided 

empirical evidence supporting the CAPM and the single-index model's validity. 

Michael Jensen further developed the single-index model by introducing the idea 

of the Jensen's alpha, which measures the performance of an investment relative to 

its expected return as predicted by the CAPM. His work emphasized the importance 

of portfolio managers' ability to generate excess returns (alpha) after adjusting for 

market risk. 

 
3 Markowitz, H. M. (1959). Portfolio Selection: Efficient Diversification of Investments. Yale Uni-
versity Press. http://www.jstor.org/stable/j.ctt1bh4c8h 
4 Sharpe, W. F. (1963). A simplified model for portfolio selection. Management Science, 9(1), 277-
293. 
5 Lintner, J. (1965). The Valuation of Risk Assets and the Selection of Risky Investments in Stock 
Portfolios and Capital Budgets. The Review of Economics and Statistics, 47(1), 13–37. 
https://doi.org/10.2307/1924119 
6 Sharpe, W. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. 
Journal of Finance, 19(3), 425-442. 
7 Yang, Z. (2021). Analysis on CAPM and Sharpe Ratio in Market Investment. Proceedings of the 
6th International Conference on Financial Innovation and Economic Development (ICFIED 2021). 
https://doi.org/10.2991/aebmr.k.210319.002 

https://doi.org/10.2991/aebmr.k.210319.002


The Capital Asset Pricing Model (CAPM) and the Index model share a founda-

tional relationship in asset pricing and portfolio theory. 

The CAPM is a fundamental framework that links the expected return of an asset 

to its systematic risk, measured by beta. It suggests that the expected return of an 

asset is equal to the risk-free rate plus a risk premium proportional to the asset's 

beta, representing the asset's sensitivity to market risk. On the other hand, the index 

model is a specific form of asset pricing model that decomposes the returns of in-

dividual assets into systematic and firm-specific components. It posits that the re-

turn on a particular asset can be explained by its sensitivity to a common market 

factor (the index) and its unique, idiosyncratic risk8. 

A. Efficient Market Hypothesis 
 

According to Fama’s theory9, although an investor may experience temporary 

success by purchasing a stock that yields significant short-term profits, in the long 

run, it is unlikely for them to attain returns on investment significantly exceeding 

the market average. 

Fama’s theory – which carries the same implications for investors as the Random 

Walk Theory10 – is based on the concept that all pertinent information influencing 

stock prices is widely accessible since it is "universally shared" among all investors. 

According to the efficient market hypothesis, stock prices always trade at their fair 

value, therefore it is unfeasible to purchase undervalued stocks or sell overvalued 

stocks to generate additional profit. If this concept holds, then investors can only 

achieve superior returns by assuming significantly higher levels of risk.  

The Efficient Markets Hypothesis (EMH) comes in three variations11 – weak, 

semi-strong, and strong forms – representing different levels of market efficiency. 

1. Weak Form 

 
8 “Idiosyncratic risk” is an investment risk that is related to an individual asset. This type of risk is 
also referred to as a “specific risk” or “unsystematic risk”.  
9 Keown, A. J., Martin, J. D., & Petty, J. W. (2014). Foundations of finance. Global Edition, 8th 
Edition. Pearson.  
10 The Random Walk theory assumes that single-period log returns are independent and follow a 
normal distribution. 
11 Corporate Finance Institute, Efficient Market Hypothesis: it is not possible to outperform the mar-
ket by skill alone. CFI. https://corporatefinanceinstitute.com/resources/career-map/sell-side/capital-
markets/efficient-markets-hypothesis/ 



The weak form of the EMH states that securities prices incorporate all publicly 

available market information but may not encompass new information that is not 

yet public. It also assumes that past data regarding prices, trading volume, and re-

turns do not predict future prices. 

Accordingly, the weak form suggests that technical trading strategies cannot 

consistently yield excess returns because past price trends cannot anticipate future 

price movements driven by new information. Despite discounting technical analy-

sis, the weak form allows for the possibility that superior fundamental analysis 

might enable outperformance relative to the overall market average return on in-

vestment. 

2. Semi-strong Form 

The semi-strong form of the theory rejects the utility of both technical and fun-

damental analysis. Building upon the weak form assumptions, the semi-strong form 

asserts that prices adjust rapidly to any new public information, therefore funda-

mental analysis becomes unable to predict future price movements.  

3. Strong Form 

The strong form of the EMH asserts that prices reflect all available information, 

both public and private. This encompasses all publicly available information, his-

torical as well as current, along with insider information. Even data not accessible 

to investors, such as confidential information known only to a company's CEO, is 

presumed to already be incorporated into the company's current stock price. Thus, 

according to the strong form of the EMH, even insider knowledge cannot provide 

investors with an edge that consistently outperforms the overall market average. 

B. Capital Asset Pricing Model 
 

The Capital Asset Pricing Model is based on the portfolio theory developed by 

Markowitz, which assumes that investors will choose the optimal portfolio based 

on investor preferences for risk and return12. 

 
12 Gustyana, T., & Wijayangka, C. (2021). Optimal portfolio using single-index model and capital 
asset pricing model (CAPM) in COVID-19 pandemic era. IEOM Society International. 



The relationship between risk and return could be explained using the capital 

asset pricing model (CAPM), which includes the beta (systematic risk), the ex-

pected return of the asset, the risk-free asset (in this case Treasury bill rate) and the 

equity risk premium (the market return minus the risk-free asset). 

The formula of the CAPM is the following: 

𝐸(𝑟") 	= 	 𝑟# 	+ 	𝛽"[𝐸(𝑟$) 	−	𝑟#] 

Where E(ri) is the expected return of asset i, rf is the risk-free rate, rm is the 

expected return of the market and βi is the sensitivity of the investment's return to 

the return of the market. [E(rm) – rf] is the market risk premium, which represents 

the additional return over the risk-free rate that investors require for taking on the 

higher risk of investing in the market rather than in a risk-free asset. 

 

According to this equation, investors expect to be compensated more as the risk 

increases. The beta of an investment represents the extent to which the investment 

may increase the risk with respect to the market portfolio. If a stock poses higher 

risk than the market, its beta will exceed one. Conversely, a beta below one suggests 

that the stock could potentially mitigate portfolio risk. 

The CAPM asks what would happen if all investors utilized the same input list 

to draw their efficient frontiers and had access to the same investable universe13. 

Their efficient frontiers would be the same. They would then draw an identity tan-

gent CAL, having the same risk-free rate, and naturally, they would all arrive at the 

same risky portfolio. As a result, for every risky asset, all investors would select the 

same set of weights.  According to the CAPM, since the market portfolio is the 

aggregation of all the identical portfolios, it will also have the same weight for all 

investors. Therefore, if all investors choose the same risky portfolio, such portfolio 

must be the market portfolio. It follows that the capital market line, as shown in 

Figure 1, will represent the capital allocation line based on each investor's optimal 

risky portfolio.  

The CAPM aims to assist investors in risk management. If investors want to 

optimize a portfolio's return in perfect alignment with its risk, they should pick the 

 
13 Bodie, Z., Kane, A. and Marcus, A. (2014) Investments, Global Edition, 10th Edition. McGraw 
Hill Higher Education, New York. 



portfolio that is tangent with the capital asset line, illustrated in the subsequent 

graph14. 

 
Figure 1: Capital Market Line and Efficient Frontier 

 

The CAPM suggests the following implications: 

- The market portfolio represents the efficient frontier portfolio. The efficient 

frontier consists of portfolios of the market portfolio and the risk-free asset. 

- The systematic risk of any asset is determined by its covariance with the 

market, expressed as 𝜎i,m = Cov [r!, r%] for asset i. 

 

The efficient frontier operates under the same assumptions as the CAPM and 

remains a theoretical concept. If a portfolio were situated on the efficient frontier, 

it would yield the maximum return corresponding to its level of risk. However, 

determining whether a portfolio resides on the efficient frontier is unattainable due 

to the unpredictability of future returns. 

This risk-return trade-off is inherent in the CAPM, and the graphical represen-

tation of the efficient frontier can be reconfigured to depict the trade-off for indi-

vidual assets. In the subsequent chart, the Capital Market Line (CML) is trans-

formed into the Security Market Line (SML). Instead of expected risk on the x-axis, 

the stock's beta is utilized. The figure below reveals that as beta escalates from A 

to B, the expected return also increases. 

 
14 Image by Sultan Saif Al Maiyahi. 
 



 
Figure 2: Security Market Line 

 

C. Security Market Line 
 

The anticipated return-beta correlation can be conceptualized as a balance be-

tween reward and risk. As mentioned earlier, this connection is often depicted by 

the Security Market Line (SML), which is a representation of the Capital Asset 

Pricing Model. Here, beta denotes the systematic risk, positioned on the x-axis, 

while expected return is plotted on the y-axis15. 

The market’s beta is 1, and the market earns an expected return equal to E(rm). 

Using the SML it is possible to calculate the expected return on an asset, consider-

ing that Beta is given by: 

𝛽" =
𝜌",$𝜎"
𝜎$

 

Where ρ!,% is the correlation between the asset and the market, while σi and σm 

are respectively the standard deviations of the asset and the market. 

The Security market line applies to every asset, but what happens if in our port-

folio we have more than one asset? 

In this case we need to calculate the return on the two securities (rp), which is a 

weighted average of the returns r1 and r2, as shown below. 

 

𝐸(𝑟') 	= 	 𝑟# 	+ 𝛽'[𝐸(𝑟$) 	−	𝑟#] 

 
15 CFA Institute. (2023). Fixed income, derivatives, alternative investments, and portfolio manage-
ment. CFA Institute Investment Series, Level 1, Vol. 5, pp. 640-641. 



𝐸(𝑟() 	= 	 𝑟# +	𝛽([𝐸(𝑟$) 	−	𝑟#] 

𝐸(𝑟)) = 	𝑤'𝐸(𝑟') 	+	𝑤(𝐸(𝑟() 	= 		 𝑟# +	(𝑤'𝛽' +	𝑤(𝛽()	[𝐸(𝑟$) 	−	𝑟#] 

From the last equation is evident that also the portfolio beta is a weighted aver-

age between the beta of the two assets:  

𝛽) = ∑ 𝑤" 	𝛽"*
"+'     

Therefore: 

𝐸(𝑟)) = 	 𝑟# + 𝛽)	[𝐸(𝑟$) 	−	𝑟#] 

The security market line is helpful for investor to understand whether an asset is 

overvalued or undervalued. All the securities that reflect the consensus market view 

are points directly on the SML (they are properly valued).  

If a point representing an asset's estimated return lies above the SML, it suggests 

that the asset carries a relatively low level of risk compared to its expected return, 

making it an attractive investment option. Conversely, if the point representing an 

asset falls below the SML, it indicates that the stock is overvalued. In this scenario, 

the return fails to adequately compensate for the associated risk. In such instances, 

a profitable strategy may involve short selling. 

In conclusion, assets positioned above the security market line are deemed un-

dervalued as they offer higher expected returns for a given level of risk. Assets 

positioned below the security market line are considered overvalued since they pro-

vide lower expected returns for a given level of risk. 

 

 
Figure 3: Undervalued and Overvalued assets  



 

D. Index Model 
 

Differently from Markowitz's approach, the index model suggests that by com-

paring the returns of individual securities with a single index, such as the “Market 

Index”, the relationship between each pair of securities can be indirectly deter-

mined. This model significantly reduces the need for large data inputs and complex 

calculations.  

𝑟" − 𝑟# = 𝛼" + 𝛽"(𝑟$ − 𝑟#) + 𝜀"
 

Where ri is the return on asset i, and rm is the return on the market. 

Note that the model is a regression equation where 𝛽i represents the slope coef-

ficient and 𝛼i represents the intercept of the regression. In the single-index model, 

the slope measures the responsiveness of the asset’s return to fluctuations in the 

market, while the intercept is the component of the asset’s return that is independent 

of the market return. As in standard regression analysis, the 𝜀i (or residual term) is 

assumed to be equal to zero on average. Most importantly, the residuals are assumed 

to be uncorrelated across securities: (𝜀", 𝜀,) = 0. This is in line with the single-index 

model assumption that the sole source of movement between securities is due to the 

general market; so that once this influence has been removed, the expectation is for 

no correlation between the residuals of different securities. 

In this section, we present the index model which streamlines the estimation of 

covariance matrices and significantly improves the assessment of security risk pre-

miums. By enabling us to separate risk into systematic and firm-specific compo-

nents, this model provides valuable insights about the importance of diversification. 

Moreover, it facilitates the quantification of these risk components for individual 

securities and portfolios. 

The index model operates under several assumptions: 

1. All investors have homogeneous expectations. 

2. The risk and return of every security are evaluated over a consistent 

holding time. 



3. The price fluctuations of stocks are influenced by prevailing economic 

and business conditions.  

4. The systemic risk affecting all stock returns is represented by only one 

macroeconomic factor, which is the rate of return on a market index, 

such as the S&P 50016.  

For instance, consider an equally weighted portfolio comprising n securities. Let 

us denote the excess return on the portfolio as Rp = rp– rf, and the excess return on 

the market as RM = rm – rf.   

The excess rate of return on the portfolio can be expressed as: 

𝑅) = 𝛼) + 𝛽)𝑅- + 𝜀" 

As the number of stocks in the portfolio grows, the proportion of portfolio risk 

associated with non-market factors diminishes progressively. This portion of the 

risk is effectively diversified away. However, market risk persists regardless of the 

number of firms included in the portfolio. This means that no matter how many 

companies are combined into the portfolio, market risk is unchanged.  Additionally, 

according to this model, as more securities are added into our portfolio, the portfo-

lio's variance diminishes due to the diversification of firm-specific risk. Nonethe-

less, the effectiveness of diversification has its constraints. The curve in figure 4 

shows how total risk decreases as the number of securities increases, but it asymp-

totically approaches a limit represented by systematic risk. This demonstrates that 

no matter how well-diversified a portfolio is, it will still be subject to systematic 

risk. Therefore, diversification can reduce risk but cannot eliminate it completely. 

Even with a substantial number of securities (denoted as "n"), a portion of the risk 

persists owing to the correlation of virtually all assets with the common market 

factor. Consequently, this systematic risk is deemed non-diversifiable.  

 
16 Single-Index Model for Security Returns - thismatter.com, https://thismatter.com/money/invest-
ments/single-index-model.htm.  

https://en.wikipedia.org/wiki/Stock_market_index
https://en.wikipedia.org/wiki/S%26P_500
https://thismatter.com/money/investments/single-index-model.htm
https://thismatter.com/money/investments/single-index-model.htm


 

Figure 4: Risk Breakdown17 

E. Performance Analysis 

The analysis of performance is crucial for asset managers to make informed in-

vestment decisions and optimize strategies over time. In the evaluation of perfor-

mance, it is fundamental to consider two key factors: the efficiency of financial 

markets and the ability to generate excess returns for investors18. 

Different strategies can be employed in managing a portfolio of assets, primarily 

categorized as passive or active. A passive strategy involves replicating a bench-

mark index (e.g., S&P 500, MSCI World, US Dollar Index) without requiring any 

rebalancing action. This approach typically minimizes fees due to the reduced need 

for active management. Employing a buy-and-hold strategy ensures that the port-

folio's return is derived solely from the systematic risk19 it carries, reflecting the 

performance of the overall market or index. 

Conversely, an active strategy aims to generate abnormal returns, or alpha, by 

outperforming the benchmark. This requires the portfolio manager to engage in on-

going evaluation of assets to determine if they are undervalued or overvalued, 

 
17 Bodie, Z., Kane, A. and Marcus, A. (2014) Investments, Global Edition, 10th Edition. McGraw 
Hill Higher Education, New York. 
18 Vitale, P. (2017-2018). Performance analysis, course of Equity markets, and alternative invest-
ments. 
19 “Systematic risk” refers to the risk inherent to the market. Systematic risk, also known as undi-
versifiable risk, affects the overall market, not just a particular stock or industry and it cannot be 
eliminated through diversification. 



leading to buying or selling decisions based on this assessment. Active management 

assumes that financial markets are not fully efficient, meaning that not all available 

information is immediately reflected in asset prices. Therefore, portfolio managers 

seek to exploit these inefficiencies by leveraging superior information or analytical 

techniques to achieve higher returns than those of the benchmark. 

In the context of performance analysis, several metrics and models are employed 

to assess how well a portfolio is managed. These include absolute return measures, 

such as the total return, and relative return measures, like alpha and beta, which 

compare the portfolio's performance against a benchmark. Additionally, risk-ad-

justed performance metrics, such as the Sharpe Ratio, Treynor Ratio, and Jensen's 

Alpha, are used to evaluate the returns generated per unit of risk taken. These met-

rics provide a more comprehensive understanding of the trade-offs between risk 

and return in the portfolio management process. 

Furthermore, performance analysis involves a deep dive into the sources of re-

turns, distinguishing between those derived from market movements (systematic 

risk) and those resulting from the manager's specific actions (unsystematic risk). 

This differentiation helps in understanding the true value added by active manage-

ment.  

F. Risk-Adjusted Measures of Performance 

We've observed the existence of a trade-off between risk and return, which indi-

cates that when assessing the performance of a portfolio, adjustments for risk are 

necessary. In finance, there are several risk-adjusted performance metrics20: 

1. Sharpe ratio:  (%*(&
+%

 

The Sharpe’s ratio divides average portfolio excess return over the sample pe-

riod by the standard deviation of returns over that period. It measures the reward to 

(total) volatility trade-off. 

2. Sortino Ratio: (%*(&
+'

, where 𝜎. = 7'
*
∑ 𝑚𝑖𝑛;𝑟)," − 𝑟# , 0=

(*
"+'  

 
20 Bodie, Z., Kane, A. and Marcus, A. (2014) Investments, Global Edition, 10th Edition. McGraw 
Hill Higher Education, New York, pp 839-840. 
 



The Sortino ratio measures the risk-adjusted return of an investment or portfo-

lio, focusing specifically on downside risk. Unlike the Sharpe Ratio, which consid-

ers total volatility (standard deviation), the Sortino Ratio only considers the down-

side deviation (or semi-variance), which provides a more accurate assessment of 

the risk related to negative returns. The numerator of the Sortino ratio represents 

the excess return of the portfolio over the risk-free rate. The denominator is the 

semi-variance of the portfolio and captures the portfolio's downside risk by consid-

ering only the negative deviations from the risk-free rate. 

3. Treynor measure: /!0/"
1!

, where 𝛽) is the beta of the portfolio, which measures 

its sensitivity to market movements. 

Like the Sharpe ratio, Treynor’s measure gives excess return per unit of risk, 

but it uses systematic risk instead of total risk.  

Jensen’s alpha:  𝑟) − >𝑟# + 𝛽);𝑟$ − 𝑟#=? 

Jensen’s alpha is the average return on the portfolio over and above that pre-

dicted by the CAPM, given the portfolio’s beta and the average market return. 

4. Information ratio: 2!
34

 , where 𝑇𝐸	 = 	7 '
*0'

∑ 𝑟) − 𝑟5*
"+'  and 𝑟5 is the return 

of the benchmark. 

The information ratio divides the alpha of the portfolio by the nonsystematic 

risk of the portfolio, called “tracking error” in the industry. It measures abnormal 

return per unit of risk that in principle could be diversified away by holding a mar-

ket index portfolio. 

G. Costs of Active Management 
 

A passive investment strategy would simply invest in a market index fund, such 

as the S&P 500 and some the risk-free asset. In such case, the derived utility of  

wealth would be Sharpe ratio: rf + 
#!
"

$%,  where SM is the Sharpe measure of the mar-

ket-index portfolio and, equivalently, the slope of the capital market line. 

Therefore, if an investor can identify non-zero alphas, a fund with a larger 

Sharpe ratio can be constructed and would be more attractive to investors. Accord-

ing to this, it is reasonable to charge some fees on active allocation and for the 



service of selection. This charge may be either an upfront fee, or an ongoing annual 

management charge. 

To derive the one-time fee that investors would be willing to pay to buy into the 

fund, we will use the formula derived by Kane, Marcus, and Trippi21:  

 

f = 
,(
)
	*	,*

)

-.
 

Where f is the percentage fee that investors would be willing to pay for active 

services, SP is the Sharpe ratio of the optimal portfolio and SM is the Sharpe ratio of 

the market portfolio and A is the coefficient that represents the investor’s risk aver-

sion. Risk aversion measures an investor's reluctance to accept risk. Higher values 

of A indicate greater risk aversion. 

Common methods to estimate risk aversion include surveys, historical data anal-

ysis, and modeling investor behavior in different market conditions. 

The power of the active portfolio is given by the additive value of the squared 

information ratios > 2&
6(8&)

? and precision of individual analysts.  

Recall that  𝑆:( =	𝑆-( + B
2&
6((&)

C
(
,		therefore we derive:   

f = '
(;
∑ D> 2*

6(8*)
?E
(
	*

"+'  

As a result, the maximum fee, f, is determined by three variables: (1) the risk 

aversion coefficient; (2) the squared information ratio distribution throughout the 

securities universe; and (3) the accuracy of the security analysts. It is evident that 

this fee is more than what an index fund would impose. The active management 

may impose additional costs over the 20-basis point threshold22.  

H. Active vs. Passive Strategy  
 

Whether it is better a passive strategy, or an active strategy is a debate in the 

financial industry.  The decision between passive and active investing extends 

 
21 Kane, A., Marcus, A., & Trippi, R. R. (1999). The valuation of security analysis. Journal of Port-
folio Management, 25(3), 12-25. 
22 Bodie, Z., Kane, A. and Marcus, A. (2014) Investments, Global Edition, 10th Edition. McGraw 
Hill Higher Education, New York, pp 970-971. 



beyond a broad overview. Different market conditions favor each strategy differ-

ently. In times of volatility or economic downturns, active strategies often perform 

better, while passive strategies tend to shine when market movements are synchro-

nized, or equity valuations are uniform. Combining both approaches, known as a 

hybrid strategy, can harness the strengths of each depending on sector opportuni-

ties. However, since market dynamics constantly shift, determining the optimal bal-

ance between passive and active investments requires ongoing evaluation and a 

keen understanding of market trends23. 

When adopting a "best of both worlds" strategy, it is important to recognize the 

challenges associated with consistently achieving successful active management, 

especially within certain asset classes which are very volatile. Consequently, it may 

be reasonable to invest in a passive strategy in those areas and rely more active 

investing in asset classes where is has been historically proven to be profitable, for 

example in smaller U.S. companies and in emerging markets.  

Moreover, investing in volatile assets exposes to the risk of high drawdowns, 

therefore an investor adopting an active strategy would incur in big losses, but also 

in high management fees for holding the actively managed portfolio. Therefore, it 

would be reasonable to adopt active strategies for investments that perform low 

volatility and, consequently, low risk. 

When comparing active and passive management it is crucial to carefully assess 

the economic environment. Generally, when interest rates decline, equity markets 

typically thrive. Conversely, as rates increase, the discrepancy between the top and 

bottom performing stocks tends to widen. In such conditions, active managers often 

excel, as demonstrated by historical data. For instance, a Nomura Securities' anal-

ysis revealed that during the period from 1962 to 1968, when the 10-year treasury 

yield surged from 3.85% to 15.8%, larger company mutual funds achieved a median 

cumulative return more than 62% higher than the S&P 500 Index24. A similar sce-

nario unfolded in 2013 when Federal Reserve Chairman Ben Bernanke signaled the 

end of quantitative easing, triggering the 'taper tantrum'. Active managers fared well 

in comparison during this period.  

 
23 Hunt, D. A New Take on the Active vs. Passive Investing Debate. Morgan Stanley, 
https://www.morganstanley.com/articles/active-vs-passive-investing  
24 Active vs. passive investing – the Great Investment Debate, Rathbone Investment Management 
Limited. https://www.rathbones.com/sites/rathbones.com/files/literature/pdfs/rathbones_ac-
tive_vs_passive_investing_james_pettit_investment_report_full_website.pdf  

https://www.morganstanley.com/articles/active-vs-passive-investing
https://www.rathbones.com/sites/rathbones.com/files/literature/pdfs/rathbones_active_vs_passive_investing_james_pettit_investment_report_full_website.pdf
https://www.rathbones.com/sites/rathbones.com/files/literature/pdfs/rathbones_active_vs_passive_investing_james_pettit_investment_report_full_website.pdf


Unfortunately, in some macroeconomic environments, active management ap-

peared to be less effective in terms of performance.  

For example, in 2022, after the aggressive increase of interest rates by the Fed-

eral reserve, the performance of funds actively managed has been unfavorable for 

investors. Blame is being attributed to unexpectedly high inflation and the Federal 

Reserve's response, characterized by an aggressive policy of interest rate hikes25. 

III. DATA METHODOLOGY 
 

For our study, let us consider a portfolio comprising 20 assets across various 

sectors. We gather monthly historical closing price26 data from January 2008 to 

December 2022. Additionally, we downloaded historical information for a risk-free 

asset (one-month T-bills) and a market index (the S&P 500).  

We divided the dataset in two windows: 

- The estimation window contains data from 2008 to 2017,  

- The testing window spans from 2018 to 2022.  

Recall that prices of an asset recorded over times are often non-stationary due to 

long upward trends, and short-run upward or downward trends (i.e. the increase of 

productivity, the financial crisis). In fact, as we run the sample autocorrelation func-

tion, we notice that the prices are highly correlated with past prices (Figure 5). 

Financial time series frequently exhibit non-stationarity. Consequently, conduct-

ing statistical analyses directly on prices, denoted as Pt, can be challenging. For 

various reasons, it is preferable to examine the relative changes in prices27. There-

fore, we calculate the monthly return for each stock using the following formula:  

r< =	
P<	–	P<–'	
P<–'

	 

rt is defined as the simple return of the asset with price series Pt. However, in 

statistical analysis of financial data, it is preferable to consider log-returns, which 

are defined as:  

 
25 Brown, G. (2022, December 9). Why are investments down in 2022? It’s all about “real rates”. 
Kenan Institute of Private Enterprise. https://kenaninstitute.unc.edu/commentary/why-are-all-in-
vestments-down-in-2022-its-all-about-real-rates/ 
26 Yahoo Finance, www.yahoofinance.com  
27 Dettling, M. Statistical analysis of financial data. Zurich University. https://ethz.ch/con-
tent/dam/ethz/special–inter–est/math/statistics/sfs/Education/Advanced%20Studies%20in%20Ap-
plied%20Statistics/course–material–1921/FinancialData/Script_v210113.pdf  

http://www.yahoofinance.com/


log(r<) = log	 K
P<
P<–'

L 	= 	log	(P<)	– 	log(P<–') 

Prices (and log-prices) are considered non-stationary, while returns are station-

ary. A weakly stationary time series is characterized by consistent mean, variance, 

and covariances over different time intervals28. A time series is deemed “stationary” 

if its statistical properties, such as sample mean, variance, and covariance, remain 

constant over time. Stationarity implies the absence of consistent upward or down-

ward trends, consistent variability around the mean, and the absence of predictable 

patterns or cycles repeating at regular intervals. 

In fact, a time-series process is weakly stationary if and only if:  

• E[Xt]= µ  is finite and independent of t , ∀t ∈ Z   

• V[Xt]= σ2 is finite and independent of t, ∀t ∈ Z   

• Cov(Xt, Xt-k) = γk is finite and independent of t, ∀t ∈ Z  

 

 
Figure 5: Sample Autocorrelation Function 

of Closing Prices (Asset 129) 

 
Figure 6: Sample Partial Autocorrelation 

Function of Closing Prices (Asset 1)

 
28 Guidolin, M. (2018, February). Autoregressive moving average (ARMA) models and their prac-
tical applications, Bocconi University. 
29 We display only Asset 1 (SAP) as the same situation is observed for the other assets. Asset 1 is 
used for illustrative purposes. 



 
Figure 7: Sample Autocorrelation Function 

of Log-returns (Asset 1) 

 
Figure 8: Sample Partial Autocorrelation 

Function of Log-returns (Asset 1)

In this study we are going to analyze log-returns since price series tend to be 

non-stationary. In fact, empirical evidence on time series analysis suggests that a 

typical approach involves log-transforming the series and taking first-order differ-

ences at lag 1, resulting in the transformed series denoted as rt.  

Logarithmic returns are extensively favored in quantitative analysis of financial 

time series over raw prices due to several advantages. These include the ability to 

normalize returns for comparison across different assets (which is challenging with 

raw prices), time-additivity properties, and other conveniences for classical statis-

tical and mathematical analyses30. 

If shorter lags exhibit significant positive correlations, it means that a time series 

is characterized by a trend. In the case of closing prices (figure 5), there seems to 

be a pattern that relates the closing prices of subsequent lags. Instead, for log-re-

turns (figure 7), this does not happen, meaning that returns are stationary. 

Let us consider the partial autocorrelation function, which measures the unique 

correlation between a data point in a time series and its past values, while control-

ling for the influence of intervening observations at shorter lags. This allows to 

identify the specific relationship between a data point and its immediate historical 

values, independent of the influences from other time points. For example, the par-

tial autocorrelation for lag 3 is only the correlation that lags 1 and 2 do not explain.  

Moreover, considering the autocorrelation of the monthly prices (figure 5), we 

can see that previous closing prices appear to be a reliable indicator of future closing 

 
30 Tsay, R. S. (2005). Analysis of financial time series (2nd Edition, pp. 7-10). John Wiley & Sons, 
Inc. https://cpb-us-w2.wpmucdn.com/blog.nus.edu.sg/dist/0/6796/files/2017/03/analysis-of-finan-
cial-time-series-copy-2ffgm3v.pdf 



prices, because there is high correlation between monthly returns. Specifically, the 

autocorrelation function of prices is close to 1 and this means that there is depend-

ence across prices over time.  

Looking at the partial autocorrelation function there is only one statistically sig-

nificant correlation at lag 1, which means that the asset is strongly correlated with 

the closing price of the previous month, but the other lags are nearly significant. 

Instead, from figure 7-8 we can notice that the correlations between log returns 

are statistically irrelevant, which means that stock’s returns are mostly independent 

from past returns. 

A. Descriptive Analysis 
 

In this section, we perform some descriptive analysis of the dataset, which is 

composed by 20 different stocks of the NYSE and the NASDAQ.  

We have selected stocks from these two markets as they represent key segments 

of the global financial market, in fact they include a wide range of companies from 

various sectors and stages of development.  

The NASDAQ is known for its technology and growth companies, while the 

NYSE includes more established and traditional companies.  

From the NASDAQ, we have selected the most famous technological companies 

like Apple, Microsoft, Amazon, and Alphabet (Google). These companies are 

global leaders in innovation and technology, and studying their stocks can offer 

valuable insights into growth trends and emerging technologies.  

On the other hand, the NYSE, with its long history and large-cap companies, is 

characterized by stability and less volatility compared to the NASDAQ, in fact most 

of the assets selected belong to the NYSE, in order to reduce the volatility of the 

optimal portfolio. Moreover, the NASDAQ and NYSE represent a significant por-

tion of the global stock market. Many companies listed on these exchanges have 

operations and customers worldwide, making their stocks useful indicators of 

global economic trends.  

The stocks taken into consideration for the allocation portfolio are: 

- Asset 1: SAP - Technology 

- Asset 2: KO (Coca-Cola) - Consumer Staples (Beverages) 

- Asset 3: JPM (JPMorgan Chase) - Financials (Banking) 

- Asset 4: BAC (Bank of America) - Financials (Banking) 



- Asset 5: PSQ - Finance (Inverse ETF) 

- Asset 6: DIS (Walt Disney Company) - Communication Services (Entertain-

ment) 

- Asset 7: XOM (Exxon Mobil Corporation) - Energy (Oil & Gas) 

- Asset 8: JNJ (Johnson & Johnson) - Healthcare (Pharmaceuticals) 

- Asset 9: LLY (Eli Lilly and Company) - Healthcare (Pharmaceuticals) 

- Asset 10: MCD (McDonald's Corporation) - Consumer Discretionary (Fast 

Food) 

- Asset 11: GOOGL (Alphabet Inc. Class A) - Technology (Internet) 

- Asset 12: AMZN (Amazon.com Inc.) - Consumer Discretionary (E-Commerce) 

- Asset 13: APPLE (Apple Inc.) - Technology (Consumer Electronics) 

- Asset 14: PFE (Pfizer Inc.) - Healthcare (Pharmaceuticals) 

- Asset 15: SHEL (Royal Dutch Shell) - Energy (Oil & Gas) 

- Asset 16: E (ENI S.p.A.) - Energy (Oil & Gas) 

- Asset 17: NFG (National Fuel Gas Company) - Utilities (Natural Gas) 

- Asset 18: CPK (Chesapeake Utilities Corporation) - Utilities (Natural Gas) 

- Asset 19: NJR (New Jersey Resources Corporation) - Utilities (Natural Gas) 

- Asset 20: ATO (Atmos Energy Corporation) - Utilities (Natural Gas) 

 

In addition, we have selected the S&P 500 as the benchmark for the portfolio. 

This market index includes 500 stocks from different companies listed in New 

York, accounting for approximately 80% of the market capitalization. All the stocks 

in the S&P 500 belong to U.S. companies with a market capitalization exceeding 

$6.1 billion, a float of at least 50%, monthly trading volume over the last 6 months 

of not less than 250,000 shares, and an average annual stock price exceeding $131. 

  

 
31 Wall Street: cos'è lo Standard & Poor’s 500. Borsa Italiana. 



 

Asset Mean Standard  
Deviation Skewness Kurtosis 

SAP 0.0048 0.1121 –0.9048 6.0647 

KO 0.0048 0.0946 –0.1229 4.3838 

JPM 0.0063 0.0932 –1.0753 8.0207 

BAC –0.0011 0.1440 –2.2430 19.9628 

PSQ –0.0152 0.1012 0.4692 3.9512 

DIS 0.0065 0.0987 –0.8153 5.6438 

XOM 0.0019 0.0898 –0.0641 4.8487 

JNJ 0.0063 0.0901 –0.1235 3.8980 

LLY 0.0115 0.1102 –0.1449 4.7848 

MCD 0.0094 0.0930 –0.0196 4.6841 

GOOGL 0.0108 0.1025 –0.0557 3.9760 

AMZN 0.0177 0.1237 –0.0139 4.3077 

APPLE 0.0189 0.1131 –0.3852 3.4726 

PFE 0.0052 0.1058 –0.3548 5.6167 

SHEL –0.0008 0.0891 –0.1769 4.9009 

E –0.0040 0.0976 –0.1757 5.7671 

NFG 0.0027 0.0914 –0.3712 3.8307 

CPK 0.0104 0.1040 –0.2291 3.7495 

NJR 0.0070 0.0964 –0.0652 3.6367 

ATO 0.0081 0.1008 –0.1354 3.3340 

S&P 500 0.0062 0.0874 –0.5573 5.4040 

Table 1: Descriptive statistics of the 20 assets 

 

Table 1 summarizes some statistical measures for each of the twenty assets, such 

as the mean, which represents the average return of each asset; the standard devia-

tion, or the volatility of the assets’ excess return; the skewness, which indicates the 

asymmetry of the distribution of returns; and the kurtosis, that represents the 

"tailedness" of the distribution of returns.  



Apple, Amazon, and Eli Lilly have the highest mean returns, with values of 

0.0189, 0.0177, and 0.0115 respectively. On the other hand, PSQ, E, and BAC are 

characterized by the lowest mean returns - note that these assets have negative mean 

of excess returns, therefore they have been not profitable for investors. 

The most volatile assets are BAC (0.1440), Amazon (0.1237), and SAP (0.1121), 

meaning that they represent higher risk for investors. Conversely, the least volatile 

assets are Shell (0.0891), and ExxonMobil (0.0898), implying lower risk. 

Almost all the assets exhibit negative values for the skewness, therefore they are 

characterized by a longer tail on the left side. A negatively skewed distribution sug-

gests a lot of little gains and a few significant losses on the investment. 

 The only asset with positive skewness is PSQ, with a skewness of 0.4692, indi-

cating a longer tail on the right side of the distribution. A positive skew in the return 

distribution indicates that investors should anticipate frequent modest losses and 

infrequent significant gains on their investments. The asset PSQ is an inverse ETF, 

which aims to provide inverse exposure to the NASDAQ-100 Index, therefore it is 

designed to move in the opposite direction of the index. The result of a positive 

skewness is reasonable, given that this investment strategy bets against the perfor-

mance of the NASDAQ-100. Over the long term, such an investment is generally 

not favorable, as the NASDAQ-100 has historically tended to increase in value.  

Finally, the kurtosis represents the "tailedness" of the distribution of returns, 

therefore it measures the heaviness of a distribution's tails with respect to a normal 

distribution. BAC, JPM, and SAP have the highest kurtosis values of 19.9628, 

8.0207, and 6.0647, which indicate more extreme values or heavy tails in the dis-

tribution. In contrast, Atmos Energy, New Jersey Resources, and Chesapeake Util-

ities have the lowest kurtosis values, therefore their distributions tend to have light 

tails or lack of outliers.  



 
Figure 9: Plot of excess return for each asset i 

 

Figure 9 illustrates the distribution of the excess return for each asset. Note that 

Asset 2 (Coca Cola), Asset 7 (Exxon), Asset 11 (Google), and Asset 14 (Pfizer) 

have histograms that closely match the normal distribution fit, showing a symmet-

rical distribution around the mean with tails that taper off evenly.  

In contrast, Asset 4 (Bank of America) exhibits skewness in its distributions, in 

fact it shows a positive skew with a long right tail. Moreover, Bank of America has 

the highest kurtosis value (19.96), indicating a very peaked distribution with heavy 

tails, therefore a significant likelihood of extreme returns compared to a normal 

distribution. Additionally, some assets show potential outliers or extreme values 

that deviate significantly from the normal distribution fit. These outliers can be seen 

as isolated bars far from the central bar of the distribution, as observed in Asset 3 

(JP Morgan) and Asset 20 (Atmos). 



B. Optimal Allocation Portfolio 
 

The primary advantage of the single-index model lies in its streamlined approach 

to portfolio construction, requiring fewer data inputs compared to Markowitz's 

model. Moreover, the Index model offers estimations for both individual security 

returns and index returns, becoming a valuable tool for determining optimal port-

folio allocation.  

According to the Index Model, we assume that 𝜀!̃ ⊥ 𝜀>̃ ⊥ 𝑅Q-. Recall that we 

denote simple returns as r and excess returns as R.  

Let 𝜎8&
(  denote the variance of the non-systematic error term 𝜀!̃, Var [𝜀!̃]. Let us 

construct a portfolio p made of the n assets, the market portfolio, and the risk-free 

asset, with weights respectively wi (with i = 1, 2, ..., n), wM and 1 – ∑ 𝑤" 	– 𝑤-*?'
"+' . 

The return of such a portfolio is: 

�̃�𝑝=	∑ 𝑤"*
"+' �̃�" +𝑤-�̃�- 	+	(1–∑ 𝑤" 	– 𝑤-*

"+' )𝑟#	

where 𝑟𝑓 is the risk–free rate, �̃�𝑖 the actual return on asset i (with i = 1, 2, ..., n) and 

�̃�𝑀 the actual return on the market portfolio. Given that 𝑅Q	= �̃� – rf , we get that  

𝑅Q)=	∑ 𝑤"*
"+' 𝑅Q" +𝑤-	𝑅Q- 	

Considering that 	𝑅Q"=	𝛼" 	+	𝛽"𝑅Q- 	+	𝜀"̃  we conclude that  

𝑅Q)=	(𝑤-	 +	∑ 𝑤"*
"+' 𝛽")𝑅Q- + ∑ 𝑤"*

"+' 𝛼" + ∑ 𝑤"*
"+' 𝜀"̃ 	

For	simplicity,	let	us	introduce	the	following	conventions:		

𝑤*?' = 𝑤- +d𝑤" 	𝛽"

*

"+'

	

𝛾" = 𝛼" 	for	𝑖 = 1,2, … , n	and	𝛾*?' = 𝐸- 	

𝜎"( = 𝜎8*
( 	for	𝑖 = 1,2, … , n	and	𝜎*?'( = 𝜎-( 	

Then, we can write the mean and variance of  𝑅Q)	in the following compact way 

(notice that we have exploited the orthogonality of 𝑅Q- and the error terms and the 

fact their expected value is zero). 

The Sample Mean of the return:  



𝐸i𝑅Q)j = d𝑤"𝛾"

*?'

"+'

 

The Variance of the return:  

𝑉𝑎𝑟i𝑅Q)j = d𝑤"(𝜎"(
*?'

"+'

 

Suppose that we wish to minimize the variance of 𝑅Q) for a given expected value 

for the excess return on portfolio p, E[𝑅Q)] = Ep. It is worth emphasizing that be-

cause the standard deviation is a monotonic function of the variance, this optimiza-

tion exercise is equivalent to maximizing the Sharpe ratio among all portfolios 

made of the market portfolio, the n assets and the risk-free asset with expected ex-

cess return Ep.  

Then, we can solve the following constrained optimization, where we do not 

need to impose the restriction that the sum of the weights ∑ 𝑤"*
"+' +𝑤-	is equal to 

1 because we can use the position in the risk-free asset to accommodate the re-

striction that we hold a proper portfolio32, 

𝑚𝑖𝑛
A+,…,A,-+

Vari𝑅Q)j	

s.t.	 𝐸[RpC] 	= 	𝐸𝑝. 

In this analysis we are going to observe historical values of different assets, from 

which we are going to derive realized returns for the selected periods. Specifically, 

our aim is to establish risk-adjusted metrics for evaluating performance. To achieve 

this, we must outline summary statistics that capture the balance between risk and 

return in the portfolio. 

Based on the CAPM, investors should hold a combination of the risk-free asset 

and the market portfolio. The market portfolio consists of a high number of securi-

ties, and an investor would have to own all of them in order to have a composition 

of assets completely diversified. Since holding all existing securities is not practi-

cal, in this session we will consider an alternative method of constructing a portfolio 

 
32 Vitale, P. Optimal Active Portfolio Management. 



that may not require a great number of securities. As previously stated, adding more 

and more securities will result in a reduction of the non-systemic risk thanks to 

diversification.  

In this section we are going to illustrate the steps followed to find the composi-

tion of portfolio p∗ – consisting of n assets and the market portfolio – which exhibits 

the highest Sharpe Ratio. 

The objective of a portfolio manager is to combine optimally a certain number 

of assets in order to obtain a return that outperforms the benchmark.  

Such model allows fund managers to select a mix of active and passive portfolio 

that maximizes the (active) Sharpe ratio performance indicator33. 

When returns follow the index model, the optimal portfolio can be derived ex-

plicitly, and the solution for the optimal portfolio provides insight into the efficient 

use of security analysis in portfolio construction34. Explaining the logical progres-

sion of the solution is enlightening. We won't delve into every algebraic detail, in-

stead, we'll focus on presenting the key outcomes to interpret the methodology. 

Before showing the results, it is important to consider the fundamental trade-off 

that the model incorporates. If our sole focus were diversification, we would simply 

invest in the market index. However, through security analysis, we gain the oppor-

tunity to identify securities with a nonzero alpha and to strategically invest in them. 

Yet, this strategic positioning comes with a cost: it deviates from efficient diversi-

fication, implying an assumption of unnecessary firm-specific risk.  

In brief, this model entails that the optimal risky portfolio trades off the search 

for alpha against efficient diversification.  

The optimal risky portfolio is a mixed strategy of two component portfolios: (1) 

an active portfolio, denoted by A, of the n selected securities and (2) the market-

index portfolio, the (n+1)th asset that we included to aid in diversification, which 

we call the passive portfolio (denote by M).  

 
33 Violi, R. (2011). Optimal active portfolio management and relative performance drivers: Theory 
and evidence. (Vol. 58, pp. 187-209). Bank for International Settlements.  
34 Bodie, Z., Kane, A. and Marcus, A. (2014) Investments, Global Edition, 10th Edition. McGraw 
Hill Higher Education, New York. 



The construction of the optimal risky portfolio involves several steps based on 

the index model estimates of security and market index parameters. These steps 

include using the following formulas: 

1. Initial position of security i in the active portfolio:  

𝑤+,  =  
𝛼+

𝜎-(𝜀+)
 

2. Scaled initial positions:  

𝑤+ =
𝑤+,

∑ 𝛼+
𝜎-(𝜀+)

.
+/0

 

3. Alpha of the active portfolio:  

𝛼1 =*𝑤+𝛼+

.

+/0

 

4. Residual variance of the active portfolio:  

𝜎-(𝑒1) =*𝑤+-𝜎-(𝜀+)
.

+/0

 

5. Initial position in the active portfolio:  

𝑤1, =
𝛼1

𝜎-(𝜀1)
⋅
𝜎2-

𝐸(𝑅2)
 

6. Beta of the active portfolio:  

𝛽1 =*𝑤+𝛽+

.

+/0

 

7. Adjusted (for beta) position in the active portfolio:  

𝑤1∗ =
𝑤1,

1 + (1 − 𝛽1)𝑤1,
 

8. Final weights in passive portfolio and in security i:  

𝑤2∗ = 1 − 𝑤1∗ 

𝑤+∗ = 𝑤1∗𝑤+ 

9. The beta of the optimal risky portfolio and its risk premium:  

𝛽4 = 𝑤2∗ +𝑤1∗𝛽1 = 1 − 𝑤1∗(1 − 𝛽1)  

𝐸(𝑅4) = 𝛽4𝐸(𝑅2) + 𝑤1∗𝛼1 

10. The variance of the optimal risky portfolio 

𝜎4- = 𝛽4-𝜎2- + [𝑤1∗𝜎(𝜀1)]- 

11. Sharpe ratio of the risky portfolio  



𝑆4- = 𝑆2- +*6
𝛼+
𝜎(𝜀+)

7
-.

+/0

 

Table 235: Construction and properties of the optimal risky portfolio 

We need to distinguish two components in the optimal portfolio p∗: the former 

is a passive component invested entirely in the market portfolio; the latter is an 

active portfolio invested in the individual assets. We see from Table 2 – point 1 that 

the contribution of each asset is proportional to its ratio 2*
6(*
.  .  

We denote the overall investment in the active portfolio, A, as 𝑤;∗ and we derived 

the following formulas to find the weights of the optimal active portfolio:  

𝑤;∗ =
𝑤;E

1 + (1 − 𝛽;)𝑤;E
 

𝑤-∗ =
1 − 𝛽;𝑤;E

1 + (1 − 𝛽;)𝑤;E
 

where 𝑤;E	is the sum of the assets’ normalized alphas. 

The Equations above (𝑤-∗ , 𝑤;∗) provide insights for determining the optimal al-

location within the active portfolio, contingent upon its alpha, beta, and residual 

variance.  

By allocating 𝑤;∗ to the active portfolio and 1 – 𝑤;∗ to the index portfolio, we can 

calculate the expected return, standard deviation, and Sharpe ratio of the optimal 

risky portfolio. It is noteworthy that the Sharpe ratio of a skillfully constructed risky 

portfolio is expected to surpass that of the index portfolio (representing the passive 

strategy). The relationship of the two Sharpe Ratios is:  

𝑆:( =	𝑆-( + r
𝛼;
𝜎(8/)

s
(

 

The equation above illustrates how the active portfolio's contribution to the 

Sharpe ratio of the total risky portfolio depends on the ratio of its alpha to its resid-

ual standard deviation. This ratio is known as the information ratio, and it 
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represents the additional return achievable through security analysis in contrast to 

the firm-specific risk we incur when we overweight or underweight securities rela-

tive to the passive market index36.  

Note that to maximize the value of the portfolio’s squared Sharpe ratio, we must 

maximize the information ratio of the active portfolio. 

C. Estimation of the Optimal Active Portfolio  

Let us take into consideration the data for the estimation window going from 

January 2008 to December 2017, while for the testing window we consider data 

from January 2019 to December 2022. In this section, our goal is to calculate the 

Sharpe ratio for the optimal portfolio and compare it with that of a passive strategy 

invested in the S&P 500 market index. To achieve this objective, we apply the index 

model to the excess returns of each stock using Ordinary Least Squares (OLS) re-

gression. 

Using Matlab, we have performed the index model individually for each stock, 

treating them as separate regressions. This approach is suitable under the assump-

tion that the error terms associated with the stocks in the index model are uncorre-

lated, i.e., 𝜀̃i ⊥ 𝜀̃j. We have obtained estimates for each stock i, including alpha (𝛼t), 

beta (𝛽u), and the standard error of the residual (interpreted as the standard deviation 

of the error term in the index model), σwεi (see table 3). 

We have calculated estimates for each stock i, including alpha (𝛼t i), beta (𝛽u i), 

and the standard error of the residual (𝜎tεi). Afterwards, we have estimated the 

weights assigned to each of the n stocks within this portfolio with the derived alphas 

and betas.  

For these estimations, we have assumed that these values are time-invariant, 

therefore they do not change overtime. 

 

𝜇" ≡ 𝐸i𝑅",Fj 

𝜎"( ≡ 𝑉𝑎𝑟i𝑅",Fj 

𝜇- ≡ 𝐸i𝑅-,Fj, 

	𝜎-( 	≡ 	𝑉𝑎𝑟[𝑅-,F],	

and 	𝜎",-( ≡ 𝐶𝑜𝑣[𝑅",F , 𝑅-,F].
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Under this set of assumptions, it could be shown that, in the linear model, the 

following restrictions are respected by the following coefficients: 

α" = 	𝜇"	 − 𝛽" 	𝜇-, 𝛽" 	= 6*,1
61
.  

 

Straightforward econometric results suggest that if we estimate the coefficients 

αi and βi using the OLS method, we found that: 

𝛼t" = 𝑅~" − 𝛽u"𝑅~- , 

𝛽u" 	= 	
𝜎t",-
𝜎t-(

		

where 𝑅~" and 𝑅~- are the sample means for the excess returns of asset i and the 

market portfolio M, while 𝜎t",- is the sample covariance between the two excess 

returns, (1/𝑇)∑ (𝑅",F −	𝑅~")(𝑅-,F −	𝑅~-)3
F+' , and 𝜎-(  the sample variance of the ex-

cess return on the market portfolio, (1/𝑇)	∑ (𝑅-,F −	𝑅~-)(3
F+' . In addition, it can 

be shown that: 

�̂�8*
( 	= '

30(
∑ 𝜀"̂,F(3
F+'   𝑤𝑖𝑡ℎ	𝜀"̂,F	 ≡	𝑅",F −	𝛼t" 	− 𝛽u"𝑅-,F 

is an unbiased estimator of the variance of the error term, εi,t . Importantly, the 

estimates of the beta coefficients, 𝛽u"’s, and those of the variance of the error terms, 

�̂�8*
( ’s, are the inputs of the procedure to identify the optimal active portfolio in the 

baseline formulation.  

Obs=119 

Asset Alpha Beta SD of the er-
ror term 

Sharpe 
ratio R2 

SAP 0.0015 1.0191 0.0542 0.1190 0.668 

KO -0.0021 1.0258 0.0421 0.0871 0.772 

JPM 0.0033 0.7812 0.0655 0.1229 0.448 

BAC -0.0112 1.2338 0.1286 0.0033 0.344 

PSQ -0.0185 0.6589 0.0859 -0.1250 0.251 

DIS 0.0055 0.9647 0.0404 0.1778 0.764 

XOM -0.0048 0.8983 0.0434 0.0463 0.709 



JNJ 0.0010 1.0165 0.0361 0.1258 0.819 

LLY -0.0033 1.2006 0.0488 0.0791 0.775 

MCD 0.0044 0.9810 0.0428 0.1617 0.749 

GOOGL 0.0069 0.8528 0.0629 0.1617 0.511 

AMZN 0.0179 0.9308 0.0793 0.2541 0.439 

APPLE -0.0029 0.9669 0.0702 0.2205 0.519 

PFE -0.0053 1.1118 0.0424 0.0814 0.797 

SHEL -0.0101 0.9164 0.0502 0.0392 0.655 

E -0.0020 0.8906 0.0560 -0.0198 0.590 

NFG 0.0057 0.8386 0.0593 0.0690 0.532 

CPK 0.0057 1.0245 0.0608 0.1575 0.617 

NJR 0.0027 0.9618 0.0593 0.1275 0.599 

ATO 0.0034 1.0204 0.0593 0.1444 0.708 

Table 337: OLS estimates for the 20 assets 

Table 3 summarizes the OLS (Ordinary Least Squares) estimation results for the 

20 assets, presenting key metrics such as Alpha, Beta, Standard Deviation of the 

error term, Sharpe ratio, and R-squared (R²). 

Looking at the Alpha, which measures performance relative to market expecta-

tions, AMZN has the highest value (0.0179), suggesting that it outperformed mar-

ket expectations. In contrast, BAC has a negative alpha (-0.0112), meaning that it 

underperformed market expectations. 

Furthermore, Bank of America (1.2338) and LLY (1.2006) exhibit high betas, 

implying higher volatility compared to the market, while JPM (0.7812) and PSQ 

(0.6589) show lower betas, indicating they are less volatile than the market. 

The Standard Deviation of the error term reflects the unexplained volatility in 

the asset's excess returns. BAC has the highest standard deviation (0.1286), indi-

cating high unexplained volatility, while JNJ has the lowest (0.0361), indicating 

stable excess returns. 

 
37 Table 3 shows OLS estimation results for 20 assets, including Alpha (performance relative to 
market expectations), Beta (market sensitivity), Standard Deviation of the error term (unexplained 
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plained by the market). Each estimation was based on the 119 observations corresponding to the 
estimation window going from January 2008 to December 2017. 



For what concerns the Sharpe ratio, AMZN has the highest Sharpe ratio 

(0.2541), suggesting it provides the best return per unit of risk. Instead, PSQ, with 

a negative Sharpe ratio (-0.1250), displays poor risk-adjusted performance. 

R-squared (R²) represents the proportion of excess return variability explained 

by the market. JNJ has the highest R² (0.819), therefore its excess returns are well-

explained by market movements, whereas BAC has a relatively low R² (0.344), so 

a portion of its excess returns are not explained by the market. 

The optimal portfolio p* has the following weights for each asset: 

- Asset 1: SAP = 0.35 

- Asset 2: KO = –0.83 

- Asset 3: JPM = 0.55 

- Asset 4: BAC = –0.48 

- Asset 5: PSQ = –1.77 

- Asset 6: DIS = 2.39 

- Asset 7: XOM = –1.80 

- Asset 8: JNJ = 0.51 

- Asset 9: LLY = –0.97 

- Asset 10: MCD = 1.70 

- Asset 11: GOOGL = 1.22 

- Asset 12: AMZN = 2.00 

- Asset 13: APPLE = 1.86 

- Asset 14: PFE = –1.53 

- Asset 15: SHEL = –1.50 

- Asset 16: E = –2.28 

- Asset 17: NFG = –0.40 

- Asset 18: CPK =1.08 

- Asset 19: NJR = 0.55 

- Asset 20: ATO = 0.99 

- Market Index: S&P 500 = –1.02 

Note that the weights for the optimal portfolio suggest a strategy that heavily 

leverages certain assets while shorting others. 



DIS (2.39), AMZN (2.00), APPLE (1.86), and MCD (1.70) are heavily and pos-

itively weighted, therefore the strategy implies a strong belief in their future perfor-

mances. 

Other assets with significant positive weights include GOOGL (1.22), CPK 

(1.08), and JPM (0.55). These assets are expected to outperform and contribute pos-

itively to the portfolio returns. 

Conversely, PSQ (-1.77), XOM (-1.80), PFE (-1.53), SHEL (-1.50), and E (-

2.28) are significantly shorted, indicating an expectation of poor performance. 

KO (-0.83), BAC (-0.48), LLY (-0.97), NFG (-0.40), and S&P 500 (-1.02) also 

have negative weights, therefore they are expected to underperform relatively to the 

market or other assets in the portfolio. 

If the selected long positions outperform and the short positions underperform 

as expected, these outcomes could be very profitable. However, this strategy also 

introduces substantial risk, as these positions are highly leveraged. 

In addition, the negative weight on the S&P 500 suggests a hedge against broad 

market declines, but it also requires the specific asset choices to outperform the 

general market trends. In the provided optimal portfolio p∗, the market index (S&P 

500) has a weight of -1.02. This indicates a bearish outlook on the overall market 

performance.  

In brief, we have obtained an intuitive characterization of the optimal portfolio, 

p∗, and the optimal active portfolio. Specifically, the overall investment in the ac-

tive portfolio is a function of the sum of the normalized individual alphas, αA, and 

of the weighted average of the corresponding betas, βA. 

Furthermore, notice that long and short positions in the n assets are combined in 

the active portfolio to the extent that they exhibit both positive and negative alphas. 

This makes sense given that the ideal active portfolio takes a long (short) position 

in assets that are underperforming or overperforming.



 
Figure 10: Security Market Line of the optimal portfolio 

 

Looking at figure 10, we can see that the assets lying above the security market 

line are the ones that present a positive weight - as they are undervalued - therefore, 

according to the index model, it is reasonable to buy them. Instead, since the assets 

disposed below the security market line are overvalued, their weights are negative.  

For instance, looking at asset 13 (Apple), our model suggests a long position of 

186%, since it is highly undervalued.  

Using the weights that we found above, it is possible to calculate the return on 

the optimal portfolio.  

Let us consider the testing window (Jan 2018-Dec 2022) to analyze the perfor-

mance of the optimal active portfolio. Recall that the excess return on the portfolio 

is given by the following formula:  

 

Rp = ∑ 𝑤"𝑅" 	*
"+' +	𝑤$𝑅$ 

 

As previously pointed out, it is relevant to estimate the risk of the portfolio to 

determine its profitability. Therefore, we have calculated the Sharpe Ratio of the 

optimal portfolio: 



Sp = G
H!
I)

 √12= 0.28 

Since we have downloaded monthly historical data, it is important to annualize 

the result of all the measures of performance by multiplying the result by the square 

root of 12.  

Next, we have compared the realized Sharpe ratio with the theoretical one for 

the optimal portfolio. The realized Sharpe ratio is based on historical data from the 

testing window, while the theoretical Sharpe ratio is derived from the expressions 

for EiRpC∗j and VariRpC∗j, estimated with the data from the estimation window. We 

have derived the square value of the Sharpe ratio for the optimal portfolio p*: 
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𝐸i𝑅Q)∗j
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This formula shows the improvement in the Sharpe ratio that we can obtain 

combining optimally the market portfolio and the assets with non-zero alphas. 

 
Theoretical 

Sharpe  
Ratio 

Sharpe  
Ratio 

Sortino  
Ratio 

Treynor 
Ratio 

Jensen  
Alpha 

Portfolio 1.8511 0.2822 0.3813 0.0479 0.1941 

Benchmark 0.4365 -0.0056 -0.0079 -0.0006 0 

Table 4: Performance measures of the optimal portfolio and the benchmark 

From the results in table 4, we conclude that both the realized Sharpe Ratios of 

the active and the passive strategies, which are based on data from 2018 to 2022, 

are significantly lower than the theoretical Sharpe Ratio. The theoretical Sharpe 

Ratio is derived from the estimation window (which considers the previous ten 

years of data with respect to the realized Sharpe ratio), therefore it entails a calcu-

lation based on past performances. This suggests that the portfolio's performance 

was not as strong as expected.  

The explanation for these results may lie in the differing market conditions dur-

ing the period of 2018-2022 compared to those assumed in the theoretical model. 



For example, unexpected events, such as the pandemic and the lockdown, have 

significantly impacted financial markets and portfolio performance in years 2021 

and 2022.  

In addition, it is possible to compare the Sharpe Ratio of such portfolio with the 

one of the market index. We have estimated the Sharpe ratio of the market portfolio 

dividing the mean of the excess returns of the S&P 500 with its standard deviation: 

𝑆- =	 G
H1
I-
	= -0.0056 

Since the realized Sharpe Ratio of the optimal portfolio over the period 2018-

2022 is 0.28, it is significantly higher than the Sharpe Ratio of the S&P 500, which 

stands at -0.0056. The negative Sharpe Ratio for the market index indicates that an 

investment solely concentrated in the S&P 500 would result in a loss over this pe-

riod. We conclude that the strategy of the optimal portfolio outperformed an invest-

ment exclusively concentrated in the market index (S&P 500).  

Note that the superior performance of the optimal portfolio is not surprising. In 

fact, in the previous section, we have obtained a negative weight for the market 

index. Specifically, the short position in the S&P 500 (-1.02) represents a hedging 

strategy against market risk, suggesting a bearish outlook on the overall market. 

If we consider also other measures of performance, such as the Sortino ratio and 

the Treynor ratio, the outcome is still favorable for the optimal active portfolio, 

which overcomes the benchmark for every ratio (see table 4). 

However, even if the market index displays a lower return with respect to the 

optimal portfolio, the volatility of the market portfolio is lower, therefore the latter 

is less risky. For instance, the standard deviation of the returns in the testing window 

is 2.35 for the optimal portfolio and 0.38 for the market index. 

D. Rebalancing Dynamics 

The primary objective of constructing optimal portfolios is to minimize risk 

while maximizing investment returns regardless of market conditions.  

In this section, the aim is to maximize portfolio returns through the practice of 

dynamic portfolio rebalancing. 



As new data become available to investors, it is possible to rebalance the weights 

of the active portfolio, including more recent data in the estimation window. 

We have started by considering the estimation window covering from January 

2008 to December 2017, and the testing window spanning from January 2018 to 

December 2018. In this analysis, the testing window becomes shorter than the one 

used previously, enhancing a more precise estimation. 

By updating the estimation window every year, we have re-estimated the alphas, 

betas, and standard deviations of the error term for the n stocks using data from 

January 2009 to December 2018.  

For instance, shifting the estimation window one year ahead, we could derive 

the optimal portfolio for the updated testing window (from January 1st, 2019 to De-

cember 1st, 2019).  

Of course, the expected value and standard deviation of the excess return on the 

market proxy must also be recalculated using the updated estimation window. 

With the new estimates, we have estimated the weights of the n stocks in the 

optimal active portfolio, and we have derived the realized returns of the rebalanced 

optimal active portfolio for the updated period: January 2019 - December 2019. 

Thus, once again, we have only calculated the realized returns on the rebalanced 

optimal active portfolio over one-year interval. 

Replicating this procedure four times, the optimal active portfolio is rebalanced 

on January 1st, 2019, January 1st, 2020, January 1st, 2021, and January 1st, 2022. 

Notice that, thanks to this procedure, we can visualize the realized return over 

each of the five years of our optimal portfolio, and we can identify which years are 

more profitable. 

Lastly, let us compare the return on the rebalanced portfolio with the initial one, 

using the formula for the final return recalculated every year (with 

t=2018,2019,2020,2021,2022): 

 

Rp,t	=	∑ w!,<R!,<	K
!+' +wL,<RL,<	

	 	



	
	

  Theoretical 
Sharpe 
Ratio 

Sharpe 
Ratio 

Sortino 
Ratio 

Treynor  
Ratio 

Jensen 
Alpha 

2018 
Portfolio 1.8511 0.5635 0.8502 0.0729 0.3748 

Benchmark 0.4365 -0.7788 -0.9897 -0.0468 0 

2019 
Portfolio 2.2042 3.2400 4.5941 3.0917 1.2545 

Benchmark 0.6357 1.7725 2.9679 0.1409 0 

2020 
Portfolio 2.3224 4.0081 6.5480 0.7774 0.8099 

Benchmark 0.8491 1.2263 1.6952 0.1510 0 

2021 
Portfolio 2.5981 0.1107 0.1479 0.0139 -0.0531 

Benchmark 0.8693 0.2565 0.3453 0.0266 0 

2022 
Portfolio 2.5041 -2.1665 -3.3113 -0.3794 -1.0921 

Benchmark 0.6657 -2.3870 -3.3149 -0.2747 0 

Mean 
Portfolio 2.2960 1.1512 1.7658 0.7153 0.2588 

 Benchmark 0.6913 0.0179 0.1408 -0.0006 0 

Table 5: Performance measures using the rolling-window estimation  

According to Table 5, the measures of performance for the optimal active port-

folio are higher than the passive strategy for years 2018, 2019 and 2020. Instead, 

the trend is inverted for years 2021 and 2022. We suppose that this inversion of 

performance could be explained through the big shock on the market caused by the 

spread of Covid-19, and the subsequent lockdown. 

Notice that the weights of assets’ allocation are calculated on the basis of the ten 

years prior to the testing window. Thus, the evaluation of the weights is based on 

different market conditions with respect to the two years affected by the pandemic.  

Moreover, let us compare the effective Sharpe ratio and the theoretical one. 

According to the results, the effective Sharpe ratio overcomes the theoretical one 

for years 2019 and 2020, while it is underperforming with respect to the expecta-

tions for the rest of the periods. In fact, in these two specific years the stock Amer-

ican markets were particularly prosperous. For example, in 2019, the Nasdaq 



celebrated its strongest performance since 2009. The rebound in 2019 was particu-

larly notable, since it was characterized by robust performances across various sec-

tors and market capitalizations. This growth was not limited to the Nasdaq alone; 

global exchanges also experienced a notable recovery following a challenging 

2018, bolstered by a renewed wave of central bank easing38. Instead, in 2020, de-

spite the global lockdown due to the pandemic, equities demonstrated remarkable 

strength, reflecting the underlying resilience of the financial system amidst turbu-

lent times. Both the S&P and the Dow Jones Industrial Average achieved record 

highs for 2020, boasting annual gains of 16.3% and 7.2% correspondingly. The 

Nasdaq also surged significantly with a remarkable 43.6% year-on-year increase, 

marking its largest gain since 2009 for the tech-heavy index39. 

Despite the low performances of years 2021 and 2022, a hypothetical investor 

who employed the strategy of rebalancing weights every year from 2018 to 2022 

would get an average Sharpe ratio of Sp = 1.15, that is higher than the Sharpe ratio 

of the optimal portfolio with fixed weights (0.28). 

In conclusion, the rebalancing frequency can be adjusted with the aim of achiev-

ing a more precise weights’ estimation. For instance, we could opt for rebalancing 

every six months instead of annually.  

E. Correlated Residuals: SURE Methodology 

Dynamic rebalancing models have long been used in solving optimal asset allo-

cation problems, and a number of trading systems have been implemented in order 

to rebalance the optimal portfolio in order to align to market conditions40. 

In the previous estimation, we have assumed that the error terms were not cor-

related among themselves, following one of the main assumptions of the standard 

formulation of the index model. 

However, in the index model, asset returns are assumed to be linearly related to 

the market return and to a unique risk component. This assumption imposes a 

 
38 Market Intelligence Desk Team. (2020, January). US markets: Review and outlook. Nasdaq. 
https://www.nasdaq.com/articles/2019-review-and-outlook-2020-01-07 
39 Mikolajczak, C. (2021, January 1). U.S. stocks in 2020: A year for the history books. Reuters. 
https://www.reuters.com/article/idUSKBN2951LQ/ 
40 Almahdi, S., & Yang, S. (2017). An adaptive portfolio trading system: A risk-return portfolio 
optimization using recurrent reinforcement learning with expected maximum drawdown. Expert 
Systems with Applications, 70, 1-15. 



specific structure on the variances and covariances of asset returns, simplifying the 

estimation process.  

By imposing this structure, the index model reduces the number of parameters 

that need to be estimated compared to more complex models. This can make the 

estimation more manageable, especially when dealing with a large number of as-

sets. 

Although the index model's streamlined structure can be convenient, it might not 

adequately represent the intricacies of actual financial markets. In fact, asset returns 

may be influenced by factors other than market and asset-specific risk, as market 

interactions are frequently nonlinear. According to the single-index model, there 

are two types of risk associated with assets: systematic risk, related to the market, 

and unsystematic risk, which is the asset-specific risk. However, the index model 

does not account for other risk factors like industry-specific risk, regulatory risk, or 

geopolitical risk. This happens because the index model assumes that the error 

terms are uncorrelated between the assets, but the error terms include all the exter-

nal risk factors that can affect the performance of the excess returns of each asset, 

other than the market risk.  

Because of its simplifying assumptions, this model may fail to capture important 

complexities of the market, such as the impact of industry-specific factors and other 

sources of risk41. Therefore, in the next section, we implement an extension of the 

index model, with the inclusion of possible correlation between the error terms of 

the assets. 

F. Multivariate Regressions  

Typically, time-series studies are conducted by employing data on a group of 

assets, such as securities and portfolios of securities. In this way, rather than con-

ducting tests on individual assets, we have considered the group of assets as a 

whole. This is a superior econometric approach, since the resulting analysis pos-

sesses larger power42.  

Hence, let us construct a system of N regressions, one for any asset, security or 

portfolio: 

 
41 Aldrich, E. M. (2024, January). Index models - Security markets and financial institutions. 
42 Vitale, P. Optimal Active Portfolio Management. 
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This system could be written in a more compact form, through vector form rep-

resentation, therefore: 

𝑹𝑡 = 	𝜶	 + 	𝜷	𝑅-,F 	+ 	𝜺𝑡	 
𝑛 × 1		𝑛 × 1		𝑛 × 1							𝑛 × 1 

where Rt, α, β and εt represent respectively the excess returns on the n risky 

assets, their alphas, betas, and idiosyncratic errors.  

Note that we have assumed that the error term is unpredictable and uncorrelated 

with the regressor. We also have assumed that it is homoscedastic and uncorrelated 

overtime. 

∀	𝑡, 𝑠		𝐸i𝜀F	|	𝑅-,Fj	=	0	

𝐶𝑜𝑣	i𝜀F	|	𝑅-,Fj	=	0	

𝐸i𝜀F 	 · 	 𝜀F3|	𝑅-,Fj	=	Ω	,				𝐸i𝜀F 	 · 	 𝜀N3|	𝑅-,Fj	=	0	

Recall that Ω is a n × n covariance matrix, which is symmetric and positive 

definite, as in the univariate specification, the first condition entails that E[εt] = 0, 

while the last implies that E[ε<	ε<O] = Ω.  

In addition, we have assumed that the excess returns on the n assets and the 

market portfolio still possess time-invariant mean and variance,  

 

𝝁 ≡ 𝐸[𝑹F], 

𝑽 ≡ 𝑉𝑎𝑟[𝑹F], 

𝜇- ≡ 𝐸i𝑅-,Fj, 

𝜎-( 	≡ 	𝑉𝑎𝑟[𝑅-,F],

And we have introduced the following notation: 

𝑽𝒓	𝑴 ≡ 𝐸[(𝑹F − 𝝁)( 𝑅-,F − 𝜇-)] 



to indicate the vector of covariances between the (excess) returns on the N assets 

and the (excess) return on the market portfolio.  

Because the matrix Ω could be non-diagonal, correlation between the contem-

poraneous values of the error terms is allowed. Indeed, when the index model does 

not capture all possible sources of risk which affect asset prices, these error terms 

are very likely to be correlated. Since the SURE methodology captures the possible 

effects of such correlation it may be favored. 

Under this set of assumptions, as seen for the univariate case, it can be shown 

that in this system of seemingly unrelated regression equations (SURE) the fol-

lowing applies: 

𝜶 = 	𝝁	 − 𝜷	𝜇-, 𝜷	 = 𝐕𝒓	𝑴
61
.  

To estimate the SURE components, we could rely on the OLS method.  

The OLS estimators for α and β are the following: 

𝜶w = 𝐑� − 𝜷�𝑅~- , 

𝜷� 	= 	
∑ (𝐑F −	𝐑�)	(R-,F −	𝑅~-)3
F+'

∑ (R-,F −	𝑅~-)(3
F+'

	= 	
𝐕�𝒓	𝑴
𝜎t-(

	

where 𝐑� and 𝑅~- are the sample means of the excess returns on the risky assets and 

the market portfolio,  

𝐑� ≡ 𝟏
𝐓
∑ 𝐑<𝐓
𝐭+𝟏  ,  and  R�L 	≡ 	

'
O
∑ RL,<O
<+'  

While 𝐕�𝒓	𝑴 is the vector of sample covariances between the excess returns of the 

individual assets and that of the market portfolios43. As in the univariate case, the 

OLS estimators of α and β correspond to the sample counterparts of their theoretical 

values. Finally, notice that a consistent estimator for the covariance matrix Ω is 𝛀�  

 
43 These correspond to individual covariances we denoted with 𝜎35,6 in the univariate regressions and 
hence the estimates of the betas from the SURE regressions correspond to the OLS ones obtained 
from the univariate ones.  



≡ '
(O0()

	∑ εt< 	 · 	 εt<OO
<+' , where εt<O≡	𝐑<−𝛂w −	𝛃�RL,<.44 Clearly, the vector of estimates 

for the beta coefficients, 𝜷�, and the estimated covariance matrix of the error terms, 

𝛀� , were the inputs of the procedure to identify the optimal active portfolio in the 

formulation with correlated error terms.  

G. Estimation of the Optimal Portfolio with SURE Methodology  

Building upon the estimation of the optimal portfolio through the index model, 

an extension considers the potential correlation among error terms for the n stocks. 

In such case, the n regressions linked to the index model need to be estimated uti-

lizing the Seemingly Unrelated Regression Equations (SURE)45 methodology46.  

In order to implement this extension, we have verified if the error terms of the 

20 assets were correlated, through the calculation of the following matrix: 

d=KΩ 0
03 𝜎-(

L 

Where Ω is a n × n covariance matrix for the assets’ error terms, 𝜀̃1, 𝜀̃2..., 𝜀̃n, and 

0 a n×1 vector of zeros. This implies that we have maintained the crucial assump-

tion that such error terms are not correlated with the return on the market portfolio, 

so that they still represent non-systematic risk. On the other hand, as Ω could be 

non-diagonal they could also be correlated among themselves. In the case Ω is di-

agonal we would have returned to the baseline formulation we have discussed pre-

viously47, without extending the index model with the SURE methodology. 

Our covariance matrix is positive defined, but not diagonal, therefore, there ex-

ists correlation between the error terms. In light of this, we have used the SURE 

methodology to estimate simultaneously the n regressions related to the index 

model.  

In Figure 11, the correlation between the error terms is represented.  

 
44 The real difference with the univariate analysis is the estimation of the moments of the error terms. 
45 Seemingly Unrelated Regression Equations (SURE) is an estimator used in system regression, 
capable of simultaneously estimating multiple models. This facilitates the testing of hypotheses 
across models, as the covariance of parameters is resilient to residual correlation between models. 
This methodology can enhance the precision of parameter estimates, when certain residuals exhibit 
conditional homoskedasticity and regressors vary across equations. 
46 It is important to note that this process yields an estimation of the covariance matrix Ω, which 
may not necessarily be positive semi-definite. Should this occur, adjustments to the procedure must 
be considered. 
47 Vitale, P. Optimal Active Portfolio Management. 



Note that there is high correlation between the error terms of assets 3 and 4 (JP 

Morgan and Bank of America), unsurprisingly, because both stocks belong to the 

banking sector. Moreover, there is also high correlation between the securities 

18,19 and 20, that belong to the sector of natural gas. Instead, there is no correlation 

at all between assets 13 and 14, respectively Apple (Technology) and Pfizer (Phar-

maceutical). This also holds for asset 4 with respect to assets 19 and 20. 

 
Figure 1148: Correlation between the error terms of the 20 assets 

In this section, we aim to identify the Sharpe ratio and other performance measures 

of the optimal portfolio using the SURE methodology, and then we want to compare 

them with the ones related to the market49. 

Therefore, we have estimated the weights of the securities, extending the formu-

las with the SURE methodology: 

 

 
48 The image represents a heatmap of the correlation matrix for the error terms of 20 assets. Each 
cell in the heatmap corresponds to the correlation coefficient between the error terms of two different 
assets. The intensity of the color reflects the magnitude and direction of the correlation, with the 
color scale on the right ranging from -0.4 to 1.0. Darker blue hues indicate strong positive correla-
tions, while lighter shades suggest weaker correlations. The diagonal elements, which are all equal 
to 1, are the darkest blue because each asset is perfectly correlated with itself.  
49 We have already estimated the performance measures of the market in section III.C, table 4. 
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=
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σ-(
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We obtained the following results: 

- Asset 1: SAP = 1.89 

- Asset 2: KO = -12.28 

- Asset 3: JPM = 9.33 

- Asset 4: BAC = -7.94 

- Asset 5: PSQ = -16.64 

- Asset 6: DIS = 11.75 

- Asset 7: XOM = -0.88 

- Asset 8: JNJ = 3.78 

- Asset 9: LLY = 1.53 

- Asset 10: MCD = 24.27 

- Asset 11: GOOGL = -5.35 

- Asset 12: AMZN = 3.46 

- Asset 13: APPLE = 8.00 

- Asset 14: PFE = 2.98 

- Asset 15: SHEL = -5.04 

- Asset 16: E = -8.05 

- Asset 17: NFG = 3.33 

- Asset 18: CPK = 11.06 

- Asset 19: NJR = -5.21 

- Asset 20: ATO = 8.04 

- Market Index = -27.00 

As in the previous estimation, long and short positions in the n assets are com-

bined in the active portfolio to the extent that they exhibit both positive and negative 



alphas. This makes sense given that the ideal active portfolio takes a long (short) 

position in assets that are underperforming (overperforming). 

Yet, these findings highlight a significant issue with this model. The optimal 

portfolio requires highly leveraged long/short positions that could prove impractical 

for real-world portfolio management. For example, it suggests some long position 

in the active portfolio, such as 11.75 (1,175%) in the asset Disney or 24.27 in Mc 

Donald, which are primarily funded by a short position of 27.00 in the S&P 500 

index. Additionally, the annual standard deviation of this optimal portfolio stands 

at 8.89, a risk level typically acceptable only to exceedingly aggressive hedge 

funds. 

In conclusion, let us consider the Sharpe ratio for this system:

 

𝑆)( =
𝐸i𝑅Q)∗j

(

Vari𝑅Q)∗j
= 𝛾3Σ0'𝛾 = (𝛼3  𝐸-) K

Ω0' 0
03 1/𝜎-(

L >
𝛼
𝐸-? = 𝛼3Ω0'𝛼 +

𝐸-(

𝜎-(
 

 

SP=   0.1969*√12= 0.6496 

ST = 2.1822 

 
Theoretical  

Sharpe  
Ratio 

Sharpe  
Ratio 

Sortino  
Ratio 

Treynor  
Ratio 

Jensen  
Alpha 

Portfolio 2.1822 0.6496 0.8976 0.1386 1.6750 

Benchmark 0.4365 -0.0056 -0.0079 -0.0006 0 

Table 6: Performance measures using the SURE methodology 

 

Also in this case, the optimal active portfolio exceeds the market portfolio in-

vesting in the S&P 500. Note that using the SURE extension, the Sharpe ratio has 

increased with respect to the basic formulation, from 0.28 to 0.65. 

However, since the weights of the assets have increased for this estimation, we 

conclude that a higher Sharpe ratio is achieved at the cost of higher overall volatil-

ity. Specifically, the increased weights lead to higher overall volatility of the port-

folio, because larger positions in individual assets amplify the portfolio’s sensitivity 

to the assets ‘specific risks. 



IV. CONCLUDING REMARKS 

This study investigates the performance of active portfolio management strate-

gies compared to passive strategies. In particular, we have compared some perfor-

mance measures of an active portfolio with those of a passive strategy investing 

solely in the market index S&P 500.  

The analysis is based on the index model and considers a strategy investing in 

20 assets from the NASDAQ and the NYSE, plus an investment in the market index 

S&P 500. 

Firstly, we have estimated the weights of the optimal portfolio over a ten-years 

period spanning from 2008 to 2017. Through these weights, we have estimated 

some performance measures of the portfolio over a five-years period, going from 

2018 to 2022, and we have obtained evidence that such portfolio outperforms the 

passive strategy investing in the S&P 500. 

Building upon this basic formulation, we have estimated a portfolio character-

ized by a periodic update of the weights, where we have calculated the maximum 

Sharpe ratio every year. We have concluded that, since the mean of the Sharpe ra-

tios of the rebalanced portfolios is higher than the one of the portfolio with fixed 

weights, the rebalancing strategy is more profitable and more accurate for investors. 

Moreover, we have extended the analysis to the case in which the error terms of 

the assets may be correlated. For this formulation, the Sharpe ratio has resulted to 

be equal to 0.65, therefore higher than that of the basic formulation, but lower than 

that of the periodically rebalanced portfolio.  

This analysis suggests that actively managed portfolios, especially those with a 

systematic rebalancing mechanism, can outperform passive strategies: the optimal 

choice consists in recalculating the portfolio's maximum Sharpe ratio periodically.  

This suggests that periodic adjustments to the portfolio composition based on 

changing market conditions enhance the portfolio’s performance.  

However, while the actively managed portfolios generally outperform, there are 

exceptions. In the years 2021 and 2022, the optimal active portfolio did not outper-

form the passive strategy. This indicates that there are periods where passive strat-

egies may outshine active management, possibly due to market conditions or spe-

cific events impacting the chosen stocks.  



The SURE methodology, which extends the analysis by verifying if the error 

terms for the n stocks are correlated, shows higher performance measures for the 

active portfolio compared to the case in which we assumed that the error terms of 

the n stocks are uncorrelated. However, these findings highlight a significant issue 

with this model, in fact the recommended portfolio requires highly leveraged 

long/short positions that could prove impractical for real-world portfolio manage-

ment.  

In conclusion, in the SURE methodology, the higher Sharpe ratio is obtained at 

the cost of higher overall volatility of the portfolio.  
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VI. APPENDIX 
 

 
Figure a: Boxplot of closing prices of 20 assets 

 

 
Figure b: Boxplot of log excess returns of 20 assets 

We chose to analyze the excess returns for our analysis due to their stationarity. 

Unlike closing prices, which can exhibit trends and seasonality that complicate sta-

tistical analysis, excess returns are more likely to be stationary. This means their 

statistical properties, such as mean and variance, remain constant over time, making 



them more suitable for robust financial analysis and more reliable for evaluating 

the performance of investment strategies. 

Figure a displays the distribution of closing prices. Asset 9 and Asset 12 show 

the highest variation in closing prices, as indicated by the height of their boxes and 

the length of their whiskers. Instead, Asset 2 and Asset 5 have the lowest variation, 

with shorter boxes and whiskers. 

Moreover, we can see that assets 8, 9, 10, 11, 13, and 14, have numerous outliers. 

This indicates that these assets have experienced extreme closing prices that deviate 

significantly from their typical performance. The presence of many outliers sug-

gests that these assets are subject to high volatility.  

As we can see in Figure b, the average monthly excess return is extremely close 

to zero, indicating that stock excess returns tend to distribute with a normal distri-

bution (average close to zero) in the long run.  

Recall that if the excess return is positive the asset has outperformed the risk-

free return, whereas when it is negative, it means that the asset has underperformed 

the risk-free return. The distribution of excess returns around zero reflects the ran-

domness and inherent uncertainty in the financial market.50

 

 
50 Marcel Dettling, “Statistical Analysis of Financial Data”, ETH Swiss Federal Institute of Tech-
nology, Zurich, Jan 2021. 



 
Matlab code 
 
Descriptive Statistics of excess returns 
A0=table2array(closingpricesnyse(1:180,2:23)); 
 
A= zeros(179,22);  
for i=1:22  
    for j=1:179  
        A(j,i)=log(A0(j+1,i)/A0(j,i)); %logaritmic price varia-
tion 
    end 
end 
 
for i=1:21 
    A(:,i)=A(:,i)-A(:,22); %excess returns 
end 
 
m= mean(A(:,1:20));  
mm= mean(A(:,21)); 
st=std(A); 
sk=skewness(A); 
k=kurtosis(A); 
figure() 
boxplot(A(:,1:20)) 
corr(A) 
[acf,lags] = autocorr(A(:,1)); 
[acf lags] 
[pacf,lags] = autocorr(A(:,1)); 
[pacf lags] 
figure() 
autocorr(A(:,1)) 
figure() 
parcorr(A(:,1)) 
 
   figure() 
num_assets = 20;  
rows = 5;  
cols = 4;  
 
for i = 1:num_assets 
    subplot(rows, cols, i); 
    histfit(A(:, i), 20); 
    title(['Asset ', num2str(i)]); 
end 
 
Basic formulation of the optimal active portfolio 
 
A0=table2array(closingpricesnyse(1:180,2:23)); 
 
A= zeros(179,22);  
for i=1:22  
    for j=1:179  
        A(j,i)=log(A0(j+1,i)/A0(j,i)); %logaritmic price varia-
tion 
    end 
end 
 



for i=1:21 
    A(:,i)=A(:,i)-A(:,22); %excess returns 
end 
 
R1=A(1:179,1)'; 
R2=A(1:179,2)'; 
R3=A(1:179,3)'; 
R4=A(1:179,4)'; 
R5=A(1:179,5)'; 
R6=A(1:179,6)'; 
R7=A(1:179,7)'; 
R8=A(1:179,8)'; 
R9=A(1:179,9)'; 
R10=A(1:179,10)'; 
R11=A(1:179,11)'; 
R12=A(1:179,12)'; 
R13=A(1:179,13)'; 
R14=A(1:179,14)'; 
R15=A(1:179,15)'; 
R16=A(1:179,16)'; 
R17=A(1:179,17)'; 
R18=A(1:179,18)'; 
R19=A(1:179,19)'; 
R20=A(1:179,20)'; 
Rm=A(1:179,21)'; 
 
 
%Simple Statistical Analysis  
 
names=1:20; 
names1=string(names) 
m= mean(A(:,1:20));  
mm= mean(A(:,21)); 
st=std(A); 
sk=skewness(A); 
k=kurtosis(A); 
figure() 
boxplot(A(:,1:20)) 
corr(A) 
[acf,lags] = autocorr(A(:,1)); 
[acf lags] 
[pacf,lags] = autocorr(A(:,1)); 
[pacf lags] 
figure() 
autocorr(A(:,1)) 
figure() 
parcorr(A(:,1)) 
 
%3 - Estimation Window 
 
R1=A(1:119,1)'; 
R2=A(1:119,2)'; 
R3=A(1:119,3)'; 
R4=A(1:119,4)'; 
R5=A(1:119,5)'; 
R6=A(1:119,6)'; 
R7=A(1:119,7)'; 
R8=A(1:119,8)'; 
R9=A(1:119,9)'; 
R10=A(1:119,10)'; 



R11=A(1:119,11)'; 
R12=A(1:119,12)'; 
R13=A(1:119,13)'; 
R14=A(1:119,14)'; 
R15=A(1:119,15)'; 
R16=A(1:119,16)'; 
R17=A(1:119,17)'; 
R18=A(1:119,18)'; 
R19=A(1:119,19)'; 
R20=A(1:119,20)'; 
Rm=A(1:119,21)'; 
 
 
R=A(1:119,1:20)' 
 
 
alpha = zeros(20, 1); 
beta = zeros(20, 1); 
s = zeros(20,1); 
 
R1=A(1:119,1)'; 
R2=A(1:119,2)'; 
R3=A(1:119,3)'; 
R4=A(1:119,4)'; 
R5=A(1:119,5)'; 
R6=A(1:119,6)'; 
R7=A(1:119,7)'; 
R8=A(1:119,8)'; 
R9=A(1:119,9)'; 
R10=A(1:119,10)'; 
R11=A(1:119,11)'; 
R12=A(1:119,12)'; 
R13=A(1:119,13)'; 
R14=A(1:119,14)'; 
R15=A(1:119,15)'; 
R16=A(1:119,16)'; 
R17=A(1:119,17)'; 
R18=A(1:119,18)'; 
R19=A(1:119,19)'; 
R20=A(1:119,20)'; 
Rm=A(1:119,21)'; 
 
 
R=A(1:119,1:20)' 
 
 
alpha = zeros(20, 1); 
beta = zeros(20, 1); 
s = zeros(20,1); 
 
res=zeros(119,20) 
 
%mdl= fitlm(Rm,R17) 
 
 
for i = 1:20 
    % Select current column 
    y = R(i, :); 
    X = Rm; 
    cov_0=cov(y,X,1); 



    b=cov_0(1,2)/var(X,1); 
    a=mean(y)-b*mean(X); 
    residuals = y - a-b*X 
    res(:,i)=residuals' 
 
    % Save results in alpha and beta 
    alpha(i) = a; 
    beta(i) = b; 
    s(i) = sqrt(sum(residuals.^2) / (length(residuals) - 2)); 
 
end 
 
figure() 
x=linspace(0,1.5,1000); 
y=x*mm;  % The slope is given by the market treynor ratio 
figure() 
plot(x,y); 
hold on 
scatter(beta,m); 
text(beta+0.01, m, names1); 
 
em=mean(Rm); % market mean 
varm=var(Rm,1); % variance market 
s2=s.^2;   %variance epsilon 
alpha2=alpha.^2; 
num=alpha./s2; 
den=em/varm; 
w0=num/den;   %weights 
 
 
somma=1+sum((1-beta).*w0); 
w=w0/somma; 
numwm=1-sum(beta.*w0); 
wm=numwm/somma; 
%wf=1-sum(w)-wm; 
 
lambdainv=em/varm*somma 
lambda=1/lambdainv % Lambda 
 
 
w_n1=lambda*em/varm % weight w_n+1 
 
%Optimal Portfolio  
 
Rmf=wm*Rm; 
Rf=R.*w; 
Ro=sum(Rf)+Rmf; 
 
 
sum(w.*alpha)+w_n1*em  
mean(Ro) 
 
 
sum(w.^2.*s2)+w_n1^2*varm 
var(Ro) 
 
Rmf=wm*Rm; 
Rf=R.*w; 
Ro=sum(Rf)+Rmf; 
 



sm=em*em/varm; 
alpha2=alpha.*alpha; 
sum1=sum(alpha2./s2); 
 
sp=sqrt(sm+sum1) 
 
mean(Ro)/std(Ro,1) 
 
figure() 
heatmap(corr(res)) 
 
%Testing Window  
 
RT1=A(120:179,1)'; 
RT2=A(120:179,2)'; 
RT3=A(120:179,3)'; 
RT4=A(120:179,4)'; 
RT5=A(120:179,5)'; 
RT6=A(120:179,6)'; 
RT7=A(120:179,7)'; 
RT8=A(120:179,8)'; 
RT9=A(120:179,9)'; 
RT10=A(120:179,10)'; 
RT11=A(120:179,11)'; 
RT12=A(120:179,12)'; 
RT13=A(120:179,13)'; 
RT14=A(120:179,14)'; 
RT15=A(120:179,15)'; 
RT16=A(120:179,16)'; 
RT17=A(120:179,17)'; 
RT18=A(120:179,18)'; 
RT19=A(120:179,19)'; 
RT20=A(120:179,20)'; 
RTm=A(120:179,21)'; 
 
RT=A(120:179,1:20)' 
 
RTmf=wm*RTm; 
RTf=RT.*w; 
RTo=sum(RTf)+RTmf; 
 
 
%SHARPE RATIO 
sharpe = zeros(20, 1); 
 
for i = 1:20 
    % Select current column 
    y = R(i, :); 
    sh = mean(y)./std(y,1) 
 
    % Save results in alpha and beta 
    sharpe(i) = sh; 
    
end 
 
%Sharpe ratio annualized 
sharpe_m= mean(RTm)/std(RTm)*sqrt(12) 
sharpe_p = mean(RTo)/std(RTo)*sqrt(12) 
 
%TRAYNOR RATIO    



    yT = RTo; 
    xT = RTm; 
    t=cov(yT,xT,1); 
    bT=t(1,2)/var(xT,1); 
  
Traynor_p=(mean(RTo)/bT)*sqrt(12)  
Traynor_m=mean(RTm)*sqrt(12) 
 
%Downside Deviation 
 
N=60; 
 
  z = RTo; 
  ddo = sqrt((1/(N-1)) * sum((min(0, z - mean(z))).^2)); 
  ddm  = sqrt((1/(N-1)) * sum((min(0, RTm - mean(RTm))).^2)); 
 
%Sortino ratio 
mean(RTo)/ddo*sqrt(12) 
mean(RTm)/ddm*sqrt(12) 
 
%Jensen's alpha 
 
jen= (mean(RTo)-bT.*mean(RTm))*sqrt(12) 
 
 
Rolling window of the optimal active portfolio 
 
A0=table2array(closingpricesnyse(1:180,2:23)); 
 
A= zeros(179,22);  
for i=1:22  
    for j=1:179 
        A(j,i)=(A0(j+1,i)-A0(j,i))/A0(j,i);  
    end 
end 
 
for i=1:21 
    A(:,i)=A(:,i)-A(:,22); %excess returns 
end 
 
Rtott=A(120:179,1:20); 
Rtotm=A(120:179,21); 
RTtoto=zeros(60,1); 
for j = 0:4 
    R=A(1+j*12:119+j*12,1:20)' 
    Rm=A(1+j*12:119+j*12,21)' 
    alpha = zeros(20, 1); 
    beta = zeros(20, 1); 
    s = zeros(20,1); 
    for i = 1:20 
        % Select current column  
        y = R(i, :); 
        X = Rm; 
        a=cov(y,X); 
        b=a(1,2)/var(X); 
        c=mean(y)-b*mean(X); 
        residuals = y - c-b*X; 
        % Save results in alpha and beta 
        alpha(i) = c; 



        beta(i) = b; 
        s(i) = sqrt(sum(residuals.^2) / (length(residuals) - 2)); 
     
    end 
 
    %Weights’ calculation 
 
    em=mean(Rm); % market mean 
    varm=var(Rm); % market variance 
    s2=s.^2      %epsilon variance  
    num=alpha./s2; 
    den=em/varm; 
    w0=num/den;   %optimal weights 
    somma=1+sum((1-beta).*w0); 
    w=w0/somma; 
    numwm=1-sum(beta.*w0); 
    wm=numwm/somma; 
    wf=1-sum(w)-wm; 
    Rmf=wm*Rm; 
    Rf=R.*w; 
    Ro=sum(Rf)+Rmf; 
    Rmf; 
 
%Sharpe RATIO 
    sm=em*em/varm; %Square value Sharpe ratio market  
    alpha2=alpha.*alpha; 
    sum1=sum(alpha2./s2); 
    sp=sqrt(sm+sum1); %Sharpe Ratio optimal portfolio 
 
    RT=A(120+j*12:131+j*12,1:20)' 
    RTm=A(120+j*12:131+j*12,21)' 
    RTmf=wm*RTm 
    RTf=RT.*w 
    RTtoto(1+j*12:12+j*12)=sum(RTf)+RTmf; 
end 
 
%SHARPE RATIO OPTIMAL PORTFOLIO TESTING WINDOW 
 
mean(RTtoto)/std(RTtoto)  
mean(Rtotm)/std(Rtotm) 
 
Check on the rolling window 
 
A0=table2array(closingpricesnyse(1:180,2:23)); 
 
A= zeros(179,22);  
for i=1:22  
    for j=1:179  
        A(j,i)=log(A0(j+1,i)/A0(j,i)); % logaritmic price varia-
tion  
    end 
end 
 
 
for i=1:21 
    A(:,i)=A(:,i)-A(:,22); 
end 
 
R1=A(1:179,1)'; 



R2=A(1:179,2)'; 
R3=A(1:179,3)'; 
R4=A(1:179,4)'; 
R5=A(1:179,5)'; 
R6=A(1:179,6)'; 
R7=A(1:179,7)'; 
R8=A(1:179,8)'; 
R9=A(1:179,9)'; 
R10=A(1:179,10)'; 
R11=A(1:179,11)'; 
R12=A(1:179,12)'; 
R13=A(1:179,13)'; 
R14=A(1:179,14)'; 
R15=A(1:179,15)'; 
R16=A(1:179,16)'; 
R17=A(1:179,17)'; 
R18=A(1:179,18)'; 
R19=A(1:179,19)'; 
R20=A(1:179,20)'; 
Rm=A(1:179,21)'; 
 
 
%3 - Estimation Window 2008-2017 
 
R1=A(1:119,1)'; 
R2=A(1:119,2)'; 
R3=A(1:119,3)'; 
R4=A(1:119,4)'; 
R5=A(1:119,5)'; 
R6=A(1:119,6)'; 
R7=A(1:119,7)'; 
R8=A(1:119,8)'; 
R9=A(1:119,9)'; 
R10=A(1:119,10)'; 
R11=A(1:119,11)'; 
R12=A(1:119,12)'; 
R13=A(1:119,13)'; 
R14=A(1:119,14)'; 
R15=A(1:119,15)'; 
R16=A(1:119,16)'; 
R17=A(1:119,17)'; 
R18=A(1:119,18)'; 
R19=A(1:119,19)'; 
R20=A(1:119,20)'; 
Rm=A(1:119,21)'; 
 
 
R=A(1:119,1:20)' 
 
 
alpha = zeros(20, 1); 
beta = zeros(20, 1); 
s = zeros(20,1); 
 
alpha = zeros(20, 1); 
beta = zeros(20, 1); 
s = zeros(20,1); 
 
res=zeros(119,20) 
 



%mdl= fitlm(Rm,R17) 
 
 
for i = 1:20 
    % Select current column  
    y = R(i, :); 
    X = Rm; 
    cov_0=cov(y,X,1); 
    b=cov_0(1,2)/var(X,1); 
    a=mean(y)-b*mean(X); 
    residuals = y - a-b*X 
    res(:,i)=residuals' 
 
    % Save results in alpha and beta 
    alpha(i) = a; 
    beta(i) = b; 
    s(i) = sqrt(sum(residuals.^2) / (length(residuals) - 2)); 
 
end 
em=mean(Rm); % market mean 
varm=var(Rm,1); % market variance 
s2=s.^2;   % epsilon variance 
alpha2=alpha.^2; 
num=alpha./s2; 
den=em/varm; 
w0=num/den;   %weights 
somma=1+sum((1-beta).*w0); 
w=w0/somma; 
numwm=1-sum(beta.*w0); 
wm=numwm/somma; 
wf=1-sum(w)-wm; 
 
lambdainv=em/varm*somma 
lambda=1/lambdainv % Lambda 
 
 
w_n1=lambda*em/varm % weight w_n+1 
 
%Optimal portfolio  
 
Rmf=wm*Rm; 
Rf=R.*w; 
Ro=sum(Rf)+Rmf; 
 
sum(w.*alpha)+w_n1*em  
mean(Ro) 
 
sum(w.^2.*s2)+w_n1^2*varm 
var(Ro) 
 
Rmf=wm*Rm; 
Rf=R.*w; 
Ro=sum(Rf)+Rmf; 
 
sm=em*em/varm; 
alpha2=alpha.*alpha; 
sum1=sum(alpha2./s2); 
 
sp=sqrt(sm+sum1) 
 



mean(Ro)/std(Ro,1) 
 
%Testing Window 2018 
 
RT1=A(120:131,1)'; 
RT2=A(120:131,2)'; 
RT3=A(120:131,3)'; 
RT4=A(120:131,4)'; 
RT5=A(120:131,5)'; 
RT6=A(120:131,6)'; 
RT7=A(120:131,7)'; 
RT8=A(120:131,8)'; 
RT9=A(120:131,9)'; 
RT10=A(120:131,10)'; 
RT11=A(120:131,11)'; 
RT12=A(120:131,12)'; 
RT13=A(120:131,13)'; 
RT14=A(120:131,14)'; 
RT15=A(120:131,15)'; 
RT16=A(120:131,16)'; 
RT17=A(120:131,17)'; 
RT18=A(120:131,18)'; 
RT19=A(120:131,19)'; 
RT20=A(120:131,20)'; 
RTm=A(120:131,21)'; 
 
RT=A(120:131,1:20)' 
 
RTmf=wm*RTm; 
RTf=RT.*w; 
RTo=sum(RTf)+RTmf; 
 
%SHARPE RATIO 
sharpe = zeros(20, 1); 
 
for i = 1:20 
    % Select current column 
    y = R(i, :); 
    sh = mean(y)./std(y,1) 
 
    % Save results in sharpe 
    sharpe(i) = sh; 
end 
 
%check (sharpe) 
mean(R1)/std(R1) 
 
%Sharpe ratio annualized 
mean(RTm)/std(RTm)*sqrt(12) 
mean(RTo)/std(RTo)*sqrt(12) 
 
%TRAYNOR RATIO    
    yT = RTo; 
    xT = RTm; 
    t=cov(yT,xT,1); 
    bT=t(1,2)/var(xT,1); 
  
Traynor_p=(mean(RTo)/bT)*sqrt(12)  
Traynor_m=mean(RTm)*sqrt(12) 
 



%Downside Deviation 
 
N=12; 
 
  z = RTo; 
  ddo = sqrt((1/(N-1)) * sum((min(0, z - mean(z))).^2)); 
  ddm  = sqrt((1/(N-1)) * sum((min(0, RTm - mean(RTm))).^2)); 
 
%Sortino ratio 
mean(RTo)/ddo*sqrt(12) 
mean(RTm)/ddm*sqrt(12) 
 
Sharpe_m=mean(Rm)/std(Rm)*sqrt(12) %sharpe del mercato conside-
rando tutto il periodo 
 
%Jensen's alpha 
 
jen= (mean(RTo)-bT.*mean(RTm))*sqrt(12) 
 
 
 
A0=table2array(closingpricesnyse(1:180,2:23)); 
 
A= zeros(179,22);  
for i=1:22  
    for j=1:179  
        A(j,i)=log(A0(j+1,i)/A0(j,i)); 
    end 
end 
 
 
for i=1:21 
    A(:,i)=A(:,i)-A(:,22); 
end 
 
R1=A(1:179,1)'; 
R2=A(1:179,2)'; 
R3=A(1:179,3)'; 
R4=A(1:179,4)'; 
R5=A(1:179,5)'; 
R6=A(1:179,6)'; 
R7=A(1:179,7)'; 
R8=A(1:179,8)'; 
R9=A(1:179,9)'; 
R10=A(1:179,10)'; 
R11=A(1:179,11)'; 
R12=A(1:179,12)'; 
R13=A(1:179,13)'; 
R14=A(1:179,14)'; 
R15=A(1:179,15)'; 
R16=A(1:179,16)'; 
R17=A(1:179,17)'; 
R18=A(1:179,18)'; 
R19=A(1:179,19)'; 
R20=A(1:179,20)'; 
Rm=A(1:179,21)'; 
 
 
%3 - Estimation Window 2009-2018 
 



R1=A(12:131,1)'; 
R2=A(12:131,2)'; 
R3=A(12:131,3)'; 
R4=A(12:131,4)'; 
R5=A(12:131,5)'; 
R6=A(12:131,6)'; 
R7=A(12:131,7)'; 
R8=A(12:131,8)'; 
R9=A(12:131,9)'; 
R10=A(12:131,10)'; 
R11=A(12:131,11)'; 
R12=A(12:131,12)'; 
R13=A(12:131,13)'; 
R14=A(12:131,14)'; 
R15=A(12:131,15)'; 
R16=A(12:131,16)'; 
R17=A(12:131,17)'; 
R18=A(12:131,18)'; 
R19=A(12:131,19)'; 
R20=A(12:131,20)'; 
Rm=A(12:131,21)'; 
 
 
R=A(12:131,1:20)' 
 
alpha = zeros(20, 1); 
beta = zeros(20, 1); 
s = zeros(20,1); 
 
alpha = zeros(20, 1); 
beta = zeros(20, 1); 
s = zeros(20,1); 
 
res=zeros(120,20) 
 
%mdl= fitlm(Rm,R17) 
 
 
for i = 1:20 
    % Select current column 
    y = R(i, :); 
    X = Rm; 
    cov_0=cov(y,X,1); 
    b=cov_0(1,2)/var(X,1); 
    a=mean(y)-b*mean(X); 
    residuals = y - a-b*X 
    res(:,i)=residuals' 
 
    % Save results in alpha and beta 
    alpha(i) = a; 
    beta(i) = b; 
    s(i) = sqrt(sum(residuals.^2) / (length(residuals) - 2)); 
 
end 
em=mean(Rm); % market mean 
varm=var(Rm,1); % market variance 
s2=s.^2;   % epsilon variance 
alpha2=alpha.^2; 
num=alpha./s2; 
den=em/varm; 



w0=num/den;   %weights 
somma=1+sum((1-beta).*w0); 
w=w0/somma; 
numwm=1-sum(beta.*w0); 
wm=numwm/somma; 
wf=1-sum(w)-wm; 
 
lambdainv=em/varm*somma 
lambda=1/lambdainv % Lambda 
 
 
w_n1=lambda*em/varm % weight w_n+1 
 
%Optimal portfolio 
 
Rmf=wm*Rm; 
Rf=R.*w; 
Ro=sum(Rf)+Rmf; 
 
sum(w.*alpha)+w_n1*em  
mean(Ro) 
 
sum(w.^2.*s2)+w_n1^2*varm 
var(Ro) 
 
Rmf=wm*Rm; 
Rf=R.*w; 
Ro=sum(Rf)+Rmf; 
 
sm=em*em/varm; 
alpha2=alpha.*alpha; 
sum1=sum(alpha2./s2); 
 
sp=sqrt(sm+sum1) 
 
mean(Ro)/std(Ro,1) 
 
%Testing Window 2019 
 
RT1=A(132:143,1)'; 
RT2=A(132:143,2)'; 
RT3=A(132:143,3)'; 
RT4=A(132:143,4)'; 
RT5=A(132:143,5)'; 
RT6=A(132:143,6)'; 
RT7=A(132:143,7)'; 
RT8=A(132:143,8)'; 
RT9=A(132:143,9)'; 
RT10=A(132:143,10)'; 
RT11=A(132:143,11)'; 
RT12=A(132:143,12)'; 
RT13=A(132:143,13)'; 
RT14=A(132:143,14)'; 
RT15=A(132:143,15)'; 
RT16=A(132:143,16)'; 
RT17=A(132:143,17)'; 
RT18=A(132:143,18)'; 
RT19=A(132:143,19)'; 
RT20=A(132:143,20)'; 
RTm=A(132:143,21)'; 



 
RT=A(132:143,1:20)' 
 
RTmf=wm*RTm; 
RTf=RT.*w; 
RTo=sum(RTf)+RTmf; 
 
%SHARPE RATIO 
sharpe = zeros(20, 1); 
 
for i = 1:20 
    % Select current column  
    y = R(i, :); 
    sh = mean(y)./std(y,1) 
 
    % Save results in alpha and beta  
    sharpe(i) = sh; 
    
end 
 
%check (sharpe) 
mean(R1)/std(R1) 
 
 
%Sharpe ratio annualized 
Sharpe_m= mean(RTm)/std(RTm)*sqrt(12) 
Sharpe_p= (mean(RTo)/std(RTo))*sqrt(12) 
 
%TRAYNOR RATIO  
for i = 1:20 
    % Seleziona la colonna corrente 
    yT = RT(i, :); 
    xT = RTm; 
    t=cov(yT,xT,1); 
    bT=t(1,2)/var(xT,1); 
end 
 
Traynor_p=(mean(RTo)/bT)*sqrt(12)  
Traynor_m=mean(RTm)*sqrt(12) 
 
%Downside Deviation  
 
for i = 1:20 
 
    % Select current column 
    z = RT(i,:); 
    ddo = z-mean(z(z<0)) 
end  
 
%SORTINO RATIO 
 
N = 12; % number of excess returns during testing window 
 
DDo = sqrt((1/N) * sum(ddo.^2)); % downside deviation 
ddm = RTm-mean(RTm(RTm<0)) 
DDm= sqrt((1/N) * sum(ddm.^2)) 
Sortino_p= (mean(RTo)/DDo)*sqrt(12) 
Sortino_m= (mean(RTm)/DDm)*sqrt(12) 
 
%Jensen's alpha 



 
jen= (mean(RTo)-bT.*mean(RTm))*sqrt(12) 
 
A0=table2array(closingpricesnyse(1:180,2:23)); 
 
A= zeros(179,22);  
for i=1:22  
    for j=1:179  
        A(j,i)=log(A0(j+1,i)/A0(j,i));  
    end 
end 
 
 
for i=1:21 
    A(:,i)=A(:,i)-A(:,22); 
end 
 
R1=A(1:179,1)'; 
R2=A(1:179,2)'; 
R3=A(1:179,3)'; 
R4=A(1:179,4)'; 
R5=A(1:179,5)'; 
R6=A(1:179,6)'; 
R7=A(1:179,7)'; 
R8=A(1:179,8)'; 
R9=A(1:179,9)'; 
R10=A(1:179,10)'; 
R11=A(1:179,11)'; 
R12=A(1:179,12)'; 
R13=A(1:179,13)'; 
R14=A(1:179,14)'; 
R15=A(1:179,15)'; 
R16=A(1:179,16)'; 
R17=A(1:179,17)'; 
R18=A(1:179,18)'; 
R19=A(1:179,19)'; 
R20=A(1:179,20)'; 
Rm=A(1:179,21)'; 
 
 
% Estimation Window years 2010-2019 
 
R1=A(24:143,1)'; 
R2=A(24:143,2)'; 
R3=A(24:143,3)'; 
R4=A(24:143,4)'; 
R5=A(24:143,5)'; 
R6=A(24:143,6)'; 
R7=A(24:143,7)'; 
R8=A(24:143,8)'; 
R9=A(24:143,9)'; 
R10=A(24:143,10)'; 
R11=A(24:143,11)'; 
R12=A(24:143,12)'; 
R13=A(24:143,13)'; 
R14=A(24:143,14)'; 
R15=A(24:143,15)'; 
R16=A(24:143,16)'; 
R17=A(24:143,17)'; 



R18=A(24:143,18)'; 
R19=A(24:143,19)'; 
R20=A(24:143,20)'; 
Rm=A(24:143,21)'; 
 
 
R=A(24:143,1:20)' 
 
 
alpha = zeros(20, 1); 
beta = zeros(20, 1); 
s = zeros(20,1); 
 
alpha = zeros(20, 1); 
beta = zeros(20, 1); 
s = zeros(20,1); 
 
res=zeros(120,20) 
 
%mdl= fitlm(Rm,R17) 
 
 
for i = 1:20 
    % Select current column 
    y = R(i, :); 
    X = Rm; 
    cov_0=cov(y,X,1); 
    b=cov_0(1,2)/var(X,1); 
    a=mean(y)-b*mean(X); 
    residuals = y - a-b*X 
    res(:,i)=residuals' 
 
    % Save results in alpha and beta 
    alpha(i) = a; 
    beta(i) = b; 
    s(i) = sqrt(sum(residuals.^2) / (length(residuals) - 2)); 
 
end 
em=mean(Rm); % market mean 
varm=var(Rm,1); % market variance 
s2=s.^2;   % epsilon variance 
alpha2=alpha.^2; 
num=alpha./s2; 
den=em/varm; 
w0=num/den;   %weights 
somma=1+sum((1-beta).*w0); 
w=w0/somma; 
numwm=1-sum(beta.*w0); 
wm=numwm/somma; 
wf=1-sum(w)-wm; 
 
lambdainv=em/varm*somma 
lambda=1/lambdainv % Lambda 
 
 
w_n1=lambda*em/varm % weight w_n+1 
 
%Optimal portfolio 
 
Rmf=wm*Rm; 



Rf=R.*w; 
Ro=sum(Rf)+Rmf; 
 
sum(w.*alpha)+w_n1*em  
mean(Ro) 
 
sum(w.^2.*s2)+w_n1^2*varm 
var(Ro) 
 
Rmf=wm*Rm; 
Rf=R.*w; 
Ro=sum(Rf)+Rmf; 
 
sm=em*em/varm; 
alpha2=alpha.*alpha; 
sum1=sum(alpha2./s2); 
 
sp=sqrt(sm+sum1) 
 
mean(Ro)/std(Ro,1) 
 
%Testing Window 2020 
 
RT1=A(144:155,1)'; 
RT2=A(144:155,2)'; 
RT3=A(144:155,3)'; 
RT4=A(144:155,4)'; 
RT5=A(144:155,5)'; 
RT6=A(144:155,6)'; 
RT7=A(144:155,7)'; 
RT8=A(144:155,8)'; 
RT9=A(144:155,9)'; 
RT10=A(144:155,10)'; 
RT11=A(144:155,11)'; 
RT12=A(144:155,12)'; 
RT13=A(144:155,13)'; 
RT14=A(144:155,14)'; 
RT15=A(144:155,15)'; 
RT16=A(144:155,16)'; 
RT17=A(144:155,17)'; 
RT18=A(144:155,18)'; 
RT19=A(144:155,19)'; 
RT20=A(144:155,20)'; 
RTm=A(144:155,21)'; 
 
RT=A(144:155,1:20)' 
 
 
RTmf=wm*RTm; 
RTf=RT.*w; 
RTo=sum(RTf)+RTmf; 
 
%SHARPE RATIO 
sharpe = zeros(20, 1); 
 
for i = 1:20 
    % Select current column 
    y = R(i, :); 
    sh = mean(y)./std(y,1) 
 



    % Save results in alpha and beta 
    sharpe(i) = sh; 
    
end 
 
%check (sharpe) 
mean(R1)/std(R1) 
 
%Sharpe ratio annualized 
 
mean(RTm)/std(RTm)*sqrt(12) 
mean(RTo)/std(RTo)*sqrt(12) 
 
 
A= zeros(179,22);  
for i=1:22  
    for j=1:179  
        A(j,i)=log(A0(j+1,i)/A0(j,i));  
    end 
end 
 
 
for i=1:21 
    A(:,i)=A(:,i)-A(:,22); 
end 
 
R1=A(1:179,1)'; 
R2=A(1:179,2)'; 
R3=A(1:179,3)'; 
R4=A(1:179,4)'; 
R5=A(1:179,5)'; 
R6=A(1:179,6)'; 
R7=A(1:179,7)'; 
R8=A(1:179,8)'; 
R9=A(1:179,9)'; 
R10=A(1:179,10)'; 
R11=A(1:179,11)'; 
R12=A(1:179,12)'; 
R13=A(1:179,13)'; 
R14=A(1:179,14)'; 
R15=A(1:179,15)'; 
R16=A(1:179,16)'; 
R17=A(1:179,17)'; 
R18=A(1:179,18)'; 
R19=A(1:179,19)'; 
R20=A(1:179,20)'; 
Rm=A(1:179,21)'; 
 
 
% Estimation Window years 2011-2020 
 
R1=A(36:155,1)'; 
R2=A(36:155,2)'; 
R3=A(36:155,3)'; 
R4=A(36:155,4)'; 
R5=A(36:155,5)'; 
R6=A(36:155,6)'; 
R7=A(36:155,7)'; 
R8=A(36:155,8)'; 



R9=A(36:155,9)'; 
R10=A(36:155,10)'; 
R11=A(36:155,11)'; 
R12=A(36:155,12)'; 
R13=A(36:155,13)'; 
R14=A(36:155,14)'; 
R15=A(36:155,15)'; 
R16=A(36:155,16)'; 
R17=A(36:155,17)'; 
R18=A(36:155,18)'; 
R19=A(36:155,19)'; 
R20=A(36:155,20)'; 
Rm=A(36:155,21)'; 
 
R=A(36:155,1:20)' 
 
alpha = zeros(20, 1); 
beta = zeros(20, 1); 
s = zeros(20,1); 
 
alpha = zeros(20, 1); 
beta = zeros(20, 1); 
s = zeros(20,1); 
 
res=zeros(120,20) 
 
%mdl= fitlm(Rm,R17) 
 
 
for i = 1:20 
    % Select current column  
    y = R(i, :); 
    X = Rm; 
    cov_0=cov(y,X,1); 
    b=cov_0(1,2)/var(X,1); 
    a=mean(y)-b*mean(X); 
    residuals = y - a-b*X 
    res(:,i)=residuals' 
 
    % Save results in alpha and beta 
    alpha(i) = a; 
    beta(i) = b; 
    s(i) = sqrt(sum(residuals.^2) / (length(residuals) - 2)); 
 
end 
em=mean(Rm); % market mean 
varm=var(Rm,1); % market variance 
s2=s.^2;   % epsilon variance 
alpha2=alpha.^2; 
num=alpha./s2; 
den=em/varm; 
w0=num/den;   %weights 
somma=1+sum((1-beta).*w0); 
w=w0/somma; 
numwm=1-sum(beta.*w0); 
wm=numwm/somma; 
wf=1-sum(w)-wm; 
 
lambdainv=em/varm*somma 
lambda=1/lambdainv % Lambda 



 
 
w_n1=lambda*em/varm % weight w_n+1 
 
%Optimal portfolio 
 
Rmf=wm*Rm; 
Rf=R.*w; 
Ro=sum(Rf)+Rmf; 
 
sum(w.*alpha)+w_n1*em  
mean(Ro) 
 
sum(w.^2.*s2)+w_n1^2*varm 
var(Ro) 
 
Rmf=wm*Rm; 
Rf=R.*w; 
Ro=sum(Rf)+Rmf; 
 
sm=em*em/varm; 
alpha2=alpha.*alpha; 
sum1=sum(alpha2./s2); 
 
sp=sqrt(sm+sum1) 
 
mean(Ro)/std(Ro,1) 
 
%Testing Window 2021 
 
RT1=A(156:167,1)'; 
RT2=A(156:167,2)'; 
RT3=A(156:167,3)'; 
RT4=A(156:167,4)'; 
RT5=A(156:167,5)'; 
RT6=A(156:167,6)'; 
RT7=A(156:167,7)'; 
RT8=A(156:167,8)'; 
RT9=A(156:167,9)'; 
RT10=A(156:167,10)'; 
RT11=A(156:167,11)'; 
RT12=A(156:167,12)'; 
RT13=A(156:167,13)'; 
RT14=A(156:167,14)'; 
RT15=A(156:167,15)'; 
RT16=A(156:167,16)'; 
RT17=A(156:167,17)'; 
RT18=A(156:167,18)'; 
RT19=A(156:167,19)'; 
RT20=A(156:167,20)'; 
RTm=A(156:167,21)'; 
 
RT=A(156:167,1:20)' 
 
 
 
RTmf=wm*RTm; 
RTf=RT.*w; 
RTo=sum(RTf)+RTmf; 
 



%SHARPE RATIO 
sharpe = zeros(20, 1); 
 
for i = 1:20 
    % Select current column  
    y = R(i, :); 
    sh = mean(y)./std(y,1) 
 
    % Save results in alpha and beta 
    sharpe(i) = sh; 
    
end 
 
%check (sharpe) 
mean(R1)/std(R1) 
 
%Sharpe ratio annualized 
 
mean(RTm)/std(RTm)*sqrt(12) 
mean(RTo)/std(RTo)*sqrt(12) 
 
A0=table2array(closingpricesnyse(1:180,2:23)); 
 
A= zeros(179,22);  
for i=1:22  
    for j=1:179  
        A(j,i)=log(A0(j+1,i)/A0(j,i));  
    end 
end 
 
 
for i=1:21 
    A(:,i)=A(:,i)-A(:,22); 
end 
 
R1=A(1:179,1)'; 
R2=A(1:179,2)'; 
R3=A(1:179,3)'; 
R4=A(1:179,4)'; 
R5=A(1:179,5)'; 
R6=A(1:179,6)'; 
R7=A(1:179,7)'; 
R8=A(1:179,8)'; 
R9=A(1:179,9)'; 
R10=A(1:179,10)'; 
R11=A(1:179,11)'; 
R12=A(1:179,12)'; 
R13=A(1:179,13)'; 
R14=A(1:179,14)'; 
R15=A(1:179,15)'; 
R16=A(1:179,16)'; 
R17=A(1:179,17)'; 
R18=A(1:179,18)'; 
R19=A(1:179,19)'; 
R20=A(1:179,20)'; 
Rm=A(1:179,21)'; 
 
 
% Estimation Window years 2012-2021 



 
R1=A(49:167,1)'; 
R2=A(49:167,2)'; 
R3=A(49:167,3)'; 
R4=A(49:167,4)'; 
R5=A(49:167,5)'; 
R6=A(49:167,6)'; 
R7=A(49:167,7)'; 
R8=A(49:167,8)'; 
R9=A(49:167,9)'; 
R10=A(49:167,10)'; 
R11=A(49:167,11)'; 
R12=A(49:167,12)'; 
R13=A(49:167,13)'; 
R14=A(49:167,14)'; 
R15=A(49:167,15)'; 
R16=A(49:167,16)'; 
R17=A(49:167,17)'; 
R18=A(49:167,18)'; 
R19=A(49:167,19)'; 
R20=A(49:167,20)'; 
Rm=A(49:167,21)'; 
 
R=A(49:167,1:20)' 
 
 
alpha = zeros(20, 1); 
beta = zeros(20, 1); 
s = zeros(20,1); 
 
alpha = zeros(20, 1); 
beta = zeros(20, 1); 
s = zeros(20,1); 
 
res=zeros(119,20) 
 
%mdl= fitlm(Rm,R17) 
 
 
for i = 1:20 
    % Select current column  
    y = R(i, :); 
    X = Rm; 
    cov_0=cov(y,X,1); 
    b=cov_0(1,2)/var(X,1); 
    a=mean(y)-b*mean(X); 
    residuals = y - a-b*X 
    res(:,i)=residuals' 
 
    % Save results in alpha and beta 
    alpha(i) = a; 
    beta(i) = b; 
    s(i) = sqrt(sum(residuals.^2) / (length(residuals) - 2)); 
 
end 
em=mean(Rm); % market mean 
varm=var(Rm,1); % market variance 
s2=s.^2;   % epsilon variance 
alpha2=alpha.^2; 
num=alpha./s2; 



den=em/varm; 
w0=num/den;   %weights  
somma=1+sum((1-beta).*w0); 
w=w0/somma; 
numwm=1-sum(beta.*w0); 
wm=numwm/somma; 
wf=1-sum(w)-wm; 
 
lambdainv=em/varm*somma 
lambda=1/lambdainv % Lambda 
 
 
w_n1=lambda*em/varm % weight w_n+1 
 
%Optimal portfolio  
 
Rmf=wm*Rm; 
Rf=R.*w; 
Ro=sum(Rf)+Rmf; 
 
sum(w.*alpha)+w_n1*em  
mean(Ro) 
 
sum(w.^2.*s2)+w_n1^2*varm 
var(Ro) 
 
Rmf=wm*Rm; 
Rf=R.*w; 
Ro=sum(Rf)+Rmf; 
 
sm=em*em/varm; 
alpha2=alpha.*alpha; 
sum1=sum(alpha2./s2); 
 
sp=sqrt(sm+sum1) 
 
mean(Ro)/std(Ro,1) 
 
%Testing Window 2022 
 
RT1=A(168:179,1)'; 
RT2=A(168:179,2)'; 
RT3=A(168:179,3)'; 
RT4=A(168:179,4)'; 
RT5=A(168:179,5)'; 
RT6=A(168:179,6)'; 
RT7=A(168:179,7)'; 
RT8=A(168:179,8)'; 
RT9=A(168:179,9)'; 
RT10=A(168:179,10)'; 
RT11=A(168:179,11)'; 
RT12=A(168:179,12)'; 
RT13=A(168:179,13)'; 
RT14=A(168:179,14)'; 
RT15=A(168:179,15)'; 
RT16=A(168:179,16)'; 
RT17=A(168:179,17)'; 
RT18=A(168:179,18)'; 
RT19=A(168:179,19)'; 
RT20=A(168:179,20)'; 



RTm=A(168:179,21)'; 
 
RT=A(168:179,1:20)' 
 
 
RTmf=wm*RTm; 
RTf=RT.*w; 
RTo=sum(RTf)+RTmf; 
 
%SHARPE RATIO 
sharpe = zeros(20, 1); 
 
for i = 1:20 
    % Select current column 
    y = R(i, :); 
    sh = mean(y)./std(y,1) 
 
    % Save results in alpha and beta 
    sharpe(i) = sh; 
    
end 
 
%Sharpe ratio annualized 
mean(RTm)/std(RTm)*sqrt(12) 
mean(RTo)/std(RTo)*sqrt(12) 
 
%TRAYNOR RATIO    
    yT = RTo; 
    xT = RTm; 
    t=cov(yT,xT,1); 
    bT=t(1,2)/var(xT,1); 
  
Traynor_p=(mean(RTo)/bT)*sqrt(12)  
Traynor_m=mean(RTm)*sqrt(12) 
 
%Downside Deviation 
 
N=12; 
 
  z = RTo; 
  ddo = sqrt((1/(N-1)) * sum((min(0, z - mean(z))).^2)); 
  ddm  = sqrt((1/(N-1)) * sum((min(0, RTm - mean(RTm))).^2)); 
 
%Sortino ratio 
mean(RTo)/ddo*sqrt(12) 
mean(RTm)/ddm*sqrt(12) 
 
%Jensen's alpha 
 
jen= (mean(RTo)-bT.*mean(RTm))*sqrt(12) 
 
SURE Methodology 
 
A0=table2array(closingpricesnyse(1:180,2:23)); 
 
A= zeros(179,22);  
for i=1:22  
    for j=1:179  
        A(j,i)=log(A0(j+1,i)/A0(j,i));  



    end 
end 
 
for i=1:21 
    A(:,i)=A(:,i)-A(:,22); 
end 
 
R=A(1:119,1:20); 
Rm=A(1:119,21); 
em=mean(Rm); 
varm=var(Rm); 
 
mm=mean(Rm) 
m=mean(R) 
 
beta=sum((R-m).*(Rm-mm))/(sum((Rm-mm).*(Rm-mm))) 
 
alpha=m-mm*beta; 
 
eps=R-alpha-Rm.*beta 
 
omega=eps'*eps/119 
stdDeviations = sqrt(diag(omega)); 
 
% Correlation matrix 
omega1 = omega ./ (stdDeviations * stdDeviations'); 
figure() 
heatmap(omega1) 
 
 
try chol(omega1) 
    disp('Matrix is symmetric positive definite.') 
catch ME 
    disp('Matrix is not symmetric positive definite') 
end 
 
omegainv=inv(omega); 
p1=beta*omegainv*alpha' 
p2=(1-beta)*omegainv*alpha' 
sm=em/varm; 
 
wm=(1-p1/sm)/(1+p2/sm) 
 
p3=omegainv*alpha'; 
 
w=(p3/sm)/(1+p2/sm); 
 
 
Rmf=wm*Rm; 
Rf=R.*w'; 
Ro=sum(Rf,2)+Rmf; 
 
mean(Ro) 
 
mean(Ro)/std(Ro) 
 
lambdainv=(sm+p2) 
lambda=1/lambdainv 
 
sp= sqrt(alpha*omegainv*alpha'+em*em/varm)*sqrt(12) 



 
RT_sure=A(120:179,1:20)'; 
RTm_sure=A(120:179,21)'; 
 
RTmf_sure=wm*RTm_sure; 
RTf_sure=RT_sure.*w; 
RTo_sure=sum(RTf_sure)+RTmf_sure; 
 
 
%TRAYNOR RATIO    
    yTsure = RTo_sure; 
    xTsure = RTm_sure; 
    tsure=cov(yTsure,xTsure,1); 
    bTsure=tsure(1,2)/var(xTsure,1); 
  
Traynor_p=(mean(yTsure)/bTsure)*sqrt(12)  
Traynor_m=mean(xTsure)*sqrt(12) 
 
%Sharpe ratio annualized 
mean(xTsure)/std(xTsure)*sqrt(12) 
mean(yTsure)/std(yTsure)*sqrt(12) 
 
%Downside Deviation metodo 
N=60; 
 
  zsure = yTsure; 
  ddosure = sqrt((1/(N-1)) * sum((min(0, zsure - 
mean(zsure))).^2)); 
  ddmsure  = sqrt((1/(N-1)) * sum((min(0, xTsure - 
mean(xTsure))).^2)); 
 
%Sortino ratio 
mean(yTsure)/ddosure*sqrt(12) 
mean(xTsure)/ddmsure*sqrt(12) 
 
%Jensen's alpha 
 
jen= (mean(yTsure)-bTsure.*mean(xTsure))*sqrt(12) 
 
Check  on SURE methodology 
A0=table2array(closingpricesnyse1(1:180,2:23)); 
 
A= zeros(179,22); 
for i=1:22 
    for j=1:179 
        A(j,i)=(A0(j+1,i)-A0(j,i))/A0(j,i); 
    end 
end 
 
for i=1:21 
    A(:,i)=A(:,i)-A(:,22); 
end 
 
 
Y=A(1:119,1:20); 
X=A(1:119,21); 
n=20 
 
Mdl1 = varm(n,0); 



 
[EstMdl1,~,~,E] = estimate(Mdl1,Y,'X',X); 
summarize(EstMdl1) 
 
 
mat_cov=EstMdl1.Covariance; 
stdDeviations = sqrt(diag(mat_cov)); 
 
% Correlation matrix 
corrMatrix = mat_cov ./ (stdDeviations * stdDeviations'); 
 
 
try chol(corrMatrix) 
    disp('Matrix is symmetric positive definite.') 
catch ME 
    disp('Matrix is not symmetric positive definite') 
end 

 


