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1. Introduction 

1.1 Background of the study 

Nowadays trend clearly highlights that almost all industries, which have embraced information 

technologies in recent years, have their foundation in Artificial Intelligence (AI) models and 

applications. Despite the fact that AI is not exactly a novel topic of research, tracing its roots almost 

a century ago, it is evident that it has been experimenting in this decades an unprecedent popularity 

and diffusion, permeating not only emerging tech industries, such as fintech or insurtech1, but also 

traditional ones. The most exemplificative case is for sure the healthcare sector, whose potentiality 

have been unleashed by extensive integration of Machine Learning (ML) and AI models together 

with human preexisting knowledge. The root cause behind this incredible phenomenon relies in the 

intrinsic quality of ML/AI, which by definition are able to learn, reason and adapt, and therefore can 

tackle ever-more-complex tasks, and be deployed to most of use cases. At the beginning of this steep 

learning curve, AI was solving very simple tasks relying to extremely frugal architecture, but lately, 

AI-powered systems have become so sophisticated that very little human involvement is needed in 

their development or implementation. When choices made by these kinds of systems eventually 

impact the lives of people, there is a growing requirement to comprehend how AI techniques provide 

these decisions. The risk is in making and applying decisions that are illegitimate, or that just make 

it impossible to get thorough justifications for their actions. In precision medicine, for instance, 

specialists need significantly more information from the model than a simple binary prediction to 

support their diagnosis, therefore explanations that back up the model's output are essential. This is 

just an example, but comparable scenarios could be found in almost all field where AI-systems are 

deployed. This emerging need of understanding culminated in what today is called Explainable 

Artificial Intelligence (XAI). 

The diffusion of XAI is driven by several key factors. Regulatory and ethical considerations play a 

crucial role. In fact, there are always increasing regulatory requirements for transparency and 

accountability in AI systems. The main regulatory policy in Europe, which mandates explainability 

to ensure non-discriminatory practices, is the GDPR2. Ethical concerns over fairness, bias, and 

accountability also drive the demand for ethical AI to build trust among users and stakeholders. Trust 

and transparency are essential to provide clear and understandable explanations, necessary to reduce 

 
1 Investopedia define “insurtech” as the use of technology innovations designed to find cost savings and efficiency from 

the current insurance industry model 
2 General Data Protection Regulation, is a European Union regulation on information privacy in the European Union 

(source https://en.wikipedia.org) 
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the "black box" nature of AI, particularly in critical domains like healthcare, finance, and legal 

systems. Industry adoption and business value are significant drivers, with companies recognizing 

the competitive advantage of using XAI to improve decision-making processes, enhance customer 

satisfaction, and reduce risks associated with AI deployment. Technological advancements have also 

contributed to XAI diffusion, thanks to developments in techniques and tools for making AI models 

interpretable. Stakeholder demand and public pressure, including consumer demand for transparency, 

further drive the need for XAI. By addressing these drivers, organizations can ensure AI systems are 

trustworthy, ethical, and aligned with regulatory and societal expectations. 

 

Figure 1: Evolution of the number of total publications whose title, abstract and/or keywords refer to the field of XAI, source: 

“Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI” (Alejandro 

Barredo Arrieta, 2020) 

 

All those factors, as showed in Figure 1, led to an incredible exponential increase in literature interest 

and publications within the realm of interpretable and explainable AI. 

Despite significant advancements, the literature on Explainable Artificial Intelligence (XAI) reveals 

several persistent gaps. There is a lack of standardization regarding what constitutes effective 

explanations and the metrics to evaluate them, compounded by insufficient human-centric evaluation 

that overlooks user interaction and cognitive interpretation. Scalability remains a challenge, with 

current methods often being computationally intensive and impractical for real-time applications, 

especially for complex models. Explanations frequently lack context-sensitivity and domain-specific 

relevance, and there is limited interdisciplinary collaboration with fields like psychology and human-

computer interaction. The trade-off between model transparency and performance, alongside issues 

of bias and fairness in explanations, further complicates the landscape. Furthermore, these 

explanation needs to be interpreted. While for domain-experts it could be straightforward, common 
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users should be aided and guided through this process. This poses the greatest gap in the existent 

literature because all the effort to “explain” AI systems is completely meaningless if the counterpart 

is not provided with sufficient tools to meet this effort. 

Addressing these gaps requires an interdisciplinary approach to develop user-centric, efficient, and 

context-aware explanation methods. 

1.2 Research Objectives 

The primary research objective of this thesis is to provide a comprehensive guide about XAI 

importance and diffusion in recent years, with a specific focus on CNN-tailored techniques. It would 

be described in details not only their functioning, but also how to effectively interpret them, aiming 

to reduce the literature gap in that sense. This would be the greatest contribution of this work. To 

reach a complete understanding, it is necessary a glance view of both theoretical foundations and 

practical output, focusing on which problem is addressed and how. In order to reach this goal, in this 

dissertation will be developed and evaluated an explainable artificial intelligence (XAI) model for 

image classification of satellite images. Results chapter will show that enhancing understandability 

does not necessarily imply a decrease in overall accuracy and effectiveness. Therefore, secondary 

research goals are: 

• Perform XAI techniques to a CNN Model: To implement state-of-art CNNs models for 

satellite image classification, and applying different techniques to make it clear and 

interpretable. 

• Evaluate Model Performance: To assess the accuracy and robustness, both in terms of 

accuracy and interpretability. 

• Interpretability Analysis: To analyze and quantify the understandability of the explanations, 

ensuring they are understandable to domain experts and non-experts alike. 

Thesis hypothesis, indeed, can be summarized as: 

• Accuracy-Interpretability Tradeoff: This hypothesis is based on the premise that 

interpretability does not necessarily compromise model performance, showing at the same 

time that also “black box” can be fully explained. 

• Interpretability Hypothesis: This hypothesis assumes that the designed XAI techniques will 

effectively bridge the gap between model complexity and user understanding, prosing 

understandability as standard means of evaluation of each ML/XAI models. 



6 

 

• Two-folded XAI benefits: This last hypothesis states that XAI techniques are beneficial not 

only to external users, but also to model designers, contributing to reduce bias in data and to 

diagnose problems. 

1.3 Structure of the Thesis 

This thesis is structured in 3 main chapters: Literature Review, Practical Applications and 

Conclusions.  

Literature Review chapter deep dives into state-of-art of three main topics: Explainable AI, 

Convolutional Neural Networks and Explainable AI applied to Neural Networks. The first 

subchapter, about XAI, starts from the definition of XAI, analyzing then the main drivers for XAI 

implementation according to the literature. It follows a detailed description of XAI taxonomy, with a 

specific focus about XAI “units of measure”. The last part explains models’ classification in terms of 

explainability, and XAI techniques classification, according to target model and means of 

explanation. 

CNN literature review, indeed, begins with a brief summary about Artificial Neural Networks 

background works and their standard form definition. Then, it continues with CNN architecture 

description, with major focus on its distinctive elements, such as convolutional layers and pooling. 

The section ends with the analysis of fundamental steps and papers which lead to CNNs wide 

diffusion and to state-of-art implementations. The first chapter’s last section delves into most popular 

XAI techniques tailored for CNNs, describing for each of them their functioning, their first 

introduction and all the further modifications and adaptations. 

The following chapter, which constitutes the main part of the whole thesis, regards the practical 

application. Firstly, it is described the satellite images classification tasks, deepening factors such as 

its practical importance, i.e., social impact, and literature review about ML/AI models deployed 

during the years. Next section, indeed, enumerates all viable datasets provided by the literature, 

together with a detailed explanation that led to final dataset choice. After this, the next subparagraph 

analyzes selected models’ structure, focusing on both theorical background and final architecture. 

Before the result section, it is explained in details how to interpret the output of each XAI technique 

deployed. This is one of the greatest contributions of this work, since the literature lacks of an 

exhaustive review about it. Finally, two models’ performances are compared according traditional 

techniques, such as accuracy metrics and confusion matrixes, and, most importantly, through 

interpretation of XAI techniques visual outputs, with tackle attributes like generalization ability, 

feature relevance and correctness of decision process. 
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Lastly, the conclusion chapter summarizes thesis findings and results, both practical and theoretical, 

and highlights the major contribution together with research’s limitations. The whole dissertation is 

concluded by recommendations about future works and hypothesis about future research directions. 
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2. Literature Review 

2.1 XAI 

Artificial intelligence (AI) dimension has recently shifted from a technological niche to a global 

innovation driver, penetrating very diverse sectors. Among them, it is possible to highlight healthcare, 

finance, transportation, and education. As AI continues to evolve, its potential to drive economic 

growth, enhance human capabilities, and address complex societal challenges underscores its pivotal 

role in shaping the future. The extremely dangerous phenomenon, which characterized all major 

innovations, is the tendency to abuse of AI, taking advantage of the scarcity of knowledge of the 

generalist public (i.e., common users). Within this framework the need to explain or interpret, 

depending on the point of view, arise. Explainable Artificial Intelligence (XAI) refers to methods and 

techniques in the field of AI that provide human-understandable explanations of how models make 

their decisions. XAI aims to make the output of AI systems more transparent, understandable, and 

trustworthy, particularly for complex models like deep neural networks, whose operations can 

otherwise be opaque and difficult to interpret. This is achieved through various tools and approaches 

that elucidate the decision-making processes. There are three main “design driver” (Alejandro 

Barredo Arrieta, 2020) in ensuring interpretability while building a ML model: 

• “Interpretability helps ensure impartiality in decision-making”; the most common example 

in that sense regards biased training data. 

• “Interpretability facilitates the provision of robustness by highlighting potential adversarial 

perturbations that could change the prediction”; a practical example can be found in image 

classification. If, for instance, changes in medical images background influences the 

prediction, some adjustments must be implemented for both training data and process. 

• “Interpretability can act as an insurance that only meaningful variables infer the output”; 

which it is translated in deep diving in causal logical relations between covariates and output. 

On the other hand, XAI involves not only domain experts, but also common users and regulatory 

entities. Literature so far delineated XAI goals which affects specifically these two target groups as: 

• Fairness: refers to the ethical and methodological principles and practices that seek to ensure 

that AI systems operate impartially, justly, and equitably. The concept encompasses a variety 

of specific measures and considerations designed to prevent discrimination and bias that can 

be inherent in AI algorithms, particularly those that affect decisions impacting humans. 

• Trustworthiness: refers to the degree of confidence in the model to act as expected. 
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• Privacy awareness: refers to the recognition and proactive management of privacy risks and 

concerns associated with the collection, storage, processing, and sharing of personal data by 

AI systems. 

After enumerating all main factors which makes this dissertation actual and meaningful, the next 

paragraph will investigate further what is commonly intended as “explainability”, how this concept 

evolved during time, and how to achieve it in the realm of Machine Learning and Artificial 

Intelligence.  

The first important distinction to be made, within the scope of XAI taxonomy, regards two 

foundational terms in this field: interpretability and explainability. Interpretability is a “passive 

characteristic” of a ML model, and it is referred to the degree up to which a human being can makes 

sense of it. A synonym for this specific term is transparency. On the other hand, explainability express 

an “active characteristic”, describing the proactive effort of a model to clarify internal processes and 

final output (Alejandro Barredo Arrieta, 2020). In this landscape, the term “understandability” 

represents a perfect synthesis between interpretability and explainability. The point where the 

explainability effort meets the interpretation process is the degree of understanding of the user. Hence, 

understandability is the measure of effectiveness for each XAI technique. 

Within the scope of this dissertation, a XAI technique is defined as the set of practice, transformation 

and modification applied to a specific ML or AI model in order to make it understandable, from both 

designer and user perspective. In the literature, there can be highlighted two models’ macro-

categories: model which are interpretable due to their design, and those which needs external methods 

(i.e., XAI techniques) in order to be explained. Hence, in the literature, the first category is also known 

as “interpretable models”, while the second one is called “post-hoc” explainable models (Riccardo 

Guidotti, 2019). The same papers (Riccardo Guidotti, 2019) proposed three levels of transparency 

among interpretable models, consisting in: 

• “algorithmic transparency”, occurring when a user is able to follow and understand the 

process pursued by the model. 

• “decomposability”, standing for the ability to explain each distinct model’s parts. 

• “simulatability”, referring to the capacity of a system or process to be simulated by a human. 

Among “transparent box” models, there are: Linear/Logistic Regression, Decision Trees, K-Nearest-

Neighbors, General Additive Models, Rule-Based Learners and Bayesian Models. Analyzing, for 

instance, simple Linear Regression models, it is possible to denote that it has high “simulatability”, 

since predictors are human readable and their interaction is limited. “Decomposability”, instead, 
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depends on the number of predictors and the degree of their interactions. Lastly, “algorithmic 

transparency” can be deemed as very low, due to the computational complexity which requires 

mathematical tools and background. On the other hand, decision trees constitute an optimal choice in 

terms of transparency. “Simulatability” is very high, since every user can replicate tree prediction 

without need of complex tools. “Decomposability” is high too, due to the fact that model’s rules 

preserve data readability. In the end, decision trees decision-making process has highly human 

comprehensible features, granting direct understanding and therefore high “algorithmic 

transparency”. 

If a model fails in meeting above mentioned transparency levels, some methods must be applied, in 

order to reach XAI. In this case the system can be considered as a “black-box”. For such models, 

literature proposes different distinctions and categorizations. Most widely used was introduced in 

2017 (Doran, 2017), suggesting a tripartition into: “opaque systems”, where connection between input 

and output is invisible to users; “interpretable system”, where through mathematical analysis it is 

possible to understand input-output mapping; “comprehensible systems”, in which the model return 

not only the output, but also “symbol and rules”, enhancing human readability. Since most ML/AI 

techniques lies in one of these three categories, a wide set of “post-hoc” interpretability techniques 

arose through the years. These can be divided according to two dimensions: the model to which these 

techniques can be applied to, and the means through which they enhance understandability. For what 

concerns the first dimension, it is possible to perform “agnostic techniques”, which refers to set of 

techniques which can be applied to all models without any regards to type of task, data, internal 

process or final output; and “model specific techniques”, which are all these techniques designed and 

tailored for different ML models. Among this last category, it is possible to perform a more specific 

partition between techniques applicable to “shallow models”, and ones designed for “deep learning” 

models. A practical example of an agnostic XAI technique is SHAP (SHapley Additive exPlanations). 

SHAP is a model-agnostic method that uses game theory, specifically Shapley values, to explain the 

output of any machine learning model. For what concerns shallow models, a notable example of a 

model-XAI technique is the use of single Decision Tree Visualizations in ensemble learnings. 

Decision trees are inherently interpretable due to their structure, which resembles a set of decision 

rules. In deep learning realm, instead, a well-known example is the use of Attention Mechanisms in 

neural networks, particularly in models like transformers used for natural language processing (NLP). 

Attention mechanisms allow the model to focus on specific parts of the input data that are most 

relevant for making a prediction. In NLP, this means highlighting certain words or phrases that are 

crucial for understanding the context or meaning of a sentence or document. 
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On the other hand, considering classification method based on techniques means, there are: 

• “Text explanations” which address the issue of making a model more explainable by 

developing the ability to produce written explanations. Text explanations also cover each 

process for creating symbols that indicate how the model operates. An example can be Rule 

Extraction from a Support Vector Machine (SVM). In fact, after making a diagnosis, the 

model can generate a textual explanation by extracting decision rules that influenced the 

outcome. 

• “Visual explanation” techniques that try to depict the behavior of the model visually. 

Numerous visualization approaches found in the literature are combined with dimensionality 

reduction strategies to provide basic visualizations that are easy for humans to understand. 

Visualizations are thought to be the best method for introducing complicated interactions 

among the variables in the model to users who are unfamiliar with machine learning modeling. 

Visual explanation for a random forest model, for instance, can be Feature Importance Plot. 

• “Local explanations” which address explainability dividing the solution space into smaller 

subspaces, thus providing appropriate explanations for the less complex scenarios. A suitable 

use case is using Partial Dependence Plots (PDPs) to provide local explanations for individual 

predictions. 

• “Explanations by example” which examine how data examples related to a particular model's 

output might be extracted to help better understand the model itself. They primarily focus on 

identifying representative examples that capture the inner relationships and correlations 

discovered by the model. In a KNN application, an explanation by example can be given by 

showing the nearest neighbors that led to a classification. 

• “Explanations by simplification” that denote techniques in which a new system is built based 

on the original model. This new, more straightforward approach often aims to minimize 

complexity while maintaining a comparable performance score. A straightforward use case 

can be Linear Model Approximation of a Gradient Boosting Machine. Obviously, this 

simplified model fails in capturing all the nuances of Gradient Boosting but it is useful to give 

stakeholders an intuitive understanding of how changes in attributes generally affect the 

output. 

• “Feature relevance explanation” methods that calculate a relevance score for each of its 

variables. These scores express how much a feature modification impacts output. The weight 

that the model assigns to each of these variables in generating its output can be seen by 
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comparing the scores of the various variables. Aforementioned SHAP values are a perfect 

example of feature importance explainer. 

To sum up, navigating through the wide sea of XAI taxonomy, the literature agrees to define 

“understandability” as the ultimate performance metric for XAI techniques. Once this is established, 

the first distinction to be made concerns models intrinsic “understandability”, which lead to a partition 

between “transparent models” and “black box models”. The first ones are characterized by three 

levels of transparency; “simulatability”, “algorithmic transparency” and “decomposability”. “Black 

box” methods, instead, can be divided in “opaque systems”, “interpretable systems” and 

“comprehensible systems”. 

 

 

Figure 2: Models Division 

 

Finally, XAI techniques can be categorized by target models (“agnostic” or “specific” techniques), 

or by means of explanations, which can be “textual”, “visual”, “local”, “by example”, “by 

simplification” and “by feature relevance”. The diagram below gives a visual representation of that. 
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Figure 3: XAI Techniques Divisions 

 

2.2 CNNs 

2.2.1 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are one of the main categories within the field of machine 

learning. The essential idea of ANNs is to mimic human brain functions to solve different types of 

complex problems. They were introduced for the first time in 1943, in the foundational paper called 

“A logical calculus of the ideas immanent in nervous activity” by McCulloch and Pitts. It is important 

to recall that this paper authors were “from the University of Illinois, College of Medicine, 

Department of Psychiatry at the Illinois Neuropsychiatric Institute and the University of Chicago” 

(McCulloch, 1943), in order to highlight scientific and medical background of this study. The starting 

point of this paper is that “neural events and the relations among them can be treated by means of 

propositional logic” (McCulloch, 1943). Then, the authors prosed a computational model for neural 

networks based on algorithms, which provided the groundwork for what would later evolve into 

modern artificial intelligence. According to Schmidhuber (2015), “a standard neural network (NN) 

consists of many simple, connected processors called neurons, each producing a sequence of real-

valued activations. Input neurons get activated through sensors perceiving the environment, other 

neurons get activated through weighted connections from previously active neurons.” (Schmidhuber, 

2015) 
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Figure 4: Basic architecture of ANN 

 

The basic architecture of ANNs is showed in Figure 4. The first layer is the so-called input layer, 

which receives input data in a form that the network can process, i.e., in the form of a vector. Each 

node in this layer represents a feature of the input data. After the first layer, information is passed to 

one or more layers, called hidden layers. These are where the actual processing happens. Each neuron 

receives data from the previous layer, where each input has an associated weight. The highest the 

weight, the highest the importance. These inputs are multiplied by their respective weights and 

summed together, often with a constant term added, called bias. This value is then passed through an 

activation function, which determines the output of the neuron. Common activation functions include 

sigmoid, tanh, and ReLU (Rectified Linear Unit). These functions add non-linearity to the processing, 

allowing the network to learn more complex patterns. The final layer is the output layer, which 

produces the results. The output can be a single value or a vector of values, depending on the task. 

Neural nets with few layers, i.e., shallow NN, have being used and discussed from almost a century, 

while more complex models containing concatenation of nonlinear layers were introduced in the 60s. 

A cornerstone of ANNs development is without any doubt the introduction of back-propagation 

technique, in late 70s, and its application to ANNs, which happened for the first time in 1981. In fact, 

the seminal paper “Generalization of Backpropagation with Application to a Recurrent Gas Market 

Model” (Werbos, 1981), sparked the debate about ANNs, which resulted in the publication of other 
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papers like “Learning internal representations by error propagation” (D. E. Rumelhart, 1986), that 

“contributed to the polarization of BP for NNs” (Schmidhuber, 2015). Despite the solid theoretical 

background, some practical limitations delayed the diffusion of ANNs, especially deeper ones. 

Indeed, it is only fifteen years later, with the start of the new millennium that “deep NNs have finally 

attracted wide-spread attention, mainly by outperforming alternative machine learning methods such 

as kernel machines in numerous important applications” (Schmidhuber, 2015). Since this diffusion, 

lots of modification came up, such as FeedForward Neural Network (FNN), Recurrent Neural 

Networks (RNN) and Convolutional Neural Networks (CNN). 

2.2.2 Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are an adaptation of ANNs to image classification tasks. 

First of all, image classification tasks can be defined as the set of operations aimed to categorize one 

image, or part of it, into a set of predefined classes (supervised learnings). These tasks can vary from 

the simple classification to more advanced tasks as object detection, tracking or segmentation. In this 

framework, CNNs were deployed due to some structural limitations of ANNs. In fact, “one of the 

largest limitations of traditional forms of ANN is that they tend to struggle with the computational 

complexity required to compute image data” (O'shea, 2015). Indeed, while ANNs can achieve good 

performance on small input size data (i.e., MNIST digits dataset3), they are not suited to deal with 

more standard image shape, like for example colored image input of 64x64. 

Despite several slight or substantial variation, CNNs, generally, consists of convolutional and pooling 

layers, grouped into modules, followed, as in ANNs, by fully connected layers. These groups of 

layers, in most architectures, are stacked on top of each other, forming deep learning models. An 

example of standard CNN is showed in Figure 5. 

 

 
3 Large dataset of handwritten digits. 

Figure 5: Example of Standard CNN, source: https://www.rolandvarriale.it/i-convolutional-neural-network-cnn/ 



16 

 

 

Convolutional layers’ function is to extract image features and, consequently, to learn how these 

features are represented in the input images. Nodes in a convolutional layer are organized into feature 

maps, and each of them is connected to a set of adjacent nodes from the previous layer, called filter 

banks (LeCun, 2015). All neurons within a feature map have weights that are constrained to be equal; 

however, different feature maps within the same convolutional layer have different weights so that 

several features can be extracted at each location (Yann LeCun, 1998; LeCun, 2015). 

On the other hand, pooling layers have a subsampling function. Specifically, their role is to reduce 

feature maps spatial resolution, in order to restore dimensionality altered by distortions or translations. 

In order to perform this task, several techniques can be adopted. In early deployed CNNs, the most 

widely diffused technique was average pooling. It consists in propagating the average input of a 

circumscribed portion of feature map. More recent models, (Dan C. Ciresan, 2011; Alex Krizhevsky, 

2012; Simonyan, 2014; Zeiler, 2014; Szegedy, 2015; Xu, 2015), tend to propagate the greatest value 

instead of the average one (max pooling). This shift was driven by the possibility, using average 

pooling, that low activation area could mitigate the presence of high activations regions. Despite the 

fact that max pooling obtained brilliant empirical results, it has still some limitations. The greatest 

one consists in the tendency to overfit the model, resulting in a consequent incapability of 

generalizing on test data (Zeiler, 2014 ; Sainath, Mohamed, Kingsbury, & Ramabhadran, 2013). 

 

 

Figure 6: Average versus Max Pooling  

source: https://www.researchgate.net/figure/Average-versus-max-pooling_fig1_317496930 
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These concerns, in recent years, led to development and implementation of new pooling techniques. 

The firs alternative is provided by 𝐿𝑝 pooling, inspired by biological image processing and introduced 

in the first time in 2009 (Kavukcuoglu, Ranzato, Fergus, & LeCun, 2009), and applied to deep CNNs 

in 2012 (Sermanet, Chintala, & LeCun, 2012), achieving outstanding results. Among the remarkable 

innovations within pooling layers framework, it is worth to mention stochastic max pooling (Matthew 

D. Zeiler, 2013), fractional max pooling (Graham, 2014), mixed pooling (Yu, 2014), and spectral 

pooling (Rippel, Snoek, & Adams, 2015). 

Finally, the last main component of CNNs architecture are fully connected layers. Their role is to 

mediate between convolutional/ pooling layers and the final output. Their duty is to interpret feature 

representations coming from convolutional and pooling component, performing though “high-level” 

reasoning (Sutskever, Hinton, & E, 2012). As showed in Figure 5, the standard operator, applied at 

the end of the CNNs for classification tasks, is softmax. The softmax operator is a mathematical 

function that converts a vector of real numbers into probabilities, by exponentiating and then 

normalizing each element of the vector. It ensures that the resulting probabilities sum to one, which 

is useful in classification tasks for representing categorical distributions. Also in this field, there is 

room for discussion and debate. In fact, softmax operator replaced radial basis functions (RBFs), as 

the classifier on top of the convolutional networks (Yann LeCun, 1998). Latest researches, instead, 

paved the way for new operators. For example, it was demonstrated an empirically improved accuracy 

by substituting softmax with Support Vector Machine (Tang, 2013). The paper “Network in 

Network”, instead, in order to overcome computational expense issue, suggested the implementation 

of a global average pooling layer then fed to a linear classifier (Min Lin, 2013). Despite all, 

“comparing the performance of different classifiers on top of DCNNs still requires further 

investigation and thus makes for an interesting research direction” (Rawat & Wang, 2017). 

The “general” architecture showed and investigated before is the result of the decades of researches, 

publications and debates. This journey, such as the one of ANNs, start from a neurobiological 

experiment. In fact, Hubel and Wiesel, discovered that “neurons in the early stages of the primary 

visual cortex responded strongly to precisely oriented patterns of light, such as bars, but ignored more 

complex patterns of the input stimulus that resulted in strong responses from neurons in later stages” 

(Wiesel. & Hubel, 1959). This intuition provided theoretical basis for all CNNs modeled and 

proposed in the following years. 

The second milestone, indeed, is the “neocognitron” model (Fukushima, 1980). This multilayered 

neural network was modeled around Hubel and Wiesel intuition, mimicking the behavior of both 

simple and complex cells, resulting in a neural network capable of recognizing simple patterns. 
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“Neocognitron” paved the way for all CNNs, since that they were derived from it and have a similar 

architecture (LeCun, 2015). 

The third essential step consists in the proposition of the first multilayered CNNs, applied to 

handwritten zip codes (Yann LeCun, 1998). This model was inspired, as aforementioned, by 

Fukushima’s work, with one major difference in the training process. In fact, these large-scale neural 

networks were trained using backpropagation, that, once again, represents a crucial innovation. 

Despite this turning point, neural network researches diminished between the end of the 90s and the 

beginning of the new millennium. This is because all kinds of neural networks were considered too 

hard to train, including CNNs, despite the fact that these ones could rely on faster training compare 

to standard ANNs. After this transition period, in the second half of 2000s it was possible to observe 

the phenomenon renamed as “Deep Learning Renaissance”, which obviously involved also the 

CNNs. The key factors which fueled this “renaissance” were: 

• Availability of Large Datasets: The release of large annotated datasets like ImageNet, which 

contains millions of labeled images across thousands of categories, provided the extensive 

data necessary for training deep CNNs. This availability of big data allowed neural networks 

to learn more complex features at multiple levels of abstraction (Olga Russakovsky, 2015). 

• Advances in Hardware: Significant advancements in GPU (Graphics Processing Unit) 

technology enabled the training of deep neural networks much faster than was previously 

possible with CPUs. GPUs, with their highly parallel architecture, are particularly well-suited 

to the matrix and vector computations required for deep learning. This reduction in training 

time opened up new possibilities for experimenting with more complex neural network 

architectures (Raina, 2009). 

• Improved Neural Network Techniques: Innovations in deep learning methodologies, 

including new activation functions like the ReLU (Rectified Linear Unit), better initialization 

methods, and effective regularization strategies like dropout, significantly improved the 

training processes and performance of neural networks. These techniques helped overcome 

problems such as vanishing gradients and overfitting, which had plagued earlier neural 

network models (Alex Krizhevsky, 2012). 

• Increased Research and Collaboration: There was a marked increase in academic and 

industrial research focused on deep learning. Collaborative efforts and open competitions, 

such as the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), pushed the 

boundaries of what was possible and demonstrated the superior capabilities of CNNs over 
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traditional machine learning methods for tasks involving image recognition (Goodfellow Ian, 

Bengio, & Courville, 2016). 

In conclusion, in the current landscape of deep learning, CNNs continue to stand at the edge of 

innovation, increasing current accuracy and efficiency in image and video analysis. The state-of-the-

art CNN architectures now incorporate advanced techniques such as attention mechanisms, which 

allow models to focus on salient parts of the input data (Ashish Vaswani, 2017), and residual learning, 

which facilitates the training of exceptionally deep networks by addressing the vanishing gradient 

problem (Kaiming He, 2016). These innovations have led to the development of highly sophisticated 

models like EfficientNet and Vision Transformers, which combine the strengths of CNNs and self-

attention architectures to achieve remarkable performance across a variety of tasks (Mingxing Tan, 

2019; Alexey Dosovitskiy, 2020). Furthermore, the integration of CNNs with other forms of artificial 

intelligence, such as reinforcement learning and generative adversarial networks, is opening new 

avenues for applications in autonomous systems, medical image analysis, and multimedia generation 

(Arun Nair, 2015; Ian Goodfellow, 2014). As the field progresses, ongoing research continues to 

refine these models, making them not only more powerful but also more accessible and efficient, 

ensuring that CNNs remain a cornerstone technology in AI for the foreseeable future. 

2.3 XAI in CNNs 

Since Convolutional Neural Networks fall without any doubts into the “black box” models’ category, 

they are below the ideal understandability landscape. Therefore, CNNs implementations have been 

study subject for wide set of innovative XAI techniques. For what concerns model agnostic 

techniques, only LIME technique would be investigated. With regards to model specific techniques, 

instead, the literature is more structured. According to Ibrahim et al. 2023, “studies related to 

explaining CNNs can be categorized as decision models and architecture models” (Ibrahim, 2023). 

Architecture models focus on the network structure, analyzing layers and neurons mechanisms. 

Among them, it is possible to distinguish between architecture modification models and architecture 

simplification models. Architecture modification models rely on alteration to CNNs architecture to 

improve their interpretability. Such changes can imply replacing some components (i.e., layers and 

loss functions) or adding new ones (i.e., attention layers, deconvolutional layers, autoencoders). On 

the other hand, architecture simplification models apply rule extraction approach to generate human 

interpretable rules. 

Decision models, instead, deep dive in the decision-making process. Also, decision models can be 

divided into two subcategories: feature relevance models and visual models. These two categories 



20 

 

would be the focus of the practical application in chapter 3. Among decision models techniques, the 

most relevant are Gradient-weighted Class Activation Mapping (Grad-CAM) and Saliency Maps. 

Grad-CAM is a technique introduced to enhance the interpretability of CNNs by providing insights 

into the regions of an image that influence the network's predictions. Grad-CAM was first introduced 

in the paper titled "Grad-CAM: Visual Explanations from Deep Networks via Gradient-based 

Localization" (Ramprasaath R. Selvaraju, 2017). Prior to Grad-CAM, techniques like Class 

Activation Mapping (CAM) were used to visualize CNNs, but they were limited to specific network 

architectures, especially those with global average pooling layers. Grad-CAM overcame this 

limitation by working with any differentiable CNN architecture, making it a versatile tool for 

interpreting deep learning models. In fact, unlike CAM, Grad-CAM utilizes the gradient information 

flowing into the last convolutional layer of the CNN to capture the importance of each feature map 

for a specific class. By computing the gradients of the target class with respect to the feature maps, 

Grad-CAM generates a localization map, which is then weighted by the gradient values to produce 

the final heatmap. More specifically, its functioning can be summarized by the following steps: 

• Forward Pass: The input image is fed forward through the CNN until it reaches the last 

convolutional layer. 

• Gradient Calculation: Grad-CAM computes the gradient of the score corresponding to the 

target class with respect to the feature maps of the last convolutional layer. 

• Global Average Pooling: The gradients are globally averaged to obtain the importance 

weights for each feature map. 

• Weighted Combination: The importance weights are used to compute a weighted combination 

of the feature maps, resulting in a rough localization map. 

• ReLU and Upsampling: The rough localization map is passed through a ReLU function to 

retain only the positive contributions, followed by upsampling to match the size of the input 

image. 

• Heatmap Generation: The upsampled map is combined with the original input image to 

generate the final heatmap, where brighter regions indicate higher importance for the target 

class. 
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Figure 7: Grad-CAM functioning example,  

source https://www.researchgate.net/figure/Grad-CAM-architecture_fig3_352795278 

 

Since its introduction, Grad-CAM has been widely adopted and extended in various domains, 

including medical imaging, autonomous driving, and natural language processing. Moreover, 

researchers have explored the application of Grad-CAM in novel contexts, such as multimodal 

learning, where it can provide insights into the fusion of information from different modalities. 

Recent implementations have focused on improving the interpretability and robustness of Grad-

CAM. The first to be introduced was Smooth Grad-CAM (Daniel Smilkov, 2017). Smooth Grad-

CAM aims to reduce noise in the generated heatmaps by averaging multiple perturbed images during 

the gradient calculation process. Instead of computing gradients from a single image, Smooth Grad-

CAM averages gradients obtained from multiple noisy versions of the input image. By averaging 

gradients over multiple perturbed images, Smooth Grad-CAM provides more stable and visually 

coherent heatmaps compared to the original Grad-CAM. This is particularly useful in practical 

application where the stability and reliability of the heatmap visualization are crucial, such as, for 

instance, in medical imaging. In 2018, instead, Grad-CAM++ was proposed in the paper “Grad-

CAM++: Generalized Gradient-based Visual Explanations for Deep Convolutional Networks” 

(Chattopadhay, 2018). Grad-CAM++ extends the original Grad-CAM by incorporating both positive 

and negative gradients to improve localization accuracy. By incorporating all gradients in absolute 

value, Grad-CAM++ captures more nuanced information about the contribution of each feature map 

to the target class prediction, resulting in effective heatmaps’ interpretation. 
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Other two remarkable Grad-CAM variants, despite their recentness, are Grad-CAM with Attention 

Mechanisms, and Multimodal Grad-CAM. The first one integrates attention mechanisms with Grad-

CAM, improving its interpretability by dynamically highlighting relevant regions. It was proposed in 

2023 by Li et al., in the seminal paper “Enhancing Interpretability of Autonomous Driving Systems 

with Grad-CAM and Attention Mechanisms”. Attention mechanisms, commonly used in natural 

language processing (NLP) tasks, allow models to dynamically focus on different parts of the input 

sequence while processing it. In the context of CNNs, attention mechanisms can be applied to 

visualize the regions of an image that the network attends to during inference. Grad-CAM with 

attention mechanisms integrates attention scores obtained from intermediate layers of the CNN with 

the gradient-based localization provided by Grad-CAM.  Instead of solely relying on gradients from 

the last convolutional layer, attention scores from intermediate layers capture hierarchical features 

and semantic information, allowing for a more comprehensive understanding of the image. The 

attention scores serve as weights that modulate the importance of different feature maps in generating 

the final heatmap. This dynamic modulation enables Grad-CAM to highlight relevant regions more 

effectively, especially in complex scenes or ambiguous cases. 

On the other hand, Multimodal Grad-CAM derives from the paper “Exploring Multimodal Fusion 

with Grad-CAM in Deep Learning Models” (Chen, L., et al. 2023). In multimodal learning, 

information from different modalities is combined to make predictions or solve tasks. For example, 

in image captioning, a model may use both an image and its corresponding text description to generate 

a caption. Multimodal Grad-CAM extends Grad-CAM to interpret multimodal learning models. It 

generates heatmaps for each modality separately and then combines them to provide a holistic 

understanding of the model's decision-making process. For example, in a multimodal image 

classification task, Multimodal Grad-CAM would generate separate heatmaps for the image modality 

and the text modality. These heatmaps would highlight the important regions in the image and the 

key words in the text that influence the model's prediction. 

For what concerns Saliency Maps, the concept of saliency maps first emerged in the paper titled 

"Deep Inside Convolutional Networks: Visualizing Image Classification Models and Saliency Maps" 

(K Simonyan, 2013). Since then, saliency maps have become a popular method for visualizing the 

regions of an image that are most relevant to a model's prediction. Saliency maps are generated by 

computing the gradient of the output score with respect to the input image pixels, indicating which 

pixels have the greatest influence on the model's prediction. For this reason, resulting maps provide 

a general overview of the input image's salient regions without specifying the particular features or 
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regions that drive the model's prediction. While they offer insights into which areas of the image the 

model pays attention to, they may lack the specificity and localization provided by Grad-CAM.  

Most notable Saliency Maps modification is Integrated Gradient Saliency Maps. Integrated Gradient 

was introduced in the paper titled "Axiomatic Attribution for Deep Networks" (Mukund Sundararajan, 

2017). This paper presents the Integrated Gradients method as a technique for providing better 

understanding of deep neural networks, offering more robust and reliable explanations of model 

predictions. This integration helps capture the model's behavior across different input space regions 

and improves interpretability. Integrated Gradient is applied to the computation of saliency maps. 

Instead of computing gradients with respect to individual input pixels, Integrated Gradient computes 

the average gradient along the straight path from a baseline input (e.g., an image with all pixels set to 

zero) to the actual input image. These gradients are then averaged to obtain the final saliency map, 

which highlights the regions of the input image that contribute most to the model's prediction. They 

provide insights into the features and regions of input data that influence model predictions, aiding in 

model debugging, validation, and trustworthiness assessment. 

In conclusion, CNNs represent powerful tools for various applications, yet their intrinsic "black box" 

nature often obscures their decision-making processes, leading to challenges in interpretability. 

Consequently, a plethora XAI techniques have been developed and investigated to shed light on CNN 

implementations. Model agnostic techniques, exemplified by LIME, offer broad applicability but lack 

the depth of insights provided by model-specific approaches. Conversely, the literature on model-

specific techniques is well-structured, notably categorized into decision models and architecture 

models. Decision models delve into the decision-making process, focusing on feature relevance and 

visual interpretations, while architecture models analyze the network structure. Among these, Grad-

CAM stands out as a pivotal technique, revolutionizing CNN interpretation by generating visual 

explanations based on gradient information. Its versatility and robustness have been further enhanced 

through subsequent variants like Grad-CAM++, Grad-CAM with Attention Mechanisms, and 

Multimodal Grad-CAM. Saliency maps, introduced earlier, offer a broader overview of salient image 

regions but lack the localization precision of Grad-CAM. Nevertheless, recent modifications like 

Integrated Gradient Saliency Maps have enriched their interpretability and robustness. The vastity 

and recentness of the abovementioned literature significantly highlight the sparkling vivacity and 

room for innovation which characterize the field of XAI applied to CNNs.  
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3. Practical Application: Areal Images Scene Classification 

3.1 Introduction 

The classification task regarding scenes in areal or satellite images represents an interesting and 

significant research area within the field of computer vision. This phenomenon is fostered by an 

increasing availability of high-quality areal images and the growing need for precise and accurate 

applications addressing the earth observations issue.  

This paragraph deals with the definition, background and current state-of-the-art methodologies, 

together with practical applications, laying the basis for the exploration of model implementation and 

analysis. 

Scene classification implies the analysis of satellite and areal imagery, in order to divide them in 

specific setting categories. This definition, obviously, lays down on principles of image processing, 

machine learning and deep learning to interpret and understand input images accurately. This process 

is pivotal in commuting raw input, in the form of satellite images, into insights for environmental 

monitoring, urban planning, disaster management, and agricultural assessment, among other fields.  

The evolution of image classification techniques consists in transitioning from traditional techniques, 

like for example likelihood classification and decision trees, to more complex and sophisticated 

methods such as Convolutional Neural Networks (CNNs), which leverage deep learning for enhanced 

accuracy and efficiency in handling complex image datasets (Kaiming He, 2016). 

A numerous and heterogeneous set of machine learning methods have been employed in the field of 

satellite image classification to leverage complex datasets in order to extract meaningful information. 

These methods span from traditional methods to advanced deep learning techniques, each of them 

offering different and unique strengths in handling and solving this type of task. Support Vector 

Machines (SVMs), among simpler approaches, have been employed thanks to their effectiveness in 

high-dimensional data classification tasks, leveraging a margin-based technique to distinguish 

between land cover types (Melgani & Bruzzone, 2004). 

Decision Trees and Random Forests strengths, instead, consist in their interpretability power and 

ability to handle non-linear data, using ensemble learning to reach great results in term of 

classification accuracy (Ghimire, 2012).  

K-Nearest Neighbors (KNN) by analyzing the spatial proximity of data points, represents another 

solid approach, which has its strengths in its simplicity and effectiveness.  

Despite that, the introduction of CNNs has revolutionized the field, providing unmatched accuracy in 
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scene recognition tasks. CNNs are capable to automatically detect and learn hierarchical patterns, and 

this makes them perfectly suited for processing and classifying spatial and spectral complexity of 

satellite imagery (Kaiming He, 2016). These neural nets have demonstrated relevant success in 

classifying images based on learned features, rather than relying on hand-crafted ones. Other 

techniques, addressing a slightly different problem, are Recurrent Neural Networks (RNNs) and Long 

Short-Term Memory (LSTM). These are employed for analyzing temporal changes in satellite data 

and offer information about more dynamic phenomena like vegetation growth or urban development 

over time. 

Coming back to CNNs, a great variety of techniques specifically tailored for satellite image 

classification were introduced. Among them, several have risen to prominence, thanks to their 

outstanding performances, paired with an exceptional adaptability to different tasks and datasets. U-

Net (Ronneberger, 2015) is for sure one of them. It was originally designed for biomedical image 

segmentation, but, as it commonly happens in those cases, was widely adopted for its efficiency in 

handling satellite imagery with its symmetric expanding and contracting paths that enable precise 

localization. 

Another relevant CNN approach is the Residual Network (ResNet), which introduced for the first 

time the concept of residual learning to address the vanishing gradient problem, allowing neural 

networks to employ more layers and significantly improve classification accuracy (Kaiming He, 

2016). This feature makes ResNet particularly effective for processing the high-dimensional data 

typical of satellite images.  

Another technique called SegNet (Segmentation Network), characterized by a different approach 

consisting in a pixel-wise classification, also gained great relevance in the literature, thanks to the 

ability to perform semantic segmentation of satellite images, critical for detailed land cover and land 

use mapping (Badrinarayanan, Kendall, & Cipolla, 2017). In addition to that, the Dense 

Convolutional Network (DenseNet) architecture is celebrated for its dense connectivity pattern. It 

enhances feature propagation and, at the same time, reduces the number of parameters, making 

DenseNet for satellite image analysis efficient and powerful at the same time (Geoff Pleiss, 2017). 

All the aforementioned machine learning methods bring a unique perspective to approach the 

challenge of satellite image classification, providing researchers and practitioners different ways to 

tackle the analysis and understanding of earth observation data. Choosing the right method depends 

on the specific application, dataset characteristics and desired accuracy, highlighting the importance 

of having a tailored approach.  
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These CNNs implementations have been propaedeutic for satellite image classification progresses, 

offering a robust and consistent framework for extracting meaningful insights from areal imagery. 

Their diffusion stems not only from their performances but mainly from their flexibility and 

adaptability to a wide range of applications. The practical applications of areal images classification 

extend across numerous fields, demonstrating its versatility and potentiality.  

In the field of environmental monitoring, satellite image classification serves as an essential tool for 

a lot of stakeholders, that can vary from scientists to policymakers. Its relevance is due to its ability 

to enhance the detailed observation of global ecosystems over time, providing significant data for 

tracking relevant events. An example can be deforestation rates, a phenomenon with far-reaching 

implications for biodiversity, climate change, and human livelihoods (Hansen, 2013). Furthermore, 

this technology is pivotal in monitoring the status of natural ecosystems, including wetlands, forests, 

and coral reefs, offering insights into the effects of environmental stressors and human activities. The 

ability to observe changes in land use and land cover over wide areas and extended periods is essential 

for informed decision-making and effective conservation strategies. 

Moreover, urban planning and development benefit significantly from the insights gained through 

areal image classification. By enabling detailed analysis of urban expansion, these machine learning 

approaches assist in the sustainable management of urban growth, helping to balance development 

needs with environmental considerations (Xu & Fortes, 2010). In fact, the classification of satellite 

imagery aids in natural resources’ management within urban areas, facilitating green space planning, 

water resource management, and urban heat island mitigation efforts.  

In agriculture, the classification of areal images has revolutionized the way in which crop 

management is approached. By identifying crop types and estimating yields, farmers and agricultural 

researchers can optimize resource allocation, enhance productivity, and minimize environmental 

impact (Mulla, 2013). Precision farming practices, supported by satellite image classification, enable 

the targeted application of water, fertilizers, and pesticides, reducing waste and increasing efficiency. 

This technology also supports soil health monitoring and the management of agricultural diseases and 

pests, contributing to more sustainable and resilient farming systems.  

Following natural disasters, the rapid classification of satellite imagery becomes a critical component 

of the response and recovery efforts. It allows for the quick assessment of damage to infrastructure 

and natural landscapes, facilitating effective resource allocation and prioritization of recovery 

activities (Divyani Kohli, 2012). The insights gained from areal image classification can guide 
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emergency response teams, aid distribution efforts, and long-term rehabilitation plans, ultimately 

reducing the impact of disasters on affected communities.  

The ongoing advancements in areal images classification methods, particularly through the adoption 

of machine learning and deep learning, promise to further enhance the precision, efficiency, and scope 

of these applications. For example, the integration of multi-temporal and multi-spectral data enables 

detailed monitoring of dynamic processes and phenomena, while the development of more 

sophisticated algorithms improves the accuracy and reliability of classification outcomes. As these 

technologies continue to evolve, they hold the potential to address some of the most pressing 

challenges faced by society, from climate change and environmental degradation to urban 

development and food security, demonstrating the transformative power of areal image classification 

in shaping a more sustainable and resilient future. 

3.2 Dataset 

3.2.1 Dataset Overview and Previous Use Cases 

This paragraph will provide complete overview of all relevant datasets in the scene classification 

field, together with a brief description of the mentioned datasets, including modification and 

motivations. Several such datasets have become benchmarks in the field of scene classification, 

especially in evaluating performances of machine learning and deep learning models. These datasets 

vary across multiple features, such as size and complexity, or for types of scenes they contain, offering 

users diverse resources for training and testing algorithms. The most common datasets used for scene 

classification are the following, mentioned in chronological order: 

1. UC Merced Land Use Dataset: published in 2010, this dataset contains 2100 aerial scene 

images categorized into 21 land use classes, with 100 images each. The images are taken from 

the USGS4 National Map Urban Area Imagery collection for various urban areas around the 

US. The dataset is widely used for its diversity in urban, agricultural, and natural landscapes 

(Newsam, 2010). 

2. NWPU-RESISC45 Dataset: published in 2017, the RESISC455 dataset, provided by the 

Northwestern Polytechnical University (NWPU), consists of 31500 images, covering 45 scene 

classes with 700 images each. RESISC stand for Remote Sensing Image Scene Classification. 

This dataset was proposed in a paper called “Remote Sensing Image Scene Classification: 

Benchmark and State of the Art” (Cheng, Han, & Lu, 2017), where the authors define its best 
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features as “1) large-scale on the scene classes and the total image number; 2) holds big 

variations in translation, spatial resolution, viewpoint, object pose, illumination, background, 

and occlusion; and 3) has high within-class diversity and between-class similarity”. 

3. AID (Aerial Image Dataset): published in 2017, the AID dataset is a large-scale dataset for 

aerial scene classification containing more than 10000 images divided into 30 classes. It was 

proposed in a paper called “AID: A Benchmark Dataset for Performance Evaluation of Aerial 

Scene Classification” (Xia, et al., 2017), with the aim to solve previous limitations in the field. 

It constitutes a big improvement with respect to UC Merced Land Use Dataset, but it is still 

smaller than NWPU-RESISC45 Dataset. 

4. EuroSAT: published in 2017, it was introduced in the paper “EuroSAT: A Novel Dataset and 

Deep Learning Benchmark for Land Use and Land Cover Classification” (Helber, Bischke, 

Dengel, & Borth, 2017). It covers 13 spectral bands and consists of 10 classes with 27000 

labeled and geo-referenced images, based on Sentinel-2: “The Sentinel-2 satellite images are 

openly and freely accessible provided in the Earth observation program Copernicus” (Helber 

et al. 2017). The novel dataset was designed for land use and land cover classification and it 

is particularly valuable for its spectral diversity. 

5. Google Earth Engine (GEE) Data Catalogue: Earth Engine's public data archive includes more 

than forty years of historical imagery and scientific datasets, updated and expanded daily. 

While not a single dataset, Google Earth Engine provides access to a vast collection of satellite 

imagery and geospatial datasets that can be leveraged for custom scene classification tasks. 

GEE's extensive library includes Landsat, Sentinel, and MODIS datasets, among others, 

offering unprecedented access to global satellite data. 

6. DeepGlobe Land Cover Classification Challenge Dataset: part of the DeepGlobe Satellite 

Challenge, this dataset includes satellite images for land cover classification across multiple 

categories such as urban, agriculture, rangeland, water, etc. It's designed to advance research 

in geospatial analysis and it “aims at bringing together a diverse set of researchers to advance 

the state-of-the-art in satellite image analysis.” ((http://deepglobe.org), s.d.) 

All the aforementioned datasets have played a pivotal role in the development and evaluation of scene 

classification algorithms, providing different challenges that reflect real-world complexity and 

diversity. This wide set of available databases results in the possibility to leverage these resources to 

benchmark accuracy, explore new and diverse methodologies, contributing in advancing the state-of-

the-art in satellite image analysis and classification. 
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3.2.2 Description of the Model's Dataset 

The dataset chosen for the purpose of this project is NWPU-RESISC45 dataset. This choice comes 

from several reasons. The first one relies on the fact that it is the widest used dataset, and this provides 

a great variety of benchmarks to look at while analyzing the performances of different deep learning 

models. The second reason is strictly related to the dataset volume. In fact, NWPU-RESISC45 

provides to the users a great variety of classes, and each of them has a sufficient size to train properly 

the model. Most recent datasets, such as DeepGlobe or Google Earth Engine were excluded from this 

dissertation because they offer a shorter background literature, and have more complex nature with 

respect to the scope of a simple image classification tasks.  

The scope of this machine learning application is to interpret as much as possible both the architecture 

and the output of the neural networks involved in the process. In order to perform a clear and 

comprehensive evaluation of the two aforementioned aspects, some limitations must be imposed to 

the dataset. While the architecture is just tangentially affected by this choice, the output 

interpretability is highly dependent on the data, especially for what concerns the number of classes. 

As highlighted before, NWPU-RESISC45 covers 45 scene classes. A great number of classes could 

create problems while visualizing and interpreting the results, generating messy and hard to follow 

plots and tables. The best approach to solve this issue consists in reducing the number of classes that 

would be considered in the analysis. Therefore, the final dataset is composed by the ten most relevant 

categories of images, which are the following: i) wetland, ii) terrace, iii) snowberg, iv) see ice, v) 

river, vi) mountain, vii) meadow, viii) forest, ix) desert, and x) beach. The criteria adopted focus 

primary on the categories more relevant from an environmental point of view. Choosing different 

classes would not impact the validity or the results of this dissertation, but the coherence adopted 

while filtering the classes has a vital importance in giving to this project all the characteristics of a 

real-word scenario application. 

3.3 Models Selection 

This section provides a deep dive into the literature review and architecture of the two models selected 

to perform scene image classification on a subset of the NWPU-RESISC45 dataset. The chosen 

models are ResNet and DenseNet. The first aspect needing further explanation is the decision to 

investigate two different models. Implementing both ResNet and DenseNet allows for comparison 

between diverse architectures and outputs, highlighting the power of Explainable AI techniques. 

Another aspect requiring clarification is the actual choice of which CNNs models are best suited for 

this thesis's purpose. Among the criteria applied to make this decision there are: i) the presence of 

literature providing benchmarks for the results, ii) the quality of results in terms of accuracy, and iii) 
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structural diversity to enable a more meaningful analysis of differences and commonalities. 

Considering all these aspects, ResNet and DenseNet constitute an excellent starting point. This is 

because, as will be further explored in the following sections, both have been widely discussed in a 

considerable number of papers in recent years. These papers themselves have pointed out outstanding 

performances on almost all the aforementioned datasets containing satellite images. In conclusion, 

regarding structure and architecture, all differences will become clear by the end of this chapter. 

3.3.1 ResNet and DenseNet landscape 

ResNet, short for Residual Network, is a deep CNN architecture introduced in their paper called 

"Deep Residual Learning for Image Recognition", published in 2016 (Kaiming He, 2016). This paper 

introduces the ResNet architecture, proposing residual connections to address the problem of 

vanishing gradients, referred to as the “degradation problem” in the paper, that characterizes 

extremely deep neural networks. The “degradation problem” occurs when the depth of neural 

networks increases and the accuracy becomes saturated, and therefore degrades rapidly. As Kaiming 

He et al. (2016) explain in the paper, "such degradation is not caused by overfitting, and adding more 

layers to a suitably deep model leads to higher training error." The authors address the degradation 

problem by introducing a deep residual learning framework, as explained in the architecture section. 

The introduction of this novel approach to CNNs has had an incredible impact on research in this 

field, sparking a significant debate involving numerous new applications and modifications to the 

proposed Residual Network architecture. In fact, ResNet models showed superior performance on 

various benchmark datasets like ImageNet, CIFAR-10, and COCO. 

For what concerns its applications, ResNet algorithms have been employed in the most disparate 

computer visions fields, including, but not limited to, object detection, semantic segmentation, and 

image generation. For example, in object detection, the paper "R-FCN: Object Detection via Region-

based Fully Convolutional Networks" by Jifeng Dai (2016) states clearly that "the incarnation of R-

FCN in this paper is based on ResNet-101." In the field of semantic segmentation, "Full-Resolution 

Residual Networks for Semantic Segmentation in Street Scenes" (Tobias Pohlen, 2017) proposes "a 

novel ResNet-like architecture that exhibits strong localization and recognition performance." For 

image generation applications, an exemplifying paper is "Pose-Normalized Image Generation for 

Person Re-identification" (Xuelin Qian, 2018), where images are fed to a ResNet architecture after 

normalization. 

Besides the wide range of applications, numerous new models derived from ResNet have been 

developed. In the already cited paper "Deep Residual Learning for Image Recognition" (Kaiming He, 

2016), the authors proposed several variants of ResNet, including ResNet18, ResNet34, ResNet50, 
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ResNet101, ResNet152, and even deeper versions. These variations differ in their depth, with the 

number indicating the number of layers present in the neural network. Other authors, in other papers, 

attempted to leverage the residual learning innovation, proposing substantial architectural 

modifications. Among the most adopted are Wide Residual Networks (WRN), aggregated residual 

transformations for deep neural networks (ResNeXt), and densely connected convolutional networks 

(DenseNet). Wide Residual Networks (WRN) were introduced in in the homonymous paper "Wide 

residual networks" (Zagoruyko & Komodakis, 2016). The authors introduced it because, according 

to them, "each fraction of a percent of improved accuracy costs nearly doubling the number of layers, 

and so training very deep residual networks has a problem of diminishing feature reuse, which makes 

these networks very slow to train" (Zagoruyko & Komodakis, 2016). This consideration results in 

novel neural networks, whose architecture relies on ResNet but with decreased depth and increased 

width. ResNeXt, instead, was proposed in the paper "Aggregated Residual Transformations for Deep 

Neural Networks” (Saining Xie, 2017). The authors introduced "a simple, highly modularized 

network architecture for image classification," which is "constructed by repeating a building block 

that aggregates a set of transformations with the same topology" (Saining Xie, 2017). The size of the 

set of transformations is called "cardinality," which, together with depth and width, constitutes a new 

set of dimensions of ResNeXt. In conclusion, the DenseNet model will be analyzed more deeply since 

it will be implemented together with ResNet. Densely connected convolutional networks were 

introduced for the first time in the homonymous paper published by 2017 (Gao Huang, 2017). The 

underlying assumption, empirically demonstrated by other recent works, of the whole paper is that 

convolutional networks can be "substantially deeper, more accurate, and efficient to train if they 

contain shorter connections between layers close to the input and those close to the output" (Gao 

Huang, 2017). According to the authors and their findings, "DenseNets have several compelling 

advantages: they alleviate the vanishing-gradient problem, strengthen feature propagation, encourage 

feature reuse, and substantially reduce the number of parameters" (Gao Huang, 2017). Also, the 

DenseNets innovation spillover effect led to its implementation in different fields. A great example 

is the paper "The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic 

Segmentation” (Simon Jegou, 2017). By expanding and adapting DenseNets, they obtained 

outstanding results in most common semantic segmentation dataset such as CamVid and Gatech. In 

fact, “due to smart construction of the model” their model “has much less parameters than currently 

published best entries for these datasets”, while in the meantime achieving “state-of-the-art results” 

on the aforementioned urban scene segmentations dataset (Simon Jegou, 2017). As ResNet, during 

past few years, a lot of modifications were proposed to further enhancing the efficiency in terms of 

both accuracy and computational expense. The most important is DenseNet-BC. The DenseNet-BC 
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(DenseNet with Bottleneck and Compression) variant was proposed by the authors of the original 

DenseNet paper. It introduces bottleneck layers to reduce the number of parameters and improve 

computational efficiency. Additionally, it incorporates compression by using a reduction factor to 

decrease the number of feature maps in each transition layer (Gao Huang, 2017). 

In conclusion, both ResNet and DenseNet models have not only revolutionized the field of computer 

vision but also fostered innovations and modifications across various domains. Theirs impact extends 

beyond image classification, reaching into object detection, semantic segmentation, and image 

generation, among others. These advancements demonstrate the enduring influence and adaptability 

of ResNet and DenseNet in addressing contemporary challenges in deep learning and computer vision 

research. In the next sections, the actual architecture of ResNet and DenseNet will be analyzed and 

explained. 

3.3.2 ResNet Architecture 

The core idea of ResNet architecture is the introduction of the residual (or building) block, which 

adds a shortcut connection that skips one or more layers. In a traditional neural network, each layer 

learns representations of the input data. In contrast, in a ResNet, each residual block learns the residual 

function relative to the layer inputs. Mathematically, if 𝐻(𝑥) is an underlying mapping to be learned 

by a few stacked layers, and 𝑥 is the input, these layers in a ResNet try to learn the residual function: 

𝐹(𝑥) = 𝐻(𝑥) − 𝑥 

The original function thus becomes: 

𝐻(𝑥) = 𝐹(𝑥) + 𝑥 

This is because the authors “hypothesize that it is easier to optimize the residual mapping than to 

optimize the original, unreferenced mapping. To the extreme, if an identity mapping were optimal, it 

would be easier to push the residual to zero than to fit an identity mapping by a stack of nonlinear 

layers” (Kaiming He, 2016). This is implemented by using shortcut connections, also known as “skip 

connections”, that perform identity mapping, and their outputs are added to the outputs of the stacked 

layers. The above descripted “block” is represented by the figure below, where the arrow represents 

the “skip connection”. 
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Figure 8: ResNet Residual Block 

Formally, the paper’s authors consider a building block defined as: 

𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑥 

Here 𝑥 and 𝑦 are input and output vectors of the layers considered. The function 

𝐹(𝑥, {𝑊𝑖}) 

represents the residual mapping to be learned (Kaiming He, 2016). Always referring to the figure, the 

operation is performed by a shortcut connection and element-wise addition. The most used shortcut 

connection simply performs an identity mapping, and its output is added to the output of the stacked 

layers. If the dimensions are not the same, projections can be used to match dimensions. This is 

because in the paper was shown “by experiments that the identity mapping is sufficient for addressing 

the degradation problem and is economical, and thus a square matrix is only used when matching 

dimensions.” The last step to build the actual Convolutional Neural Network is determining the 

number of layers and the magnitude of the transformation performed by each of them. 

 

 

Figure 9: ResNet34 architecture 
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The Figure 9 above shows how a ResNet34, i.e., with 34 convolutional layers, looks like. The basic 

architecture of the neural is “inspired by the philosophy of VGG6 nets” (Kaiming He, 2016). This 

means that the convolutional layers predominantly utilize 3x3 filters and is compliant to two 

fundamental design principles: firstly, layers that produce feature maps of the same size have an equal 

number of filters; and secondly, when the size of the feature map is halved, the number of filters is 

doubled to maintain the same time complexity per layer. Down-sampling, indeed, is achieved directly 

through convolutional layers with a stride of 2. The architecture ends with a global average pooling 

layer, followed by a fully-connected layer with 1000 outputs and a soft-max function. Overall, the 

network, as aforementioned, is composed by 34 layers with weights. Building on the described basic 

network structure, shortcut connections were introduced (as shown in Figure 2), transforming the 

network into its residual variant. These identity shortcuts are applicable without modifications when 

the dimensions of the input and output. In cases where dimensions expand, indicated by dotted line 

shortcuts, the authors evaluated two approaches: “(A) The shortcut still performs identity mapping, 

with extra zero entries padded for increasing dimensions. This option introduces no extra parameter; 

(B) The projection shortcut in Equation (2) is used to match dimensions.” 

 

 

Figure 10: Dimensions change in building blocks 

 

Figure 10 above shows two different “building blocks.” The first one, i.e., the one in purple, keep the 

output as the same form of the input. The second one, i.e., the one in light green, transforms the input 

size, specifically from 64 to 128. Since that, the first “skip connection” (continuous line) is the identity 

one, while the second one could be both the identity mapping (Option A) or a projection matrix 

(Option B).  

 
6 Visual Geometry Group 
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Until now, the number of layers considered was 34, but training significantly deeper neural networks, 

like ResNet50 or ResNet101, implies an exponential growth of model’s complexity and 

computational cost. Bottleneck layers serve as a strategic component in deep neural networks in order 

to solve this issue. The rationale behind the use of bottleneck layers is to efficiently manage the 

network's depth, ensuring that it can learn more complex features without a proportional increase in 

computational cost and training difficulty. The structure of a bottleneck layer is meticulously 

designed to reduce the flow of information through the network while preserving the integrity of the 

input's feature representation. This design is realized through a sequence of three distinct layers: 

1. Dimensionality Reduction (1x1 Convolution Layer): The first layer in a bottleneck 

structure employs 1x1 convolutions. Despite its simplicity, this layer performs a 

critical function by reducing the dimensionality of the input feature maps. By doing 

so, it significantly decreases the number of input channels to the subsequent layer, thus 

reducing the computational load. This layer essentially compresses the input 

information, making it more manageable for the network to process, without losing 

the essence of the feature representation. 

2. Feature Processing (3x3 Convolution Layer): Following the dimensionality reduction, 

a 3x3 convolution layer takes over to process the now-compressed features. The 3x3 

convolutions are applied to the reduced feature maps, enabling the network to extract 

spatial features efficiently. This layer benefits from the reduced dimensionality, 

allowing it to focus on understanding the spatial relationships within the data with 

fewer parameters and lower computational cost compared to processing the original, 

high-dimensional feature maps. 

3. Dimensionality Restoration (1x1 Convolution Layer): The final layer in the bottleneck 

design is another 1x1 convolution layer, which serves the opposite purpose of the first. 

Instead of reducing, it restores the dimensionality of the feature maps to their original 

size. This step is crucial for integrating the bottleneck block into the larger network 

architecture, ensuring that the output can seamlessly connect with subsequent layers 

or blocks. 
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Figure 11: Bottleneck layers 

 

The brilliance of the bottleneck design lies in its ability to reduce, process, and then restore the 

information flow within the network in a highly efficient manner. This approach enables very deep 

networks to be trained more effectively and efficiently, as it mitigates the rapid increase in 

computational requirements that would otherwise occur with increased depth. Bottleneck layers, 

therefore, represent a sophisticated balance between performance, computational efficiency, and the 

ability to train deep models capable of learning highly complex features. 

Finally, the following Figure 12 shows the architecture of ResNet101. Of the 101 layers, 99 come 

from the 33 “bottleneck residual blocks.” There are, in fact, 3 building block of type conv2, 4 of type 

conv3, 23 of type conv4 and 3 of type conv5. There are two types of pooling performed: max pooling 

at the beginning and average pooling at the end. 

 

Figure 12: ResNet101 architectures 

 

3.3.3 DenseNet Architecture 

DenseNet core innovation consists in its dense connectivity pattern, a significant departure from 

traditional convolutional network architectures. This design emphasizes improving the flow of 

information and gradients throughout the network, which facilitates training deeper networks and 
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improves efficiency and performance. In DenseNet, “each layer is connected to every other layer in 

a feed-forward fashion” (Gao Huang, 2017). For a traditional convolutional network with 𝐿 layers, 

there would typically be 𝐿 connections, one between each layer and its subsequent layer. In contrast, 

a DenseNet with 𝐿 layers has 

𝑛 = 𝐿(𝐿 + 1) 

connections. This means for each layer, the feature-maps of all preceding layers are used as inputs, 

and its own feature-maps are used as inputs into all subsequent layers. This approach relies on ResNet 

intuition, but changes the connectivity flow, adding a considerably greater number of forward 

connections. What in ResNet was called “building block”, in DenseNet become a “dense block”. A 

“dense block”, like shown in Figure 14, is composed by a set of convolutional layers, generally in the 

form of BN-ReLU-Conv 7 , where each of them is connected with all the layers after it. In this setup, 

each “dense block”, comprises a batch normalization layer, followed by a 1x1 convolutional layer, 

and concludes with a 2x2 average pooling layer to facilitate the reduction in feature-map size. 

 

 

Figure 13: General DenseNet architecture 

 

In DenseNet network design, directly concatenating feature becomes impractical when the 

dimensions of the feature maps vary. To effectively incorporate down-sampling within the model, 

 
7 Batch Normalization, ReLu activation and Convolution 
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network architecture is organized into several densely connected blocks. The layers situated between 

these dense blocks are known as “transition layers”, responsible for performing both convolution and 

pooling operations. The concatenation of two “dense blocks”, happens as showed in Figure 14. 

 

Figure 14: DenseBlock architecture and concatenation 

Within this kind of DenseNet architecture, each layer, denoted as ℓ, produces k feature maps. This 

means that the  ℓth layer receives 

𝑘0 + 𝑘(ℓ − 1) 

input feature maps, where 𝑘0 represents the number of channels in the first layer. A distinctive feature 

of DenseNet, compared to other network architectures, is its ability to have very “narrow layers”. For 

instance, in DenseNet are typically present layers with 𝑘 of just 12. The term "growth rate", in this 

framework, refers to the parameter 𝑘, which signifies the amount of new information each layer 

contributes to the network's overall knowledge. This is due to the fact that, unlike traditional 

architectures, in DenseNet, every layer can access all previous feature maps within its block. As new 

layers add their own 𝑘 feature maps, they are added to this global state. The advantage here is that 

the global state is accessible without the need to duplicate information across layers.  

Similarly to what happens in ResNet, also in DenseNet the computational expenditure must be taken 

into considerations. To address this issue, bottlenecks layers, such as the ones present in ResNet, are 

introduced. In fact, “though each layer only produces 𝑘 output feature-maps, it typically has many 

more inputs, […] 1×1 convolution can be introduced as bottleneck layer before each 3×3 convolution 

to reduce the number of input feature-maps, and thus to improve computational efficiency” (Gao 

Huang, 2017). 

Finally, the DensNet used for the scope of this application is composed as follows: 

• 3 dense blocks, composed by a set of three operations each: Batch Normalization, ReLU 

Activation and Convolution (3x3). 

• 4 transition blocks, composed by a set of four operations each: Batch Normalization, ReLU 

Activation, Convolution (1x1) and Pooling. 
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• A growth rate of 𝑘  =12. 

3.4 XAI Techniques Interpretation 

The XAI techniques that will be applied are: i) visualizing Filters and Feature Maps, ii) Grad-Cam, 

iii) Saliency Maps and iv) LIME explainer. Their functioning was already widely discussed and 

explained in previous sections; however, the utility of these methods extends beyond technical details. 

Indeed, it lies in the ability to correctly interpret the visualizations they generate. Misinterpretation 

can undermine the very purpose of XAI. This section investigates proper understanding of visual 

outputs produced by aforementioned XAI techniques applied to both ResNet and DenseNet. By 

analyzing the nuances of these visualizations, it is possible to comprehend not just how these models 

process images (e.g., ‘see’), but also how they take decisions (e.g., ‘think’). In doing so, the main aim 

is to provide the sufficient knowledge to explain the results’ section conclusions. 

3.4.1 Filter and Feature Maps 

Interpreting the visualizations of filters in a CNN provides insights into how the network processes 

and perceives input images. These visualizations are the key to understand what features or patterns 

a network is paying attention to, and, at the same time, what important information may be ignoring. 

Filter maps shape varies from different layers according to the layers’ depth. In fact, early layers 

filters usually learn to detect basic features such as edges, corners, and colors. If you see filters that 

highlight edges in various directions or specific colors, it indicates that the network is learning to pick 

up these fundamental components of the input images. As you move to deeper layers, but not yet to 

the deepest ones, filters start to specialize in detecting textures and simple patterns, which are the 

results of combination of edges, corners and colors. For this reason, visualizations from these layers 

might show more complex patterns, such as grids, stripes, or simple geometric shapes. This suggests 

that the network is learning to combine basic features into more specific ones, which can be useful 

for distinguishing between different classes. In the deeper layers of the network, filters try to catch 

more complex shapes. The visualizations from these layers can be less intuitive to understand because 

they capture higher-level abstract features. They may look like specific parts of objects or even more 

abstract patterns that do not directly map to a simple visual feature. These representations are highly 

specialized to the task the network is trained on and indicate that the network is learning to identify 

and distinguish between complex objects and scenes. 

There are several perspectives from which is possible to interpret filters. The first one is surely 

looking for progression. In fact, there should be a clear progression from simple to complex features 

as you move from the early to the deep layers. This progression is a good sign that the network is 
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building up its understanding of the images in a hierarchical manner. The second one is the 

identification of specialized features. In the deeper layers, it can be possible to spot what kinds of 

objects, shapes, or patterns each filter is responding to. This can give you insights into what features 

are considered important for the decisions the network is making. The third purpose that filters can 

serve is checking for redundancy. If many filters seem to be detecting very similar features, it might 

indicate the spreading of repetitive information within the network. While some redundancy can be 

beneficial for robustness, excessive redundancy might mean the network is not utilizing its capacity 

efficiently. Through filers it is also possible to search for missing features. If you expect your model 

to learn certain features but then these features are not represented in the filters, it might indicate a 

gap in the network's ability to learn. This could be due to insufficient training data, poor network 

architecture, or inadequate training time. So, checking filters after the modification of one, or all, of 

the aforementioned issues, could be an efficient way to solve it.  

Lastly, analyzing neural networks filters can help to highlight and detect overfitting. If the filters in 

the deeper layers seem to be too specific, detecting very peculiar or overly detailed patterns that are 

not generally representative of the class it is supposed to detect, it might be a sign of overfitting. This 

means the network might perform well on the training data but poorly on unseen data. Interpreting 

CNN filters can be very difficult, since it is not an “exact science” and it requires both practice and 

intuition. However, gaining insights into how a network processes images can be incredibly valuable 

for improving model architecture and understanding the limitations and strengths of your model. 

Since that, for this specific application, filters would be primary displayed and discussed to provide 

a better overview of the transformations which are applied to input, helping at the same time to better 

understand ResNet and DenseNet architectures. 

On the other hand, feature maps offer a method that generates more interpretable outputs. These are 

essentially the outputs from the networks’ convolutional layers, capturing the filters’ responses to the 

input image. Each feature map emphasizes various aspects of the input image, influenced by the filter 

distinctive features, such as their position within the network’s depth. Consequently, the interpretation 

of feature maps is directly linked, and kind of opposite, to understanding the behavior of filters. 

Therefore, insights regarding the depth of filters layers are also applicable in the context of feature 

maps interpretation. Bright areas in a feature map indicate regions where the filter’s pattern strongly 

matches the input image. For example, an edge-detecting filter might produce bright areas along the 

edges in the image. As you move deeper, feature maps start to represent more complex patterns, 

textures, or parts of objects. These indicate the types of intermediate features the network is learning 

to recognize. Feature maps size decreases as you go deeper into the network, focusing on more 
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abstract and complex features. At this stage, feature maps are less precise about spatial information. 

In the deepest layers visualization may be more difficult to interpret visually because they capture the 

essence of the objects in a very abstract way. These maps are focuses more about the conceptual 

presence of scene elements rather than explicit visual patterns. 

Finally, regarding the interpretation, it is crucial to consider all different aspects that affect the 

visualizations. First, focusing on brightest area highlighted in the feature maps, it is possible to 

identify areas of high activation. These regions reveal the features that activate specific filters, 

offering insights into what is the network prioritization mechanism. This approach enhances the 

understanding of the network’s learning process.  

Moving forward, is crucial to assess layer by layer differences and similarities. Starting from initial 

layers, and progressing deeper into the network, it should be evident how each feature map evolves 

from concrete details to more abstract concepts. This gradual abstraction process is a fundamental 

characteristic of CNNs, allowing them to go beyond simple pixel values. Moreover, examining the 

variety across channels within the same layer reveals the network’s capacity to capture a wide array 

of patterns. A well-functioning network will display feature maps that respond to different aspects of 

the input data, indicating a robust ability to analyze and interpret diverse features. Finally, the impact 

of architectural choices on the feature maps should be considered too. Different convolution types, 

the inclusion of pooling layers, and other architectural decisions play a significant role in shaping 

how the network learns and abstracts information. Understanding these effects can provide deeper 

insights into the design and functionality of CNNs, enabling more informed choices in network 

architecture, and potentially leading to enhanced performance and interpretability. In fact, this process 

is key to diagnosing network performance, understanding model decisions, and guiding 

improvements in model architecture or training procedures. 

3.4.2 Grad-CAM 

Grad-CAM, or Gradient-weighted Class Activation Mapping, is a technique for visualizing the 

regions of input that are important for predictions from CNNs. It helps to understand why a model 

makes a certain prediction about an image, highlighting the areas that significantly influence the 

classification. In fact, Grad-CAM provides an insightful visualization output that generates heatmaps 

to be overlaid on the original image, representing clearly which areas the model considers significant 

for its decision-making process. These heatmaps range in color from blue to red. Blue stands for 

regions of low importance to the model's decision; red ones, instead, indicates areas of high 

importance. Portions of image where the heatmap has a greater concentration offers a window into 

the model’s attention mechanism.  
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However, a misalignment between the heatmap’s focus and the actual relevant features of an image 

could reveal deficiencies in the model’s learning ability. If the heatmap puts in evidence irrelevant 

areas, or fails to delineate the object of interest, it might suggest that the model lacks of understanding 

relevant features. Such issues can be solved by further model refinement like additional training, data 

augmentation, or architectural modifications. What is more, Grad-CAM allows for the generation of 

visualizations across different classes, enabling a comparative analysis of which image parts become 

significant for each category. This aspect is particularly useful in instances where the model exhibits 

confusion between classes, revealing the features it might erroneously associate with another class. 

This last feature would be the foundation of the analysis section involving Grad-CAM.  

While a powerful tool for interpreting model decisions, Grad-CAM has certain limitations. 

Localization maps provided by Grad-CAM may not precisely outline the object of interest, often 

leading to a deceiving approximation of what the model is focusing on. Additionally, the effectiveness 

of Grad-CAM's visualizations heavily relies on the choice of convolutional layer from which 

gradients are pooled. The last convolutional layer is typically chosen to achieve the best balance 

between capturing high-level features and maintaining spatial detail. Finally, it is important to note 

that high activation in the correct regions as indicated by Grad-CAM does not guarantee that the 

model truly understands or can generalize from the visualized concepts. Therefore, Grad-CAM 

should be viewed as one of many tools available for model interpretation, rather than a foolproof 

solution. 

3.4.3 Saliency maps 

Saliency maps serve as a visualization technique to detect the components of an input image that 

significantly influence the output. For what regards the interpretation, bright areas on a saliency map 

denote image parts with strong influence on the model's prediction. If the saliency map accentuates 

irrelevant areas, like the background in an object classification task, it may signal the model's 

misdirection. Moreover, sensitivity to noise or insignificant image sections might suggest overfitting 

or poor generalization. Saliency maps have practical applications in model debugging and 

improvement. They enhance model interpretability, explaining complex model behaviors to non-

experts and assisting in data cleaning by uncovering biases or mislabeled data through unexpected 

focus areas. However, limitations exist. Complex images can produce noisy, high-dimensional 

gradients challenging to interpret directly due to multiple influencing factors. Saliency maps' 

sensitivity to minor input variations can lead to misleading interpretations, requiring cautious 

analysis. Additionally, while bright areas signify high influence, they don't clarify the significance of 

these regions to the model, sometimes making it hard to derive actionable insights without further 
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context or analysis. Grad-CAM and saliency maps address different needs in model interpretability. 

Grad-CAM is more suited for understanding the general areas of an image that lead to a model's 

decision, making it excellent for tasks where the spatial context or specific regions are important. 

Saliency maps, on the other hand, offer a more granular view, pinpointing exact pixels that influence 

the output, which can be valuable for fine-grained analysis or when investigating model sensitivity to 

subtle input variations. The choice between Grad-CAM and saliency maps, or their combination, 

depends on the specific goals of the interpretability task and the nature of the model and data. 

3.4.4 LIME 

LIME, standing for Local Interpretable Model-Agnostic Explanations, is a library that aims to explain 

the predictions made by any classifier or regressor. It achieves this through local approximation using 

an interpretable model. This is done by altering a single data instance, and monitoring the changes in 

the prediction outcome. The process involves focusing on a specific prediction to explain, generating 

a dataset of perturbed samples around that prediction, and analyzing how the model's predictions vary 

with these sample alterations. Through this analysis, LIME constructs a simpler, locally accurate 

model, such as a linear model, to approximate the complex model's decision-making around the 

selected instance. This simpler model sheds light on the critical features that impacted the prediction, 

enhancing interpretability for that particular scenario. The process begins with LIME selecting an 

image and generating a series of perturbed versions by segmenting the image into super-pixels and 

altering them. These perturbed images are then passed through the CNN to observe how modifications 

affect predictions. LIME employs these variations to train a simple linear model, weighted by the 

similarity of each perturbed image to the original, aiming to approximate the CNN's complex 

decision-making process in a localized region. The linear model’s coefficients indicate the influence 

of each super-pixel on the prediction, providing a quantifiable measure of their importance. The 

"positive" category contains features that increase the likelihood of a certain prediction. These are 

highlighted by LIME as having positive weights in the linear model, indicating their significant role 

in leaning the model's decision towards that particular class. Conversely, the "negative" category 

includes features that detract from the model making a specific prediction. By distinguishing between 

these positive and negative influences, LIME provides a nuanced explanation of a CNN's decision-

making process. This detailed breakdown helps users and developers not only to trust the model's 

predictions by understanding the rationale behind them but also to debug and improve the model by 

identifying misinterpreted features or biases. It enhances interpretability by clarifying which features 

are decisive for a prediction and which ones may cause the model to hesitate, offering insights into 

how the model can be refined for better accuracy and reliability. 
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3.5 Results 

3.5.1 Performance Metrics 

ResNet101 and DenseNet201 models were both trained on the training dataset described above, 

according to the following parameter: 25 epochs, Adam optimizer, categorical cross-entropy loss 

function and a batch size equal to the length of the training dataset divided by 32. The final model 

weights were the ones of the best performing model in terms of loss (i.e., minimum loss), among all 

the 25 models trained. The two figures below (Figure 16 and Figure 15) show both loss and accuracy 

trend for both ResNet101 and DenseNet201 models. 

As it is possible to notice from the graph, ResNet model reaches its lowest loss at epoch number 12, 

even though the highest accuracy on validation set is reached at epoch number 8. For DenseNet 

model, instead, it reaches lowest loss at epoch number 5 and higher accuracy at epoch number 8. The 

table below (Table 1) shows the models results, in terms of accuracy and loss, for both train and test 

datasets. 

 

Figure 15: Training statistics for ResNet 

Figure 16: Training statistics for DenseNet 
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Table 1: Training Statistics Loss and Accuracy 

 

The classification report presented in the Table 2 offers a comprehensive assessment of the 

performance of ResNet101v2 model. The model demonstrates a remarkable overall accuracy of 90%, 

which reflects its effectiveness in classifying scenes across various classes. This accuracy metric is 

corroborated by both the macro and weighted averages of precision, recall, and the F1-score, each 

also standing at 90%. These metrics indicate a robust generalization across the classes in the dataset. 

Precision scores are particularly high for classes such as “beach”, “sea_ice”, and “snowberg”, with 

scores of 0.99, 0.97, and 0.96, respectively. The recall metric shows exemplary performance in 

identifying nearly all relevant instances for “desert” and “sea_ice” classes, with recall rates of 0.96 

for both. Conversely, the model exhibits some challenges in classifying “river” scenes, as indicated 

by the lower precision of 0.75 and an F1-score of 0.83. This could potentially be attributed to the 

inherent difficulty in distinguishing river scenes from other water-related classes or perhaps it is a 

consequence of the limited representation in the dataset, as suggested by the lower support number 

for this class. The uniformity of the model's performance across various classes, as reflected in the 

consistent precision, recall, and F1-scores, suggests a balanced classification capability. Nonetheless, 

the slightly diminished precision and F1-score for the “river” class may necessitate further 

investigation. In summary, the model exhibits a strong capability in the classification of complex 

scenes, yet there remains room for improvement, particularly in classes where the model's precision 

is less than optimal. 

  

  Loss Accuracy 

ResNet101 
Train 0.0437 0.9905 

Test 0.5128 0.8971 

DenseNet201 
Train 0.0283 0.9922 

Test 0.4870 0.9107 
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Precision Recall 

F1-

Score Support 
 

    
beach 0.99 0.86 0.92 161 

desert 0.82 0.96 0.88 120 

forest 0.94 0.87 0.9 152 

meadow 0.86 0.9 0.88 135 

mountain 0.9 0.82 0.86 153 

river 0.75 0.94 0.83 112 

sea_ice 0.97 0.96 0.96 142 

snowberg 0.96 0.94 0.95 144 

terrace 0.93 0.9 0.92 144 

wetland 0.84 0.85 0.84 137 
 

    
accuracy   0.9 1400 

macro avg 0.9 0.9 0.9 1400 

weighted 

avg 0.9 0.9 0.9 1400 
 

Table 2: ResNet results table 

 

Table 3 delineates the classification report for DenseNet201 model. An overall accuracy of 91% is 

achieved, signifying a proficient level of correct predictions across the diverse scene classes. This 

accuracy is reflected uniformly across the macro average and weighted average, both standing at 

91%. These averages, which consider the harmonic mean of precision and recall, illustrate the model's 

balanced performance despite variations in class support. The precision metric reveals that the model 

exhibits excellent results, with outstanding precision for “sea_ice” at 0.99. Similarly, high precision 

for the “beach” and “snowberg” classes implies that the model is highly reliable for these scenes.  

In terms of recall, the model successfully identifies a majority of the relevant instances across all 

classes, with “desert”, “sea_ice”, and “terrace” each achieving a recall of above 0.90. The F1-score, 

which balances precision and recall, remains consistently high across most classes, with “sea_ice” 

and “terrace” notably achieving 0.96 and 0.95, respectively. Nevertheless, the “wetland” and “river” 

classes exhibit slightly lower F1-scores of 0.85 and 0.88.  

Overall, the DenseNet201 model's classification report attests its effectiveness in scene classification 

tasks, supported by high precision, recall, and F1-scores, along with an excellent overall accuracy, 

rendering it a powerful tool for automated scene analysis. 
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Precision Recall 

F1-

Score Support 
 

    
beach 0.96 0.91 0.93 149 

desert 0.91 0.91 0.91 139 

forest 0.93 0.92 0.92 142 

meadow 0.91 0.87 0.89 146 

mountain 0.84 0.89 0.86 133 

river 0.85 0.92 0.88 129 

sea_ice 0.99 0.93 0.96 149 

snowberg 0.95 0.92 0.94 144 

terrace 0.94 0.96 0.95 138 

wetland 0.82 0.88 0.85 131 
 

    
accuracy   0.91 1400 

macro avg 0.91 0.91 0.91 1400 

weighted avg 0.91 0.91 0.91 1400 
 

Table 3: DenseNet results table 

 

To sum up, upon comparing the performance metrics of the ResNet101v2 and DenseNet201 models, 

several key differences can be discerned: 

• Overall Accuracy: The DenseNet201 model shows a slight improvement in overall accuracy, 

with a 91% accuracy compared to the 90% accuracy of the ResNet101v2 model. 

• Precision: There are variances in precision for certain classes between the two models. For 

example, DenseNet201 shows a higher precision for “desert” and “sea_ice” classes, but a 

slightly lower precision for “mountain” and “river” classes compared to ResNet101v2 

• Recall: DenseNet201 exhibits improvements in recall for the “desert”, “forest”, and “terrace” 

classes. However, the recall for “meadow” and “mountain” scenes is higher in the 

ResNet101v2 model. 

• F1-Score: The DenseNet201 model has higher F1-scores for “beach”, “desert”, “forest”, 

“sea_ice”, and “terrace” classes. However, the ResNet101v2 model excels with higher F1-

scores in “river”, “mountain”, and “meadow” classes 

• Class-specific Performance: For certain classes such as “river” and “wetland”, both models 

show similar challenges, but the extent of the challenge varies. For instance, the “river” class 

has a higher precision with ResNet101v2 but a higher recall with DenseNet201. 
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• Consistency Across Classes: While both models show good consistency across classes, the 

DenseNet201 model appears to have a slight edge in terms of maintaining high precision and 

recall across most classes, as indicated by the higher macro and weighted averages. 

To deep dive deeply into models’ performances it would be extremely useful to visualize the two 

confusion matrixes. 

 

Figure 17: ResNet confusion matrix 

 

Figure 17 and Figure 18 show two confusion matrixes represented as a heatmap for ResNet and 

DenseNet models’ predictions. In this context, the matrix compares the predicted labels (on the x-

axis) against the true labels (on the y-axis). The diagonal cells, which represent correct predictions, 

where the predicted label matches the true label, show as expected higher values, indicated by a lighter 

blue shade. 

For what concerns ResNet (Figure 17), confirming previous table results, classes with higher values 

in the diagonal are “beach”, “snowberg” and “sea ice”. Off-diagonal cells are the most interesting 

ones. They show, indeed, instances where the model has made incorrect predictions. Off diagonal 

cells which contain greatest values are on the river column. In fact, this class showed the lowest f1 
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score (i.e., 0.83). Beaches (8 times), terraces (10) and wetlands were the scenarios wrongly classified 

as rivers. The other two relevant values are: 15 mountains misclassified as deserts (the higher value 

among all off diagonal cells) and 10 forests mislabeled as wetlands. Both couple of classes (i.e., 

mountain-desert, wetland-forest) are characterized by a great chromatic similarity which could be the 

greatest root cause of the errors. 

 

Figure 18:  DenseNet confusion matrix 

 

Confusion matrix diagonal, for DenseNet, confirms, instead, that categories with greater numbers of 

correct predictions are “sea ice”, “snowberg”, “terrace” and “beach”. Looking at the other cells, it is 

possible to notice that the column with higher number of errors is the “wetland” one. Most of 

incorrectly labeled images were original from “meadow” class (i.e., 8), but also some pictures from 

“forest”, “beach”, “mountain” and “river” classes were misclassified (i.e., respectively 4, 3, 4, and 4). 

Other significant errors come from desert pictures classified as mountains (6) and vice versa (6). The 

confusion between these classes will be further analyzed in the XAI results section.  

The final comment about the confusion matrixes is about the error magnitude. In DenseNet, errors 

are more equally distributed while in ResNet there are some specific errors that the model make 

repeatedly.  



50 

 

3.5.2 XAI 

3.5.2.1 Filter and Feature Maps 

Results analysis, in terms of models explainability, will start from models’ filters and features map. 

This is because, as explained before, they deal with how the models preprocess input images, and 

with the result of this preprocessing. For this reason, looking at filters’ shape and feature maps is the 

first step to understand ResNet and DenseNet decision making processes. Firstly, first convolutional 

layer’s filters will be visualized. 

 

 

Filters are not input depending and are the same for all images. The filters shape for both models is 

the following: (7, 7, 3, 64), which means 64 filters of size 7x7 and 3 channels. So, all the first 

convolutional layer’s filters are visualized in the figures above. As you can see, filters are very 

different between the two models, and therefore also the output, i.e., feature maps, is expected to be 

very diverse. 

The more the layer is in a deeper position, the more complex filters would be, while the visualization 

would be less interpretable. This is because “deep filters” in both ResNet and DenseNet have shape 

1x1. These 1x1 filters are used in deep layers of CNNs, typically for channel-wise transformations, 

meaning they combine the information across channels to form new features. Since they are 1x1, each 

filter operates on a single pixel across all channels but independently for each pixel location. The 

Figure 19: ResNet Filter Figure 20: DenseNet Filter 



51 

 

purpose of these filters is often to reduce dimensionality and to mix information across the channels 

rather than to detect spatial patterns. A way better interpretable output is provided by feature maps. 

As explained before, feature maps represent the response of the filters to the input image. So, having 

a sense of how filters look like thanks to the previous images, now feature maps of different layers 

will be displayed, to understand better of the images is propagated through the neural network. 

 

 

The two figures above (Figure 21 and Figure 22) show the same image propagated to 5 different 

layers in both ResNet and DenseNet. This means that five different filters were applied to that image, 

with very different outcomes. ResNet in this case focuses on pixel where there is the actual river, 

while the DenseNet feature maps focus on the land near the river itself. Obviously, this is just a part 

of a bigger picture, since at each layer a large number of filters is applied (from 64 to 128) and the 

last picture of the two sequences above, is just a part of the final output of the model processing. 

Figure 21: ResNet Feature Maps Series 

Figure 22: DenseNet Feature Maps Series 



52 

 

The following two images, in fact, shows the “whole” picture for what concern first and last 

convolutional layer. 

 

 

Also here, it is possible to appreciate a high degree of divergency. It is clear that for ResNet in the 

first layer lots of feature are activated, while in the last convolutional layer the model focuses on very 

specific features. DenseNet visualization, instead, offer the opposite scenario. The first layer feature 

maps are activated by less elements, while the last ones consider the majority of the image. 

3.5.2.2 Grad-CAM 

After having grasped better all the transformation applied to the input images, it is possible to 

investigate how all these steps influences the final outcome. In order to do that, the first technique 

Figure 24: First and Last Layer Feature Maps for ResNet 

Figure 23: First and Last Layer Feature Maps for DenseNet 



53 

 

which serves this purpose, is Grad-Cam. Since it is a technique for visualizing the regions of input 

that are important for predictions, misclassified images will be further investigated for both models.  

In this section are taken into consideration two different images from the test dataset. The selection 

criterion was the following: for each of the two models, looking at their respective confusion matrixes, 

were selected two misclassified images from the category with the lowest accuracy, that at the same 

time the other model was able to label correctly. For what concerns ResNet, it is clear from the 

confusion matrix (Figure 17) that the highest number of errors comes from mountain categories 

images classified as deserts. Among these 15 images, the selected image is the one displayed in Figure 

25. 

 

As said before, DenseNet model classified it correctly. The following Figure 26, instead represents 

the Grad-CAM of both models applied to the image. Usually, as aforementioned, all parts highlighted 

in red correspond to picture’s zone which gave greater contribution to the output. How this 

contribution affects effectively the classification is controversial so it is better to focus on the zone 

highlighted by different colors rather than paying attention just to the red ones. 

Starting from similarities between the two heatmaps, it is very evident that both models perceive at 

the same way the bluish part, which corresponds to the mountain part which stands out from the rest. 

Indeed, what really differs it the rest of the mountain. In ResNet model, this is perceived more or less 

such as the peripheral part of the picture, while, in DenseNet one, a pattern is detected and highlighted 

as a yellowish region. This is the reason why on model (i.e., ResNet) classifies it as desert, and the 

Figure 25: Original image, misclassified by ResNet, for Grad-CAM 
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other one (i.e., DenseNet), instead, classifies it as mountain. From the human eye perspective, it can 

be hard to distinguish between desert and mountain, especially from a chromatic point of view. So, 

while it is understandable the misclassification, at same time it is impressive that DenseNet 

implementation is able to understand that the scene proposed in this case is a mountain. 

 

 

The DenseNet model confusion matrix (Figure 18), instead, suggests as the most misinterpreted 

category the terrace one. In fact, 11 out 140 terrace images were classified as river. Therefore, the 

image below (Figure 27) was selected because DenseNet classified it incorrectly as a river, while 

ResNet was able to understand that it was actually terrace. 

Figure 26: On the left we have the original image, then the ResNet Grad-CAM and after the DenseNet Grad-CAM 
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As before, the following Figure 28, instead represents the Grad-CAM of both models applied to the 

image. Here there are less similarities among the two heatmaps, with respect to the previous situation. 

The bluish region matches partially between the two grad-cams only in bottom left corner. There is 

agreement, for what concern red regions, in the upper part of the image and in the zone immediately 

above the bluish region on the bottom. Analyzing the differences, the most significant part regards 

the big bluish region that is present in DenseNet Grad-CAM, which is totally absent in the ResNet 

one. In the bottom part there is some sort of disagreement too. In fact, bluish and yellowish regions 

do not come up in ResNet, while there is a strong presence for DenseNet. An interpretation that could 

lead to explain the misclassification of this picture consists in the fact that in DenseNet Grad-CAM it 

is highlighted a “sinusoidal” pattern (i.e., the red part between the two bluish regions), which can 

vaguely remember the shape of a river. In contrast with the previous use case, the misclassification 

roots can be found in the shapes more than in the colors. 

Figure 27: Original image misclassified by DenseNet 
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3.5.2.3 Saliency Maps 

Saliency maps visualization offers a slightly different point of view regarding models’ 

interpretability. Since they offer a pixel-wise approach, the granularity is not completely suited for a 

scene recognition task. Despite that, for sake of completeness, integrated gradient saliency maps will 

be visualized too. The image that will be considered in this section is the terrace scenario image from 

the paragraph above, in Figure 28. It is useful to recall that it was classified as river by DenseNet, 

and, correctly, as terrace by ResNet. The visualization is composed by three distinct images: 

• A normalized saliency map derived from the computed gradients (Left image Figure 29 and 

Figure 30). 

• A normalized version of the original input image, like the one fed to the algorithm (Central 

image Figure 29 and Figure 30). 

• A composite image blending the saliency map and the input image to visualize the most 

influential regions in the context of the actual image (Right image Figure 29 and Figure 30). 

Figure 28: On the left we have the original image, then the ResNet Grad-CAM and after the DenseNet Grad-CAM 
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Comparing the two images on the left (i.e., the first images of each row), it is evident that activated 

pixels focus on very different areas. For what regards ResNet, brighter pixels are concentrated in the 

center of the image. In DenseNet saliency maps, instead, the greatest concentration of white pixels is 

in the bottom part of the picture, where there is an object with the shape similar to a river. As discussed 

in the Grad-CAM section, DenseNet prediction seems to focus mainly on this misleading region, 

while neglecting the rest of the scene, which is indeed characterized by edges, shapes and patterns 

typical of the terrace class.  

3.5.2.4 LIME 

The last XAI techniques that will be discussed is produced by LIME python library. As explained 

above, interpreting LIME output is very straightforward, since it highlights picture’s portions which 

influence the most the output. For this final analysis, it will be considered an image that was classified 

Figure 29: ResNet Integrated Gradient Saliency Map 

Figure 30: DenseNet Integrated Gradient Saliency Map 
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correctly by both models (Figure 31). Furthermore, only ResNet output will be considered in this 

section.  

It is an image which belongs to the beach category, and to human eye test, it does not present any 

misleading pattern or object. The main aim of this visualization is to better understand the overall 

decision process when predicting the correct class. 

 

Figure 31: Input image for LIME library 

 

The image on the left of Figure 32 puts in evidence only the regions which contributes positively to 

outcome. “Positive" here means that the presence or the characteristics of these super-pixels increase 

the model's confidence in its prediction for the given class. It seems reasonable that the model 

considers as most relevant all the coastal regions and a part of the sea. On the right, instead, the picture 

shows at the same time regions which have a positive contribution, in green, and the ones which 

contribute negatively. In this case, "negative" influence means that these areas of the image, if altered 

or removed, could potentially increase the model's confidence in the prediction or possibly lead to a 

different prediction altogether. This can be particularly illuminating when you're trying to understand 

what aspects of the input might be confusing the model or leading it towards incorrect predictions. It 

is clear here that what can confuse the model is the sea foam, which, if taken separately from the rest 

of the image, can be difficult to classify. Given that, the “positive” parts succeeded in helping the 

model to label the picture correctly. 
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3.5.3 Conclusions about Models’ Performances 

To sum up, ResNet and DenseNet models offers very comparable performances in terms of accuracy, 

precision and recall, with DenseNet achieving slightly more remarkable results. Since it is difficult 

to choose one model over the other just considering these metrics, also XAI dimension is taken into 

considerations. Since the degree of interpretability is the same due to the similar architectures, 

explainability would be investigated to assess the quality of the decision-making process.  

The contribution of each technique can be broken down as follows: filters and features map 

visualization serve users purposes to understand transformation applied to input data, and its 

propagation through the layers; Grad-CAM, Saliency Maps and LIME deep dive into the actual 

decisional process.  

From the output analysis, ResNet demonstrates a higher quality for what concerns image 

understanding and generalization with respect to DenseNet. In conclusion, with an appropriate data 

augmentation aimed to solve current gaps in the dataset, accuracy metrics and XAI techniques 

interpretation suggests ResNet as the more effective classification model. 

  

Figure 32: LIME output 
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4. Conclusions 

4.1 Summary of Findings and Contributions 

The findings of this thesis underscore the critical role of XAI in enhancing the transparency and 

accountability of CNNs, through a practical application in the domain of aerial image scene 

classification. 

By systematically applying XAI techniques to state-of-art CNN models, such as ResNet and 

DenseNet, the research demonstrates that it is possible to achieve a robust balance between model 

interpretability and performance. The practical application involving the NWPU-RESISC45 dataset, 

refined to focus on environmentally significant classes, reveals that some modification and 

adaptations to XAI techniques do not necessarily come at the cost of accuracy. This aspect supports 

the initial hypothesis which argued that models’ enhanced understandability does not implies more 

inaccurate model. In fact, both ResNet and DenseNet reached remarkable degree in terms of both 

accuracy (i.e, respectively 0.9 and 0.91) and understandability. 

The second pivotal insight is that XAI not only makes the decision-making processes of these 

complex models more transparent but also aids in identifying and mitigating biases, thereby 

enhancing overall model reliability, trustworthiness and performances. This finding addresses the 

widespread prejudice which implies that XAI techniques serves external purpose, rather than internal 

ones. For instance, in the context of the practical implementation of ResNet and DenseNet, the class-

wise analysis of Grad-CAM and Saliency maps output is essential in diagnosing limitation in the 

dataset’s images, providing essential aid to model’s designer. 

Furthermore, the comparative analysis between ResNet and DenseNet highlights the structural 

nuances that contribute to their performance and interpretability. ResNet's residual connections and 

DenseNet's dense connectivity both offer unique advantages that can be leveraged depending on the 

specific requirements of the task at hand. This dual-model approach enriches the findings by offering 

diverse perspectives on the effectiveness of XAI techniques across different neural network 

architectures. Indeed, when two models are so similar regarding accuracy-related metrics, such 

ResNet and DenseNet in this specific case, the possibility to explore an additional dimension 

represented by the understandability landscape, can be considered game-changing. In the future, there 

will be no ML/AI application deployed without considering its efficiency from XAI perspective. 
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4.2 Limitations and Challenges 

Despite the significant contributions and insights provided by this thesis, there are several limitations 

and challenges that need to be considered. In fact, considering the hypothesis, confirmed in the CNNs 

application, that enhancing interpretability does not necessarily compromise performance, it must be 

stressed that this balance can be highly context-dependent. In some scenarios, increasing 

interpretability might still lead to a decrease in accuracy. Indeed, thesis findings hold just in the field 

of CNNs, while it is impossible to generalize this conclusion for all AI models. 

Another critical aspect, considered out of scope within this thesis regards, concerns computational 

expense. In fact, the XAI techniques applied, such as Grad-CAM and Saliency Maps, can be 

computationally intensive. This complexity might pose challenges, for instance, for real-time 

applications, which represent one of the major sectors of deployment for CNNs. Future research could 

explore more efficient XAI techniques or optimizations of existing ones. 

Finally, the last point which limits the scope of the whole dissertation is the lack of interdisciplinary 

collaboration. The thesis emphasizes the need for explanations that are understandable to both domain 

experts and non-experts, while proposing itself as a first tentative guide. However, the actual human-

centric evaluation of these explanations, such as user studies or cognitive assessments, is not deeply 

explored. Understanding how different users interpret and perceive these outputs is crucial for 

developing better XAI techniques and assess model understandability. 

4.3 Recommendations for Future Research 

Addressing these limitations and challenges can pave the way for further advancements in the field 

of Explainable Artificial Intelligence. 

In order to overcome generalizability issues, an exhaustive analysis about all model-tailored XAI 

techniques should be conducted. Furthermore, all state-of-art models performances should be re-

assed considering understandability criteria. 

Lack of interdisciplinary perspective, indeed, can be tackled by collaborating with experts from 

psychology, human-computer interaction, ethics, and law. This would provide valuable plurality of 

points of view, that would enhance development and evaluation of XAI techniques. This 

interdisciplinary approach can help developing advanced visualization tools that provide more 

intuitive and interactive ways to explore model decisions, increasing remarkably XAI techniques’ 

effectiveness. These tools should be beneficial to both experts and non-experts, making complex 

model behaviors more accessible and understandable. 
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