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Abstract 

 

This thesis investigates the convergence of three topics: Digital Twins (DT) technologies, predictive 

Maintenance (PdM) strategies, and Micro Factory business model. The paper explores how integrating 

Digital Twins and Predictive Maintenance strategies can lead to an optimization of company operations. 

The benefits of applying PdM statistical models to a micro factory are then explained through the analysis 

of a dataset concerning sensors’ data applied to a robotic arm system (UR5). 

The methods chosen, highlighted the potential benefits this approach could bring to this business model 

and the possible interpretation of results from a micro factory perspective. The findings obtained with the 

k-means model and Isolation Forest model, demonstrate the significant benefits related to anomaly 

detection in terms of proactive maintenance. 

LSTM model used for predicting the cartesian coordinates of the Tool Center Point (TCP), converged 

with Digital Twins technology, can significantly improve the operational efficiency and reliability of 

micro factories by enabling real-rime monitoring, and early fault detection. 

This research provides valuable insights and a practical framework for implementing advanced 

maintenance strategies supported by innovative technologies such as Digital twins in micro factory 

settings, for a more resilient, interconnected, and adaptive manufacturing reality.  
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Chapter 1 

 

Introduction 

 

 

1.1 Industry 4.0. 

 

The manufacturing industry changed a lot during the recent decades, evolving through different 

phases: from industry 1.0 to industry 4.0, the current industrial revolution. 

Industry 4.0, also known as smart manufacturing, is characterized by digitalization, automation, and 

flexibility and it is revolutionizing the way companies produce, improve, and distribute their products.  

This new industry is the result of new emerging technologies that enable companies to adopt to this 

revolution and to adapt it. These innovative technologies include Internet of Things (IoT), cloud 

computing and analytics, AI and Machine Learning. They all share a common goal: making 

manufacturing companies more effective and efficient, and in a way, more intelligent relying on the 

use of data 1.  

With this new concept of industry and manufacturing there is a new disruptive business model that 

focuses on flexible production, customization, and localization. This new business model known as the 

micro-factory, is a small factory, fully automated, localized close to customers or urban centers, with 

the capability to efficiently customize production based on modularity. Instead of large manufacturing 

based in specific productive areas of the world where labor costs are lower, and products are highly 

standardized, micro-factory’s model focuses on agility, flexibility, and localization closer to clients. 

Research2 indicates that in the recent years, customer preferences have shifted towards customized 

products rather than cheap products. Made-to-order products are becoming more common, and 

companies are moving from mass production to mass personalization. This shift is supported by a 

higher customers’ willingness to share personal information with companies, and consequently, data, 

to offer a more personalized service or product. 

Micro-factory fulfills new customers’ expectations by relying on smaller facilities with an extremely 

high level of automation, serving regional markets instead of global one. Consumers have shown a 

preference for personalized purchases, with many willing to pay extra for tailored products or 

services2. This shift in consumer behavior offers substantial opportunities for major corporations to 

thrive within a localized economy. 
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Automation acts as a bridge between companies needs to scale and increase cost efficiency with 

localization strategies. A high level of automation not only facilitates localization but also reduces 

costs and leads to innovation efficiency, thanks to the modularity and the development of new 

materials. The high expenses associated to human labor are substituted by the utilization of automated 

machines, which can ensure scalability while maintaining high quality and consistency. 

The advantages of producing locally include the proximity and alignment with the customer tastes and 

preferences. By understanding the specific market needs, companies can focus on marketing strategies 

that emphasize local design and production subject to different tariff compared to exported products. 

Governments usually offer incentives for local production, helping companies to reduce their carbon 

footprints and to achieve sustainability goals, which are highly valued by today’s customers. 

The general concern associated to the automation revolution (AI, and robots) is the potential loss of 

human workers’ jobs, replaced by digitalized automated machines. However, the shift of production 

sites from global to local will likely increase job opportunities locally and offer broader benefits 

related to automated manufacturing. A study conducted by Deloitte and The Manufacturing Institute 

reveals that each manufacturing job generates 2.5 jobs in local goods and services, and for every dollar 

of value produced in manufacturing, an additional $1.37 is generated across other sectors3. 

 

1.2 Unplanned downtimes.  

 

The higher level of automation in a micro factory corresponds to an increasing level of complexity 

accordingly to a higher need for maintenance requirements for the machines and thereby creating a 

reliance on specialized technicians. This dependency can lead to higher operational costs and delays, 

due to expertise limitations. Additionally, highly automated manufacturing companies are facing a 

greater risk of unplanned downtimes. Despite a decrease in incidents in the recent years, the overall 

cost of downtime for manufacturers is exponentially rising. 

According to Siemens report4, an unplanned downtime now equates to approximately 11% of the 

annual turnover of the Fortune Global 500 companies, with a total loss around $1.5 trillion. This 

number represents a big increase from the $864 billion reported two years prior. In the automotive 

industry, the cost of one hour of downtime ranges from $39,000 to $2 million. Micro-factories and 

other highly automated companies must minimize unplanned downtime to avoid excessive 

maintenance costs. Despite the reduction of the frequency of downtimes, the costs are significantly 

increasing from one hour of downtime in the automotive industry costs $2.1 million, compared to the 

$1.3 million in 2019/2020, representing a 50% increase4. This trend introduces important challenges 

impacting the revenue loss, the wage paid to not operative workers, the expenses related to last minute 



12 
 

spare parts, and penalties for not respected contracts. Thus, a modest reduction of 40% of maintenance 

costs for the Fortune Global 500 companies could result in savings approximately $236 billion.  

Given these trends, the question arises: why is the cost of downtime increasing over the years? 

Contrary to assumptions, machines are becoming more dependable, and they are experiencing fewer 

downtimes and failures. However, their increased integration into companies’ operations and their 

adoption for critical roles previously fulfilled by human workers is contributing to the rise of costs. 

There are two main reasons why these incidents are having higher impact on companies’ revenues: the 

first reason is explained by the fact that machines are more integrated into the entire production chains, 

and in some cases, machines cover the whole production chain. This means that a downtime of a single 

component can stop the whole production, making it harder to quickly replace components compared 

to replace human work. The second reason is the consequences of downtimes. When a company fails 

on meet an order or compliance requirements, it can be subject to penalties. Moreover, there might be 

insurance coverage issues when a company fails on meeting insurer’s requirement due to downtimes 

and this could lead to a loss of coverage.5 

 

1.3 Digital Twins. 

 

Predictive maintenance is becoming a strategic priority for companies, and based on Siemens’s survey, 

one third of companies are investing on having their own predictive maintenance team.4 

In the automotive industry, machine learning (ML) is revolutionizing predictive maintenance (PdM) 

by leveraging data-rich environments and increasing complexity of vehicle systems. ML-based PdM 

solutions focus on ensuring functional safety and reliability over the lifetime of vehicles. As 

technologies continues to evolve, there is an important need for categorization of existing research, 

analyze use cases, and identify future paths for exploration and development.  

Furthermore, as explored in the article by Grieves 6 the field of digital twins is contributing 

significantly to predictive maintenance strategies. Digital twins are a virtual replicas of company 

physical assets, updated with real-time data from the physical counterpart based on performances and 

conditions of the physical asset. Previous research provides a foundational definition of digital twins as 

“an integrated physical-digital model that provides a seamless flow of information between the 

physical and virtual words”6. The data origins are varied, including sensor readings, engineering 

design data, and operational information. 

This integration between the physical assets and the virtual models empowers companies to address 

maintenance needs, minimizing unexpected downtimes and optimizing resource allocation. Singh’s 

article7 focuses on the concept of the digital twin as the core player of the intelligent predictive 

maintenance system for AC industrial machines. The key aspects of predictive maintenance strategies 



13 
 

supported by digital twin technologies are continuous data flow, data analysis and simulation, and 

maintenance scheduling. 

This thesis aims to explore how predictive maintenance methods associated to digital twins, can 

address the operational challenges faced by micro factories (e.g. unexpected downtimes). This research 

investigates on the potential of micro factories to anticipate equipment failures, optimize resource 

allocation, and minimize downtime by analyzing sensor’s data and creating virtual replicas of the 

physical production system. This analysis will explore the specific data acquisition and processing 

methods needed for micro factory applications, along with the development and validation of machine 

learning models for predicting equipment’s issues and identifying anomalies in the machine’s 

behavior. This thesis seeks to demonstrate how a digital twin approach to predictive maintenance can 

enhance the overall efficiency, resilience, and cost-effectiveness of micro factory operations. 

 

1.4 Research gaps. 

 

The existing Predictive Maintenance research primarily targets large-scale industrial cases, while it 

necessitates adjustments concerning micro-factories, such as different data sets and different resources. 

Moreover, it is important to ensure the generalizability of predictive maintenance models across 

different micro-factory processes or locations.  

This paper aims to address the research gap regarding the application of digital twins in the micro-

factory environment and the development of predictive maintenance model for highly automated 

business models. Thus, based on review of existing literature, it is evident that there is not a substantial 

body of research focusing on how integrated digital twins could affect the high complexity of micro-

factories in terms of automation and service provision. Digital twins offer micro-factories the 

opportunity to develop robust maintenance strategies capable of handling unexpected machine 

downtimes. However, the potential benefits derived from integrating these three areas-digital twins, 

predictive maintenance, and micro-factories-have not been studied thus far. 
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Figure 1.1: Representation of research gaps addressed with the thesis. 
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Chapter 2 

 

Background 

 

 

2.1 Existing Predictive Solutions 

 

Due to an increasing in demand of predictive maintenance solutions, the number of solutions’ 

providers is growing exponentially as they aim of growing their market share and customer base. 

Established giants, like IBM and Siemens, with their experience and technical knowledge in AI and 

Machine Learning, are already offering advanced solutions. These players can provide end-to-end 

services, including data collection, data analytics, and full integration with companies’ existing 

workflows.  

However, the market’s substantial and growing need for predictive maintenance solutions, is not only 

met by these big tech giants. Small companies are emerging, offering specialized or niche predictive 

maintenance services as C3 company, a start-up that utilizes advanced AI algorithms to find insights 

from complex industrial dataset, enabling highly targeted predictive maintenance strategies. Unlike the 

services provided by the big tech companies, these smaller firms offer greater agility and flexibility, 

focusing on fulfill specific industry needs and focusing on integrating new emerging technologies like 

IoT platforms within industrial environment. 

 

2.1.1 IBM solutions. 

 

Comparing these two realities (IBM and Siemens versus C3 AI), the first major difference is the 

number of services offered. The large tech giants by providing a wider range of solutions, can gain 

wider spectrum of industries. IBM’s solutions applied to any type of equipment: from IT components 

to cash machines, wind turbines, and even aircraft 8. These solutions help companies tracking real-time 

data to predict remaining life of an engine component or any other machine engine, preventing failure 

that could lead to financial losses for the company.  

An interesting use case of IBM’s predictive maintenance services is for the Automated Teller 

Machines (ATM). ATMs rely on the coordination of different delicate electronic components. and 

their high utilization results into frequent components failures potentially leading to customers’ 

dissatisfaction. By assessing the health of each component within the ATM machine, IBM’s predictive 
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maintenance solution allows for efficient maintenance scheduling. In the specific, what IBM uses in 

this case is a time series analysis, leveraging historical datasets structured as labeled time series about 

equipment operations to train various regression and classification models. These models can help 

experts to predict failures in terms of Remaining Useful Life (RUL) estimation.9 

 

2.1.2 C3-AI solutions. 

 

However, IBM’s solutions lack compared to C3 AI in the customization of the service. While IBM 

guarantees a level of quality and consistency, it might not always meet the unique needs of every 

company. C3 AI is a software company specialized in AI and ML solutions tailored to specific 

industries. In the specific, C3 AI offers a platform as a service, allowing customers to design, develop, 

provision, and operate Enterprise AI applications at scale. C3 AI applications at disposition to 

customers focus on inventory optimization, supply network risk, customer churn management, 

production schedule optimization, predictive maintenance, fraud detection, and energy management. 

Essentially, C3 AI targets small and medium business segments within each industry.  

The adoption of C3 AI Readiness as showed significant benefits, including reducing unscheduled 

maintenance by 28-50%, increasing early detection of system failures by 40%, and, following the U.S. 

Air Force adoption of this enterprise AI application, activating over 3600 aircraft on the platform10. By 

identifying high-risk components in time, teams can impede failures in advance. This C3 AI 

Application also provides supply chain experts to reduce demand uncertainty and improve supply 

forecasts, reduce inventory and organization costs. 

 

2.1.3 PdM implications. 

 

As highlighted in the introduction, predictive maintenance allows industrial companies to anticipate 

machine failures through the utilization of big data. Historical data, which can be structured or 

unstructured which means easily to categorize (like dates and product SKUs) or data that is more 

difficult to categorize (like pictures or videos), is crucial for the purpose. For instance, General Motors 

analyzes images taken by cameras placed on robots to identify potential future failures in robotic 

components. According to the Robotic Industries Association, one minute of downtime in a company 

like General Motors could lead to a cost of 20.000$11.  

Using advanced analytics, expert can determine what makes machines more vulnerable and predict the 

moment when they will break. According to McKinsey, predictive maintenance models can reduce 

machine unexpected downtimes by 30 to 50 percent and extend machine’s life by 20 to 40 percent12.  

Capgemini’s research identified Intelligent Maintenance as the companies’ AI adoption initiatives with 

higher number of benefits. Among twenty-two use cases, predictive maintenance emerged as the top 
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use case for organizations. The Capgemini Research Institute described as circle the process of how 

Intelligent Maintenance works within a manufacturing company: AI models are trained based on 

historical data from past machine failures, then, sensors allocated inside the productive plant, collect 

data continuously stored in servers, which after will feed other AI models. These models then self-

correct based on previous results, offering recommendations on fault probabilities, identifying key 

drivers of equipment breakdowns, and determining the optimal time for machines maintenance.11 

 

2.2 D.T. real-world mirror. 

 

A digital twin is a dynamic representation of an asset and recreate its real-world actions as digital 

model. Digital Twins are based on data integrated from sources like real-time sensors, building 

management systems, cloud services, and asset management systems. 

A study 13 proposed a hierarchical architecture at the building level of a digital twin. The following 

architecture aims at integrating heterogeneous assets and data sources to develop an effective 

Operations and Maintenance (O&M) management model. As shown in Fig. 2.1, the architecture is 

composed by five layers, data acquisition layer, transmission layer, digital modelling and 

complementary layer, data/model integration layer and application layer. 

 

Figure 2.1: Illustration of the Hierarchical Architecture of a digital twin at building level13. 
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Data acquisition and collection represent the initial step in developing a digital twin. As shown by 

figure X, there are many technologies, such as contactless data acquisition systems, sensors systems, 

and wireless communication used to gather data and store it.  

The subsequent step is the transmission layer, which transform data collected by sensors and other 

technologies attached to physical assets and transmit these data using technologies such as 5G, Wide 

Area Networks (WAN), and the most commonly used, Wi-Fi. 

Once the data has been collected and transmitted, it enters the modeling and data complementary layer. 

This layer serves as a support for the upper layers and a connection to the previous ones. The specific 

models used depends on the company’s purposes. The core of this architecture is represented by the 

data/model integration layer, which includes data and model integration, analyzing, processing, and 

AI-supported decision-making functions. Finally, the application layer that interacts with managers 

and users to provide services. 

In the case study proposed by Lu, Parlikad, Woodall and Don13, a dynamic Digital Twin was 

developed at a building level at the West Cambridge site. An IoT-enabled wireless sensor network was 

used for acquiring large amount of data from various sensors located in different sites. These sensors 

recorded site and equipment conditions by measuring variables as humidity, temperature, vibration, 

and speed. The IoT wireless sensor Network acted as a bridge between distributed sensors and cloud-

hosted databases and web pages.  

As digital model, Building Information Model (BIM) was chosen, which is “the holistic process of 

creating and managing information for a built asset. Based on an intelligent model and enabled by a 

cloud platform, BIM integrates structured, multi-disciplinary data to produce a digital representation of 

an asset across its lifecycle, from planning and design to construction and operations.”14. This model 

includes architectural, mechanical, structural, electrical, and plumbing components. Amazon Web 

Services (AWS) was used as cloud-based computing platform for the real-time sensor dataset.  

The monitoring of temperature and the other variables ensures that the working environments 

remained comfortable, and the digital twin enhanced the predictive maintenance functions of the 

assets, by analyzing their health and their remaining useful life. 

 

2.3 Integration of sensors data. 

 

The success of a digital twin implementation in the industrial environment is measured by the ability to 

integrate data coming from different data sources into a unique, standardized dataset. As mentioned in 

the previous case study, integrating data from various sensors can be challenging, especially with large 

scales of real-time data, however digital twins should learn and update from multiple data sources and 
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represent the physical asset in a timely manner. Due to the diverse nature of the data, a unified and 

standardized data schema is necessary.  

In the case of Building Information Model (BIM), the most appropriate data schema is the IFC 

schema.15 IFC stands for Industry Foundation Classes, and it is an open, non-proprietary data format. 

“The IFC scheme describes data from the building and construction industry and was created 

to facilitate the exchange and sharing of 3D models, information and data between all the figures 

involved in the design, construction and maintenance process of an asset, even if they use different 

software and applications.”16. 

IFC is interoperable with all the BIM models and various data sources, serving as a central data model 

while the other data resources are kept in their original storage locations. 

ETL stands for Extraction Transformation and Loading processes, and it is a software that facilitate the 

integration of data. ETL is responsible for the extraction of data from sources, transporting it to where 

it will be processed, transforming it to align with the structure of the data warehouse, cleansing tuples 

and loading the final data17. 

Data integration can also be achieved through different technologies beyond ETL. For example, 

research conducted on healthcare systems developed an Integration Broker for Heterogeneous 

Information Sources (IBHIS). This research focused on data as a service and aggregated information 

across six use scenarios developed with the operations staff of the UK’s National Health Service. It 

provided a service model in which clinicians, individual healthcare workers, and patients could use it 

as an information source. This research demonstrated that it is possible to integrate data from various 

sources that use different database technologies.18 

 

2.4 Different PdM strategies. 

 

Predictive maintenance is not the only maintenance strategy implemented by companies, indeed, there 

are two macro groups of maintenance strategies: Reactive and Proactive maintenance. These two 

groups differ within each other in terms of timing: when maintenance should be performed.  

Reactive Maintenance: 

Reactive strategies schedule maintenance immediately after the occurrence of a machine failure, that’s 

why it is named Run-to-failure strategy. It aims to correct issues that have already happened. 

Proactive Maintenance include: 

Preventive Maintenance:  

Preventive maintenance schedules maintenance before the machine reaches a phase where the 

probability of failure increases. As illustrated in Fig. 2.2, once the normal phase during the lifespan of 

a machine (in this case, hardware) is finished, the company should schedule maintenance of the 
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components before the costs related to maintenance increase exponentially. Following this strategy, 

companies may also set maintenance during the initial phases of the machine, as equipment might be 

more prone to failure during this period, requiring more adjustments and fine-tuning. 

 

 

 

 

 

  

 

 

 

 

 

Figure 2.2: The Bathtub Curve showing the three stages during machine life span. 

 

However, the end of the normal life period is not always the same, indeed the ending life of one 

machine could occur later or before expected. 

Prescriptive Maintenance: 

According to Miklovic, Prescriptive Maintenance is seen as the evolution of Predictive maintenance. 

Instead of relying on experts to determine when a component is likely to fail, prescriptive maintenance 

will no longer need for a group of experts because assets themselves communicate their needs and 

whether they require maintenance.19 The main difference from predictive maintenance is that 

prescriptive maintenance provides with specific guidance to technician on what action to take and how 

to proceed. 

Predictive Maintenance:  

Predictive maintenance, unlike preventive maintenance, relies on the actual condition of the equipment 

rather than on the average or expected average life. This strategy involves continuous monitoring and 

analysis of equipment data to predict when maintenance should be performed, thus preventing 

unexpected failures. 

 

2.5 PdM for Micro Factories. 

 

The micro factory is founded on establishing identical production plants regardless of location, each 

capable of producing the same product with the same quality. Within the micro-factory, all production 
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stages are fully controlled by software managing all the hardware. Micro factories facilities are 

interconnected, with constant machine monitoring through the continuous acquisition of real-time data. 

Every micro-factory is equipped for each production stage, within standardized processes and 

environments monitored continuously by sensors. The close integration between digital and physical 

infrastructure transforms it in a cloud manufacturing platform.20 

The micro-factory model relies on highly standardized production to ensure reliability and 

repeatability across different location, supported by constant collection of data from sensors within the 

production site. These procedures facilitate the management functions such as predictive maintenance 

and continuous machines monitoring. 

According to Deloitte21 report the main benefits of adopting Predictive Maintenance strategies in a 

micro-factory include: 

-5%–10% material cost savings (operations and maintenance, repair, and operations [MRO] material 

spend). 

-5%–20% reduced inventory carrying costs. 

-10%–20% increased equipment uptime and availability. 

-20%–50% reduced maintenance planning time. 

-5%–10% reduced overall maintenance costs. 

-Improved health, safety, and environment (HSE) compliance. 

-Less time spent on information extraction and validation. 

-Increased time spent on data-driven problem-solving. 

-Clear linkages to initiatives, performance, and accountability. 

-Greater confidence in data and information, leading to ownership of decisions. 

Despite the high level of digitalization of micro-factories, there are numerous challenges in adopting 

predictive maintenance strategies. For instance, interconnecting different functions or plants with 

varying technologies can be difficult, as well as addressing the lack of clarity on how to define 

successful metrics and understand clear benefits, which make more complicate obtaining executives’ 

approvals. Consequently, moving from a pilot project to a scalable approach can be challenging for a 

micro-factory. 

As illustrated in Fig. 2.322, when maintenance is ignored or performed too late, it results in a higher 

number of failures and poor machine performance. On the other hand, if maintenance is conducted too 

frequently, costs will increase excessively because the Residual Useful life (RUL) of a machine is not 

fully utilized. The optimal time for maintenance is when the maintenance costs are at the lowest, 

reliability starts to increase, and residual useful life is nearly ended. 
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Figure 2.3: The relationship between RUL, reliability, and maintenance cost.22 

 

2.6 PdM algorithms. 

 

One application of predictive maintenances involves the study and monitor of components vibration 

using sensors. Vibration is often a primary cause of machine failures. Intense rotation and vibration of 

machine components can lead to significant damage and negative impact on machines’ lifespan. Thus, 

in 2020, three researchers adopted the Backpropagation Neural Network model to conduct data 

analysis on the vibration of induction motors.23 

 

2.6.1 Backpropagation Neural Network 

 

The Backpropagation Neural Network is a machine learning model that involves the training of 

weights of a neural network based on the error rate obtained from the previous Neural Network’s 

epoch. The objective of applying backpropagation in a neural network is to minimize the error rates 

and obtain a more reliable model.  
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Figure 2.4: Illustration of Backpropagation Neural Network architecture 24. 

 

The first stage of backpropagation training is characterized by forward propagation, as shown in Fig. 

2.4. During this stage, the data inputs are propagated from the input layer to the hidden layers and 

finally to the output layer. The model then computes the network error based on its predictions. If the 

error is smaller than the specified tolerance limits, then the model stops. However, if the error result 

greater than the tolerance limits, each neuron’s weight is modified using the computed error. 

The second stage consist of propagating the error backwards through the model’s layers, from the 

output layer to the input layer, passing through the hidden layers. During this stage, all weights are 

updated to reduce the network error. 

The research on the vibration of the machine, relies on a model trained on two thousands vibration 

data, gathered by different in two sensors, one thousand data each sensor. Researchers set a learning 

rate equal to 0.5, which means that the weights of the network will be updated by half of the gradient 

value multiplied by 0.5 during each iteration of the training phase. They also set Momentum at 1.0 

which provides greater acceleration and prevent the oscillation during the training. These two 

parameters will have a crucial rule during the second step of the Backpropagation NN, the updating of 

the weights. Ultimately, the model was able to identify the faults with a 95% of success rate.23 

 

In addition to Neural Networks, various other Machine Learning models are used for Predictive 

Maintenance, which can be divided into three groups: supervised learning models, unsupervised learning 

models, and reinforcement learning. Supervised learning models use labeled data representing the target 

outcomes for the model to predict. On the other side, unsupervised models do not rely on labeled data, 

and the main goal for these models is to find patterns, relationships, and structures within data.  
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2.6.2 Reinforcement Learning 

 

Reinforcement learning models have also been applied for Predictive Maintenance strategies as the 

framework developed for the optimal management of the operation and maintenance of power grids 

equipped with prognostics and health capabilities.25 In this case, an agent learns from each interaction 

with the environment, collecting gains and losses, and chooses actions to maximize future revenues 

while considering the uncertain behaviors of the environment. Each action is associated with a reward 

evaluated by a cost-benefit model to determine the quality of the transition from one state to the next. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Illustration showing Reinforcement Learning structure. 

 

In real-world scenarios, distinguishing between regular operations and unusual ones can be quite 

challenging. Currently, this relies on human judgment. Therefore, employing unsupervised anomaly 

detection methods becomes crucial. These techniques help capture the inherent characteristics of both 

normal and abnormal data with minimal prior information, enabling effective identification of 

anomalies. 

 

2.6.3 Supervised and Unsupervised Learning models. 

 

Clustering models are categorized as unsupervised models (where data is not labeled). The aim of 

using these models is to create clusters of objects with similar characteristics. Cluster should be found 

to maximize the similarities of the observation within a cluster and minimize the similarities among 

different clusters26. This is typically accomplished by using distance-based metrics such as Manhattan 

and Euclidean metrics. Once the model identifies patterns, it becomes clearer which are the outliers 
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and in the case of Predictive Maintenance, outliers would represent those values of temperature, 

vibration, humidity, and other variables, that could be seen as anomalies and potential indicators of 

future machines’ failures. 

Examples of clustering model are k-means, fuzzy c-means, hierarchical cluster analysis, DBSCAN, 

and HDBSCAN27. 

On the other hand, supervised learning plays a crucial role in the process of anticipating equipment 

failures before they occur. Supervised learning relies on labeled data, which permits algorithms to 

learn from historical sensor readings from equipment alongside labels indicating equipment health 

(e.g., working, failing). 

Common supervised learning techniques for predictive maintenance include regression algorithms and 

classification algorithms. Regression algorithm, such as Linear regression, support vector regression, 

and Random Forest regression (and others), can be used for predicting Remaining Useful Life (RUL), 

sensor degradation, and maintenance requirements. While, classification algorithms include for 

example Logistic regression, K-Nearest Neighbors (KNN), and Support Vector Machines (SVM), and 

can be useful for Equipment health classification, anomaly detection and multi-class fault diagnosis in 

the contest of identifying multiple types of failures. 

Choosing between supervised and unsupervised learning depends on the nature of the data and the 

final purpose of the analysis. It is fundamental to recognize the target variable (labeled data) if present 

to understand which algorithms to choose for the task. 

 

 

Figure 2.6: Example of clustering, classification, regression, and anomaly detection plots 27. 
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Figure X 

Figure 3.1: Chapter 3 outlines. 

 

 

3.1 Resources and tools 

 

This project is implemented in Python 2.7., and pandas and numpy libraries are significantly used 

among the all-project development, for their convenient scientific computing operations and data 

structures. The most popular Python machine learning library used for preprocessing is Scikit-learn. 

While Keras as a high-level neural networks API, is used for all the neural network modeling. 

Matplotlib and Seaborn are used for the data visualization part. Jupyter notebooks is used for the 

developing of the entire project and for the execution of the code. 

Although Long Short-Term Memory is a computationally expensive model to train, the model’s 

architecture chosen permitted me to do all the training on my personal laptop using the CPUs. 

 

3.2 Sensors’ data and measurement system 

 

This paper focuses on data collected from a UR robot (Fig. 3.2) to measure the degradation of the 

robot arm’s position accuracy28. Robot systems have become increasingly prevalent in the 

manufacturing industry in the last few decades, increasing companies’ concerning’s about the accuracy 

of these machines. In the recent years, general research has concentrated on developing various models 

for the Prognostic and health management (PHM). The aim is to improve accuracy to achieve high 
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precision tasks such as assembly, fastening material removal and other industry functions. The 

accuracy is measured based on two criteria: the position and orientation of the robot system’s tool 

center position (TCP), and the ability of the robot’s system TCP to maintain the correct positions even 

when loads are applied29.  

 

Figure 3.2: Image of a robotic arm like UR528. 

  

This paper utilizes a dataset released by the National Institute of Standards and technology (NIST), 

regarding the tool center positions of the robot UR5, measured using a 7-D (time, x, y, z, raw, pitch 

and yaw) measurement systems developed at NIST. Given the lack of sensor technology capable of 

quickly acquire 6-D information to describe the robot’s TCP accuracy28, NIST developed a 7-D system 

to address this problem and monitor the accuracy degradation of the robot’s TCP. For this research, 

NIST adopted a 6-D measurement system with laser trackers that provide distance information, and 

with the addition of the two angular encoders, the azimuth axis, and the elevation axis. This result is 

obtained because of the light that reflects on the target and goes back to the sensor. Unlike the 3-D 

sensors, which can capture only the three spatial dimensions (x, y, and z), 6-D targets can also capture 

rotation and orientation information. Another measurement system, the optical tracker, monitors the 

space with advance infrared cameras. However, there are some issues with this last technology: the 

different markers are not always visible from the various angles, and the cameras capture only the 

markers and do not consider the total environment (robotic arm included)29. 

A robot’s TCP efficient measurement system should not be too expensive to implement in an industrial 

environment. In addition, the measurement system should not interfere with the mobility of the robotic 

arm and be resistant to dust, oil, or any other side effects of being placed in a manufacturing company, 

for example should be efficient in any kind of light conditions. 

The NIST 7-D measurement system is composed by two high-speed color cameras that provide a more 

accurate target detection by utilizing redundant information from color images. The real innovation 

developed by NIST is the target design, which indicate target measures of the robot’s system TCP, 
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without requiring tool changes during measurements, thereby avoiding production interruptions29. The 

target design specifies the desired angles or positions for each joint of the UR5 robot.  

A predictive maintenance model would utilize the data gathered from NIST’s measurement system. 

Once the data is obtained, it must be combined from various sources into a unified, readable dataset to 

develop a model capable of reducing unexpected downtimes of the robotic arm due to degradation, 

errors, or machine failures. 

Thanks to the 7-D measurement system (time, x, y, z, rotations) it is possible to easily detect anomalies 

in the robotic arm’s behavior. These anomalies usually indicate a signal of degradation of the machine 

and imminent failures. 

 

3.3 Overview of the dataset  

 

The dataset proposed by NIST regarding the robotic arm UR5 is divided into eighteen subsets, each 

obtained by testing of the robotic arm under different speeds and payloads. Speed is a binary variable, 

alternating between half speed and full speed during the robot’s operation. The payload varies from 1.6 

libras to 4.5 libras, meaning that the robotic arm has been evaluated during a job that required the 

transportation of an object 1.6 libra heavy and another test with 4.5 libra as payload.  

Additionally, there are six more datasets- three with half speed and payload of 4.5 libras and three with 

full speed and same payload- capturing data during the robotic arm at work, at the beginning, so cold 

start. These latter datasets provide different information about the accuracy of the robotic arm under a 

certain speed and with a certain payload, respect to the other twelve dataset, which contain data after 

the machine has been operating for some time. 

Initially, I added two columns per dataset: one for the speed (I assigned 0.5 for the dataset with half 

speed and 1 for the ones with full speed), then I added the column payload (1.6 and 4.5 libra). The 

difference between the cold start datasets and the other dataset did not require an additional column 

because it is represented in the ‘time’ column. 

The dataset includes several variables: 

• Time: expressed in sum of seconds, which consist of the time elapsed since the controller was 

started in seconds. 

• Position: Contains six values representing the target joint positions. 

• Actual Joint Positions: Another six values representing the actual joint positions. 

• Target and Actual Joint Velocities: Twelve columns split evenly for these values. 

• Currents: Twelve columns split evenly between target and actual joint currents. 

• Target Joint Accelerations: Six columns. 

• Target Joint Torques: Six columns. 
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• Cartesian Tool Coordinates: 6 columns regarding the six cartesian coordinates of the TCP tool. 

• Generalized Forces: 6 columns.  

• Joint Temperatures: Joints’ temperatures expressed in degrees Celsius. 

Analyzing the target and actual values together is crucial for understanding the robot ‘s performance 

and identify potential issues. The merged dataset contains seventy-five columns and 135,777 entries. I 

first computed the deviation for the actual and target positions, velocities, and currents, reducing the 

number of columns to fifty-seven. 

  

3.4 Data cleaning  

 

The merged dataset had many missing values, especially in the acceleration and velocities columns. 

Initially, I considered imputation using the mean acceleration and velocities, as these variables 

exhibited a normal distribution with means close to zero. However, after a closer examination the 

distribution of these missing values were not true missing values but instead, they were 0 values, 

indicating that the robotic arm was not moving at those time. This finding is supported by the fact that 

zero values in acceleration corresponded to zero values in velocity and little change in position. This 

means that the sensors registered an acceleration and a velocity of the robot arm equal to 0 for that 

precise moment, which lead to think that the robot arm was not moving.  

Next, I checked for duplicates, and I found that there are no entries with the same time, acceleration, 

and velocity, meaning the presence of no duplicate’s values.  

By using the z-score to detect outlier, I found many values that could be considered as sensors errors 

during the measurements or anomalies in the robotic arm movements. Given the dataset’s nature and 

the study’s objective, I opted not to remove these outliers. This because, I considered these values not 

as sensors mistakes/ errors, due to their elevate frequency and not extreme values. I considered these 

values as possibles anomalies in the robotic arm’s behavior rather than errors in the sensors’ 

registering. 

The nature of the sensor data varied widely between features. Therefore, it was necessary to 

standardize most of the features in the dataset except for the feature ‘time’, as it is crucial for the time 

series analysis and represents the amount of second spent since the machine controller started working. 

There were two potential methods, to consider, for the standardization of the dataset: Min-Max Scaler 

and ‘Standard-Scaler’. I chose the Standard-Scaler method which is more suitable for variables that 

follows a Gaussian distribution (normally distributed) as the UR5 dataset. The Standard-scaler 

standardizes the data by assigning each feature a mean equal to 0 and a standard deviation of 1. Given 

that, the majority of the variables data were already centered around 0, thus, this method preserved the 

shape of the original distribution’s shape.  
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3.5 Data exploration 

 

The temperature features related to all the robotic arm joints are fundamental indicators of how the 

machine’s behavior changes over time. During a work period of four hours, it is important to 

understand how temperature vary and how they influence the machine’s performance. By examining 

Fig. 3.3, it is evident that, in the initial period of operation machine’s temperature increased from two 

degrees to five degrees.  

 

Figure 3.3: Representation of Joints’ Temperature increase during the time. 

 

The further analysis will explain what causes these increasing joints’ temperatures. 

The first step is to determine whether these increasing temperatures influence the deviation in the 

machine’s position. By analyzing the deviations computed between actual and target positions, it is 

evident in Fig. 3.4 that once the temperature exceeds twenty-seven or thirty degrees, the positional 

deviations are affected, resulting in higher values. 
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Figure 3.4: Scatterplot of the variable ‘Deviation1’ vs Temperature of joint 1. 

 

Similar results were observed with other deviations in position associated with corresponding 

temperatures. This indicates that higher temperatures negatively influence the machine’s positional 

accuracy. 

Moreover, another variable that consistently affects positional deviations is speed. As previously 

mentioned, the robotic arm operated at two different speeds: half speed and full speed. Predictably, it 

resulted that under full speed conditions, sensors measured greater deviations between actual and 

target positions. Fig. 3.5 shows the different deviations in positions under half speed and full speed as 

boxplots. 

Fig. 3.5 shows twelve small boxplots divided by deviation (from 1 to 6) associated with each position 

(from 1 to 6). It is evident that when comparing results under half speed to full speed, the latter 

exhibits more extreme deviations for all positions. This graph confirms that speed also significantly 

influence the positional accuracy of the robotic arm system. 
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Figure 3.5: Boxplots showing the different deviations in position under half speed and full speed. 

 

To conclude this analysis, the following plot shows the same boxplots applied to deviations in the 

currents with a payload of 1.6 lbs. and 4.5 lbs. Fig. 3.6 demonstrates that the current in the robotic arm 

varies depending on the applied payload. Thus, with a heavier payload (4.5 lbs.), the sensors registered 

higher deviations in the current. 

This information is particularly significant because it indicates that with a specific payload, the 

machine requires higher current than expected. The increased current could contribute to the machine’s 

degradation. Excessive current beyond the expected rate can cause overheating, potentially damaging 

the motors, controllers, and other electronic components leading to components’ failures. To prevent 

this, it is fundamental to continuously monitor temperatures and currents, particularly to understand 

the maximum payload that can be applied to the robotic arm and for how long.  
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Figure 3.6: Boxplots of current deviations with payload equal to 1.6 and 4.5 lbs. 

 

Fig. 3.7 confirms that when current deviation results in more extreme values, the temperatures 

increase. It is evident that current deviations beyond a certain range lead to higher temperatures (over 

25 degrees). This analysis has clarified the influence of payload in current deviations and then in 

machine’s joints temperatures. 

 

Figure 3.7: Scatterplot of Current 1 deviation vs Temperature 1. 
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3.6 Principal Component Analysis (PCA) 

 

The dataset has 57 columns and 135777 entries, thereby it is recommended to perform Principal 

Component Analysis (PCA) to address potential redundancy and high collinearity in the dataset, but 

more importantly reduce the dimension of the dataset. Collinearity between two variables can lead to 

unstable estimates, difficulties in interpretating results, increasing the sensitivity to outliers, and the 

model instability. Once I computed the correlation rates between all variables, I identified over 68 

correlations above 0.8, which indicates high correlation that could adversely affect model performance 

and result interpretation.  

 

3.6.1 Univariate PCA 

 

To reduce the noise and mitigate the collinearity between variables, I conducted Principal Component 

Analysis on the six-Dimensional values per features, which resulted to have high correlation between 

each other. This approach can help me transforming behavioral traits independently and obtain 

separate principal components for each aspect. Thereby, I achieved dimensionality reduction while 

retaining most of the variability in the data. The reduced dataset now contains 21 columns, with two 

values per feature, except for the temperature, payload and speed which were not reduced.  

Some of the new variables, after PCA, account for over 70% of the variances of the original variables. 

However, the two principal components for position deviation and velocities deviation explain less 

than 45% of the variances of original variables. Further, it is fundamental to understand the importance 

of these variables and whether to retain the two principal components with lower explained variance 

ratio or to adopt an alternative strategy. PCA resulted very useful on reducing the dimension of the 

dataset, with some principal components explaining even 0.99 of the variances of original variables. 

As previously mentioned, this dataset is unlabeled, which means that there is no target variable, 

however it is still possible to develop predictive maintenance statistical models. Without labeled data, 

determining the Remaining Useful Life (RUL) of the robotic arm is more challenging, however, the 

primary objective of this research thesis is to identify deviations that might indicate potential 

equipment degradation and thus prevent future failures.  

The following plot (Fig. 3.8) is a correlation matrix between all the 21 variables of the new reduced 

dataset. 
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Figure 3.8: Correlation Matrix between Principal components obtained with univariate PCA. 

 

These correlations will be useful in the further steps of this research. When the model detects 

anomalies in a specific variable, it will be important to understand if these anomalies have 

consequences on other high correlated variables.  

After performing Principal Components Analysis (PCA), it is important to take into consideration the 

negative effects of this method. The interpretability of the result may become more challenging, 

potentially altering the outcomes of some analyses. For instance, as shown in the correlation matrix, 

the correlation between the first principal component of the temperature and the variable ‘time’ is 

highly negative, around -0.90. This might suggest that temperatures decrease over time. However, 

prior to conducing PCA, the correlation between the time and each temperature variable was highly 

positive, explaining the fact that after a certain period, joints’ temperatures increase. 
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Figure 3.9: Temperature values distribution over the time. 

 

As shown in Fig. 3.9, temperature variability is higher at the end of the monitoring period compared to 

the initial seconds of the robotic arm’s operation. This indicates that during the early hours of the 

robotic arm’s work, the joints’ temperatures fluctuated within a range of less than 6 degrees, while 

after hours of work, the robotic arm joint’s temperature were oscillating more than 12 degrees.  

The correlation between temperatures and time have changed once applied the principal component 

analysis, due to its orthogonality nature. The principal components obtained from PCA are orthogonal 

to each other, meaning that they have independent directions of variability in the data.  

This orthogonality can lead to changes in the relationships between prior variables and principal 

components, which highlights then the importance of carefully interpreting PCA results. This highlight 

some limits related principal component analysis methods and that’s why it is important to be aware of 

these potential changes brought by principal component analysis and carefully consider them when 

analyzing and interpreting the data post-PCA. 
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Figure 3.10: Correlation matrix between Temperatures and Principal components. 

 

Fig. 3.10 shows the correlations between PCAs, and the variable “time”, which became negative. In 

further analysis, it is necessary to re-evaluate the number of components chosen and alternative 

dimensionality reduction methods. It's recommended to experiment with and without PCA and 

evaluate the impact on clustering performance using appropriate metrics and validation techniques. To 

better understand the implications of performing PCA analysis on the dataset, let’s see how PCA 

works. 

PCA focuses on explaining the covariance structure of a group of variables through a few linear 

combinations of these variables30. However, as studied by Tamura and Tsujita 31, the number of 

principal components chosen significantly affects the ability to detect faults. Therefore, choosing how 

to implement PCA on the dataset can have a critical role in the research.  

 

3.6.2 Multivariate PCA 

 

The implementation of PCA requires two steps: the first step is standardizing the data, as previously 

done, which means setting the mean of each feature equal to 0 and the standard deviation to 1. The 

second step is Eigen decomposition32. During this phase it is important to understand the meaning of 

eigenvectors and eigenvalues. An eigenvector is a special vector pointing in the direction of maximum 

variance of the data, and the length of this last is represented by the eigenvalue. Once eigenvectors are 

sorted in decreasing order of their eigenvalues, the first eigenvector obtained captures the maximum 
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variance of the original data, while the second eigenvector captures less variance and so on until the 

last eigenvector. Each eigenvector is a principal component.  

Thus far, I have performed a univariate PCA which means performing PCA on each feature singularly. 

The advantage of adopting this approach stands on its simplicity and on its easier interpretability of the 

results obtained. However, this approach may ignore interdependencies between different features in 

the dataset and may not consider important correlations potentially leading to information loss. The 

alternative approach is named multivariate PCA and focuses more on inter-feature relationships by 

providing a general understanding of the dataset structure. 

In response to the unsatisfactory results obtained from the univariate PCA, such as the change of 

correlation between temperature principal components and time, or principal components not 

explaining much features variance, it is better to perform multivariate PCA and see which result can be 

obtained and the differences with univariate approach. 

Once computed eigenvectors of the covariance matrix of the dataset and the eigenvalues are obtained, 

it is necessary to sort the vectors according to descending order, as mentioned earlier.  

 

Figure 3.11: Distribution of principal components following a descending order. 

 

The following steps consist of implementing the Elbow method which is commonly used in Principal 

component Analysis (PCA), for understanding the optimal number of principal components to choose. 

The elbow method involves plotting the explained variance per each principal component, as shown in 

Fig. 3.11, and then identifying the ‘elbow point’ on the plot. The Elbow point is where the rate of 

decrease in explained variance starts to slow down. This point indicates the optimal number of 

principal components to choose, and it represents the perfect balance between maximizing the variance 

and minimizing the dataset dimensionality. By selecting the number of principal components at the 

elbow point, I can capture the most significant patterns in the data while avoiding overfitting.  

Fig 3.12 shows that the first 5 principal components capture most of the variance and then after the 

fifth component, the rate of reduction in explained variance begins to decrease slowly. This 

observation leads us to choose the first five principal components. 
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Figure 3.12: Elbow method applied to the principal components. 

 

3.6.3 Stationarity and Autocorrelation 

 

In time series analysis, it is fundamental that the data analyzed has a stationary trend and do not have 

autocorrelation. Stationary means that the behavior of the data mean, and standard deviation do not 

change over time. Fig. 3.13 shows the distribution of data over time, and it is possible to recognize 

strong stationarity.  

By using Dickey Fuller test33, it is possible to verify the observed stationary of the data. The null 

hypothesis of the Dickey-Fuller (DF) test posits the presence of a unit root in an autoregressive (AR) 

model, indicating that the time series data is non-stationary. Conversely, the alternative hypothesis 

typically assumes stationarity or trend stationarity, although variations of the test may propose 

different alternatives.33 

On the other hand, autocorrelation occurs when data is correlated with itself in different time periods. 

We already saw that some data are high correlated to each other, indeed we tried to use two different 

PCA approaches to solve autocorrelations and reduce noise.  
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Figure 3.13: Individual distribution of few variables to confirm the stationarity on data features. 

 

These graphs display the variable “time” in x-axis as a fraction of a day rather than the sum of seconds. 

Observing the readings from all features plots, the data appears very stationary. The mean remains 

consistent over time, and the standard deviation falls within a defined interval.  

It is important to check again the stationarity of the principal components and their autocorrelation. 

After conducting the Dickey Fuller test on the first principal component, I obtained a p-value of 

1.432545788558488e-29, significantly smaller than the conventional threshold of 0.05. Consequently, 

I rejected the null hypothesis (not stationary), meaning that the data is correctly stationary. The same 

test applied to the second principal component showed an even lower outcome, as the tests for all the 

other principal components. Thus, all principal components exhibit stationarity, meeting the desired 

criterion. 

Next, I’ll examine autocorrelation in these principal components. The computed autocorrelation of 

principal components revealed high autocorrelation rates, around 0.95 and 0.99. A high autocorrelation 

rate indicates that as the value of the time series increases (or decreases), the values of subsequent 

observations also tend to increase. These results are comprehensible because data is taken from a 

robotic arm’s behavior and the position in time ‘x’ strongly influence position data in time ‘x+1’, and 

this logic works for all the feature present in the dataset. 
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3.7 Statistical models 

 

3.7.1 Interquartile Range (IQR) 

 

Before developing learning algorithms to detect anomalies, it is important to analyze variables that 

could provide more information about possible anomalies. As mentioned initially, the dataset contains 

for positions, velocities and current, both target and actual measurements. High deviations in either 

position, velocity, or current could indicate an anomaly in the robotic system. Generally, these 

variables best explain the system states compared to other variables, which is why I manually selected 

these variables to improve the capabilities of next anomalies detection method.  

The first method adopted to find the anomalies in the deviation is the Interquartile Range (IQR). The 

interquartile range is a statistical model very useful for time series analysis and for detecting anomalies 

or outliers and it represents the range between the first quartile (Q1) and the third quartile (Q3) of a 

dataset.  

Anomalies are observations that significantly deviate from the normal values observed over time. By 

calculating the IQR and finding observations that fall outside a specific range defined by the quartiles, 

I could label this data point as anomalies. The range is defined by the data point that lie between Q1 - 

1.5 * IQR and Q3 + 1.5 * IQR.34 While, the data point that lie beyond this range are identified as 

anomalies, which could indicate potential irregularities, abnormalities, or unexpected events in the 

time series data, leading to further investigations or corrective actions.  
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Figure 3.14: Anomalies detected with IQR statistical model in position, velocity, and current deviation. 

 

The Interquartile Range is effective in detecting the anomalies. The three graphs in Fig. 3.14 illustrate 

the data for deviations in position 1, velocity 1 and current 1, but there are five more deviations for 

each feature to analyze. However, for obtaining a better interpretation we should have an aggregate 

measure for each feature. 

One approach, to obtain this, could be to perform PCA for each feature and reduce the variables from 

18 to 3, one per feature, as done previously. However, considering the previously obtained principal 

components, this might not be the most efficient move. The explained variance by the first principal 

component for position deviation is 0.2376, for velocity deviation is 0.1930, and for current deviation 

is 0.3675. These variances are too low to provide a meaningful summary of the data. 

An alternative option could be to compute the mean of the six deviations per feature and apply the 

Interquartile Range method to the mean distribution. The following graph shows the anomaly detection 

using the mean computed for the six values for each feature. 
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Figure 3.15: Anomalies detected with IQR in mean position, velocity, and current deviation. 

 

The next step is to compare the results obtained with the Interquartile Range across the entire period 

for deviation in position, with the results obtained using the same technique for velocity and current 

deviations to determine the degree the anomaly overlap. The first step is to exclude data points where 

acceleration equal to 0, meaning that the robotic arm is not operative. For simplicity, I consider the 

mean values for position, velocity, and current deviations, and compute the outliers by using the 

Interquartile Range method. The results show that approximately 300 anomalies were detected for 

each of the three deviations.  
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From a micro factory point of view, anomalies in position and velocity deviations might require more 

attention: position anomalies could indicate that the robotic arm is not following the intended 

trajectory, which potentially suggest future collisions or unsafe movements within the working 

environment. While anomalies in velocity deviations could indicate instability, mechanical failures, or 

unexpected external forces. In contrast, anomalies in current deviation may indicate variations in the 

power consumption of the robotic arm due to changes in the workload and this is confirmed by the 

data exploration performed previously, showing how a different payload influenced the joints’ 

currents. 

Applying the Interquartile Range method to the principal components showed similar results to what 

founded before using the mean of the deviations. While principal component analysis might interfere 

with the interpretability of the results, in this case, the result shown in Fig. 3.16 are clear and provide a 

good understanding of anomalies distribution over the time for the first principal component. 

 

Figure 3.16: Results obtained with IQR in the first Principal Component. 

 

Similar patterns are seen for the other four principal components. 

Next figure shows the distribution of data points considering only the first two principal components. 

This graph (Fig. 3.17) enables understanding the interval that outlines the anomalies detected, which is 

higher than 50 and lower then -50. Interquartile Range method highlighted around 6000 anomalies. 
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Figure 3.17: Scatter Plot between the two principal components (first and second pcs). 

 

The Interquartile Range approach provides a direct interpretation of anomalies thanks to its simplicity 

and very intuitive method, which result to be particularly suitable for univariate data. In addition, the 

IQR-based anomaly detection is computationally efficient and can handle large datasets without much 

overhead and it does not require iterative optimization procedures like K-means clustering. 

IQR might not be the most efficient model to detect anomalies. IQR identified as anomalies all the 

values beyond the statistical range, however, in a time series analysis with autocorrelated features, 

strange robotic arm’s behaviors can occur not only as extreme values, but also as unexpected values 

for that moment. If using only IQR, anomalies that occur within the range would be considered normal 

values. For this reason, it is necessary to implement a different model for the detection of anomalies. 

 

3.7.2 K-means. 

 

There are several differences between K-means and IQR in terms of methodology, interpretation, and 

performance. For instance, K-means clustering partitions the data into a number of clusters based on 

similarity in feature space and detects as anomalies the data points that do not belong to any cluster or 

are too far from the cluster centroids.  

By using the provided function ‘getDistanceByPoint’, I computed the distances between each data 

point and the closets centroid. Once chosen the proportion of outliers that will be labeled as anomalies, 
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equal to 0.05, using the parameter “outliers_fraction”, I identified anomalies within the time series. 

The threshold for anomaly detection is set as the minimum distance among the outliers. 

Once determined the anomalies, I assigned them to the new dataset column ‘anomalies1’ in the data 

Frame ‘principalDF’. Finally, to visualize the anomalies in this time series, I plotted the new column 

‘anomaly1’ against the index which represents the time. The results are shown by Fig. 3.18, for 

anomalies in the first principal component. 

 

Figure 3.18: Anomalies detected with K-means in principal component. 

 

The utilization of clustering models, such as K-means, within the context of robotic health monitoring 

data, can give important insights and enhance system reliability. By applying K-means clustering to 

the multidimensional dataset, which includes both high-level tool center positions and detailed 

controller-level components, anomalies indicative of improper robotic behavior can be efficiently 

identified. These anomalies represent the instances where observed data points deviate significantly 

from expected patterns, providing engineers with targeted areas for further investigations. Through the 

clustering model’s capacity to divide data into distinct groups or clusters, emerging patterns may 

reveal possible correlations between anomalies and contextual factors such as payload conditions, 

operational speeds, and temperature fluctuations. Consequently, engineers can gain fundamental 

understandings about the intricate interplay between various system parameters and their impact on the 

robotic system performance.  

A possible interpretation of the result obtained by implementing K-mean on anomalies’ detection is 

pattern recognition. This involves looking for patterns or trend among the anomalies more prevalent 

under specific payload conditions, speeds or during cold starts. This will be the focus on the next 

paragraphs, following the implementation of a third method: Isolation Forrest. 

 

3.7.3 Isolation Forest 
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K-means is not specifically meant for anomalies detection; however, Isolation Forrest is specifically 

designed for anomaly detection. Moreover, the combination of these two models could bring strong 

benefits. K-means could be used as a preliminary grouping action and reducing the dataset. While the 

Isolation Forrest could provide a more focused analysis of outliers. By now, it is important to perform 

Isolation Forrest and see if the results obtained with this model are like K-means results. 

Isolation forest, like Random Forests, utilizes decision trees but is constructed in an unsupervised 

manner, which means that there are no pre-defined labels for the data, as explained previously. On the 

contrary of K-means, Isolation Forest relies on the assumption that there are few and distinct 

anomalies within a dataset. This method uses information criteria like Gini index and the entropy. 

Isolation Forest begins by building hundreds of trees that do not aim at classifying data points but 

rather isolate individual points by continuously splitting the data based on randomly chosen values35. 

This randomness in the random split procedure ensures that anomalies, usually distinct from the 

majority of the data points, are not hidden within specific branches. 

At each node of the tree the algorithm selects a feature and by respecting a split value, it partitions the 

data into two child nodes, until the tree is fully grown. Anomalies are identified by their short average 

path lengths in the trees, indeed, data points with shorter path lengths are considered as anomalies. 

Conversely, normal data points tend to have longer path lengths as the algorithm requires more splits 

to isolate them. Fig. 3.19 shows a simplified representation of Isolation Forest structure. 

 

 

Figure 3.19: Isolation Forest structure36. 

 

Fig. 3.20 shows the distribution of anomalies detected with I.F., compared to the distribution of the 

first Principal component. 
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Figure 3.20: Anomalies detected with the Isolation Forest in the first principal component. 

 

The Isolation Forest model for anomaly detection in the context of the Universal Robot (UR5*) grid 

moment dataset can provide important insights about the health and performance of the robot system. 

Isolation Forests can enable the identification of anomalous TCP positions, detect abnormal joint 

behavior, understand root causes of performance degradation, support prognostics and health 

management (PHM), and finally, validate and verify industrial PHM implementation.  

 

3.7.4 Models’ Evaluation 

 

The differences in methodology between the three methods adopted so far, highlighted characteristic 

performances for each model, Interquartile Range, K-means, and Isolation Forest: 

1. The Interquartile Range (IQR): 

• As a statistical method which excels at detecting data points that deviate significantly from 

a specific range, it is particularly efficient with univariate data, however, it resulted not to 

work well with multivariate datasets. 

2. K-means clustering: 

• It is an efficient model at identifying anomalies spread across different time periods by 

partitioning the data into clusters based on similarity, moreover, it showed to work well 

with multivariate datasets. 

3. Isolation Forest: 

• This algorithm utilizes decision trees to detect anomalies by isolating not normal data 

points as the ones with shorter average path lengths. 

 

One approach to evaluate which model performed better is to assess the stability and consistency of 

anomaly detection across different subset of data. By applying this approach to this specific case, it is 

easy to notice the strong similarities in the results obtained with K-means and Isolation Forest models. 
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Thus, the two plots in Fig. 3.21 show the distribution of anomalies detected by using two scatterplots 

between the first principal component and second one. It is clear the similarity between the two 

distributions, K-means on the left and Isolation Forest on the right. 

  

Figure 3.21: Comparison of the two scatterplots of anomalies detected with K-means and Isolation 

Forest. 

 

By plotting the distribution of both normal data points and anomalies in a two-dimensional space (Fig. 

3.21), becomes apparent that the results are very similar in the distribution. Despite the two models are 

fundamentally different, they yield same outcomes in this instance. This phenomenon could lead us to 

think that both methods are correct on detecting anomalies. Since they have so many similarities in the 

results, it implies that they can be both utilized in the future. When the models’ result will differ 

substantially, it means that companies must proceed with further analysis in the detection of anomalies. 

This similarity in the results distribution can also be influenced by well-defined settings parameter in 

both models. To confirm this hypothesis, I chose to add the outlier fraction parameter from 0.05 to 

0.10 and see if results kept being similar. 

Fig. 3.22 contains two plots: the left one shows the distribution of results from the K-Means algorithm, 

while the right one shows the distribution of results from the Isolation Forest algorithm. As indicated 

by the two three-dimensional scatterplots, even with higher outliers’ fraction, results remain similar. 
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Figure 3.22: Two three-dimensional scatterplots illustrating results obtained with K-means and 

Isolation Forest. 

 

The matrix in Fig. 3.23 illustrates how many anomalies detected by K-means (represented by 

Anomaly1) match with anomalies detected by Isolation forests model (represented by Anomalies2). 

It appears that almost 100% of anomalies detected by one model are also identified as anomalies by 

the Isolation Forest model. This matrix confirms what said previously about the effectiveness in 

identifying anomalies for both models and the possibility to adopt both models to have a 

confirmation about the correctness of the procedure. 

 

Figure 3.23: Heatmap showing matched anomalies detected between the two different models. 

 

I used then the results obtained with the Isolation Forest model, very similar to the results from K-

means, to conduct some analysis on the distribution of anomalies, in order to find some interesting 

insights useful for a potential micro factory utilizing this robotic arm. 

Firstly, I analyzed whether the anomalies detected by the Isolation Forest model occur more 

frequently during the first operative period (cold start) or during the other three final operative 

periods (represented in sum of seconds). 
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Figure 3.24: Bar plot showing the distribution of anomalies during the four periods. 

 

Fig. 3.24 shows a bar plot indicating an interesting insight about the distribution of anomalies during 

the operative time. The robotic arm system resulted to have a higher number of strange behaviors 

explained as anomalies during the initial operating period (cold start). This phenomenon can be 

explained by different reasons: 

• The initial temperatures of the components are at ambient temperature, however after some 

time of operation, material begins to heat up and so expand. This thermal expansion could 

then lead to misalignments, changing positional deviations and having negative 

implications on other factors. 

• During the initial phases, sensors may still need some calibration and adjustments, 

particularly until sensors stabilize at the operating temperature. 

• The control system might require some time to adapt to the operating conditions, tuning 

parameters, and feedback loops to optimize performances. 

Moreover, it is interesting to analyze whether the robotic arm operated better with heavier payload or 

lighter. As analyzed in the data exploratory, the payload plays a crucial role regarding the change in 

joints’ temperatures and so, machine performance. Indeed, anomalies are more frequent when the 

payload is equal to 4.5 lbs. instead of 1.6 lbs. as showed in Fig. 3.25. This indicate that a micro 

factory adopting this robotic arm must be cautious about the payload to apply to the arm and for how 

long, in order to prevent the presence of high number of anomalies. 
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Figure 3.25: Anomalies’ frequency with the two different payloads.  

 

The two payloads are equally distributed in the dataset, half of the data points result on having 

payload equal to 1.6 and the other half equal to 4.5. 

To conclude this analysis, it is crucial to see if the speed of operation also influence the performance 

of the robotic arm. Thus, from Fig. 3.26 it is possible to notice that a higher number of anomalies 

occurs when the machine is operating at full speed instead of half speed. This result explains how 

accurate the robotic arm is with a specific speed and which considerations the micro factory should 

do in order to obtain the best machine performance. 
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Figure 3.26: Anomalies’ frequency between the two different speeds. 

 

A micro factory must proceed on choosing the right trade off between speed and payload to obtain 

the best performances from the machine. Another suggestion is to take into consideration the initial 

minutes of working as calibration time and not directly operation, because as noticed previously, 

anomalies are frequent during the initial phase of work. 

 

3.7.5 LSTM model 

 

To obtain a deeper understanding of about anomalies behavior and prediction, I decided to implement 

a Long Short-Term Memory model (LSTM) for predicting cartesian coordinates values. 

This model, differently from previously used models, focuses in capturing sequential dependencies and 

patterns within time-series data. Thus, LSTM model predict future values based on past observations 

and temporal patterns. This predictive method enables efficient anomaly detection by highlighting 

deviations between predicted and actual values in real-time. Moreover, LSTM models are very 

efficient at capturing hidden and complex temporal relationships, and they are very useful for detecting 

anomalies in a dynamic and evolving systems like robotic behavior.  

Long Short-Term Memory (LSTM) networks is the leading technique in the speech and language 

processing37, and LSTM have demonstrated strong performance across various applications such as 

handwriting recognition, language modeling, translation, speech recognition, audio analysis, and video 

processing. This success is attributed to the incorporation of memory cells, which enable constant error 
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flow during the training phase, bypassing the vanishing gradient problem related to the traditional 

recurrent Neural Networks. LSTM’s capacity of maintaining a constant error flow ensures uniform 

credit assignment to all input signals, regardless of their position in the time sequence, thus facilitating 

the network to excel in tasks where all elements of the input are equally important. This LSTM’s 

feature allows to discover more solutions during the learning process compared to other recurrent 

neural networks. This makes LSTM networks more suitable for complex language and speech tasks. 

Thus, the memory cell serves as the core processing and storage unit in LSTM networks, allowing the 

model to handle sequential data and superior performance in speech and language tasks.37 

The LSTM architecture consists of one unity, known as LSTM unit and memory unit. This unit is 

composed of four feedforward neural networks, having each an input and output layer. For all these 

neural networks, input neurons are connected to all the output networks, obtaining four fully connected 

layers.  

Three out of four Neural networks are responsible for selecting information, which are the forget, input 

and output gates. These three gates perform three memory management operations: deletion of 

information from memory, insertion of new information to the memory and the use of this information 

present in the memory. 

An LSTM unit operates by receiving three input vectors: as shown by Fig. 3.27, vector C, vector H and 

vector X. Through the gates, LSTM regulates the flow of information internally by updating the values 

of the cells state and hidden state vectors, which will then become the inputs for the time step (t+1). 

While the hidden state acts as short-term memory, the cell state retains long-term memory38. LSTM 

uses past information (H) and new input data (X) to update the long-term memory (C), which it 

updates again the short-term memory (H) and so on. Essentially, LSTM model integrates past and 

current information to maintain and produce new outputs. 38 

 

Figure 3.27: Illustration of Long Short-Time Memory model architecture. 
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The three gates select information, and their role is to create selector vector which is a vector with 

values between zero and one. All gates utilize a sigmoid function as the activation function in the 

output layer. As described in previous chapters, LSTM is based on backpropagation activity. Which 

allows the calculation of the error by calculating the ratio between the increase in the output value of a 

particular element and the increase in the network error. Thus, Recurrent Neural Network 

backpropagation also considers the chain of dependencies between instants of time, that’s why it’s 

called Backpropagation Through Time38. 

In the context of the Universal Robot (UR5*) dataset, the LSTM model can be implemented to predict 

future values of the sensor data and compare the predicted results with actual sensors readings. 

Monitoring the coordinates of the tool center point is crucial for the determination of the robotic arm’s 

accuracy. Thus, important deviations in the position of the TCP can indicate trajectory errors, obstacles 

detection, mechanical faults, and other issues that could lead to operational failures. 

To identify which variables in the dataset are likely to influence the TCP coordinates, I used a 

correlation matrix (Fig. 3.28) which visually helped me to determine the correlations between the 

different features and the target variables, allowing me to select the most relevant features for the 

prediction of the cartesian coordinates. 

 

Figure 3.28: Correlation matrix between target variables and normal variables. 
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I manually excluded some variables from the prediction of TCP coordinates, specifically those with 

very low correlation with the target variables: Temperature from 1 to 6, Speed, Payload, and Deviation 

in velocity (from 1 to 6 written in the plot as ‘veldev1’), acceleration 6, deviation in current 5 and 6.  

The initial steps in developing a LSTM model involve data preparation, which includes normalization 

and then transformation of the problem into a supervised learning format. The Cartesian coordinates of 

the TCP are then removed. Fig. 3.29 displays the results obtained by the model on both train and test 

Loss from the Multivariate LSTM during Training. The training loss of 0.7555 and the validation loss 

of 0.7540 indicate that, on average, the model's predictions deviate from the actual values by 

approximately 0.7555 units and 0.7540 units respectively on the training data and validation data. 

These results are not good enough; thus, it is fundamental to proceed with some changes to obtain 

better results. 

 

Figure 3.29: Train and test loss distribution among the 50 epochs of the first LSTM model. 

 

However, by utilizing MinMaxScaler instead of StandardScaler for data normalization, I obtained 

different and improved results. The second method produced lower error scores, and this could be 

explained by the data range sensibility of the model LSTM. LSTM models are more sensitive to the 

scale of input features; a bounded range can help stabilize and improve convergence of the 

optimization process. MinMaxScaler is less sensitive to outliers compared to StandardScaler that’s 

why in case the dataset contains outliers or extreme values, MinMaxScaler might provide better results 

by ensuring that the outliers do not disproportionately affect the scaling of the data. Results are shown 

in Fig. 3.30, indicate that the loss curves better converge and exhibit lower values compared to 

previous analysis. 
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Figure 3.30: Train and test loss distribution using MinMaxScaler instead of StandardScaler. 

 

By computing the deviation between predictions and actual values (“test_y”), I identified around 

10,500 anomalies in a data set of 135,777 values, representing less than 10%. When the training and 

validation loss converge, it signifies a balanced learning process where the model effectively captures 

patterns from the training data and generalizes well to unseen data. This convergence reflects reliable 

and stable performances, without overfitting or underfitting. For this model I chose Mean Absolute 

Error (MAE) as loss function commonly used for regression tasks such as predicting continuous 

values. As seen in the previous graph, a MAE of 0.250 in this case indicates an average error of 25.6% 

of the range which is between 0 and 1 (MinMaxScaler). These loss results are relatively high; 

however, the dataset is complex, with many variables and unclear correlations between normal 

features and the target variables. Thus, predicting Cartesian coordinates might not lead to optimal 

results using a regression model. Let’s introduce some techniques to improves the results. 

 

3.7.5.1 Hyperparameter tuning. 

 

To improve a model performance, it is essential to tune hyperparameters, which mean selecting optimal 

values for the parameters.  

Relevant Hyperparameters to tune, in the case of LSTM39:  

1. Number of nodes: increasing the number of nodes within a layer could lead to higher accuracy, 

while too few nodes may cause underfitting.  
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2. Hidden layers: consist of the layers between the input and output layer and their number depends 

on the problem. However, it is a general rule that one hidden layer can handle simple problems, 

while two hidden layers more complex issues. 

3. Units in a dense layer: each neuron receives input from all neurons situated in the previous layer. 

In general, a number between 5 to 10 units or nodes represent a good starting point. 

4. The dropout layer: every LSTM layer should be followed by a dropout layer to avoid overfitting 

during training by randomly bypassing selected neurons, thus reducing the sensibility to each 

neuron’s weight. A reasonable starting value for dropout value is 20%. 

5. Activation Function: this function introduces non-linearity to models, allowing deep learning 

model to learn non-linear problems.39  

6. Learning rate: it allows the model to accelerate the update of its parameters. Higher learning rate 

is associated with faster learning but may not lead to convergence, while lower learning rate slow 

down the learning process of the model and could lead to better results. In general, it is preferable 

to set the learning rate between 0.0 and 0.1. 

7. Number of epochs: it is advisable to implement a stopping method that stop training the model 

once the performance stops improving. 

8. Batch size: Typically, it is used a batch size of 32 and its multiples. This define the number of 

samples the model processes before the internal parameters are updated. 

 

Instead of tuning each parameter manually, there are some optimization tools that helped me to find 

the best hyperparameters automatically.  

To perform hyperparameters tuning, I applied a Keras Tuner, a hyperparameter optimization library 

for Keras, which is a popular deep learning framework that automates the process of hyperparameter 

tuning by finding the best set of hyperparameters for a given machine learning model, in my case for 

the LSTM model.  

 

Figure 3.31: Schema showing the best values obtained with Hyperparameter tuning. 

 

The previous figure (Fig. 3.31) shows the results of the hyper tuning conduct through Keras Tuner. 

The process yielded these results: 
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1. Input unit: This feature represents the number of neurons chosen by the tuner. As specified 

in the code, I set a range between 32 and 512 neurons with increments of 32. The optimal 

number selected was 416 neurons. 

2. Number of Layers: using a similar procedure for determining the number of neurons, the 

tuner identified 4 as the best number of layers. This means that the most efficient model 

should have four LSTM layer. 

3. Dropout Rate: This parameter helps the model to avoid overfitting. The rate chosen by the 

tuner is 0.4 which means that the dropout layer hides 40% of the neurons randomly to 

prevent overfitting. 

4. Dense activation function: The tuner chose ReLu as the best activation function for this 

case, introducing non-linearity and ensuring non-negative output values. 

After applying the tuned parameter with the specific values, the result significantly improved, as 

shown in Fig. 3.32. 

 

Figure 3.32: Train and Test losses distribution with the Hyperparameter tuned model using the best 

values in parameters. 

 

The model performed well on both training and test set which means it has a good generalization. The 

model highlighted around 7,500 anomalies, one-third less than the previous results. This can be seen as 

a positive result because it may indicate a more precise model with less error rate (around 1% 

compared to 25%).  
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3.8 Applications in a Micro Factory business model 

 

In this exploration of predictive modeling for a robotic arm system, I utilized advanced techniques to 

ensure precise monitoring and predictive maintenance through anomaly detection. The dataset 

comprised various parameters, including position, acceleration, velocity, temperatures, forces, 

currents, and Cartesian coordinates.  

Initially, statistical methods like the Interquartile Range (IQR), clustering methods such as K-means 

and anomaly detection methods as Isolation Forests provided a robust baseline for detecting unusual 

behavior of the robotic arm expressed in anomalies. However, further considerations brought me to 

transition into using an LSTM (Long Short-Term Memory) network to predict Cartesian coordinates of 

TCP component. The whole sake of the study is to define the accuracy of the TCP to understand its 

performances and which anomalies lead to malfunctions. This new approach not only enhances 

anomaly detection but also offers insights into potential failures. 

Considering a micro factory utilizing the UR5 robotic system, facing on average of 20 unexpected 

downtimes yearly, compared to the average of 16 per month in the normal automotive industry5. 

Micro-factories are smaller with less operative machines, meaning a lower absolute number of 

downtimes, but due to its high automation level, one downtime can be more expensive. The average 

loss associated to one downtime is $5.000 per minute due to stops in production and repair costs5. 

Early detection of anomalies allows the company to timely proceed with maintenance and reparations 

through the adoption of the model developed. Supposing the company can detect 80% of the anomalies 

and predicting majority of the failures, with a downtime duration on average of one hour, adopting 

LSTM model and clustering models, the annual savings would be approximately around $5,000,000 

annually. Cost saving is a result of many benefits related to the monitoring and predictive capabilities 

of the model: from the improve of operational efficiency, reduction of false alarms and the insurance 

that maintenance resources are allocated effectively. The overall benefit about adopting these models 

is to align with the Bathtub Curve introduced before. By monitoring the frequency of anomalies during 

a longer period, once the number of anomalies is starting to increase the micro factory will have 

enough information to take the right decisions about the robotic arm’s maintenance.  

The three different approaches (K-means, I.F., and LSTM model) combined can lead to a robust 

system for monitoring robotic arm systems performance. By monitoring the frequency of anomalies 

and choosing the right moment to conduct maintenance actions (following the Bathtub rule), a 

company’s goal of achieving higher productivity and operational excellence can be fulfilled.  
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Chapter 4 

 

Considerations 

 

 

4.1 Implications 

 

Once studied how digital twins work, which benefits predictive maintenance models could bring in a 

micro factory business model, it is important to understand how integrate the explained technologies 

and methods to existing industrial systems. 

As previously stated, a Digital Twins is a virtual replica of an object, or process. A digital twin is 

characterized by a physical-virtual connection, where data move as a stream between one dimension to 

the other. The physical entity could be a vehicle, component, product or as in this paper case study, a 

robotic arm. The physical entity is twinned with a virtual entity, which will be a copy of the physical, 

so a virtual robotic arm. The physical entity will exist in a physical environment, which is referred to 

the ‘real-world’ space, such as a factory. Thus, a mirror of the physical environment will be the virtual 

environment, or virtual space, supported by technologies such as databases, data warehouses, cloud 

platforms, servers, and API40. 

Moreover, in recent years, there has been significant support from disruptive technologies such as 

Artificial Intelligence and Machine Learning development. Thanks to the interoperability of AI, it is 

possible to integrate AI-DT systems to different application domains. For example, the utilization of 

Digital Twins with the support of AI to forecast system’s energy production of a wind turbine using 

Machine Learning methods41. 

The result of a research conducted by T.Kreuzer, highlights which is the distribution of Machine 

Learning models adopted in the recent years. Fig. 4.1 shows the distribution of ML algorithms, colored 

by algorithm type. 

 

Figure 4.1: Bar plot showing the frequency of Machine Learning utilization 42. 
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The result with higher frequency is categorized as ‘Others’, which consist mainly of all traditional 

machine learning models such as classification and regression model as Random Forest or Decision 

Trees, Linear regression etc. Neural Network, Convolutional Neural Networks and Long Short-Term 

Memory are the most popular models among all algorithms, belonging to the deep learning ‘family’. 

This high popularity is due to their vast applications, superior performances, versatility, and innovative 

architectures. 

Thus, adopting a deep learning model such as LSTM for predictive maintenance of a robotic arm 

components, ended to be a good decision. This, due to its capacity of handling sequential data with 

temporal dependencies among the data, or due to its robustness to noise, leading to efficient anomaly 

detection. 

The subsequent positions in the distribution are occupied by Reinforcement Learning models, and deep 

learning models, with high versatility and the capacity of being combined with Deep Learning models 

and to achieve significant results. 

Micro factories represent the future of manufacturing and Industry 4.043 and rely on automated 

machines and Artificial Intelligence (AI), which enable companies to boost productivity and reduce 

downtime. Thus, predictive maintenance models permit micro factories to monitor the performance of 

the manufacturing automated machines and reduce the risks of failure.  

In the automotive industry, a known example of a micro factory is Arrival, a UK-based vehicle 

manufacturer specialized in electric vehicles. Their production line is based on a cell-based robotic 

assembly production line44. With the increasing level of deployment of robots in unstructured 

environments and with variable tasks to perform, assembly robots can pursue autonomous planning, 

perception, and decision-making.45 

Cell-based robotic assembly relies on the recognition of targets, which allows the robot to move within 

the environment. The utilization of 3-Dimensional cameras extracts features points from an image. 

Vision-based target recognition permits the robotic system to perform complex and different tasks.45  

Statistical models are used to extract features from multidimensional feedback information and classify 

this information into the different type of states, including anomalies. This aligns with what I have 

done previously with K-means, Isolation Forest, and LSTM models. Y.Jiang45 divided the 

classification methods into two types: the distribution-based and probability-based.  

• Distribution-based models rely on the distribution in specified areas which correspond to the 

contacts states (which refers to the specific condition or status of contact between the robot's 

end effector and the object or surface it is interacting with). These models include fuzzy 

classifier, Neural Networks (NN), Support Vector Machine (SVM).  

• Probability-based models rely on the state estimation through probability to determine the 

robotic arm’s state based on posterior probability. An example is the Gaussian mixture Model, 
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which approximates the nonlinear model using different Gaussian components corresponding 

to the success rate of state classification.45 

At Arrival, each robotic cell is modular and can be easily reconfigured to accommodate different 

vehicles models or production needs. The precision and consistency offered by robotic cells ensure 

high-quality output, while the autonomous and interconnected nature of these cells allows for 

continuous production, downtimes still represent a treat. Integrating statistical mode state recognition 

into Arrival’s robotic systems within their micro factories offers significant advantages, by enhancing 

both efficiency and quality. This procedure allows robots to make more accurate and precise decision 

and movements, by analyzing historical and real-time data to predict the system’s most likely state. It 

improves precision in assembly tasks, and it reduces errors caused by variances in robotic part 

dimensions or unexpected environmental changes. Continuous maintenance scheduling enabled by 

predictive maintenance models can reduce dramatically downtimes and the costs related to them. This 

approach supports dynamic reconfiguration and customization, allowing the production line to always 

adapt quickly to demand’s changes without reducing the efficiency of the process and the quality of the 

final products. 

Furthermore, optimized resource allocation and energy efficiency enhance the sustainability of the 

production process by allocating the right amount of energy to the machine and reducing the waste of 

it as much as possible. 

Long Short-Term Memory model can perform in-depth feature extraction on a large amount of data 

from multiple sources and composed by multi-sensor parameters. LSTM can identify complex 

patterns, understand high-dimensional information, and predict efficiently Remain Useful Life (RUL). 

M. Xiong, H. Wang and Q. Fu 46, developed a predictive maintenance model using LSTM, of an 

aeroengine driven by a Digital Twin.  
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Figure 4.2: Aero-engine health monitoring processes from sensors data to predictions. 

 

As shown in Fig. 4.2, the training of aero-engine data enabled the prediction of the RUL using the 

Health Index of the engine, resulting in a clear degradation curve within the service life. 

The LSTM network was utilized to predict the Health Index of the engine and compare the results with 

the actual data. The last plot in Fig X shows the prediction curves results, divided by different data 

splitting strategies (70%, 80% and 90% for the training set and 30%, 20% and 10% for test set). 

 

4.2 DT/ M-F / PdM Limitations 

 

Despite the advantages related to Digital Twins, there are some challenges too: data standardization, 

data management, data security and barriers to implementation and legacy system transformation.  

Data standardization and Management: Integrating data from diverse sources, such as IoT devices, into 

a coherent digital twin unique architecture can be complex for a company. For instance, in the urban 

sector, digital twins receive a huge variety of data types, such as traffic data, environmental sensor data 

and social data from a diverse number of sources. The integration and analysis, in this case, require 

advanced data processing and storage techniques47. The assurance of data quality and accuracy is 

fundamental in the case of multiple data sources and various sensors. Erroneous data may lead to 

inaccurate results, wrong decision-making, and faulty simulations. 

Data Security: Data security also plays an important role in the digital twin environment, due to the 

sensitive data gathered from the physical world. It is critical to ensure its security against cyber threats 

and privacy breaches.  

Thus, in the healthcare systems it is challenging guaranteeing interoperability and data sharing. 

Sensitive data needs to be carefully evaluated in terms of ethical factors, data ownerships, consent, and 

responsible utilization47. Thus, it is fundamental to ensure robustness of data security through the 

implementation of sophisticated encryption techniques, comprehensive identification, and access 

control protocols along with robust data ethics and governance policies including permissions, data 

ownership, and an appropriate utilization of patient data, particularly for a micro factory which 

strongly rely on data utilization and creation. 

Integration with Legacy Systems: Adopting digital twins often involves difficulties on the integration 

with existing legacy systems. Capgemini48, proposes an engineering approach to implement Digital 

Twins across the system life cycle through the improvement of quality, reducing the cost, and 

overcoming challenges by balancing digital twins, systems engineering processes, infrastructure 

investment, and human integration. Capgemini research focused on the importance of matching 

experience and maintaining a balance between technology and investment. 
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4.3 Future Directions. 

 

Identified as one of the top emerging technologies in the recent decade, Digital Twins applied in an 

industry environment should follow a standardization process. For example, standards in defining 

Application Programming Interfaces (APIs) for secure, store, share and manage data access for digital 

twins. This is implemented by authenticate clients access using security best practices49. The 

implementation of Digital Twins could be supported by the adoption of an App store. This, could 

enable third parties to participate and interact in the Digital Twin ecosystem through direct access to 

the app. Any subscriber/ app client can participate and be notified about any events and any 

information exchange concerning the digital twin. Concerning data security, the digital twin contents 

must be encrypted with the owner’s certificate to ensure reliability and data accuracy flow. Moreover, 

APIs enhance digital twins to connect within other DTs and register into the ecosystem and expose its 

characteristics for other Digital Twins access.  

Regarding the connection of Digital Twins, Tao.50, suggested a hierarchical levels structure with three 

different levels (Fig. 4.3).  

• The unit level is the smallest unit involved in the manufacturing activity. This includes pieces 

of equipment, material, components, or environmental factors. This stage requires a high-

fidelity visual simulation of the Machine tool, respecting real geometries shapes, identities, and 

function information.  

• The system level consists of an industrial network, characterized by multiple unit-level Digital 

Twins interoperable with each other, enabling data flow and resources coordination. A complex 

product such as a car engine can be considered as a system level Digital Twin. Within the 

product, there are different component monitored by different digital twins. 

• The last level is the SOS level which corresponds to a group of System-levels, and it is 

developed as a smart service platform. The platform would incentives collaboration between 

companies in terms of supply chain, or manufacturing, design, and services. The platform 

concept, introduced by Tao aligns with the development of an App Store, as mentioned earlier, 

connecting users with Digital Twins. Moreover, enabling secure access and data management 

and flow within clients through the utilization of APIs. 
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Figure 4.3: Hierarchical levels of CPS and DTs in manufacturing50. 

 

Digital Twins are considered as the future of manufacturing sector, with its advanced and very 

interoperable technology. However, the micro factory business model brings more concerns and less 

certainties about its future in the manufacturing sector. There are no doubts about micro factory’s 

advantages such as high level of product customization and localized production, adoption of advanced 

technologies such as 3D printing and automated production lines with the utilization of automated 

robots. Eco-friendly practices such as using recycled materials, minimizing waste, and implementing 

energy-efficient processes or focusing on circular economy models makes this business model very 

attractive to the new generation of customers.  

However, some challenges, such as ensuring scaled operations without compromising quality and 

efficiency, or difficulties in regulatory and customer compliance, are putting existing micro-factories to 

a rigorous test. The case of Arrival exemplifies these challenges faced by micro factories in the recent 

decades. Arrival had an evaluation of $5.4bn few years ago, but in the last two years declared 

insolvency.   

While Arrival’s insolvency highlights the challenges of the micro-factory landscape, aggregating 

multiple digital twins within each other could lead to significant advantages. By connecting machines’ 

DTs, processes, and even the entire factory layout, micro-factories can obtain a comprehensive and 

clear view of their operations. This approach allows to obtain real-time performance monitoring, 

identifying possible bottlenecks, fulfill predictive maintenance needs, and optimizing production 

schedules. Additionally, it would improve the company’s efficiency, by reducing the downtimes’ 

frequency, and by enabling a faster response to changes in demand which is crucial for the success of 

any micro factory. 
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By transforming the micro-factory into a Digital Twins ecosystem, it is possible to address solutions to 

many of the current challenges faced by micro factories: as scale production, demand uncertainties, 

machines’ failures and high product and service customization. It is fundamental for a company to 

focus on data security, create a dynamic data exchange and integration51. Digital twin integration 

maximizes opportunities for data sharing and synchronization when the communication channels are 

open. This ensures that even with intermittent connectivity, the system can still function effectively, 

updating and synchronizing data across all tiers (Cloud Data center, IoT devices, Data logger, etc.)50. 

Due to its high level of automation, the future of micro factories lies in becoming an interconnected 

digital twin’s ecosystem supported by digital platforms accessible to all the companies’ stakeholders 

enabling a cloud computing workflows distributed across the production network. 

This interconnected micro factory approach represents the opportunity to develop and utilize a new 

maintenance strategy. This new strategy enhances the decision-making process for maintenance 

professionals, enabling more effective planning and execution of maintenance task using advanced 

Machine Learning (ML) models and Artificial Intelligence (AI) together with Industrial Internet of 

Things (IIoT).  

The strategy described is strongly related to the concept of Prescriptive Maintenance which represent 

an advanced predictive maintenance approach, that utilize AI and ML to obtain the highest degree of 

operational efficiency52. Prescriptive maintenance not only gives recommendations on which action to 

take for a specific machine maintenance but also conducts detailed analysis to determine the best 

maintenance actions to achieve optimal results. It represents a continuous and constant update of 

analysis, that works efficiently only in presence of well-integrated asset management and maintenance 

systems52. 

The bond between integrated Digital Twins, advanced sensors technologies, and cloud computing, 

permits micro-factories to overcome challenges related to scalability, compliance with clients’ 

requirements, and machine integration.  

The future of micro factories is driven by the adoption of integrated digital twins, prescriptive 

maintenance, and a platform-based ecosystem accessible to all company’s stakeholders, with the aim 

of achieving unprecedented efficiency, real-time optimization, and collaborative innovation across the 

manufacturing landscape. 
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Chapter 5 

 

Conclusions 

 

 

5.1 Remarks observations 

 

This research focused on combining three interconnected topics-Predictive maintenance, Digital 

Twins, and the Micro-Factory business model- into a unique study, to explore potential solutions and 

possible implementations of predictive Maintenance models. Initially, the research focuses into various 

Predictive maintenance’s aspects, examining its applications, benefits, and the optimal conditions 

when to use it. Afterwards, the focus shifts from theoretical to real-world cases of companies’ 

successful implementation of these strategies, demonstrating the practical value and impact of 

Predictive Maintenance models. 

However, it is crucial to know that there is no one-size-fits-all approach to predictive maintenance 

strategy. Indeed, each case might differ depending on numerous variables such as the machine to 

monitor, the sensors utilized, the datasets collected, and the specific operational environment. 

Digital Twins as virtual replicas of physical assets and process, if applied to Predictive Maintenance 

strategies, can add significant value to the micro factory business model. 

When applied to Micro Factory business model, the combination of Predictive Maintenance and 

Digital Twins can lead to substantial benefits. These benefits include reduced number downtimes, 

extended machinery lifespan, cost savings, and improved productivity. Thus, the flexibility and the 

responsiveness inherent to Micro Factories make them an ideal testing ground for these advanced 

strategies.  

In summary the research highlights the synergy between Predictive Maintenance, Digital Twins, and 

Micro Factories. Moreover, it provides the reader with a deeper knowledge about each of the three 

topics, and the benefits obtained through the combination of them. These combination results in a new 

way of seen Micro Factories, not only as small scale, flexible and modular companies, but as an 

ecosystem platform of different digital twins gathering and monitoring a continuous stream of data 

using Predictive Maintenance models, with data and analysis accessible through the platform to any 

micro factory stakeholder. This approach enables micro factories to overcome many challenges 

associated to their business model. 
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A strong interconnection between multiple digital twins in a micro factory can lead future research on 

focusing on creating a digital twin for the entire micro factory, constantly monitored and accessible to 

many players.  

Current research focuses on digital twins applied mainly to industrial manufacturing. This thesis 

introduces a deeper concept of micro factories as the representation of a very sustainable and 

innovative business model that is increasing in terms of popularity and relevance due to their 

adaptability, efficiency, and reduced environmental footprint. The future of micro factories success 

relies on the technology that can support it, and one of these technologies are the digital twins applied 

to any automated machine utilized within the company.  

 

5.1 Future works 

 

However, this research focus on a specific case, the UR5 robotic arm, and does not demonstrate the 

benefits of applying multiple models together to obtain the required results. This research represents 

the initial part of a broader investigation that aims to combine multiple models associated with 

multiple datasets from various digital twins. The goal is to create a comprehensive virtual 

representation of micro factory operations and demonstrate how this innovative approach can solve the 

challenges related to this business model. 

Moreover, the results obtained with the machine learning models should be interpret as possible 

approach of addressing anomalies’ detection of a robotic arm. There are multiple ways of obtaining 

same results and it is important to understand that these models need to be integrated in a wider range 

of models and period of monitoring, to have a clearer understanding of the machine behavior.  

Further investigations should study more in detail different ways to interconnect digital twins into a 

unique ecosystem. This new approach, in my opinion, represent the future of highly automated 

manufacturing companies especially for micro factories. 

This research made me understand that there is a huge number of disruptive technologies, that could be 

applied to different business models, however, the process takes long time and requires a lot of study. 

In the case of micro factory business model, which represent a valuable innovation in terms of 

sustainability and efficiency, there is a need of continued research and development to fully integrate it 

with these technologies. By unlocking the full potential of Predictive Maintenance and Digital Twins, 

future research can drive to significant industrial advancements.  
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