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Introduction 
 
Natural Language Processing (NLP) is one of the hottest areas of artificial intelligence (AI) thanks to 

applications like text generators that compose coherent essays, chatbots that fool people into thinking 

they’re sentient, and text-to-image programs that produce photorealistic images of anything you can 

describe. Recent years have brought a revolution in the ability of computers to understand human 

languages, programming languages, and even biological and chemical sequences, such as DNA and protein 

structures, that resemble language. The latest AI models are unlocking these areas to analyze the meanings 

of input text and generate meaningful, expressive output. 

 

In the era of data-driven decision-making, the ability to process vast amounts of information quickly and 

accurately has become paramount. Central banks, pivotal in steering national economic policies, are 

repositories of extensive and complex documents that are critical for policy formulation and economic 

forecasting. This thesis introduces an innovative approach to harnessing the power of advanced language 

models through the development of a Dash application designed to interact with a Language Large Model 

(LLM) fine-tuned with Retrieval-Augmented Generation (RAG) techniques. This application aims to 

provide an intuitive interface for querying and interacting with specialized documents, specifically those 

produced by central banks. 

 

The integration of LLMs with retrieval-augmented capabilities represents a significant advance in natural 

language processing (NLP). Retrieval-augmented generation (RAG) combines the generative capabilities 

of large language models with the retrieval of document-specific data to generate responses that are not 

only contextually relevant but also deeply informed by the source material. This hybrid approach enables 

the model to minimize the risk of hallucinating and to produce outputs that are both precise and contextually 

enriched, which is particularly useful in handling the complex and nuanced language typical of central bank 

literature. 

 

This thesis will explore the theoretical underpinnings of LLM and RAG, detailing the mechanisms by which 

these models integrate and enhance the retrieval of information. Following a comprehensive review of the 

current landscape of NLP applications in economic contexts, the thesis will present a case study: the 

development of a Dash application. This application will serve as a practical tool for querying a dataset of 

central bank documents that have been processed and made accessible through a fine-tuned LLM with RAG 

capabilities. The project not only highlights the potential of AI in enhancing accessibility to financial 

information but also provides a scalable model that could be adapted to other domains requiring 

sophisticated information retrieval systems. 

 



 

By leveraging cutting-edge AI technologies, this thesis aims to demonstrate how complex information 

processing tasks can be simplified and made more efficient, thus providing actionable insights more swiftly 

and accurately. The final objective is to provide a proof of concept that elucidates the benefits and 

challenges of integrating LLMs with RAG within an interactive application, thereby offering valuable 

contributions to the fields of artificial intelligence, computational linguistics, and economic policy analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. Theoretical Foundations 
1.1 Natural Language Processing (NLP) 

 
Natural Language Processing (NLP) is the discipline of building machines that can manipulate human 

language — or data that resembles human language — in the way that it is written, spoken, and organized. 

It evolved from computational linguistics, which uses computer science to understand the principles of 

language, but rather than developing theoretical frameworks, NLP is an engineering discipline that seeks 

to build technology to accomplish useful tasks. NLP can be divided into two overlapping subfields: natural 

language understanding (NLU), which focuses on semantic analysis or determining the intended meaning 

of text, and natural language generation (NLG), which focuses on text generation by a machine. NLP is 

separate from — but often used in conjunction with — speech recognition, which seeks to parse spoken 

language into words, turning sound into text and vice versa. 

 

The processing of human language is based on understanding the intended meaning of a message, which is 

difficult even for humans, e.g. when irony is used. All components of natural language, such as phonetics, 

phonology, morphology, syntax, semantics and pragmatics, must be taken into account in order to gain 

complete understanding of a message.  

Phonetics is about the acoustic properties of a sound produced by the human vocal tract. It examines how 

sounds are physically constructed, e.g. with the tongue or the lips. The sound of a particular human language 

is studied by phonology. For example, the English language has 45 distinguishable sounds called phonemes. 

 Phonetics and Phonology are particularly important aspects in speech recognition when converting sounds 

into real words that can be processed by a computer.  

 

Morphology concerns about the meaning and the architecture of words. Stemming and lemmatization, 

which are described below, are based on this component by transforming words like “going” back to their 

word stem “go”.  

 

The ordering of words and the building of grammatical correct sentences is investigated by the syntax.  

In contrast, semantic examines the meaning of sentences that are constructed using syntax and 

morphological word forms. To obtain the intended overall meaning of a message, pragmatics uses the 

context of the situation. Therefore, a computer needs to take all parts of natural language into account to 

use it. 

 

 

 



1.2 NLP History 
 

The roots of NLP are often traced back to the 1940s and 1950s, beginning with foundational work in 

linguistics and the hypothesis of Alan Turing, who proposed the renewed Turing Test as a measure of 

machine intelligence. 

This test requires a human to write questions and a computer to generate answers. 

For the machine to respond correctly, it must understand the meaning and communicate using natural 

language. Since then, researchers have investigated several approaches to make computers comprehend and 

generate texts that seem similar to human language. 

 

 In the 1960s, researchers start to develop NLP systems that relied heavily on hand-coded rules. Linguists 

would create large sets of rules to describe the structure of languages. At that time, data-driven approaches 

were not feasible because of the amount of data needed, the high processing overhead and the strong need 

for efficient learning algorithms. Notable projects from this era include SHRDLU, an early natural language 

understanding system, and ELIZA, a simulation of a Rogerian psychotherapist, both developed in the 

1960s. 

 

In the 1980-1990s, there was a major shift from rule-based methods to statistical methods. This shift was 

driven by the availability of larger text corpora and the development of machine learning algorithms. 

Techniques such as Hidden Markov Models (HMMs) and later Conditional Random Fields (CRFs) were 

used for tasks like speech recognition and part-of-speech tagging. 

 

In those years the concept of n-grams began to arise. An n-gram is a sequence of n consecutive elements in 

a text sample, expressed in words or characters. For instance, a tri-gram, consisting of tri words taken from 

the phrase "machine learning and deep learning", would incorporate "machine learning and", "learning and 

deep", and so forth. In a similar vein, a character-based tri-gram would be "mac", "ach", "chi", "hin", "ine", 

"nel" and so on. The idea is to create a series of elements and use statistical techniques to determine the 

probability of their co-occurrence. This concise yet dynamic definition has spurred the advancement of 

innovative text generation systems, information retrieval techniques, among others. Applying n-gram 

definitions has given rise to a fresh approach to document representation that centers on individual words. 

 

Starting in the 2000s, neural networks begin to be used for language modeling, a task which aims at 

predicting the next word in a text given the previous words. In 2003, Bengio et al [1]. proposed the 

first neural language model, that consists of a one-hidden layer feed-forward neural network. They were 

also one of the first to introduce what is now referred as word embedding, a real-valued word feature vector 

in !!. More precisely, their model took as input vector representations of the n previous words, which were 

looked up in a table learned together with the model. The vectors were fed into a hidden layer, whose output 



was then provided to a softmax layer that predicted the next word of the sequence. Although classic feed-

forward neural networks have been progressively replaced with recurrent neural networks (Mikolov et al., 

2010) [2] and long short-term memory networks (Graves, 2013) [3] for language modeling, they remain in 

some settings competitive with recurrent architectures, the latter being impacted by “catas- trophic 

forgetting” (Daniluk et al., 2017)[4]. 

 

In 2013, Mikolov et al. introduced arguably the most popular word embedding model: Word2Vec. 

Although dense vector representations of words have been used as early as 2003 (Bengio et al.), the main 

innovation proposed in their paper was an efficient improvement of the training procedure, by removing 

the hidden layer and approximating the objective. Later that year, they improved the Word2Vec model by 

employing additional strategies to enhance training speed and accuracy. While these embeddings are not 

different conceptually than the ones learned with a feed-forward neural network, training on a very large 

corpus enables them to capture certain relationships between words such as gender, verb tense, and country-

capital relations, which initiated a lot of interest in word embeddings as well as in the origin of these linear 

relationships (Mimno and Thompson, 2017 [5]; Arora et al., 2018; Antoniak and Mimno [6], 2018; 

Wendlandt et al., 2018 [7]). But what made word embeddings a mainstay in current NLP was the evidence 

that using pre-trained embeddings as initialization improved performance across a wide range of 

downstream tasks. Despite many more recent developments, Word2Vec is still a popular choice and widely 

used today. 

 

In 2015, Bahdanau et al. introduced the principle of attention, which is one of the core innovations in 

neural machine translation (NMT) and the key idea that enabled NMT models to outperform classic 

sentence-based MT systems. It basically alleviates the main bottleneck of sequence-to-sequence learning, 

which is its requirement to compress the entire content of the source sequence into a fixed-size vector. 

Indeed, attention allows the decoder to look back at the source sequence hidden states, that are then 

combined through a weighted average and provided as additional input to the decoder. Attention is 

potentially useful for any task that requires making decisions based on certain parts of the input. For now, 

it has been applied to constituency parsing (Vinyals et al., 2015), [8] reading comprehension (Hermann et 

al., 2015) [9], and one-shot learning (Vinyals et al., 2016)[10]. More recently, a new form of attention has 

appeared, called self-attention, being at the core of the Transformer architecture. In short, it is used to look 

at the surrounding words in a sentence or paragraph to obtain more contextually sensitive word 

representations. 

 

The real revolution began in 2017 with the advent of the transformer model, introduced in the seminal paper 

"Attention is All You Need" by Vaswani et al. in 2017.[11] 



Unlike RNNs and LSTMs, which processed data sequentially, transformers used a mechanism called self-

attention. This allowed the model to weigh the importance of different words in a sentence, regardless of 

their position, enabling it to capture long-range dependencies more effectively. 

The transformer architecture consists of an encoder and a decoder, similar to the seq2seq model, but with 

a crucial difference: the reliance on self-attention mechanisms. This design choice not only improved the 

model's ability to handle long-range dependencies but also significantly increased its parallelization 

capabilities. As a result, transformers could be trained on larger datasets and at a faster pace than their 

predecessors. 

 

 

The success of transformers over LSTM and seq2seq models can be attributed to several factors: 

 

1. Handling Long-Range Dependencies: Transformers can capture relationships between words in 

a sentence, regardless of their distance, more effectively than RNNs and LSTMs. 

2. Parallelization: The self-attention mechanism allows for parallel processing of input sequences, 

leading to faster training times and the ability to handle larger datasets. 

3. Scalability: Transformers are highly scalable, enabling the development of large-scale pre-trained 

models that can be fine-tuned for various tasks. 

4. Flexibility: The transformer architecture can be adapted for a wide range of NLP tasks, from text 

generation to language understanding. 

 

In conclusion, transformers have fundamentally changed the landscape of natural language processing. 

Their ability to efficiently process sequential data, handle long-range dependencies, and scale to large 

datasets has established them as the go-to architecture for NLP tasks. As research continues, we can expect 

further innovations and refinements in transformer models, solidifying their position as a cornerstone of 

modern NLP. 

 

 

 

 

 

 

 

 

 

 

 



1.3 Feature selection and Preprocessing 
Feature selection and preprocessing are significant tasks in Artificial Intelligence, especially in NLP, this 

task does have tremendous impact on the success of text analysis. This is mostly caused by the unstructured 

and arbitrary nature of text data. Furthermore, machines need structure and numerical data. A couple of 

approaches for this transformation task, e.g. word embeddings or the vector space model, exist. This 

section’s scope lies on the theoretical foundation of different preprocessing and feature selection 

techniques.  

 

1.3.1 Tokenization 

For processing written natural language it is inevitable to split texts into smaller units, which are called 

tokens. Computers need to distinguish single entities of a text and tokenization is used to create them. 

Usually tokens represent simple words, which are the smallest independent units of natural language, but 

tokens could be also subwords, entire sentences or characters. 

Tokenization is crucial for several reasons: 

• Simplifies Text: It breaks down large texts into manageable units, making further processing like 

parsing and syntactic analysis easier. 

• Enables Vocabulary Creation: Most NLP models work with numerical data, so tokens are often 

converted into numerical representations. Tokenization is the first step in creating a vocabulary of 

unique tokens that can be mapped to numbers. 

• Facilitates Feature Extraction: Many NLP features, such as n-grams, depend on tokens. Accurate 

tokenization allows for effective extraction of these features, which are critical for tasks like 

machine translation and text classification. 

By using tokens, so-called n-grams can be created, which indicate a token set with the length of n. 

“Gramma” is the Greek word for letter or token. When talking about a set of n letters in words, it is about 

character n grams. 

 

1.3.2 Stop Word Removal 
Stop word removal is a preprocessing technique used in natural language processing (NLP) that involves 

eliminating words from text data that are deemed to be of little value in contributing to the understanding 

of the content. These words, commonly referred to as "stop words," typically include articles, prepositions, 

conjunctions, and some common verbs and adjectives. The rationale for removing stop words stems from 

the observation that they occur frequently in the language but generally do not carry significant semantic 

weight or contribute to the distinctiveness of the text in analytical tasks such as topic modeling, sentiment 

analysis, and classification. 

Furthermore, stop word removal can enhance the efficiency of NLP systems by decreasing the amount of 

data that needs to be processed, thereby speeding up computations and reducing resource consumption. 



However, it is important to approach the elimination of stop words with caution, as overzealous removal 

can lead to the loss of important information. For instance, the removal of negations such as "not" can 

change the sentiment of a sentence, thereby affecting the accuracy of sentiment analysis models. 

The selection of stop words can vary depending on the language and the specific requirements of the task. 

Custom stop word lists may be developed to better align with the linguistic characteristics of the domain-

specific texts being analyzed. In academic settings, this practice is underscored by the need to adapt 

preprocessing techniques to the unique challenges and objectives of scholarly research, ensuring that the 

integrity and subtlety of the original texts are maintained while optimizing the analytical process. 

 

 

 

1.3.3 Stemming 

Besides stop word elimination, stemming is a useful technique to map words to their word stems and further 

reduce the input dimension. This helps to extract the real meaning of a text and makes the unstructured data 

better accessible for a machine. 

The process, known as "stemming," involves the algorithmic truncation of derivatives of a word to a 

common stem. This enables various forms of a word, such as "connect," "connected," "connecting," and 

"connection," to be analyzed as their root form, "connect." 

Stemming algorithms typically employ simple heuristic processes that strip suffixes from words based on 

common morphological and inflectional endings in a language. For example, stemming might remove 

suffixes like "-ing," "-ly," "-es," "-s," and others to focus on the root word. This method is particularly 

useful in search contexts where the intent is to match on the core meaning of words rather than their specific 

grammatical uses. It simplifies and speeds up retrieval processes by reducing the total number of distinct 

terms that must be indexed. 

Despite its utility, stemming is often criticized for its lack of linguistic sophistication. Because it relies on 

crude heuristic rules, stemming can sometimes lead to errors known as over stemming and under stemming. 

Over stemming occurs when words are reduced too much, leading to the loss of meaningful distinctions 

between terms (e.g., "universe" and "university" both stemmed to "universe"). Under stemming happens 

when words that should be reduced to the same root are not, due to the limitations of the heuristic rules. 

These errors can reduce the precision and recall of retrieval systems. 

 

1.3.4 Lemmatization 
 

Lemmatization in natural language processing (NLP) is the process of reducing words to their base or 

dictionary form, known as the lemma. This technique considers the morphological analysis of words, 

making it more precise than simple stemming. Lemmatization involves understanding the word's part of 

speech and its context to correctly identify its canonical form. This method is essential for tasks where 



accurate and meaningful text analysis is required, such as in information retrieval and academic research, 

as it ensures that different forms of a word are analyzed as a single entity. Overall, lemmatization enhances 

the accuracy and effectiveness of text processing applications by maintaining semantic consistency. 

 

1.3.5 Vector Space Model 
Besides, preprocessing the words themselves, their representations must be changed into a machine-

readable format. The Vector Space Model is an approach that transforms a text into one vector. It is based 

on one-hot-encoding of words. Given a set of textual documents (corpus), it is possible to create a 

vocabulary with the length of N. The one-hot-encoded word vector represents a word by 1 at the 

corresponding vocabulary entry. For example, if the term “apple” is the i-the unique word in the corpus, 

the vector has the length of N and a 1 in the i-th position, all other entries are 0: 

 

"#$ − ℎ"'()**+$) = (0,… ,1, … ,0) 				 ∈ 	4"					 
 

The vector space model extends this model to documents. Any document d can be mapped to its vector 

space representation using the function Ψ. The vocabulary's distinct terms, also known as terms, are 

represented by the characters t1,..., tn. 

 

ψ:  d  ↦  ψ::⃗ (d)  =  <tf(t#,  d),  tf(t$,  d),   … ,  tf(t%,  d)?  ∈  R&	
 

Ψ counts the occurrence of each term (tf) in the vocabulary per document. Therefore, the document vector 

can have more than one entry that is not 0. The function 'A('#,  B)	specifies how often the i-th vocabulary 

word appears in the document d. 

 
By using the Vector Space Model, the sparsity of the document vectors could be one major problem since 

N − length(d) positions are 0. Another issue is that the distance between two different document vectors is 

very small (curse of dimensionality). Therefore, it is not easy to distinguish between documents, especially 

when it comes to grouping similar documents, e.g. in clustering. Besides simply using the term frequency 

(tf), it is also possible to give every word a weighting, according to its relative appearance in the corpus. 

This could be done by using term frequency divided by Inverse Document Frequency (tf-idf), which gives 

less meaning to common words in a corpus.  

 

However, one inherent challenge of VSM is the propensity for document vectors to exhibit sparsity, as the 

dimensionality N of the space—equivalent to the number of unique terms across all documents—is typically 

vast, and any single document only contains a small subset of these terms. This sparsity is compounded by 

the curse of dimensionality, which can render distance measures between high-dimensional vectors less 

meaningful and can particularly obfuscate the process of clustering similar documents. 



Principal Component Analysis (PCA) or Latent Semantic Analysis (LSA) offer a solution to this 

conundrum by enabling dimensionality reduction. For instance, through the identification and 

transformation onto the directions that best represent the variance in the data, PCA retains the essence of 

the dataset with fewer dimensions. This transformation is achieved by eigen decomposition of the data's 

covariance matrix or singular value decomposition of the data matrix itself. The resultant dimensions, or 

principal components, are linear combinations of the original variables and are orthogonal to one another, 

ensuring that they represent independent sources of variance in descending order of significance. 

The application of PCA to a term-document matrix effectively reduces the number of dimensions, thereby 

mitigating the issue of sparsity and facilitating computational efficiency. Moreover, in the reduced 

dimensional space, similarities and differences between documents can become more pronounced, aiding 

in tasks such as clustering. 

 

However, while PCA reduces dimensionality and can somewhat preserve the overall variance of the data, 

it is not without its drawbacks. The technique relies on linear transformations, which may not always 

capture the nonlinear relationships between terms in natural language. Additionally, the 'principal 

components'—being linear combinations of possibly thousands of original terms—can be challenging to 

interpret in a meaningful way with respect to the original textual content. 

 

Furthermore, the embeddings created by PCA, while compact, may not adequately capture the semantic 

richness of the documents. They provide a view that prioritizes variance over the preservation of local 

structures and contextual nuances that are often crucial in NLP tasks. Consequently, while PCA can 

streamline data and expose broader patterns, the resultant embeddings may not serve well for tasks that rely 

on the subtle and context-dependent interplay of terms within the text. 

 

1.4 Deep NLP 
With the advent of deep learning, natural language understanding techniques and methodologies have 

undergone significant transformations. Deep learning models have demonstrated remarkable effectiveness 

in various NLP tasks, particularly in semantic understanding. Unlike conventional methods, these models 

prioritize the encoding of textual information into latent vector spaces that capture contextual subtleties. 

 

 

1.4.1 Semantic Embeddings 

Aware of the prior problems of text vectorization techniques, deep learning's generalization power is 

utilized in the development of the next generation of text embedding. It relies on the distributional 

hypothesis, which assumes that words with similar meanings will frequently occur in similar textual 

contexts.  



The first attempt to apply this hypothesis to NLP was LSA, but further research was required to determine 

the semantic relationships between words. 

Words with similar meanings can now be mapped to comparable vectors thanks to machine learning models 

that can represent words as vectors in high-dimensional spaces thanks to advances in computing power and 

theoretical frameworks. 

 

One of the most known models to compute semantic embeddings is Word2Vec, this model was introduced 

in 2013 by Mikolov et al. in 2013.  

Word2Vec utilizes a neural network model targeting to capture words’ meanings and contexts in a vector 

space of high dimensions. The primary assumption is that each word relies on the surrounding words; this 

denotes the C context, which includes the k words encompassing the target word w.  

Embeddings of word2vec do not have the shortcoming of one-hot encoded word vectors, which can only 

recognize whether a word is exactly the same or not. Word2Vec makes these differentiations more 

distinctive by including a word’s antecedents and successors. 

 

The word representations include semantic and syntactic information, which is retrieved from the context 

words. The figure below illustrates the position of word vectors with three dimensions. The arrows indicate 

a mathematical distance between two words. For instance, the cosine distance is a suitable function for 

calculating the difference between word vectors. In an embedding space, it is possible that same relations 

between words can be represented by a similar distance and direction. For example, the words “Man” and 

“Woman” do have a similar distance to “King” and “Queen”. This means that the contextual difference 

between “Man” and “Woman” is comparable to “King” and “Queen”. Words that correspond to the male 

gender are used in the context of “Man” and “King”, whereas “Woman” and “Queen” are surrounded by 

more female word forms. Thus, the syntax and semantic of a word is incorporated into a word 

representation. This is the real strength of word embeddings or word2vec. It makes it easier to find 

synonyms and extract a speaker’s intended meaning more easily. 

 
Figure 1. Word2Vec Semantic Embeddings 



Furthermore, Word2Vec may exploit either of two model architectures: 

 

1. Continuous Bag of Words (CBOW): The CBOW model predicts the current word based on the 

context. During training, the model looks at a window of surrounding words (the context) and tries 

to predict the word in the middle of the window. The order of words in the context does not influence 

prediction (hence the term 'bag of words'). 

2. Skip-Gram: The Skip-Gram model works in the reverse manner of CBOW. It uses the current word 

to predict the surrounding context. Given a word in the middle of a window, it predicts the likelihood 

of each word in the vocabulary appearing in the surrounding window. 

 

 
. 

 

 

The model consists of a single hidden layer that produces the vector representation of words; these vectors 

are initiated with random values and gradually updated during training. These word embeddings contain 

important semantic information that enables the detection of relationships between words. To understand 

how similar are two words (C	', C() the similarity between their vector representations ( ⃗C' , ⃗C() can be 

measure. Different measures can be used like Euclidean, Manhattan or cosine similarity to accomplish this 

task. Each has its advantages and disadvantages regarding semantic search.  

 

The cosine similarity of two vectors calculates the cosine of the angle between: 

 

cos<G):::⃗ , G*:::⃗ ? =
G):::⃗ ⋅ G*:::⃗
|G):::⃗ ||G*:::⃗ |

	

 

This method is popular because it can easily be used to determine whether two words are similar (cosines 

close to 1), unrelated (cosines close to 0), or opposite (cosines close to -1). Also, it stays constant 

regardless of the length of the two vectors, it is computationally efficient for scattered vectors. 

 



 

1.4.2 Neural Network Architectures: Feed-Forward and RNN 

 

The first neural networks used for NLP tasks were Recurrent Neural Networks (RNN), RNNs introduced 

the capacity to handle sequences of data, processing input data in a serial manner and maintaining a form 

of memory through their hidden states.  

They differ from traditional neural networks as the next element is assumed to depend on all the previous 

elements in the sequence. This sequential nature makes them ideal for text processing since they can 

consider previous words when generating the next. 

 
Figure 2 Feed-forward and recurrent architecture comparison 

 

Although this architecture can process long sequences of text, one problem of standard RNNs is the problem 

of vanishing and exploding gradients. The first problem makes it difficult for RNNs to keep track of the 

dependencies in longer input sequences.  

This is due to two reasons. Firstly, the hyperbolic tangent and the sigmoid function, which are often used 

in RNNs for activation, saturate very quickly and so their gradient gets closer to 0. Secondly, by applying 

BPTT the gradient is exponentially reduced by multiplying it with the recurring weight matrices. This also 

causes the gradient to converge to zero very fast. The phenomenon of the exploding gradient leads to high 

oscillation of the network’s weights and increases learning time, which could lead to network failure. 

 
 

1.4.3 Long Short-Term Memory Network (LSTM) 
 

To address the shortcomings of RNNs, Long Short-Term Memory networks (LSTs) were developed. 

LSTMs incorporated a more complex structure with a series of gates that regulated the flow of information. 

These gates controlled how information was updated, forgotten, and outputted at each step of the sequence, 



allowing LSTMs to retain information over longer sequences than typical RNNs. This architecture 

significantly mitigated the vanishing gradient problem, making LSTMs much more effective for a wide 

range of tasks, including machine translation, speech recognition, and text summarization. 

 

 
Figure 3 LSTM Architectural structure 

 

The key to LSTMs’ effectiveness is their internal structure, which includes several gates that control the 

flow of information. Each LSTM unit consists of a cell state and three gates: 

 

1. Forget Gate: This gate decides what information is discarded from the cell state. It looks at the 

previous hidden state and the current input, passes it through a sigmoid function, and outputs a 

number between 0 and 1 for each number in the cell state, where 1 indicates “completely keep this” 

while 0 indicates “completely get rid of this.” 

2. Input Gate: The input gate updates the cell state with new information. It first decides which values 

to update using a sigmoid function, and then creates a vector of new candidate values that could be 

added to the state. A pointwise multiplication between the sigmoid gate output and the candidate 

values allows for the update. 

3. Output Gate: The output gate decides what the next hidden state should be. The hidden state 

contains information on previous inputs. The hidden state is also used for predictions. The sigmoid 

function decides which parts of the cell state make it to the output, and then a tanh function gives a 

weightage to the cell state, making it between -1 and 1, and multiplies it by the output of the sigmoid 

gate, so that we only output the parts we decided to. 

 

Despite their effectiveness, LSTMs are not without limitations. They can be computationally intensive and 

prone to overfitting, especially on smaller datasets. They also have difficulty with very long dependencies 

and can be outperformed by newer architectures like the Transformer on some tasks. Nonetheless, for a 



significant period, LSTMs represented the state-of-the-art in sequence modeling and are still used in many 

applications today. 

 

 

 

1.4.4 Transformer 
 

As we said in the NLP History paragraph, until 2017, the best solution for encoding text sequences were 

RRN or LSTM. 

The shift from LSTM-based architectures to Transformer models in natural language processing represents 

a significant paradigm change. This shift is grounded in the Transformer's ability to handle sequential data 

differently and more effectively. 

Transformers, introduced by Vaswani et al. in the paper "Attention is All You Need" in 2017, moved away 

from the sequential data processing used by RNNs and LSTMs. Instead of analyzing data in order, 

Transformers process entire sequences simultaneously. This is made possible by the self-attention 

mechanism, which allows the model to weigh the importance of different parts of a sequence in relation to 

each other, no matter how far apart they are in the sequence. 

 

 
Figure 4 Transformer Architecture 

 



The Transformer is a sequence-to-sequence (seq2seq) model that takes a sequence of items (words, letters, 

…) from one domain and converts it into a sequence from another. For example, we input a sentence to 

obtain another, as in translating from one language to another. In Fig. 4, we observe that the transformer 

comprises an encoder-decoder containing two blocks. On the left, there is the encoder block; on the right, 

there is the decoder block.  

The advantages of Transformer are: 

 

1) Parallelization: Unlike RNNs and LSTMs, which require sequential processing, Transformers 

allow for much greater parallelization during training because they do not depend on the 

computations of the previous step. This characteristic significantly speeds up training and makes it 

feasible to scale up models to process vast quantities of data. 

2) Long-Range Dependencies: Attention mechanism enables the Transformer to grasp the 

dependencies between the sequence elements, weighing them in such a way as to give each of them 

a different importance. To do so, it uses learnable weights during the training phase.  

Let us consider a sentence consisting of n words S: w1, w2, . . . wn, where each element C' is 

represented through an initial J' and a triplet of vectors K', L' and M', respectively: “query”, “key”, 

and “value” vectors that are used when calculating the attention of that specific word. The triplet of 

vectors is obtained by multiplying the initial matrix of weights of 	N+ , N, 	and N-, with the vector 

J' . To score each word that is part of the same sequence against the word itself C' (from here the 

name of self-attention), the dot product is performed between qi and ki followed by a softmax 

operation. Finally, the scores are multiplied by the vector of values M' 
 

To further enhance the self-attention layer, the multi-headed attention mechanism is employed. This 

consists of n weight matrix N+ , N, 	and N-, all randomly initialised. Everyone will acquire 

distinct relationships, resulting in varied representations combined through another layer of 

trainable weights N.. 

 

3) Versatility and Scalability: Transformers are highly versatile and have been adapted for a wide 

range of NLP tasks, such as language understanding, translation, summarization, and generation. 

They have shown remarkable performance when scaled, with larger models generally achieving 

better performance on various benchmarks. 

4) Transfer Learning: Transformer models, especially large pre-trained models like BERT, GPT, and 

their successors, have enabled transfer learning in NLP, where a model is pre-trained on a large 

corpus of text and then fine-tuned on smaller, task-specific datasets. This has led to state-of-the-art 

performances on a wide array of NLP tasks. 

 

 



Encoder 
 

The encoder in a Transformer model is responsible for parsing the input and crafting a comprehensive 

representation that the decoder uses to create the output. Structurally, the encoder is composed of several 

identical layers, each with two main components. 

First, there's the multi-head self-attention mechanism, which allows the encoder to examine various parts 

of the input in parallel and assign significance to words based on their contextual relevance. 

 

Then, we have point-wise feed-forward networks. The data from the self-attention mechanism is fed into 

this network, which includes two linear layers with a ReLU activation in the middle. This setup processes 

the input data through learnable parameters. 

Furthermore, the architecture incorporates residual connections, which combat the vanishing gradient 

problem, facilitating effective training. Normalization layers are also included to ensure the outputs are 

normalized, maintaining a consistent mean and variance. 

As a result, for every word in the input, the encoder outputs a d-dimensional vector that encapsulates its 

contextual information. 

 

Decoder 
Regarding the decoder block, its purpose is to generate the final output. It closely resembles the encoder 

but includes an additional component: the multi-head cross-attention mechanism. This part focuses on the 

encoder's output, using the decoder's query matrix alongside the encoder's key and value matrices in its 

computations. A crucial difference in the decoder is the masked multi-head self-attention, which ensures 

that each position can only attend to preceding positions, preserving the model's auto-regressive 

characteristic, ensuring that the prediction only depends on those output tokens that have been generated. 

 

 

 

 

 

 

 

 

 
  



1.4.5 Attention 

 

In large language models (LLMs), the attention mechanism serves as a computational framework that 

enables the model to dynamically allocate computational resources towards the most relevant parts of the 

input data. This mechanism is crucial for managing long-range dependencies within the input sequences, 

which is especially beneficial for tasks that involve understanding the context or generating coherent 

language outputs. 

 

The technical operation of attention mechanisms in LLMs can be explained as follows: Attention functions 

compute a weighted sum of values, where the weight assigned to each value is computed by a compatibility 

function of the corresponding key with the query. This process is described mathematically as: 

Attention(S, T, U) = softmax YST
/

ZB,
[U 

Here, Q, T, and V represent the queries, keys, and values respectively—these are vectors obtained from the 

input data through linear transformation. B, is the dimensionality of the keys, and the scaling factor ZB, 

is used to avoid overly large values of the dot products that could push the softmax function into regions 

where it has extremely steep gradients, leading to instability in learning. The softmax operation ensures that 

the weights sum to one, effectively allowing the model to focus by assigning higher weights to more 

relevant data. 

The flexibility of the attention mechanism is further exemplified in its different forms, notably the "self-

attention" used within the Transformer architecture. In self-attention, all keys, values, and queries come 

from the same previous layer, which allows the model to integrate information across the entire input 

sequence. This architecture's effectiveness is enhanced through multi-headed attention, which involves 

parallel attention layers with different, learnable linear transformations for queries, keys, and values. This 

setup allows the model to capture various aspects of the input data in different representational subspaces, 

thereby enriching the model’s ability to discern fine-grained dependencies and semantic nuances (Galassi, 

Lippi, & Torroni, 2019; DeRose, Wang, & Berger, 2020). 

 

2. Natural Language Generation (NLG) and LLM 
 

Natural Language Generation (NLG) is a subfield of artificial intelligence and computational linguistics 

that focuses on the development of systems capable of generating coherent and contextually relevant text 

in human languages from structured data or conceptual information. The primary aim of NLG is to facilitate 

seamless human-computer interaction by allowing machines to produce textual content that is both 



understandable and appropriate for the given context, essentially enabling computers to communicate ideas 

and information as a human would. 

 

The process of NLG can be broadly decomposed into several core stages, which typically include content 

determination, discourse planning, sentence planning, and finally, text realization. Each of these stages 

plays a crucial role in ensuring that the generated text meets the specific communicative goals set for the 

system. 

1. Content Determination: This stage involves selecting the relevant information to be included in 

the generated text. It requires the system to assess the importance and relevance of different pieces 

of information in relation to the communicative goals and the needs of the end-user. 

2. Discourse Planning: Also known as document structuring, this phase involves organizing the 

selected content into a coherent structure. It determines the logical flow of information across 

multiple sentences or paragraphs, ensuring that the text is logically sequenced and easy to follow. 

3. Sentence Planning: This stage includes the tasks of lexicalization (choosing the specific words to 

use), referring expression generation (deciding how to refer to entities), and aggregation (combining 

information into single sentences where appropriate). The goal here is to frame the structured 

information into linguistically correct and coherent sentences. 

4. Text Realization: The final stage involves converting the planned sentences into fluent natural 

language text. This typically involves grammatical adjustments and refinements to enhance the 

readability and naturalness of the output. 

 

The challenges in NLG revolve around the generation of text that is not only grammatically correct and 

semantically coherent but also contextually appropriate and engaging for the user. Recent advancements in 

deep learning, particularly with models like the Transformer and techniques such as sequence-to-sequence 

learning, have significantly improved the quality of text generation, enabling more dynamic and context-

aware outputs. 

 

2.1 GPT 
 

The Generative Pre-Trained Transformer (GPT) is a state-of-the-art deep learning model designed to 

perform a variety of natural language processing tasks. Developed by OpenAI, GPT is grounded in the 

Transformer architecture, which relies heavily on self-attention mechanisms to process sequences of data. 

This architecture has revolutionized the field by enabling models to consider the entire context of a sentence 

or a paragraph, which is crucial for generating coherent and contextually relevant text. 

 

Technically, GPT is distinguished by its pre-training and fine-tuning stages. During pre-training, the model 

is exposed to a large corpus of text and learns to predict the next word in a sentence, given the words that 



preceded it. This unsupervised learning phase allows GPT to develop a broad understanding of language, 

grammar, and world knowledge. 

 

In the fine-tuning stage, GPT is then adapted to specific tasks such as text summarization, question 

answering, or any task requiring natural language understanding or generation. This is achieved by 

continuing the training process on a smaller, task-specific dataset, allowing the model to refine its 

capabilities according to the specific requirements of the task. 

 

The model's effectiveness stems from the Transformer's ability to handle long-range dependencies in text, 

meaning it can maintain coherence over longer passages than prior models like RNNs or LSTMs. This 

capability is enhanced by the attention mechanism, which dynamically adjusts to focus more on relevant 

parts of the input data as needed. 

 

GPT's architecture features several layers of Transformer blocks, where each block contains a multi-head 

self-attention layer followed by a position-wise fully connected feed-forward network. Normalization and 

residual connections are also employed within each block to aid in training deep networks. 

 

The scalability of GPT is evident from its various versions, In its first version, GPT-1 was constructed with 

a stack of 12 Transformer decoder blocks, generating 117 million parameters. Pre-training was conducted 

on a dataset named BookCorpus[39], which comprises roughly 4.5GB of text derived from 7000 books. 

These two features give the model a comprehensive and abundant linguistic foundation capable of 

comprehending intricate language structures. The latest version of GPT-3 reaches a size of 175 billion 

parameters (requiring 800 GB of storage), allowing the model to produce sophisticated text almost 

indistinguishable from human-generated text. 

 

2.1.1 GPT 3.5 
 

The Generative Pre-Trained Transformer 3.5 (GPT-3.5) is an advanced iteration of the GPT-3 model, 

maintaining the foundational Transformer architecture and training datasets, with a critical enhancement 

through the integration of Reinforcement Learning with Human Feedback (RLHF). This enhancement 

refines the model's outputs and operational ethics significantly. 

 

RLHF is a sophisticated training approach that leverages direct human interactions to refine the learning 

algorithms of machine models. In this methodology, human feedback serves as a dynamic guide to reinforce 

desirable outputs and mitigate undesirable ones. Feedback can be either positive, to reinforce correct model 

behaviors, or negative, to correct errors or undesirable responses. This direct intervention allows for precise 

adjustments to the model's parameters and aids in labeling previously unannotated data effectively. 



Human trainers play a pivotal role in this process; they evaluate the responses generated by the model, 

categorizing them as appropriate or inappropriate. This feedback loop is instrumental in reducing the 

generation of biased, toxic, or irrelevant content by the model, thereby enhancing its reliability and safety. 

Specifically, RLHF facilitates the elimination of outputs that could be harmful or unsafe, such as responses 

that involve illegal activities, offensive content, or personal data misuse. 

 

 
Figure 5 Reinforcement Learning from Human Feedback process 

 

A significant focus of the GPT-3.5 development was optimizing the model for enhanced dialogue 

capabilities. This focus is evident in the deployment of ChatGPT, a conversational agent that utilizes GPT-

3.5 to interact with users. ChatGPT is designed to handle a broad spectrum of conversational tasks, 

providing responses within the scope of its extensive training data. This data encompasses a comprehensive 

570GB corpus, including diverse sources like Web Text, Common Crawl data, Wikipedia entries, and an 

assortment of books. 

The RLHF methodology not only improves the model’s ability to generate contextually appropriate and 

safe dialogue but also enhances its functionality across various user interactions. By incorporating human 

judgments directly into the training loop, GPT-3.5 is better equipped to understand and adapt to the nuances 

of human language and the subtleties of conversational context. 

 
The incorporation of RLHF in GPT-3.5 training represents a forward leap in developing AI systems that 

are both ethically aware and contextually adaptive. This training approach offers a robust framework for 

future models, potentially leading to more refined AI systems capable of safe and meaningful human-

computer interactions. Future research might explore the scalability of RLHF in training even larger models 

or its integration with other learning paradigms to further enhance performance and ethical compliance. 



2.1.2 GPT 4 

 

he latest iteration of OpenAI's language models, GPT-4, represents an unprecedented leap in scale and 

complexity in the field of artificial intelligence. While OpenAI has not disclosed specific details such as 

the exact number of parameters or the intricacies of its training strategy, it is speculated that GPT-4 may 

incorporate approximately 100 trillion parameters. This figure is often compared to the estimated number 

of synapses in the human brain, highlighting the model's vast and intricate network architecture. 

 

Although the sheer number of parameters does not directly correlate with performance efficacy, GPT-4 

demonstrates significantly improved outputs over its predecessors. The enhancements are reflected in the 

model's precision, depth, and reliability. GPT-4's performance has been rigorously evaluated through tests 

originally designed for human assessment, where it ranked in the upper decile of participants. This 

benchmarking underscores its advanced cognitive and processing capabilities. 

 

A notable advancement in GPT-4 is its multimodal functionality. Unlike earlier versions focused solely on 

text, GPT-4 extends its competency to comprehend and generate outputs across multiple formats, including 

text, images, videos, and audio. This multimodality allows GPT-4 to engage in a more diverse array of 

applications, enhancing its utility in fields such as multimedia content generation, educational technology, 

and interactive entertainment. 

 

Despite its advancements, GPT-4 is not without limitations. These include: 

• Hallucinations in Output: GPT-4 sometimes "hallucinates" information, creating plausible but 

factually incorrect statements or endorsing false assertions made by users. This issue is a significant 

challenge in ensuring the reliability of its applications, particularly in domains requiring high factual 

accuracy. 

• Temporal Knowledge Constraints: The training data for GPT-4 only extends up to September 

2021, which limits the model's awareness of subsequent events or developments. This temporal gap 

can hinder the model's effectiveness in scenarios requiring up-to-date information. 

• Complex Problem Handling: Similar to human cognitive processes, GPT-4 exhibits difficulties in 

solving complex problems, especially those involving intricate mathematical computations. This 

limitation reflects the inherent challenges in modeling higher-order cognitive tasks within a machine 

learning framework. 

• Persistent Biases: Despite efforts to mitigate biases through techniques such as Reinforcement 

Learning with Human Feedback (RLHF), residual biases from the training data can still permeate 

the model's outputs. These biases can skew the model's decision-making processes and output 

generation, potentially reinforcing existing societal stereotypes. 

 



2.2 Information Retrieval 
 

Information Retrieval (IR) is a critical discipline within computer and information science, focusing on the 

extraction of relevant data from extensive collections to meet specific informational needs. This field 

involves the development and application of systems that locate and retrieve information resources such as 

text, documents, images, audio, and video from a structured collection of digital content. 

 

An effective information retrieval system is structured around three fundamental components: indexing, 

document representation, and query modeling. 

1. Indexing: This initial phase involves the processing and organization of documents to facilitate 

more efficient query operations. Effective indexing reduces the computational cost associated with 

searching large datasets by organizing the data in a manner that accelerates retrieval processes. 

2. Document Representation: This component entails transforming documents into a format that can 

be easily processed by IR systems. Typically, this involves the creation of a condensed 

representation of each document that captures its most essential attributes, often using numerical or 

statistical models. Common techniques include the vector space model, where documents are 

represented as vectors of identifiers, such as term frequency-inverse document frequency (TF-IDF) 

weights. 

3. Query Modeling: This process converts user queries into a standardized format that can be 

effectively matched against the indexed documents. Query modeling is crucial for interpreting the 

user's intent and transforming informal user input into a more structured form that can be compared 

against the document representations in the index. 

4.  

The concept central to user interaction with IR systems is the "information need," which represents the 

specific information that the user seeks. The retrieval process is initiated by the user entering a query, a 

formal statement of this information need, akin to search terms entered into web search engines. 

In the realm of IR, queries do not identify a unique object within the collection but rather retrieve multiple 

objects that vary in relevance. This aspect is a significant departure from traditional SQL database queries, 

which typically return exact matches. 

 

IR systems distinguish themselves from traditional database searches through the classification and ranking 

of results based on relevance. These systems employ various algorithms to compute a relevance score for 

each item in the collection, considering factors such as: 

• The frequency and distribution of query terms within documents. 

• The presence of query terms in strategic parts of the document like the title. 

• The usage of synonyms and semantically related terms. 

• Exclusion criteria based on predefined blacklists that filter out undesirable content. 



The outcomes of an IR query are typically presented on a Search Engine Results Page (SERP), where the 

results are sorted by their relevance scores in descending order, from the most relevant to the least. This 

sorting allows users to quickly access the most pertinent information relative to their query. 

 

 

2.2.1 Semantic Search 
 

Semantic search represents an advanced paradigm in information retrieval, focusing on improving search 

accuracy by interpreting the deeper meanings—semantic content—of user queries and the corresponding 

data. This approach extends beyond traditional information retrieval methods by incorporating the 

principles of semantic understanding, primarily facilitated through the implementation of advanced 

techniques like word embeddings. 

 
Semantic search seeks to refine the relevance and precision of search results by grasping the intent behind 

a user's query and the contextual meaning of terms within the data repository. This process involves 

analyzing the linguistic relationships and conceptual linkages between terms, allowing the search system 

to recognize and respond to the nuanced meanings of queries rather than just the literal text. 

 

While keyword search methodologies excel in scenarios that involve single words or specific brand 

names—owing to their direct matching techniques—they often fall short in handling complex queries. In 

contrast, semantic search, powered by vector space models, demonstrates superior performance in several 

intricate search scenarios: 

1. Document Search: Semantic search mechanisms excel in retrieving documents related to specific 

topics, even if the document's indexing does not directly align with the search terms used. This 

capability is particularly beneficial for academic or professional settings where the diversity of 

terminology can lead to missed results with keyword-only searches. 

2. Product Search: In the context of e-commerce, semantic search facilitates the discovery of products 

that meet users' needs, regardless of whether the product descriptions explicitly match the search 

terms. This adaptability improves user experience by connecting shoppers with relevant products 

that might not have been discovered through traditional search methods. 

3. Information Search: Semantic search enhances the ability to locate specific information within 

texts, documents, or websites without the necessity for exact keyword matches. This feature is 

invaluable for comprehensive research tasks and for users seeking detailed information on complex 

subjects. 

 

The implementation of semantic search involves constructing a semantic understanding of text through 

machine learning models, such as word embeddings. These models generate vector representations of 



words that capture their meanings based on the contexts in which they appear. The semantic relationships 

between words are encoded in these vectors, allowing the search algorithm to assess the relevance of 

documents based on semantic closeness rather than mere keyword presence. 

 

2.2.3 Retrieval Augmented Generation 
 

To mitigate concerns regarding the generation of hallucinatory or unreliable outputs from advanced models 

like GPT-4, the implementation of a Retrieval-Augmented Generation (RAG) approach offers a promising 

solution. This method enhances the generative capabilities of question-and-answer (Q&A) systems by 

integrating a retrieval component that accesses a pre-defined document corpus to enrich the input provided 

to the QA system. 

 

 
Figure 6 Example of a Rag training approach 

 
The core functionality of RAG can be conceptualized as an extension of the sequence-to-sequence 

(seq2seq) model paradigm, where the input sequence is transformed into an output sequence. The distinct 

feature of RAG lies in its initial step: prior to processing the input through the generative model, a retrieval 

subsystem is employed to identify and incorporate relevant information from an external dataset. This 

integration of non-parametric data (data outside the model's trained parameters) augments the intrinsic 

knowledge embedded within the model, thus enriching the output's relevance and accuracy. 

 

The strategic inclusion of external knowledge sources into the generative framework enables dynamic 

updates and refinements to the informational content accessed by the model. By interfacing with 

comprehensive databases such as Wikipedia, the model leverages a vast repository of up-to-date and 

verifiable information, which significantly bolsters the model’s reliability and factual accuracy. 

 
The architecture of a RAG system typically incorporates a pre-trained generative model to handle 

parametric knowledge, coupled with a pre-trained neural retriever that facilitates the extraction of pertinent 

information from external sources. The entire system undergoes a fine-tuning process, tailored to optimize 



performance across various dimensions, enhancing the model's ability to handle complex, knowledge-

intensive tasks without the necessity for complete retraining. 

 
This methodology not only elevates the model's performance by providing a mechanism for continuous 

verification of the generated content against reliable sources but also introduces a significant level of 

adaptability. The system can address new or evolving information needs through updates to its external 

data sources rather than through labor-intensive retraining of the entire model. 

 

 

3. System Architecture and Model Integration 
 

In this chapter, we examine the architecture of a sophisticated platform designed to streamline and enhance 

the retrieval of economic and financial information from the European Central Bank. This system leverages 

cutting-edge technologies to provide rapid, relevant responses to complex queries, improving efficiency for 

users needing detailed and accurate financial data. The architecture comprises three pivotal components: 

 

• Knowledge Base and Data preprocessing: This core component consists of an extensive 

collection of documents web-scraped from the European Central Bank's website. It includes various 

financial reports, policy documents, and other critical data. The library used for preprocessing 
this information is Llama Index, which utilizes several sophisticated techniques to enhance 
data handling and analysis. These techniques include Document tokenizing, Chunks 
Splitting and Text embedding into a Vector database 

 

• LLM and RAG Algorithm: The system utilizes GPT-4, a highly advanced Large Language Model, 

capable of understanding and processing natural language queries. This model works in tandem 

with the Llama Index, a retrieval-augmented generation library, which enhances the LLM's response 

accuracy by incorporating relevant data extracted from the Knowledge Base during the generation 

process. 

 

• Web Interface: Serving as the conduit between the user and the backend, the web interface is 

designed for simplicity and ease of use. Built using Dash, it facilitates real-time interactions, 

allowing users to submit queries and receive responses swiftly and efficiently. 

 

 



The subsequent sections will provide an in-depth exploration of these components, elucidating how they 

interconnect to form a seamless and powerful tool for financial analysis and decision-making. 

 
3.1 Application Workflow 

 

 
Figure 7 Retrieval Augmented Generation Workflow 

 
In the image above you can see how the application workflow is structured: 

 

• Web Scraping: The process begins with scraping the latest documents from a designated website. 

These documents are typically in PDF format and contain relevant data needed for query responses. 

• Tokenizing and Splitting Text into Chunks: After the documents are scraped, the text is 

tokenized, meaning it is broken down into smaller, manageable pieces or chunks. This step is crucial 

for processing the text in manageable segments. 

• Embedding into Vector Database (Chroma): Each chunk of text is then embedded into a vector 

database. This database transforms the text into a numerical format that machines can understand 

and process efficiently, using the Chroma tool for vector embedding. 

• Ranking by Topic, Retrieving Chunks: The embedded text chunks are ranked by their relevance 

to specific topics. When a user query is made, the system retrieves the most relevant chunks based 

on the topic similarity to the query. 

• User Query (Input): This is the point of interaction where users input their queries into the system. 

• LLM (ChatGPT): The large language model, specifically ChatGPT, processes the user query. It 

utilizes the information retrieved from the ranked chunks to generate informed and contextually 

relevant responses. 



• Plotting Results: The results of the query, once processed by the LLM, can be visualized or plotted. 

This step is useful for presenting the response in a user-friendly format. 

• Re-querying Results: If further clarification or additional information is needed, the system can re-

query the results. This is useful for refining the responses or diving deeper into specific topics. 

In the subsequent chapters of this thesis, we will delve deeper into the most relevant parts 
of the workflow outlined above. Each chapter will focus on explaining key components in 
detail, providing a comprehensive understanding of how each segment contributes to the 
efficiency and effectiveness of the Retriever-Augmented Generation (RAG) model. This 
detailed exploration will include discussions on the methodologies used for tokenization, 
and data embedding, as well as the algorithms that drive the ranking and retrieval 
processes. Special emphasis will be placed on the integration of the large language model 
(LLM), specifically ChatGPT, highlighting its pivotal role in interpreting user queries and 
generating accurate, contextually relevant responses. By examining these components 
closely, we aim to illustrate the sophisticated interplay between advanced machine learning 
techniques and dynamic data retrieval systems that underpin the model's capability to 
deliver precise information swiftly. 

 
 
 
 

 
3.2 Knowledge Base and Data Preprocessing 

 
The knowledge base of the system is composed solely of documents from the Economic Bulletin 

because these documents are a rich source of current and authoritative economic and financial 

information. Choosing the Economic Bulletin as the exclusive source for the knowledge base has 

specific advantages, particularly in terms of content relevance and focus. The Economic Bulletin 

provides detailed analyses and reports on the economic conditions within the Eurozone, which is 

essential for users needing up-to-date European economic data. This focus ensures that the 

knowledge base is directly aligned with the needs of users looking for timely insights into economic 

and monetary developments. 

 

Furthermore, by concentrating the knowledge base on a single, reliable source, the system can 

maintain high standards of data quality and consistency. This approach simplifies the maintenance 

of the knowledge base, as it minimizes the complexity associated with managing diverse formats 

and updating the data from multiple sources. It also enhances the efficiency of the query processing, 



enabling faster and more accurate retrieval of information, crucial for users who depend on swift 

data access for decision-making or analysis. 

 
 

3.2.1 Document Ingestion 

 
The documents from the Economic Bulletin are initially processed using the SimpleDirectory 

Loader of LlamaIndex. This tool is specifically designed to extract text from PDF files, converting 

them directly into string format. This step is crucial as it transforms the static, unstructured data 

contained in the PDFs into a structured, searchable format that can be efficiently indexed and 

queried.  

 

3.2.2 Tokenize and split document into chunks 
 
 
Following the initial extraction of text, the next step involves the tokenization and chunking of the 

content using the LlamaIndex Sentence Splitter. This process converts the continuous string of text 

into discrete tokens, which are essentially the basic units of text such as words and punctuation 

marks. After tokenization, the text is further split into manageable chunks—specifically, sentences 

in this case. 

 

 

During the development process, several methods were explored to optimize the division of 

documents into manageable chunks. Some of the methods tested included: 

 

1. Paragraph-based splitting: This technique divides the text based on paragraphs, preserving the 

inherent structure but often leading to uneven chunk sizes, with some paragraphs being too long and 

others too brief. 

2. Fixed-character count: In this approach, the document is split into chunks containing a fixed 

number of characters. While this method ensures uniformity in chunk size, it often disrupts the 

natural flow of information by cutting sentences mid-way. 

3. N-gram segmentation: This method involves breaking down the text into n-grams (a contiguous 

sequence of n items from the text). Although useful for statistical analysis, n-grams frequently strip 

context from the data, making them less effective for comprehensive understanding. 

 

After evaluating these methods, the sentence-based division using the LlamaIndex Sentence Splitter 

was chosen. This approach was found to be the most effective because it maintains the semantic 

integrity of the information. Sentences typically represent complete thoughts or ideas, making them 



ideal units for processing. By using sentence-based chunks, the system can better understand and 

respond to queries, ensuring that the context is preserved and that the outputs remain high-quality 

and relevant. This method balances the need for manageable chunk sizes with the requirement to 

maintain sufficient contextual information for accurate data retrieval and analysis. 

 

The use of LlamaIndex's Sentence Splitter is integral for breaking down extensive documents into 

smaller, coherent segments. This segmentation not only enhances the manageability of the data but 

also improves the effectiveness of the subsequent indexing and retrieval processes. By organizing 

the text into sentence-based chunks, the system can more accurately match user queries with the 

most relevant information, facilitating efficient and precise information retrieval. 

 
Conversion of tables to string format follows a different logic than plain text. To avoid producing 

unsatisfactory text that lacks semantic meaning and therefore goes unused, each cell in a row is 

provided with the corresponding field header. The cells are then combined with the other cells in 

that row, and multiple rows are merged until the token limit is reached. This helps ensure that the 

resulting text is effective and efficient. 

 
 

 
3.2.3 Text embedder into Vector Database 

 

The text embedding algorithm transforms the segments extracted by the Document Reader or the 

user’s query into a vector format. Significant progress has been made in the last ten years to develop 

models capable of generating vector representations of words or phrases that encapsulate semantic 

relationships. This ability to represent semantic links is crucial for evaluating the relevance of a 

specific text segment in relation to the user’s query. 

 

The following criteria were taken into account when selecting the model to be employed: 

• Number of Input Tokens: Choosing a model that can process a large number of input tokens is 

advantageous. This reduces the need for further text segmentation, enhancing the data storage 

efficiency in the database. It also speeds up search processes while ensuring high accuracy and 

relevance in the results. 

• Cost and Performance: In addition to assessing the model’s effectiveness, practical factors such 

as its cost, speed, and reliability were also examined. Striking a balance between cost and 

performance led to the choice of a model that offers the best value according to the project’s needs. 

These are OpenAI embedding models considered while confronting the criteria mentioned above: 

 



 
Figure 8 OpenAi Embedding models features 

 

 
 

Text-emdedding-ada-002 
 

Text-emdedding-ada-002 (TEA-002) is a general-purpose text embedding released by OpenAI in 

late 2022. This model can incorporate all the embedding models that OpenAI previously released 

and improve the performance in each task, such as search, similarity, and retrieval. In addition to 

enhancing performance, this model has expanded the input size and limited the output length, 

making the embeddings excellent for even very long text sequences while still achieving vectors 

with low dimensionality.  

 

Since we are dealing with a closed model, details have yet to be released regarding the type of 

training and datasets used. The significant advantage of using this model is that it can be employed 

as a service, with dedicated APIs leading to zero infrastructure and maintenance costs. Furthermore, 

costs would be reduced over time, and there would be no dependence on potential malfunctions to 

OpenAI proprietary systems. The costs of this embedding model remain low at 0.00001€ per 1k 

token. If we estimate that a document page generally includes 8k tokens to reach 1€, we must 

convert 10.000 document pages. Furthermore, converting documents into vectors would only incur 

a one-time expense. The only recurring cost would be related to the conversion of user queries 

 
 

Text-Embedding-3-Small (TES-003) 
 

Text-Embedding-3-Small (TES-003) is an optimized text embedding model launched by OpenAI 

tailored for efficient processing with lower resource usage. Released in early 2023, TES-003 is 

designed to handle standard input lengths and produce concise vector outputs, ideal for applications 

requiring quick response times and moderate accuracy in tasks such as keyword search and basic 

document categorization. This model balances performance with lower computational demands, 

making it suitable for mobile and embedded applications. 



Like TEA-002, TES-003 operates under a closed model framework where specifics about training 

methods and data are not disclosed. A key advantage of TES-003 is its integration as a lightweight 

service, which drastically reduces infrastructure overheads, as API access negates the need for local 

computational resources. Financially, TES-003 is priced competitively at 0.000005€ per 1k tokens, 

making it a cost-effective solution for developers needing frequent but less complex embeddings. 

The conversion of text to vectors incurs minimal one-time costs, with ongoing expenses primarily 

related to user query transformations. 

 

Text-Embedding-3-Large (TEL-003) 
 
Text-Embedding-3-Large (TEL-003), released by OpenAI in mid-2023, is a high-capacity text 

embedding model engineered for deep semantic analysis and complex query handling across 

extensive databases. This model supports exceptionally long input sequences and delivers high-

dimensional vector outputs, enabling precise understanding in sophisticated applications such as 

legal document analysis, detailed content recommendation, and complex academic research 

retrieval. 

 

TEL-003 continues to employ a closed model structure, with undisclosed training and dataset 

specifics. It offers significant advantages for enterprise-level applications, featuring robust API 

support that eliminates the need for extensive infrastructure and ongoing maintenance. The cost-

effectiveness of TEL-003 is notable, priced at 0.00002€ per 1k tokens, with substantial discounts 

available for bulk usage. The conversion of documents into vector format is a one-time expense, 

and similar to TEA-002 and TES-003, the primary recurring cost is associated with processing user-

generated queries. 

 
 
 

3.2.4 Vector Database 
 
Vector databases are specialized database systems designed to efficiently store, index, and retrieve 

vector data. Vector data, in this context, refers to the vector representations of various types of 

information, such as text, images, or audio, typically generated through machine learning models. 

These representations are high-dimensional vectors that encapsulate the essential characteristics of 

the data in a form that machines can process. 

 

The primary advantage of vector databases is their ability to perform high-speed similarity searches 

among these vector representations. Using techniques like k-nearest neighbor (k-NN) searches, 

vector databases can quickly identify data points in the database that are most similar to a given 



query vector. This capability is crucial for applications in recommendation systems, image 

recognition, natural language processing, and other AI-driven technologies. 

 

The principal advantages of Vector Databases are: 

 

1. Efficiency in Similarity Search: They use advanced indexing techniques (e.g., tree-based, hashing-

based) to speed up the retrieval of vectors that are similar to a query vector. 

2. Scalability: Designed to handle large volumes of high-dimensional data, adapting well to both 

horizontal and vertical scaling. 

3. Flexibility: Often compatible with various types of data inputs and machine learning models, 

allowing integration with existing AI/ML pipelines. 

 
 
In this application ChromaDB was chosen as the Vector Databse to store the data. 

Chroma DB is a sophisticated vector database engineered to handle the complexities of storing and 

retrieving high-dimensional vector data efficiently. This type of database is particularly useful for 

applications that rely on fast similarity searches, such as those found in machine learning 

environments where embeddings generated from text, images, or audio need to be quickly compared 

and matched. 

 

The core of ChromaDB's functionality lies in its architecture, which is designed to optimize both 

the scalability and speed necessary for processing large volumes of vector data. It employs a 

distributed system that facilitates parallel processing and effective data partitioning. This setup 

allows ChromaDB to manage vast datasets while maintaining high performance, a critical 

requirement for applications that demand real-time data retrieval. 

 

One of the standout features of ChromaDB is its advanced indexing mechanism. Although specifics 

about the type of indexing might vary, typically systems like ChromaDB utilize space-partitioning 

data structures or hashing techniques to enhance the speed of vector retrieval. Such mechanisms are 

pivotal in reducing the time it takes to perform similarity searches, thereby improving the overall 

efficiency of the database. 

Moreover, ChromaDB is built to integrate seamlessly with various AI models, particularly those 

used for generating vector embeddings. This compatibility is essential for maintaining fluidity in 

data processing pipelines, ensuring that data can be easily ingested from different sources and 

quickly turned into actionable insights. 

 



In practical terms, ChromaDB can be an asset in numerous real-world applications, such as real-

time recommendation systems or complex decision-making engines. For instance, in a 

recommendation system, ChromaDB could store embeddings of user preferences and product 

features, swiftly fetching the most relevant product suggestions based on user input. This capability 

not only enhances user experience through personalized recommendations but also supports 

dynamic updates to the database without sacrificing performance. 

 

Additionally, the cost-effectiveness and performance optimization of ChromaDB make it a viable 

choice for businesses looking to implement powerful yet budget-conscious AI solutions. The 

database's ability to deliver high throughput and low latency is essential for maintaining user 

satisfaction, especially in services that users expect immediate responses. 

 

 
Figure 9 Graphical representation of a Vector Database 

 

 

 

 

 



3.3 LLM and RAG Algorithm 
 
 

Large Language Models, a subset of deep neural networks built primarily on the transformer 

architecture, have brought about a significant shift in the landscape of Natural Language Processing 

(NLP). Their unparalleled ability to comprehend, generate, and manipulate natural language has 

propelled the field forward. These models are trained using the technique of "next word prediction," 

where they are fed a sequence of words and tasked with predicting the subsequent word. Through 

this process, they acquire an understanding of the intricate relationships and statistical patterns 

inherent in human language. 

 

The term "large" aptly describes these models, signifying both the vast amount of data used during 

training—often encompassing billions of words—and the complexity and size of the models 

themselves. Despite their computational demands, Large Language Models boast language 

processing capabilities that frequently rival, and sometimes even surpass, those of humans in terms 

of accuracy and fluency. 

 

Their use in our application is focused on generating relevant responses based on text provided as 

context. Thanks to their deep language understanding, they can produce coherent and contextualized 

answers. 

 

3.3.1 Fine tuning vs Retrieval Augmented Generation 
 

Fine-tuning is a technique used to adapt pre-trained language models, like GPT, to perform specific 

tasks or better understand domain-specific data. Initially, these models are trained on massive 

amounts of text data in an unsupervised manner, which enables them to learn intricate patterns and 

relationships within language. Fine-tuning, however, tailors these generalized models to a particular 

task by updating their parameters with task-specific data. 

 

The process of fine-tuning typically involves several steps: 

 

1. Pre-training: Before fine-tuning, the language model undergoes pre-training on a vast corpus of 

text data. During this phase, the model learns to predict the next word in a sequence of text, capturing 

high-level language features and structures. 

2. Task-specific Data: Fine-tuning begins with the selection of task-specific data. This dataset is 

labeled or annotated according to the desired task. For instance, if the task is sentiment analysis, the 



dataset would contain text samples labeled with their corresponding sentiment (positive, negative, 

neutral). 

3. Fine-tuning Process: The pre-trained model is then further trained on the task-specific data. During 

this phase, the parameters of the model are updated using techniques such as backpropagation and 

gradient descent to minimize the difference between the model's predictions and the ground truth 

labels in the task-specific dataset. 

4. Transfer Learning: Fine-tuning leverages transfer learning, where knowledge acquired during pre-

training is transferred to the target task. This reduces the amount of labeled data required for training 

and often leads to better performance, especially when the task-specific dataset is limited. 

RAG (Retrieval-Augmented Generation), on the other hand, is a technique that combines the power 

of language generation models with information retrieval methods. Unlike traditional language 

generation models that generate responses solely based on the input prompt, RAG incorporates 

relevant information retrieved from an external knowledge source. 

 

The RAG process is this: 

 

1. Knowledge Base: RAG relies on an external knowledge base, which could be a large text corpus, 

structured database, or even a combination of both. This knowledge base contains factual 

information relevant to the domain or task. 

2. Information Retrieval: When presented with an input prompt, RAG first retrieves relevant 

passages or documents from the knowledge base using information retrieval techniques. These 

retrieved pieces of information serve as additional context for generating the response. 

3. Generation Process: With both the input prompt and the retrieved knowledge, the model generates 

a response that is not only coherent but also grounded in factual information from the external 

sources. This integration of retrieved knowledge enhances the relevance and accuracy of the 

generated responses, especially for tasks requiring access to external information, such as question 

answering or content generation. 

 
For a question answering system based on organizational knowledge, a RAG (Retrieval-Augmented 

Generation) system is more fitting due to its dynamic access to evolving knowledge bases. In such 

a setting, where the information landscape is continually changing, RAG's ability to retrieve up-to-

date and relevant information from dynamic knowledge sources aligns well with the task 

requirements. This ensures that the system can provide accurate and timely answers to queries, even 

as the organizational knowledge evolves. 

 

Moreover, RAG tends to be less computationally expensive compared to some other approaches, 

making it feasible for real-time or large-scale deployment within organizational settings. By 



leveraging existing knowledge bases and integrating retrieved information into the generation 

process, RAG can efficiently generate contextually relevant responses without requiring extensive 

computational resources. 

 
3.3.2 Retrieval of Similar Chunks in LlamaIndex 

 
This chapter aims to elucidate the mechanism by which LlamaIndex, an information retrieval 

system, retrieves the most similar chunks based on user queries. The retrieval process is fundamental 

to the effectiveness of LlamaIndex in providing relevant information to users.  

LlamaIndex employs a retrieval model based on the TF-IDF (Term Frequency-Inverse Document 

Frequency) algorithm, coupled with cosine similarity for measuring the similarity between 

documents and queries. This model enables LlamaIndex to rank documents according to their 

relevance to a given query. 

 
TF-IDF Algorithm 

The TF-IDF algorithm is at the core of LlamaIndex's retrieval model. It computes a numerical 

representation of each document and query based on the frequency of terms within them and across 

the entire document collection. The TF-IDF score of a term in a document is given by: 

 

\] − ^_](', B) = \](', B) × ^_](') 
 

Where: 

• \](', B)\](', B) represents the term frequency of term 't in document Bd. 

• ^_](')^_](') denotes the inverse document frequency of term 't, calculated as log c "0!d,, where N 

is the total number of documents and #1 is the number of documents containing term '. 
 

Cosine Similarity 

 
Cosine similarity is utilized to measure the similarity between the TF-IDF representations of 

documents and queries. It computes the cosine of the angle between two vectors, representing the 

documents and the query, in a high-dimensional space. The cosine similarity between a document 

d and a query K is given by: 

sim(B, K) = ∑ TF-IDF('' , B)0
'2# × TF-IDF('' , K)

Z∑ TF-IDF('' , B)$0
'2# × Z∑ TF-IDF('' , K)$0

'2#
 

 
Where: 

• '' represents each term in the document and query. 

• n denotes the total number of unique terms. 

 



Retrieval Process 
 
Given a user query K, LlamaIndex retrieves the most similar chunks by following these steps: 

• Tokenization and Preprocessing: The query q undergoes tokenization and preprocessing to extract 

individual terms and remove stop words and punctuation. 

• TF-IDF Calculation: For each term '' in the query, LlamaIndex calculates its TF-IDF score in the 

query using the IDF values obtained during indexing. 

• Cosine Similarity Calculation: LlamaIndex computes the cosine similarity between the TF-IDF 

representations of the query and each document in the index. 

• Ranking: Documents are ranked based on their cosine similarity scores, with the most similar 

chunks ranked higher. 

• Retrieval: Finally, LlamaIndex retrieves the top-ranked chunks as the most relevant ones to the user 

query. 

 
3.4 Front End 

 
In this chapter, we delve into the pivotal interface through which users interact with the advanced 

capabilities of our system. 

 
The front end, constructed using the Dash framework for Python, serves as the linchpin that bridges 

the gap between the complex operations of language models and the end-users, who rely on this 

platform for querying and analyzing extensive documents, particularly those produced by central 

banks. This interface is not just a medium for input and output; it is also an embodiment of the 

application's usability, efficiency, and accessibility. By focusing on user experience design, we 

ensure that the application is not only functional but also engaging and easy to navigate, encouraging 

deeper interaction and exploration. 

 

3.4.1 Dash Framework 

Dash is a Python framework for building interactive web applications easily and efficiently. Created 

by Plotly, it leverages the simplicity of Python to enable data scientists and analysts to develop 

complex, data-driven interfaces without deep knowledge of web technologies. Dash abstracts away 

the complexity of web development by using Plotly for high-quality visualizations and React.js for 

the front-end, making the UI responsive and modular. 

 

Dash is known for its ease of use, with a component-based architecture that allows for interactive 

behaviors through simple Python callbacks. This means that interactions such as user inputs can 

dynamically update the content of the app without page reloads. It includes core components for 

layouts and can be extended with third-party components for enhanced functionality. 



For deployment, Dash integrates seamlessly with Flask, allowing apps to be hosted on servers and 

accessed via URLs, facilitating both rapid prototyping and production deployment. Dash transforms 

the development of interactive web applications into a straightforward process focused on Python 

coding, making it a preferred tool for building professional-quality web apps in the data science 

community. 

 

3.4.2 Application Front End 

In the chapter dedicated to the front end of our Dash application, we explore the various components 

that collectively create a user-friendly interface designed for interacting with a large language model 

specialized in processing central bank documents. This interface is pivotal not only in guiding the 

user through the data retrieval process but also in providing a seamless and intuitive experience that 

encourages engagement and exploration. 

 

 
Figure 10 Front End view of the Dash APP 

 
 
 
 

 

 

 

 

 

 



Bank Selection Section 

 
 

This section of the interface features a selection tool where users can choose the central bank from 

which they wish to download documents. It provides a simple, streamlined method for accessing 

specific financial information by allowing users to select between different banks, such as the 

"European Central Bank" or the "Federal Reserve."  

 

Download Button 

 
 

 By pressing this button, the user can download the latest annual report relevant to the selected 

central bank. If the European Central Bank is chosen, the application will download the Economic 

Bulletin report for the previous year. Conversely, if the Federal Reserve is selected, it will retrieve 

the monetary policy reports from the past year directly from the Federal Reserve's website. This 

functionality simplifies the process of obtaining important financial documents, ensuring users have 

easy and immediate access to the latest data from these major financial institutions. 

 

Vector DB creation Button 

 
This button becomes active once the necessary documents are downloaded from the selected 

financial institution, such as the European Central Bank or the Federal Reserve. 

When activated by the user, this button initiates a series of backend operations where the 

downloaded documents are tokenized and divided into manageable chunks. These chunks are then 

systematically ingested into a vector database. This process converts the textual content of the 

reports into vectorized formats that can be efficiently queried and analyzed through the application. 

The transformation into a vector database is essential for enabling advanced search capabilities and 

ensuring that users can retrieve specific information rapidly and accurately.  

 

 

 

 

 

 



 
Sidebar/Help Section 

This collapsible sidebar provides users with help regarding the usage of the application Giving 

instructions to how to leverage the OpenAi API Key to use the app.  

 
 
 
 

Topic Selection Section: 

 
This section of the interface allows users to select specific topics, which tailor the displayed or 

queried information according to their needs. The available topics, such as "Inflation," "Interest 

Rate," and "Economic Growth," help refine the data retrieval process. Selecting a topic triggers a 

forecast prompt in the model, providing users with an overview of future trends related to that topic. 

It's crucial to select the appropriate topic before initiating other queries because each button not only 

filters the data but also supplements the query with additional keywords. These keywords aid in 

retrieving the most relevant chunks from the document database, ensuring that the information 

presented is precisely aligned with the user's interest. This functionality highlights the interface’s 

role in enhancing the accessibility and effectiveness of the data retrieval process, making it integral 

to the user's research and analysis workflow. 



User Prompt Section 
 

This section of the interface enables users to input customizable prompts. The responses to these 

prompts follow the chunks retrieval mechanism, where the model generates answers based solely 

on the information contained within the ingested documents. This approach helps prevent the model 

from producing hallucinated content, ensuring that the responses are reliable and directly reflect the 

data provided. 

 

 
 

Prompt example 
 
In this chat example, the model responded to the user's prompt using information extracted from the 

documents we have ingested. Additionally, metadata such as the page number and the name of the 

document from which the information was retrieved are also provided. This allows the user to verify 

the accuracy and origin of the information furnished by the model, ensuring transparency and 

reliability in the data presented. 

 

 
 
In conclusion, the front end of our Dash application represents a crucial interface between the user 

and the advanced technologies underlying the system. Designed meticulously to ensure usability 

and efficiency, it facilitates interactive and intuitive engagement with large language models 

tailored for processing central bank documents.  

 
 
 
 
 
 
 
 
 
 
 
 
 



4. Conclusions 
 
This thesis has presented the development and implementation of a Dash application designed to 

enhance the accessibility and interaction with language large models (LLMs) specifically fine-tuned 

with Retrieval-Augmented Generation (RAG) techniques. The system is tailored for querying and 

analyzing documents produced by central banks, leveraging the cutting-edge capabilities of natural 

language processing (NLP) and machine learning. 

 

The theoretical underpinnings of NLP, including tokenization, vector space models, and deep 

learning architectures such as LSTMs and Transformers, provided a solid foundation for 

understanding the complex interactions within the application. The integration of Natural Language 

Generation (NLG) and the advanced iterations of the Generative Pre-trained Transformer models, 

particularly GPT-3.5 and GPT-4, emphasized the robustness of modern NLP applications. 

The architecture of the application, focusing on the seamless integration of a knowledge base with 

a sophisticated text processing pipeline and a vector database, has demonstrated significant potential 

in enhancing the retrieval and interaction with specialized texts. The implementation of the RAG 

algorithm within this framework allowed for a dynamic and contextually aware response system 

that can adapt to the evolving needs and queries of its users. 

 

Key findings from the deployment and testing of the application include improved query accuracy 

and user engagement. The use of semantic search and retrieval augmented techniques has shown to 

enhance the relevance and precision of the information retrieved, making it a valuable tool for 

researchers and analysts dealing with complex economic documents. 

However, several challenges were encountered, including the scalability of the system with 

increasing data volumes and the continuous need to update the underlying models to accommodate 

new information and analytical techniques. Future work should therefore focus on enhancing the 

scalability and flexibility of the system. Additionally, further fine-tuning of the LLM for specific 

economic contexts and terminologies could improve the system's efficacy and user satisfaction. 

 

In conclusion, this thesis has not only demonstrated the feasibility of integrating advanced NLP 

techniques into a user-friendly application but also highlighted the potential of such technologies to 

transform the way we interact with complex institutional documents. As the field of NLP continues 

to evolve, it is anticipated that applications like the one developed in this thesis will become 

increasingly pivotal in extracting meaningful insights from vast amounts of textual data. 

 
 
 
 
 



4.1 Future Works 
 
The research and development undertaken in this thesis have unveiled several opportunities for 

advancing the field and enhancing the implemented system. These opportunities span various 

aspects, including system design, model capabilities, and exploring new application domains, all of 

which are integral to the evolution of the application. 

 

1) Enhancing System Scalability and Performance 
One key area for future work involves enhancing the scalability and performance of the system. 

This includes implementing dynamic scaling mechanisms that effectively handle variable user loads 

and data volumes to ensure responsiveness. Additionally, optimizing the text processing and query 

execution pipelines to reduce latency and improve throughput could substantially benefit system 

performance, particularly with complex queries across extensive datasets. 

2) Advanced Model Training and Fine-Tuning 

Further refining the model's training and fine-tuning processes is essential. Introducing continual 

learning could enable the model to adapt to new data while retaining previously learned information, 

thereby maintaining relevance over time. Moreover, domain-specific tuning could significantly 

enhance the model's capability to understand and generate specialized economic content, improving 

the quality and applicability of responses. 

3) Expansion of Knowledge Base 
Expanding the system’s knowledge base to include multilingual content would make the application 

more versatile and globally applicable. Additionally, integrating real-time data feeds would provide 

users with the most current information, a critical element in the dynamic field of financial analysis. 

 

4) Text to SQL Integration 
A promising direction for future work involves incorporating a Text to SQL (Structured Query 

Language) approach within the application. This approach would enable users to interact with the 

system using natural language queries that are automatically translated into SQL commands, 

facilitating direct interaction with underlying databases without the need for specialized database 

query knowledge. 

The Text to SQL approach leverages natural language processing to understand and convert user 

inputs into SQL queries. By integrating this capability, the application can significantly enhance its 

accessibility and efficiency, allowing users to retrieve and manipulate data more intuitively. This 

functionality would be particularly beneficial in analyzing complex economic datasets where users 

may not always be proficient in SQL. 
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