
RELATORE CORRELATORE

CANDIDATO

Cattedra

Anno Accademico



1 
 

Index   

1. Introduction ................................................................................................... 3 

1.1 Organization of the Thesis .......................................................................... 5 

2. The Role of AI in the Medical Sector ................................................................ 5 

2.1 Introduction ............................................................................................. 5 

2.2 Elements Driving AI's Rise in Medicine ....................................................... 6 

2.2.2 Increasing Human Skill ........................................................................ 7 

2.2.3 Multiplicity of Personalized Medicine. ................................................... 7 

2.2.4 The Need for Efficiency ....................................................................... 8 

2.3 Revolutionizing Diagnosis and Treatment ..................................................... 8 

2.3.1 Medical Imaging Analysis .................................................................... 9 

2.3.2 AI-powered Diagnosis ......................................................................... 9 

2.4 AI’s Expanding Reach ............................................................................. 10 

2.4.1 Drug Discovery and Development ....................................................... 10 

2.4.2 Robot-assisted Surgery ...................................................................... 11 

2.5 Conclusion ............................................................................................. 12 

3. Methodology ............................................................................................... 13 

3.1 Data Collection, Preprocessing, and Augmentation ...................................... 13 

3.2 Image Segmentation ................................................................................ 17 

3.2.1 Data Preparation for Segmentation ...................................................... 17 

3.2.2 Description of the U-Net Architecture .................................................. 18 

3.2.3 Training Procedure ............................................................................ 20 

3.2.4 Model Results .................................................................................. 22 

3.3 Image Classification ................................................................................ 28 

3.3.1 Data Preparation for Classification ...................................................... 28 

3.3.2 Description of DenseNet121 Architecture ............................................. 28 

3.3.3 Training Procedure ............................................................................ 30 

3.3.4 Model Results .................................................................................. 31 

3.4 Models Evaluation Method ....................................................................... 34 



2 
 

4. Results and Discussion .................................................................................. 35 

5. Conclusion .................................................................................................. 39 

5.1 Strengths and Weaknesses of the Models .................................................... 39 

6. References .................................................................................................. 41 

 

 

 

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

1. Introduction 

Breast Cancer (BC) is the most frequent type of cancer and the second most common 

cause of cancer-related death among women; therefore, early detection is growing in 

importance. The main test to run while looking for breast cancer is a mammogram but 

an additional important technology that is employed in various settings is breast 

Ultrasound (US). It is especially recommended to be performed as a primary 

examination in young women and as a follow-up examination after mammography 

when a woman is pregnant or nursing, but US exams still rely on the doctor conducting 

the work.  

Artificial intelligence has become increasingly prevalent in breast ultrasound recently. 

The need to improve the accuracy and efficiency of diagnosis is driving this trend. 

Notably, innovative techniques have shown encouraging improvements in the field of 

cancer segmentation and classification. Models like the U-Net, for the segmentation 

task, proposed by this research [1] have achieved an accuracy score of 95%. For the 

classification task, some research like [2] were able to achieve 90% with an ensemble 

Meta-Model technique, while others, such as [3], were able to reach an accuracy score 

of 85.83% at most, Despite these advancements, existing methods often struggle with 

subjective interpretation and variability, highlighting the need for further innovation.  

The current state of the art in breast cancer image classification predominantly utilizes 

deep learning models such as VGG16, ResNet50, and various Inception variants. Such 

studies have shown that deep learning can achieve high levels of accuracy in breast 

cancer diagnosis. 

In contrast, this study uses a multiclass classification technique tailored to breast 

ultrasound pictures, discriminating between benign, malignant, and normal tissues. This 

more granular approach enables more detailed and clinically relevant diagnosis. 

Furthermore, this study provides many preprocessing and data augmentation approaches 

that are specifically adapted for breast ultrasound pictures. This helped in achieving an 

accuracy of 99%. 

These changes considerably increase the classification performance of the deep learning 

models used. This work uses an open-source collection of breast ultrasound images to 
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provide a potentially less intrusive and more accessible diagnostic alternative to 

regularly used mammographic datasets.  

Other research in the field have used generative adversarial networks (GANs) to 

enhance ultrasound images and different types U-Net model for segmentation. These 

methods involve employing GANs with nonlinear identity blocks, label smoothing, and 

novel loss functions, which provide amazing results ranging from 92% and 95% 

accuracy.  

The key distinctions and advancements of this study in comparison with the most 

relevant research include the employment of targeted preprocessing and data 

augmentation methodologies, and the segmentation via the U-Net model that was able 

to reach 98% of accuracy. The preliminary work presented in this thesis proposes a 

pioneering method that besides segmenting the lesion, also classifies the breast cancer 

using Artificial Intelligence in ultrasound images, which does not yet have an equivalent 

in the state of the art.  

For that reason, this integrated approach aims at improving diagnostics, reducing the 

subjectivity of the outcomes, and increasing the possibilities of early diagnosis as well 

as patients’ success rate in the sphere of breast cancer treatment. That is why this 

methodology not only simplifies the diagnostic process by uniting two steps, 

segmentation and classification, but also points to a perspective of further development 

of extreme precision medicine and applied healthcare. The seemingly great outcome of 

this study suggests the possibility to extend and apply it actually in clinical practice, 

which will significantly transform the way to diagnose breast cancer efficiently and 

accurately as well as have a great impact on the advancements of medical imaging. This 

new approach can be labelled as pioneering and highly effective, which may provide a 

better solution as a set of tests currently applied and base for the healthcare 

improvement. 
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1.1 Organization of the Thesis 

The structure of the thesis is as follows:  

• Introduction: Describes the issue statement, lays out the rationale for the 

research, and sets up the goals of the investigation.  

• The Role of AI in the Medical Sector: Gives an overview of the need of 

AI in medicine with the possible applications and solutions. 

• Methodology: explains the research technique used in this study, which 

includes model architecture selection, data preprocessing, and assessment 

measures.  

• Results and Discussion: Examines and explains the findings, talks about 

the advantages, and disadvantages of the suggested strategy, and 

contrasts it with other approaches already in use.  

• Conclusion: Provides an overview of the study's main conclusions, 

highlights its contributions, and suggests future avenues of inquiry for 

the field of deep learning-based automated breast cancer diagnosis.  

2. The Role of AI in the Medical Sector 

2.1 Introduction 

Artificial Intelligence is a sphere in the middle of a big change. AI applications like 

unlocking our smartphones using facial recognition or self-driving cars pose significant 

revolutionary potential of AI as it expands its reach and diversify itself. 

Healthcare stands out as one of the sectors that will undergo most significant changes 

because of this revolution. In hospitals and medical institutions, there is an enormous 

amount of data being produced, such as patient’s medical records, imaging scans and 

vast genetic sequences. Nonetheless, effectively surfacing through and analyzing this 

overflow remains one of the greatest challenges facing health care practitioners. 

Conventional methodologies, which depend on human expertise alone, often fall short 

when it comes to identifying subtle patterns within these datasets and harnessing its full 

potential for better medical services. 
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This is where the emerging influence of AI on healthcare becomes imperative. These AI 

algorithms can learn much more than we ever thought possible once trained on large 

datasets, picking up even the most complex relationships between data points with 

increased accuracy levels. Such a capability carries great promise for optimizing 

healthcare service delivery through efficient use of information by clinicians. 

2.2 Elements Driving AI's Rise in Medicine 

The booming popularity of artificial intelligence in healthcare is due to a powerful 

combination of factors that has created a perfect storm. This section looks at the 4 of the 

main drivers behind AI adoption in medicine. 

2.2.1 The Overflow of Data 

Healthcare industry is experiencing an unprecedented flood of data. For instance, 

electronic health records (EHR), complex medical imaging scans such as X-rays, MRIs, 

and vast genomic sequencing data amount to some of the growing mounds of data that 

are produced by hospitals and clinics. It is possible to enhance medical knowledge and 

patient care through this information overload. However, effectively analyzing this data 

remains a major challenge for healthcare professionals because traditional methods 

often fail to identify subtle patterns and hidden correlations. 

This challenge can be surmounted by resorting to AI. Machine learning-based AI 

algorithms can be trained on large datasets to achieve this purpose. They will eventually 

learn from the data, uncover intricate connections among variables and become better 

predictors over time. 

This permits artificially intelligent systems to unlock the potential of healthcare data, 

hence:  

• Enhanced Medical Diagnosis: AI can track patterns and trends that human 

intelligence would never identify. This allows early intervention and better 

precision in diagnosis, which may be critical to good patient outcomes. 

• The Personalized Medicine: The strength of AI lies in the uncovering subtle 

patterns from complex datasets. Therefore, it is possible to leverage this 

knowledge to develop individualized treatment programs grounded on patients’ 
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distinct health records and unique genetic compositions thereby marking a new 

era of personal medicine. 

2.2.2 Increasing Human Skill 

Medical professionals have an exceptional level of expertise due to extensive training 

and experience. Despite this fact, human ability for internalizing information has several 

inherent weaknesses such as: 

• Cognitive Bias: Human decision-making may be influenced by their 

unconscious biases, which might result in misdiagnosis or inappropriate 

prescription. 

• Fatigue and Human Error: Fatigue and human error can set in when there are 

long working hours as well as a huge amount of data being processed even the 

most skilled medical personnel at work. 

• Limited Processing Power: The human brain is capable but limited in its 

capacity to process and analyze vast amounts of data. 

The limitations mentioned above can be addressed by using AI to enhance human 

expertise in medicine. By analyzing data without prejudice, AI can reduce the impact of 

unconscious bias on clinical decision-making. AI can automate routine tasks as well as 

point out probable red flags in data; thus, enabling health care professionals to 

concentrate on more challenging patient care aspects. The capacity of AI to deal with a 

big amount of data may allow for the identification of hidden patterns and trends that 

human evaluation may not find, thus leading to better clinical decisions.  

2.2.3 Multiplicity of Personalized Medicine.  

Evidenced through this process, the outdated, “one-size-fits-all” approach is gradually 

yielding to the more individualized health care model. This change is mainly due to the 

fact that patients are not all the same as they have their own unique genetic makeup, 

medical history, and personal response to medicines.  

Personalized medicine can be possible with the help of AI by: 
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• Identifying Patient Subgroups: From these big datasets, highly effective artificial 

intelligence algorithms can be developed, which enable many patients with 

similar gene profiles or disease symptoms to be found. Through this, customized 

treatment protocols are devised for addressing ailing individual needs.  

• Predicting Treatment Response: AI can be employed to scrutinize patient 

information and to make guesses how they are going to react to different 

methods of treatment. A targeted and individualized treatment can raise the 

curative effectiveness lowering side effects as well.  

2.2.4 The Need for Efficiency 

The present-day healthcare sector faces two tasks which are hard to accomplish 

simultaneously. The issue here is that we must make sure that the service is of the 

highest quality while, at the same time, putting a lid on the costs. AI could be of 

significant use in eliminating the redundancy of administrative jobs and could help in 

reducing health system's operational costs.  

AI can do the boring and repetitive stuff that people hate to do, like booking 

appointments, issuing insurance claims, and keeping patient records. Such automation 

saves time for medical professionals, thus promoting them to devote a quality time in 

taking care of the patients more productively. 

AI will be able to dig deep into data to find places where wasteful expenditure can be 

avoided and resource use in health systems can be improved. This is the way to a more 

economical use of resources, and in the end, it will benefit both patients and healthcare 

providers. 

2.3 Revolutionizing Diagnosis and Treatment 

The impact of AI in medicine goes beyond just data analysis. AI algorithms are 

continuously remodeling medical diagnostic and treatment avenues, indicating the rise 

of a new era of precision medicine. Here, we explore 2 key areas where AI is making 

significant strides. 
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2.3.1 Medical Imaging Analysis 

To address the diagnostic challenge, medical imaging has for a long time been a 

mainstay in identifying the diseases [5]. X-rays, MRIs, and CT-scans are the tools that 

give us the opportunity to see inside the human body, and the doctors can find out the 

changes that are going on in it and even assess the disease progression. Even though 

direct images provide many details, the process of their decoding is still slow and 

comparatively complicated, even for top radiologists. AI is revolutionizing medical 

imaging analysis by: 

Enhanced Detection of Anomalies: The AI algorithms, having been trained on huge sets 

of medical imaging, can show superhuman performance both in detecting abnormalities 

and differentiating those from normal cellular structures. Early and precise diagnosis for 

diseases like cancer is thus made possible with timely data acquisition, which is critical 

for successful treatment. 

Faster Workflow and Improved Efficiency: AI should automate certain entry-level 

image processing operations, like image segmentation and basic analyses. This provides 

radiologists with more time to work on demanding situations and patient interaction 

than just routinely defining findings; consequently, healthcare systems' overall 

workflow efficiency gets improved.  

Standardization of Diagnosis: AI algorithms can provide consistent and objective 

interpretations of medical images, which can reduce the variability often seen in 

diagnoses based on human interpretation. 

2.3.2 AI-powered Diagnosis 

AI will be the next generation of screening methodology that will see the general 

diagnostic introduced by means of machine enabled techniques. AI algorithms are 

presented with drug history, laboratory tests and genetic databases and capable to 

uncover sets of patterns for safety and health issues. This allows for: 

Early Disease Detection: AI makes the data processing and thus it helps in diagnosing 

the disease at the first signs when the symptoms are not yet present.  
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Risk Stratification: AI can find the diseases and it can also be the means of pinpointing 

patients who are most likely to face some of the diseases. This facilitates the 

development of a device that healthcare professionals can utilize to identify those at risk 

as the priority for prevention and monitoring.  

Personalized Treatment Plans: AI can now make inferences out of individuals' specific 

medical data to develop an individualized therapy plan, that is most suitable for a 

patient with consideration of that person's genetic and gene-health characteristics. This 

system contribution will bring fundamental changes in the treatment of deadly diseases 

and taking a step toward alleviated side effects.  

Finally, the diagnostic and treatment process has been revolutionized by the power of 

AI. AI is making it possible to detect and even rectify small flaws in the medical images 

used to estimate health risks and help form unique treatment plans for the patients that 

would otherwise lose their lives. With AI technology, much more changes not only are 

going to happen in the diagnosis of the patients, but also in the treatment strategies of 

the doctors in a few years to come.  

2.4 AI’s Expanding Reach 

The AI in medicine is not only diagnostic and curative but it has also the potential of 

transforming the entire medical sector. Such AI algorithms are making tremendous 

headway in different fields, right on the front line of medicine, and pioneering new 

wave of innovation. Here, we explore 2 prominent examples. 

2.4.1 Drug Discovery and Development 

The classical drug development method is usually slow and costly, as well as 

unsuccessful. It may require a time of 10 years or more and the investment of trillion 

dollar to ready a new drug for the market. AI offers a powerful solution [6] to 

streamline this process by: 

Analyzing Vast Chemical Libraries: AI algorithms represent a super-processor that can 

inspect immense databases of chemical molecules for prospective drug candidates 

presenting distinct therapeutic capability. This is the time and resources needed for the 

old kind of drug screening procedures.  
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Predicting Drug Interactions and Side Effects: There is several ways how AI can be 

used at preliminary stages of new drug development, for example, to predict how a drug 

might interact with a human body avoiding excessive side effects during clinical trials.  

Personalized Medicine Applications: AI will have access to patient information and can 

identify genetic variations that enhance their efficiency to some particularly certain 

medications. This customized approach can create more specific and effective therapies. 

2.4.2 Robot-assisted Surgery  

The role of minimally invasive surgical techniques in patients’ healthcare care is 

extremely favorable as it offers a shorter healing period and less post-operation pain. 

The roles of robots in surgical assistance are changing the landscape of minimally 

invasive surgery by making it possible for the surgeon to have superior ability, control 

of the task at hand as well as accuracy. AI plays a crucial role in the advancement of 

RAS [7] by: 

Improved Surgical Planning and Navigation: AI algorithms can read medical images to 

create 3D models of the patient’s anatomy, which enables surgeons to better plan their 

procedures and use the models to navigate the complex surgical sites with more 

precision. 

Real-time Decision Support: AI can process data during consultations. During surgery, 

tissue samples or blood tests in real time may deliver immediate information to a 

surgeon thus, finally, it may lead to better decision-making. 

Enhanced Autonomy in Robotic Systems: Thanks to AI technology in RAS systems, 

this might happen to be more profound in the future as the systems get the capacity for 

more autonomy with an aim of performing procedures that are not only autonomous but 

also extremely complex.  

Concisely, AI in medicine is not confined to decisions about examinations and 

treatment. AI is enhancing drug discovery; thus, the development of life-saving drugs is 

now at a faster pace than it was before. Using robotics in surgery, AI-powered systems 

are increasing surgical precision and cut depth, thus improving patient outcomes. Given 

the rapid development of AI, its contribution to the issues like health care will be 

increasingly striking. 
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2.5 Conclusion  

The rapid increase of AI’s influence within the medical sphere comes from its 

unparalleled ability to go through and analyze the massive amounts of healthcare data 

that are being created. This integration carries a high population of trends that are likely 

to evolve in every facet of the healthcare delivery system. By virtue of AI’s capacity to 

spot intricate patterns in X-rays, patient charts, and diagnoses, at times even in complex 

cases like cancer, may be executed quicker and with greater precision as compared to 

the traditional methods, thereby obviating the need for repeat diagnosis, and augmenting 

the odds favorably for the patient. On the other hand, AI plays a key role in the 

transition to personalized medicine, where treatments are designed to fit the genetic 

predispositions and medical history of each patient, thus improving their recovery. 

Simultaneously, AI robots outsource time, resource consuming administrative work, 

and ensure that healthcare systems function better owing to highly operational 

efficiency. This allows medical staff to concentrate on delivering the best possible care 

to their patients. Furthermore, in drug development AI, the screening of the entire 

chemical library within the shortest time as well as the quick identification and 

development of novel drug candidates is accelerated, and the undeserved risks of a side 

effects are therefore reduced. AI-driven robotic systems have brought about a new era 

of surgical precision and innovation, enabling surgeons to perform minimally invasive 

procedures and make real time decisions with the assistance of these systems. Below the 

many thresholds, the encompassing AI in healthcare delivery is spearheading an 

unparalleled revolution toward exactness in diagnostics, time-saving treatment methods, 

and a new paradigm of personalized medicine that ensures precision at every step of the 

way. This translates to the potency of the healthcare system to solve more cases and be 

more effective in patient-centered approach. 
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3. Methodology  

This section provides a comprehensive explanation of the various stages of building the 

final model, from segmentation to classification tasks. At the beginning, we will 

describe the techniques of the preprocessing of the raw medical images, which are 

normalization, augmentation, and noise reduction, for improving the image quality and 

ensuring the same quality across the dataset. Furthermore, we get to the method of 

architecture design where we first see the segmentation component, in which U-Net is 

used to separate the regions of the image into the regions of interest. Then, we see the 

incorporation of DenseNet121 for the classification task, which is presented as the deep 

learning model that classifies the segmented regions into benign, malignant, or normal. 

In addition, we will talk about the training process, which includes the selection of the 

appropriate loss functions, optimization algorithms and the use of cross-validation that 

helps to fine-tune the model parameters and to avoid overfitting.  

Finally, we will conduct an analysis of the evaluation metrics used in the model's 

performance, such as accuracy, precision, recall, specificity, and the way these metrics 

help the iterative process of the model refinement. Through its explicit presentation of 

the entire process, from data preprocessing to final evaluation, this section explains the 

wide-ranging method used to create a strong and efficient AI-driven diagnosis system. 

The script used for the thesis can be found in the Google Colaboratory link [8]. 

3.1 Data Collection, Preprocessing, and Augmentation 

The first crucial step was to find the data [9]. The data used in this research are from the 

opensource platform Kaggle. Breast ultrasound images among women aged between 25 

and 75 years were collected in 2018. The number of patients was 600 women, and the 

dataset contained 780 images with an image size of 500*500 pixels. The images are in 

PNG format and are categorized into 3 classes: normal, malignant, and benign. The data 

consist of the Ultrasound image with the combined mask representing the Cancerous 

area. 
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Fig. 1 

The picture above, [Fig. 1] shows a sample of the dataset. The images (blue) and the 

masks (red) overlap to show the presence and area of cancer.  

To prepare the data for the AI models, a Python class called ‘data_preparation’ has been 

used [10]. The data_preparation class is designed to manage multifaceted tasks of data 

processing and improvement, which helps in training deep learning models to be robust 

and accurate.  
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The instantiation of the class requires the following parameters: 

• datasetpath: A string that determines the location of the dataset. 

• imageShape: A tuple (height, width) with the target dimensions for resizing all 

input pictures. This standardization is critical for ensuring that input data meet 

the needs of neural networks, which require consistent input dimensions. The 

picture dimensions are set to 128 x 128 pixels. 

These arguments are needed to identify and resize the images, and they are saved as 

instance variables that may be accessed throughout the class’s functions. 

The “imagesPath” function allows efficient extraction of image file paths from the 

dataset. This technique construct routes dynamically, allowing the analysis of images 

stored in structured folders. 

The `readImages` method manages the bulk of image preprocessing: 

• Reading: Images are read from their paths using TensorFlow’s file reading 

functions, ensuring compatibility with later TensorFlow operations. 

• Decoding: Images can be decoded according to the case of its format (PNG is 

used in the case), which is also needed for further processing.  

• Normalization: Normalization of pixel values to the [0, 1] range is one way to 

standardize the input values for neural network training.  

With this approach, the process of data conversion from image files to trained format is 

expedited because the natural input/output scenario does not involve any intermediate 

steps.  

The pipeline for obtaining, processing, and assembling picture and mask data in an 

organized manner is proved by the allDataset function: 

• Image and Mask Retrieval: A distinction between character input and classified 

goal provides an opportunity for the correct execution of each. This is done by 

pulling and processing the images and their corresponding masks separately.  
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• Mask Thresholding: The latter are called soft masks (or probabilities) and are 

converted into binary masks used for classification via a binarization.  

The finalDataset technique is used to integrate data from the benign, malignant, and 

normal categories to train the model with only one dataset. This integration is crucial for 

tasks that involve classification or segmentation across multiple classes, ensuring that 

the model can generalize across diverse types of input data. 

In the augmentation phase, the first distinction has been made between the segmentation 

and classification tasks. The augmentation methods, `dataAugmentation`, and 

`dataAugmentation_classification`, introduce variability into the dataset: 

• Segmentation Augmentations: These include adjustments to image brightness, 

contrast, and the application of random transformations like flips and rotations, 

simulating different lighting conditions and angles. 

• Classification Augmentation: Particularly in `dataAugmentation_classification`, 

augmentations are applied consistently to images and masks, which is vital for 

maintaining the correspondence between images and their annotations in tasks 

like semantic segmentation. 

These augmentations help in creating a robust model by exposing it to varied conditions 

that it might encounter in real-world applications, thus improving its ability to 

generalize from the training data.  

Before the augmentation stage, 60 random images have been removed from the dataset, 

20 for each class, so the final model could be tested on the images that were not seen 

before. The images were removed in a random way through the ‘select_random_subset’ 

function.  

In summary, the data_preparation class has all the features necessary for effective and 

systematic preprocessing to enhance image collection. The topics mentioned here speed 

up the work via avoiding the overhead and complications that come with preparing 

image datasets which in turn help train deep learning models, while also enhance the 

image processing pipeline. The methods applied in this section ensure that the resulting 
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datasets will be the best in quality and will support the construction of efficient models 

that are well-adapted globally.  

3.2 Image Segmentation 

One of the most important tasks in medical image analysis is image segmentation. 

Regarding breast cancer, segmentation plays a crucial role in finding the regions of 

interest (ROIs), which include tumors in ultrasound images. The U-Net model [11], 

which was developed for biomedical image segmentation, is an efficient architecture 

thanks to its ability to produce accurate segmentations. The U-Net model is suited for 

medical image segmentation since it makes use of a special symmetric expanding route 

that allows for localization together with a contracting path that captures context. 

In this section of the thesis, the application of the U-Net model to the problem of breast 

cancer segmentation in ultrasound images will be explained. First, we examine the U-

Net architecture, highlighting its features that make it appropriate for medical image 

analysis. Next, we will go into detail in the training process, and preparation processes 

used to train the U-Net model on the dataset. 

Furthermore, we provide an analysis of the model's performance using metrics like 

accuracy, precision, and recall. This assessment will be helpful in deciding how well the 

U-Net model segments cancers in ultrasound images, offering information about its use 

in clinical cases. 

3.2.1 Data Preparation for Segmentation 

The first step in the process of building and training the model is the partitioning of the 

data into 3 parts: the training, validation, and testing sets. This separation is of 

significant importance for the appropriate generalization of the model on new, unseen 

data and is not just the memorizing of the training data.  

The entire dataset is first shuffled to ensure a random distribution of the images, which 

thereby helps in cutting the any possible biases. The validation set is composed of 450 

images that will be employed to fine-tune the model and check its performance 

throughout the training phase. These images are of significant importance in the process 
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of modifying the model’s hyperparameters and the early stopping techniques to stop the 

overfitting problem.  

Likewise, another set of 50 images is created, which is the test set. This is the set that is 

meant for the final inspection of the model after the training is completed. It is a 

separate test that gives an objective idea of how well the model is performing on data 

that it has not seen before; hence, the real-life performance of the model is assuredly 

measured.  

The rest of the images were used for training the convolutional neural network (CNN). 

This larger portion of data allows the model to learn the underlying patterns and features 

necessary for accurate segmentation tasks. Through the appropriate division of the 

dataset into training, validation, and test sets, we created a solid structure for the 

development of a reliable and effective AI model for medical image analysis. 

3.2.2 Description of the U-Net Architecture 

The proposed model is a U-Net Convolutional Neural Network (CNN), which is 

specialized in medical image segmentation. The protocol of U-Net for its high power of 

deep learning considers the presence of similar images and intensity features. This 

layout facilitates the segregation of anatomical parts and pathological abnormalities, 

which are essential in the medical diagnostics. The U-Net model is structured into 2 

parts, one for downsampling and the other for upsampling. Skip connections are 

included to refine the recover feature.  

The U-Net encoding path is designed to process the input images through parametric 

layers and downsampling techniques. This approach extracts comprehensive 

information from each image, providing a detailed overview of their features. The 

encoding procedure is as follows: 

• Convolutional Layers: These layers form the foundation of the encoder. They 

employ filters to extract various features from the images. Each convolutional 

layer applies these filters to the input image, generating feature maps that 

highlight the presence of specific features at designated points within the image. 
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• Activation Functions: After each convolution, a Rectified Linear Unit (ReLU) 

activation function is used. The nonlinearity of the ReLU function makes it 

highly effective for the model to understand and learn complex patterns. By 

obtaining the decision function in a nonlinear form, the network can learn and 

uncover a wide range of information that cannot be defined by the rules of linear 

functions. 

• Batch Normalization: Batch normalization is performed alongside each 

convolutional process. This step normalizes the mean and standard deviation of 

the output to be close to zero and one, ensuring that the activations of the 

preceding layer are normalized for each batch. In addition, batch normalization 

helps stabilize neural networks by reducing internal covariate shifts, allowing for 

more stable and efficient training even at higher learning rates. 

• Downsampling: Average pooling is implemented in the downsampling stages of 

the model to reduce the spatial dimensions of the feature maps. This technique 

significantly decreases the computational complexity of the network by lifting 

the heavy burden of data processing, allowing the model to concentrate on 

extracting higher-order features. Downsampling methods such as average 

pooling, play a crucial role in enabling the model to abstract and encapsulate 

essential features relevant to the task, even at reduced spatial resolutions. 

Despite their lower dimensionality, these methods ensure that the most critical 

information is retained, enhancing the model's effectiveness and efficiency. 

The purpose of the decoding part of the U-Net is to generate an image using the 

encoded characteristics. The process mirrors the encoding phases; however, it runs in 

the opposite order, emphasizing the reconstruction of the original image's spatial 

dimensions.  

• Upsampling: This type of algorithm is known as the upsampling process that 

replicates the feature map size by using upsampling layers. Usually, 

convolutional transform layers are used for this, which help reinforce the 

dimensions that got flattened out due to downsampling.  

• Skip Connections: It is a direct concatenation of feature maps between the 

encoder and decoder. These links are a fundamental parameter for the network 
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that allows it to transpose the quite minute, details that have been written in the 

prior layers during the last phases of reconstruction. This feature is the key 

factor in the model that can correctly localize and delineate unique features in 

the image, so the quality of the segmentation is significantly improved. 

• Feature Integration and Refinement: In the upsampling process, the output 

features are concatenated with the corresponding batch from the encoder via 

skip connections. This step helps to reintegrate critical information lost during 

downsampling. Subsequent convolution is then applied to these combined 

features, refining them further to enhance small and precise details in the 

segmentation maps. The following convolution, batch normalization and ReLU 

activation are implemented. These steps ensure consistent normalization of 

features and introduce nonlinearity, which is crucial for maintaining the 

robustness and accuracy of the model's output. 

What makes the U-Net model an outstanding example in medical image segmentation is 

that it not only leads to the segment of the images with the highest accuracy possible, 

but it also preserves the spatial integrity and contextual coherence. The comprehensive 

process of creating and improving each layer and link in the U-Net architecture 

emphasizes its importance and efficacy. The intentional and meticulous improvement of 

the U-Net architecture illustrates its practical use and proven effectiveness in these 

crucial applications. 

3.2.3 Training Procedure 

This section discusses the approaches used to train the model, with an emphasis on loss 

functions, optimization methods, performance measurements, and training procedures 

designed to improve the model's efficiency. 

Adopting the Binary Focal Crossentropy loss function is an important part of the 

model’s training process. This loss function is designed to distinguish between the 

foreground and background of the image, which is a typical case in medical imaging 

processing. The focal aspect of this loss function is essential; it compounds the penalty 

for misclassified pixels, particularly those misclassified with high confidence, thereby 

focusing the model’s learning efforts on tougher, more ambiguous circumstances. 
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The Adam optimizer is used in the optimization process, which is widely known as the 

best optimization process in the field of signal processing especially for handling sparse 

gradients and estimated gradients adaptively. This optimizer is designed to employ a 

low learning rate, which is useful for achieving stability in training.  

The model’s performance was assessed using standard measures for medical picture 

segmentation. The Dice coefficient, a statistic used to compare the pixel-wise agreement 

between the predicted segmentation and the ground truth mask, is a fundamental 

measure. Pixel accuracy is also recorded to provide a simple metric of the proportion of 

properly found pixels over the total number of pixels, allowing for a direct assessment 

of segmentation success. 

The training of the model will be conducted for 100 epochs with a batch size of 8. This 

batch size was designed to achieve a balance between the memory limitations and the 

need for the accurate gradient estimation. Small batches allow for more frequent weight 

adjustments, resulting in a smoother and finer-grained learning trajectory. 

An EarlyStopping callback is a vital component of training. This approach monitors 

validation loss during the training process and terminates training if no progress is 

observed after 12 consecutive epochs. In addition, this helps both to save computational 

resources and avoiding falling into the trap of overfitting. Such situations often occur in 

the process of machine learning when a model absorbs something that is just noise 

coming from training data, rather than universal patterns being learned by it. What 

needs to be emphasized is the “restore_best_weights” option, as it guarantees that the 

network will go back to the point of the best accuracy on the validation data, thus going 

into the most optimizing learning phase.  

 

 

 

 

 



22 
 

3.2.4 Model Results 

The results of the training process are as follows:  

 

Fig. 2 

From Fig. 2, which shows the trends in training and validation accuracy, loss, recall, 

and precision over the epochs, we can derive several key insights into the performance 
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and generalization capability of our model. This graph is useful for analyzing how 

effectively the model learns and verifies across many measures as training occurs.  

The training loss curve gives information about how effectively the model learns the 

training data. The steady decrease in the training loss suggests that the model 

successfully learns the underlying patterns in the training dataset. Simultaneously, the 

behavior of the validation loss is important because it displays the model's ability to 

generalize to new unknown data. In this case, the validation loss is consistent with the 

training loss, showing that the model is not memorizing the training data but rather 

learning generalizable characteristics. This constant loss across the training and 

validation stages indicates a well-balanced learning process that avoids the frequent 

dangers of underfitting and overfitting. 

The accuracy scores for training and validation are increasing, indicating that the 

model’s ability to segment images improving on a continuous basis. Growing validation 

accuracy, especially supported with growing training accuracy, is particularly 

encouraging because it demonstrates the model's stability and effective translation from 

training to validation data. This improvement in accuracy demonstrates the 

effectiveness of the model design and training schedule. 

Because the cost of false negatives and false positives is significant, recall and precision 

are critical in medical imaging task. Recall measures a model’s ability to identify all 

relevant instances within a dataset. In medical imaging, this would mean the model’s 

effectiveness in detecting all areas affected by a disease. High recall indicates that the 

model misses few of these areas, which is crucial for ensuring no potential issues go 

undetected. Precision, on the other hand, assesses the accuracy of the predictions made 

by the model. It reflects the proportion of the model’s positive identifications that were 

correct. In the context of medical imaging, high precision means that when the model 

identifies an area as diseased, it is likely to be accurate, minimizing the risk of false 

positives and unnecessary treatments. In clinical applications, maintaining a balance 

between recall and precision is essential because of the significant consequences of 

errors. High recall is critical because it ensures that the model misses as few instances of 

a condition as possible, which is vital to avoid overlooking any potential diseases. On 

the other hand, high precision is necessary to ensure that when a condition is identified 
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by the model, the diagnosis is accurate, thereby reducing the likelihood of misdiagnosis. 

Misdiagnosis can lead to inappropriate treatments, thereby adding unnecessary risks and 

complications. Hence, both high recall and precision are crucial to minimize errors and 

improve patient outcomes. 

In summary, Fig. 2 shows an upward trend in model training and validation stages for 

key performance indicators. The model performs a clear demonstration of its ability to 

learn as well as generalize well enough to be utilized in critical areas such as medical 

image analysis. The increase of training and validation accuracy, recall, and precision, 

shows that the model is qualified to be applied in the real-world settings.  

The following results can be seen by applying this model to the test data: 

  Metrics for Test Data 

Accuracy Score 98.662659 

Precision Score 92.953053 

Recall Score 89.058874 

F1 Score 90.964305 

specificity 99.447932 

dice Score 90.964305 

sensitivity 89.058874 

Table 1 

Table 1 shows the model's evaluation metrics, which comprise measures of its accuracy 

in segmentation. The resulting metrics are as follows: 

Accuracy Score: The model has an accuracy of 98.66%, which is highly reliable and has 

a good predictive capability on all the test data. This means demonstration of the 

model’s ability to discern between the ill and healthy pixels.  

Precision Score: This statement shows the model's ability to make more correct 

predictions than mistakes with a precision score of 92.95%, which is calculated with the 

relation of the true positives to all positive’s predictions. This elevated level of precision 

is very important in therapeutic settings because false positives (healthy regions that are 

mistaken for unwell) can cause unnecessary procedures.  
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Recall Score: The achieved 89.06 % recall shows the good model performance. It can 

locate all the real places of disease in test pictures. This is of much higher significance 

when we deal with medical diagnostics in which you could not find a disease and the 

consequences would be bad.  

F1 Score: The F1 Score of 90.96% is even more remarkable as it is a balanced precision 

and recall and thus, a single measure of the model’s robustness.  

Specificity:  One of the model’s key features is its high negative predictive value which 

can be seen from the specificity of 99,44%. This high specificity is key in averting the 

situation whereby patients who are not suffering from the disease are falsely determined 

to be in possession of it.  

Dice Score: The Dice Score for this model is 90.96%. This represents how well the 

model overlaps. Such score represents the measure of model's predictability in terms of 

detecting true positives and discriminating diseased area dimension and explicitness.  

Sensitivity: The sensitivity score of 89.05% once again shows that the model is able to 

accurately identify the positives. It reinforces the recall plan and reviews the model as 

one that has the capability of diagnosing right all-important cases of disease or 

irregularities.  

This model shows quite high level of accuracy in recognizing between malignant and 

benign pixels. Several observations concerning the U-Net model's effectiveness in 

tumor segmentation may be drawn from a visual examination of Fig. 3 shown below, 

which compares the model's predictions to actual segmented pictures from a section of 

the test data. The model segments the tumoral regions across the exhibited pictures with 

an excellent level of precision. The model can precisely identify and define the tumor 

areas. For clinical applications, this exact delineation is essential since it guarantees that 

the afflicted regions are correctly recognized for diagnosis and subsequent therapy 

planning. It soon becomes evident, though, that there are situations in which the model 

does not precisely segment the tumor regions, or where the delineation is not optimal. 

Similarly, in certain images, the segmented tumor area boundaries may not be correctly 

defined, resulting in somewhat erroneous delineation. Despite significant flaws, the 

model is still able to accurately represent many tumor locations. Even when the 
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segmentation is imperfect, the model correctly recognizes and highlights the presence of 

tumoral tissue, proving its overall efficacy in tumor segmentation tasks. 

Whether U-Net model really pertains to clinical practice hinges heavily upon its 

segmentation performance on tumor area. The model has high level of accuracy in most 

cases, which shows that it can be a useful tool for clinicians to identify and evaluate the 

presence of tumor in medical images. Although there is still need for improvement in 

terms of tumor border delineation and alignment, the model's capacity to accurately 

identify tumoral tissue underscores its applicability in both treatment planning and 

diagnostic decision-making processes.  

To conclude, Fig. 3 provides illustrated validation of the U-Net model's performance in 

tumor segmentation, highlighting its capacity to properly detect and discriminate 

tumoral areas in medical images. Despite the uncommon fault, the model's overall 

performance suggests that it is acceptable for clinical application, where it can help 

medical professionals identify and evaluate cancers. 
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Fig. 3 
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3.3 Image Classification 

This section of the thesis focuses on the utilization of a specific convolutional neural 

network (CNN) architecture, DenseNet121, to classify breast cancer. The DenseNet121 

architecture has a high network density that is recognized by the reuse and sharing of 

features between different layers. This promotes the information flow and feature 

extraction across the network levels. The aim is to create a reliable and trustworthy 

model that can distinguish between the malignant, the normal and the benign breast 

tissue for the ultrasound images. Diagnostic decision-making including prognosis, 

choice of therapy, and diagnosis become more effective when breast cancer is 

classifiable. Conventional diagnostic methods often include pathologists doing manual 

examinations, which can be unpredictable and subjective. DenseNet121 is the perfect 

choice for medical image classification jobs since it provides many benefits. The 

model's dense connection strategy makes it possible to capture spatial relationships and 

hierarchical characteristics within the images.  

To assess the performance of the constructed model metrics like accuracy, precision, 

recall, and F1 score will be used. Another thing that will be done is to test the model's 

extrapolation skills by the means of cross-validation. 

3.3.1 Data Preparation for Classification 

As for the Segmentation model, the first stage in developing a deep learning model for 

the classification is to split the data into different subsets for training, validation, and 

testing. The ‘train_test_split’ function from the sklearn is employed for the division of 

the dataset into the testing and training set. By implementing the `model_selection` 

module, the set of images with labels is chunked into 3 sets for training, validation, and 

testing. Data preparations for this classification process as segmentation method uses 

data_preparation idem class from section 3.1 but differs in classifications-related 

specifications like enhancement and labeling. 

3.3.2 Description of DenseNet121 Architecture 

DenseNet121 is a pre-trained deep learning architecture that excels in processing 

images due to its unique design and training on the extensive ImageNet dataset. This 
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model is particularly adept at extracting a wide array of rich and generalized features 

from a large collection of images. What sets DenseNet121 apart is its highly 

interconnected structure, where each layer is directly connected to every subsequent 

layer in a feed-forward fashion. This dense connectivity facilitates the seamless 

transmission and reuse of features across the network, enhancing gradient flow during 

training and improving the efficiency of feature extraction. This structure makes 

DenseNet121 especially effective for tasks like classifying breast cancer, where precise 

and robust feature detection is critical. 

DenseNet121 is modified at the top layers to make it suited for our breast cancer 

classification objective. In other words, we deleted the old classification head and 

replace it with a new set of layers which are designed to be especially suitable for our 

categorization application.  

1. Global Average Pooling 2D Layer (GAP): Global Average Pooling 2D is our 

initial layer. This layer aggregates the spatial features from all feature maps. 

GAP is a nice way to make the connection between the convolutional layers and 

the fully connected layers, and it also helps in the reduction of the 

dimensionality of the feature maps.  

2. Fully Connected Dense Layer: Following the GAP layer is the fully connected 

dense layer with 256 neurons and the activation function Rectified Linear Unit 

(ReLU). This layer can gather very elaborate structures of such feature space 

and thereby obtains a nonlinear learning capability.  

3. Dropout Layer: We include a dropout layer with a dropout rate of 0.2 to reduce 

overfitting and enhance model generalization. During training, dropout 

randomly deactivates a portion of neurons, pushing the network to acquire more 

resilient and broadly applicable properties. 

4. Final Dense Output Layer: The last layer in our redesigned DenseNet121 

architecture is a dense layer with 3 neurons, representing the 3 classes—normal, 

malignant, and benign—in our classification job. In this layer, we use a softmax 

activation function to create a probability distribution across the class labels, 

which allows for effective classification. The model is compiled with the Adam 

optimizer, the sparse categorical cross-entropy loss function, and a learning rate 
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of 0.01. The training process is conducted with the use of the ModelCheckpoint 

callback that is used to save the best model based on the validation accuracy.  

DenseNet121 is a huge improvement for the breast cancer classification because it has a 

dense connection and pre-trained features for the efficient feature extraction and 

classification. The model will be able to recognize images of breast tissue even after it 

has been altered and trained on our own particular data. The new method will make the 

patient reception and the diagnosis of the condition more effective in the clinic. 

3.3.3 Training Procedure 

To make sure that the model is reliable and able to cope with new data, the cancer 

classification training has been done using the StratifiedKFold cross-validation 

technique, where the data has been split into 5 folds, and it has been trained and tested 5 

times. This strategy is, in particular, especially important for decreasing overfitting, 

enhancing model generalization, and getting accurate performance evaluations.  

The batch size is set to 128 and the models trains for 25 epochs. Both training and 

validation accuracy are used to measure the model's training progress, and 

ModelCheckpoint is used to save the best model (as determined by the validation 

accuracy). This approach guarantees that the most universally applicable model is 

captured over all epochs. 

The generalization potential of the model is evaluated by analyzing its performance on 

the held-out test set after each fold has been trained. To measure the model's 

performance on omitted data, test accuracy and loss metrics are calculated. The average 

test accuracy and loss over all folds is computed by adding the acquired test accuracy 

and loss data from each fold. This offers a thorough assessment of the model's overall 

effectiveness and capacity for generalization across various dataset subsets. 

By following this training and evaluation method, we ensure the development of a 

robust and dependable breast cancer classification model, capable of accurately 

distinguishing between benign, malignant, and normal breast tissue with high accuracy 

and generalization. 



31 
 

3.3.4 Model Results 

The performance of the model on one of the folds is visually represented below, 

displaying the training and validation curves for both loss and accuracy over the epochs. 

 

                                                            Fig. 4                                                                                  Fig. 5 

The loss curve (Fig. 4) shows the training and validation loss over the epochs. The 

model is properly acquiring the hidden patterns in the training data and not overfitting. 

The training and validation accuracy over the epochs are depicted in the curve of 

accuracy (Fig. 5). They are constant across the epochs, much as the loss curve. The 

convergence of the training and validation accuracy curves shows that the model is 

learning effectively from the training data and can generalize well to unseen data. The 

visual analysis of the loss and accuracy curves proves that the model is trained 

optimally, with no signs of overfitting.  

The average accuracy for the model on the test data from the K-Fold Cross Validation is 

92.92% and the average loss is 0.20742, showing a high strength in the classification 

task. Looking at the evaluation on the test data we can analyze the model’s performance 

with more metrics results together with the confusion matrix. 

 
Metrics for Test Data 

Benign Precision 0.939929 

Benign Recall 0.970802 

Benign F1 Score 0.955116 

Table 2 

 



32 
 

 
Metrics for Test Data 

Malignant Precision 0.956896 

Malignant Recall 0.902439 

Malignant F1 Score 0.928870 

Table 3 

 
 

Metrics for Test Data 

Normal Precision 0.919354 

Normal Recall 0.890625 

Normal F1 Score 0.904761 

Table 4 

The performance metrics reported above offer a view of the classification model's 

ability to classify benign, malignant, and normal classes in Breast Cancer Ultrasound 

images. 

The model proves excellent precision and recall for the benign class, Table 2, with 

values of 93.99% and 97.08% respectively, resulting in a strong F1 score of 95.51%. 

This implies that the model has a low false positive rate and is especially good at 

identifying benign situations. 

Can be seen in Table 3 that the malignant class has an accuracy of 95.69%, but a recall 

of 90.24%, indicating a little larger chance of missing malignant instances than benign 

ones. Nonetheless, the resultant F1 score of 92.89% shows that the model balances 

precision and recall effectively for malignant detections. 

The performance metrics for the normal class, Table 4, show a precision of 91.94% and 

a recall of 89.06%, leading to an F1 score of 90.48%. Although these figures are slightly 

lower than those for the other 2 classes, also due to the lower number of instances in 

this class, they still show robust performance in correctly finding normal cases and 

differentiating them from pathological ones. 
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Fig. 6 

The confusion matrix [Fig. 6] offered gives a detailed insight into how the classification 

model differentiates between benign, malignant, and normal cases: 

• Benign: 

o True Positives: 266 cases were correctly predicted as benign. 

o False Positives: 5 cases were incorrectly predicted as benign that were 

normal, and 3 that were malignant, making a total of 8 cases 

misclassified as benign. 

o False Negatives: 8 benign cases were misclassified (3 as malignant and 5 

as normal). 

• Malignant: 

o True Positives: 111 cases were correctly identified as malignant. 

o False Positives: 2 cases were incorrectly labeled as malignant, which 

were normal. 

o False Negatives: 12 malignant cases were incorrectly classified as 

benign, indicating a challenge in detecting some malignant conditions 

effectively. 



34 
 

• Normal: 

o True Positives: 57 cases were correctly predicted as normal. 

o False Positives: 7 cases were incorrectly predicted as normal (5 benign 

and 2 malignant). 

o False Negatives: 7 normal cases were misclassified as either benign (5) 

or malignant (2). 

Overall, these findings demonstrate the model's strength in medical picture 

categorization, which is essential for dependable diagnostic help in clinical settings. The 

model has good prediction accuracy and balanced precision-recall trade-offs across 

several classes. 

3.4 Models Evaluation Method 

Thus, the final stage is the combination of the DenseNet121 Classification model and 

the U-Net segmentation model to generate a unique output for the images. A function 

labeled plot_predicted_actual_images has been created for this purpose. This function 

gives the plot of the test images removed at the beginning, together with the predicted 

mask and the predicted label, and the actual mask and the class.  

To achieve this, the function repeatedly goes over each image and makes predictions 

using both models. Next, it leaves the mask as is if the prediction is Normal, colors it 

red if Malignant, and colors it green if Benign. 

The function takes several parameters: 

• `model`: The trained model used for prediction (combined segmentation and 

classification model). 

• `images`: A list of input images to be evaluated. 

• `masks`: A list of corresponding ground truth masks for each image. 

• `labels`: A list of true labels for each image. 

• `masks_pred`: A list of predicted masks generated by the segmentation model. 

• `class_names`: A list of class names ('Benign', 'Malignant', 'Normal'). 

The function initializes the figure size to ensure clear visualization. It sets initial 

variables for the number of images, rows, and columns to be displayed in the 
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visualization. Then, it iterates over the images in the input data, facilitating their 

representation in the specified format. This systematic approach ensures that the images 

are displayed in an organized manner, optimizing their visibility, and aiding in effective 

analysis. 

It uses the combined model for all images to get the expected probability and class 

label. It then takes the real class label out of the `labels` parameter and puts the original 

image next to the predicted mask and label. The mask is visually depicted via the 

application of the true mask over the original picture, using green for benign and red for 

malignant regions. This technique provides an adequate solution that names each plot 

correctly as both, the real and the expected ones.  

The visualizations show the outcomes of the combined segmentation and classification 

algorithms' performance. To measure the reliability and effectiveness of the models in 

detecting diverse types of anomalies in medical pictures, users may compare and 

evaluate the predicted and the original labels and masks.  

In conclusion, this function is a helpful tool for the evaluation of the combined 

segmentation and classification models, thus, giving a complete picture of how well 

they work on test data. 

4. Results and Discussion 

This section is dedicated to the results of the function explain in section 3.4. Below the 

prediction on the test images are shown. The left side of each image is the prediction 

with the right side being the actual tumor image with the corresponding mask. 
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The images on the left, [Fig. 7-

8], show the Benign Cancer 

images from the test data.  

It is clear how the model can 

segment the images in a precise 

way, although the models still 

make a couple of mistakes:  

Segmentation 7: The model for 

the seventh prediction is correct 

in finding the tumor but it is not 

accurate in segmenting the mask 

in its entirety.  

Misclassification 19: The model 

classified the Benign Tumor as a 

Normal Tumor.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Fig. 8 
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The next pair of images, [Fig. 9-

10], show the Malignant Cancer 

of the test data.  

The mistakes the model made 

are the following:  

Segmentation 1: The model is 

correct in the location but does 

not delimit the Tumor correctly.  

Segmentation 15: The model is 

correct in the location but does 

not delimit the Tumor correctly. 

Segmentation 19: The predicted 

location is partially correct 

because the model segments a 

tumor area that is not present in 

the actual tumor.  

There are no Classification 

mistakes. 

 

 

 

 

 

 

 

 

 

Fig. 9 Fig. 10 
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The last pair of images shown, 

[Fig. 11-12], are from the 

Normal Class.  

The Segmentation model here is 

not used since there is not a 

mask to segment.  

The classification model does 

not make any mistakes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 Fig. 12 



39 
 

The U-Net segmentation model on these 60 images obtained a pixel accuracy of 

99.12%, with a precision of 91.29% and a recall of 94.4%, which results on an F1 score 

of 92.82%. Also, the model obtained a specificity score of 99.42%, a Dice score of 

92.82% and a Sensitivity score of 94.40%. 

The DenseNet121 Classification model on the same images obtained an accuracy of 

98.33%, misclassifying only one Benign Cancer as a Normal Cancer. 

5. Conclusion 

To sum up, this research is a great leap forward in the use of Artificial Intelligence in 

the medical imaging of breast cancer, specifically, the detection of it. The AI methods 

that have been integrated such as the combination of DenseNet121 for the classification 

tasks and U-Net for segmentation have made breast cancer detection more accurate and 

efficient.  

5.1 Strengths and Weaknesses of the Models 

The probe of the created framework on the collection of different test datasets showed 

excellent performance metrics, such as high scores for accuracy, precision, recall, and 

specificity. These indicators altogether verify the effectiveness of the models in 

accurately detecting the diseased areas and distinguishing between the benign, 

malignant, and normal areas presentations. 

Although the benefits of these innovations are undeniable, it is imperative to be aware 

of the still present difficulties and restrictions. The test findings showed that there were 

some of the misclassification and segmentation problems that had to be corrected, thus, 

the AI-based diagnostic techniques still need to be improved and optimized. The above 

problems show the need of constant, joint work from different disciplines that make a 

good combination of clinical knowledge and modern technology. Such collaboration is 

the main factor in eliminating interpretive subjectivity and increasing the segmentation 

accuracy.  

The emerging of the present difficulties creates the basis for the subsequent research. 

Accompanied by the studies that should be conducted, the model architectures should 
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be systematically improved, the training protocols should be refined, and the 

interpretive biases should be minimized. The so-called efforts must be backed up by 

academic research and the extensive clinical validation to make sure that the 

advancements are applied in the real-life clinical practice. Through the realization of 

these directions, we can improve the diagnostic accuracy and thus fortify the diagnostic 

weapon against breast cancer.  

Besides, the consequences of this study have a wider range and are not just limited to 

the technical aspect. The successful implementation of AI in this situation highlights the 

possibility of AI-guided diagnostic tools to change the face of medical imaging. The 

actualization of the potential of these technologies will be dependent on the 

uninterrupted collaboration among scholars and the unremitting quest for translational 

excellence. This combination of ideas and approaches will assist patients by providing 

them with a more accurate and reliable diagnosis, which is critical for the early 

detection and treatment of breast cancer. 

5.2 Final Remarks 

Briefly, this study is a significant addition to the already large field of knowledge on 

AI-driven medical imaging. It reveals a bright way ahead for breast cancer detection, 

which is accurate and speedy diagnosis and there is better patient success. The 

forthcoming of the breast cancer diagnosis will be regulated by the combined efforts of 

the clinical experts and the AI researchers who will help to bring the maximum of the 

modern technologies in the utilization. By taking the extra steps to prevent the later 

stages of breast cancer, sustained collaboration, and the constant striving for excellence, 

we can make important advances in the attempt to eliminate breast cancer, thus paving 

the way for a future where early and precise diagnosis is the norm, leading to better 

prognosis and survival rates for the worldwide patients. 
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