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Abstract

One of the newly developed practices of sustainable finance is the need to consider this

impact and to work together with the challenges faced by the increasingly warmer earth.

This thesis is concerned with the inter-relationship between the financial stability and

the climate risks, seeking to investigate how the multiple risks to the capital markets

stem from systemic climate risks to borrowers. Considering the major threats of climate

change and the climate change related issues are intricate, evaluating the financial impacts

of climate change is very opportune and most importantly essential.

The core of our investigation pivots around the question: Do systematic climate-risk

factors play a role in equities’ creditworthiness? To find the answer to this question, we

develop a methodological frame that uses a panel regression with both empirical and

quantitative analysis focus on N stock’s CDS spreads along different maturity of its

credit default. This research works on systematic climate risk factor model building,

which is time-varying with equities’ CDS spread and a climate measure of risk factors

that influences our analysis.

This methodology is structured through three fundamental stages. The building of

a dataset composed of N stocks and the corresponding CDS spreads is at par with the

systematically assembled climate risk factors that reply the iShares Global Clean Energy

ETF. This step entails a basic understanding of the capital market dynamics and the

vulnerabilities posed by climate change. The application of a bivariate GARCH model

to each asset, pursuivantly, takes the moment of dynamics of the log-difference of CDS

spreads and a chosen climate risk factor. This econometrics analysis is supported by using

the dynamic autoregressive model, the AR(p), for the CDS log-linear differences and the

means of the climate risk factors.

From the estimation of the previous steps, this study examine the probability that

3



a firm’s spread will exceed a predefined threshold based on distressed climate events.

This investigation analysis is to provide insights into the inconsistency of the response of

different firms, viewed in terms of creditworthiness, through the perspective of systemic

climate-risk factors.

This thesis is placed at the intersection of environmental and financial research, en-

abling to see the role that climate change play in the banking sector. Through a systematic

filter of climate-change risk factors, it strives to bring to light the diverse vulnerabilities

of firms to stresses related to climatic changes. This study is more than just an academic

exercise; it has significant implications for investors, policymakers, and businesses trying

to manage and mitigating the effects of climate change risks in the financial system.
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Chapter 1

Introduction

“Over the 40 years of my career in finance, I have witnessed several financial crises and

challenges — the inflation spikes of the 1970s and early 1980s, the Asian currency crisis in

1997, the dot-com bubble, and the global financial crisis [. . . ] Even when these episodes

lasted for many years, they were all, in the broad scheme of things, short-term in nature.

Climate change is different”, as BlackRock’s CEO Larry Fink stated in 2020. Climate

change is one of the challenges of the last century, different from the other crises faced as

it directly impacts all of our aspects of life, and creates concerns for future generations

(Black and Thomson, 2023).

A low-carbon economy necessitates changes in consumer attitudes, technology, and

legislation to help economies shift to a new framework. Those changes include risks,

named climate transition risk (CTR), for the firm’s cash flows and their unpredictabil-

ity, which may impair the debt repayment capabilities of enterprises and, consequently,

increase their credit risk. The pricing of stocks and bonds as well as the decisions made

by institutional and private investors regarding their portfolios have all been shown to be

influenced by CTR (Monasterolo and De Angelis, 2020). It is currently unknown, though,

how different organizations’ credit risk may be affected in relation to how vulnerable they

are to CTR.

Though this knowledge is essential for business investment decisions aimed at limiting

the impact of climate change and implementing appropriate climate policies, it is yet

unknown how credit risk across enterprises may be altered according to their vulnerability

to CTR (Krueger, Sautner, and Starks, 2020). Regulations, technology, and consumer
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attitudes must all be adjusted in order to help economies adjust to the new framework that

comes with the shift to a low-carbon economy. These adjustments include risks for the

cash flows and volatility of the company, known as climate transition risk (CTR), which

could reduce the ability of businesses to repay their debt and raise credit risk because of it

(Reboredo and Otero, 2021). It has been established that climate risk plays a significant

role in the portfolio decisions made by institutional and private investors, as well as in

the pricing of stocks and bonds (Bolton and Kacperczyk, 2020).

In this study, we examine how the market of credit default swaps is conditioned by

the climate risk factor and how this risk is exposed during the period considered. The

proposed dataset refers to a brown-minus-green risk factor expressed by an indexed Ishares

Global Clean Energy Ucits ETF that has as benchmark the S&P GL CLEAN ENERGY,

together with the standard determinants of the credit risk implied in the CDS spread

market.

Given the annual time horizon, the metrics of implicit credit risk in the credit market

that we collect are 1 and 5 year CDS to cope with a more detailed analysis. The data

covers world large banking firms over the period of 2023-2024. The data sources used

in this study are from commercial data and providers used by financial institutions. For

instance, the CDS data is collected from IHS Markit and the transition risk indicators are

collected from Bloomberg and Refinitiv. The choice of these data sources represents the

possibility of representing the environment of the data sources available to CDS market

players, to make the analysis as truthful as possible.

The objective of the analysis investigate the promotions of the climate-related transi-

tion factor on CDS-implied credit risk by a panel regression and a difference-in-differences

approach. The findings reveal that CDS spreads at the 1 and 5-year tenor, associated

with a medium-term credit risk time horizons, are higher for firms with higher BMG

emissions. These differences appear to be consistent with a causal relationship. Indeed, a

differences-in-difference analysis near the UN Paris Agreement of 2015 indicate that these

six months froze a signals and the force climate-related policies and market confidence

changes (United Nations Framework Convention on Climate Change (UNFCCC), 2015) .

Specifically, high polluting banks have notably higher CDS spreads than the comparison

group of all firms. With a view to the mentioned objective, we need to cut emissions to

the extent that they will almost be equal zero by 2050. This rundown of IPCC findings
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has shown, that on one hand there has been narrowing of the gap between the current

situation and the targeted emission reduction paths, however on the other hand the gap is

still widening and creates an outlook of somewhere between 3°C and 4°C warming (Dell,

Jones, and Olken, 2014).

The empirical study shows how the world’s largest banks react to climatic events, ana-

lyzing the dynamics of movements between CDS spreads and the BMG factor, for which we

utilize the dynamic conditional correlation (DCC) derived from the multivariate GARCH

model. The advantage of this methodology is that it directly shows the change in the

co-movement of CDS spreads of banks and green factors. The more significant correla-

tion of the CDS markets, the more they generally co-moved and were integrated. Due to

dependence on time, both correlation dynamics are the correlation pattern of change the

volatility of CDS spreads is modeled simultaneously by the vector autoregressive model.

Conforming to the time dimension of data series work gives the opportunity to take into

account the change in the integration of them over time.

This thesis is structured as follow: Chapter 2 covers the estimation of DCC-GARCH

models for individual stocks, the sensitivity analysis of various climate risk factors, the

identification of the thresholds for climate events, and the cross-industry case comparison.

The data and methods used are analyzed within Chapter 3, which includes the study of

the selected stock portfolio, the comprehensive analysis of CDS spreads correlated to the

systemic climate risk factor, the description of the DCC-GARCH model correlated to the

selection of the dynamic component for the reasearch. Around Chapter 3, we illustrate

the time-varying dynamics in CDS spreads and AR models for capturing the dynamic

relationships in financial data. Finally, Chapter 4 summarizes the key findings discussing

their implications and limitations, and suggests further work.
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Chapter 2

Data and Methodologies

This second chapter outlines the research methodology and data analysis techniques used

to study credit default swap (CDS) dynamics, the impact of systemic climate risk on

financial markets. The latter two are modeled using a DCC-GARCH multivariate model,

which we will explain in detail in this chapter, using a dynamic component to best develop

it. The chapter is developed in order to methodically divide the various tools and data

used, ensuring a complete understanding of the analytical bases that support the thesis.

2.1 Overview of the Selected Stock Portfolio

My in depth analysis into ten bank stock is divided into two branches, Eurozone banks

and those issuing their shares in US dollar and US banks that are presented in US dollar

basis. Eurozone banks are compared using dollar exchange rates from European into US

currency. This study employs an in-depth framework of analytics that are both on short-

term 1-year Credit Default Swap (CDS) spreads, analyzed daily, and on the long-term

5-year Credit Default Swap (CDS) spreads, that provides a result of a complex nature of

each bank health and risks (Collin-Dufresn, Goldstein, and Martin, 2001).

In global banking business, these ten banks1 are recognized as the largest sources and

most powerful contributors in the worldwide financial system, having their own positions

in the financial field. The banks in focus are: In the United States, JPMorgan Chase

1The information about this banks are available on their own website or in this link
https://www.spglobal.com/en/.
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& Co., Goldman Sachs Group Inc., Bank of America Corporation, Wells Fargo & Co.

and Citigroup Inc. Join the regional representatives from the United Kingdom, France,

Switzerland and Germany, such as HSBC Holdings plc., Barclays PLC, BNP Paribas,

UBS Group AG and Deutsche Bank. Consequentially, they are commonly defined as the

”systemically important” (Too Big Too Fail) financial institutions which is characterised

by their large market size, global reach and sheltering impact.

Is important to highlight the actual framework of different banks, which will outline

their traditional evolution, organizational model, financial goals, strategic activities and

their huge worldwide network. In addition, the study will also measure the regulative

environments and markets conditions the banks apply to, with this knowledge on their

performance in global finance as well as their strategies that follow with the new and

evolving economic settings as well as regulation requirements.

The focus is on what green banks do in the implementation of sustainable finance and

how these banks will deal with the difficulties that may be presented in the face of climate

change and social responsibility. Such culmination of their efforts covers their stringent

requirements for green technologies, incorporation of ESG (Environmental, Social and

Governance) criteria and their implementation towards a more sustainable and inclusive

global financial infrastructure. This additional layer of analysis will offer insights into how

these major banks are not only financial entities but also pivotal players in the broader

context of global sustainability and ethical banking practices.

The CDS data of the 10 stocks taken into account, represent the financial market trend

in the last year, reflecting their fluctuations and price differences. The data provided

2.2 CDS spread and interest maturity

Credit risk is arguably the greatest problem which banks fight since it is one of the

major risk factors that threaten soundness of global financial systems. Among the credit

derivative devices, Credit Default Swaps (CDS) however serve a vital role in the analysis of

market participants about the measure of risk stemming from entities such as sovereigns,

firms and banks (Annaert et al., 2013). Supporters regard this instrument as a useful

measure of the credit risk while opponents tend to put forward the downside of the
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availability of such loans for the governments to default. The investor Warren Buffett, in

his 2002 Berkshire Hathaway Annual Report, had widely accepted the CDS as ” a mass

destructive weapon” financially (Inc., 2002). In turn, financial institutions along with the

regulators are facing the task of creating working approaches for examine and control of

the credit risks, especially in the field of corporate debt securities, issued by the banks.

CDS contracts on them are capable of leading to the uncontrolled financial effect.

In recent years, the credit risk mitigation tools have come to the derivatives market

place to address the credit risk of the counterparties. Such system help entities to be

able to defray credit risk from one party to another through the CDS being the most

renowned credit derivative. JP Morgan, under the leadership of Peter Hancock, is the

founder of the first Credit Default Swap (CDS) contract back in the early 1990s because

the credit risk transfer between institutes was largely talked about during that period.

In reality, a CDS is a derivative financial contract which protects an investor against a

predetermined trigger event that happens each day and in exchange for a fixed single

fee. An ”insurance buyer” on one side of the contract buys a pooled risk against a credit

loss event, and sells the old debt to a ”protection seller”, receiving the premium either

annually or semiannually and obligated to pay eventually the predetermined amount if a

credit event occurs.

Figure 1: Plain vanilla CDS products work

A CDS seller pays the buyer a spread which is determined as the ratio in basis points

between the notional value of the CDS, and the cost. The seller receives ongoing payments,

and when a credit event happens is responsible for paying back its amount. Panel of the

recovery rate, which is the ratio or the part of the debt that is recovered represents the

amount that the party has to pay the protection seller. The loss is estimated to this sum

of money which is equal to the original debt amount (par value) minus the debt collection

value. The CDS premium is traditionally applied as a critical diagnostic tool to appraise
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credit risk of the indicated company (Ericsson, Jacobs, and Oviedo, 2004).

Protection seller Protection buyer

Does not own the underlying credit instrument Owns the underlying credit instruments

Sells protection on a credit position Buy protection against a credit event

Long credit exposure Short credit exposure

Figure 2: Credit Default Swap transaction

Figure 2 summarizes the key characteristics of a CDS contract’s between two counterpar-

ties.

Should be important to consider the direction of cash flows in this operations. The

CDS contract involves two main cash flows:

1. A settlement payment from the protection seller to the buyer if a credit event occurs;

2. A periodic premium paid by the protection buyer to the seller.

CDS contracts can be seen as insurance policies designed to protect the buyer from

defaults of the underlying entity, when in case an event of credit is declared, protection

seller will compensate the buyer with the previously decided premium. In turn, the buyer

will be paying regular premium prescribed by the earlier agreed CDS premium. Unlike

a usual insurance contract, the buyers of a CDS are not required to own the underlying

asset to be compensated, which implies that participants of the market are free to gamble

with credit risk, not being actually in the position or not possessing the underlying asset

at all.

CDS contracts can be classified into three main categories: underly a single-name

CDS, CDS indices, and basket CDS: underlies single-name CDSs, CDS indices, and basket

CDSs.

ECB defines Single-name CDS that insulate impact on default of one selected corporate

or sovereign entity (European Central Bank, 2009). The CDS indices are designed in a

way to provide a kind of credit insurance against a ”default risk on the pool of names in

the index.” One of the key features of such a contract is, that a credit event does not result
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in a termination of the contract itself (Amato and Gyntelberg, 2005). Hull and White

(2000) define the difference between the single and multicomponent reference entities as

the prefix of the ”basket”. At the basket CDS, the first default occurring reference entity

determines the payment (Hull and White, 2000).

The credit event is the certain happening, in which obligatory payment of the protec-

tion seller’s payment activates. The valuation of the performance is not an incidental case,

it is unique and requires special terms from the parties who are contractual and can be

similar or different depending on the peculiarities of the agreement between the parties.

An event of it kind includes the reference entity being unable to fulfill its obligations to

the entity in question (IPCC, 2014). Finally, another credit event can be triggered by the

fact that a loan is being delayed in paying.

The CDS premium (also referred to as spread) is a key contractual component which

is normally created in basis points, bps, relative to the amount of notional. This spread

reflects the fact that the market is aware of the credit risk of the organization permitted.

Through this thesis one will contribute to the study of the factors that influence the CDS

spread for European banks and the subsequent assessment of the predictive power of CDS

premium for the avoidance of financial distress and stabilization of financial system as the

European banks have the systemic importance.

2.3 Construction of the systemic climate risk factor

To assess the data provided by the spread of CDS of the world’s best banks in building

climate factors, annual returns measured by the duration of the CDS are critical. In our

specific case, the CDS Spread are taken on annual frequency for 1y and 5y, they were

chosen specifically for better estimation.

Over the past three decades the global application of climate-related policies has got

power with rapidly increasing success rates (Acharya et al., 2017). Many of the policies,

like carbon tax and green subsidies, are used to address the issue of climate change,

but at the same time, their economic risks can be additional. Such risk, referred to

as transition risk, is an indirect economy through banks. Borrowers, who are affected

negatively by transition risk, have their repayment capability weakened if their incomes
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reduce in proportion to the risks faced. In turn, this process then adversely affects a

bank’s profitability, at the time and in the future. This might even lead to a crisis in

the banking system if banks lack sufficient funds. Such a falling financial state makes it

harder for banks to lend money, thereby stifling economy.

The decision makers and the enterprises, alike, have to comprehend the scope of several

climate policies and the frameworks being formulated to deal with climate-related risks on

the financial system as soon as possible. What is worth noting as well, the total literature

on the systemic risk measurement has provided some useful indexes in the context of

financial crises, but none of them are used to understand the climate-related risks at the

present moment (Schroders, 2021).

As part of building the systemic climate risk factor, we rely on the carbon emission

coefficient as an analytical tool for climate and use the Credit Default Swap (CDS) range

to validate our measuring device.

The data given are publicly data. All 10 banks to be found in this climate consider-

ation have their operational activities resulting in a carbon footprint contribute to their

presence; things like energy used, travel, and other business emissions. Many of these

banks have already used sustainable initiatives, energy projects, or financially responsi-

ble to it that completely changes their behavior to reduce the carbon footprint, backing

renewable (Global, 2020).

Nowadays, there is more emphasis on the aspect of the transparency and disclosure

for climate-related risks. Such banks might be under the regulatory process or even

voluntarily publish their activity in the climate risk matter against the accompanied

efforts in its mitigation.

Based on the climate risk rating reports of all banks, we arrive at the common factor

that is determined by how the fluctuations of market variables, such as interest rates,

foreign exchange rates, equity and commodity prices, credit spread or implied volatilities

affect the value of assets as short-term and long-term price volatility (Alexander, 1998).

The analysis is focused on the ”brown minus green” (BMG) emissions, a term being

the green subtraction of net brown from Scope 3 of the emissions2. It can be said that,

2Scope 3 refers to emissions that occur indirectly in a company’s value chain, beyond its direct oper-
ations or those of the controlled assets.
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Scope 3 includes emissions that run outside the emissions sources covered by Scope 1

and 2. This category considers the indirect greenhouse gas emissions resulting from the

company‘s operation.

Introduction of Brown Minus Green (BMG) index is our rising point, which needs to

start the development of Brown-Green Score (BGS). This score supposed to beat up the

iShares Global Clean Energy ETF (dist); this ETF has a benchmark the S& P Global

Clean Energy Index (S& P GL CLEAN ENERGY).

”BMG,” stands for ”Brown Minus Green,” which is a budget utilized for evaluating

the effect of an entity, most likely owned by the private sector, on the environment,

mainly in relation to carbon emissions or the sustainability of a enterprise (Company,

2023). Generally, the color ”brown” has been traditionally associated with the ecologically

harmful or carbon-emitting activities while ”green” is mostly recognized as ecological or

friendly to the environment.

The phrase “Brown Minus Green” signifies the numerical or value judgment of the bad

impact on the environment (brown) in relation to the good environmental principles or

practices (green) (Morningstar, 2022). The association could be interpreted as a reflection

of a larger environmental footprint of the entity, whereby it is also considered to be more

carbon-intensive due to less sustainability orientation.

2.4 Description of the DCC-GARCH model

The analysis of financial time series is a keystone of the existing financial theory and

practice, with volatility modeling being the one of the very important aspects in the

understanding of the dynamics of financial markets. Volatility is a key to the assessment

of risk and the design of arbitrage and hedging tactics. It measures the deviation of assets

prices from the mean. Though it is called univariate volatility model, the early focus was

on volatility of individual assets then thereafter it became evident that volatility of each

asset cannot be modeled without the comprehensive relationship of the whole economy.

These emphasize that not only the fluctuations of individual assets but also the dynamic

cross links of the different financial assets should be modeled. This is very important for

portfolio composition, asset pricing, and risk management.
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The evolution of GARCHmodels is originated from a revolutionary work of Robert En-

gle on Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) model and

Tim Bollerslev refinement of this model later on (R. Engle, 2002). The GARCH model

which came as an improvement over the Autoregressive Conditional Heteroskedasticity

(ARCH) model, by Engle, was a better model as it was much more flexible and parsi-

monious in conditional variance prediction (X. Huang, 2019). Nevertheless, these models

were unied for univariate analysis, which was useful for analyzing of a single financial time

series at a given time.

Since markets grew more linked from a financial perspective, the flaws of univariate

models, which are one-variable models, had to be taken into account. This demand

spurred the birth of multivariate volatility models with more sophisticated but less static

method for calculating volatility and correlation between multiple assets varying through

time. The models go further than GARCH in terms of allowing the explicit modeling

of the conditional correlation and covariance among the multivariate set of assets by

extending the framework. This process indicates a trend of the risks in financial markets

and opportunities being seen from a position where the risks and opportunities cannot

be fully deciphered if one compartmentalizes them to be seen separately, but they are

interested with how different assets co-interact with each other (R. Engle and Kroner,

1995).

The Dynamic conditioning correlation GARCH (DCC-GARCH) model, due to En-

gle and Sheppard (2001) (Sheppard and R. F. Engle, 2001), may be considered as an

improvement upon the CCC-GARCH model.3 This study contributes to the literature

established by Bollerslev’s (1990) (Bollerslev, 1990) ground-breaking model evaluation.

The contrast of the CCC-GARCH and the DCC-GARCH stands on the DCC-GARCH

capability to depict the correlation structure that may evolve dynamically and change

3The CCC-GARCH model formula is given by:

Σt = DtRtDt

with Dt = diag(
√
σt,11, . . . ,

√
σt,nn)

′ where the conditional variances σt,jj can be generated by any
GARCH-type model, and R is the conditional correlation matrix of returns:

R = corr(rt|It−1)

where ρi,i = 1. It is easy to show that the element in position (i, j) in Σt is given by:

σt,ij = ρi,j
√
σt,iiσt,jj .
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over time. Different to MGARCH (Multivariate GARCH) models, DCC-GARCH is com-

putationally effective mainly because no matter how many time series being simulated,

there will be no measure of the efficiency out of the production due to the process of

estimaton interaction. It is this property that makes matrix implementation considerably

faster in comparison with matrix operations in the case where matrices are of large sizes

(R. Engle, 2002).

Nevertheless the CCC model have poor assumption for an economical framework.

The primary matter here is that level of conditional joint correlations is time variable,

it changes over time (He and Teräsvirta, 2004). The DCC models are designed into two

steps processes which features model construction. Contrary to the CCC (conditional

categorical claims) models, the sectorial structure trading matrix (Rt) in these dynamic

models depend on a set of unknown parameters

Rt = R(I t−1; θc)

The DCC model is defined as follow (assuming µt = 0)

Ht = DtRtDt

where R is the correlation matrix which contains the conditional correlations.

rt| =t−1∼ N(0, DtRtDt)

σt,ii = ωi + αir
2
t−1,i + βiσt−1,ii i = 1, . . . , n

Dt = diag(
√
σt,11, . . . ,

√
σt,nn)

′

ϵt = D−1
t rt

Qt = C ′C + A⊙ ϵtϵ
′
t +B ⊙Qt−1

Rt = (diag(Qt))
− 1

2Qt(diag(Qt))
− 1

2

Assumption of normality leads to ”likelihood function” (first equation). Without this

assumption though, the estimator obtains the QML (Quasi-Maximum Likelihood) inter-

pretion. The second equation is mere evidence that we have assumed that the assets are
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following bivariate GARCH processes and nothing chang if this were generalized.

Matrix C will become upper triangular and matrices A and B, which are n×n-order

positive semi-definite parameters. The last equation is fundamental out of all, since it

crucial to keep Rt intact as a correlation matrix. The change of terms sign σt,ii works for

numerous configurations of the single-variate, implicit, and explicit models which are just

adjustment of the original terms for them.

The log likelihood function can be maximised over the model parameters. Conse-

quently, the terms in the diagonal of the pattern D correspond with the axis terms in the

model θ while those in matrix R are indicated by ϕ. The log-likelihood function is then

described as a combination of two distinct parts: one related to volatility and the other

to correlation.

L(θ, ϕ) = LV (θ) + LC(θ, ϕ)

The volatility is given by:

LV (θ) = −1

2

∑
t

(n log(2π) + log |Dt|2 + r′tD
−2
t rt)

The correlation parameters is given by:

LC(θ, ϕ) = −1

2

∑
t

(log |Rt|+ ϵ′tR
−1
t ϵt − ϵ′tϵt)

The volatility component of the likelihood function is effectively the sum of individual

GARCH model likelihoods, described as:

LV (θ) = −1

2

∑
t

n∑
i=1

(log(2π) + log(hi,t) +
r2i,t
hi,t

)

Optimization is achieved by maximizing each individual components within the formula

and thus make it more effective.

Proceeding to the correlation part of the likelihood involves the consideration of the

integral that determines the correlation parameters. The idea peculiar to squared residuals

are not related to any parameters allows us to view them as not contributing to the first

order conditions. The model that is employed will determine the type of estimator that

will be used if its either the mean reverting model or the integrated model. The estimated
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estimators are named DCC LL MR and DCC LL INT correspondingly.

The optimization strategy unfolds in two phases, initially focusing on the maximization

of LV (θ):

θ̂ = argmax(LV (θ))

Following this, with θ̂ established, the process advances to the second phase, concentrating

on maximizing the correlation component:

maxϕLC(θ̂, ϕ)

By sticking to the validity criteria or regularity conditions, the consistency of the

first phase ensures the consistency of the succeeding phase. Second phase results will

however depend on the estimates of the first phase. It, however, will keep along the

true parameters under the condition of continuous function within a proximal vicinity of

the real parameters. This structured approach to likelihood maximization demonstrate

the methodological rigoriness in marginal parameter estimation of multivariate GARCH

manifold, hence a refined comprehension of the fluctuation and association scheme of

financial assets arrive.

2.5 Dynamic component and the AR(p) model

The static nature of the macroeconomic variables was not incorporated in the original

models, which resulted in no relation between the theoretical model and the real-life

economic behavior. Evans and Sims were the pioneers in this field, and around the 1980s,

the latter put forward this need and suggested how to capture the interdependencies

among several time series variables (Sims, 1980).

These variables are the reasons behind the economic development over time and pro-

vide a more realistic view. In traditional macroeconomics, the mechanisms of time are

often overlooked, which causes discordance between theoretical models and actual eco-

nomic procedures. Sims noticed this space and described the reason behind the dynamic

skills to be involved in the modeling process. These parts form the dynamical evolution

of economic variables, which is a more realistic picture of economic phenomena.

18



The core of Sims’ theory centers on the Autoregressive (AR) model, particularly the

AR(p) model where ’p’ is used to signify the order of the model. The model expressed a

set of endogenous variables over a sample period as follow:

Yt = α + β1Yt−1 + β2Yt−2 + ...+ βpYt−p + εt,

where Yt is an n × 1 matrix of economic value, α is the n× 1 vector of intercepts,

β1, β2...., βp are the lagged coefficient for the variables constructed as n × n regression

parameters matrices, and εt is the error term distributed as N(0,Σ), where Σ is a positive-

definite covariance matrix and the sequence εt is independent over time.

The model is able to change in different economic contexts without the imposition of

any predetermined restrictions, hence its applicability is wide in various macroeconomic

researches. Although it is a basic model, the AR(p) model is very powerful to describe the

dynamics of the macroeconomic variables and is a key element of many empirical studies.

The AR(p) model is data driven and so the model structure is in line with the actual

economic events leading to accurate macroeconomic analyses.

Generally, VAR models are estimated utilizing Ordinary Least Squares (OLS) method,

but the reliablity of these models is conditioned on the observation of the prerequisites

that include stationarity and no serial correlation of the error terms. In addition, the

estimation of lag length ’p’ is crucial to the model since it determines model performance

and interpretation.

In our process the vector autoregressive model play a crucial role in the estimation of

the DCC-GARCH model, expressing the dynamic relationship between multiple financial

series. In the context of DCC-GARCH model, VAR helps to model the joint dynamics of

several variables enhances to forecasting the volatility and different dynamics essentials

for the risk factor and derivate pricing. This model also provide an impulse response

analysis, useful to understand how a shock of one variable affect the others over time.

Since our analysis focuses on geopolitical events, the impact on the financial shocks is

reflected in asset returns and volatilities.

The information derived from VAR impulse responses can serve as an input in the

specification and calibration of the DCC-GARCH model, for instance, about instability

transmission mechanism through correlation and volatility.
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Chapter 3

Empirical Analysis and Model

Development

The third chapter examines the relationship between credit default swap spreads (CDS)

of major banks and climate-related risk factors. The research explains in detail the mul-

tivariate model applied to discover how financial markets incorporate environmental risks

into the price of financial instruments. The sensitivity analysis of the climate risk factor

related to the choice of our treshold related to the distressed event develops in detail. At

the end of the chapter a cross industry analysis is presented, to show more in detail and

compare the measured values.

3.1 Estimation of DCC-GARCHmodels for each stocks

The process of empirical research began with the procuring of credit default swaps (CDS)

spread data, from various fundamental banks of the world, for the financial years 2023

and 2024.

The dataset which was captured was complete having both daily metrics like first

opening prices, peaks of the day (highs), troughs of the day (lows), and the current prices

as the day ends (Alexander, 1998). As a consequence, the deep tracking of these factors

will provide an accurate assessment of their influence on the market dynamics and the

degree of investors’ confidence represented through the changing of the CDS spreads that
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function as credit risk denominators (Drago, Di Tommaso, and Thornton, 2017).

As we can see the 10 stocks have differences for the spreads at 1y and 5y, going

specifically the volatility seems to characterize more the 5y, showing an increase also of

the prices regarding the 1y (Collin-Dufresn, Goldstein, and Martin, 2001). In general,

this type of analysis occurs when sensitivity to economic, political or business changes is

less predictable in the long run.

Jan Mar May Jul Sep Nov Jan

Date 2023   

40

60

80

100

P
ric

e

JP Price

Jan Mar May Jul Sep Nov Jan

Date 2023   

40

60

80

P
ric

e

GOLDMAN Price

Jan Mar May Jul Sep Nov Jan

Date 2023   

40

60

80

100

P
ric

e

BOA Price

Jan Mar May Jul Sep Nov Jan

Date 2023   

20

30

40
P

ric
e

BNP Price

Jan Mar May Jul Sep Nov Jan

Date 2023   

20

40

60

80

P
ric

e

CITI Price

Jan Mar May Jul Sep Nov Jan

Date 2023   

20

30

40

P
ric

e

HSBC Price

Jan Mar May Jul Sep Nov Jan

Date 2023   

40

60

80

100

P
ric

e

UBS Price

Jan Mar May Jul Sep Nov Jan

Date 2023   

20

40

60

P
ric

e

UC Price

Jan Mar May Jul Sep Nov Jan

Date 2023   

20

40

60

80

P
ric

e

WELLS Price

Jan Mar May Jul Sep Nov Jan

Date 2023   

0

100

200

P
ric

e

DB Price

Figure 3: CDS Spread 1y line charts The 1 year maturity CDS Spreads graph explain
the fluctuation of daily prices of the 10 selected banks during the beginning of 2023 and
the beginning of 2024 over 1 year.
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Figure 4: CDS Spread 5y line charts This graph shows the price of CDS Spreads 5
years maturity, refers to the banks under examination for the corresponding period from
the beginning of 2023 to beginning of 2024.

The essential step for standardize our process was to convert the raw CDS spread data

into an analytically more manageable form. This calculation was achieved by computing

the natural logarithmic variations in consecutive 1-year CDS and 5-year CDS prices that

resulted to what has come to be known as LogDiffCDS calculation for both 1y and 5y

CDS.
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Figure 5: Log Diff CDS Spread 1y line graphs This graph shows the log price
differences for 10 selected banks in 2023. The blue line represents the log price difference
for each bank, tracked monthly from January to December 2023.
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Figure 6: Log Diff CDS Spread 5y line graphs This graph illustrates the 5-year CDS
spreads for 10 selected banks over 1 year. The blue line in each subplot represents the log
difference in CDS spreads for each bank, tracked monthly from January to December.

Specifically, if Pt denotes the CDS spread on day t, Pt−1 denotes the CDS spread on

day t-1, the log-difference LDt on that day is computed as:

LDt = log(Pt)− log(Pt−1)

The spreads of LogDiff CDS, the foundation of GARCH modeling, have been em-

ployed to delineate the dynamic interdependence between the financial market behaviors

and perception of credit risk , mostly associated with the major banking institutions.

The initial stages of this process are very important for the reliability and validity of

the following econometric studies doing this job much better than pointing out market

interdependence.
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Identification of the decided lag for the VAR models is fundamental. It affects the

model’s ability to catch the time series process and thereby explain the observed data

series. In addition, the selecting was accomplished by the use of traditional information

criteria, which typically include the Akaike Information Criterion (AIC) and the Bayesian

Information Criterion (BIC). These criteria compromise an ensemble of model complexity

and the high quality of fit. They do it by penalizing lags which are too many and little

contribute to the explanatory power of the model (Chakrabarti and Ghosh, 2021). The

selected lag length minimized the information criteria and consequently provided the most

suitable balance of model complexity and explanatory power. This implementation of the

careful model choice ensures that the VAR models contain details to be able to reproduce

the dynamics of the system; however, too much complexity could lead to overfitting and

failures during out-of-sample forecasts.

The residuals of the VAR model — the values differing to what is predicted - were

inspected to check that they were behaving like white noise, which means they are nor-

mally distributed around zero with constant variance and have mean of zero and are

independent.

Along with that, the ACF (autocorrelation function) and the PACF (partial autocor-

relation function) were examined for the residuals of each time series. No autocorrelation

in the residuals at several lags will confirm that the VAR model created captured the real

time series dynamics. The biggest evidence supporting that the model is well-specified is

that the null hypothesis (no autocorrelation) is not rejected in the test. Furthermore, the

stability of the VAR model was checked through making sure that roots of the character-

istic polynomial occur outside the unit circle.

This stability condition is important for model’s forecasts to be meaningful and impulse

response functions to erode gradually and not exploding (Flores, Engel, and Pinto, 2012).

As a result of these diagnostic tests, the adequate model specification for the applied VAR

model is confirmed. The application of the test to rule out residual series correlation

confirmed the validity of the recursive equations for model stability, and the test to lags

warranted the models they were built on. This validation underscores the fact that the

VAR related observations are made with accuracy and hence forms a strong base for

GARCH model estimation.
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The DCC-GARCH framework components estimate the time varying component for

conditional variance (volatility) time series. In the course of our calculations, each time

series – VAR-adjusted credit default swaps for each financial institution and an ETF of

climate risk – was first considered separately by means of GARCH processes.

We applied MLE to fit a DCC-GARCH(1,1) model as well as a GARCH(2,2) model

with one and five years CDS data series. Such specification frequently meets the re-

quirements for financial time series, whenever volatility process is shown. To estimate

the parameters MLE was used (Orskaug, 2009). The log-likelihood function was built

on the condition that the future returns given the past information obey the prescribed

distribution.

The DCC-GARCH model does not only improve on the regular GARCH scheme, but

also allows the return correlation of assets to fluctuate temporally. This is accomplished

through modelling the persistence and dynamic independently of the volatility process,

employing the quasi-maximum likelihood method to estimate the correlation dynamics.

The DCC-GARCH models have made it possible to perform in-depth studies of condi-

tional volatility and dynamic correlations, creating a changing scenery in which investors

perceive the risk and how different markets can move together (R. Engle, 2002). Most

episodes of volatility are directly linked to certain major external shocks or stress events

on the climate and the environment. However, now, climate risk is no longer as impactful

because of the availability of ETF data series that represent climate-related incidents and

shifts in environmental policies (Nordhaus, 2013).

The time-varying association as calculated by the DCC model, on the other hand,

traces out the changing role of credit risk for financial institutions against the backdrop

of broad market risk attributed to climate change. Shift in the statistical structure of

these correlations can mean that the market at least in a partial way has revised its

perception on inter-connection of economic and environmental risks. For illustration,

when a growing connection happens in the moments of environmental stress or policy

declaration, it could be viewed as evidencing market’s acknowledgment of climate threats

and finical consequences (Pindyck, 2017).

The discovery of econometrically verifiable relationships between CDS spreads and

environmental risk tracers enriches our knowledge of how environmental factors manifest
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in the financial world. This flexible method delivers a detail picture over static correlation

correlation analysis, elucidating the conditions that are conducive to or prohibitive for

climate risk intensity towards financial institutions.

3.2 Sensitivity analysis regarding different climate

risk factors

The methodology to be applied in the sensitivity is made on the DCC-GARCH model

and is previously calibrated for each bank. The framework includes an iterative process,

as each weather risk variable is included in the multivariate models. This methodological

approach affords to scrutinize how the effect of each environmental factor exhibits indi-

vidually and in conjunction with the systemic climate risks on CDS of the chosen proxies,

through the compound benchmark ETF for climate change.

To begin with each climate risk factor represents a separate word in the DCC-GARCH

framework (Hsiang and Kopp, 2018). This step is realized by inputting time-series data,

corresponding to an individual climate factor constant while holding all the other model

components unchanged. Such approach facilitates to identify the specificity of various

factors influencing the shifting dynamics (H. H. Huang, Kerstein, and Wang, 2018). The

individual assessments are followed on the model by the mixing of climate risk factors

which is the main element of the models. This joint strategy enables discovery the actions

that favor the synergy and appeared non-linear relation between different environmental

factors and financial institutions’ risk management capacities (Christoffersen, 2012).

The reorienting procedure has a specific emphasis on temporal adjusted and data

consistency. This way, the resulting correlations are consistent with actual market de-

velopments and not biased by data that is not well-aligned or doesn’t have the required

information. Correspondingly, the DCC model is built, and then it is fine-tuned with

the climate risk factors (Brownlees and R. F. Engle, 2017). This makes it possible to

understand dynamics in correlation changes over time.

The sensitivity metric of the correlation coefficients that comes from the DCC models’

estimation would serve as the primary metric. These coefficients that show the strength

and how these climate risk factors influence the CDS spreads are followed over the time
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in order to find out the trends, spikes or changes. To achieve the validity of the final

calculated correlation coefficients, patterning tests are applied (Management, 2017). The

Wald test, for instance, is run to gauge the statistical significance of the difference be-

tween the different interventions. This test aims to reject the null hypothesis of stability,

which states that climate risk factors do not change the correlation between the factors

significantly (Walter W. Hauck and Donner, 1977). The probability of the null hypothe-

sis being rejected suggests the responsiveness of the dynamic association of the analyzed

factors to the climate change.

The influence of each of the changes in correlation coefficients is interpreted in the

meaning of the situation with the amount of institutional exposure to climate changes.

This requires recognition of the time series patterns, and further examination to see

whether these shits in correlation are associated with the occurrence of adaptation external

events, policy changes, or investors’ response to climate changes.

The sensitivity analysis extends beyond mere statistical assessment to include a com-

prehensive evaluation of model robustness (Gourieroux, Laurent, and Scaillet, 2000):

• Model Stability Checks: The robustness and consistency of the DCC-GARCH mod-

els are reconsidered with the completion of the recalibration. This means that we do

not need climate risk factors to make our model, unstable or ineffective in forecasts.

• Scenario Analysis: Diverse environmental settings, that reflect current and historical

conditions and the expected climate conditions in the future, are used for investi-

gating whether the sensitivity patterns are consistent across the different scenarios.

• Robustness to Model Specifications: Sensitivity tests involve running the model

under different specifications and vary the assumptions so as to be certain that the

results are not just an artifact of the particular model but robust reflections of the

real economic situation.

By using these detailed ways, the sensitivity analysis will provide much more complex

results about the effects of climate risks on the financial metrics and about the banks’

behaviour as to the environmental changes, thus contributing to the more profound un-

derstanding of the financial sector’s exposure and effectivity. Here, this strict approach

makes the results more solid and thus, gives more weight to their ability to be relevant
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and applicable both academics and everyday risk management when hazards increase.

3.3 Considerations for choosing the threshold for cli-

mate distress events

The process of identifying climate disasters events is commenced through a complete his-

toical volatility analysis, which makes use of ETF’s price movements as market-based

climate risk proxies (Dell, Jones, and Olken, 2014). The investigation of such situation

with the use of the similarity correlation of these findings with graphical analyses, which

presents clear trends and volatilities at certain periods, will lead to a thorough under-

standing of standard and anomalous market behaviors (Pindyck, 2017).
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Figure 7: BMG factor line chart The blue line represent the daily price changes of the
iShares Global Clean Energy ETF (BMG factor) from 2023 to 2024.

Coming as a supplement to the early process, the graphic data demonstrate with

some degree of clarity important instances of ETF prices deviating from its trending path

and closely tracking environmental changes or policy announcements. ETF prices that

significantly rise during phases of environmental recovery or optimistic climate-related

29



proclamations can also be regarded as a manifestation of the belief in positive expec-

tations. The historical volatility is used to underlying market aberrations and thus we

identify them. These are averagely three or more standard deviations from the mean.

This statistical border is additionally upheld visually on the chart where anomalies can

be see during the price trajectory of ETFs, so we can mark these substantial market

movements as potential indicators.

Through the analysis of the past environment disasters and legislative changes that

the ETF price indexes, we are able to connect those changes not only mathematically

but also on the financial realm (Bos, Li, and Sanders, 2022). For instance, our graphs

show a huge down trend in the price of ETFs and this happens when the environmental

catastrophe is happening, this association reinforces settings that we have established as

our threshold.

By combining these approaches in one model, we develop a comprehensive solution

to classify and describe environmental catastrophes due to climate change. Which is

supported by the data-driven factors as well as the environmental factors marked by the

empirical data visualization and the graphs. Through studying those certain episodes

where the ETF prices became notably sensitive to the climate-related events, we can

deepen our knowledge of the underlying mechanism between climate-linked episodes and

financial market activity.

For an instance, if the graphical data shows that ETF prices move highly in relation

with minor news that appeals to environmental news, we could adjust our thresholds to

avoid false alarms. On the other hand, the finding of mild ETF price fluctuations following

an environmental disaster, could mean desensitization in the market and developing a need

to engage in a reconsideration of the volatility benchmarks.

3.4 Cross-industry comparison

This study is trying to explain the aspects of the dynamic and substantial nature of finan-

cial markets by implementing the DCC-GARCH(1,1) model and DCC-GARCH(2,2), cal-

culating and comparing the log-likelihood value indices within the banking sector (Brown-

lees and R. F. Engle, 2017), over 1-year and 5-year time frame. The comparison analysis
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is extremely useful, giving view into the banks market behaviors and the volatility pat-

terns with which a model of statistics with which the banks data is able to fit will provide

the nuanced understanding regarding how well each of the banks market data (R. Engle,

2002; R. Engle and Kroner, 1995).

The 1 year log-likelihood values between -1450 and -1850, which reflect short term

bank behaviors captured in the markets, indicate the volatility. Considering the fact that

this is highly influenced by immediate market conditions, policy changes, and transient

factors, increased volatility or unpredictability may be experienced.
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Figure 8: Conditional Log Likelihood GARCH (1,1) 1y This graph displays the
DCC-GARCH(1,1) 1 year log likelihood values for banks selected. The values, which are
plotted along the vertical axis, indicate the statistical fit of the DCC-GARCH(1,1) model
for each bank.

On the contrary, 5 years log-likelihood have a range from -1540 to -1720 which is more

compact. It reveals a very narrow spread, which is equivalent to the reduction in jumps of

volatility in the short term. This will bring out the banks’ underlying risk behavior and

volatility patterns which spread out in the long run. A comparison like this brings out

the impact of time in financial modeling. Time-wise, factors do impact the way model

outputs concur with real life scenarios.
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Figure 9: Conditional Log Likelihood GARCH (2,2) 1y This graph compares the
log likelihood values for the DCC-GARCH(2,2) model across various major banks over
one-year period; the vertical axis shows the log likelihood values.

Analyzing individual banking institutions, particularly JP Morgan, BNP Paribas, Cit-

iGroup and HSBC - which display higher log-likelihood values in both short and long term

in the model - is a focus point of this discussion. This fitted model indicates banks have

more likely controlled and predictable market behaviors, usually a consequence of risk

management model and strategic planning success. Their financial products and opera-

tions are more locked onto the unlikely to go through fluctuations, maintaining steady

position not only for the institutions but also their clients.

However, banks such as Bank of America, Goldman Sachs, and UniCredit, reflected in

a mid-range log-likelihood pattern, demonstrate a weak model fit compared to the counter

results.

Furthermore, Deutsche, UBS, and Wells Fargo, banks present lesser log-likelihood

values, showed poor performance in relation to the model’s output. One of the main

factors that might can lead to instability could be the emergence of unanticipated financial

turbulence or distinctive market conditions. Thus, the banks can start utilizing more

bespoke models plus sophistication in their strategies since each bank has its local market
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dynamics and risk profiles.

The study presents a comparison of the 1-year and 5-year log-likelihoods values for

DCC-GARCH (1,1) and DCC-GARCH (2,2). The results are displayed in the two figures

below.
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Figure 10: Conditional Log Likelihood GARCH (1,1) 5y This graph compares the
log likelihood values for the DCC-GARCH(1,1) model across 10 banks over a five-year
period. The vertical axis displays the log likelihood values.
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Figure 11: Conditional Log Likelihood GARCH (2,2) 5y In this graph the log likeli-
hood values are represented through the vertical axis, this time for the DCC-GARCH(2,2)
model across various major banks over a five-year period.

The study’s findings highlight the importance of choosing or modifying models that

provide a precise representation of each bank’s unique characteristics, in addition to ex-

panding our understanding of the patterns of bank competition. Banks that have demon-

strated a set of sustainable strategies throughout the time-frame of the study can consider

the results as a verification of the soundness of their existing practices.

In the context of financial econometrics, the Generalized Autoregressive Conditional

Heteroskedasticity model becomes a landmark instrument that aids in the understanding

and prediction of volatility characteristics in financial markets. The DCC-GARCH(1,1)

model, on the other hand, is specifically famous for its clout of forecasting for volatility

thus, providing critical insights into the statistical correlations of financial returns.

The investigation into 1-year DCC-GARCH(1,1) constants shows a set of numbers

whose range provides evidence on the volatility due to short-term banks’ responses .

This data describes α as the bank’s volatility’s sensitivity to recent market shock as well

as β is as the degree to which these shocks remain over time. It looks like that DCC-

GARCH(2,2) constants are normally greater than those for GARCH(1,1), no matter what

bank is involved from the readings of the given data files.
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Figure 12: DCC-GARCH(1,1) 1y constants This graph compares the GARCH(1,1)
daily constants for major banks over a one-year period . The vertical axis represents the
GARCH(1,1) constants, showcasing the variation in these values among 10 banks.
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Figure 13: DCC-GARCH(2,2) 1y constants This time the graph compares the
GARCH(2,2) constants for several banks over a one-year period expressed in daily ba-
sis, with the vertical axis showing the GARCH(2,2) constant values, to reveal differences
among the 10 banks.
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Figure 14: DCC-GARCH(1,1) 5y constants This graph illustrates the GARCH(1,1)
constants for banks this time over a five-year period expressed in daily basis; the vertical
axis displays the GARCH(1,1) constant values in a range between 0 and 3.

JP
 M

or
ga

n

Gold
m

an
 S

ac
hs

Ban
k o

f A
m

er
ica

BNP P
ar

iba
s

CIT
I G

ro
up

UniC
re

dit

HSBC
UBS

W
ell

s F
ar

go

Deu
tsc

he
 B

an
k

Banks

0

0.5

1

1.5

2

2.5

3

G
A

R
C

H
 C

o
n

st
an

ts

GARCH(2,2) Constants 

GARCH(2,2) Constants

Figure 15: DCC-GARCH(2,2) 1y constants This graph presents the GARCH(2,2)
constants for the major banks over a five-year period. The vertical axis shows the values
of these constants, highlighting the variations among banks on daily data.
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The implication is that the DCC-GARCH(2,2) model consisting of the squared returns

and past variances might as well reveal that the volatility of the market is higher than in

the plain DCC-GARCH model.

Such increased complexity in the DCC-GARCH(2,2) model with its two more param-

eters suggests the capability of the model to account for more aspects of the time series

data which is highlighted through the view of more precise market dynamics. In this

case, this could be that the DCC-GARCH(2,2) model discovers finer, innate oscillations

of their stock or asset volatility, which DCC-GARCH(1,1) might end up attributing in

a second moment. In addition, the factors that influence risk may take a more complex

form in an environment characterized by complex underlying risk factors, meaning that

past events and inherent market conditions have an important bearing on volatility.

It is worth noting, that having 5-year DCC-GARCH(1,1) constants in mind, an alter-

nate volatility storyline appears as well. This more extensive analysis further confirms a

lower α and a higher β value to the sensory data obtained previously over a year. This

change indicates that market shocks suffer a decline in their immediacy and, in contrast,

a prolonged persistence of their effects.

The fact that the two graphs for the DCC-GARCH(1,1) and DCC-GARCH(2,2) mod-

els over the past five years of CDS spread analysis displays a close resemblance is an

indication of the common volatility at the base for the two modelling approaches within

this time frame. The uniformity of this result points to the fact that for the particu-

lar 5-year CDS spreads analyzed by these banks, the absence of additional lags in the

DCC-GARCH(2,2) model does not significantly affect the interpretation of the baseline

volatility compared to the DCC-GARCH(1,1) model. The main aspect of the both models

is a probability of how volatile the credit risk is from the 5-year CDS spreads. The risk,

as registered on the futures market, shows a volatility with the same level of frequency,

irrespective of which model was used.

In the complex-business-field of finance, another important cross industry figure that

is brought up by the Average Conditional Correlations is analyzed by fitting it the with

DCC-GARCH(1,1) model and comparing major bank stock indices with an ETF over

1-year, and 5-year spans.

Consequently the analysis will begin with a 1-year outlook followed by a correlation
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mapping and this will indicate that the bank shares and the ETF have a wide variety of

connections. In particular the HSBC and Deutsche Bank, with the high positive correla-

tions issue nearly the highest registered threshold. It is noticeable that the stocks of these

banks taxonize with these ETF bounds with high degrees of synchrony, which signifies

that the movements of the banks are closely related with all the general market trends.

Such profound association suggests that the performance of these banks could probably

stay along with market risk as well as the rewards.

Despite a general low correlation, some notable differences are found. JP Morgan and

Unicredit are listed in strong degrees of inverse correlation, which suggests they tend to

move in opposite direction to the market. Such distinctions probably will stem from some

other factor beyond the market’s intrinsic factors that determine peoples’ reactions in

the market. Due to several key strategies, the systems are undoubtedly resilient. The

possibility of your turning to the investment diversification is there.

This analysis tends to mention finance institutions, for instance, CitiGroup, Goldman

Sachs, Bank of America, and Wells Fargo, which tend to be floated with a correlation

coefficient close to zero with the ETF. Such a figure entails a low and linear correlation,

suggesting that the banks are more hedged against the broader market trends than those

who follow these trends closely. This financial independence rests on the potential risk

embedded within market diversification.

The correlation map would however take a different shape after turning the analysis

to 5-year period.
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Figure 16: Average Conditional Correlations of DCC-GARCH(1,1) 1y The graph
shows the average conditional correlations calculated using the DCC-GARCH(1,1) model
for various major banks over a one-year period. The vertical axis represents the average
correlation values, illustrating the differences in correlation strengths among banks.
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Figure 17: Average Conditional Correlations of DCC-GARCH(2,2) 1y This graph
illustrates the average conditional correlations computed using the DCC-GARCH(2,2)
model for various major banks over a one-year period expressed daily.
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The observed correlations between banks and ETFs albeit continue to hold for the

trend direction, the related magnitudes are usually less than those for the 1-year correla-

tions. This convergence signifies that banks’ behaviors over the market become gradually

linked market trends in the long term, thus, reducing the sharp correlations between

banks’ market behaviors seen in the short term.

Considering that a 5-year period is short, we could see the gradual shrinking of both

positive and negative extreme extremes. Thus, the market risk is increasingly consequen-

tial while the individual bank-specific risks are being less impactful. This is very relevant

while portraying investment strategy as the duration of investment becomes a key de-

termining factor of the risk diversification and return optimization performance of bank

stocks comparatively broader market indicators.
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Figure 18: Average Conditional Correlations of DCC-GARCH(1,1) 5y The graph
presents the average conditional correlations determined by the DCC-GARCH(1,1) model
for banks this time across a five-year period. The vertical axis depicts, once again, the
average correlation values.
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Figure 19: Average Conditional Correlations of DCC-GARCH(2,2) 5y This graph
presents the average conditional correlations obtained using the DCC-GARCH(2,2) model
for various banks over a five-year period. The vertical axis displays the average correlation
values, showcasing the differences in correlation strengths among the banks.
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Chapter 4

Conclusion

The last chapter of the thesis will provide the results of the model analysis conducted. It is

also includes the limitedness of the current research and proposes progress to understand

more about the relationship between Credit Default Spread (CDS) and our climate risk

dimension better. In addition to that, it gives an idea to manage uncertainties in finance

and climate.

4.1 Summary of the main results

The empirical inferences are thus generally in favor of the DCC-GARCH(1,1) model

including years 1 and 5 as documented by the lesser Akaike Information Criterion (AIC)

and Bayesian Information Criterion (BIC) values. The tables, extracted from the matlab

code, present lower AIC-BIC for the (1,1) GARCH This can be visible in the table:
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Bank AIC-DCC-GARCH(1,1) BIC-DCC-GARCH(1,1)

JP Morgan 2980.4707 3008.6424
Goldman Sachs 3119.9281 3148.0998
Bank of America 3279.7404 3307.9121
BNP Paribas 3062.6257 3090.7974
CITI Group 3098.0382 3126.2099
HSBC 3041.6863 3069.8580
Unicredit 3425.1485 3453.3202
UBS 3289.6149 3317.7865
Wells Fargo 3171.7340 3199.9057
Deutsche Bank 3652.3483 3680.5199

Table 1: AIC and BIC for DCC-GARCH(1,1) over 1 year The table shows the daily
values of AIC-BIC for selected banks. These criteria are used to evaluate the goodness of
fit for the DCC-GARCH(1,1) model over a one-year period.

Bank AIC-DCC-GARCH(2,2) BIC-DCC-GARCH(2,2)

JP Morgan 2984.9050 3030.6840
Goldman Sachs 3129.7501 3175.5291
Bank of America 3284.880 3330.6592
BNP Paribas 3071.6567 3117.4357
CITI Group 3109.1888 3154.9678
HSBC 3034.5177 3080.2967
Unicredit 3434.3754 3480.1544
UBS 3296.2479 3342.0269
Wells Fargo 3180.6613 3226.4403
Deutsche Bank 3610.1251 3655.9041

Table 2: AIC and BIC for DCC-GARCH(2,2) over 1 year Presents the information
criterion daily values for the DCC-GARCH(2,2) model for 10 selected banks. These
metrics help determine the model’s fit for the banks’ financial data over the one-year
time-frame.

At this level preference, simpler DCC-GARCH (1,1) model can be regarded to provide

a good fit for forecasting procedure of financial assets in analysis and is able to capture

their essential dynamics without heavy complexity of DCC-GARCH (2,2) model.
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Bank AIC-DCC-GARCH(1,1) BIC-DCC-GARCH(1,1)

JP Morgan 3173.5531 3201.7248
Goldman Sachs 3309.5389 3337.7106
Bank of America 3305.6272 3333.7988
BNP Paribas 3108.5580 3136.7297
CITI Group 3248.2462 3276.4179
HSBC 3123.9178 3156.2381
UBS 3389.1610 3425.3261
UniCredit 3307.3629 3335.5346
Wells Fargo 3248.9220 3277.0937
Deutsche Bank 3441.0620 3475.6657

Table 3: AIC and BIC for DCC-GARCH(1,1) over 5 years Explain the daily values
for the AIC-BIC criterion over 5 year time-frame for the 10 banks under observation.

Bank AIC-DCC-GARCH(2,2) BIC-DCC-GARCH(2,2)

JP Morgan 3183.3688 3229.1478
Goldman Sachs 3313.2000 3358.9790
Bank of America 3306.6926 3352.4716
BNP Paribas 3116.8800 3162.6590
CITI Group 3256.2534 3302.0324
HSBC 3123.9178 3169.6967
UBS 3389.1610 3434.9400
UniCredit 3317.3093 3363.0883
Wells Fargo 3258.9106 3304.6896
Deutsche Bank 3441.0620 3486.8410

Table 4: AIC and BIC for DCC-GARCH(2,2) over 5 years Detail the daily AIC
and BIC values over a five-year period for the 10 banks being analyzed.

These findings also support the idea that the exact economy model chosen for the

analysis purposes would usually not determine the accuracy of the results, so long as

the basic principles of the model are sound. The suitability not the sacrifice of DCC-

GARCH(1,1) model to understanding the volatility and returns correlations underpins

the prospective of the model.

Establishing the DCC-GARCH(1,1) framework, we can very precisely say that he

model has succeeded in studying the volatility of the assets of the banking system and their

correlation with Brown-minus-Green (BMG). This validation affirms the applicability of

the DCC-GARCH(1,1) model in financial econometric analyses, especially for the design

of the mathematical relationship between bank asset returns and the market for ETFs.

It is only sometimes necessary for the complex modeling of assets in the banks and their
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mutual market interdependency to display realistic portrayals when an increasing fluctu-

ation pattern is noted. Instead, the demonstrated sufficiency of the DCC-GARCH(1,1)

model underscores the principle of parsimony in financial modeling. Models of a parsimo-

nious type such as DCC-GARCH(1,1) are less vulnerable to overfitting because the model

captures too much market noise as genuine patterns if it has too many parameters. They

provide the unique character of a more straightforward and interpretable structure which

matters a lot for the stakeholders who rely on the simulations to make the right deci-

sions. Secondly, modeling ability with adequacy seen in it suggests significant operational

benefits. It confirms that financial pros and risk managers may arrive at the deepest

understanding of market tendencies and the relationship between assets by means of the

simple models that do not risk being limited by the intricacies and complexity of more

complex models. Consequently, the more simplified (e.g. quicker adaptation and deeper

comprehension) of this risk management strategy, the better they can be implemented.

Not only is this finding relevant to how we select models but has a wider impact. This

is how they get to the heart of risk management related to asset management that is

practiced within financial institutions. This approach is advocated by the models intro-

duced in the paper and it is directed towards the convergence of complexity/accuracy of

the financial models. This method, so in addition to being resource-saving, aids in risk

assessment processes thus leading to faster and more intelligent decision-making in the

financial sector.

Extending on the above point that discloses the efficiency of the DCC-GARCH(1,1)

model to capture the whole fine details of the financial markets and their association

with the banking assets, I approach the mathematical process for me to have a deeper

understanding. Technical, we have adapted the conditional probability formula:

P {CDSi,t+h > c|CFt < x}

to assess possible CDS rate hike for a specific CDS given a certain conservation risk level

characterised by ETF prices below a definite threshold.

In this expanded analysis, stress is theorized using EFT, a substitute for the influence

of environment on the financial industry. We will define ’x’ - specific percentile price of

the ETF as our threshold price using the 5th percentile as an illustrative. This option of

the threshold therefore represents very conservative limit.
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On the one hand, we define ’c’ as 95th percentile CDS spread, while on the other

hand we employ CDS market as a proxy to reflect credit risks with highest possible level.

This dual threshold framework, which allows us to statistically analyze the conditional

probability of extreme spread movements for CDS as observed in the financial markets — a

proxy for heightened credit risk conditions — will also incorporate data on environmental

distress captured by the ETF prices.

We use this maturity horizon of 252 days for one year that allows us to include the

forward-looking characteristic of CDS spread in evaluating default probabilities. Subse-

quently, we carefully analyze the excessive levels of CDS spread for the groups of banks

if the price of ETF is above the threshold condition.

However, the output shows identical distribution of CDS spread volatility occurring

across each bank within the group even data noise is taken into consideration and each

bank exhibits the same probability of 0. This outcome thus surprisingly suggests that, on

the specific terms and time span of this research, the framing and time constraint of the

climate risk factors as indicated by the lower bound of the ETF price, do not statistically

indicate an escalation in the probability of extreme credit risk events as expressed by CDS

spreads, for these banks.

The fact that the DCC-GARCH(1,1) framework, for both 1y and 5y, can capture the

relationship between events in the environmental conditions and bank’s asset returns is a

crucial contribution to our empirical study, which also found that the so-called extreme

environmental risk, captured through low ETF prices, do not necessarily coincide with

increased credit risk level for these banks. This outcome underscores this and other intri-

cate and complex factors that influence market behaviour, thereby emphasizing the need

for precise and well-grounded empirical models like DCC-GARCH (1,1) in interpreting

these complex interactions.

Furthermore, this information adds substantially to the dialogue regarding financial

risk management in the sphere of cloudiness of the environment. They suggest while the

environmental risk factors affect the dynamics of the market and volatility, however, the

short to medium-term relationship between them and credit risk is indirect and, there-

fore, the impact may be less than presumed, under the present analysis. This delicate

comprehension plays a great role in portfolio management, risk issues, and financial strat-
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egy of institutions operating in markets, where both finance as well as climate issues are

presented.

The correlations identified by our DCC model in the system of banking assets and

BMG factor reveal the heuristic relationships between them and their dynamicity. Due

to this all-encompassing knowledge, the emerging scenarios of changing markets are high-

lighted, where the correlation is higher in certain periods. Such spikes frequently corre-

late with market turbulence episodes or for financial sectors linked with specific incidents,

demonstrating the interconnectedness of all global financial markets and individual assets

being rather sensitive to the general economic trend. Alternatively, when assets of such

banks are negatively correlated with other products, then there is an environment where

the movements of bank assets and ETFs are not connected at all. This lower connec-

tivity among assets leads to a reduction in the correlation coefficient and this reduction

promotes the diversification opportunity for investors. Through targeted shifting of in-

vestments between the bread-and-butter and ETFs’ parts to favor the ones performing

better, investors can experience reduced risk and certain returns regardless of market

volatility.

4.2 Limitations of the study and possible future de-

velopments

Now, the studies made bright progress in terms of research in the context of the dynamic

conditional correlations between bonds and ETF by using the DCC-GARCH models. This

DCC-GARCH(1,1) model, however, rests on the basis of assumptions of normality and

linearity, which are the underpinnings of the framework. Such assumptions are depicted by

their inability to fully model complex, fluctuating and sudden financial movements beyond

the linear dynamics and normal distributions. Therefore, gender inequality exposes a

danger of model inaccurate estimations by virtue of mis-specification.

The data collection process stipulates the study’s limitations based on its time limits.

This time-bound inevitability leads to its inability to capture the model’s efficiency in

different market conditions, especially in case of severe financial problems or geopolitical

occurrences that would change dramatically the market traits and assets’ correlations.
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Concentrating on only a set of banking institutions and one ETF, in particular, the

research introduces an allocation possibility, which may limit the broadness of the con-

clusions. Given the financial market’s variety where many investment originations with

different attributes exist, it remains possible that the scope of the current research does

not adequately capture the entire dynamics of the market system.

The target audience is a single market interaction and hence this reduces the com-

plexities of global financial ties. However, this limitation also hampers the analysis from

grasping the subtleties of how international economic events, the global market trend,

and all other aspects contribute to the correlation between bank assets and ETFs.

To enhance the current research framework and address these limitations, several

future research avenues are proposed:

• The direction of future research could be made toward the ways of modeling that are

able to include market peculiarities such as non-linearity and non-Gaussianity. This

would bring forth the exploitation of heavy-tailed distributions, regime-switching

approaches, and GAS (Generalized Autoregressive Scores) models to come up with

exactly how the market works in the full spirit.

• Expansion of the analysis to encompass various time horizons and the use of an

event study would be a step in the right direction in capturing a complete picture

of the model’s ability to withstand both normal and stress-test market conditions.

• To avoid the most probable selection bias the future studies will have to be diversified

and cover a wide range of banks and ETFs from different parts of the world and

market segments. The approach will give a multifaceted view of forces driving the

market and make the findings’ generalizability more powerful.

• The investigation might help unveil the relationship between bank assets and ETFs

in multiple markets and nations and thus clarify the influencing global financial

linkages as well as systemic risk. Such an expansion would require sophisticated

knowledge as to how international economic cycles, trade, and investment flows

work while providing insightful and global insight in terms of analysis.

• Practical Implementation: Additional labor for understanding these models as par-

ticularly used in asset management, risk evaluation, and strategic planning could
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connect academic research with industry practice, the results being tool effective for

risk management and decision making.

With further research, however, the directions below aim to improve the precision

of financial markets modeling thereby increasing the efficiency, usage, and relevance of

econometric models of finance.

4.3 Implications for financial and climate risk man-

agement

Better still, this research is characterized by revealing the significance of the structure of

the model as the basis to dynamic correlation between assets and the BMG factor. They

also provide market practitioners with a good understanding of whether risk is shared or

localized and how different contagion risks interrelate. Clarifying when the correlations

are highlighted, during a financial turmoil, is proof that more vigilant monitoring about

the constantly changing correlation is an effective tool for risk management.

Furthermore, the study tells about the model that aids the selection of a diversi-

fied asset class. This correlation differentiates the points with more chances of dis-

alignment (where coincidence will decrease) and also points with fewer chances of mis-

synchronization (points where coincidences will decrease) which will lead to decision-

making with the aspects of security and high return with investors’ mind.

Implementation of DCC-GARCH models proved the most promising and increased

the resort to stress testing and scenario building. Their advancement is able to help

credit institutions and other market players anticipate and guard against changing market

environments, and that strengthens the overall risk management structures.

On the other hand, this study sees to it that the model does endorse the regulatory

mechanism in banks. By tracing correlation dynamics with any asset, banks can precisely

calculate essential risk measures. These terms must be the only items that meet the

standards on capital adequacy and liquidity.

A climate risk portfolio that integrates climate risk into financial decision-making
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disseminates as a thus a fundamental one in this paper. The DCC-GARCH model ap-

proach for evaluating financial risks and chances that climate-related instruments and

conventional financial units can provide in the context of the ongoing low-carbon econ-

omy transition.

The fast changes in interrelations can be explained by determinants of the market’s

response to climate risks. The swings in relations, especially in the sector affected by

climate change, are one of the informational bases for risk management. Such unexpected

changes can occur during environmental events or policy amendments.

This effort which should lead to sound strategic asset allocation outcomes has been

backed by the findings of the analysis. By recognizing undervalued resources with low

exposure to climate risks, the optimal equity portfolio can be designed to weather out the

negative aftermath of climate-related disturbances in economies.

The paper proposes a policy that would be aimed at ensuring the disclosure of climate

risks and the inclusion of climate factors in financial scores so as to reduce risks and boost

resilience in the financial realm.

This study, however, will diverge from the traditional, it will look for the climate risk

sectorial factors that determine the creditworthiness of equity. The DCC-GARCH (1,1)

model exposes a rich relation between economic market dynamics and climate risks. This

is the additional feature that stresses such systematic financial risks of climate change

to be of great importance for all firms, including banks, investment holders, and listed

companies. For instance, business segments that are classified as high-carbon may bear

additional expenses and rigid compliance rules and thus, they may end up in a difficult

financial situation. On the bright side, the climate risk-conscious businesses’ ratings could

also score improvement in appraisals.

Conducting the integration of the systematic climate-risk analysis into credit analysis

is the most important step. In this way, the integration of climate change considers its

effects on financial assets which ultimately allows the investors and credit agencies to

wisely take stock of whether this is a friendly financial system that has not only looked

back in time but also forward with its eyes set on the future.

Finally, it is highlighted in this thesis that modeling dynamic dependencies is a neces-
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sary factor for financial and climate risk management. Researchers developed a framework

that manages financial stability as well as climate change mitigation simultaneously. Their

findings suggested the integration of these analytical insights into the risk management

practices of financial institutions immediately. Through these measures, such institutions

not only protect the market against negative adverse factors but also serve the purpose

of a responsible, stable, and robust global economy. The work concludes by addressing

the necessity for the integration of financial techniques and wider environmental and so-

cial targets in a unified strategy, where the decision-making refers to both the economic

accountabilities and the most urgent ones’ environmental and social needs.
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