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Introduction

The research questions that this thesis tries to answer focus on financial bubbles, do they

really exist? Are we able to detect them statistically? And most importantly, are we able to

predict the subsequent crash?

Detecting bubbles in the stock market is important for many financial decision makers,

such as central banks, financial institutions and regulators. The detection of these bubbles

is particularly important and it can be achieved by exploiting time series methods for real

time monitoring of structural breaks. Moreover, understanding the timing of a bubble allows

for the reconciliation of the bubble’s formation and conclusion with other macroeconomic

events. This retrospective analysis provides insights into the evolution of the explosive be-

haviour throughout the economy, helping policymakers to comprehend the broader context

in which financial bubbles develop. A bubble regime, characterized by rapid and abnormal

growth in asset prices, holds significant implications for financial stability. Financial bubbles

have the potential to create instability in the market, and understanding their emergence is

essential for finance regulators, in particular to mitigate the risks associated with the sharp

price decline that usually follows the price run-up (Harvey, Leybourne, and Sollis, 2017). The

impact of financial bubbles on a country’s macroeconomic performance can have detrimental

consequences. As demonstrated by the experiences during the dot-com bubble, indecisiveness

in the face of a bubble’s development can have profound effects on monetary policy. Former

Federal Reserve Chairman Alan Greenspan highlighted the challenges faced by the Fed com-

mittee during the dot-com bubble (Greenspan, 2007), where uncertainty about whether to

increase or decrease interest rates prevailed due to a lack of clarity on the market dynamics.

In conclusion, the detection of bubbles in the stock market is needed in order to be able
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to maintain financial stability, to inform policy decisions, and to understand their broader

impact on the economy. It allows for improved decision-making in real time, it mitigates the

risks associated with explosive behavior in asset prices, and it contributes to a more resilient

and stable financial system.

In this thesis I utilize an econometric test to detect the presence of rational bubbles, ex-

ploiting their time series characteristics. I then use a date stamping algorithm to have a more

precise estimate of their initiation, peak and conclusion. Rational bubbles are a particular

kind of financial bubbles studied by Shiller (1981), which arise in a rational world, without

the need of negating the efficient markets hypothesis. Following the rational bubble model,

asset prices are determined by two components: the fundamental component and the bubble

component. When the bubble component is different than zero, the price series with respect

to its fundamental (the price-dividend ratio), has an explosive behavior. The econometric

test from Phillips, Shi, and Yu (2015) takes advantage of this time series behavior, it is con-

structed as a recursive right-tailed unit root test, when the null hypothesis is rejected, the

presence of a bubble is implied. The date stamping algorithm from Harvey, Leybourne, and

Sollis (2017) considers a regime-switching data generating process where the start, the peak

and the end of each bubble are estimated as parameters of the model by least squares.

A first empirical application uses the monthly observations of the S&P500 Index, where I

use both the Phillips, Shi, and Yu (2015) test and the Harvey, Leybourne, and Sollis (2017)

date stamping algorithm. In this application I am interested in the detection and timing of

rational bubbles, I use a market index because of its broad coverage of different assets. A

second empirical application considers 49 industry portfolios as classified by Fama and French.

In this other application I am more interested in comparing the ability of the econometric

test in the detection of bubbles with respect to a naive technique. The econometric test is the

one from Phillips, Shi, and Yu (2015) that I use in the first empirical application. The naive

technique is the one from Greenwood, Shleifer, and You (2019), who consider a bubble a

mere price increase followed by a price decrease. To make this comparison I employ different

logistic regressions, with and without some control variables.

This thesis is organized as follows. In Chapter 1 there is a broad and general overview

of the discussion in the literature of the possibility of existence of bubbles in the market.
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Chapter 2 describes the theory of the rational bubble model, whereas Chapter 3 describes

the theory of the econometric test and of the date stamping algorithm. Chapter 4 shows the

empirical results. The last chapter concludes.
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Chapter 1

Can Bubbles Arise in Efficient

Markets?

1.1 Efficient Capital Markets

The efficient capital market hypothesis simply states that prices reflect all available informa-

tion (Fama, 1976). More formally,

fm(p1t, ..., pnt|ϕm
t−1) = f(p1t, ..., pnt|ϕt−1), (1.1)

where ϕt−1 is the set of available information at time t − 1 and f(p1t...pnt|ϕt−1) is the joint

probability density function for security prices at time t implied by the information available

at time t−1. The subscriptm stands for the market, so that ϕm
t−1 is the set of information that

the market uses to determine security prices and fm(p1t, ..., pnt|ϕm
t−1) is the joint probability

density function assessed by the market. Equation 1.1 states that the information available in

t− 1 that the market uses to determine security prices at t includes all available information

and that the market uses this information correctly.

An important implication of this model is that expected returns are constant, implying

that the information available at time t− 1 cannot be used to predict variation in expected

returns. In particular, the efficient market hypothesis states that in a regression equation of
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the return of a security in t on the variables contained in the set ϕt−1, all the coefficients and

the intercept should be zero. The set of information can contain anything, including past

returns, so that it is not possible to use past returns to correctly assess an expected return

between t − 1 and t that deviates from the constant one. Assuming that the regression of

Rj,t on Rj,t−τ is linear:

E(Rj,t|Rj,t−τ ) = δτ + γτRj,t−τ .

Let the lag τ = 1, γτ is the autocorrelation coefficient. Market efficiency implies that the

coefficients in this regression are zero for all values of the lag τ , including the autocorrelation.

Thereby, returns follow a white noise process and prices follow a random walk.

Fama (2014) affirms that, assuming efficient markets, the predictability in the variation

of expected returns of stocks and bonds results from the variation in risk or risk aversion.

In particular, Fama considers the existence of a bubble detectable if the price run up leg

and the subsequent crash are predictable, something which is not possible for two prominent

reasons: the decline in prices that follows a price run-up is unpredictable and large swings in

stock prices are rather given by large swings in the underlying economic conditions. For these

reasons Fama considers the term bubble inconsistent in a world where markets are efficient.

He reasons that maybe recessions are caused by major stock market oscillations and then

market upturns bring them to an end. Moreover, if a bubble is defined as an irrational price

increase that implies a strong decline, he asks which leg of the bubble is considered to be

irrational, the upturn or the downturn. In an interview with Richard Thaler1, Fama affirms

that he wants evidence that people can statistically identify bubbles by predicting the crash

that follows. A goal that according to him has not yet been achieved.

Greenwood, Shleifer, and You (2019) challenge Fama’s propositions achieving three im-

portant results: a price increase does not predict unusually low returns afterwards, however

it heightens the probability of a crash; the attributes of the increase in prices are good predic-

tors of an eventual crash and of future returns; these characteristics are able to help investors

to earn superior returns by timing the bubble. Greenwood, Shleifer, and You (2019) achieve

these results with an empirical application on the prices of 48 industry portfolios (considering

1available on Chicago Booth: https://www.chicagobooth.edu/review/are-markets-efficient
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the Fama-French classification). The authors consider a bubble episode as such if the indus-

try experienced a price increase of at least 100% over two years and than a 40% drawdown

within a two years period. With a sample size that goes from 1926 to 2014 they find 21 such

episodes. They test whether a price run-up can heighten the probability of a crash after-

wards with a simple regression and they show their results with a kernel density plot. They

obtain that the stronger the price run-up is, the higher the probability of a crash afterwards.

They conclude that Fama is correct by saying that a mere price increase does not predict

low returns, however sharp price increases are able to predict a higher probability of a crash

afterwards.

Moreover, Fama makes his claims considering only irrational bubbles and he does not

take into account those bubbles that can arise even in an efficient market, such as rational

bubbles. In this matter he only criticizes Shiller, in the above mentioned interview, by saying

that his rational bubble model is based on the proposition that there is no variation through

time of expected returns, where in the real world there is variation, both in expected returns

and in risk aversion.

1.2 Rational Behavior and Bubbles

Shiller (2003) does not criticize the efficient market hypothesis and he affirms that it should

be taken as approximately true. An argument in favor of the efficient market theory is that

it is difficult in the stock market to earn superior returns just by buying low and selling high.

Shiller (2003) considers the presence of the so called smart money who are those investors

that look for opportunities in the market driving prices to their true values. The presence of

these investors is implicit in the efficient market hypothesis, however it does not imply that

the market cannot go through periods of significant mispricing. When this happens smart

money are not able to exploit the under or overvaluation opportunities rapidly, so that the

mispricing does not end immediately, increasing the uncertainty on when it will effectively

end.

Miller (1977) shows with a simple supply-demand model that in a scenario in which

9



investors have non-homogeneous expectations, the price of a security can be higher than

what the market considers as fair value. He shows that when the divergence of opinions

about the pricing of a particular asset between investors increases, the demand curve for

that asset tends to become steeper. Thus, the price of the security increases, reflecting now

only the expectations of the most optimistic investors. Only in the limit case, where there is

no disagreement, the market price is determined by the average evaluation of all the potential

investors. He also shows that, in the presence of short selling constraints, the market can be

strongly overpriced. Consider the presence of a particularly fanatic kind of investors, which

is not ruled out by the efficient market hypothesis. Consider the case in which these fanatics

begin to aggressively buy a security so that they become the only holders. The security

becomes overpriced. Smart money would like to short sell this security, but if they cannot

find any to borrow, they can only buy it. In this situation the market is overpriced, the

smart money knows it, but they cannot do anything about it.

Shiller (2003) presents some examples of what he calls obvious mispricing. The first

example is about the eToys, a company that used to sell toys via the Internet. eToys sales

and profits were much lower of the retailer Toys ”R” Us but despite this, its stock value was

much higher. Apparently, the public had an exaggerated view on its potential, indeed, eToys

filed for bankruptcy in 2001. Even if the eToys price seemed absurd, smart money did not

correct it. To do so they should have tried to sell the stocks short, however, not everyone

is always willing to, because there is always the possibility that the stock value will increase

more. Another interesting example is about the 3Com sale of Palm. In March 2000, 3Com

announced that its subsidiary Palm would be sold to the general public, first a fraction of it

and the rest later. Palm stock value increased so much that surpassed the market value of

the owner, which would not be possible in an efficient market. However, smart money could

not exploit this opportunity because the interest cost of borrowing Palm shares was too high.

Shiller and Miller show that even in an efficient market where smart money are present, the

behavior of investors can lead to substantial mispricing.

Shiller (1981) develops the so called rational bubble model (see Chapter 2), without

contradicting the efficient market theory. He shows that swings in stock prices are too big

relative to actual subsequent events and too big relative to dividends and earnings swings.
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Prices are considered to be equal to the present value of rationally expected real dividends

discounted by a constant real discount rate. If the transversality condition (determined in

Equation 2.3) fails, so that the present value of payments occurring infinitely far in the

future is different than zero, a bubble component arises and prices appear to be higher than

what implied by fundamentals. Giglio, Maggiori, and Stroebel (2016) challenges Shiller’s

proposition and find no evidence for the transversality condition to fail. The authors propose

a model free direct test, verifying whether payments at infinite maturity do have a present

value of zero. They do so by exploiting a characteristic of the UK and Singapore housing

markets where there is a distinction between leaseholds and freeholds: leaseholds are finite-

maturity ownership contracts whereas freeholds are infinite-maturity ownership contracts.

They estimate the price difference between freeholds and very long maturity leaseholds, that

should represent the bubble component, and test whether it is indeed positive. They find no

significant difference between freeholds and leaseholds prices, thus cocluding that there is no

evidence for the existence of rational bubbles.

1.3 Literature Review on Rational Bubbles

Theoretical studies on rational bubbles can be found in Shiller (1981), Blanchard and Watson

(1982), Diba and Grossman (1988), Froot and Obstfeld (1991), and Evans (1991). Where all

these studies agree on the theoretical definition of a bubble, they differ on the statstical tests

used to find evidence of them.

One of the first tests employed is a volatility test, used by Shiller (1981) and Blanchard

and Watson (1982). This test arises from the observation that prices seem to be too volatile

with respect to fundamentals. The authors estimate upper bounds for the unconditional and

conditional (on the set of past information) variances of the price process. Since these are

likely to be surpassed in the presence of bubbles, they see whether they are violated in the

data. Both papers find evidence of episodes in which the volatility of prices surpasses the

theoretical bound. West (1987) performs a different kind of test, he compares different sets

of estimates of the parameters needed to calculate the present value of a stock’s dividend

series. Under the null hypothesis of absence of bubbles, the estimates should be equal. The
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author employs this test on US data and he finds enough statistical evidence to reject the

null hypothesis, implying the presence of bubbles.

Froot and Obstfeld (1991) describe a particular model of rational bubbles, the intrinsic

rational bubble model, where the bubble component is only driven by exogeneous funda-

mentals that determines asset prices, such as dividends. An important characteristic of this

model is that the bubble remains constant over time for a given level of fundamentals, so that

highly persistent fundamentals lead to highly persistent over or undervaluations. Moreover,

this kind of bubble may cause asset prices to overreact to news about fundamentals.

Diba and Grossman (1988) employ stationary and cointegration tests to find evidence

against the existence of rational bubbles. They reason that if the first differences process of

dividends is stationary in the mean and rational bubbles do not exist, the first differences

process of prices is also stationary. Moreover, if the first differences process of dividends

is stationary in the mean and rational bubbles do not exist, stock prices and dividends are

cointegrated of order (1, 1), which in practical terms means that prices and dividends move

together2. With these tests they do not find evidence of bubbles. However, Evans (1991),

describing a model of periodically collapsing bubbles, shows how in this scenario simple

Dickey Fuller and Bhargava tests are not able to detect the presence of bubbles.

Others used Dickey Fuller tests to detect the presence of rational bubbles in the market,

such as Hall, Psaradakis, and Sola (1999), Phillips, Wu, and Yu (2011), and Phillips, Shi,

and Yu (2015). Hall, Psaradakis, and Sola (1999) use a generalization of the Augmented

Dickey Fuller test using the class of dynamic Marlov-switching models, allowing regression

parameters to switch values between different regimes. Phillips, Wu, and Yu (2011) and

Phillips, Shi, and Yu (2015) use instead a recursive Augmented Dickey Fuller test to the price

and dividend series (or to the price-dividend ratio series), firstly using an expanding-window

procedure and then a rolling-expanding window procedure. All these papers find evidence for

the presence of bubbles in the stock market. Harvey, Leybourne, Sollis, and Taylor (2016),

Harvey, Leybourne, and Sollis (2017), and Harvey, Leybourne, and Whitehouse (2020) use

the recursive unit root test to detect the presence of a bubble, but then they improve the

2In more statistical terms, this means that there exists at least one linear combination of prices and
dividends that is stationary.
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dating using a date-stamping algorithm based on the sum of sqaured residuals.

Other tests used are fractionally integration tests, used by Cuñado, Gil-Alana, and Grazia

(2005), Koustas and Serletis (2005), and Sibbersten and Kruse (2009). These tests study the

order of integration of the price and dividend series and the difference between the two

variables. They differ from the previous tests because they allow for an order of integration

d, with d not necessarily constrained to be 0 or 1.

Another branch of the literature focused on change point detection analysis for online de-

tection (Chu, Stinchcombe, and White, 1996; Homm and Breitung, 2012; Górecki, Horváth,

and Kokoszka, 2018; Horváth, Liu, et al., 2020; Astill et al., 2021; Horváth, Li, and Liu,

2022). These types of structural break tests fall under the scope of sequential monitoring.

They are based on the estimation of a boundary function and some kind of detector (the

most used one is a CUSUM based detector), as soon as the detector surpasses the boundary

a structural break is detected. If a structural break is detected, then the null hypothesis of no

structural break (no bubble) is rejected. This is considered an online monitoring procedure

because the test is employed every time a new observation is available.

1.4 Bubbles and Behavioral Economics

In the literature there can be found different theories on how financial bubbles can develop

in the market and how their existence can be detected. Besides the rational bubble model,

there are those models coming from behavioral economics, in which bubbles arise from the

irrationality of the agents in the market. In particular, there are the positive-feedback model

and the disagreement model.

A description of the positive-feedback model can be found in Long et al. (1990). In this

model there are two types of investors, rational speculators, who behave like the smart money,

and positive feedback investors, who buy securities when prices are high and sell securities

when prices decline. The authors show how in this scenario, when rational speculators are

present, asset prices tend to go even higher than if they were not present, exacerbating the

bubble. This kind of model differs from the rational bubble model in that expected return
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on stocks turn negative as the peak of the bubble.

Disagreement models can be found in Barberis et al. (2018), Sheinkman and Xiong (2003),

and Abreu and Brunnermeier (2003). In this model two types of investors are present:

rational investors and boundedly rational investors. In this scenario a bubble arises from

the dispersion of opinions between the investors and the lack of synchronization between

them. In particular, a source of disagreement can be a cognitive bias such as overreaction

or overconfidence3. Disagreement models are based on the study of the behavior of agents

in the market, and on how the presence of biases leads to the creation of bubbles even in

a world where rational investors exist. They differ from the rational bubble model because

they link the creation of a bubble not only with an increase in asset prices, but also with an

increase in volatility and trade volume.

Another noteworthy model is the one from Tirole (1985). The author describes an

overlapping-generations model, with an infinite number of finite lived agents. He shows

how a bubble can only arise in a dynamically inefficient scenario, where agents have over-

accumulated private capital, so that the interest rate becomes lower than the growth rate of

the economy.

3For a more comprehensive study on how cognitive biases can affect the market see Bondt and Thaler
(1985) and Thaler (2016).
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Chapter 2

The Asset Pricing Model

2.1 Rational Bubble model

Considering the theoretical asset pricing model by Shiller (1981), the current stock price is

related to the present value of next period’s stock price and dividends:

Pt = γEt[Pt+1 +Dt+1], (2.1)

where Et[·] represents the expected value conditional on the information available at time t.

0 < γ = 1/(1 + R) < 1 is the real discount factor, assumed to be constant, and R is the

constant real interest rate. Shiller (1981) proves how R in this model corresponds to the

one-period holding return:

1 +Rt =
Pt+1 +Dt+1

Pt

. (2.2)

Define the transversality condition as:

lim
j→∞

γjEt[Pt+j] = 0. (2.3)

This condition entails that the present value of payments occurring infinitely far in the future
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is equal to zero. If this condition holds, the forward looking looking solution to Equation 2.1

is:

P f
t =

∞∑
j=1

γjEt[Dt+j],

which is the standard no arbitrage condition, called market fundamental (Diba and Gross-

man, 1988) or unique equilibrium price (Froot and Obstfeld, 1991).

If the transversality condition does not hold, the general solution to Equation 2.1 is:

Pt = P f
t +Bt. (2.4)

Bt represents the rational bubble component and it is the solution of the homogeneous

expectational difference equation:

Et[Bt+1] = γ−1Bt. (2.5)

Equation 2.5 represents the submartingale property (since γ < 1, it follows that Et(Bt+1) >

Bt) and its solutions satisfy the stochastic difference equation:

Bt+1 = γ−1Bt + ut+1,

where ut+1 is a random variable such that Et[ut+j] = 0 for every j (its expected future value

is always zero). The variable ut+1 is an innovation that comprises the information available

at time t + 1. This information can be intrinsically irrelevant and unrelated to the market

fundamentals or it can be related to relevant variables through parameters that are not

present in P f
t (Diba and Grossman, 1988).

Consider Dt to follow an ARIMA process, so that its first difference follows a stationary

ARMA process. If there are no bubbles and the transversality condition holds, it can be

shown that also the first difference of Pt follows a stationary ARMA process (Evans, 1991).

In this case, Pt and Dt are cointegrated of order (1, 1), meaning that there exists a linear

combination of Pt and Dt that is stationary. In particular, it can be shown that Pt −R−1Dt
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is stationary1. If instead, ∆Dt follows a stationary ARMA process but bubbles are present,

then:

lim
j→∞

Et[P
f
t+j] = λj + ct,

for some constant ct, where λ = E(∆P f
t ). Consider now Equation 2.5, rearrange and use the

law of iterated expectation to obtain:

Et[Bt+j] = γ−jBt.

So, the conditional expectation of the market fundamental component grows linearly in the

forecast horizon j. On the other hand, the conditional expectation of the bubble component

contains the root γ−1 > 1. Thus, the conditional expectation of ∆Pt+j is explosive if a bubble

is present. More simply put, if the bubble is present and it grows at an explosive rate, the

observed price will behave like an explosive process even if the relevant fundamentals are

stationary I(0) processes or, at most, integrated I(1) processes. Because of this, if explosive

behaviour in the price-dividend ratio is found, the existence of a bubble can be inferred.

(Phillips, Shi, and Yu, 2015).

2.2 Periodically Collapsing Bubbles

Bubbles can take the form of different stochastic processes, including those that consider

different stages, of expansion and collapse. Even if they are not going to be considered in the

rest of this thesis I will describe two exemplary models from Blanchard and Watson (1982)

and Evans (1991). The model from Blanchard and Watson (1982) can be formalized as:

Bt+1 =

(πγ)−1Bt + εt+1 with probability π

εt+1 with probability 1− π

,

1for a proof see Campbell and Shiller (1987).

17



where εt+1 is the error term with Et(εt+1) = 0. In each period, the probability of a bubble

arising is π and the probability of a crash is 1 − π. During the expansion phase the bub-

ble grows at a rate of (πγ)−1 > 1 and its average duration is (1 − π)−1. The conditional

expectation of Bt+1 can be obtained as:

Et(Bt+1) = Et

{
π[(πγ)−1Bt + (1− π)εt+1]

}
= γ−1Bt,

so it satisfies the submartingale property 2.5.

The model from Evans (1991) takes the form:

Bt+1 =

γ−1Btzt+1 if Bt ≤ α

[δ + π−1γ−1θt+1(Bt − γδ)]zt+1 if Bt > α

. (2.6)

δ and α are positive parameters such that 0 < δ < γ−1α. The error term zt+1 is multiplicative

instead of additive and it is an exogeneous i.i.d. (independent and identically distributed)

random variable satisfying Et[zt+1] = 1. In particular zt+1 is lognormally distributed, scaled

to have a unit mean, so that zt+1 ∼ exp(νt+1 − τ 2/2) with νt+1 i.i.d. random variable

distributed as a normal νt+1 ∼ N (0, τ 2). This ensures that the bubble process satisfies the

submartingale property 2.5. θt+1 is an exogeneous i.i.d. Bernoulli process that takes value

equal to 1 with probability π and equal to 0 with probability 1 − π. This process describes

an always positive bubble, since Bt > 0 implies Bs > 0 for every s > t. As long as Bt ≤ α

the bubble grows at a mean rate of γ−1, but when Bt > α it grows at an explosive rate of

(γπ)−1 > 1 and it has a probability of 1 − π of collapsing. After the collapse, the bubble

component falls to a mean value of δ and the process begins again.

2.3 Log-Linear Approximation

Consider pt = log(Pt), dt = log(Dt) and rt = log(1+Rt), the Equation 2.2 can be written as:

log(Pt+1 +Dt+1)− log(Pt) = pt+1 − pt + log(1 + exp(dt+1 − pt) = rt+1.
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Applying a Taylor series expansion of log(1+exp(dt+1−pt+1)) at the sample mean of pt−dt,

the return rt+1 can be expressed as:

rt+1 = κ+ ρpt+1 + (1− ρ)dt+1 − pt, (2.7)

where,

ρ =
1

1 + exp(d− p)
< 1,

κ = −ρ log ρ− (1− ρ) log(1− ρ).

d− p = 1
n

∑n
t=1(dt−pt) is the average mean of the log dividend-price ratio based on a sample

of size n.

By recursive substitution of 2.7 and taking conditional expectations, with respect to the

set of available information at time t, the log price-dividend ratio can be written as the sum

of a fundamental component ft and a bubble component bt:

pt − dt = ft + bt, (2.8)

as in Equation 2.4 for price levels. The fundamental component can be written as:

ft =
κ

1− ρ
+

∞∑
k=0

ρkEt(∆dt+1+k − rt+1+k), (2.9)

thus, it is determined in terms of a discounted present value, the second term on the right

hand side, that involves the growth rate of dividends and returns. In the case of a constant

discount factor Equation 2.9 can be simplified as:

ft =
κ+ log(γ)

1− ρ
+

∞∑
k=0

ρkEt(∆dt+1+k),

where γ = 1/(1+R) is the constant real discount factor. The bubble component of Equation
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2.8 can be written as:

bt = lim
i→∞

ρiEt(pt+i),

thus, it is determined as the asymptotic discounted present expectation of future asset prices.

In the absence of bubbles bt = limi→∞ ρiEt(pt+i) = 0 and the transversality condition

holds. Instead, in the presence of bubbles bt = limi→∞ ρiEt(pt+i) ̸= 0 and the transversality

condition does not hold. The bubble component then satisfies the submartingale property:

Et(bt+1) = lim
i→∞

Et(ρ
ipt+1+i)

=
1

ρ
lim
i→∞

Et(ρ
i+1pt+1+i)

=
1

ρ
bt,

so that, Et(bt+1) > bt, since
1
ρ
> 1. In other words, the bubble component follows an explosive

process.

In the presence of bubbles, the log-linear approximation holds only under certain condi-

tions. The log-linear approximation relies on the assumption that the sample mean of pt−dt

converges to the true population mean in the limit. However, when bt ̸= 0, the difference

pt − dt is explosive, leading to an explosive sample mean and:

ρ =
1

1 + exp(d− p)
→ 1,

compromising the validity of the Equation 2.9 that determines the fundamental component

ft. Lee and Phillips (2016) show that the log-linear approximation and the present value

identity 2.8 are still valid when the duration of the bubble is asymptotically negligible.
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Chapter 3

Methodologies to Detect and Date

Rational bubbles

3.1 A Recursive Right-Tailed Unit Root Test for Ra-

tional Bubbles Detection

Standard unit root tests are not able to capture explosive episodes in asset prices if these

are periodically collapsing such as in Equation 2.6 (Evans, 1991). This happens because a

periodically collapsing bubble process can behave like a unit root process or a stationary one

when π is small. For this reason Phillips, Wu, and Yu (2011) and Phillips, Shi, and Yu (2015)

decided to use an Augmented Dickey Fuller test recursively and they proved how this method

is able to efficiently detect explosive episodes in prices (or price-dividend ratio) series. The

test is employed as follows.

For each time-series yt on which the test is going to be employed, the following autore-

gressive process is estimated by least squares:

yt = µt + δyt−1 +
K∑
k=1

ϕk∆yt−k + εy,t, εy,t ∼ N (0, σ2
y),

where µt is the drift and K is the lag parameter (in the empirical application I omit the sum
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as in Phillips, Shi, and Yu (2015)). The unit root (martingale) null hypothesis is given by

H0 : δ = 1 and the right-tailed alternative hypothesis is H1 : δ > 1. Phillips, Shi, and Yu

(2015) consider the case in which there is a negligible drift:

yt = dT−η + δyt−1 +
K∑
k=1

ϕk∆yt−k + εy,t, (3.1)

where d is a constant, T the sample size and η controls the magnitude of the intercept and the

drift. In particular they consider the case in which η > 1/2, so that the order of magnitude

of yt is the same as that of a pure random walk.

The ADF test is performed repeatedly by expanding window. The first regression will

consider a subset of data τ0 = [T l] for some fraction l of the total sample T . Phillips, Shi, and

Yu (2015) suggest to use as initial window l = 0.01 + 1.8/
√
T . The subsequent regressions

will consider τ = [Tn] for n ∈ [l, 1]. In doing so the result obtained is a series of ADF test

statistics. The Supremum Augmented Dickey Fuller statistic (SADF hereafter) is defined as

the supremum of this series:

SADF (l) = sup
n∈[l,1]

ADF n
0 . (3.2)

The General Supremum Augmented Dickey Fuller test (GSADF hereafter) is performed

in a similar way, but instead of just an expanding window approach, it considers a rolling-

expanding window regression: set m ∈ [0, n− l] and n ∈ [l, 1], so that,

GSADF (l) = sup
n∈[l,1]

m∈[0,n−l]

{ADF n
m}, (3.3)

with window width [T (n−m)], the fraction l for the initial window is specified as above.

Phillips, Wu, and Yu (2011) proved that the limiting distribution of the statistic in

Equation 3.2 is:

SADF (l) → sup
n∈[l,1]

∫ n

0
W µ(s) dW (s)(∫ n

0
[W µ(s)]2

)1/2 ,
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where W µ(n) = W (n)− 1
n

∫ 1

0
W (s) ds is a demeaned Wiener process.

Phillips, Shi, and Yu (2015) proved that the limiting distribution of the statistic in Equa-

tion 3.3, with the assumption of negligible drift is,

GSADF (l) → sup
n∈[l,1]

m∈[0,n−l]

{
1
2
(n−m)[[W (n)]2 − [W (m)]2 − (n−m)]−

∫ n

m
W (s) ds[W (n)−W (m)]

(n−m)1/2
{
(n−m)

∫ n

m
[W (s)]2 ds− [

∫ n

m
W (s) ds]2

}1/2

}
,

where W (·) is a standard Wiener process.

Knowing the two limiting distributions, it is possible to compute asymptotic critical

values to compare with the statistics found. If the statistics are above the critical values the

martingale hypothesis is rejected, implying the presence of at least one bubble.

Phillips, Shi, and Yu (2015) also use a date stamping technique, that I am going to

employ in the empirical application to have a preliminary estimate for the start and end

date of the bubble(s). The strategy is a double recursive test procedure called Backward

Supremum Augmented Dickey Fuller test (BSADF hereafter). This consists in a SADF test

on a backward expanding window, where the endpoint of the sample is fixed at n and the

start point varies from 0 to n− l. The BSADF statistic is defined as:

BSADFn(l) = sup
m∈[0,n−l]

{ADF n
m}.

The start date of the bubble is then estimated to be the first point observation for which

the BSADF test statistic goes above the corresponding critical value and the end date is

estimated to be the first point observation for which the BSADF test statistic goes below the

corresponding critical value.

3.2 Date Stamping Algorithm

The date stamping algorithm from Harvey, Leybourne, and Sollis (2017) is based on a mini-

mum sum of squared residuals estimator. As a data generating process they assume a DGP
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that imposes a unit root on the series yt (prices or price-dividend ratio series) up until the

time [τ1T ], after which the series becomes explosive up until the time [τ2T ] (this is the bub-

ble regime), then the series becomes stationary up until [τ3T ] (collapsing regime) and then

it restores to a unit root process until the sample end, for T sample size and τj fraction of

the sample, with j = 1, 2, 3.

yt = µ+ ut, ut =



ut−1 + εt, t = 2, ..., [τ1T ]

(1 + δ1)ut−1 + εt, t = [τ1T ] + 1, ..., [τ2T ]

(1− δ2)ut−1 + εt, t = [τ2T ] + 1, ..., [τ3T ]

ut−1 + εt, t = [τ3T ] + 1, ..., T

Because of this specification there are four different DGPs possible:

1. unit root then bubble to sample end;

2. unit root, bubble, then unit root to sample end;

3. unit root, bubble, then collapse to sample end;

4. unit root, bubble, collapse, then bubble to sample end.

For each DGP an OLS regression is estimated:

DGP1 : ∆yt = δ̂1Dt(τ1, 1)yt−1 + ε̂1,t,

DGP2 : ∆yt = δ̂1Dt(τ1, τ2)yt−1 + ε̂2,t,

DGP3 : ∆yt = δ̂1Dt(τ1, τ2)yt−1 + δ̂2Dt(τ2, 1)yt−1 + ε̂3,t,

DGP4 : ∆yt = δ̂1Dt(τ1, τ2)yt−1 + δ̂2Dt(τ2, τ3)yt−1 + ε̂4,t,

where Dt is a dummy variable defined as Dt(τj, τj+1) = 1([τjT ] < t < [τj+1T ]). For simplicity,

the constant term µ is not considered.
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The change point estimators are then computed as:

DGP1 : τ̂1 = min
0<τ1<1,
yT>y[τ1T ]

SSR1(τ1)

DGP2 : (τ̂1, τ̂2) = min
0<τ1<τ2<1
y[τ2T ]>y[τ1T ]

SSR2(τ1, τ2)

DGP3 : (τ̂1, τ̂2) = min
0<τ1<τ2<1
y[τ2T ]>y[τ1T ]
y[τ2T ]>yT

SSR3(τ1, τ2)

DGP4 : (τ̂1, τ̂2, τ̂3) = min
0<τ1<τ2<τ3<1
y[τ2T ]>y[τ1T ]
y[τ2T ]>y[τ3T ]

SSR4(τ1, τ2, τ3),

where SSRi(·) =
∑T

t=2 ε̂
2
it represents the sum of squared residuals. The constraints y[τ2T ] >

y[τ1T ] and y[τ2T ] > y[τ3T ] are useful to ensure a positive bubble regime (between τ1 and τ2) and

a downward stationary regime (between τ2 and τ3). Harvey, Leybourne, and Sollis (2017)

proved that these estimators are consistent for the true change points. However, for DGP4

this is true only if the condition (1 + δ1)
τ2−τ1(1 − δ2)

τ3−τ2 ≥ 1 holds. They also proved via

simulations that this algorithm is more precise than the dating that results from the BSADF

statistic.
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Chapter 4

Empirical Application Results

4.1 S&P500 Application

As a first empirical application I use data on the S&P500 Index. I download the real price

and the real dividend series (monthly observations) from the Robert Shiller website1, from

January 1926 to March 2024, totalling 1179 data points. I chose to use monthly observations

because they are less noisy than daily prices, yet they still allow me to capture relatively short-

term dynamics. Figure 4.1 shows the price of the S&P500 Index relative to its fundamental,

i.e. the price-dividend ratio.

I firstly employ the SADF and GSADF tests to the price-dividend ratio. Table 4.1 presents

the two test statistics. Together the finite sample critical values are reported, obtained

from 1000 replications of 1179 observations, where I assumed that the model under the null

hypothesis is the one described in Equation 3.1. The transient dynamic lag order is set to

K = 0. The initial window size is set to l = 0.01+1.8/
√
1179 = 0.0624. Both the SADF and

GSADF statistics exceed their 99% critical value suggesting at least an explosive episode in

the price-dividend series, implying the presence of at least one rational bubble in the sample.

Moreover, these results are really similar from Phillips, Shi, and Yu (2015) for which the

sample started in January 1871 and ended in December 2010.

1available at: http://www.econ.yale.edu/~shiller/data.htm
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Figure 4.1: S&P500 Price-Dividend ratio, between January 1926 to March 2024.

Table 4.1: SADF and GSADF test statistics and finite sample critical values. The finite
sample critical values are obtained from Monte Carlo simulations, with 1000 replications
(sample size T = 1179). The smallest window has 73 observations.

Finite sample critical values

Test statistic 90% 95% 99%

SADF 3.1712 0.9774 1.2499 1.7492
GSADF 4.1603 2.1005 2.3156 2.9450

After having detected the presence of a bubble, I employ the BSADF test to the price-

dividend ratio series for a preliminary estimate on the start and end dates of the bubble(s).

Figure 4.2 shows the BSADF test statistics on the price-dividend ratio series against the

corresponding 95% critical values. The estimate for the start date is the first point observation

for which the statistic exceeds the critical value and the estimate for the end date is the first

point observation for which the statistic goes below the critical value. I consider a bubble

episode if the critical value is surpassed at least for three consecutive observations and I

consider two different bubbles if there are at least three different observations below the

critical value. From Figure 4.2 at least 7 episodes are observed, for which the preliminary

dates are listed in Table 4.2.

Three of these episodes were also found in Phillips, Shi, and Yu (2015): the post-war boom
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Figure 4.2: The BSADF test statistics against the corresponding 95% critical values.

Table 4.2: Start date and end date for each episode found in the S&P500 with the BSADF
estimator.

Start date End date

Episode A Nov-45 Jul-46
Episode B Nov-54 Aug-56
Episode C Nov-58 Jan-60
Episode D Apr-86 Sep-87
Episode E Nov-95 Aug-01
Episode F Oct-08 May-09
Episode G Jun-21 Dec-21

(episode B), the Black Monday (episode D) and the dot-com bubble (episode E). Episode F,

the subprime mortgage crisis, is not a bubble but a market downturn that is still detected by

the test as explosive behaviour. Episode G is too recent to have been detected by the authors

and it can be attributable to the Covid19-crisis. From this step onwards I only consider the

bubble episodes that lasted at least 12 months.

Subsequently, I utilize the Harvey, Leybourne, and Sollis (2017) (HLS hereafter) minimum

sum of squares estimator, to obtain a more precise estimate of the start and end date of the

bubbles. Since this date stamping algorithm is constructed so that there is only one bubble,

I need to divide the sample: the first subsample goes from January 1950 to May 1958, the
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Table 4.3: Start date, end date and collapse end date estimated with the date stamping
algorithm from Harvey, Leybourne, and Sollis (2017).

Start date End date Collapse end date

Episode B Sep-53 Mar-56 Nov-57
Episode D Jun-85 Sep-87 Oct-88
Episode E Jan-95 Aug-00 Sep-02

second subsample goes from January 1970 to December 1991, the third subsample goes from

January 1992 to December 2005. Table 4.3 shows the results. For episode B both the start

date and the end date are earlier than what the BSADF estimated. In 31 months the real

price for the S&P500 Index increased by 104.84% and then declined during the collapse

period, lasted 20 months, by 19.82%. For episode D the start date is earlier than what

estimated by the BSADF but the end date is the same. In 28 months the price increased by

57.86% and then declined during the collapse period, lasted 13 months, by 16.72%. Also for

episode E both the start date and the end dates are earlier than what the BSADF estimated.

These tests and estimators consider the dot-com bubble to last 5 years and 8 months and in

this period the real price for the S&P500 Index increased by 177.71%, from a level of 965.04

in January 1995 to a level of 2680 in August 2000. During the collapse period, lasted 2 years,

the price dropped by 28%.

4.2 Fama-French 49 Industries

In this empirical application I will consider whether the econometric test used to detect

the presence of bubbles has a predictive power for the crash that follows the abnormal

price run-up. In particular, I compare the predictive power of the econometric test with

the predictive power of the methodology used in Greenwood, Shleifer, and You (2019). To

make an easier comparison with Greenwood, Shleifer, and You (2019) results, I consider 49

industries, identified as in the classification from Fama and French2, without considering the

Others sector so that the industries under study are 48. I download the data for each firm,

for a total of 37747 firms, from the CRSP database, from January 1926 until December 2023,

2Details available at: https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/
det_49_ind_port.html.

29

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_49_ind_port.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_49_ind_port.html


both with daily observations and monthly observations. For each firm I consider, the SIC

code (needed to separate the different sectors), the closing price, the dividend cash amount,

the shares traded and the shares outstanding. For each firm I compute the daily and the

monthly returns and the volatility of daily returns. I then aggregate the firms in the different

sectors, using the mean for the prices and the dividends as aggregating measure, the returns

are instead both value-weighted and equally-weighted. I then compute the variable I need

for detecting bubbles with the BSADF statistic, that is the log price-dividend ratio, simply

constructed as log(Pi,t)− log(Di,t), for sector i and month t.

What I am interested in is the comparison of the ability of different methodologies not

only to detect bubbles, but to detect those bubbles that have a crash afterwards. Is an

econometric test really able to capture this better than a naive model? To answer this

question I run a logistic regression and I consider four different methods to detect bubbles:

the first two methodologies are based on Phillips, Shi, and Yu (2015) and the last two

on Greenwood, Shleifer, and You (2019). In particular, I am interested in the probability

of a crash in the following 2-years, given that in the month before, the industry was in

an explosive period. That is, I am interested in E[Y |X] = P (Y = 1|X), where X =

[Bubblei,t−1; Characteristicsi,t−1] and Y represents the Crash dummy, constructed as:

Crashi,t = 1 if Ri,t→t+24 ≤ −40%,

Crashi,t = 0 Otherwise,

(4.1)

where Ri,t→t+24 are two-years raw returns for industry i. With a logistic regression I can

estimate the probability of a crash given by the presence of a price peak as:

P (Y = 1|X) =
exp [α + β1 · Bubblei,t−1 + β2 · Characteristicsi,t−1]

1 + exp [α + β1 · Bubblei,t−1 + β2 · Characteristicsi,t−1]
. (4.2)

β1 is the coefficient that really matters, it represents the change in logit[P (Y = 1|X)] when

Bubblei,t−1 = 1 compared to the case in which Bubblei,t−1 = 0. More clearly, eβ1 represents

how much higher (or lower) the probability of Y = 1 is when Bubblei,t−1 = 1 compared to

the case in which Bubblei,t−1 = 0.
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The Bubble dummy for the first two methodologies is constructed as:Bubblei,t = 1 if BSADFi,t(l) > cvt(α),

Bubblei,t = 0 Otherwise,

(4.3)

where BSADFi,t(l) is the BSADF statistic for month t and industry i. To avoid look-ahead

bias, it is computed so that for month t I only consider observations up to month t. l is the

fraction for starting window and it depends on the length of the sample as explained above

(see Section 3.1). cvt(α) is the critical value for month t, with α significance level. I consider

α = 95% and α = 99%.

The Bubble dummy for the third methodology is constructed as:Bubblei,t = 1 if Ri,t−24→t ≥ 100%,

Bubblei,t = 0 Otherwise,

(4.4)

where Ri,t−24→t are two-years raw returns for month t and industry i.

The Bubble dummy for the fourth methodology is constructed as:Bubblei,t = 1 if RVW
i,t−24→t ≥ 100%,

Bubblei,t = 0 Otherwise,

(4.5)

where RVW
i,t−24→t are two-years value-weighted raw returns for month t and industry i.

The Characteristics matrix contains some controlling variables: volatility, turnover, firm

age and issuance. These characteristics are constructed following Greenwood, Shleifer, and

You (2019) as:

• Volatility: I compute the percentile rank of volatility in the cross-section of firms each

month for each sector, the industry volatility is then computed as the value-weighted

mean of the rank for each industry, for example in January 1962, for the Bank sector

the volatility is 0.42, meaning that 42% of firms had lower volatility than the average

firm in that industry.
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• Turnover: the turnover is defined as shares traded divided by shares outstanding, every

month I compute the percentile rank of turnover in the whole cross-section of firms,

the industry turnover is then computed as the value-weighted mean of the rank, for

example for the Hardware sector in August 2000, the turnover was 0.69, meaning that

the value-weighted turnover for that industry was higher than 69% of all listed stocks.

• Age: the age of a firm is measured as the number of years since the firm first appeared

on CRSP, then to construct the industry age I compute the percentile rank of the age

for every listed stock and I compute the value-weighted mean of this rank for each

industry, for example, in March 1932 for the Aircraft sector, the age is 0.62 meaning

that the value-weighted age for that industry was higher than 62% of all listed stocks.

• Issuance: considering the issuers those firms for which the shares increased by 5% in

one year, this variable is constructed as the percentage of issuers in the industry in the

past year.

I chose to use these characteristics as control variables in the logistic regression because

Greenwood, Shleifer, and You (2019) found that they all have predictive power for sub-

sequent returns. Moreover, these characteristics tend to increase abnormally during price

run-up periods that are followed by crashes. Because of these reasons, it is possible that,

after controlling for these variables, the coefficient on the Bubble dummy will not be signif-

icant anymore. This would imply that these variables have better predictive power for the

subsequent crash than the presence of the bubble itself.

Tables 4.4 and 4.5 show some summary statistics for the control variables volatility, its

1-year change, turnover, its 1-year change, industry age and percentage of issuers. Table

4.4 considers the BSADF statistic as methodology to detect the presence of a bubble. All

characteristics have a higher mean during a bubble episode, except for the percentage of

issuers, however, between the bubble episodes that crash and those that do not there is not

much difference. Table 4.5 considers two-years raw returns to detect price run-ups. Also in

this case all characteristics have a higher mean during a price run up episode, however only

volatility have a higher mean during those price run ups that have a subsequent crash than

during those price run ups without a subsequent crash.
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Table 4.4: Summary statistics. Summary statistics of different characteristics: volatility,
the one-year change of volatility, turnover, the one-year change of turnover, industry age and
percentage of issuers. The explosive episodes are detected with the BSADF statistic using
99% critical values. A crash is defined as a price drawdown of 40% in a two-years period.
The columns of the second panel of this table show summary statistics for explosive episodes
with a subsequent crash and for explosive episodes without a subsequent crash.

All observations Explosive Episodes

Mean SD Mean SD

Volatility 0.320 0.131 0.464 0.197
1-year change in Volatility -0.0004 0.120 0.046 0.245
Turnover 0.498 0.172 0.573 0.215
1-year change in Turnover -0.002 0.099 0.072 0.154
Age 0.535 0.119 0.607 0.163
Issuance 0.165 0.871 0.030 0.149

With Crash With no Crash

Mean SD Mean SD

Volatility 0.446 0.222 0.477 0.179
1-year change in Volatility -0.047 0.214 0.114 0.247
Turnover 0.498 0.227 0.625 0.192
1-year change in Turnover -0.016 0.111 0.138 0.149
Age 0.590 0.203 0.619 0.129
Issuance 0.000 0.000 0.051 0.192

Figure 4.3 shows a predicted probabilities plot of the probability of a crash conditional on

two different variables: the blue line is estimated using the BSADF statistic as a predictor

variable, whereas the red line is estimated using past value-weighted 2-years raw returns.

Both predictor variables are standardized in order to make an easier comparison. It can be

seen how the BSADF statistic corresponds to a higher probability of a crash in almost every

point of the graph. The results from the logistic regressions are shown in the Tables 4.6,

4.7, 4.8 and 4.9 whereas Table 4.10 shows the percentage of all the explosive observations

found that have a subsequent crash. First of all, I can observe in the logistic regression that

controlling for the different variables does reduce the coefficients on all the Bubble variables

but it does not make them insignificant. I can also observe that the econometric test is able

to detect bubbles that have a subsequent crash better than the other models, but only when

using a high critical value, the performance of the same model when using a lower critical

value is worse than the naive model. The winner methodology captures much less explosive
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Table 4.5: Summary statistics. Summary statistics of different characteristics: volatility,
the one-year change of volatility, turnover, the one-year change of turnover, industry age and
percentage of issuers. The price-run ups are detected when the two-year raw industry return
is equal or higher to 100%. A crash is defined as a price drawdown of 40% in a two-years
period. The columns of the second panel of this table show summary statistics for price
run-up episodes with a subsequent crash and for price run-up episodes without a subsequent
crash.

All observations Price Run-Up Episodes

Mean SD Mean SD

Volatility 0.320 0.131 0.333 0.154
1-year change in Volatility -0.0004 0.120 0.014 0.132
Turnover 0.498 0.172 0.551 0.173
1-year change in Turnover -0.002 0.099 -0.019 0.143
Age 0.535 0.119 0.549 0.144
Issuance 0.165 0.871 0.361 2.52

With Crash With no Crash

Mean SD Mean SD

Volatility 0.375 0.144 0.320 0.155
1-year change in Volatility 0.006 0.134 0.017 0.131
Turnover 0.542 0.194 0.554 0.165
1-year change in Turnover -0.026 0.133 -0.017 0.146
Age 0.517 0.147 0.559 0.142
Issuance 0.092 0.403 0.446 2.88

price episodes, but more than 40% of them have a subsequent crash. On the other hand,

the other methodologies capture more price run-up episodes, but only 20% of them have

a subsequent crash. Thus, the econometric methodology is better able to capture bubble

episodes.

To get a better understanding of which methodology is really able to capture the prob-

ability of the crash after the price run-up, I carry out a comparison between them. Thus, I

run the logistic regression:

logit[P (Y = 1|X)] = log

[
P (Y = 1|X)

1− P (Y = 1|X)

]
= α + β1 · BubbleBSADF99

i,t−1 + β2 · BubbleEWi,t−1

+ β3 · BubbleVW
i,t−1 + β4 · Characteristicsi,t−1.
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Figure 4.3: Crash Predictability. Probability of crash given by two different predictor
variables: BSADF (blue) and value weighted raw returns (red). The line is the estimate
and the colored area represents the 95% confidence interval. The predictor variables are
standardized for easier comparison.

Y represents the Crash dummy constructed as in Equation 4.1, BubbleBSADF99
i,t−1 represents

the Bubble dummy constructed as in Equation 4.3 with α = 99%, BubbleEWi,t−1 as in Equation

4.4 and BubbleVW
i,t−1 as in Equation 4.5. With regard to the dummy constructed considering

the BSADF statistic, I chose to use only the one with α = 99%, because of its better

performance with respect to the one with α = 95%. The Characteristics matrix contains the

same control variables as in 4.2. The results from this regression are shown in Table 4.11.

All coefficients on the various Bubble dummies are significant, but the highest coefficient is

the one from the econometric statistic, confirming its better predictive power. Controlling

for volatility, turnover, issuance and firm age does slightly decrease the coefficients but they

all remain significant. To be sure about the difference between the coefficients I carry out

two Wald tests, with H0 : β1 = β2 and H1 : β1 ̸= β2 for the first one, and H0 : β1 = β3 and

H1 : β1 ̸= β3 for the second one. The first difference is significant at 5% and the second one

at 1%. Including also the control variables, both differences are significant at 1%. The tests

on the difference between the coefficients confirm the better performance of the econometric

methodology in detecting bubbles.
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Table 4.6: Logistic Regression Coefficients. Results from the logistic regression using
the BSADF statistic to detect the presence of bubble episodes considering critical values at
99%. Maximum likelihood standard errors are in parenthesis. (***) significant at 99% (**)
significant at 95% (*) significant at 90%.

BSADF 99

Intercept -2.602*** -2.887*** -2.491*** -0.957*** -0.958***
(0.018) (0.048) (0.065) (0.109) (0.109)

Bubble 2.245*** 2.122*** 2.179*** 2.427*** 2.417***
(0.247) (0.132) (0.249) (0.258) (0.258)

Volatility - 0.875*** 0.992*** 0.789*** 0.786***
- (0.132) (0.102) (0.133) (0.133)

Turnover - - -0.891*** -0.924*** -0.903***
- - (0.102) (0.102) (0.102)

Age - - - -2.799*** -2.793***
- - - (0.162) (0.162)

Issuance - - - - -0.080**
- - - - (0.030)

From Table 4.12 to Table 4.15 all the bubble episodes are shown, in particular I consider

only those episodes that have a subsequent crash and only for those sectors that have more

than 10 firms by the time the episode started. There is alignment with what I find and

Greenwood, Shleifer, and You (2019) results, but I find much more episodes. There is however

great heterogeneity between the different methods, the only episode that is captured by every

method is the one in the Personal Services industry in October 1968. This is due to the fact

that the econometric test does not consider whether prices are high or low, but it is designed

to detect rational bubbles, where the time series behavior of prices is more explosive than the

time series behavior of the fundamentals (in this case, dividends). The two methods differ

in the definition of the price run-up leg of the bubble, but I compare them using the same

definition for the drawdown part of the bubble, and results suggest that the econometric test

designed to detect rational bubbles has a better predictive power for the collapse following

the explosive period.
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Table 4.7: Logistic Regression Coefficients. Results from the logistic regression using
the BSADF statistic to detect the presence of bubble episodes considering critical values at
95%. Maximum likelihood standard errors are in parenthesis. (***) significant at 99% (**)
significant at 95% (*) significant at 90%.

BSADF 95

Intercept -2.610*** -2.894*** -2.506*** -0.987*** -0.988***
(0.018) (0.048) (0.065) (0.109) (0.109)

Bubble 1.355*** 1.291*** 1.288*** 1.335*** 1.340***
(0.136) (0.136) (0.136) (0.138) (0.138)

Volatility - 0.871*** 0.988*** 0.790*** 0.7875***
- (0.132) (0.131) (0.133) (0.134)

Turnover - - -0.874*** -0.907*** -0.884***
- - (0.102) (0.102) (0.102)

Age - - - -2.773*** -2.767***
- - - (0.162) (0.162)

Issuance - - - - -0.085**
- - - - (0.031)

Table 4.8: Logistic Regression Coefficients. Results from the logistic regression, price
run-up episodes are detected as an increase of 100% or more in 2-years equally-weighted raw
returns. Maximum likelihood standard errors are in parenthesis. (***) significant at 99%
(**) significant at 95% (*) significant at 90%.

Equally-Weighted Returns

Intercept -2.666*** -2.952*** -2.506*** -0.967*** -0.970***
(0.018) (0.048) (0.065) (0.109) (0.108)

Bubble 1.512*** 1.501*** 1.561*** 1.609*** 1.618***
(0.069) (0.069) (0.069) (0.070) (0.071)

Volatility - 0.879*** 1.016*** 0.821*** 0.823***
- (0.132) (0.130) (0.133) (0.133)

Turnover - - -1.013*** -1.045*** -1.021***
- - (0.103) (0.103) (0.103)

Age - - - -2.818*** -2.812***
- - - (0.162) (0.162)

Issuance - - - - -0.085**
- - - - (0.028)
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Table 4.9: Logistic Regression Coefficients. Results from the logistic regression, price
run-up episodes are detected as an increase of 100% or more in 2-years value-weighted raw
returns. Maximum likelihood standard errors are in parenthesis. (***) significant at 99%
(**) significant at 95% (*) significant at 90%.

Value-Weighted Returns

Intercept -2.677*** -2.939*** -2.454*** -0.946*** -0.948***
(0.019) (0.048) (0.064) (0.109) (0.109)

Bubble 1.302*** 1.279*** 1.375*** 1.381*** 1.389***
(0.061) (0.062) (0.062) (0.063) (0.0631)

Volatility - 0.809*** 0.955*** 0.761*** 0.761***
- (0.132) (0.130) (0.133) (0.133)

Turnover - - -1.106*** -1.142*** -1.119***
- - (0.104) (0.103) (0.103)

Age - - - -2.751*** -2.745***
- - - (0.162) (0.162)

Issuance - - - - -0.089**
- - - - (0.028)

Table 4.10: Percentage of crash observations. Percentage of the explosive observations
found with each method that crashed in the following two-years. The methods are, respec-
tively: BSADF statistic using 99% critical values, BSADF statistic using 95% critical values,
two-years raw returns exceeding 100%, two-years value-weighted raw returns exceeding 100%.

BSADF 99 BSADF 95 Raw Returns Value-Weighted Raw Returns

41.18% 22.19% 23.97% 20.19%
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Table 4.11: Comparison between methods: Logistic Regression Results. This table
summarises the results from the logistic regression including all methodologies used to detect
the presence of potential bubbles and some control variables. Maximum likelihood standard
errors are in parenthesis. (***) significant at 99% (**) significant at 95% (*) significant at
90%.

Comparison between methods

Intercept -2.693*** -2.946*** -2.455*** -0.898*** -0.901***
(0.019) (0.048) (0.064) (0.109) (109)

BubbleBSADF99 1.621*** 1.519*** 1.564*** 1.817*** 1.801***
(0.263) (0.265) (0.264) (0.266) (0.266)

BubbleEW 0.926*** 0.935*** 0.941*** 0.994*** 1.000***
(0.090) (0.090) (0.091) (0.091) (0.091)

BubbleVW 0.815*** 0.791*** 0.884*** 0.871*** 0.878***
(0.080) (0.081) (0.081) (0.082) (0.082)

Volatility - 0.781*** 0.931*** 0.722*** 0.726***
- (0.133) (0.131) (0.133) (0.133)

Turnover - - -1.121*** -1.152*** -1.129***
- - (0.103) (0.103) (0.104)

Age - - - -2.848*** -2.843***
- - - (0.163) (0.162)

Issuance - - - - -0.086**
- - - - (0.027)

39



Table 4.12: Bubble Episodes. Explosive episodes that have at least 1 subsequent crash
observation. The explosive episodes are found with the BSADF statistic using 99% critical
values. For each panel the first column defines the sector and the second one when the price
explosion is first observed. Panel A shows how many months the price explosion lasted, how
many observations in that time span have a following crash and how many firms were in the
sector by the time the bubble started. Panel B shows the performance of the sector after the
bubble peak.

Panel A: Bubble Episodes

Sector Date of first
observed explosive
observation

Number of
explosive
observations

Number of
subsequent
crash
observations

Number of
firms

banks 03/1961 1 1 18
banks 11/1961 1 1 19
fun 01/1961 1 1 12
banks 01/1962 3 3 20
rtail 01/1962 1 1 76

Panel B: Equally weighted and value weighted returns

Sector Date of first
observed explosive
observation

12-
months
raw
returns

24-
months
raw
returns

12-
months
raw
value-
weighted
returns

24-
months
raw
value-
weighted
returns

banks 03/1961 -13.24% -48.24% -9.57% -10.60%
banks 11/1961 -61.79% -62.30% -17.10% -13.70%
fun 01/1961 -65.01% -59.43% -22.80% -16.00%
banks 01/1962 -44.60% -49.39% -1.56% -22.80%
rtail 01/1962 -49.54% -49.69% -18.50% -12.90%
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Table 4.13: Bubble Episodes. Explosive episodes that have at least 1 subsequent crash
observation. The explosive episodes are found with the BSADF statistic using 95% critical
values. For each panel the first column defines the sector and the second one when the price
explosion is first observed. Panel A shows how many months the price explosion lasted, how
many observations in that time span have a following crash and how many firms were in the
sector by the time the bubble started. Panel B shows the performance of the sector after the
bubble peak.

Panel A: Bubble Episodes

Sector Date of first
observed explosive
observation

Number of
explosive
observations

Number of
subsequent
crash
observations

Number of
firms

clths 11/1945 2 1 21
clths 01/1946 1 1 21
banks 02/1961 4 4 18
fun 03/1961 3 3 14
banks 08/1961 9 8 18
fun 01/1962 2 2 12
rtail 01/1962 3 3 76
persv 10/1968 3 3 14
softw 01/1983 6 6 50
banks 01/1986 3 3 332
food 05/1986 2 1 88

Panel B: Equally weighted and value weighted returns

Sector Date of first
observed explosive
observation

12-
months
raw
returns

24-
months
raw
returns

12-
months
raw
value-
weighted
returns

24-
months
raw
value-
weighted
returns

clths 11/1945 -34.34% -44.92% -26.10% -28.00%
clths 01/1946 -27.18% -44.75% -20.30% -28.60%
banks 02/1961 -36.60% -46.10% -9.63% -4.92%
fun 03/1961 -41.94% -60.76% -39.90% -17.60%
banks 08/1961 -25.36% -31.70% 12.10% 6.00%
fun 01/1962 -56.33% -52.67% -14.90% -9.67%
rtail 01/1962 -49.18% -49.18% 0.73% 4.32%
persv 10/1968 -44.62% -50.19% -29.30% -19.80%
softw 01/1983 -60.62% -54.41% -31.90% -22.20%
banks 01/1986 -22.31% -40.45% -0.09% -22.40%
food 05/1986 -19.86% -39.11% -6.73% -22.80%
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Table 4.14: Price Run-Up Episodes. Explosive episodes that have at least 1 subsequent crash observation. The explosive episodes
are defined as two-years raw returns that exceed a certain threshold X, with X = 100%. The first column defines the sector, the
second one when the price run-up is first observed, the third how many months the price run-up lasted, and the fourth how many
observations in that time span have a following crash, the following two columns represents the performance of the sector after the
bubble peak and the last column shows how many firms were in the sector by the time the bubble started.

Sector Date of first

observed explosive

observation

Number of

explosive

observations

Number of

subsequent crash

observations

12-months

raw returns

24-months

raw returns

Number

of firms

mines 05/1935 1 1 2.53% -57.40% 20

mines 07/1935 1 1 4.89% -56.05% 20

mines 11/1935 4 4 -22.18% -80.03% 20

autos 03/1936 13 12 -7.69% -66.67% 43

bldmt 03/1936 1 1 -1.34% -53.29% 36

mach 05/1936 14 7 -23.16% -33.22% 38

bldmt 07/1936 9 5 -49.42% -45.39% 35

txtls 07/1936 11 9 -41.51% -43.06% 18

hshld 08/1936 12 3 -18.75% -2.13% 18

fin 09/1936 7 7 -60.89% -65.83% 28

ships 09/1936 12 8 -35.78% -0.71% 12

elceq 12/1936 7 3 -42.25% -41.27% 20

steel 01/1937 5 5 -44.05% -51.09% 62

Continued on next page
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Table 4.14 continued from previous page

Sector Date of first

observed explosive

observation

Number of

explosive

observations

Number of

subsequent crash

observations

12-months

raw returns

24-months

raw returns

Number

of firms

trans 03/1937 2 2 -72.46% -63.68% 78

aero 03/1940 1 1 -28.57% -44.17% 13

autos 01/1946 1 1 -32.60% -49.82% 54

txtls 01/1946 1 1 -32.38% -51.58% 21

whlsl 01/1946 1 1 -20.42% -49.54% 11

fun 04/1946 2 2 -64.30% -73.09% 10

txtls 04/1946 1 1 -48.75% -46.26% 22

whlsl 04/1946 3 3 -21.19% -36.86% 10

chips 06/1967 1 1 -17.66% -47.14% 89

meals 05/1968 9 9 -43.20% -50.19% 22

cnstr 05/1968 8 8 -40.10% -50.76% 21

persv 07/1968 5 5 -36.07% -55.26% 12

rlest 08/1968 6 4 -26.05% -21.43% 34

fun 09/1968 3 1 -35.20% -44.63% 28

whlsl 09/1968 5 4 -18.96% -37.55% 52

bussv 10/1968 1 1 -20.14% -52.17% 57

Continued on next page
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Table 4.14 continued from previous page

Sector Date of first

observed explosive

observation

Number of

explosive

observations

Number of

subsequent crash

observations

12-months

raw returns

24-months

raw returns

Number

of firms

rubbr 10/1968 2 2 -31.40% -54.05% 29

txtls 11/1968 1 1 -47.82% -47.39% 51

gold 01/1980 2 2 -20.38% -40.27% 31

softw 06/1980 1 1 -25.98% -36.14% 18

gold 06/1980 7 7 -68.65% -61.95% 30

agric 02/1986 1 1 -56.54% -73.51% 33

rlest 04/1986 24 18 -75.59% -76.03% 116

rlest 10/1968 3 1 -6.24% -74.81% 116

telcm 04/1999 1 1 -13.86% -53.72% 279

chips 12/1999 5 5 -54.24% -64.86% 323

softw 12/1999 3 3 -79.02% -75.2% 698

hardw 12/1999 5 5 -58.03% -61.67% 204

elceq 02/2000 2 2 -63.45% -66.78% 249

chips 06/2000 4 4 -67.65% -77.98% 346

drugs 08/2000 2 2 -34.31% -55.11% 349

elceq 08/2000 2 2 -52.23% -68.34% 129

Continued on next page
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Table 4.14 continued from previous page

Sector Date of first

observed explosive

observation

Number of

explosive

observations

Number of

subsequent crash

observations

12-months

raw returns

24-months

raw returns

Number

of firms

labeq 08/2000 2 2 -52.23% -68.34% 129

coal 10/2004 5 4 -1.07% -28.89% 11

fabpr 08/2006 3 2 13.04% -48.65% 14

coal 10/2010 6 3 -14.64% -16.49% 18

gold 02/2011 1 1 -37.52% -50.33% 72

gold 04/2011 1 1 -50.53% -62.32% 76

coal 09/2017 12 9 1.29% -24.65% 10

gold 07/2020 4 3 -26.77% -41.34% 37

txtls 02/2021 2 2 -82.98% -83.16% 11

beer 03/2021 3 3 -39.71% -46.65% 14
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Table 4.15: Price Run-Up Episodes. Explosive episodes that have at least 1 subsequent crash observation. The explosive episodes
are defined as two-years value-weighted raw returns that exceed a certain threshold X, with X = 100%. The first column defines the
sector, the second one when the price run-up is first observed, the third how many months the price run-up lasted, and the fourth
how many observations in that time span have a following crash, the following two columns represents the performance of the sector
after the bubble peak and the last column shows how many firms were in the sector by the time the bubble started.

Sector Date of first

observed explosive

observation

Number of

explosive

observations

Number of

subsequent crash

observations

12-months

raw returns

24-months

raw returns

Number

of firms

elceq 02/1936 1 1 45.20% -31.90% 17

mach 02/1936 3 2 34.70% -42.20% 36

oil 02/1936 3 3 28.20% -24.40% 45

autos 03/1936 1 1 -16.50% -45.10% 43

autos 05/1936 11 10 -52.50% -33.90% 44

fin 07/1936 2 2 -36.20% -49% 28

txtls 08/1936 1 1 -21.90% -33.20% 19

fin 10/1936 9 6 -32.80% -46.90% 27

mines 10/1936 8 7 -28.80% -31.60% 22

txtls 10/1936 6 6 -49.60% -40.30% 18

bldmt 11/1936 5 5 -44.20% -37.70% 39

elceq 12/1936 4 3 -41.20% -30% 20

mach 12/1936 8 8 -32.90% -43.90% 43

Continued on next page
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Table 4.15 continued from previous page

Sector Date of first

observed explosive

observation

Number of

explosive

observations

Number of

subsequent crash

observations

12-months

raw returns

24-months

raw returns

Number

of firms

ships 12/1936 8 8 -36.70% -41.70% 12

steel 01/1937 7 7 -23.80% -28.30% 62

hshld 02/1937 3 1 -28.70% -8.19% 18

trans 02/1937 4 4 -44.90% -41.60% 77

aero 10/1939 7 1 -6.06% -23.90% 12

beer 10/1945 5 5 -56.20% -64.00% 11

trans 11/1945 1 1 -22.80% -34.30% 76

txtls 01/1946 1 1 -22.00% -32.80% 21

whlsl 01/1946 1 1 -13.20% -25.80% 11

bussv 04/1946 4 3 -29.10% -32.40% 10

txtls 04/1946 1 1 -40.90% -20.50% 22

beer 04/1946 4 4 -34.20% -36.20% 12

meals 05/1968 9 9 -21.20% -23.70% 22

rlest 05/1968 7 7 -10.30% -25.00% 33

rubbr 05/1968 8 8 16.50% -27.50% 28

whlsl 05/1968 2 2 -13.40% -29340% 51

Continued on next page
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Table 4.15 continued from previous page

Sector Date of first

observed explosive

observation

Number of

explosive

observations

Number of

subsequent crash

observations

12-months

raw returns

24-months

raw returns

Number

of firms

persv 07/1968 6 6 -29.30% -19.80% 12

elceq 08/1968 4 4 -17.80% -10.70% 49

fun 08/1968 5 2 -4.95% 7.40% 27

whlsl 08/1968 6 5 -1.82% -15.40% 51

bldmt 09/1968 1 1 -24.90% -39.60% 128

bussv 09/1968 3 3 -16.70% -25.60% 55

cnstr 10/1968 1 1 -34.00% -50.70% 22

bldmt 11/1968 1 1 -24.00% -17.80% 132

txtls 11/1968 1 1 -31.50% -19.60% 51

toys 11/1968 1 1 -15.80% -34.40% 44

meals 05/1972 1 1 -27.70% -36.30% 41

toys 05/1972 3 3 -38.60% -61.70% 49

smoke 06/1972 1 1 -7.65% -44.20% 17

labeq 06/1972 1 1 0.61% -15.50% 35

medeq 06/1972 1 1 -11.20% -27.80% 25

gold 11/1979 19 18 -30.50% 25.90% 30

Continued on next page
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Table 4.15 continued from previous page

Sector Date of first

observed explosive

observation

Number of

explosive

observations

Number of

subsequent crash

observations

12-months

raw returns

24-months

raw returns

Number

of firms

mines 01/1980 2 2 25.60% -36.30% 47

agric 02/1986 3 1 -0.57% -6.70% 33

soda 03/1986 1 1 -55.20% -55.40% 12

gold 03/1987 7 6 -6.16% 18.40% 109

telcm 01/1999 2 2 27.80% -30.30% 281

softw 01/1999 1 1 67.20% -24.70% 579

toys 10/1999 6 6 -9.70% 2.69% 63

chips 11/1999 5 5 -56.30% -57.60% 324

elceq 11/1999 4 4 -64.10% -66.20% 251

labeq 12/1999 2 2 -23.10% -39.90% 137

softw 12/1999 1 1 -26.60% -38.30% 698

softw 02/2000 1 1 -47.20% -43.80% 714

chips 06/2000 1 1 -49.90% -63.50% 346

labeq 06/2000 1 1 -16.90% -46.60% 132

chips 08/2000 2 2 -47.10% -60.80% 384

labeq 08/2000 2 2 -26.60% -45.80% 129

Continued on next page
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Table 4.15 continued from previous page

Sector Date of first

observed explosive

observation

Number of

explosive

observations

Number of

subsequent crash

observations

12-months

raw returns

24-months

raw returns

Number

of firms

toys 08/2000 1 1 -23.40% 6.67% 61

hardw 08/2000 1 1 -41.10% -46.30% 178

softw 08/2000 2 2 -27.10% -34.20% 807

coal 10/2004 5 4 33.00% -8.66% 11

cnstr 11/2006 2 2 -12.40% -50.40% 58

agric 01/2007 10 4 -37.40% -26.40% 17

cnstr 02/2007 4 4 -6.91% -50.10% 58

steel 05/2007 2 2 8.80% -39.60% 62

steel 08/2007 5 3 -58.20% -34.70% 60

agric 12/2007 1 1 -40.10% -24.20% 18

steel 05/2008 1 1 -50.00% -44.10% 56

coal 06/2008 3 2 -16.70% 4.46% 16

coal 11/2010 6 3 -45.30% -33.00% 18

gold 01/2011 4 4 -26.80% -41.80% 71

steel 02/2018 8 4 -4.61% -13.60% 40

gold 07/2020 6 3 -5.79% -3.70% 37

Continued on next page
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Table 4.15 continued from previous page

Sector Date of first

observed explosive

observation

Number of

explosive

observations

Number of

subsequent crash

observations

12-months

raw returns

24-months

raw returns

Number

of firms

softw 12/2020 1 1 20.50% -36.10% 185

toys 01/2021 1 1 -0.39% -20.40% 21

softw 06/2021 6 6 -52.90% -32.20% 194
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Conclusion

This thesis has focused in particular on two research questions: am I able to detect rational

bubbles with statistical tests? Are econometric tests able to predict the crash that follows a

bubble better than a simple naive model?

With the first empirical application I am more interested in answering the first question.

To detect the rational bubbles I use the SADF (Supremum Augmented Dickey Fuller) test

and the GSADF (Generalised Supremum Augmented Dickey Fuller) test from Phillips, Shi,

and Yu (2015). These tests are recursive right-tailed unit root tests. The tests are employed

on a measure of asset prices related to fundamentals, in this case the price-dividend ratio (or

the log price-dividend ratio), because what is needed is the ability to capture the behavior of

the time series of prices with respect to the behavior of the time series of dividends. The null

hypothesis is a martingale hypothesis and the alternative hypothesis is right-tailed. More

simply put, the test asks whether the price-dividend ratio series behave like a random walk

or like an explosive process. If there is enough statistical evidence for the rejection of the null

hypothesis, the presence of a bubble in the sample is implied. I then employ a date stamping

algorithm from Harvey, Leybourne, and Sollis (2017) which estimates the start date, peak

date and end date of the bubble with a minimum sum of squared residuals estimator. I

employ these tests and algorithm on monthly observations of the real price-dividend ratio

of the S&P500 Index from January 1926 until December 2023. I find six different explosive

periods and a market downturn (the subprime mortgage crisis of 2008) that is still detected

as explosive behavior. The longer episodes are the post-war boom (31 months to the peak

then 20 months of collapse), the price run-up preceding the Black Monday of October 1987

(28 months to the peak then 13 months of collapse) and the dot-com bubble (68 months
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to the peak then 24 months of collapse). All these episodes experienced a price downturn

during the collapse period, in the first episode the price declined by 19.82%, in the second

episode it declined by 16.72% and in the third episode it declined by 28%. I also find a very

recent bubble, from June 2021 to December 2021, soon after the Covid-19 crisis.

With the second empirical application I am more interested in answering the second

question. To do so I firstly employ the BSADF (Backward Supremum Augmented Dickey

Fuller) test from Phillips, Shi, and Yu (2015). Then, I run four different logistic regressions,

where on the left hand side I have a Crash dummy, equal to 1 when prices decline by 40%

in 2-years and equal to zero otherwise. On the right hand side I have a Bubble dummy,

for the first two regressions I consider the BSADF statistic, for the last two regressions I

consider two-years raw returns that increased more than 100% in two years, first equally-

weighted returns and then value-weighted returns, as in Greenwood, Shleifer, and You (2019).

I also consider some control variables, such as volatility, turnover, firm age and percentage

of issuers, all variables that are proved to move abnormally during explosive episodes. From

these regressions I find that the coefficients on the Bubble dummy are always significant. I run

a second logistic regression as a comparison between the different methodologies. Also in this

regression all coefficients are significant, none of the methodologies are able to make the others

unimportant. However, the highest coefficient is the one from the dummy constructed with

the BSADF statistic, and the difference between this coefficient and the others is significant.

From these results I can conclude that the econometric test is really able to heighten the

probability of a crash, thus, it is able to detect rational bubbles better than a naive technique.

53



Bibliography

Abreu, Dilip and Markus Brunnermeier (2003). “Bubbles And Crashes”. In: Econometrica

71.1, pp. 173–204. url: https://www.jstor.org/stable/3082044.

Astill, Sam et al. (2021). “CUSUM-Based Monitoring for Explosive Episodes in Financial

Data in the Presence of Time-Varying Volatility”. In: Journal of Financial Econometrics

21.1, pp. 187–221. url: https://academic.oup.com/jfec/article/21/1/187/

6268988.

Barberis, Nicholas et al. (2018). “Extrapolation And Bubbles”. In: Journal of Financial

Economics 129, pp. 203–227. url: https://doi.org/10.1016/j.jfineco.2018.04.

007.

Blanchard, Oliver and Mark Watson (1982). “Bubbles, Rational Expectations and Financial

Markets”. In: 0945. url: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=

226909.

Bondt, Warner F. de and Richard Thaler (1985). “Does the Stock Market Overreact?” In:

The Journal of Finance 40.3, pp. 793–805. url: https://onlinelibrary.wiley.com/

doi/full/10.1111/j.1540-6261.1985.tb05004.x.

Campbell, John Y. and Robert J. Shiller (1987). “Cointegration and tests of present value

models”. In: Journal of Political Economy 95, pp. 1062–1088. url: https : / / www .

journals.uchicago.edu/doi/pdf/10.1086/261502.

Chu, Chia-Shang J., Maxwell Stinchcombe, and Halbert White (1996). “Monitoring Struc-

tural Changes”. In: Econometrica 64.5, pp. 1045–1065. url: https://www.jstor.org/

stable/2171955.
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