
CANDIDATE

Course of

Academic Year

SUPERVISOR CO-SUPERVISOR

Optimising Financial Decision-Making: An
Integrated Approach to Automated Investment
Models through Machine Learning and Advanced
Financial Indicators

Spencer Marcinko

2023/2024

Data Driven Models for Investment

Prof. Elio Stocchi Dr. Emanuele Ricco

MSc Data Science and Management

1

Abstract

This dissertations aims to delve into the nuances of algorithmic trading (algo-trading)- exploring and expanding

upon existing trading strategies, whilst attempting to create a near autonomous and customised algorithm for

users of varying backgrounds. Using a combination of machine learning techniques- specifically reinforcement

learning and supervised learning- and considering financial technical indicators, we aim to an optimal strategy

for trading stocks. The adaptability of the proposed algorithm extends to both long-term strategies, such as

weekly or monthly trading intervals, and can be adapted to work for more short-term approaches, catering to

hourly or daily transactions.

Our research tackles this intricate challenge by treating historical stock prices as a dynamic environment. The

environment is embedded with information pertaining to the technical indicators on the data, which aim to

guide and aid the agent in making more informed decisions. This results in a robust and adaptable algorithm

that is applicable to a number of different situations and stock markets. These indicators play a pivotal role

in gauging the health of the stock, providing crucial insights into potential stock trends and assisting in risk

mitigation in stock trading.

The algorithm employs a multi-layered perceptron (MLP), as the agent. This robust algorithm navigates the

dynamic environment to learn and refine an optimal policy for buying, holding and selling stocks. The MLP

provides a significant advantage over standard learning algorithms such as q-learning in the form of increased

adaptability and improved learning rate. This is vital for capturing the complex patterns demonstrated in the

stock market.

The overarching goal of the algorithm is to maximise returns given an opening balance. The return in this

case is considered as a combination of the current balance and the current price of the held stocks. The

algorithm can be modified to either act more aggressively- buying more stocks when the conditions for buying

are favourable- or more conservatively- restricting the purchases to a certain percentage of the current balance

2

under specified conditions.

The study culminated in the development and comparison of three distinct but related algorithms each with

their own merits of use. Each algorithm revolved around using reinforcement leaning with proximal policy

optimisation (PPO) as the agent. The primary differences reside in the inclusion and method of use of the

financial technical indicator, ’Moving Average Convergence Divergence’ (MACD). The use of these indicators

proved invaluable in risk mitigation, but often resulted in lower returns than the algorithm that did not include

the constraints concerning the values.

Overall, each of the algorithms demonstrated their utility by drastically increasing the user’s net worth over

the allotted time period, without requiring in-depth understand of the intricacies of stock trading. This serves

to lower barrier of entry imposed around the stock market, allowing access to individuals with varying levels

of trading knowledge.

3

Acknowledgements

This dissertations was created with the help of Quaternion Technology, a company that deals in financial stock

trading using high level algorithms including machine learning techniques. Without the teachings presented by

this company, this dissertation would not be possible. In particular, Dr. Ricco and Prof. Stocchi, who provided

the necessary ground work of understanding in the field of data driven models for investment. I would like

to thank my parents for their extremely important role in affording me the opportunities of studying further

throughout my life. My sister and brother who have always played a role in motivating and helping me in

what ever way they are able. The University of LUISS and its lecturers for accepting me into their prestigious

academy- allowing me the opportunity to reside in Europe - furthering not only my understand of academics

but my cultural understanding too. Finally, I would like to thank all of friends from Italy and all around the

world, without whom I would not be where I am today.

4

Contents

1 Introduction 1

1.1 Background of the study . 2

1.2 Problem statement . 2

1.3 Study objectives . 3

1.4 Research questions . 4

1.5 Significance of the study . 4

1.6 Scope and limitations . 5

2 Theoretical Framework 7

2.1 Reinforcement learning fundamentals . 7

2.1.1 Markov chains . 8

2.1.2 Markov decision processes . 10

2.1.3 Dynamic programming . 11

2.1.4 Reinforcement Learning . 12

2.2 Supervised learning fundamentals . 13

2.2.1 Artificial Neural Networks . 13

2.2.2 Single layered perceptron forward pass . 14

2.2.3 Single layered perceptron back pass . 15

2.2.4 Multi-layered perceptron conceptualised . 16

2.3 Financial technical indicators . 16

2.3.1 Efficient Market hypothesis . 17

2.3.2 Types of financial indicators . 17

2.3.3 Technical indicator functions . 18

2.4 Integration of Techniques . 19

2.5 Application on financial markets . 20

3 Literature review 21

i

CONTENTS

3.1 The use of financial technical indicators . 21

3.2 Deep reinforcement learning in portfolio management . 23

3.3 Proximal Policy Optimisation Algorithms . 25

3.4 Considerations from literature review: . 27

4 Materials and Methods 28

4.1 Implementation Details . 28

4.2 Data Sources and Preprocessing . 30

4.3 Algorithm Implementation . 33

4.4 Evaluation Metrics and Performance Analysis . 34

4.5 Experiment Design and Validation . 36

4.6 Implementation Challenges and Solutions . 37

4.7 Ethical Considerations and Regulatory Compliance . 38

4.7.1 European Union . 39

4.7.2 United States . 39

4.7.3 Compliance Measures Implemented . 40

5 Experiments and Results 41

5.1 Deep RL Method . 41

5.2 Pure Technical Indicator Method . 43

5.3 Strategic Technical Indicator Method . 45

6 Discussion 48

6.1 Evaluation of Reinforcement Learning Algorithm . 48

6.2 Impact of Technical Indicators . 50

6.3 Effectiveness of Strategic Technical Indicators . 51

6.4 Comparison of Algorithms . 51

6.5 Addressing Research Questions . 53

6.6 Market Conditions, Algorithmic Design and Data Quality . 54

6.7 Limitations and Future Work . 55

7 Conclusion 57

A The First Appendix 59

ii

List of Figures

2.1 Single layer perceptorn model . 14

4.1 MACD for Apple dataset . 31

5.1 Graph indicating the actions of the highest yielding model using deep RL over 100 iterations . 42

5.2 Graph showing the net worth over time of the highest yielding model using deep RL over 100

iterations . 42

5.3 Graph showing the net worth over time of the highest yielding model using the Pure Technical

Indicator method over 100 iterations . 44

5.4 Graph indicating the actions of the highest yielding model using the Pure Technical Indicator

method over 100 iterations . 44

5.5 Graph showing the net worth over time of the highest yielding model using Strategic Technical

Indicator method over 100 iterations . 46

5.6 Graph indicating the actions of the highest yielding model using Strategic Technical Indicator

method over 100 iterations . 46

A.1 Scatter plot showing the resulting netwoths of all of the 100 iterations of running the pure RL

algorithm . 59

A.2 Scatter plot showing the resulting netwoths of all of the 100 iterations of running the pure

technical indicator algorithm . 59

A.3 Scatter plot showing the resulting netwoths of all of the 100 iterations of running the strategic

technical indicator algorithm . 60

iii

List of Tables

3.1 Differences between PPO and DDPG algorithms . 24

3.2 Generalised explanation of nn policy update . 26

3.3 Key Considerations from the Literature Review . 27

4.1 Environment design . 33

4.2 Starting values in the environment . 33

4.3 Constraints for buying stocks in each of the algorithms . 34

4.4 Table showing the MACD bin and the corresponding percentage of stocks to trade. 35

5.1 Descriptive statistics for the generated net worth of the Deep RL method over 100 trials 41

5.2 Descriptive statistics for the generated net worth of the Pure Technical Indicator method over

100 trials . 43

5.3 Descriptive statistics for the generated net worth of the Strategic Technical Indicator method

over 100 trials . 45

6.1 Transaction Fees vs. Risk Levels . 52

iv

Chapter 1

Introduction

• Project rationale: Traditionally, the stock market has been largely dominated by person-to-person (p2p)

transactions. By denotation- if an individual had an interest in entering the stock market- they would

likely have to approach a professional in this field, or devote a large amount of time to studying in

order to properly understand the stock market for themselves. In this dissertation, we aim to formulate

an automated and optimised stock trading algorithm that combines the power of financial techniques

and machine learning, in order to allow laypersons to be able to buy, sell and hold stocks with the

understanding that these decisions are based purely on statistically significant results- based on historical

data. This can not only save the interested party a large amount of time in learning stock trends- but can

prove to be a more effective and possibly lucrative method for undertaking this particular activity.

• Project scope: This project will delve into the world of finance and machine learning- explaining the

fundamental concepts necessary for the generation, and merging of the different machine learning tech-

niques and financial techniques used. It will compare the results of applying different variations of the

algorithm, providing each of the algorithms with the same information. Each variation will differ from

the other only in constraints added to the ability for the code to take actions in the environment.

• Project organisation: Following this introductory section, there will be a deep dive into to the concepts

and functionalities of the different ML techniques and financial technical indicators used in the creation

of these algorithms. Followed by a comprehensive literature review section that will incorporate the

findings and lay the ground work of understanding on some of the important techniques of previously

used financial techniques for stock trading- and algo-trading. Chapter 4 will be focused on the work

that was done on the creation of the algorithm, from data collection to algorithm implementation. This

1

CHAPTER 1. INTRODUCTION

will be followed by a section that explains the results and findings of using the algorithm under test

conditions. The culmination of the paper being a section concluding thought and recommendations-

which will consider each of the algorithms and consider the advantages and disadvantages of employing

each of the strategies for future use cases.

1.1 Background of the study

Throughout the evolution of stock trading market, there has been an increasing use of technology, in particular,

the demand for increased information and market insights are in significantly high demand. According to

an article entitled; ’Algorithmic Trading History: A Brief Summary’, , Smigel (2023) The earliest form of

information arbitrage that was used for this purpose was awarded to Nathan Mayer Rothschild. Who reportedly

used carrier pigeons to learn about the goings on in the war between England and France- this information

proved highly lucrative for the Rothschilds- who were able to make more informed decisions- and chose to

hold their stocks during a period where people where selling their assets in a state of panic. This occurred in

the early 1800’s and the race for acquiring more information pertaining to the stock market has been growing

increasingly competitive.

It was not until over 100 years later, that we saw a firm using an algorithm for trading for the very first time.

In 1949, ’Richard Donchian launched the first trading rule-based fund’ , (Smigel 2023). This algorithm was

based on moving averages and was a far cry from the complexities of current day trading algorithms. All of

these algorithms and trading strategies have one underlying, crucial dependence that came about over years

of technological advancements. An increase in information. This information comes in the form of data.

Stock traders learned to consider this new data, and attempted to formulate educated guesses about the future

state of the stocks. This increased information was seen as a valuable commodity for stock traders, and it

was subsequently made more available. The ability to trade stocks online and the increased accessibility to

historical data on a number of stocks allows users to create and fine tune predictive algorithms that rely on

powerful concepts and statistical principles to trade in these environments.

1.2 Problem statement

Amidst the wealth of newly available financial data, and with an understanding of some of the most sophisti-

cated statistical tools at our disposal- this dissertation endeavors to merge one of the oldest trades in the world

with some of the newest technologies. The overarching goal being to find the most suitable ways to leverage

these technologies in order to better understand how to utilise them for decision making processes on the stock

market. From , Smigel (2023) it is evident that despite there being a plethora of attempts to automate this

process- many have fallen short of the mark.

2

CHAPTER 1. INTRODUCTION

An insight shared by a seasoned stock trader Troy Murray highlights a fundamental aspect of the dynamics

of the stock market: ”The only true measure of the markets is from fear and greed.” This emphasised the

importance of market sentiment in this sector, and highlights the need for more sophisticated methods for

extracting useful information on when to trade. It is, however, crucial to realise that the this sentiment is not

the only factor that might affect the stock prices. ”Hedge funds and institutional investors have a significant

impact on market dynamics due to their large trading volumes and sophisticated strategies. Their actions can

create trends that other market participants follow.” , Lo (2010). Additionally, economic indicators such as

interest rates, inflation and employment data may serve as useful insight into the general state of the economy,

which likely has some underlying connection about the sentiment of stock investments, which could prove to

shape the stock environment itself.

It is therefore important to note that the proposed algorithm should not simply buy, sell or hold based on

simplistic thresholds of stock prices- although this is a powerful tool to consider- one should endeavor to

capture the sentiment of the market at certain times and use this information to make more informed decisions

on what to do. Whilst incorporating information about the movements of large stockholders and key market

indicators such as interest rates and inflation could potentially enhance the algorithm’s performance, this study

will focus specifically on leveraging market sentiment and technical indicators like the MACD. This approach

allows for a more streamlined analysis and practical implementation, ensuring the development of a robust

algorithm without the additional complexity of integrating diverse market factors.

With the above in consideration, this research explores how more modern techniques namely, deep reinforce-

ment learning can be leveraged in order to capture complex patterns expressed in historical stock data. Utilising

these traits in order to formulate a robust strategy for trading in a dynamic market environment. The proposed

model offers a solution that is effective to those with little to no financial know how- ensuring that individuals

without extensive trading experience can still benefit from this algorithm, thereby paving the way for a more

democratised stock market.

1.3 Study objectives

This study aims to bridge the gap between traditional stock trading and modern technologies by leveraging

some advanced statistical techniques and predefined machine learning algorithms in order to learn some of

the highly complex patterns generated in stock price movements in the past- in order to improve stock trading

in future transactions. In order to achieve this goal, this paper will provide insight into the fundamentals of

Markov decision processes- and the subsequent development of reinforcement learning. It will also explain

the concept of an MLP in order to ensure the techniques used are fully understood before they are employed.

3

CHAPTER 1. INTRODUCTION

Further elaboration will be made upon some basic statistics, and the development and implementation of some

financial technical indicators- exponential moving average, and MACD. It is important to illustrate the under-

lying concepts that were used to derive the algorithms and functions used in this paper in order to emphasise

the role of statistics in financial analysis and highlight their importance in these information trading decisions.

By elucidating the theoretical foundations of these algorithmic trading techniques, this paper aims to ’lift the

veil’ on their operations, providing readers with the essential knowledge needed to understand the algorithms

used throughout this study. Real-world examples will be presented in several case studies, demonstrating the

practicality of these techniques and further explaining their functionality and significance in the field.

The study continues by applying and testing the three algorithms, comparing their results and discussing the

advantages and disadvantages of each of them. The goal being to generate an algorithm that fits the user’s

preference in terms of associated risk compared to algorithmic greed. The algorithms generated are intended

to require minimal interference from the user in order to run efficiently, making them easy for any person to

use. Risk in the algorithms is a big factor throughout this paper and thus in each algorithm, there is an attempt

to mitigate some of the risk while still ensuring a good return on investment for the user.

1.4 Research questions

The fundamental question that will be explored throughout this research paper is :”how effective is reinforce-

ment learning in algo-trading?”. This question will be broken down into three sub-questions.

1. Does the reinforcement learning algorithm work consistently for increasing the user’s net worth in a

stock trading environment?

2. Can the algorithm be enhanced with the help of technical indicators in a way that mitigates risk?

3. How much risk is mitigated and how do the algorithms compare to each other in general performance?

Additionally, the paper will strive to look at questions pertaining to market conditions, algorithmic design and

data quality to help provide a more concrete analysis on the efficacy of the algorithms in question.

1.5 Significance of the study

By providing evidence of the effectiveness of these algorithms, the implication of a more democratised stock

market may prove extremely valuable in the current economic climate. The empowerment of the individual to

4

CHAPTER 1. INTRODUCTION

enter the stock market with a statistically powerful algorithm- even with little to no prior knowledge of any of

the information provided in this paper- is considerable. This could allow for major economical advancements

to be made by individuals who may otherwise have not had the opportunity to acquire the necessary expertise

or resources to navigate the market on their own.

Further, the innovative methods explained throughout this paper not only serve to pave a new way for users

to invest stocks, but the techniques and algorithms displayed may be used in manors hither-to unexplored.

Considering the general volatility of the stock market- if these seemingly random patterns are ’discerned’ by

the algorithms provided by this paper, then the idea that modified variations of these algorithms may be used

in other sectors is not unfounded. This could prove highly useful for future analyses to be done on the trading

market as well as investment profiles, fostering innovation and entrepreneurship within the sector. This may

change the way future financial sectors operate.

In addition to increasing individual empowerment and innovation within the financial field, the usefulness of

the algorithms presented in this case study extend far beyond the limits of financial trading. With the necessary

modifications, this algorithm can be used to view other sets of complex data with irregular models. The use of

reinforcement learning algorithms can be extended from examples such as city planning to medical usage. For

instance, they could be used to optimise transportation routes or identify optimal delivery pathways for drug

treatments. The variety of possibilities of use for these algorithms extend themselves to the user’s imagination.

This study, however, will be solely focused on the use of these algorithms in stock trading, but it could facilitate

studies into further fields in the future.

When one considers the potential for empowerment emphasised above, it leads to the idea of more investors

entering the stock market. This surge of investors entering into the stock market, has the potential to stimulate

economic growth. This increased investment would likely lead to increased innovation- as companies strive to

make their stock options more viable, and can result in a net job creation- within both the sector of algo-trading

investors and the companies listed in the stocks.

1.6 Scope and limitations

The scope of this paper is focused on developing and testing trading algorithms within the stock market,

utilising open source data from companies such as NASDAQ, Dow-Jones and APPLE to formulate trading

strategies. The goal is to formulate and evaluate three different algorithms that generate policies for trading.

The algorithms will be trained on historical data and their performance will be tested on unseen data from

subsequent time periods. To accomplish these goals, this study will:

5

CHAPTER 1. INTRODUCTION

• Use open source stock market data to train and test algorithms.

• Focus on the return generated by a theoretical starting capital to evaluate the policies of the algorithms.

• Ensure that the policies generated by each algorithm are used only for the stocks they are trained on.

• Ensure there is sufficient usable data to be used for both training and testing phases of the algorithm.

It is important that the training data for the stock is up-to-date. This is to ensure that any new trends and traits

pertaining to this data are relayed to the algorithm for effective learning. Cross application of policies between

different stocks should be avoided. The policies learned by the model will reflect the information learned about

the stock being traded and is likely to produce poor results when applied to another stock with different trends.

Since the generated algorithms are made to be robust and semi-autonomous, requiring minimal intervention

and hyper-parameter tuning, there is little insight into these hyper-parameters in this paper. There may exist

better algorithms to be used as actors in the stock market environment, such as Deep Deterministic Gradient

Policy (DDGP) which will require hyper-parameter tuning, but the implementation of that algorithm will fall

outside the scope of this paper.

It is also imperative that the data used when applying this algorithm is accurate and complete enough to ensure

that the patterns of the stock market can be learned by the algorithm. As with all machine learning algorithms,

the concept of ’garbage in, garbage out’ applies. This means, that if the algorithm is given bad quality data, the

results will be poor. This is based on the fact that the algorithm will learn the inaccurate traits of poor quality

data, and reflect these inaccuracies in the results.

Using historical data in an attempt to make decisions on stock trading in the future means that there is an

assumption made about the relationship between past information and future prices. This may not always

prove to be true when considering market anomalies and unexpected economic events.

6

Chapter 2

Theoretical Framework

This section is dedicated to explaining the underlying statistics involved in creating the algorithms used

throughout this paper. A base level of statistics may be required in order to fully understand the nuances of the

techniques, but this should provide a useful overview of the methods and techniques used from beginning to

end.

2.1 Reinforcement learning fundamentals

Reinforcement learning techniques operate on the principle of agents interacting with an environment to

achieve a predefined goal through a reward system that evaluates their actions , (Sutton & Barto 2018). The

environment encapsulates all relevant information about the system a reward signal, which evaluates the desir-

ability of actions taken within it. The agent, conceptualized as a sequence of actions within this environment

and receives feedback in the form of rewards or penalties based on its actions. Upon reaching specified ter-

mination conditions, such as task completion or excessive negative reward generation, the algorithm updates

its strategies based on accumulated rewards. This process of iterative policy refinement based on feedback to

optimise decision making strategies is central to the field.

Despite its apparent simplicity, reinforcement learning draws upon various statistical principles, notably Markov

statistics, to guide the learning process. Through iterative processes, policies derived from experienced inter-

actions with the environment, are refined. Reinforcement learning algorithms aim to optimize decision-making

strategies. These optimized policies can then be applied to solve similar problems in new environments.

Whilst this introduction provides a basic framework for understanding reinforcement learning, the field encom-

7

CHAPTER 2. THEORETICAL FRAMEWORK

passes diverse applications and continues to evolve with advancements in artificial intelligence and machine

learning.

2.1.1 Markov chains

Markov chains are a branch of statistics that focus on discrete-time stochastic processes in a specific way. In

a discrete-time stochastic process, the expected outcome at a certain time is determined by a function of the

outcome of an experiment at a specified time. Mathematically:

r(t) = φ(s, t) t ∈ Z+ (2.1)

Where r(t) is a random variable at time t, and s is the outcome of the experiment. From equation 2.1, if

t = constant then the equation would result in a singular random variable at time t = constant. If, conversely,

s = constant, the resulting output would be a sequence of time-dependant random variables over times {t =

0, t −1, t −2...t − t}. This sequence of random, time dependant variables is the result of a stochastic process.

In a standard stochastic process, the outcome at a specific time is considered as a probability. Given the state

space {st , t = 0,1, ..}, the probability that the state at time t + 1 is st+1 = j depends on the probabilities at

previous time steps. This can be visualized as:

P(st+1 = j) = P(st+1 = j|st = i,st−1 = it−1, ...s0 = i0) (2.2)

Markovian statistics enforces the principle that the probability of moving to the next state depends on the

previous states only through the current state , Ross (2014). Therefore, equation 2.2 can be rewritten as:

P(st+1 = j) = P(st+1 = j|st = i) = Pi j (2.3)

Thus, there is a simplification in a sense of equation 2.1. The state space of a Markov process is then the

collection of all possible states the process can occupy. Pi j, above is used to notate the transition probability

of the system being in state i at time t, and state j at time t+1.

Considering the state space of the Markov chain, and the notation used above we can say that at time t, the

8

CHAPTER 2. THEORETICAL FRAMEWORK

system can evolve from state i ∈ {s1,s2, ...sN} to another state j ∈ {s1,s2, ...sN} at time t + 1. The transition

probabilities of these states can be collected in a stochastic matrix as follows:

P =



P11 P12 ... P1N

P21 P22 ... P2N

. . .

. . .

. . .

PN1 PN2 ... PNN


(2.4)

This matrix, being made up of probabilities, has the constraint:

∑
j

Pi, j = 1 (2.5)

The constraint comes from the fact that the cumulative probability of transitioning from one state to another

must be one. Considering, now, the stock market. If we were to consider the closing prices of a stock, st at day

t, and assume that the rate of return are independent and ideally distributed (i.i.d) and normal (Gaussian).

st+1 = st(1+ rt) rt ∼ N (µ,σ2) (2.6)

In this way, stock prices are an example of a Markov chain with a continuous state space, because: st+1 depends

on all of the previous stock prices through only st ,and can adopt any positive real number. Considering the

state space of a stock market rather to be st ∈ {Bull,Bear,Stagnant}. This can be considered as a transition

probability matrix as in 3.4 as follows:

P =


PBear,Bear PBear,Stagnant PBear,Bull

PStagnant,Bear PStagnant,Stagnant PStagnant,Bull

PBull,Bear PBull,Stagnant PBull,Bull

 (2.7)

Knowing the state of the system at time t, Markov chains can be analysed through the framework of matrix

theory in order to make predictions about the state at time t ′ > t. Considering the following:

9

CHAPTER 2. THEORETICAL FRAMEWORK

P(n)
i j := P(st+n = j|st = i) (2.8)

In the above equation, Pn
i j is the probability that at time t, the state is i and at time t+n, the state is j. Using the

Chapman Kolmogorov equation as a foundation as well as some mathematical induction, one can demonstrate

that the transition matrix:

P(n) =



P(n)
11 P(n)

12 ... P(n)
1N

P(n)
21 P(n)

22 ... P(n)
2N

. . .

. . .

. . .

P(n)
N1 P(n)

N2 ... P(n)
NN


(2.9)

Takes the form:

P(n)
i j = (P∗P∗P∗P...)i j = (Pn)i j (2.10)

Thus, the transition matrix after n-steps, as notated in equation 2.9, is equal to the n-power of the original one

step transition matrix 2.4.

2.1.2 Markov decision processes

Markov chains, although useful and powerful in their own right, are not enough to try and capture the true

nature of the market. They do, however, provide much needed understanding for some of the models that

underpin reinforcement learning. This is because many reinforcement learning algorithm are modeled as

Markov decision processes MDPs. MDPs are an extension of Markov chains that incorporate actions and

rewards, allowing for the modelling of decision-making in uncertain environments , Puterman (1994).

Considering the Markov chain with its transition matrix displayed in equation 2.7. The state space is: S =

{Bull,Stagnant,Bear}. In order to extend this Markov chain into an MDP, one would have to give the agent

the ability to make a ’choice’ at each given state. Thus an action set can be defined for this model as being

A = {Buy,Hold,Sell}. Following this, a reward function will have to be defined. These functions will be

10

CHAPTER 2. THEORETICAL FRAMEWORK

dependant on both the state, and the action taken in that state. One should not only consider the reward of

applying the action at the state, but should consider the utility of the state to incur a more complete image.

Thus two reward functions for the process should be considered.

g(st ,at) : reward of applying action at in state st (2.11)

G(sT) : utility of being in state s at time T (2.12)

Since the goal is to maximise the expected rewards,

maxE[
T−1

∑
t=0

g(st ,at)+G(st)|s0 = s] (2.13)

The introduction of the action set and a set of reward functions has evolved the problem into an MDP, with the

overarching goal of finding the set:

a⃗ = {a0(s0), ...aT−1(sT−1)} (2.14)

That maximises the total reward given by:

J∗0(s) = maxE[
T−1

∑
t=0

g(st ,at)+G(sT)|S0 = s] (2.15)

The solution to this can be found using dynamic programming techniques.

2.1.3 Dynamic programming

Dynamic programming can be described as breaking down a problem into a set of smaller, more easily solvable

problems, storing the solutions and rebuilding the total optimal solution from the modular sub-solutions ,

Bellman (1957). The usefulness of this solution comes from the Bellman Principle of Optimality. ’An optimal

policy has the property that, whatever the initial state and initial decision are, the remaining decisions must

11

CHAPTER 2. THEORETICAL FRAMEWORK

constitute an optimal policy with regard to the state resulting from the initial decision’ , Thomas et al. (2019)

2.1.4 Reinforcement Learning

Reinforcement learning builds on the concepts of MDPs and dynamic programming, where agents learn opti-

mal policies through interaction with the environment , Kaelbling et al. (1996). As reinforcement learning is

said to be an extension of the techniques explained above, so too should the following sections be considered

in conjunction with the previous sections.

RL environment

The environment of an RL algorithm is used to define a system with which an agent interacts in order to find

an optimal policy for a specific problem. The environment contains information related to, but not limited to:

1. State space: Analogous to the state space described in MDPs, the state space is described by the set of

all possible configurations the environment can be in.

2. Action space: This set describes all of the possible actions the agent can take within the environment in

a given state, it is akin to the set of actions available in each state of an MDP.

3. Reward function: This provides feedback about the utility of the actions taken by the agent. This

function maps state-action pairs to designated scalar rewards, indicating the immediate cost or benefit

of performing a particular action in a specific state. This is just as in an MDP, where rewards guide the

agent’s decision-making process.

For the task of algorithmic trading at the individual level, the working assumption is that the actions of the

agent do not affect the state of the environment. Thus, further environment dynamics are not required, and will

not be described. But it can be noted that one can create a dynamic environment with which an agent interacts.

RL agent

The agent in the paradigm of reinforcement learning is the theoretical ’entity’ that learns to navigate the

environment by learning what decisions to make and which actions to take at specific states in the environment-

in order to achieve a specified objective. The agent should contain and or decipher information pertaining to:

1. Policy: This refers to the set of rules that govern the agent’s actions in different states of the environment.

This maps states to actions and stores each state-action pair to be used for determining the optimal policy.

It aims to optimise long-term rewards, similar to the optimal policy sought in MDPs.

12

CHAPTER 2. THEORETICAL FRAMEWORK

2. Value functions: These functions help estimate the utility of remaining in a state, versus performing an

action in a state. Much like the value functions used to evaluate policies in MDPs.

3. Learning algorithm: This algorithm is a method used by the agent to update its policy based on prior

experience with the environment. Again, akin to learning algorithms such as Q-learning or value iteration

used in MDPs.

4. Exploration probability: This random variable is used to determine when the agent should explore new

actions, versus leveraging the knowledge it has amassed from previous policies.

5. Reward signal: This is the feedback provided to the agent about the effects of its actions. It guides the

learning process by indicating the immediate desirability of the actions taken.

6. Policy evaluation and improvement: Once an iteration is completed, the policy learned by the agent is

used to estimate the value function, the result of that iteration is compared to that of other iterations and,

depending on the results, the policy of the system is updated.

It should be noted that agents are not limited to the above characteristics.

2.2 Supervised learning fundamentals

Supervised learning is another of the three sectors of Machine learning, along with unsupervised and rein-

forcement. Supervised learning invloves training models on labelled data to learn underlying patterns and

make predictions , Bishop (2006).

This section is called Supervised learning fundamentals, but since the algorithms in this paper primarily make

use of an MLP’s, the primary focus of this section will be on Artificial Neural Networks (NN).

2.2.1 Artificial Neural Networks

NN’s were conceptualised as mathematical analogues of a neuron (brain-cell). The idea was conceived in

the early 1940’s by Warren McColloch and Walter Pitts in their paper entitled, ”A Logical Calculus of Ideas

Immanent in Nervous Activity” , McCulloch & Pitts (1943). But it wasn’t until 1958, when Frank Rosenblatt

released his work entitled ”The perceptron: A Probabilistic Model for Information Storage and Organization

in the Brain” , Rosenblatt (1958), that there was an actual working model.

13

CHAPTER 2. THEORETICAL FRAMEWORK

NN’s have come a long way since Rosenblatt’s one layered perception, with multi-layered perception’s having

the ability to learn non linear and complex relationships with relative ease. To understand the concept fully, it

may be beneficial to focus on the concept of a single layered perceptron at first.

2.2.2 Single layered perceptron forward pass

When referring to the layers of a perceptron model, one typically excludes the input and output layers. The

’single layer’ typically denotes what is also known as the ’hidden layer’ of the model.

Figure 2.1: Single layer perceptorn model

From 2.1 one can visualise the concept of a single layer perceptron. To understand how it works, one should

consider the image in detail. The first layer in the perceptron model is the layer of blue circles. These circles

denote the input data. This data can be made up of any numerical data. Of course the data should be properly

prepared and cleaned, but we will assume this is the case. Following the input of the data, the data is ’trans-

ferred’ to the second hidden layer. This can be visualised by the lines that connect the two layers. These lines

are known as the ’weights’ of the model. Each of the weights represent a number, by which the input data is

multiplied.

The second layer of the model is denoted by the green circles. This layer is the hidden layer of the model, so

called, because the numbers that are attached to them are not directly perceived, but instead are used by the

model to produce a result. Each of the different green circles represent something called a ’bias’. The bias is

a number that is added to sum the inputs of the hidden layer(The product of the data and weights).

The result of each of these summations with the added biases will then be ’passed’ to the output (orange circles)

through an activation function (second set of lines). This activation function will generally serve to produce

a non-linear output. This output represents the ’confidence’ that the neuron belongs to a specific class. In the

case of 2.1 there are only two outputs. In this case, one could consider using a decision boundary condition

14

CHAPTER 2. THEORETICAL FRAMEWORK

of 0.5. If the confidence is greater than 0.5, then the output can be classified as ’Out 1’. Otherwise, it will

be classified as ’Out 2’. The activation function used to generate this ’confidence’ varies and depends on the

particular problem at hand.

Once all of the outputs of the hidden layers have been calculated, the class with the larger number of votes will

be used to classify the data. This process is known as the forward pass of the algorithm.

2.2.3 Single layered perceptron back pass

Once a classification on the data has been made, the label associated to the data is compared to the output

that was generated by the algorithm. The similarity of the output from the expected value is measured using a

loss function. This is what separates supervised learning from unsupervised. If the classification matched the

label, the weight and the biases of the model remain the same, and the model is ready to be used to classify on

unseen data.

Sub-optimal approach

If the classification does not match the label of the data, each of the weights associated to the ’connection’

between the input and the hidden layer will be randomly updated. The same update will occur for the biases

associated with the hidden layer. The process of the forward pass will then be repeated to generate new

classifications, which will then be compared to the labels again, and condition for updating the model will be

considered again. This will repeat until the model makes predictions that relate to the correct label of the data.

Optimal approach

For a more optimised approach to updating the weights and biases of the system, one can use an optimisation

algorithm to speed up the rate of convergence. Algorithms such as gradient descent, or more complex momen-

tum algorithms such as ADAM (Adaptive Momentum) are examples of optimisation algorithms used in the

back pass.

Both of the algorithms work by computing the gradient of the loss function, with respect to the weights of

the network. This is done by back propagating the error though the layers of the network and calculating the

gradient. With multiple layers, this is done using the chain rule in calculus.

The optimisation algorithm used for this process (ADAM) will not be fully explained, but can be conceptu-

alised by considering the result of rolling a ball down a hill. As the steepness of the hill increases, so too does

the velocity of the ball. As the ball reaches the bottom of the hill, the velocity will start to reduce and it will

start coming to a halt. Eventually the ball will settle at the bottom of the hill, this will occur at the lowest point

15

CHAPTER 2. THEORETICAL FRAMEWORK

of the hill.

Analogous to the hill in the above concept, the loss function’s gradient is used, the momentum of a theoretical

ball is then used with Newtonian physics equations to navigate this function’s gradient in order to find the

global minima.

2.2.4 Multi-layered perceptron conceptualised

Now that the concept of a single layered perceptron has been introduced, it should be noted that the model

does not come without limitations. Due to the structure of the model, the single layered perceptron is only

effective at classifying linearly separable data. This limitation can be rectified, however by the introduction of

more hidden layers.

Multi-layered perceptrons (MLPs) extend single layered perceptrons by adding hidden layers, enabling the

modeling of complet, non linear relationships , Rumelhart et al. (1986) the perceptron can handle the separation

of non-linear data. This makes the MLP a very powerful tool for tasks such as regression and classification. It

also means that the algorithm is a good tool for pattern identification.

The ability for the MLP to recognise patterns makes it a useful tool to use as an agent in a reinforcement

learning algorithm. This can take the place of more rudimentary agents such as Q-learning. Not only will it

likely provide a more useful result, but it will speed up the processing time of the algorithm.

2.3 Financial technical indicators

Financial technical indicators such as the Exponential Weighted Moving Average (EWMA) and Moving Av-

erage Convergence Divergence (MACD) are used to analyse market trends and predict stock prices , Murphy

(1999). They typically work by comparing the prices of the stocks along different periods and try to predict

the trend of the stocks in the present periods. Although one may be able to visualise the growth and decay of

stocks, there exist trends that may not be innately visible by the human eye.

Technical indicators attempt to highlight these invisible traits, to allow for a more informed decision to be

made about the stocks. These functions can serve to lower the risk of stock trading- allowing for modifications

to be made on the risks taken on the stocks by the user. This can individualise the algorithm and allow the user

to parameterise their risk margins.

16

CHAPTER 2. THEORETICAL FRAMEWORK

2.3.1 Efficient Market hypothesis

In order for these indicators to be efficient, one should consider the efficient market hypotheses:

• Weak form- All past information is contained in securities. No pattern exists, prices are totally random,

no fundamental or technical analyses are useful.

• Semi-strong form- Price quickly soaks up new information, so analysis is useful to determine the long

- term trend of prices.

• Strong form- The information set that determine price trend can be evaluated with past news about data.

In order for these functions to serve their purpose properly, they should be used under the assumption that the

stocks they are being used on do not satisfy the weak condition of the hypothesis.

2.3.2 Types of financial indicators

Since the market is not solely governed by rational means, there exist a number of different types of indicators,

each of which try to discern different kinds of information about the state of the market.

• Sentimental indicators-They deal with the feeling of professional investors about current situation of

financial markets

• Flow of funds indicators-Macroeconomic metrics used by financial institutions to have an overall view

about tracking flow of national economy.

• Market indicators- Quantitative information useful to interpret and forecast financial data. They are

divided in:

– Chart Patterns: visual analysis of data by both a quantitative and qualitative approach

– Price trends: mathematical manipulation of time series data to understand price oscillations.

– Volume and momentum indicators: identify the strength of the market measuring the variation of

prices.

For this project, the focus will be more directed on using market indicators as the technical indicators.

17

CHAPTER 2. THEORETICAL FRAMEWORK

2.3.3 Technical indicator functions

Exponential Weighted Moving Average (EWMA). This function assigns each price a time dependant weight.

The weight associated to the price reduces exponentially over time. This ensures that the more current prices

play a more important role in determining the sentiment of the market. The EWMA is calculated as follows:

EWMAt = (1−α)EWMAt−1 +αPt (2.16)

Where,

α =
2

k+1
(2.17)

α is the weight of the most current price, and k is the length of the chosen window.

EWMA is a good algorithm to determine trend direction in the market, but it may be further leveraged to

arrive at what many would consider to be an even more useful function. The Moving Average Convergence

Divergence (MACD) is represented by 3 distinct interconnected indicators, whose relative position determines

the trading indication. By considering the EWMA with a window (k) of 12, 26, and 9 one can generate both

an MACD line and a signal line in the following way:

MACD line = EWMA(k = 12)−EWMA(k = 26) (2.18)

Signal line = EWMA(k = 9) (2.19)

This is an example of a momentum indicator. It allows traders to understand when the market is over-bought,

and over-sold by considering the position of the signal line relative to the MACD line. Since the signal line

considers the short term return of the EWMA function, while the MACD line represents the difference between

the EWMA(k=12) in the short term, and the EWMA(k=26) in the long term. If the MACD line crosses above

the signal line, there is an indication that the momentum of the asset is increasing. This crossover suggests

that the short-term moving average is rising faster than the long-term moving average, signaling a potential

18

CHAPTER 2. THEORETICAL FRAMEWORK

uptrend and generating a bullish signal for traders. The opposite is true when the MACD line dips below the

signal line.

2.4 Integration of Techniques

Throughout this section, we have considered the origins of a number of powerful techniques in the area of data

science. If one were to try and apply these techniques to a specific task, a number of specifications should be

met. Following the explanation of a reinforcement learning algorithm, one should consider how to define an

environment. The environment should consist of data that follows the Markov principles so as to ensure the

algorithm can be used.

As previously stipulated, the financial market fits this characteristic. Thus if the data pertaining to the prices

of stocks were used as the environment of the algorithm, one could consider the prices of the stocks at specific

times to be the set defining the continuous state space of the algorithm. In order to transform this Markov

chain into an MDP, the process needs both an action set and a reward function of sorts.

The action set attached to this chain will be the set containing the actions of buying, selling and holding. These

actions can be completed in any state and the result will be stored as a state-action pair. These pairs will then

be passed into a reward function that will generate an immediate reward for the system.

Considering the financial technical indicators described in section 3.3.3, one can determine the utility of per-

forming an action in a given state. Thus the reward pertaining to the state-action pair can be described by

using these indicators as the environment’s reward function. This will generate an immediate reward scheme

for each action taken at each state and will provide the agent with more information on the system.

Once the environment has been defined, the definition of an agent is necessary to traverse the environment.

Since the environment is large and continuous, the use of functions such as q-learning or value iteration may

impede the processing time and limit the use of the algorithm. This can result in slow convergence of the

algorithm with high variance. To compensate for this, a variation of the MLP from chapter 2.2.4 is used as the

agent.

The MLP is a good choice as it can handle high-dimensional state spaces, and is a powerful tool for learning

complex patterns, as previously explained. This algorithm, however, does come with potential risks. Since it is

a more complex system, the tuning of hyper-parameters is vital and thus may require more attention in design.

This should be done to ensure the algorithm does not over or under fit the provided problem. The amount of

data required for the algorithm to return viable results is also higher.

19

CHAPTER 2. THEORETICAL FRAMEWORK

The input of the MLP should consist of the historical data, the current state, and the reward functions of the

environment. The output of the MLP will be will be the policy of the algorithm. This output can be interpreted

as being the probabilities of taking different actions given the current state. Therefore, an output layer of size

3 should be used for this problem (buy,sell,hold).

The value function of the MLP is described by net worth of the individual at the time of the action. This is a

combination of the seller’s current bank balance in addition to the amount of money the seller currently holds

in the stock. Thus the reward will be considered as the direct result of the action taken by the function in a

given state.

The reward signal of the algorithm will be based on the profitability of the chosen actions in a given state.

Policy optimisation will be done using the back pass of the algorithm. The result will be a neural network

trained on subset of historical data with a policy that should prove useful for future trading on the same stock

market.

2.5 Application on financial markets

Provided the algorithm is properly set up and used, the use case in the financial markets can serve to democra-

tise the markets. This can allow for individuals with little prior knowledge on how to properly navigate the

stock markets to freely enter into stock trading. The freedom to enter the markets for individuals en masse

can serve to empower the individual, allowing them to engage with the market with the knowledge that their

money is being invested using some of the most powerful techniques available to them. The influx of invest-

ments within the markets can also serve to bolster the economic growth not only within the stock market, but

in the companies that are listen on the markets.

The increased investment in the companies can lead to increased growth within the company. The results

being an increased sense of urgency for innovation within the company. This could result in either horizontal,

or vertical integration. This may result in new job opportunities emerging, increased competition and an

increase in ingenuity.

20

Chapter 3

Literature review

3.1 The use of financial technical indicators

The role of financial technical indicators in the field of trading is considered to be highly important and its

practice is well established. In the paper entitled; ’technical analysis: An asset allocation perspective on the

use of moving averages’ , Yingzi et al. (2009). In this paper, Yingzi et al. (2009) analyse the utility of using

financial technical indicators in the paradigm of asset allocation. In their paper, they aimed to explore the

potential benefits of using one of the more simple indicators- the Moving Average (MA) technical indicators-

which happens to form the basis for the technical indicator used in this paper- Moving Average Convergence

Divergence (MACD).

The authors explain that, although widely used in the field of trading, papers exploring the utility and efficacy

of the techniques are few and far between. Papers that exist, such as those done by Eugene Fama and Marshal

Blume , (Fama & Blume 1966) and Alfred Cowles , (Cowles 1933) do not yield any definitive conclusions

about the utility of the functions. Further research into the use of technical indicators has started to illuminate

the presence of utility in their use- as seen in the work done by Andrew Lo et al , Lo et al. (2000), but further

exploration is required.

The authors of Yingzi et al. (2009) aim to provide additional information on the subject in a manner that was

previously unexplored. By providing statistical proofs and concurrently exploring the theoretical rationales

behind using MA in asset allocation, the authors aim to produce a more comprehensive study on this subject

than their predecessors.

21

CHAPTER 3. LITERATURE REVIEW

The authors critique the use of MA for asset allocation revolved around an all-or-nothing strategy. This strategy

includes full monetary commitment, or complete avoidance to a stock option dependant on the MA signal.

This- the authors explain, is a sub-optimal use of this function. Instead, they propose MAs as a model for

investor risk aversion. This approach can lead to a less binary approach to stock allocation, which may prove

useful in optimising returns.

The authors explain that they intend to derive functions that allow investors to use the MA in conjunction with

other predictive and fixed rule functions in an optimal manner- through a number of methods. The combined

metrics will be tested in order to gauge their utility. It is explained that the use of an ’optimal dynamic

strategy’ is likely to produce the best results in portfolio modelling, but it is acknowledged in the article that

the derivation of truly optimal strategies can be extremely complex, and requires vast amounts of data. The

simplicity and robustness of MA’s is offered as an advantage over attempting to derive the true model of the

portfolio.

Within the findings of this paper- the authors show that the use of an (estimated) optimised MA outperforms

an incorrectly chosen optimal model. This further highlights the benefit of its utility due to its simplicity and

thus comparative robustness.

Analytical testing derived important proposition in the paper:

1. Combining the optimal MA with a fixed strategy generally improves returns unless stock returns are

entirely unpredictable.

2. MA combined with a fixed rule can create a new optimal function, which can serve to enhance the utility

of the function when stock returns are predictable.

3. When considering a pure MA strategy, using an all-or-nothing strategy is unlikely to yield optimal

results.

These propositions illustrate the importance of using MA in stock allocation (particularly when returns are pre-

dictable) and highlight some important information with regards to their proper usage in different situations.

Proposition 3, above, highlights the author’s advocacy that the MA should be considered as a function of the in-

vestor’s risk aversion. This concept will be explored further in this paper when considering the implementation

of the MACD technical indicator.

The further sections of Yingzhi et al. (2009) explore the optimisation of the risk aversion function γ in different
approximate

22

CHAPTER 3. LITERATURE REVIEW

solutions to optimal trading strategies. They consider the power-utility case with first order and second order

approximate solutions. In the former case, the optimal approximate utility function was said to be inversely

proportional to the risk aversion function i.e:

U1 ∝
1
γ

(3.1)

Whilst in the latter case, the function linking the two values is far more convoluted and involves solving

a complex differential equation in order to arrive at the solution. This paper will consider the first order

approach. This will likely result in sub-optimal results, but it will help to derive a simple and practical use of

the technical indicator function as a risk aversion measure.

The empirical section of Yingzi et al. (2009) derived evidence to support the theoretically backed claims men-

tioned above. Their experiments compared different functions across four different starting conditions. The

starting conditions include; comparison under complete information, comparison under parameter uncertainty,

comparison under model uncertainty, the effect of lag lengths. In each of the cases, the results of applying

fixed rules, a combination of fixed rules with MA and optimal strategies- when available- were observed and

recorded for comparison.

The results of these experiments served to bolster the author’s claims with regard to combining the fixed rules

with MA. The use of combined fixed rules with MA consistently outperformed the fixed rules alone. Whilst

in the case of model uncertainty, the combined metric served to outperform the optimal solution in terms of

robustness- as the optimal solution proved to be far more computationally expensive and difficult to derive.

The reviewed paper demonstrated that the use of technical indicators provide a significant impact on the return

of investments in algorithmic trading. This is especially true when the user is not aware of the optimal strategy

of the portfolio and when the stock is predictable. The use of MA and by extension, MACD described in

section 2.3.3, proved to serve as a practical and robust risk aversion function. The emphasis being on using the

results as a function in order to generate more optimal results. This underscores the importance of considering

these technical indicators when generating a robust trading strategy.

3.2 Deep reinforcement learning in portfolio management

In the article entitled ’Deep reinforcement learning in portfolio management’ , Liang et al. (2018), the authors

explore the use of deep reinforcement learning algorithms in managing stock portfolios. Whilst the use of

23

CHAPTER 3. LITERATURE REVIEW

reinforcement learning has been extensively studied in fields such as robotics and gaming, their application

in financial markets are relatively unexplored. They explain that deep-reinforcement learning algorithms are

renowned for being able to handle non-linear and complex domains without extensive feature engineering. By

extension, this should make them compatible with the complex and dynamic domain of financial markets.

This paper explores two prominent deep reinforcement learning algorithms; Deep Deterministic Policy Gra-

dient (DDPG) and Proximal Policy Optimisation (PPO). The two algorithms are used and compared to each

other in order to define a more optimal policy in the use case of deep RL strategies in the stock markets. Both

DDPG and PPO work by combining an RL environment with a multi-layer perceptron (MLP) as the actor, as

discussed in section 2 of this paper. The key differences between thes algorithms are summarised in table 3.1.

Algorithm: PPO DDPG
Algorithm type: Policy-based Actor-critic
Action space: Discrete Continuous
Training stability: Stable algorithm May incur hyperparameter tuning for

stability
Exploration v.s. Exploitation: Balanced through optimization May require explicit strategy
Policy update: Updates policy during current roll-out Uses replay buffer to store and sample

from

Table 3.1: Differences between PPO and DDPG algorithms

Table 3.1 highlights the key differences between the two deep learning policies. The authors find evidence

that the DDPG strategy proves more optimal in portfolio management due to the algorithm’s continuous ac-

tion space and potential for hyper-parameter fine tuning. However, the discrete action space of PPO makes

integration with financial technical indicators more simplistic, which is why this paper focuses on PPO. The

evidence that they accumulated shows that both algorithms show great potential in the fields of algorithmic

trading. PPO is also known as a stable algorithm, which means that the parameters of the model are updated

in a self contained manner- this is further reason for the exploration of this algorithm, as this may aid in the

generation of a more autonomous algorithm.

In the paper, the authors explain that they considered the cost of obtaining a stock as a percentage of the price

of the stock. They explained further that this transaction fee is vital in producing a more realistic representation

of capital gain or loss in the trading environment. Liang, et al. aim at diversify stock options, using deep RL in

order to choose which stock options to favour. They aim to achieve this using multiple risky assets and one risk-

free asset. In contrast, this paper investigates the efficacy of applying a deep RL trading strategy whilst only

considering one risky asset(the stock), and one risk-free asset(the account balance). The transaction, as shown

in Liang et al.’s study, adds significant complexity to the reward signal generation. This paper recommends

that the transaction cost be considered post algorithmic application. It can be considered as fixed value- where

the user agrees to set aside a portion of their expected earnings before applying the algorithm, or it can be

24

CHAPTER 3. LITERATURE REVIEW

derived by limiting the number of transactions in the environment to a set limit, paying the standard amount

for these transactions.

The paper concludes with the notion that deep RL algorithms, in particular, PPO and DDPG, showed promise

in capturing complex market movement patterns, with limited data and features, but require further attention

in order to be fully adapted for use on the financial market. They conclude by stating that more modifications

are needed for the algorithms- stating that the algorithm ”tends to buy only one asset at a time”. This limitation

may possibly be overcome by using an ensemble of algorithms rather than applying one algorithm to multiple

stocks. Considering the algorithms generated in this paper work only one one risky asset, by refining the action

space (possibly with the inclusion of the technical indicators), one may generate a function that mitigates risk

and assigns a set portion of the net work to the stock. This could potentially be used on more than one stock

option at a time, resulting in an ensemble of algorithms for different assets rather than using one environment

for all of the stocks.

The authors’ of , Liang et al. (2018) provide valuable insight into the potential for deep RL use in portfolio

management, but their findings suggest that the algorithms in question are better served for their original ap-

plications in robotics and gaming. The requirement for extensive parameter tuning and the tendency for the

algorithm to invest in only one stock option at a time are among the author’s primary concerns. Future studies

in this sector could benefit from focusing primarily on the action state and reward state of the environment, en-

forcing conditions that incorporate risk management functions in order to enhance the ability for the algorithm

to adapt properly to the financial markets.

3.3 Proximal Policy Optimisation Algorithms

Proximal Policy Optimisation (PPO) is an algorithm that aims to optimise the policy generated by applying

an artificial neural network (nn) (the agent) to a reinforcement learning (RL) environment. It does so by

optimising a surrogate function that serves to approximate the agent’s reward, whilst enforcing constraints to

ensure that the updated policy does not deviate too much from the previous policy. PPO is an open source

algorithm developed by openai. According to , Schulman et al. (2017) the algorithm works by focusing on

a ’surrogate’ function representing the total reward of the policy and passing information about said function

into the ann that was used to generate the policy to update the parameters of the ann.

In the article entitled,’Proximal policy optimization algorithms.’ , Schulman et al. (2017), it is explained

that there exist a number of ways to consider optimising the policy generated by a neural network on an RL

environment. In order to explain them, the process of the policy generation will first be explained.

25

CHAPTER 3. LITERATURE REVIEW

1. State input: The state vector containing the state of the environment at the current step is passed into
the nn.

2. Action generation: The output of the nn relates to the generated action to take in the environment by
the nn.

3. Action execution and reward generation: The resultant action is then taken by the environment, with
the environment providing feedback in the form of a reward signal.

4. State Transition: The state of the environment is then updated.
5. Policy update and backpass: Dependant on the optimisation method, the policy will there after be

updated and a back pass will be used in order to fine tune the parameters of the nn.
6. Iteration: Steps 1-5 are repeated in iterations, constantly updating the environment’s policy. This is

done until some stopping criteria is met.

Table 3.2: Generalised explanation of nn policy update

Schulman et al. discuss two different methods for updating the policy in a reinforcement learning environ-

ment. Gradient policy methods and trust region policy methods are explained in the article. In gradient policy

methods, as shown in table 3.2 at step 5: an nn (the actor) will generate a batch of experiences from the en-

vironment. From batch of experiences, the performance of the policy will be evaluated using a performance

measure, such as cumulative reward. Following this, the gradient of this performance measure with respect to

the policy parameters (i.e. the weights and biases of the nn) is calculated. This gradient provides insight into

how the performance measure will react to the changes made to the policy parameters. Using this information,

the nn updates the policy parameters in order to maximise the reward of the system. In this way, the policy is

updated and refined in a manner that considers the agent’s behaviour and its impact on the reward function.

In contrast, Trust Region’s methods serve as the policy optimiser in this deep learning environment. Consid-

ering step 5 of table 3.2 and focusing on Trust Region Policy Optimisation (TRPO), the algorithm aims to

construct an objective function, based on experiences collected during the interactions with the environment.

In TRPO, the objective function can be considered as a surrogate function that acts like the true reward func-

tion(cumulative reward) but is constructed to be easier to optimise, whilst still providing a good approximation

of the true objective function. This function serves to guide the process by which the policy is updated. TRPO

introduces a constraint on the magnitude by which the policy may change during updates.This constraint is

typically measured by considering the amount of divergence that occurs before and after the update of the pol-

icy, this is usually measured using the Kullback-Leibler(KL) divergence. This promotes stability in training by

ensuring that the updated policy does not deviate by too large a value from the previous policy (preventing large

policy changes). Once the function and the constraint are defined, the algorithm updates the policy parameters

based on the gradient of the surrogate function’s objective, with respect to the policy parameters. As above,

the gradient will direct the policy changes to follow the highest change with respect to small changes in the

policy parameters. These changes will then be scaled according to the parameters contained in the constraint.

These scaled changes optimise the overall policy whilst maintaining stability. Further, , Schulman et al. (2017)

refers to a ’clipped surrogate objective’.

26

CHAPTER 3. LITERATURE REVIEW

TRPO with a clipped surrogate objective works similarly to the original TRPO method. The clipped TRPO

method aims to further stabilise the learning of the function by comparing the probabilities of the algorithm

performing specific actions in the current policy to that of the subsequent policy. The algorithm is penalised

when this ratio deviates from 1. The clipping method prevents the algorithm from making significant changes

to the policy and promotes even more stability in the training process. Additionally, the paper suggests that,

without considering the clipped surrogate objective, one can consider an adaptive KL model in order to stabilise

the training process.

The TRPO with a clipped surrogate function is what is known as the Proximity Policy Optimisation or PPO.

Throughout the paper, the authors of , Schulman et al. (2017) continuously showed the advantage of using PPO

over other, well defined, policy update methods. The benefits include, the relative stability of the algorithm,

ease of implementation and increased optimality in a number of different worked cases.

3.4 Considerations from literature review:

Based on the literature reviews completed above, there are a number of factors that should be considered when

considering the creation of a deep RL trading algorithm.

Category Key Considerations
Financial Technical In-
dicators

- MAs as a risk model (Yingzi et al. (2009))
- Simple, robust MAs often outperform complex models

Deep RL in Portfolio
Management

- PPO and DDPG show promise (, Liang et al. (2018))
- PPO preferred for stability, easy integration

Policy Update Methods - Gradient methods use performance gradients (, Schulman et al. (2017))
- TRPO uses surrogate objectives for stability

Proximal Policy Opti-
misation

- PPO limits policy deviation for stability
- Clipped surrogate objectives enhance training stability

Future Research Direc-
tions

- Explore ensemble methods for multiple assets
- Improve DRL algorithms for risk management

Implications - Indicators and DRL are valuable in finance
- Stability, implementation ease, and indicator integration are key

Table 3.3: Key Considerations from the Literature Review

27

Chapter 4

Materials and Methods

4.1 Implementation Details

In order to implement the algorithms used throughout this paper, one should be at least somewhat familiar with

the Python coding language. The choice of editor is up to the user. Our choice to use visual studio code is

based on its simple integration with github, but other editors such as spider, jupyter or even using the terminal

will work. Python was chosen as the primary coding language for the project due to its vast collection of

powerful libraries. These libraries empower the user to implement complex functions and algorithms in a more

concise and efficient manner, assisting the programmer in developing more intricate and stable algorithms in a

more timeous manner. Although Python is not recognised to be the fastest coding language, its comparatively

simplistic syntax and versatility make it a compelling choice for the tasks presented. The algorithm can be

adapted to be used for languages such as Java, or C if the user is so inclined, but for this study, that conversion

will not be considered.

The libraries used throughout this project can be found below. Each of the libraries can be downloaded through

pip, and all of them work on the current version of the Python 3 interpreter (3.10.11).

• numpy v.1.26.1- This is a library for handling data in the form of arrays. It is useful for manipulating

data, and is embedded within a number of other packages.

• pandas v.2.1.2- This library works as an extention of numpy and allows the user to easily and efficiently

manipulate DataFrames and series data.

28

CHAPTER 4. MATERIALS AND METHODS

• yfinance v.0.2.33- This library contains functions that calculate the technical indicators referred to in

section 3.3.3 above.

• sklearn v.1.3.2- This package contains a number of machine learning and data cleaning algorithms. In

this code, the functions used are MinMaxScalar- which is used to scale the data, and train test split

which is used to split the data into a training and a test set.

• stable baseline v.2.2.1- This package contains the MLP algorithm that is used to traverse the reinforce-

ment learning environment, as well as a DummyVecEnv which created a dummy vector, so that the data

used in the MLP is of the correct type.

• gym v.0.26.2- This package contains a number of reinforcement learning environments to choose from

when ’init’iating the action space and observation spaces.

• matplotlib.pyplot v.3.8.0- This is a package that is used to visualise the data. This library also works

well with numpy and pandas.

• math- This package allows the user to use a number of mathematical functions.

Along with the packages described above, the framework of the project is based around the work done by

Trading Tech AI , AI (2023) who describe how to use a simple algo-trading strategy with reinforcement

learning and an MLP.

The three algorithms will henceforth be allocated the names:

• Pure Reinforcement Rearning algorithm- This algorithm will use deep reinforcement learning, with

no technical indicators.

• Pure Technical Indicator Algorithm- This algorithm will combine the all-or-nothing technical indica-

tor algorithm with the deep reinforcement learning algorithm.

• Strategic Technical Indicator Algorithm- This algorithm will use a threshold system to bin the values

of the technical indicators, and enforce rules about how much of the stock can be bought or sold.

The use of PPO as an agent in the algorithms was chosen to reduce the need for hyper-parameter tuning.

The algorithm is also considered stable and robust. This will afford the user to apply the same algorithms to

29

CHAPTER 4. MATERIALS AND METHODS

different stock options with little to no parameter tuning. As described in the introduction of this paper, this

serves to generate a semi autonomous, stable and robust algorithm with a simplistic implementation that can

help to democratise the stock market.

4.2 Data Sources and Preprocessing

The data used for this project was collected using the package yfinance. yfinance is an open source tool that

allows the user to collect stock data directly from Yahoo. Data may be collected from other websites using

API’s or other means, but yfinance provides a simple and effective way to collect stock data for free and

without having to generate an API key. The collected data should contain the following information about the

stock:

• Date: The time stamp.

• Open: The price of the stock at the opening of the market.

• High: The highest price the stock reached during this time period.

• Low: The lowest price the stock fell to during this time period.

• Close: The price of the stock at the end of the time stamp.

• Adj Close: The price of the stock adjusted to reflect corporate actions.

• Volume: The number of stocks sold over the time stamp period.

Once the data has been collected, it should be inspected to insure the quality of data is high. The number of

missing values in the data should be considered. If the data is missing too many values, it should be considered

too volatile to use and another stock option may be chosen. If however, there are few missing values,less

than 1% of the data, these values can be removed from the dataset, or they may be imputed. The stock data

pertaining to apple, between the times 1994-07-17 and 2023-10-31, contained zero missing values, and no

duplicated values. This implied that this data is of good quality and there is no need to impute or remove rows

of data. The data should subsequently be considered for feature selection and engineering.

Since this paper is considering the effects of technical indicators on the algorithms, the first additional feature

that should be added to this data set should be the MACD value of the stock. This computed using pandas built

30

CHAPTER 4. MATERIALS AND METHODS

in ’EWMA’ function, that generates the Exponential Weighted Moving Average of the stock over a specified

span. The relevant MACD values are then generated using the EWMA following the methodology described

in chapter 2.3.3 of this paper. The result of these values can be plotted as follows:

Figure 4.1: MACD for Apple dataset

Figure 4.1 illustrates the MACD calculations applied to the Apple weekly time series dataset. As evidenced

by the graph, the signal line and the MACD line often overlap each other. When the MACD line is greater

than the signal line- the blue line is the leader in the image, that implies that the MACD is greater than the

signal line, indicating a bullish momentum in the stock. This is derived from the fact that the MACD line is the

difference between the short term and long term EWMA. If this difference is greater than 0, it implies that the

short term stocks are weighted more than the long term, implying an increase in the stock prices in the shorter

term- and hence a Bullish momentum. The opposite indicates a bearish momentum in the stock.

The data pertaining to the MACD values of the stock should be appended to the dataframe that contains the

information of the stock. This will be used in the Pure Technical Indicator algorithm. For the strategic technical

indicator algorithm, the bins of the MACD values should be derived. The pseudo code describing the method

for deriving these bins can be seen in Algorithm 1 (18):

This will generate 4 bins that aim to capture some of the information about the magnitude of the MACD

31

CHAPTER 4. MATERIALS AND METHODS

Algorithm 1 MACD Value Binning
1: Input: Column containing MACD values
2: Split the column into positive list P and negative list N
3: Determine the mean of P: µP
4: Determine the mean of N: µN
5: for each value n in N do
6: if n < µN then
7: Allocate n to bin 0
8: else
9: Allocate n to bin 1

10: end if
11: end for
12: for each value p in P do
13: if p < µP then
14: Allocate p to bin 2
15: else
16: Allocate p to bin 3
17: end if
18: end for

values. These can be used to add the additional constraint to the strategic technical indicator method. The

binned MACD data should also be appended to the dataset.

The dataset contains values that relate to the volume and the adjusted close of the stock. The volume is a

useful indicator that might provide insight into the decisions taken by big players in the stock market. With

high volume indicating high sales- which could indicate the decisions taken by some of the hedge funds and

major market leaders. Since the goal of this paper primarily revolves around the use of technical indicators,

this column will be removed from the dataset. Additionally, the columns of open,high,low and adjusted close

may prove to introduce noise into the environment and they will also be removed from the dataset.

After all of the feature engineering has been completed, the columns of the dataframe should contain only

the information pertaining to the close, MACD and MACD bins. This will be the same information used for

each of the algorithms. Scaling the data, particularly the price data make the action of buying stocks more

complicated, as the price would have been adjusted to the mean of the price set. This will make calculating

the number of available stock and thus the size of transaction harder to obtain. Thus, there will be no scaling

of the data.

The final step in this process is to split the data into a training and a test set. This allows the algorithm to learn

patterns and policies on historical data (training set). The policy that is found on the training set can then be

applied to the new, unseen data (test set). The training-test split will be comprised of a 70-30 split. The data

falls under the category of time series data. Thus, the split should not disrupt the order of the data and there

is no reason to stratify the data. The training set will then be the first 70% of the data, and the test set will be

32

CHAPTER 4. MATERIALS AND METHODS

comprised of the remaining 30%.

MACD requires a large amount of data for sufficient application. If the user intends to invest in a stock option

that is relatively new, or for which there is minimal data available, the use of MACD as the financial technical

indicator is not advised.

4.3 Algorithm Implementation

The general structure of the algorithm was taken and modified from the article created by Trading AI , AI

(2023). The environment is set up as a class, with a number of functions within it. The functions included are:

Function: Role
init This function is responsible for ’init’ialising the environment. It includes infor-

mation about the data being passed into the class, the size of the action space and
the size of the observation space.

reset This function is used to (re)-set the values within the class when the environment
is ’init’ialised. It includes information about the starting account balance, the
current step and a number of other variables.

next observation This function is used for returning the value of the data at the current step.
step This action updates the step value, informing the environment about where it is

in the data.
take action This function decides the action for the algorithm to take- buy,sell or hold- at the

current step.
get reward This function generates the reward signal of the environment.

Table 4.1: Environment design

Each of the three algorithms used in this paper have their environment set up in the manner described in table

4.1. They are each given the same information and the same ’init’ial starting parameters. The most important

starting parameters for each of the algorithms are as follows:

Starting parameter Value:
Account balance 100000

Current step 0
Shares held 0
Net worth Account balance

Max net worth Net worth
Reward 0

Table 4.2: Starting values in the environment

As the environment moves from the current step to the next, it first observes what action is being taken. This

is where the ’take action’ function is called. This function will make the decision for what action the actor will

make at this step. This action will be decided randomly using the gym environment that was used to generate

the state space within the ’init’ function, but the function will ensure that the randomly chosen action is viable.

33

CHAPTER 4. MATERIALS AND METHODS

If the account balance does not hold enough to buy the stock, it will not be able to. If the user holds no stocks,

they cannot sell any stocks. Once the action has been taken, the step will be updated and the reward function

will be called. The reward function will be updated to include information about the difference between the

user’s current net worth, which is calculated to be a combination of their current account balance and their

current wealth in stock options, and their maximum net worth. If the difference is positive, the net worth has

increased and this will relay positive growth in the reward function, the opposite is true if the signal is negative.

The reward signal is also set up to include information about the algorithms previous action. If the actor buys

a stock at a price that is lower than when they last sold a stock, a positive reward is generated. If the actor sells

the stock at a higher price than when they last bought the stock, a positive reward is generated. A negative

reward is generated for the opposite actions.

The environment for each of the three algorithms differ in the ’take action’ function. This function helps

the algorithm make its decisions on whether to buy, sell or hold a stock. In the case of buying a stock, the

constraints pertaining to the action in each of the environments are described in the table below.

Pure reinforcement: Pure Technical Indicator Strategic technical indicator
The algorithm will not be able to buy with insufficient funds

The algorithm will buy all avail-
able stocks when it has sufficient
stocks to buy

The algorithm will buy all avail-
able stocks only if the MACD
value is above 0

The algorithm will buy a percent-
age of the available stocks, de-
pendant on the binned value the
MACD value currently exhibits.

Table 4.3: Constraints for buying stocks in each of the algorithms

The constraints added to the action of selling are closely related to those of the action of buying described in

table 4.3, they differ in that the algorithm will consider the number of available stocks, and in the technical

indicator algorithms, will perform the action based on the MACD value being negative, or again according to

the bins of the MACD. Once the environment is properly set up, the algorithm can be trained. The training data

will be passed into the environment and the agent (PPO) will navigate the environment in order to generate

and update the policy. Following this, the policy can be applied to the unseen, test data and the results can be

recorded and evaluated.

4.4 Evaluation Metrics and Performance Analysis

Once the data has been correctly formatted and pre-processed, each of the the algorithms are applied to the

training data set. The number of training epochs used may influence the probability of obtaining the optimal

policy. The number of epochs is set to 1000, but this number can be adjusted for the processing power of the

user’s system. Each epoch will return a policy for the training episode.

The reward signal can be highly influenced by large changes in the user’s maximum net worth, whilst the

34

CHAPTER 4. MATERIALS AND METHODS

relative state of the action taken by the algorithm will generate more consistent and smaller changes to the

reward signal. Each epoch’s policy is evaluated based on the total returned net worth of the user. This forces

the algorithm to prioritise the total net gain of wealth, whilst still considering some immediate rewards. The

policy that returns the highest net worth is thus called the optimal policy. This policy will be stored, and used

to perform trading operations on the test set. The cumulative reward, as well as the choices of action at each

stage in the series can then be plotted, this can give a visual representation of the effectiveness of the algorithm

on the new data.

Each of the algorithms will be implemented and run as explained in section 4.2. With the specific constraints

explained in table 4.3 being used in each of the respective ’take action’ functions. The constraints that are used

in the strategic technical indicator method are explained below. Depending on the desired action, the algorithm

will either trade 20,40,60 or 80% of the stocks available to it. These percentages are determined as follows:

p2b = (MACD val +1)∗0.2 (4.1)

If the action is buy and

p2s = 0.8−0.2∗MACD val (4.2)

If the action is sell.

The transformations described by 4.1 and 4.2 are shown in the table 4.4.

MACD bin percentage stocks to buy percentage stocks to sell
0 0.2 0.8
1 0.4 0.6
2 0.6 0.4
2 0.8 0.2

Table 4.4: Table showing the MACD bin and the corresponding percentage of stocks to trade.

Above, p2s stands for percentage to sell, p2b is percentage to buy. The MACD val refers to the binned value

of the MACD. This method serves to derive a method for using MACD indicators in a way other than the

pure strategy- which has been described as being sub-optimal in Yingzi et al. (2009). The net worth of the

individual after each of the test cases will be recorded and plotted. The optimal strategy will be derived from

the comparison of the final net worth’s generated by the algorithms. Each instance of buying and selling stocks

35

CHAPTER 4. MATERIALS AND METHODS

will also be recorded and plotted on top of the stock price trajectory. This will give an indication of the actions

taken by the algorithm at specific times.

The net worth speaks directly to the profitability of the algorithm in question. If the algorithm has increased

the user’s net worth, the algorithm is profitable, otherwise not. The profitability of the algorithms thus form

the basis of their comparison.

Since technical indicators are typically used as a means to mitigate risk in general trading environments, the

latter algorithms serve to provide a comparative narrative between more risk adverse and risk prone algorithms.

The pure and binned variations of applying the technical indicators in the algorithm provide the user with the

ability to not only compare, but to adjust their risk parameters as they see fit. By adjusting equations 4.1 and

4.2, the user may choose how much stock to place in trusting the MACD indicator. Of course, the number

of bins used for the MACD values may also be adjusted and then equations 4.1 and 4.2 should be updated

accordingly. This serves to empower the user in governing their risk adversity functions in the environment.

The application of these techniques in the algorithms will also provide insight into the effectiveness of their

inclusion.

Each algorithm will be run on their own using the same PPO agent. The hyper-parameters of the PPO are

not manually adjusted throughout the experiments. This ensures that the only differences in the algorithms

are the constraints in the ’take action’ function of the environment. This will provide increased insight into

how the algorithms compare given their different constraints, and ensures that the differences in results are not

generated by human interference.

The results of the algorithms will be compared by considering the final net worth of each algorithm, along with

the graph displaying the net worth over time. The general trends of the graphs will be considered, as the final

net worth may not encapsulate all of the most vital information. If the trend of the net worth over time seems

to generally increase, the algorithm will be deemed healthy. Each test done on the algorithms will be repeated

100 times and the statistics pertaining to the 100 results will be collected for comparison.

4.5 Experiment Design and Validation

Each algorithm used will be designed and run using the same set of hyper-parameters in both the agent and

the environment. The information pertaining to the stocks, along with the MACD and MACD bins will all

be the same, this will prevent the results differing due to information asymmetry. The differences between

the algorithms will be found only in the ’take action’ section of the environment. In this way, the results will

provide information about the effects of including the different technical indicator methods.

36

CHAPTER 4. MATERIALS AND METHODS

The algorithms in question are still subject to a number of randomised actions. This means that the optimal

policy of one trained method may not exactly equal that of another, even if the number of training epochs is

high. For this reason, the process of training and testing the algorithms will be repeated 100 times. In each

of the 100 iterations, the resulting net worth generated by applying the the optimal policies to the test set are

recorded.

The recorded net worth’s are then plotted, and their summary statistics are generated. These statistics will give

an idea of the general spread of the generated net worth’s of the optimal policies. This will include information

about highest returns, the standard deviation in the returns as well as the mean of the returns of the optimal

policies. The plot of the graphs will illustrate these statistics, and will highlight the tendency for the algorithm

to generate positive rewards, versus negative rewards. This information can be used to compare the algorithms

in a more generalised manner. It provides information about which algorithms perform the best in terms of net

worth growth, and can help capture information about the risk of applying the algorithms.

The policy that generates the highest net worth over the 100 iterations will be deemed the most optimal policy,

and will have it’s net worth over time recorded and plotted. The actions taken in this policy will also be plotted

over the stock trend. This will provide insight into the general trends of the net worth over time, and elucidate

the actions taken in order to produce this trend.

4.6 Implementation Challenges and Solutions

Throughout the creation of this algorithm, there have been a number of challenges that required attention. At

the forefront of these challenges was the inclusion of a transaction cost into the environment. Before this was

implemented, each of the three algorithms were producing promising results. However, once this ’minor’ cost

of 3% per stock sold was put into the algorithm, it started to fail drastically. To deal with this, the reward

signal was looked at. The algorithm aimed to make as few transactions as possible- attempting to favour the

more lucrative transactions. The signal was also updated to include information about the most recent traded

stocks. If the last action was to buy stocks, then the cost of those bought stocks would be compared to the

last time the stocks were sold and if they were bought at a lower price than when they were last sold, the

algorithm would generate a positive reward to add to the signal. If the last action was sell, and the stocks

were sold at a higher price than when they were last bought- the reward signal would again receive a positive

boost. The opposite of these actions would incur a negative reward- offset so as not to completely discourage

the exploration probability of the algorithm. Finally, the reward signal would have the transaction cost of the

current transaction removed from it. This served to provide the algorithm with information about the losses

incurred during trading.

37

CHAPTER 4. MATERIALS AND METHODS

Despite all of these changes to the reward signal, the algorithm still under-performed. For this reason, the

transaction cost was removed form the algorithm at whole. Following this, a new cumulative transaction cost

(ctc) was calculated throughout the algorithm. This cost can be viewed after the entire algorithm has been

run. Due to the fact that the transaction cost is difficult to incorporate, it is advised that the transaction cost be

either debited before the algorithm is run, with consideration of the expected return. Or, the algorithm can be

modified to limit the amount of transactions taken. Once this limit has been reached, the transaction cost can

be calculated as a percentage of the transactions to make.

Despite not being able to generate a reward signal that performed perfectly with the transaction cost in mind,

the increase and decrease in the signal based on the recent stock sales proved highly beneficial, and thus the

reward signal was updated to not only include information about the net worth of the user, but also to include

information about the stock sales.

4.7 Ethical Considerations and Regulatory Compliance

The algorithms discussed in this model are all generated using random updates, with a reward signal that

serves to promote good ’decision-making’. These ’decisions’ should not be considered in the same paradigm

as human decisions. They are based solely off of statistics and mathematics. For this reason, the algorithm

should not be personified. As explained above, the stochastic nature of the algorithm implies an inherent lack

of determinism. This means that one ’optimal policy’ may not exactly equal another. This may be considered

as being ’unfair’ by the user, but it is impossible to truly say which of the policies will perform best on new

data. Even after testing the values on the test set, which is made up of unseen data, a good result may not imply

that said optimal policy is optimal for future cases.

That being said, the algorithms were all given the exact same starting parameters, and contain the same in-

formation. In order to achieve the most optimal policy, with regards to the test set, the algorithm may need

to be run more than once, and the most optimal policy may be selected from the iterations. The algorithms

used throughout this paper will remain unchanged and the results of applying each of them will be displayed

and discussed below. The algorithms were generated with increased consideration about how to adequately

mitigate risks in the trading environments, this was done in an attempt to diversify the options of the algorithm,

allowing more players to use it and to generate wealth in a manor that they see fit.

The Algorithms were made with the consideration of the following compliance acts for algorithmic trading

code both in the Eu and in the USA:

38

CHAPTER 4. MATERIALS AND METHODS

4.7.1 European Union

Markets in Financial Instruments Directive II (MiFID II):

MiFID II , European Securities and Markets Authority (ESMA) (n.d.b) imposes stringent requirements on

firms engaging in algorithmic trading, including the implementation of robust systems and controls to manage

risks associated with automated trading strategies. This includes pre-trade risk controls, continuous monitor-

ing, and post-trade analysis to ensure market integrity and transparency.

Market Abuse Regulation (MAR):

MAR , European Securities and Markets Authority (ESMA) (n.d.a) addresses issues related to insider trading

and market manipulation, mandating firms to report suspicious transactions and maintain high standards of

market conduct. This regulation is crucial for preventing activities that could undermine market confidence

and stability.

4.7.2 United States

Securities and Exchange Commission (SEC) Regulations:

• Regulation NMS (National Market System): , Securities and Exchange Commission (SEC) (n.d.b)

Ensures that trading activities promote fair and efficient markets by maintaining price transparency and

protecting investor interests.

• Market Access Rule (Rule 15c3-5): , Securities and Exchange Commission (SEC) (n.d.a) Requires

brokers and dealers to implement risk management controls to prevent erroneous trades and ensure

financial and operational risk management.

Commodity Futures Trading Commission (CFTC) Regulations:

Although Regulation AT (Automated Trading) , Commodity Futures Trading Commission (CFTC) (n.d.) is

not fully implemented, its proposed guidelines emphasize the importance of risk controls, transparency, and

registration for automated trading systems.

Financial Industry Regulatory Authority (FINRA):

• Rule 5210: , Financial Industry Regulatory Authority (FINRA) (n.d.a) Ensures that all trade reports are

39

CHAPTER 4. MATERIALS AND METHODS

accurate and not misleading.

• Rule 5310: , Financial Industry Regulatory Authority (FINRA) (n.d.b) Mandates best execution prac-

tices, ensuring that customer orders receive the most favorable terms reasonably available.

4.7.3 Compliance Measures Implemented

Risk Management: Pre-trade risk controls were implemented into the algorithms, from the simplest form of

reward signal to more comprehensive forms such as the use of the technical indicators. After the completion of

the algorithm, a number of post-trade analytics are made available in the form of plots for the user to consider.

Transparency and Reporting: Each trade made by the algorithm is stored in the optimal policy and the

trade time and amount stored for the user to comply with relaying accurate reports to the respective regulatory

authorities in order for those authorities to perform the necessary audits.

Market Conduct:

The algorithm has been designed to avoid practices that could be deemed manipulative or disruptive, in line

with MAR and SEC guidelines.

Cybersecurity:

Since this algorithm is made for theoretical use at the moment, there has been no such endeavour to comply

with this regulation as of yet.

40

Chapter 5

Experiments and Results

The experiments were set up as described in section 4.5. Each of the Algorithms were initiated with the same

hyper-parameters and given the same initial information. The environment was initialised and trained using the

same PPO algorithm for each of the agents- an optimal policy for the training data was found over 1000 epochs,

and applied to the test data. This process was run 100 times for each of the methods and the data pertaining

to the change in the user’s net worth was collected and plotted. The descriptive statistics of the values were

calculated and tabulated for ease of comparison. The most optimal policies for each of the 100 iterations were

considered for plotting the change in net worth over time as well as the actions taken by the algorithms. This

loop can be found at the bottom of the code- it will be commented out due to its computational expensiveness.

Consideration about the user’s computational limitations is required when running this section of the code.

5.1 Deep RL Method
Net Worth

count 100.000000
mean 145222.017062
std 48611.771183
min 50368.574917
25% 109893.038835
50% 139357.666995
75% 169436.408326
max 283158.939123

Table 5.1: Descriptive statistics for the generated net worth of the Deep RL method over 100 trials

Table 5.1 above demonstrates the results of running the algorithm using the pure deep-RL method described

in sections 2 and 4, over 100 iterations. The results depict the descriptive statistics of the net worths obtained

from the algorithm after each of the iterations. A scatter plot of all of the values is available in the appendix

of this paper A.1. From the data displayed in 5.1 and the image shown in A.1, a number of important results

41

CHAPTER 5. EXPERIMENTS AND RESULTS

can be obtained. Firstly- the data indicates that the maximum net worth obtained during this experiment was

283158.94. This indicates a profit of 183158.94 over the trading period. This is close to triple the amount of

the starting value and by far the largest growth in net worth over all of the algorithms tested. The minimum

value over the 100 iterations is shown to be 50368.57, which indicates a net worth loss of 49,631.43. This

is the greatest loss generated by any of the algorithms. The standard deviation, too, was the highest shown

standard deviation of any of the algorithms with a value of 48611.77. The trading portfolio for the highest

output net worth is shown below along with the net worth over time of the same algorithm.

Figure 5.1: Graph indicating the actions of the highest yielding model using deep RL over 100 iterations

Figure 5.2: Graph showing the net worth over time of the highest yielding model using deep RL over 100
iterations

Figure 5.1 indicates that the model prioritised buying and selling stocks frequently in order to optimise trading.

This model did not have the choice of selling or buying percentages of total available stocks- but worked by

selling all or nothing as was described in chapter 4. Examining the graph of the net worth over time 5.2, the

increase in wealth is healthy, and the profitability of this particular model is high, only losing value in small

42

CHAPTER 5. EXPERIMENTS AND RESULTS

areas, whilst never reducing the net worth below the starting value.

As shown, there are clear benefits to using the pure RL strategy. It should, however, be considered that

the standard deviation of the model was the highest of any of the algorithms, together with the fact that the

algorithm produced a loss in net worth of 17% of the time depicted in A.1. This indicates the highest number

of negative returns of all of the algorithms. For these reasons, the algorithm may be considered to be one of

high-risk high-reward.

5.2 Pure Technical Indicator Method

Net Worth
count 100.000000
mean 121086.641636
std 22345.688511
min 80825.644306
25% 104242.132388
50% 117100.048827
75% 135096.996971
max 183134.104245

Table 5.2: Descriptive statistics for the generated net worth of the Pure Technical Indicator method over 100
trials

Table 5.2 above shows the results of applying the Pure Technical Indicator algorithm explained in section 4.4

of this paper. The results showed a reducuction in maximum net worth over the 100 iterations when compared

to the deep RL algorithm. As indicated by figure A.2 in appendix A, the algorithm produced a negative return

15% of the time. This shows a 2% reduction in negative returns over all iterations. The algorithm also boasts

the highest minimum net worth value in the experiments.

The standard deviation of the model was shown to decrease by a factor of 2.18x. This could imply that the

variance of the outcome has been decreased, and that the algorithm, with the correct modifications, may prove

effective in mitigating some of the underlying risks associated with this methodsof trading.

43

CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.3: Graph showing the net worth over time of the highest yielding model using the Pure Technical

Indicator method over 100 iterations

Figure 5.4: Graph indicating the actions of the highest yielding model using the Pure Technical Indicator

method over 100 iterations

Figure 5.3 indicates a healthy growth in net worth over time. A difference in optimal policy decisions, however,

can be seen in the graph of 5.4. The model prioritises holding both the assets for longer periods of time. This

results in minimising the number of transactions made in the model. This is likely due to the inclusion of the

additional constraints applied to the algorithm that were used to try and mitigate risky stock transactions in the

environment.

The decrease in variance and reduced negative return percentage due to the inclusion of the technical indicators

44

CHAPTER 5. EXPERIMENTS AND RESULTS

implies an increase in risk mitigation. This implies that this algorithm can be considered as a moderate-to-

high-risk, moderate-to-high-reward strategy. The risks associated with the algorithm are still valid, but the

resulting poor performances are less detrimental than those of the previous method. This is indicated by the

increased minimum value.

5.3 Strategic Technical Indicator Method

Net Worth
count 100.000000
mean 119797.186193
std 19992.348160
min 73991.823949
25% 103560.357755
50% 117399.225861
75% 133962.173319
max 179646.056955

Table 5.3: Descriptive statistics for the generated net worth of the Strategic Technical Indicator method over
100 trials

Table 5.3 above shows the descriptive statistics of applying the same test procedure to the Strategic Technical

Indicator model. The relationship between the stock bin and the percentage of the stock allocated to trade is

based off of the considerations made in Yingzi et al. (2009), wherein Zhipeng et al. derived the first order

approximation risk function. The first order approximation function assigns inverse proportionality between

MACD value and the risk value. This method exhibited a further reduction in maximum net worth. The

minimum value also dropped below the threshold of the Pure Technical Indicator algorithm.

The standard deviation, as seen in table 5.3 was reduced further, with the strategic TI algorithm generating

the lowest standard deviation over all experiments. From figure A.3 in appendix A, the algorithm returned

a negative result 14% of the times it was run. This is the lowest number of negative returns of all of the

algorithms. These results could imply further risk mitigation generated by the algorithm.

45

CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.5: Graph showing the net worth over time of the highest yielding model using Strategic Technical

Indicator method over 100 iterations

Figure 5.6: Graph indicating the actions of the highest yielding model using Strategic Technical Indicator

method over 100 iterations

Figure 5.5 indicates a steady growth in net worth over time which is consistent with the previous methods. The

trading patterns demonstrated by the strategic TI algorithm as depicted in figure 5.6 appear to be more similar

to those of the deep RL method, (5.1) , than to those of the pure TI method as shown in figure 5.4. Indicating

a preference for trading numerous stocks, whilst holding fewer assets for shorter periods.

Although this algorithm produced the lowest maximum return value of any of the algorithm, the reduced

number of negative returns in net worth along with the reduced standard deviation in net worth over the 100

46

CHAPTER 5. EXPERIMENTS AND RESULTS

iterations provide compelling evidence that this variation of the code furnishes the user with a lower risk

algorithm to use for what is still considered a good return on investment. For this reason, this algorithm may

be labelled as a moderate-risk, moderate-reward algorithm.

47

Chapter 6

Discussion

Considering the results derived in Chapter 5 of this paper, there are numerous of aspects of the algorithms that

can be considered successful and some that may prove to limit the algorithms performances. As shown by

the results, the algorithms each proved their merit in use in the trading environment. With steady growth in

net worth and generally positive returns, each of the algorithms exhibited the ability to generate policies on

historical data that were useful for trading on unseen data.

The Pure Reinforcement Learning strategy performed the best in terms of maximum net worth generation,

however also produced the lowest net worth in the 100 trials. The Pure Technical Indicator boasted the highest

minimum net worth, and reduced the number of negative returns when compared to the Pure Reinforcement

Learning method. However, it also produced a reduced maximum return over the 100 trials in comparison.

The Strategic Technical Indicator method returned the lowest number of negative rewards; and lowest standard

deviation of all the algorithms, however also produced the lowest maximum net worth of all of the algorithms.

6.1 Evaluation of Reinforcement Learning Algorithm

As stated above, the Reinforcement learning algorithm performed generally well as a stock trader. With

the highest maximum net worth increase of any algorithm. The algorithm produced the highest standard

deviation in net worth generation, and the highest number of negative returns, which indicates a comparably

high volatility in returns.

One possible reason for the high volatility is that the algorithm has less constraints in its take action function.

Despite containing the same information as the other algorithms about the stock trends, MACD values and

48

CHAPTER 6. DISCUSSION

the MACD bins, there were no additional constraints applied to the actions that the algorithm can take. This

allows the actor more freedom to make more stochastic decisions in the environment, which can result in an

increase in the number of positive and/or negative actions taken.

In agreement with the article by , Liang et al. (2018), the algorithm showed the ability to capture the general

sentiment and complex patterns of the stocks in order to generate actions that increase the users net worth over

time.The higher volatility of the algorithm indicates the requirement for additional modifications to be made

on the algorithm in order for it to be viable for the more risk adverse user, which aligned with the conclusions

drawn in , Liang et al. (2018).

Examining graph 5.1, which indicates the actions taken by the algorithm overlaid on the stock projection chart

it is evident that the algorithm did not always buy and/or sell at the most optimal times. There are a few

instances for example, at times 150 and approximately time 200, where the algorithm bought at the trough,

and at times, close to 100 and 150, where the algorithm sold at the peak of the stock values.

Although this behaviour would be considered optimal, it will be difficult to achieve consistently. The reward

signal of the algorithm may be adjusted in a way that considers the gradient of the stocks trajectory in order

to predict a turning point, for instance, receiving an increased positive reward for performing actions at these

turning points. It is unclear whether or not this algorithm would out perform a seasons stock trader in this

particular instance. That being said, considering the graphs 5.3 and 5.1, along with the time period of between

200 and 250, graph 5.1, illustrates that over this period, the stock showed a depreciating trend. Figure 5.3,

however, maintains a relatively steady upward trajectory of net worth change over this period, selling at some

of the minor peeks that exist. This illustrates this algorithm’s ability to handle some of the complex pattern

demonstrated by the stock’s trajectory.

The PPO used in the algorithm proved itself useful in that it required no hyper-parameter tuning and was

simple to implement, as stated in the paper by , Schulman et al. (2017). These factors make it a good option

for individuals with limited knowledge of coding and financial techniques. There is a strong argument for the

use of DDPG as an agent- given its continuous action space is useful for selling fractions of the total number

of stocks available. However the hyper-parameter tuning makes this option more complicated for individuals

with limited coding know-how. The use of DDPG as an agent, should be considered for future investigations.

This algorithm, despite being relatively risky in some senses, has shown its effectiveness through simplicity

and general positive returns- it can be considered a useful tool for stock trading for potential investors. More

investigation into the use of the algorithm is always encouraged, however if used correctly, this method can

prove lucrative for the user. It should be noted that it is uncertain how exactly the algorithm will perform

49

CHAPTER 6. DISCUSSION

in other stock environments, however from the tests that were run on the Apple stocks, the algorithm proved

useful.

6.2 Impact of Technical Indicators

In section 5, we saw the results of applying each of the algorithms over 100 iterations. Compared to the Pure

Reinforcement Learning method, the Pure Technical Indicator method generated a few concerning results.

First and foremost, the maximum return of the algorithm was shown to decrease by a significant amount, from

283158.94 to 183134.10. This is a drop in over 100000. This implies that this algorithm, as stated in Yingzi

et al. (2009), is not optimal. Graph 5.3 shows the net worth over time of the most optimal policy in the 100

iterations of the Pure Technical Indicator method.

Considering figure 5.3,with figure 5.4, which indicated the stock trajectory and the actions taken by the optimal

policy, the net worth over time graph tends to mimic the trajectory of the stock prices in a number of areas, for

example, at approximately times 50 and 100. This shows that the policy of this algorithm prioritised holding

the risky asset (the stock) for longer periods. In contrast, there are periods where the net worth remains constant

over periods, examples including, between times 50 and 100, 125 and 150. This implies that the algorithm

has chosen to prioritise holding the risk free asset (the money stored on the account) and that the number of

transactions is fewer than in the previous algorithm. This indicated that this algorithm prioritised minimal-

possibly more valuable- transactions.

These relatively long periods of holding contrast the Pure Reinforcement Learning method, in which there still

exist periods over which both the risky and risk free assets were held, however the duration of these periods

is far shorter by comparison- particularly in holding the risk free assets. This implies that the Pure Technical

Indicator algorithm is prone to holding on to assets rather than making many transactions over time- which

could be a sign that the algorithm is using the MACD values in an attempt to reduce the number of risky

transactions.

The inclusion of the Pure Technical Indicator constraints did not generate only negative impacts on the returns.

As shown in table 5.2, the standard deviation of the returns of the algorithm over the iterations, when compared

with the Pure Reinforcement Learning case was drastically reduced. The number of negative returns of the

algorithm as shown in figure A.2, was also reduced from 17% to 15%. When compared with the Pure Rein-

forcement Learning strategy, the minimum value was also shown to increase over all of the iterations. This

implies that the risks of using this version of the algorithm differ to those of the Pure Reinforcement Learning

algorithm.

50

CHAPTER 6. DISCUSSION

Before concluding that this algorithm is less successful than the previous algorithm in maximum net worth

generation, it should be noted that the transaction fees of each of the algorithms were not taken into consider-

ation. This means that depending on the kind of transaction fee charged for the trading of stocks, the results

may vary. For example, if a set transaction fee was used by the trader, then it could be argued that the Pure Re-

inforcement Learning method proved more efficient, however, if the transaction fee was taken as a percentage

of the trades made, then there may be an argument in favour of the Pure Technical Indicator method.

6.3 Effectiveness of Strategic Technical Indicators

When compared with the previous two methods, the Strategic Technical Indicator method displayed both

advantages, as well as disadvantages in its results. Considering figure 5.5, the net worth over time generated

by the optimal policy of the algorithm exhibits steady increase. The similarieties between figures 5.5 and

5.2 imply that the optimal policy found by this algorithm (akin to that of the Pure Reinforcement Learning

algorithm) values numerous trades. Unlike the Pure Reinforcement Learning method, however, the maximum

return of the algorithm was below even that of the Pure Technical Indicator method.

The minimum return, although larger than that of the Pure Reinforcement Learning strategy, was also smaller

than the Pure Technical Indicator method, with many more transactions being made. This may have negative

implications about the algorithm, however when the standard deviations of all of the algorithms are compared,

the strategic method out-performed the other two methods quite convincingly. These statistics can be seen in

tables, 5.1, 5.2 and 5.3.

This method was a curde assumption of how to correctly utilise the technical indicators, in an attempt to rectify

the concerns of non optimal usage referred to in Yingzi et al. (2009). The use of binning may not have proved

the best method for using the technical indicators, and thus more optimal methods of the use of these functions

may still be derived. This does, however serve as an initial attempt in the right direction for using these values.

Despite the use case not necessarily being optimal, the use of this method was shown to help in lowering

the variance of the results, as well as reducing the number of negative results. This implies that the apopted

approach may have proved useful in mitigating some portion of the risks of applying this algorithm for stock

trading.

6.4 Comparison of Algorithms

Each of the three algorithms has their own merits in use. The results are based off 100 iterations of the

algorithms. Due to the stochastic nature of the algorithms, 100 iterations may not prove to be statistically

51

CHAPTER 6. DISCUSSION

significant enough to provide decisive evidence to choose one over another. Given the information at hand, the

user should consider what they primarily value in order to make a decision on what algorithm to choose.

The choice of algorithm should also depend on the type of transaction cost that the user would incur. Below

is a table indicating the level of acceptable risk taken by the user, together with what we would suggest as the

optimal algorithm to use given the type of transaction cost incurred by the user.

Risk Once-off transaction cost Percent based transaction cost
Lowest Strategic Pure TI
Medium Strategic or Pure TI Pure TI
Highest Pure Reinforcement Learning Pure TI

Table 6.1: Transaction Fees vs. Risk Levels

Table 6.1, which reflects our considerations on the algorithms,illuminates that the algorithm that appears most

frequently is the Pure Technical Indicator algorithm. This is due to the fact that it emphasises minimal trans-

actions and illustrates a useful risk-reward balance.

This does not necessarily mean that this algorithm is better or out performs the other algorithms. The decision

about algorithmic risk-reward balance should be considered before the algorithm is implemented. According

to this analysis, the algorithms tend to mitigate risk in order of increased constraints. The Pure Reinforcement

Learning method is shown to demonstrate the highest risk, with the highest potential for growth, the Pure

Technical Indicator method illustrated the second highest risk, with the second highest potential for growth,

and the Strategic Technical Indicator method indicated the lowest risk with the lowest potential for growth.

In terms of transaction costs, the Pure Technical Indicator method performed the least amount of transactions,

and would thus be the most likely to mitigate this cost if it were on a percentage scale. The Strategic Tech-

nical Indicator method performed a similar number of stock transactions as the Pure Reinforcement Learning

method, however was given the option to sell a percentage of the total stocks available, which could implicit a

lower transaction than the Pure Reinforcement Learning strategy.

It should not be overlooked that the Pure Reinforcement Learning strategy outperformed both the pure and

Strategic Technical Indicator strategies in producing the maximum net worth over all of the iterations. This

shows the merit in using this algorithm for those who are less risk adverse.

In conclusion, the algorithms each exhibit the ability to generate positive returns, when implemented correctly.

The risk-reward balance is shifted by the implementation of the constraints in the environment. The Pure

Reinforcement Learning algorithm incurs the highest risk, with the highest reward. The Strategic Technical

Indicator algorithm incurs the lowest risk and the lowest reward, whilst the Pure Technical Indicator method

52

CHAPTER 6. DISCUSSION

strikes a balance between these two algorithms. It is not correct to say that any algorithm is definitively better

than another, and the choice of algorithm should consider the risk-reward payout.

6.5 Addressing Research Questions

Effectiveness of algo-trading:

Each of the algorithms exhibited the ability to produce positive growth in the user’s net worth over a set period,

failure to produce positive change in net worth over time occurred in a combined average of 15.3% of the test

cases. This means that for a combined average of 84.7% of the time, the algorithms generated positive rewards.

This indicates that the algorithms in question are useful for stock trading. These results were generated in each

case with only historical data as training in the algorithms. This highlights abilities of the algorithms to learn

complex patterns of the environment for trading. No hyper-parameter tuning is required for the algorithms, and

minimal data pre-processing is required. The stability and robustness of these algorithms is thus exemplified.

Overall, the results indicate that the algorithms are effective in stock trading, providing a solid foundation for

further development and application in real-world trading scenarios. whilst we did not compare the results to

more traditional algorithms, the positive outcomes suggest that these algo-trading strategies are a viable option

for enhancing trading performance.

Enhancement with technical indicators:

The integration of technical indicators in the algorithms proved useful in a number of ways. Despite reducing

the possible maximum output, both algorithms that integrated constraints pertaining to the technical indicators

showed promise in mitigating risks associated with this kind of trading. The reduction in volatility in returns

also indicates the advantages of including these functions into the algorithms.

In summary, whilst the integration of technical indicators may slightly reduce the maximum potential output

of the trading algorithms, however, their benefits in risk mitigation and performance stability make them a

valuable addition. These enhancements help cater to the needs of more conservative investors, ensuring a

more reliable and less volatile trading experience.

Risk mitigation and general performance:

Risk is a complex value to try and quantify in terms of raw figures. Both of the technical indicator methods

saw a reduction in standard deviation when compared to the Pure Reinforcement Learning method. The

53

CHAPTER 6. DISCUSSION

reduction in standard deviation suggests a reduction in volatility, which implies a lower level of risk in this

context. In contrast to this, the reduction in maximum and mean net worth gain generated by the algorithms

with technical indicators incorporated may, at first glance imply an increased risk to returns. However, risk

assessment should incorporate information about the frequency and magnitude of the negative returns. The

key benefits of using the technical indicator methods are evidenced by their ability to lower standard deviation

and reduce the number of negative returns. For this reason, they are considered invaluable assets to incorporate

into the algorithms. However, the balance between risk mitigation and reward is a concept that requires more

consideration in future experiments.

6.6 Market Conditions, Algorithmic Design and Data Quality

The algorithms proposed in this paper were trained using one set of stock data. As a result, the trading policies

derived on this data set are likely non-transferable to other, unseen stock data. To generate meaningful results

on new data, the algorithms will have to be retrained on said data before being used.

As made evident by graphs 5.1, 5.4 and 5.6, when considering the net worth over time graphs of, 5.2,5.3, 5.5, it

is important to highlight that even in areas of loss in stock value, the change in net worth was typically positive.

It is unknown, however, how well these algorithms will fair when used on particularly complex stocks. Thus,

the market conditions may play a role in the effectiveness of these algorithms, and should be considered when

choosing a stock option to invest in. The onus is the user’s, to make sure they properly train and test their

algorithms before making use of them in the market.

For ease of comparison, each of the algorithms were trained and tested using the same hyper-parameters and

the same reward signals. These parameters and signals may not be the ideal choice for each of the algorithms

in question. It is therefore recommended that the user consider adjusting these values when applying their

algorithm.

Examples include: changing the percentage of stock to trade when a particular bin is encountered in the take

action function. This can affect the number of stocks being traded at a given time, which can effect the total

change in net worth. Adjusting the reward signal to limit the number of transactions being made. This can

help the code to prioritise more effective trading over more frequent trading and can affect the transaction cost

generated.

The number of changes that can be made to the environment and the actor of this algorithm are numerous,

however if the user is not comfortable with adjusting the algorithm to implement changes, the algorithms may

be used as they are, with the caveat that they should be trained and tested on the chosen stock data, the results

54

CHAPTER 6. DISCUSSION

considered before their use.

The quality of data in the use of this algorithm plays a vital role in generating useful results. The algorithm

cannot be expected to learn meaningful patterns nor changes in stock behaviour without being afforded the

opportunity to learn these behaviours in the form of data. If this algorithm is to be used for stock trading, it is

recommended that the data pertaining to the stock be as close to complete and as clean as possible.

6.7 Limitations and Future Work

The results generated were done so over 100 iterations. This was done in an attempt to get a sample mean that

is close enough to the approximate true mean of applying the algorithm at any given time. Although this is not

a particularly large sum of iterations, it took 45 minutes per algorithm to run these functions.

In order to obtain the true optimal policy, or a better approximation of the true mean with regards to net

worth returns, the policy may require hundreds, if not thousands, of iterations. This requires a vast amount

of computational power, which should be considered. The process may possibly be sped up by using the

computer’s GPU, however this has not been tested as of yet.

There may also be some existing limitations in financial knowledge exhibited through out this paper. Despite

studying some data driven models for investment, finance is a broad field with many different facets. There

are a wide variety of functions which were not considered. These techniques and functions may be substituted

into the algorithm in order to improve the general performance of the algorithm.

Ultimately, it is encouraged that the user studies financial trading techniques further in order to optimise their

trading results. Further studies into these techniques may afford the user the ability to generate more effective

constraints for use in the environment. This could optimise the risk-reward balance of the algorithm, increasing

the productivity of the algorithms in question.

The Strategic Technical Indicator method was created in a crude attempt to placate the concern of non opti-

mality expressed by Yingzi et al. (2009). This method is far from optimal itself, however with further research

and dedication, this method may be optimised, either by using continuous values instead of binning, or by

optimising the binned values to correspond to more optimal percentages for transactions.

Another area that requires further attention and future research is that of the reward signal. The reward signal

governs how the algorithm as a whole makes decisions. If this signal is correctly modified, then the algorithm

may be ’motivated’ to perform more optimally.

55

CHAPTER 6. DISCUSSION

The use of reinforcement learning paired with technical indicators in algorithmic trading is a multi-faceted

field of study that requires further work and consideration before it can be deemed optimal. The work done

in this paper is aimed at highlighting some of the major benefits and disadvantages of using some of these

techniques. Whilst this paper may be useful for fundamentals of applying the algorithms in question, there are

numerous algorithms and mathematical techniques to consider. These function and techniques could serve to

optimise future iteration of this algorithm, further improving their utility.

56

Chapter 7

Conclusion

The stock trading sector in finance provides a multifaceted and dynamic environment characterized by highly

complex patterns and trends that can be difficult t o i nterpret even f or s easoned s tock t raders. Formulating

an efficient trading strategy can take years of experience and may require significant monetary and temporal

investment. This serves as a barrier to entry to market access, separating those with the knowledge and means

to obtain it, from those without. The aim of this paper was to explore the possibility of lowering this barrier to

democratize the stock market by providing users with an algorithm that requires minimal understanding and

intervention to run effectively. Furthermore, the algorithm should accommodate the needs of both risk-tolerant

and risk-averse users according to their preferences.

By using reinforcement learning combined with supervised learning techniques and financial technical indica-

tors, we developed and tested three algorithms. As detailed in Chapters 5 and 6, the results show promising

outcomes with an overall net worth gain in the vast majority of cases. whilst there is a possibility of generating

negative returns, these instances were limited to 17% in the riskiest algorithm and 14% in the most risk-free

algorithm. This implies that with correct implementation, the algorithms in question will return positive results

in the majority of cases.

Evidence suggests that the inclusion of financial technical indicators, as stated in Yingzhi et al. (2009), can

reduce some of the risks related to stock trading. These technical indicators, such as MACD, proved to be

particularly beneficial for risk-averse users. That being said, the use of these values may still not be

optimal at this stage in the algorithms’ development. Further research into how to more effectively utilize

them, along with modifications to the reward signal of the algorithm, is encouraged to enhance their

effectiveness.

57

CHAPTER 7. CONCLUSION

To conclude, the use of deep reinforcement learning coupled with financial technical indicators demonstrated

the ability to adapt to and navigate the complex patterns of the financial stock market in a way that produced

a positive return in net worth over time. The algorithms developed do not require extensive hyper-parameter

tuning nor data pre-processing, making them accessible to users with limited financial market knowledge. The

inclusion of financial technical indicators mitigated some of the surrounding risks of applying the algorithm,

underscoring their potential for democratizing the stock market.

Future research should focus on refining the algorithms, particularly in the use of financial technical indicators

with an enhanced reward signal, to further improve performance and reduce risk.

58

Appendix A

The First Appendix

Figure A.1: Scatter plot showing the resulting netwoths of all of the 100 iterations of running the pure RL
algorithm

Figure A.2: Scatter plot showing the resulting netwoths of all of the 100 iterations of running the pure technical
indicator algorithm

59

APPENDIX A. THE FIRST APPENDIX

Figure A.3: Scatter plot showing the resulting netwoths of all of the 100 iterations of running the strategic
technical indicator algorithm

60

Bibliography

AI, T. T. (2023), ‘Building an algorithmic trading strategy using reinforcement learning.’. Accessed:

10/04/2024.

URL: Member-only source

Bellman, R. (1957), Dynamic Programming, Princeton University Press.

Bishop, C. M. (2006), Pattern Recognition and Machine Learning, Springer.

Commodity Futures Trading Commission (CFTC) (n.d.), ‘Regulation at (automated trading)’.

https://www.cftc.gov/PressRoom/SpeechesTestimony/opaquinterative.

Cowles, A. (1933), ‘Can stock market forecasters forecast?’, Econometrica 1, 309–324.

European Securities and Markets Authority (ESMA) (n.d.a), ‘Market abuse regulation (mar)’.

https://www.esma.europa.eu/policy-rules/market-abuse-regulation.

European Securities and Markets Authority (ESMA) (n.d.b), ‘Markets in financial instruments directive ii

(mifid ii)’. https://www.esma.europa.eu/policy-rules/mifid-ii-and-mifir.

Fama, E. F. & Blume, M. (1966), ‘Filter rules and stock market trading’, Journal of Business 39, 226–241.

URL: https://www.journals.uchicago.edu/doi/10.1086/294131

Financial Industry Regulatory Authority (FINRA) (n.d.a), ‘Finra rule 5210’. https://www.finra.org/rules-

guidance/rulebooks/finra-rules/5210.

Financial Industry Regulatory Authority (FINRA) (n.d.b), ‘Finra rule 5310’. https://www.finra.org/rules-

guidance/rulebooks/finra-rules/5310.

Kaelbling, L. P., Littman, M. L. & Moore, A. W. (1996), ‘Reinforcement learning: A survey’, Journal of

Artificial Intelligence Research 4, 237–285.

Liang, Z., Jiang, K., Chen, H., Zhu, J. & Li, Y. (2018), ‘Deep reinforcement learning in portfolio management’,

Likelihood Technology & Sun Yat-sen University .

61

BIBLIOGRAPHY

Lo, A., Mamaysky, H. & Wang, J. (2000), ‘Foundations of technical analysis: computational algorithms,

statistical inference, and empirical implementation’, Journal of Finance 55, 1705–1765.

Lo, A. W. (2010), ‘Hedge funds: An analytic perspective’. http://www.jstor.org/stable/j.ctt7rq28.

McCulloch, W. S. & Pitts, W. (1943), ‘A logical calculus of the ideas immanent in nervous activity’. Accessed:

27/03/2024.

URL: https://www.cs.cmu.edu/ ./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf

Murphy, J. J. (1999), Technical Analysis of the Financial Markets: A Comprehensive Guide to Trading Methods

and Applications, New York Institute of Finance.

Puterman, M. L. (1994), Markov Decision Processes: Discrete Stochastic Dynamic Programming, John Wiley

& Sons.

Rosenblatt, F. (1958), ‘The perceptron: A probabilistic model for information storage and organization in the

brain’, Psychological Review 65(6), 386–408.

Ross, S. M. (2014), Introduction to Probability Models, 11th edn, Academic Press.

Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986), ‘Learning representations by back-propagating

errors’, Nature 323, 533–536.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A. & Klimov, O. (2017), ‘Proximal policy optimization

algorithms’, OpenAI . {joschu, filip, prafulla, alec, oleg}@openai.com.

Securities and Exchange Commission (SEC) (n.d.a), ‘Market access rule (rule 15c3-5)’.

https://www.sec.gov/rules/final/2010/34-61379.pdf.

Securities and Exchange Commission (SEC) (n.d.b), ‘Regulation nms (national market system)’.

https://www.sec.gov/fast-answers/divisionsmarketregmrexchangesshtml.html.

Smigel, L. (2023), ‘Algorithmic trading history: A brief summary’. Accessed: 20/03/2024.

URL: https://analyzingalpha.com/algorithmic-trading-history

Sutton, R. S. & Barto, A. G. (2018), Reinforcement Learning: An Introduction, 2nd edn, The MIT Press.

Thomas, P. S., Jordan, S. M., Chandak, Y., Nota, C. & Kostas, J. (2019), ‘Classical policy gradient: Preserving

bellman’s principle of optimality’. Accessed: 27/03/2024.

62

Zhu, Y., & Zhou, G. (2009). Technical analysis: An asset allocation perspective on the use of moving
averages. Journal of Financial Economics, 92(3), 519-544.

