
Dipartimento di Economia e Finanza

Indirizzo Banche ed Intermediari Finanziari

Rigorous Mathematical Derivations for Option

Pricing and Monte Carlo Analysis: from

Black-Scholes to Local Volatility Model

Relatore:

Prof. Hlafo Alfie Mimun

Correlatore:

Prof.ssa Sara Biagini

Candidato:

Carmelo Jerace

765851

Anno Accademico 2023/2024





Ai miei Genitori

Per aspera ad astra





Contents

Introduction i

1 The Dynamics of Financial Derivatives: Instruments, Applica-

tions, and Market Impact 1

1.1 Forward Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Futures Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Swaps Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Interest Rate Swap . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Currency Swaps . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.3 Other Currency Swaps . . . . . . . . . . . . . . . . . . . . . 8

1.3.4 Credit Default Swaps . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Option Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Options Time Value . . . . . . . . . . . . . . . . . . . . . . 12

1.4.2 More Factors Influencing Option Prices . . . . . . . . . . . . 13

1.5 Put-Call Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Mathematical Foundations of Stock Price Modeling and Deriva-

tives Pricing 17

2.1 The Lognormal Model for the Stock Price . . . . . . . . . . . . . . 17

2.2 Risk Neutrality and No-Arbitrage Principle . . . . . . . . . . . . . . 24



2.2.1 No-Arbitrage Principle . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Risk Neutrality . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 The Black-Scholes Model . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Black-Scholes Formula for a Put Option . . . . . . . . . . . 28

2.3.2 Black-Scholes Formula for a Call Option . . . . . . . . . . . 31

2.3.3 Stochastic Ito Calculus . . . . . . . . . . . . . . . . . . . . . 33

2.3.4 The Black-Scholes Differential Equation . . . . . . . . . . . 36

2.3.5 Justification of Risk-Neutrality . . . . . . . . . . . . . . . . 38

3 Greeks 41

3.1 Delta ∆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 The Delta ∆ of an European Call Option . . . . . . . . . . . 44

3.1.2 The Delta ∆ of an European Put Option . . . . . . . . . . . 48

3.1.3 Exploring Delta in Depth . . . . . . . . . . . . . . . . . . . 48

3.1.4 Delta-Hedging . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Gamma Γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 The Gamma Γ of an European Call Option . . . . . . . . . 49

3.2.2 The Gamma Γ of an European Put Option . . . . . . . . . . 50

3.2.3 The Implications of Gamma in Trading . . . . . . . . . . . . 50

3.3 Vega V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1 The Vega V of an European Call Option . . . . . . . . . . . 51

3.3.2 The Vega V of an European Call Option . . . . . . . . . . . 52

3.3.3 Vega and Volatility Trading . . . . . . . . . . . . . . . . . . 53

3.4 Theta Θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.1 The Theta Θ of a European Call Option . . . . . . . . . . . 53

3.4.2 The Theta Θ of an European Put Option . . . . . . . . . . . 54

3.5 Rho ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.1 The Rho ρ of an European Call Option . . . . . . . . . . . . 55



3.5.2 The Rho ρ of an European Put Option . . . . . . . . . . . . 56

3.6 Use of Delta, Gamma and Vega . . . . . . . . . . . . . . . . . . . . 57

3.6.1 Practical Considerations and Challenges . . . . . . . . . . . 57

3.6.2 Strategic Considerations for Managing Greeks . . . . . . . . 58

4 Pathwise Estimators and Analytical Methods for Greeks Calcu-

lation 59

4.1 Pathwise Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Delta ∆ Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 Delta ∆ Estimator for a Call . . . . . . . . . . . . . . . . . . 60

4.2.2 Delta ∆ Estimator for a Put . . . . . . . . . . . . . . . . . . 61

4.3 Gamma Γ Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Non-Applicability of Pathwise Method for Gamma Γ . . . . 62

4.3.2 Gamma Γ Estimator Using Finite Difference Methods . . . . 63

4.3.3 Gamma Γ Estimator for a Call . . . . . . . . . . . . . . . . 64

4.3.4 Gamma Γ Estimator for a Put . . . . . . . . . . . . . . . . . 64

4.4 Vega V Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.1 Vega V Estimator for a Call . . . . . . . . . . . . . . . . . . 65

4.4.2 Vega V Estimator for a Put . . . . . . . . . . . . . . . . . . 66

4.5 Theta Θ Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5.1 Theta Θ Estimator for a Call . . . . . . . . . . . . . . . . . 67

4.5.2 Theta Θ Estimator for a Put . . . . . . . . . . . . . . . . . 67

4.6 Rho ρ Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6.1 Rho ρ Estimator for a Call . . . . . . . . . . . . . . . . . . . 68

4.6.2 Rho ρ Estimator for a Put . . . . . . . . . . . . . . . . . . . 69

5 Monte Carlo Simulations for Option Pricing and Greeks 71

5.1 Bloomberg Terminal Data Extraction . . . . . . . . . . . . . . . . . 72



5.2 Call Option Valuation and Greek Metrics: Results . . . . . . . . . . 75

5.2.1 Analysis of the Call Option ISP IM 09/20/24 C3.6 Equity . 77

5.2.2 Call Option Pricing . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.3 Delta ∆ Estimation for Call Options . . . . . . . . . . . . . 81

5.2.4 Gamma Γ Estimation for Call Options . . . . . . . . . . . . 83

5.2.5 Vega V Estimation for Call Options . . . . . . . . . . . . . . 86

5.2.6 Theta Θ Estimation for Call Options . . . . . . . . . . . . . 88

5.2.7 Rho ρ Estimation for Call Options . . . . . . . . . . . . . . 90

5.3 Put Option Valuation and Greek Metrics: Results . . . . . . . . . . 92

5.3.1 Analysis of the Put Option ISP IM 09/20/24 P3.6 Equity . . 92

5.3.2 Put Option Pricing . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.3 Delta ∆ Estimation for Put Options . . . . . . . . . . . . . 98

5.3.4 Gamma Γ Estimation for Put Options . . . . . . . . . . . . 99

5.3.5 Vega V Estimation for Put Options . . . . . . . . . . . . . . 102

5.3.6 Theta Θ Estimation for Put Options . . . . . . . . . . . . . 104

5.3.7 Rho ρ Estimation for Put Options . . . . . . . . . . . . . . . 106

5.3.8 Results Summary . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Advanced Option Pricing: The CEV and Local Volatility Models113

6.1 The CEV Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1.1 European Call and Put Option in the CEV Model . . . . . . 114

6.2 The Volatility Surface . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3 Local Volatility Model: the Dupire Formula . . . . . . . . . . . . . 117

6.4 Relationship between CEV and Local Volatility Models . . . . . . . 121

Appendix 127

A.1 The Normal Random Variable . . . . . . . . . . . . . . . . . . . . . 127

A.2 Limit Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



Bibliography 130

Sitography 133

Ringraziamenti 137





Introduction

The valuation of options stands as fundamental tasks in the sphere of finan-

cial derivatives, demanding a sophisticated understanding of both theoretical and

practical aspects. This thesis undertakes a comprehensive examination of options

pricing, focusing on the application of Monte Carlo simulations to derive option

prices and calculate the Greeks. These Greeks, Delta, Gamma, Vega, Theta, and

Rho, are critical measures of the sensitivity of an option to various market param-

eters and are essential for informed risk management and trading strategies.

Financial markets have seen substantial evolution, becoming more intricate

and volatile over the decades. The advent of the Black-Scholes model in the

early 1970s was a groundbreaking development, offering a significant solution for

pricing European options. Despite its impact, the assumptions of the model of

constant volatility and risk-free interest rates have been subject to critique for their

oversimplification of the dynamic and stochastic nature of real-world markets.

Recognizing these limitations, this thesis explores more flexible and realistic

approaches. Monte Carlo simulations emerge as a powerful alternative, capable of

modeling the complex and stochastic behavior of market variables more accurately.

These simulations use the concept of randomness to generate numerous potential

paths for an asset price, thereby facilitating a thorough analysis of options pricing

and the associated risks.

Among the goals of this thesis is to develop a Monte Carlo simulation al-
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gorithm that not only prices options but also computes the Greeks using both

Black-Scholes differential equations and pathwise estimators. These methodolo-

gies originate from rigorous mathematical foundations for the analysis, ensuring

robustness and precision. By putting together the results from these methods

with data obtained from the Bloomberg Terminal, the thesis aims to validate the

simulation model and elucidate any variances observed.

Among the goals of this thesis is to develop a Monte Carlo simulation al-

gorithm that not only prices options but also computes the Greeks using both

Black-Scholes differential equations and pathwise estimators. These methodolo-

gies originate from rigorous mathematical foundations for the analysis, ensuring

robustness and precision. A significant part of this thesis involved an in-depth

punctual derivation of the Black-Scholes model. This comprehensive derivation

provided a solid theoretical foundation, enabling a deeper understanding of the

assumptions of the model and limitations. By putting together the results from

these methods with data obtained from the Bloomberg Terminal, the thesis aims

to validate the simulation model and elucidate any variances observed.

Additionally, this thesis presents a more refined approach by incorporating the

local volatility model through the Dupire formula, offering a sophisticated alterna-

tive to the traditional Black-Scholes framework. This model adeptly captures the

dynamic and evolving nature of implied volatility, which is often observed to be

non-constant and varies with time. By considering the variability of the implied

volatility surface, the local volatility model provides a more detailed and accurate

reflection of market conditions, thereby enhancing the precision and adaptability

of options pricing methodologies.

The Monte Carlo simulation algorithm developed in this thesis is designed

to simulate the stochastic price paths of the underlying assets, allowing for the

estimation of option prices and Greeks under diverse market conditions. Path-
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wise estimators are employed to compute the Greeks, providing an alternative

sensitivity analysis method that complements the traditional differential equation

approach. This dual methodology ensures a comprehensive assessment, grounded

in rigorous mathematical principles.

The accuracy and reliability of the simulation model are benchmarked against

real-world data sourced from the Bloomberg Terminal. This comparison is cru-

cial for validating the model’s performance and ensuring its practical applicability.

The empirical data from Bloomberg serve not only as a benchmark but also to un-

derstand the intrinsic dynamics of market behavior that may not be fully captured

by theoretical models alone.

This thesis is structured to reflect the rigorous mathematical and analytical

processes involved in the study. The methodological rigor extends to every aspect

of the thesis, from the development of the Monte Carlo simulation algorithm to the

application of pathwise estimators and the subsequent comparison with Bloomberg

data.

The significance of this study is various. By advancing the application of

Monte Carlo simulations in the context of options pricing and risk management,

the thesis provides valuable insights into the strengths and limitations of different

methodological approaches. The detailed comparison between the results derived

from differential equations and those obtained through pathwise estimators offers

a complete understanding of the practical implications for risk management and

investment strategies.

This thesis aims to contribute to the field of financial derivatives by enhanc-

ing the application of Monte Carlo simulations in options pricing. The rigorous

mathematical foundation underlying the thesis ensures that the findings are both

theoretically and practically relevant. By integrating real world data from the

Bloomberg Terminal, the study bridges the gap between theoretical models and
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market realities, offering insights that are both academically enriching and prac-

tically significant.

Chapter 1 provides an overview of financial derivatives, including forward con-

tracts, futures, swaps, and options. This chapter explains the instruments and

their applications, as well as their impact on the market.

In Chapter 2 we have constructed the mathematical foundations of stock price

modeling and derivatives pricing. We have derived the lognormal model for stock

prices, the Black-Scholes model, and discussed the principles of risk neutrality and

no-arbitrage.

Chapter 3 is focused on the Greeks, detailing their significance and how they are

computed for both call and put options. This chapter also explores the practical

applications and challenges associated with managing these sensitivities.

In Chapter 4 we have derived pathwise estimators methods for calculating the

Greeks.

Chapter 5 describes the implementation of Monte Carlo simulations for option

pricing and the computation of Greeks. It includes the extraction of data from the

Bloomberg Terminal and provides detailed results for both call and put options,

validating the simulation model against real-world data.

Chapter 6 introduces advanced option pricing models, such as the Constant

Elasticity of Variance (CEV) model and the Local Volatility model via the Dupire

formula. This chapter demonstrates how these models capture the dynamics of

implied volatility more accurately than the Black-Scholes model.
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Chapter 1

The Dynamics of Financial

Derivatives: Instruments,

Applications, and Market Impact

Over the past four decades, derivatives have grown to play a critical role in

the financial sector. Financial instruments such as futures and options are now

extensively traded across global exchanges, while a variety of derivatives includ-

ing forwards, swaps, and others are frequently managed in the over-the-counter

(OTC1) markets by financial institutions, fund managers, and corporate treasur-

ers. But let us clarify further. A derivative is a financial security whose value is

derived from an underlying asset or group of assets. The underlying asset can be

anything from stocks, bonds, commodities, currencies, interest rates, or market

indexes. Derivatives are essentially contracts between two or more parties whose

value is determined by fluctuations in the underlying asset. The applications of

derivatives are diverse, including:

1Decentralized market where securities, such as stocks, bonds, commodities, or currencies,

are traded directly between two parties without the supervision of an exchange.

1



1. Hedging: Derivatives are used to reduce risk by providing a way to insure

against price movements in an asset that could result in a financial loss.

2. Speculation: Investors use derivatives to profit from the price movements of

the underlying asset without actually owning it. This involves predicting the

direction in which the prices of assets will move.

3. Arbitrage: This is the practice of exploiting price differences of the same

or similar financial instruments on different markets or in different forms.

Traders use derivatives to profit from discrepancies in prices.

We have now reached a stage where it is necessary for all financial professionals

to understand how these markets work, how they can be used, and what determines

their prices. Derivatives, whether viewed positively or negatively, are indispensable

in the financial market. The scale of this market is immense, surpassing the stock

market in the value of underlying assets and vastly exceeding global gross domestic

product (GDP).

As we said, derivatives are contract in which two parties agree on future trans-

action, their value depends from one or more underlying assets or, as we will see,

from any variables, such as interest rates, weather conditions, or even the out-

come of specific events. These variables can affect the terms and the payoff of

the contract, making derivatives a flexible and powerful tool for financial and risk

management strategies, allowing parties to tailor the contracts to meet specific

investment goals or risk exposure. The markets for exchange-traded derivatives

and OTC derivatives are enormous. The number of OTC contracts traded in a

year is fewer than the number of exchange-traded contracts, but the unit size is

much larger, often estimated at over 1 quadrillion dollar, some market analysts

even place the size of the market at more than 10 times that of the total world

GDP.
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1.1 Forward Contracts

In this sections, we will dive into the diverse world of financial derivatives,

beginning with an examination of forward contracts. These are relatively simple

agreements that play a crucial role in the financial strategies of various institutions,

by allowing to buy or sell an asset at a future date for a specific price. Unlike spot

contracts, which require immediate settlement, forwards are tailored to future

needs and are typically conducted directly between parties, often off-exchange.

Moving further, an understanding of "long" and "short" positions within these

contracts helps clarify how investors and institutions manage their strategies. In a

forward contract, taking a long position means agreeing to buy the underlying asset

at a predetermined future date and price, betting that the asset’s price will rise.

This is an optimistic view hoping for potential price increases. Contrarily, taking

a short position in a forward contract involves agreeing to sell the underlying asset

at a future date and price, anticipating a decline in the asset’s price. This strategy

is often used when expectations are bearish and there’s a forecast of falling prices.

Both long and short positions enable investors to hedge against potential losses,

speculate on future price movements, and exploit price differentials between mar-

kets. Forward contracts can be used to hedge against exchange rate risks.

As previously discussed, a forward contract involves two distinct prices. The

first is the forward price F , which is the agreed delivery price for the underlying

asset at a specific future date T . This price represents what would be the delivery

price if a forward contract was established today. The second price, represented

as f , reflects the current value of the forward contract, influenced by variations in

the underlying asset’s price, prevailing interest rates, and other relevant factors.

Let us calculate the theoretical forward price F for a contract initiated at time

t = 0 with a delivery due at time T . Let us assume the absence of transaction

3



Fig. 1.1: Value of a Forward contract in case of a long position and short position.

Source: https://brilliant.org/wiki/forward-contract/

costs and the possibility to sell short.

Theorem 1.1.1. We aim to derive the theoretical forward price F for a contract

initiated at time t = 0 and set to deliver at time T assuming that there are no trans-

action costs. Consider that at t = 0, the asset has a spot price S and is contracted

for future delivery at price F . The challenge lies in calculating the theoretical value

of the forward contract by utilizing the connection with the spot market to facili-

tate borrowing or lending. The interest rate implicit in this transaction should be

consistent with ordinary lending rates to prevent arbitrage opportunities.

Specifically, if one purchases a unit of the commodity at the spot price S and

concurrently enters into a forward contract to sell it at F , one engages in direct

arbitrage by storing the commodity and fulfilling the forward contract at a later

date. The cash flows associated with these market operations at t = 0 must align

with the interest rate spanning from t = 0 to t = T , hence

S = d(0, T )F ,
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where d(0, T ) is the discount factor.

Proof. Suppose F > S
d(0,T ) . Then, by borrowing S, purchasing the asset, and

entering a short position in the forward market, the initial investment is zero.

At T , delivering the stored asset yields F , and repaying S
d(0,T ) clears the loan,

resulting in a profit of F − S/d(0, T ), indicating an arbitrage if such opportunities

were deemed nonexistent.

If F < S
d(0,T ) , the opposite transaction involves borrowing the asset, selling it

at the current spot price, and taking a long position in the forward market. The

profit from this reverse arbitrage would also indicate a market anomaly unless

F = S
d(0,T ) .

The relationship between the spot price S and the forward price F illustrates

that the forward price at inception is essentially the spot price adjusted for the

prevailing interest rate over the duration of the contract.

Example 1.1. If the interest rate r is compounded continuously, the forward rate

formula adjusts to

F = SerT .

The discount rate d(0, T ) = erT used should align with the market rates accessible

to traders. In forward and futures markets, the repo rate commonly associated with

repurchase agreements is used, which is marginally higher than the Treasury bill

rate.

Another way to view the payoffs of a forward contract is by considering the

Figure 1.1. Suppose that ST is the spot price of the asset at maturity time of T

and K is the agreed-upon delivery price. The investor with the long position is

obligated to buy at price K an asset whose value is ST , hence, the payoff is

ST − K .
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Similarly, the payoff of a short forward contract written on a unit quantity of the

underlying asset is

K − ST .

1.2 Futures Contracts

Futures contracts, like forwards, are agreements between two parties to buy

or sell an asset at a future date for a specific price. Unlike forwards, futures are

typically traded on regulated markets. To facilitate trading, the exchange specifies

certain standard aspects of the contract. Since the two parties do not necessarily

know each other, the exchange’s clearinghouse2 intervenes between the parties,

thus ensuring that the contract will be honored.

1.3 Swaps Contracts

"Swaps are OTC contracts in which two companies agree to exchange future

payments. The contract defines the dates when payments must be made and

how they are calculated. Typically, the payments depend on the future value

of an interest rate, an exchange rate, or some other market variable". The key

attraction of swaps is the ability to transform one type of cash flow into another

by enabling the exchange of one for another directly. This process, which can

involve transactions worth hundreds of billions of dollars, is their ability to be

customized to specific needs.

2A clearinghouse acts as an intermediary between buyers and sellers in financial markets,

particularly for securities and derivatives transactions. Its primary role is to ensure the smooth

and secure completion of trades, reducing the risk for all parties involved.
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1.3.1 Interest Rate Swap

The most commonly used type is the interest rate swap, where one party ex-

changes a series of fixed interest payments for a series of variable interest payments

from another party. This type of swap functions similarly to a series of forward

contracts, making it possible to apply forward pricing concepts to them.

Example 1.2. Take, for instance, a plain vanilla interest rate swap: Party A

commits to making semiannual payments to Party B based on a fixed rate of interest

on a notional principal amount, while Party B agrees to pay Party A based on a

variable interest rate, such as the prevailing 6-month LIBOR rate, using the same

notional principal. Notably, the term “notional principal” refers to the fact that

there is no actual exchange of principal, it merely serves to calculate the payment

amounts. Typically, the swap involves payments only on the net difference between

the agreed amounts by the party owing more at each settlement. The swap between

Party A and Party B effectively converts the floating rate payments into fixed

payments, simplifying financial management for Party B.

Fig. 1.2: Scheme of a plain vanilla swap

Source: https://financetrain.com/plain-vanilla-interest-rate-swap
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1.3.2 Currency Swaps

Another commonly utilized type of swap is the "currency swap." In its most

basic form, known as a "fixed-for-fixed" currency swap, the agreement involves

exchanging the principal and interest payments of a fixed-rate loan in one currency

with those of a fixed-rate loan in a different currency. At the start of the contract,

the principal amounts are swapped based on the prevailing exchange rate, and

these amounts are exchanged again when the contract concludes. Although the

principal values are approximately equivalent at the beginning, they can fluctuate

significantly by the time of the final exchange due to changes in rates over the

contract period.

Fig. 1.3: Currency swap example

Source: https://www.bis.org/publ/qtrpdf/r_qt0803z.htm

1.3.3 Other Currency Swaps

Two other fairly common types of currency swaps are:

• Floating-for-fixed currency swaps, in which a variable rate denominated in

one currency is exchanged for a fixed rate denominated in another currency

• Floating-for-floating currency swaps, in which a variable rate denominated

8
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in one currency is exchanged for a variable rate denominated in another

currency

1.3.4 Credit Default Swaps

Credit Default Swaps (CDS) are sophisticated financial instruments that func-

tion much like insurance policies against the risk of default by a borrower. A CDS

protects investors, typically lenders or bondholders, by transferring the credit risk

of a debt from the holder to the seller of the swap. The process involves a protection

buyer who pays a premium to hedge against potential defaults and a protection

seller who collects this premium and agrees to compensate the buyer if the refer-

enced debtor defaults. The reference entity is the third party whose debt is being

insured. The cost of a CDS is influenced by factors such as the creditworthiness

of the reference entity, overall market conditions, and the balance of supply and

demand in the market. CDSs are also utilized for speculation on changes in a

debtor’s credit status and for arbitrage opportunities to exploit price inefficiencies

between the bond and CDS markets.

1.4 Option Contracts

Options are traded both on exchanges and in over-the-counter (OTC) markets.

There are two fundamental types of options: calls and puts. A "call option" gives

the holder the right to buy an asset by a certain date for a specified price. A "put

option" gives the holder the right to sell an asset by a certain date for a specified

price.

Options contracts are financial instruments that specify the terms under which

certain assets can be bought (i.e. call) or sold (i.e. put) by a certain date (i.e.

maturity) for a specified price, the strike price, in other words is the cost per share

9



that the buyer agrees to pay if they choose to exercise the option.

Options are divided into two main styles: American and European. An Amer-

ican option provides the holder with the flexibility to exercise the option at any

time up until the maturity. This ability to choose the timing of the exercise can be

particularly valuable if the underlying asset’s price moves favourably. On the other

hand, a European option restricts exercise to the expiration date only, typically

resulting in a lower premium due to this inflexibility.

The transactional structure of options involves two sides: the option writer and

the option buyer. The writer, or seller, of the option grants the rights contained

within the option to the buyer. In return, the buyer pays a premium to the writer.

This premium compensates the writer for the risk they undertake, as the option

writer is obligated to fulfill the terms of the contract if the buyer decides to exercise

the option.

For instance, if the buyer exercises a call option, the writer must ensure the

delivery of the asset at the agreed strike price. If the writer does not already own

the asset, they must purchase it at the current market price to meet the contract’s

terms. This could result in a significant loss if the market price exceeds the strike

price. Conversely, in the case of a put option, the writer might need to purchase

the asset at the strike price, potentially much higher than the market price, if the

buyer exercises their right to sell.

Options trading on exchanges involves rigorous regulations to ensure fair prac-

tices and risk management. The clearinghouse associated with the exchange over-

sees these trades and requires the option writer to post margin3. This margin acts

as a form of security, ensuring that the writer can cover any losses incurred from

fulfilling their obligations under the options contracts.

Consider we have a call option on a stock with a strike price of K. If at

3A security deposit
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expiration, the stock’s price is S, how would we determine the value of the option?

If S < K, the option holds no value since exercising the option to buy the stock

at K would incur in a loss compared to buying directly at the market price S.

Conversely, if S > K, the option is valuable as it allows the holder to buy the

stock at K and potentially sell it at S, yielding a profit of S − K, so we define the

value of the call option at maturity as

C = max(0, S − K) .

This equation indicates that the value of the call option is either zero (if exercising

the option is not advantageous) or the difference between the stock price and the

strike price (if beneficial).

For a put option, where the holder has the right, but not the obligation, to sell

the stock at a strike price K, the situation reverses. If the stock price at expiration

is S and it satisfies S > K, the put option is considered worthless because selling

the stock in the open market at S would be more advantageous than exercising

the option. However, if S < K, the option gains value as it permits the holder

to sell the stock at a higher guaranteed price K, making a profit of K − S. The

formula for calculating the value of a put option at expiration is

P = max(0, K − S) .

This function shows that the value of a put option is bounded by the difference

between the strike price and the stock price, whereas the potential gain for a call

option is theoretically unlimited as the stock price could rise infinitely.

Let us define a call option in the money (ITM), at the money (ATM), and out

of the money (OTM) based on their value relative to the current stock price S

and strike price K. Calls are ITM when S > K, ATM when S = K, and OTM

when S < K. Puts use the opposite terminology, in other words being ITM when

S < K and OTM when S > K.
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Fig. 1.4: Call and Put payoffs

Source: https://libertex.com/blog/put-vs-call-option

1.4.1 Options Time Value

The previous discussions have primarily addressed the value of an option at the

time of its expiration. This valuation is based on the fundamental structure of an

option. However, even European options, which are constrained to be exercised

only at expiration, can possess intrinsic value well before this date, given their

potential for eventual exercise. When there is significant time remaining until an

option’s expiration, the value of a call option can be modeled as a smooth curve

rather than a fixed point, which better reflects the real-world dynamics of option

pricing. This curve can be extrapolated from actual market data and illustrates

how option prices tend to evolve over time until expiration. In Figure 1.5, the

lowest curve represents an option with three months to expiration, with higher

curves representing longer duration. As more time is available until expiration, the

probability of a stock price increase enhances the potential payout from exercising

the option. However, this potential diminishes significantly when the stock price

12



Fig. 1.5

Source: Investment Science, David G. Luenberger, p.324

is much below or far above the strike price K. Specifically, if S is much lower

than K, the likelihood that S will surpass K is little, and the value of the option

remains near zero. Conversely, if S is significantly higher than K, the benefit of

holding the option over simply owning the stock becomes negligible.

1.4.2 More Factors Influencing Option Prices

As we saw in the previous section, duration of an option can significantly

influence the price itself, but there are even more variables that can modify the

option value such as:

• the current price of the stock S0

• the strike price K

• the volatility of the stock price σ: if the volatility increases, the likelihood

that the stock’s performance will be either very good or very poor increases.

Holding a call benefits from price increases and has limited downside risk

because, in case of a price drop, they cannot lose more than the premium
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paid. Similarly, someone holding a put benefits from price declines but has

limited downside risk in case of a price rise. Therefore, the value of both

calls and puts increases as volatility increases.

• the risk-free interest rate r: if interest rates increase, expected stock price

growth rates also tend to increase. Additionally, from the perspective of

option holders, higher interest rates decrease the present value of future cash

flows, so that the price of call options tends to increase, while the price of

put options tends to decrease.

• dividends4: dividends decrease the stock price on the ex-dividend date, in-

creasing the value of puts and decreasing the value of calls.

In summary, options are complex financial instruments with specific charac-

teristics and rules that govern their pricing and execution. They offer strategic

opportunities for investors to hedge, speculate, or increase their investment income.

1.5 Put-Call Parity

Let us now derive an important relationship between P and C in the case where

the underlying asset is a security that does not pay dividends.

Theorem 1.5.1. Let C and P be the prices of an European call and an European

put, both with strike price K and both defined on the same stock with price S.

Then

C + dK = P + S , (1.1)

4A dividend is a payment made by a corporation to its shareholders, usually as a distribution

of profits. When a company earns a profit or surplus, it can reinvest the profit into the business

and pay a portion of the profit as a dividend to shareholders.
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where d = e−rT is the discount factor to the expiration date. Such a relation is

called “put-call parity”.

Equation (1.1) shows us how the value of a European call with a certain exercise

price and a certain expiration can be deduced from the value of a European put

with the same exercise price and the same expiration, and vice versa. If the put-call

parity was not respected, there would have been arbitrage opportunities.
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Chapter 2

Mathematical Foundations of

Stock Price Modeling and

Derivatives Pricing

2.1 The Lognormal Model for the Stock Price

The log-normal model is commonly used to describe the behaviour of stock

prices over time, providing a theoretical framework for understanding price changes.

The main assumption of this model is that prices cannot be negative over time, in

the worst case scenario they converge to zero.

It could be used a more simplistic normal-model to describe price changes

because many random quantities are them-self normally distributed, but it is not

suitable for stock prices since a normal random quantity X satisfies P(X < 0) > 0.

So, for this reason a better model for understanding stock prices movements is the

log-normal one.

Consider a random variable S(t) that denote the stock price a time t. We say

that S(t) has lognormal if the natural logarithm of S(t), i.e. log(S(t)), follows a

17



normal distribution.

The following proposition shows that the hypothesis that log(S(t)), follows a

normal distribution is satisfied under some assumption.

Proposition 2.1.1. Given the stock price S(t) at time t, for any time u > t define

the (random) accumulation factor for an investment in stock between time t and

u as

A(t, u) = S(u)
S(t) .

Note that if A(t, u) > 1, then the stock price increased between time t and u, while

if A(t, u) < 1 it decreased.

Suppose that the following conditions are satisfied:

• for any h > 0 we have that A(t, t+h) is influenced by h but remains unaffected

by the specific starting time t;

• the probability distribution of A(t, t+h), i.e. P[A(t, u) ≤ x] for any x ∈ R, is

not influenced by the current stock price S(t), neither by its preceding values

S(s) for s ≤ t, meaning that our distribution A(t, t + h) is independent of

the stock price S(t).

Then log(S(u)
S(t) ) = log(A(t, u)) has a normal distribution. More precisely,

log S(u)
S(t) = log(A(t, u)) ∼ N (c(u − t), σ2(u − t)) ,

where c ∈ R and σ > 0 are two constants.

Proof. Fix two time points, t and u, so that t < u, this define the time frame in

which we want to analyze the evolution of the stock price. We divide the interval

[t, u] in n subintervals of same length, using the sequence of temporal points

tj = t + j

n
(u − t)
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for j = 0, 1, 2..., n, meaning that each tj represents a temporal point within the

interval, with t0 corresponding to the starting point of the interval (i.e. t), and tn

corresponding to the ending point of the interval (i.e. u). With the above notation,

the term u−t
n

is essentially the length of each interval.

Then:
S(u)
S(t) = S(tn)

S(t0)
= S(t1)

S(t0)
· S(t2)

S(t1)
· S(t3)

S(t2)
· . . . · S(tn)

S(tn−1)

This equation demonstrates that the total change in the stock price from t to u

can be represented as the product of changes over n smaller intervals. Recalling

the definition of A(t, u), we can rewrite the above expression as

A(t, u) = A(t0, t1)A(t1, t2)A(t2, t3) . . . A(tn−1, tn) .

Setting L(t, u) = log(A(t, u)), we have

L(t, u) = L(t0, t1) + L(t1, t2) + L(t2, t3) + . . . + L(tn−1, tn) .

This step transform the multiplicative process of stock price changes into an ad-

ditive process. By assumptions the random quantities L(tj−1, tj) are i.i.d. and,

taking n large enough, we can use the Central Limit Theorem A.2 to demonstrate

that L(t, u) is normally distributed. Since we have assumed that A(s, s + t) de-

pends only on t (and not on the starting point s), such a property extends to

L(s, s + t). So we can deduce that L(s, s + t) follows a normal distribution, with

mean m(t) and variance v(t), where m(t) and v(t) are two functions of t. In order

to understand the expressions of these two functions note that

L(0, t + u) = L(0, t) + L(t, t + u) .

This is a sum of independent normal random variable, so by taking mean

m(t + u) = m(t) + m(u)
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This equation implies that the logarithmic change over an interval t+u is the sum

of the changes over the individual intervals t and u.

Following the same reasoning for the variance, we get

v(t + u) = v(t) + v(u)

From these two equations we can deduce that both m(t) and v(t) are proportional

to t, so there is a constant c ∈ R and a constant σ > 0 such that:

m(t) = ct, v(t) = σ2t .

This statement suggests that, for each unit of time, the average m(t) increases

linearly with a constant of proportionality c, while the variance v(t) increases lin-

early with a proportionality constant σ2. These linear relationships indicate that

the mean of logarithmic change of the price of a stock is directly proportional to

the length of the time interval, with c which represents the average growth rate

per unit of time.

The variance of the logarithmic change in a stock’s price is also proportional to

the length of the time interval, reflecting how the uncertainty or volatility of the

stock’s price increases over time.

So, for any t < u, according to the statement done before, the logarithmic ac-

cumulation factor follows a normal distribution with mean c(u − t) and variance

σ2(u − t), that is

log S(u)
S(t) = log A(t, u) = L(t, u) ∼ N (c(u − t), σ2(u − t)) ,

that concludes the proof.

Suppose now that we know S(0) = 1. We are interested in determining its

expected value after a certain period t, i.e. E[S(t)]. As before, let us assume
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that the price changes follows a lognormal distribution (that is the assumptions in

Proposition 2.1.1 are verified). Since

log S(t) = log A(0, t) ∼ N (ct, σ2t) ,

we have that

log S(t) = ct + σ
√

tZ ,

where Z ∼ N (0, 1). So

S(t) = A(0, t) = ect+σ
√

tZ = ecteσ
√

tZ .

As a consequence

E[S(t)] = ectE[eσ
√

tZ ] = ecteσ2t/2 = e

(
c+ σ2

2

)
t
.

Defining µ = c + σ2

2 , we can express the expected value as

E[S(t)] = eµt ,

where µ represents the growth rate for the expected stock price. This shows that

the stock price follows a geometric Brownian motion, that we will define better

later, with µ representing the growth rate and σ the volatility.

Definition 2.1. Let σ > 0 and let µ be constants, a lognormal process, is a

family of random variable {S(t)}t≥0 with the following properties

• for all t ≥ 0 and u ≥ 0

log S(t + u)
S(t) ∼ N

((
µ − σ2

2

)
u, σ2u

)
.

• for any t ≥ 0, u ≥ 0 and any sequence 0 ≤ s1 < s2 < s3 < . . . < sn ≤ t we

have that S(t+u)
S(t) is independent on S(s1), S(s2), . . . , S(sn), meaning that the

change in the asset’s price form t to t+u is independent of the asset’s prices

at previous times s1, s2, . . . , sn.

21



The value µ is called infinitesimal drift.

Example 2.1. Suppose we want to calculate E[S(t)] when S(0) = 1, knowing that

{S(t)}t≥1, follows a lognormal process with infinitesimal drift µ and volatility σ.

Suppose also that for some particular time t = T > 0, the value of S(t) is known.

Then for u ≥ T we have

E[S(u)] = S(T )E[e(µ− 1
2 σ2)(u−T )+σ

√
u−T Z ] =

= S(T )e(µ− 1
2 σ2)(u−T )+ 1

2 σ2(u−T ) = S(T )eµ(u−T ) .

So

E[S(u)] = S(T )eµ(u−T ) .

If we want to comprehend the behaviour of a lognormal process, we can study

it in terms of the change of the stock price over a millesimal time interval.

Let us suppose that S(t) follows a lognormal process, again, with expected rate

return µ and volatility σ. For t ≥ 0 and h ≥ 0, using the definition of lognormal

explained before we have

log S(t + h)
S(t) ∼ N

((
µ − σ2

2

)
h, σ2h

)
,

Defining Z as a standard normal random variable, we have

log S(t + h)
S(t) =

(
µ − σ2

2

)
h + σ

√
hZ =⇒ S(t + h)

S(t) = e(µ− σ2
2 )h+σ

√
hZ .

We denote with Λ the proportionate increase in the stock price from time t to t+h

Λ(t, h) = S(t + h) − S(t)
S(t) = S(t + h)

S(t) − 1 =⇒ Λ(t, h) = e((µ− σ2
2 )h+σ

√
hZ) − 1 .

We can use the MacLaurin expansion of the exponential function, that for small

x approximates the function

ex − 1 ≈ x + x2

2 .
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We can apply this expansion since we considered an infinitesimal time interval,

that is h is sufficiently small. Taking care only of terms of grade lower than two,

we get

Λ(t, h) ≈
(

µ − σ2

2

)
h + σ

√
hZ + 1

2σ2hZ2

=
(

µh − σ2

2 h

)
+ σ

√
hZ + 1

2σ2hZ2

= µh + σ
√

hZ +
(1

2σ2hZ2 − 1
2σ2h

)
= µh + σ

√
hZ + 1

2σ2h
(
Z2 − 1

)
.

Analyzing what we have above, we can conclude that the first term of the right

hand side is deterministic, meanwhile the second term has zero mean and variance

σ2h. The third term instead can be considered negligible since its mean is zero

and its variance is of smaller order with respect to the other terms. So

Λ(t, h) ≈ µh + σ
√

hZ ,

that is

Λ(t, h) ∼ N (µh, σ2h) .

From now on we use dt instead of h to denote a small increment in time, dS(t)

to represent the increase in stock price over the brief interval from t to t + dt, and

dZ for a normal variable with mean 0 and variance dt, independent of prior events.

Within this framework, we have

dS(t)
S(t) = Λ(t, dt) = µdt + σdZ ,

which we may write as
dS

S
= µdt + σdZ ,

that is

dS = µSdt + σSdZ . (2.1)
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This whole model, in the economic literature, is also referred to as the geo-

metric Brownian motion, a milestone in the quantitative finance field. It forms

the mathematical underpinning for the Black-Scholes option pricing model and has

widespread applications in risk management and financial derivatives pricing. The

strength of this model lies in its ability to capture the continuous-time stochastic

behavior of stock prices, reflecting the unpredictability of markets and the com-

pounded effect of small, random fluctuations over time. Despite its simplicity,

the geometric Brownian model provides a surprisingly accurate description of real

market behavior for certain types of assets and under certain market conditions.

2.2 Risk Neutrality and No-Arbitrage Principle

2.2.1 No-Arbitrage Principle

Before going in deep in the next section where we explain the Black-Scholes

model, we have to clarify two concept, no-arbitrage principle and risk neutrality.

The no-arbitrage principle asserts there should be no way to make a risk-free profit

with zero net investment. It serves as a critical regulatory mechanism within finan-

cial markets, ensuring that asset prices remain fair and representative of underlying

economic realities. When this principle is violated, arbitrage opportunities arise,

allowing traders to make profits without exposure to risk by exploiting pricing in-

efficiencies across different markets. Practically it dictates that all current market

prices must be aligned in a way that no combination of positions can lead to an

arbitrage opportunity.

Definition 2.2. The no-arbitrage condition can be expressed using the concept of

a self-financing portfolio1. Consider two assets, A and B, priced at pA(t) and pB(t)
1In financial mathematics, a self-financing portfolio is a portfolio having the feature that, if
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at time t. Let us suppose that the portfolio V (t) starts with no initial investment

at time t and holds s units of A and b units of B, then

V (t) = spA(t) + bpB(t)

Following the no-arbitrage principle, the value change of the portfolio over time is

describes as

dV (t) = sdpA(t) + bdpB(t) = 0

Any gains in one part of the portfolio are offset by losses in another, maintaining

a zero net investment status throughout the portfolio’s existence. In other words,

if the initial value of an admissible portfolio is zero, V (0) = 0, then V (1) = 0 with

probability one.

The no-arbitrage principle can also be represented in terms of stochastic pro-

cesses. Let us consider a financial market that follows a set of price processes

P1, P2, P3, ..., Pn. The market satisfies the no-arbitrage condition if there are no

investment strategies θ1, θ2, θ3, ..., θn such that
n∑

i=1
θndPi > 0,

with probability 1.

2.2.2 Risk Neutrality

Risk neutrality is a theoretical concept in financial mathematics that assumes

investors are indifferent to risk, simplifying the modeling and valuation of financial

instruments, providing a standardized approach for valuation. In a risk-neutral

world, the expected return from any investment is adjusted to match the risk-free

rate r. Risk neutrality is expressed by setting the expected utility of a portfolio’s

there is no exogenous infusion or withdrawal of money, the purchase of a new asset must be

financed by the sale of an old one
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return equal to the utility of its expected return. Denoting U as our utility function

and R as our portfolio’s return, under risk-neutrality we have

E[U(R)] = U(E[R])

allowing to use the expected return E[R] directly in the calculation, permitting

to focus only on the expected future cash flows from the investment discounted

at the risk-free rate, aligning with the no-arbitrage principle, ensuring that the

investment does not offer risk-free profit opportunities.

2.3 The Black-Scholes Model

Let us consider a stock whose price S(t) for t ≥ 0 follows a geometric Brownian

motion with expected rate of return µ and volatility σ. If we have at derivative

that has a payoff f(S(T )) a time T , with f(x) being a function defined for x > 0,

how can we price this derivative? Let us also assume that S(0) is a known quantity

and that the interest rate r is constant and compounded. A plausible approach

to price this derivative is to use the present value of the expected future payout a

time T , that is

e−rTE[f(S(T ))] . (2.2)

However this method is based on the expected present value in (2.2) that di-

verges from the no-arbitrage pricing. In continuous time as in discrete time, this

no-arbitrage pricing aligns with the expected present value under a risk-neutral

probability measure, assuming that the expected return rate of the stock is not

its actual rate, but instead the risk-free rate r, ensuring that the expected growth

rate of the stock mirrors that of a risk-free investment. As we refine the discrete

model to increasingly smaller time increments, it approximates the continuous
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model closely enough. So we can change the (2.2) to be suitable

e−rT Ẽ[f(S(T ))] ,

where the expected value Ẽ[·] is the expectation with respect to the risk-neutral

probability measure.

The expected payoff e−rT Ẽ[f(S(T ))], can be computed as we saw earlier, getting

log S(T )
S(0) ∼ N

((
µ − σ2

2

)
T, σ2T

)
,

while, in the risk-neutral model we replace µ with r, that is

log S(T )
S(0) ∼ N ((r − σ2

2 )T, σ2T ) .

Denoting Z as a standard normal random variable and S for S(0) we have:

log S(T )
S

= (r − σ2

2 )T + σ
√

TZ ,

so that

S(T ) = S exp
((

r − σ2

2

)
T + σ

√
TZ

)
.

Hence

Ẽ[f(S(T ))] =
∫ ∞

−∞
f

(
S exp

((
r − σ2

2

)
T + σ

√
Tx

))
ϕ(x) dx , 2

where ϕ(x) = 1√
2π

e− x2
2 is the standard normal probability density function.

From the risk-neutral model, we move to the Black-Scholes model, marking a

milestone of modern finance. The Black-Scholes model is revolutionary for using

the concept of risk neutrality to determine a correct price for European options.

This method minimize the uncertainty associated with asset return expectations
2Since we’re in a continuous space for calculating the expected value we need to use the

formula E[g(X)] =
∫∞

−∞ g(t)fx(t) dt.
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by substituting them with the risk-free interest rate, allowing for the valuation of

options without considering the investors risk preferences.

This shift to risk-neutral probabilities is made possible by moving from a model

that assumes an expected return rate µ to one that employs the risk-free interest

rate r. In the Black-Scholes model, the price of a European put option with strike

price K and maturity T is calculated as the present value of the expected payoff

under the risk-neutral measure.

To connect these concepts, we might say that risk neutrality in option valuation

moves away from investors subjective expectations and is based instead on the

premise of a world where the asset’s return rate is replaced by the risk-free interest

rate.

2.3.1 Black-Scholes Formula for a Put Option

Let us start to analyze the Black-Scholes formula for a put option. Suppose

that the stock price process {S(t)}t≥0 follows a geometric Brownian motion with

expected rate of return µ and volatility σ. To study the put option we define the

function f as

f(x) = (K − x)+ . (2.3)

Defining S = S(0), we want to compute

e−rtẼ[f(S(T ))] .

We have

Ẽ[f(S(T ))] =
∫ ∞

−∞
f

(
S exp

((
r − σ2

2

)
T + σ

√
Tx

))
ϕ(x) dx =

=
∫ ∞

−∞
f

(
S exp

((
r − σ2

2

)
T + σ

√
Tx

))
e− x2

2
√

2π
dx .

(2.4)

Let us define y0 as the value for which

Se(r− σ2
2 )T +σ

√
T y0) = K .
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So

f(S(T )) = (K − S(T ))+ = K − Se(r− σ2
2 )T +σ

√
T y0) = 0 .

Let us now compute the value of y0

K

S
= e(r− σ2

2 )T +σ
√

T y0

log
(

K

S

)
=
(

r − σ2

2

)
T + σ

√
Ty0

σ
√

Ty0 = log
(

K

S

)
−
(

r − σ2

2

)
T

that implies

y0 =
log

(
K
S

)
−
(
r − σ2

2

)
T

σ
√

T
.

Since

f

(
S exp

((
r − σ2

2

)
T + σ

√
Tx

))
= 0 ∀ x ≥ y0

to compute Ẽ[f(S(T ))] we can restrict the integral in (2.4) to the interval (−∞, y0)

Ẽ[f(S(T ))] =
∫ y0

−∞

(
K − S exp

((
r − σ2

2

)
T + σ

√
Tx

))
e− x2

2
√

2π
dx =

=
∫ y0

−∞
K

e− x2
2

√
2π

dx − S
∫ y0

−∞
exp

((
r − σ2

2

)
T + σ

√
Tx

)
e− x2

2
√

2π
dx =

= K
∫ y0

−∞

e− x2
2

√
2π

dx − SerT

√
2π

∫ y0

−∞
e− σ2

2 T eσ
√

T x e− x2
2

√
2π

dx .

The term
∫ y0

−∞
e− x2

2√
2π

dx represents the cumulative distribution function of the stan-

dard normal distribution, evaluated at y0.3 Therefore this term can be written as
3The probability density function for a standard normal random variable Z is

fZ(z) = 1√
2π

exp
(

−z2

2

)
.

Integrating fZ(z) from −∞ to y0, we get Φ(y0), where Φ is the cumulative distribution function.
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KΦ(y0). So we have

Ẽ[f(S(T ))] = KΦ(y0) − SerT

√
2π

∫ y0

−∞
e− σ2

2 T eσ
√

T xe− x2
2 dx =

= KΦ(y0) − SerT

√
2π

∫ y0

−∞
e

((
σ

√
T√
2

)2
+σ

√
T x−

(
x√
2

)2
)

dx ,

that is

Ẽ[f(S(T ))] = KΦ(y0) − SerT
∫ y0

−∞

1√
2πe

(
−(x−σ

√
T )2

2

)
dx . (2.5)

Let us set y1 = y0 − σ
√

T . Such a choice will be justified by a change of variable

that we will do inside the integral to get the integral of the density function of a

standard normal random variable. Hence we have

y1 =
log

(
K
S

)
−
(
r − σ2

2

)
T

σ
√

T
− σ

√
T

=
log

(
K
S

)
−
(
r − σ2

2

)
T −

(
σ

√
T
) (

σ
√

T
)

σ
√

T

=
log

(
K
S

)
−
(
r − σ2

2

)
T −

(
σ2

√
T
)

σ
√

T

=
log

(
K
S

)
− rT + T σ2

2 − σ2T

σ
√

T

=
log

(
K
S

)
−
(
r − σ2

2 + σ2
)

T

σ
√

T

=
log

(
K
S

)
−
(
r + σ2

2

)
T

σ
√

T
.

Now we can solve the equation (2.5). We will solve the integral by substitution

method. Let us impose

s = x − σ
√

T

dx = ds

y1 = y0 − σ
√

T .
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We have

Ẽ[f(S(T ))] = Kϕ(y0) − SerT
∫ y1

−∞

e− s2
2

√
2π

ds

It is easy to notice that
∫ y1

−∞
e− s2

2√
2π

= Φ(y1) and hence

Ẽ[f(S(T ))] = KΦ(y0) − SerT Φ(y1) .

Knowing that the price of the put option is given by

P = e−rT Ẽ[f(S(T ))] ,

we have

P = Ke−rT Φ(y0) − Se−rT erT Φ(y1)

= Ke−rT Φ(y0) − SΦ(y1) .

The last expression is the Black-Scholes formula for the no-arbitrage price

of the European put option.

2.3.2 Black-Scholes Formula for a Call Option

Building on our understanding of the Black-Scholes formula for a European Put

option, we can derive the formula for a European Call option using the principle

of put-call parity. Put-call parity establishes a relationship between the price of

a call option, denoted by C, and the price of a put option, denoted by P , on the

same underlying asset with the same strike price K and the same expiration time

T . According to put-call parity, we have

C = P + S − Ke−rT ,

where:
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• S = S(0) is the stock price at time zero;

• C is the price of the call option;

• P is the price of the put option.

The Black-Scholes formula for the price of a European Put option, previously

derived, is

P = Ke−rT Φ(y0) − SΦ(y1) .

Substituting P into the put-call parity formula, we get

C = (Ke−rT Φ(y0) − SΦ(y1)) + S − Ke−rT .

This can be simplified further to

C = S(1 − Φ(y1)) − Ke−rT (1 − Φ(y0)) .

Using the symmetry property of the normal distribution, where Φ(−y) = 1 −

Φ(y), and setting

x1 = −y1 =

(
r + σ2

2

)
T − log

(
K
S

)
σ

√
T

(2.6)

and

x0 = −y0 = x1 − σ
√

T , (2.7)

we can write

C = SΦ(x1) − Ke−rT Φ(x0) . (2.8)

This brings us to the Black-Scholes formula for a European Call option. The

formula reflects the call price based on the risk-neutral principle, where the ex-

pected return rate of the underlying is replaced by the risk-free interest rate r.

It is worth noting that this formula for C is also valid for American Call options

because it is never optimal to exercise such options early when the underlying pays

no dividends. However, for American Put options, the Black-Scholes formula for
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P no longer holds as it might sometimes be optimal to exercise the American Put

early. In summary, we have connected the concepts of risk neutrality and put-call

parity to derive the Black-Scholes formula for both Put and Call options, high-

lighting the elegance and power of the Black-Scholes model in valuing European

options.

2.3.3 Stochastic Ito Calculus

To get an idea of the fact that the equivalence between no-arbitrage and risk-

neutral arbitrage pricing remains valid in continuous time, let us consider the

Taylor Expansion for a twice continuously differentiable function f(x). We have

f(x) = f(x0) + f ′(x0) ∗ (x − x0) + f ′′(x0)
2 (x − x0)2 + o((x − x0)2) ,

with

lim
x→x0

o((x − x0))
(x − x0)2 .

So, for any x the first-order Taylor expansion is

f(x + δx) = f(x) + df(x)
dx

δx + O((δx)2) .

Then if we want to have a more precise measurement we can use the second order

Taylor expansion

f(x + δx) = f(x) + df(x)
dx

(x + δx − x) + d2f(x)
2dx2 (x + δx − x)2 + o((x + δx − x)2)

= f(x) + df(x)
dx

δx + 1
2

d2f(x)
dx2 (δx)2 + o((δx)2) .

Let us define f(t, s) as a function that is twice continuously differentiable in t

and s. Here, t represents time and s represents stock price. This process helps in

examining how changes in one variable affects the function while the other variable
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remains unchanged

f(t + δt, s + δs) =f(t, s) + ∂f(t, s)
∂t

δt + ∂f(t, s)
∂s

δs

+ 1
2

∂2f(t, s)
∂t2 (δt)2 + 1

2
∂2f(t, s)

∂s2 (δs)2

+ ∂2f(t, s)
∂t∂s

δtδs + o((δt)2) + o((δs)2) =

= f(t, s) + ∂f(t, s)
∂t

δt + ∂f(t, s)
∂s

δs

+ 1
2

∂2f(t, s)
∂s2 (δs)2 + o((δt)) + o((δs)2)

If δt and δs are sufficiently small, we can ignore terms of order higher than δt and

(δs)2, then

f(t + δt, s + δs) ≈ f(t, s) + ∂f(t, s)
∂t

δt + ∂f(t, s)
∂s

δs + 1
2

∂2f(t, s)
∂s2 (δs)2.

f(t + δt, s + δs) − f(t, s) ≈ ∂f(t, s)
∂t

δt + ∂f(t, s)
∂s

δs + 1
2

∂2f(t, s)
∂s2 (δs)2.

Now let us consider a function f(t, St) of two variables, where St = S(t) is

a geometric Brownian motion with expected rate return µ and volatility σ. We

want to study how this function change over a short period of time interval, such

as from t to t + h, where t is time. We will use the previous formula with s = St,

writing h for δt and δSt for St+h − St, so

f(t + h, St+h) − f(t, St) ≈ ∂f(t, s)
∂t

h + ∂f(t, s)
∂s

δSt + 1
2

∂2f(t, s)
∂s2 (δSt)2. (2.9)

All the partial derivatives are evaluated at (t, s) = (t, St). Let us set dt = h and

dSt = St+dt − St and using (2.1) equation we have:

dSt

St

= µdt + σdZ(
dSt

St

)2

= µ2(dt)2 + 2σµdtdZ + σ2Z2dt =

= σ2Z2dt ,
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where Z ∼ N (0, 1) and we have ignored terms of order higher than dt. Since

E[Z2] = V ar(Z) + E[Z]2 = 1 + 0 = 1, we have

E

(dSt

St

)2
 = σ2dtE[Z2] = σ2dt .

Recall that, since Z ∼ N (0, 1), then Z2 ∼ χ2
1 and hence V ar(Z2) = 2. So

V ar

(dSt

St

)2
 = (σ2dt)2V ar(Z2)

= 2σ4(dt)2 .

Since variance of
(

dSt

St

)2
is of higher order than dt, for dt very small we can ap-

proximate such a variance to zero. Consequently, we can write approximate the

random variable
(

dSt

St

)2
with its expectation, that is

(
dSt

St

)2

≈ E

(dSt

St

)2
 = σ2dt

(
dSt

St

)2

≈ σ2dt

(dSt)2 ≈ S2
t σ2dt .

Putting this last equation with (2.9) and also substituting δSt = dSt = St+h − St

we have

f(t + h, St+h) − f(t, St) ≈ ∂f(t, s)(St+h − St)
∂s

+
(

∂f(t, s)
∂t

+ 1
2S2

t σ2 ∂2f(t, s)
∂s2

)
h ,

with all the partial derivatives centered in (t, s) = (t, St).

We can write the same differential equation in term of infinitesimal notation, sub-

stituting df(t, St) for f(t + h, St+h) − f(t, St)

df(t, St) = ∂f(t, St)
∂s

dSt +
(

∂f(t, St)
∂t

+ 1
2S2

t σ2 ∂2f(t, St)
∂s2

)
dt . (2.10)

Thus deriving Ito’s formula when {St}t≥0 follows a geometric Brownian motion.
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2.3.4 The Black-Scholes Differential Equation

Theorem 2.3.1. Consider a derivative with payoff F (ST ) at time T, where the

stock price {St}t≥0 follows a geometric Brownian motion, with expected rate of

return µ and volatility σ. Let us suppose the other possible investments, beside

stocks, is a risk-free deposit account with interest rate r compounded continuously.

For s > 0 and 0 ≤ t ≤ T , define f(t, s) the no arbitrage price of the derivative at

time t if s = St. Then f(t, s) is given by the unique solution in [0, T ] × (0, +∞)

to the Black-Scholes differential equation

∂f(t, s)
∂t

+ 1
2σ2s2 ∂2f(t, s)

∂s2 + rs
∂f(t, s)

∂s
= rf(t, s) , (2.11)

with the boundary condition f(T, s) = F (s) for all s > 0 .

Proof. Assume that there is a unique solution f for this differential equation, for

some (t, s), with s = St. Let us consider a portfolio at time t consisting of

• ∆ units of the stock, where ∆ = ∂f(t,s)
∂s

;

• f(t, s) − ∆s is the amount of cash invested in a risk-free deposit.

If ∆ < 0 we are basically in a short position, if f(t, s)−∆s < 0 it can be interpreted

in term of borrowing money.

Let Wt be the current value of the portfolio at time t, meaning that Wt = f(t, s),

we want to study what happen for an infinitesimal increment from time t to t + h.

It is easy to understand that the stock portion of the portfolio grows by a factor(
dSt

St

)
, setting dSt = St+h − St, while the part invested in risk-free deposit grows

by a factor rh.

Imposing that dWt = Wt+h − Wt, we have

dWt = ∆(St+h − St) + r[f(t, s) − s∆]h . (2.12)
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Knowing that

dWt = Wt+h − Wt

= f(t + h, St+h)

Using Ito’s differential equation (2.10), we have

f(t + h, St+h) ≈ ∂f(t, St)
∂s

(St+h − St) +
(

∂f(t, St)
∂t

+ 1
2S2

t σ2 ∂2f(t, St)
∂s2

)
h

that implies

f(t + h, St+h)
h

≈ ∂f(t, St)
∂s

St+h − St

h
+ ∂f(t, St)

∂t
+ 1

2S2
t σ2 ∂2f(t, St)

∂s2 .

From this differential equation it is easily noticeable that the first member f(t+h,St+h)
h

is df(t,St)
dt

and (St+h − St) is dSt. Setting again dt = h we have

df(t, St)
dt

= ∂f(t, St)
∂s

dSt

dt
+ ∂f(t, St)

∂t
+ 1

2S2
t σ2 ∂2f(t, St)

∂s2

that implies

df(t, St) = ∂f(t, St)
∂s

dSt +
(

∂f(t, St)
∂t

+ 1
2S2

t σ2 ∂2f(t, St)
∂s2

)
dt .

Remembering that Wt = f(t, s) and St = s, we can affirm dWt = df(t, St). Sub-

stituting this last differential equation in (2.12) we get

∂f(t, St)
∂s

dSt +
(

∂f(t, St)
∂t

+ 1
2s2σ2 ∂2f(t, St)

∂s2

)
dt = ∆(St+h − St) + r[f(t, St) − St∆]h

∂f(t, St)
∂s

dSt +
(

∂f(t, St)
∂t

+ 1
2s2σ2 ∂2f(t, St)

∂s2

)
dt = ∂f(t, St)

∂s
dSt + r[f(t, St) − St∆]h

∂f(t, St)
∂t

+ 1
2s2σ2 ∂2f(t, St)

∂s2 = rf(t, St) − rSt
∂f(t, St)

∂s
∂f(t, St)

∂t
+ 1

2s2σ2 ∂2f(t, St)
∂s2 + rSt

∂f(t, St)
∂s

= rf(t, St)
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2.3.5 Justification of Risk-Neutrality

Let us deduce that the value of the derivative at time 0, f(0, S0) is given by

the expected discounted payoff under the risk-neutral model.

We consider also a risk-neutral geometric Brownian motion S̃t = S̃(t) with ex-

pected rate return the risk-free r and volatility σ. Suppose we know S̃t = s.

Imposing that the payoff is F (ST ) and S̃t is a log normal process with infinitesi-

mal drift r and volatility σ. For t ≤ T and s > 0, let f(t, s) be a solution to the

Black-Scholes differential equation with f(T, s) = F (s). By the Ito formula (2.10),

we have

df(t, S̃t) =
(

∂f

∂t
+ 1

2σ2S̃2
t

∂2f

∂s2

)
dt + ∂f

∂s
dS̃t .

with all partial derivatives evaluated at (t, s) = (t, S̃t). Note that

dSt

St

= µdt + σdZ

dS̃t

S̃t

= rdt + σdZ

dS̃t = S̃trdt + σdZS̃t .

Using the Ito’s formula we get

df(t, S̃t) = ∂f

∂t
dt + 1

2σ2S̃2
t

∂2f

∂s2 dt + ∂f

∂s
dS̃t

df(t, S̃t) = ∂f

∂t
dt + 1

2σ2S̃2
t

∂2f

∂s2 dt + ∂f

∂s

(
S̃trdt + S̃tσdZ

)
df(t, S̃t) = ∂f

∂t
dt + 1

2σ2S̃2
t

∂2f

∂s2 dt + ∂f

∂s
S̃trdt + ∂f

∂s
σS̃tdZ

df(t, S̃t) =
(

∂f

∂t
+ 1

2σ2S̃2
t

∂2f

∂s2 + ∂f

∂s
S̃tr

)
dt + ∂f

∂s
S̃tσdZ ,

with all the partial derivatives evaluated at (t, s) = (t, S̃t). Let us notice that using

the Black-Scholes differential equation (2.11),(
∂f

∂t
+ 1

2σ2S̃2
t

∂2f

∂s2 + ∂f

∂s
S̃tr

)
= rf(t, S̃t) .
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Substituting it in the previous differential equation we have

df(t, S̃t) = rf(t, S̃t)dt + ∂f

∂s
S̃tσdZ .

Let us apply the expected value to both the members of this equation knowing

that E[dZ] = 0. Denoting by g(t) = E[f(t, S̃t)] we get

dg(t) = rg(t)dt .

The function g(t) = g(0)ert is the solution to the ordinary differential equation
dg(t)

dt
= rg(t). To verify that this function is indeed the solution, we differentiate

g(t) with respect to time t

d

dt
g(t) = d

dt

(
g(0)ert

)
Applying the rule for differentiating exponential functions, we obtain

d

dt
g(t) = g(0)rert

Since g(t) = g(0)ert, we can rewrite the above expression as

d

dt
g(t) = rg(t) .

This matches exactly the right side of the original differential equation, confirming

that g(t) = g(0)ert is indeed the solution to the differential equation dg(t)
dt

= rg(t).

In mathematical terms, the equation dg(t)
dt

= rg(t) describes a process with an

exponential growth, being the rate r positive.

Now assume that the stock price is S̃0 and is a known non-random value. Then

g(0) = E[f(0, S̃0)] = f(0, S̃0) .

So

f(0, S̃0) = g(0) = e−rT g(T ) = e−rTE[f(0, S̃T )] = e−rTE[F (S̃T )] ,

deriving the expected discounted payout under risk-neutrality.
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Chapter 3

Greeks

Understanding the Greeks is indispensable for effective risk management and

strategic trading. The Greeks Delta, Gamma, Vega, along with Theta and Rho,

provide crucial insights into the sensitivity of options prices to various market

factors. This chapter delves deeply into Delta, Gamma, and Vega, with a detailed

explanation of each metric, strategies for their practical application, and their

interrelationships.

Let us consider a portfolio of financial derivatives that depends just on a single

underlying asset that follows a geometric Brownian motion. Let us also assume

that the returns r and the volatility σ are constant, the portfolio value is

f = f(t, S),

as a function depending on time and stock price S = S(t), we can define the

following key sensitivities, often called the Greeks:

• Delta ∆: Represents the rate of change of the portfolio’s value with respect

to changes in the underlying asset price.

∆ = ∂f

∂S
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• Gamma Γ: Measures the rate of change in Delta with respect to changes in

the underlying asset price, offering insight into the curvature of the portfolio’s

value relative to the stock price

Γ = ∂2f

∂S2

• Vega V : Shows the sensitivity of the portfolio’s value to changes in volatility

of the underlying asset

V = ∂f

∂σ

• Theta Θ: Indicates the rate of change of the portfolio’s value with respect

to the passage of time

Θ = ∂f

∂T

• Rho ρ: Indicates the rate of change of the portfolio’s value with respect to

changes in the risk-free interest rate

ρ = ∂f

∂r

These derivatives provide the foundational understanding of how small changes

in each variable affect the portfolio’s value, assuming all other variables are held

constant. Using a Taylor expansion, the change in the portfolio’s value for small

movements in time, stock price can be approximated as:

δf ≈ f(t + δt, S + δS) − f(t, S) =

= Θδt + ∆δS + 1
2Γ(δS)2 .

Furthermore, we can not assume that in a real world scenario volatility σ is con-

stant, in this case, the value of our portfolio is

f = f(t, S, σ)
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a function depending also on the stock price volatility σ. In this case, we have a

more general Taylor expansion for the value of our portfolio such as

δf ≈ f(t + δt, S + δS, σ + δσ) − f(t, S, σ) =

= Θδt + ∆δS + V δσ + 1
2Γ(δS)2 .

This expansion provides a versatile framework for anticipating changes in the port-

folio under different market conditions, especially when the volatility σ is not con-

stant, emphasizing the dynamic nature of financial markets.

3.1 Delta ∆

Delta (∆) measures the rate of change in the price of an option relative to a

one-unit change in the price of the underlying asset. It is mathematically defined

as or

∆ = ∂f(t, S, σ)
∂S

where f(t, S, σ) represents the option price as a function of time t, stock price S,

and volatility σ. Specifically:

• ∆ represents a measure of risk associated with changes in the price of the

underlying asset.

• if ∆ > 0, an increase in the price of the underlying asset will typically lead

to a corresponding increase in the price of the option.

• if ∆ < 0, an increase in the price of the underlying asset usually results in a

decrease in the price of the option;

• ∆ of a European call option ranges from 0 to +1. This means the option’s

price moves in the same direction as the price of the underlying asset;
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• ∆ of a European put option ranges from 0 to -1, indicating that the option’s

price moves inversely relative to the price of the underlying asset;

• ∆ of the underlying asset itself is always 1, as any change in the asset’s price

directly translates into an equivalent change in itself 1.

3.1.1 The Delta ∆ of an European Call Option

Theorem 3.1.1. The delta of a European call option is given by

∆ = Φ(x1) ,

where Φ is the standard normal distribution function and x1 is the value obtained

in (2.6).

Proof. To demonstrate this theorem let us start from the Black-Scholes formula

(2.8) for a call.

Using the Black-Scholes formula, we can calculate the Delta (∆) of a European

call option, which measures how the price of the call option changes with respect

to changes in the underlying stock price.

The price of a European call option can be represented by the Black-Scholes

formula as

C = SΦ(x1) − Ke−rT Φ(x0)

remembering that

• C is the price of the call option,

• S is the current stock price,

• Φ is the cumulative distribution function of the standard normal distribution,
1since ∂S

∂S = 1
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• x1 and x0 are given by:

x0 = log(S/K) + (r − σ2/2)T
σ

√
T

, x1 = x0 + σ
√

T

• K is the strike price,

• r is the risk-free interest rate,

• T is the time to expiration,

• σ is the volatility of the stock.

To find ∆call, the change in the option price with respect to the stock price,

differentiate the Black-Scholes formula with respect to S, so

∆call = ∂C

∂S
(3.1)

= ∂SΦ(x1)
∂S

− ∂Ke−rT Φ(xo)
∂S

(3.2)

Let us start deriving the first member of the equation (3.2) using the chain rule 2

∂SΦ(x1)
∂S

= ∂S

∂S
Φ(x1) + S

∂Φ(x1)
∂S

= Φ(x1) + S
∂Φ(x1)

∂S

= Φ(x1) + S
∂Φ(x1)

∂x1

∂x1

∂S
,

where ∂Φ
∂x1

= ϕ(x1) and

∂x1

∂S
= ∂

∂S

(
log(S/K)

σ
√

T

)
= 1

σ
√

TS
,

2f(x) = g(h(x)) where g and h are differentiable functions, for df
dx we have

df

dx
= dg(h(x))

dh(x)
dh(x)

dx
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hence

S
∂Φ(x1)

∂S
= ϕ(x1)

1
σ

√
T

.

So the first member of the differential equation equals to

∂SΦ(x1)
∂S

= Φ(x1) + ϕ(x1)
σ

√
T

Let us continue with deriving the second member of the equation (3.2)

∂(−Ke−rT Φ(x0))
∂S

= −Ke−rT ∂Φ(x0)
∂S

= −Ke−rT ∂Φ(x0)
∂x0

∂x0

∂S

= −Ke−rT ϕ(x0)
Sσ

√
T

so

∆call = Φ(x1) + ϕ(x1)
σ

√
T

− −Ke−rT ϕ(x0)
Sσ

√
T

= Φ(x1) + Sϕ(x1) − Ke−rtϕ(x0)
Sσ

√
T

.

Let us study Sϕ(x1) − Ke−rtϕ(x0), knowing that

ϕ(x0)
ϕ(x1)

= (2π)− 1
2 exp(−x2

0/2)
(2π)− 1

2 exp(−x2
1/2)

= exp
(

−x2
0

2 + x2
1

2

)
=

= exp((x2
1 − x2

0)/2) = exp((x1 + x0)(x1 − x0)/2)

furthermore

(x1 + x0) = log(S/K)
σ

√
T

+ (r + σ2/2)T
σ

√
T

+ log(S/K)
σ

√
T

+ (r − σ2/2)T
σ

√
T

= 2
(

log(S/K)
σ

√
T

)
+
(

2rT

σ
√

T

)

= 2
(

log(S/K) + rT

σ
√

T

)
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and

(x1 − x0) = σ
√

T

so

(x1 + x0)(x1 − x0) = 2
(

log(S/K) + rT

σ
√

T

)
σ

√
T = 2(log(S/K) + rT )

and

ϕ(x0)
ϕ(x1)

= exp(log(S/K) + rT )

ϕ(x0)
ϕ(x1)

= exp
(

log
(

S

K

))
exp(rT )

ϕ(x0)
ϕ(x1)

= S

K
erT

ϕ(x0) = Sϕ(x1)
1
K

erT

Ke−rT ϕ(x0) = Sϕ(x1).

(3.3)

Remembering that

∆call = Φ(x1) + Sϕ(x1) − Ke−rtϕ(x0)
Sσ

√
T

it is easy to observe that the second member of this equation is equal to 0, so we

have proven that

∆call = Φ(x1)

The Delta for a European call option is primarily determined by Φ(x1), the

probability that the option will finish in-the-money under the log-normal distri-

bution assumption for stock price returns. This captures the sensitivity of the

option’s price to movements in the underlying asset price, incorporating in the

volatility and time to maturity.
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3.1.2 The Delta ∆ of an European Put Option

Deriving the delta ∆ of an European Put Option is a much easier job, let us

start from the put-call parity

P = C + Ke−rT − S

and deriving respectively to S, ∂S we have

∂P

∂S
= ∂C

∂S
+ 0 − 1 = ∆call − 1

so

∆put = Φ(x1) − 1 .

3.1.3 Exploring Delta in Depth

For instance, a Delta of 0.5 suggests that the option’s price will move ap-

proximately $0.50 for every $1 increase in the underlying asset. If an option is

"at-the-money," its Delta will be approximately 0.5, reflecting a 50% chance it will

end up in the money. As the option moves deeper into the money, the Delta ap-

proaches 1, indicating a higher likelihood of price movement in conjunction with

the underlying asset.

3.1.4 Delta-Hedging

Given a derivative with a payoff at maturity ϕ(ST ), whose value over time

is given by the function F (t, St), the hedging strategy involves constructing a

portfolio consisting of the underlying asset and a risk-free asset that replicates

the derivative’s value at all times. This portfolio eliminates the risk by accurately

replicating the derivative.
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Let us construct the replicating portfolio for the derivative, denoted by {F ′
t}t≥0,

composed of uS
t units of the underlying asset and uB

t units of the risk-free asset.

The balance constraint in this case is given by

F ′
t = uS

t St + uB
t ert,

while the dynamics of the replicating portfolio are

dF ′
t = uS

t dSt + ruB
t ertdt.

By setting dF ′
t = dFt, where equating the terms in dWt, we obtain

uS
t = ∂F

∂S
.

The meaning of equation is clear: to hedge the risk of a derivative whose value

at time t is given by F (t, St), one needs to purchase ∂F
∂S

units of the underlying

asset. The quantity ∂F
∂S

is known as the delta, and the described hedging procedure

is referred to as delta hedging.

3.2 Gamma Γ

Gamma (Γ) describes the rate of change of Delta and is a measure of curvature.

Mathematically, it is expressed as

Γ = ∂2f

∂S2

3.2.1 The Gamma Γ of an European Call Option

Theorem 3.2.1. The Gamma of a European call option is given by

Γ = e−x2
1/2

√
2π

1
Sσ

√
T
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Proof. Let us start with the proof, remembering that

Γ = ∂2f

∂S2 = ∂∆
∂S

= ∂Φ(x1)
∂S

Using the fundamental theorem of calculus and the chain rule we have3

∂2f

∂S2 = ∂Φ(x1)
∂x1

∂x1

∂S
= ϕ(x1)

∂x1

∂S
.

Tackling the second term of the equation we have

∂x1

∂S
= ∂

∂S

log(S/K) + (r + σ2/2)T
σ

√
T

= 1
Sσ

√
T

and so

Γcall = ϕ(x1)
1

Sσ
√

T
= e−x2

1/2
√

2π

1
Sσ

√
T

.

3.2.2 The Gamma Γ of an European Put Option

Similarly to the Delta, the Gamma of a put option is

Γput = ∂

∂S
∆put = ∂

∂S
(∆call − 1) = Γcall.

This measure is particularly important for assessing the stability of Delta. A high

Gamma indicates that Delta is very sensitive to changes in the underlying price,

which can lead to larger-than-expected changes in the option’s price, necessitating

more frequent rebalancing of a Delta-hedged portfolio.

3.2.3 The Implications of Gamma in Trading

High Gamma can be advantageous when expecting significant price movements

as it allows for quicker adjustments to the hedge. However, it also implies higher
3Notice that ∂Φ(x1)

∂x1
= ϕ(x1) = 1√

2π
e−x2

1/2.
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risk as the price of the option is more sensitive to changes in the underlying asset.

For traders, managing Gamma effectively is crucial, especially near the expiry of

options where Gamma tends to increase significantly.

3.3 Vega V

Vega (V) quantifies an option’s price sensitivity to changes in the volatility of

the underlying asset. It is represented as:

V = ∂f

∂σ

Vega indicates the dollar change in an option’s price for a 1% change in implied

volatility. It is the highest for at-the-money options and decreases as the option

becomes either deeply in-the-money or out-of-the-money.

3.3.1 The Vega V of an European Call Option

Theorem 3.3.1. The Vega of a European call option is given by

V = Sϕ(x1)
√

T

Proof. Let us start again from the Black-Scholes formula for a call

C = SΦ(x1) − Ke−rT Φ(x0)

as we said, Vega is the partial derivative of the function f , in this case C with

respect to σ, so

V = ∂C

∂σ

= S
∂Φ(x1)
∂(x1)

∂(x1)
∂σ

− Ke−rT ∂Φ(x0)
∂(x0)

∂(x0)
∂σ

= Sϕ(x1)
∂(x1)

∂σ
− Ke−rT ϕ(x0)

∂x0

∂σ
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Recall (3.3), that is

Ke−rT ϕ(x0) = Sϕ(x1) .

We have

V = Sϕ(x1)
(

∂x1

∂σ
− ∂x0

∂σ

)

Let us study the two derivative

∂x1

∂σ
= − log(S/K) + rT

σ2
√

T
+

√
T

2

and
∂x0

∂σ
= − log(S/K) + rT

σ2
√

T
−

√
T

2
hence(

∂x1

∂σ
− ∂x0

∂σ

)
= − log(S/K) + rT

σ2
√

T
+

√
T

2 + log(S/K) + rT

σ2
√

T
+

√
T

2 =
√

T

so that

Vcall = Sϕ(x1)
√

T .

3.3.2 The Vega V of an European Call Option

Theorem 3.3.2. The Vega of a European put option is

Vput = Vcall

Proof. To demonstrate this theorem, we use again the Put-Call Parity P = C +

Ke−rT − S, so
∂P

∂σ
= ∂C

∂σ
+ Ke−rT

∂σ
− ∂S

∂σ

since Ke−rT − S does not depend on σ, their partial derivative with respect to σ

is zero.
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So

Vput = Vcall

3.3.3 Vega and Volatility Trading

Vega is crucial for traders who speculate on future volatility. For example, if

a trader expects an increase in volatility, they might purchase options with high

Vega to profit from the expected increase in option premiums. Conversely, selling

options with high Vega can be beneficial if the volatility is expected to decrease.

3.4 Theta Θ

Theta (Θ) measures the rate of change of the option price with respect to time.

It is a measure of the time decay of the option’s value. In symbols, it is expressed

as

Θ = ∂f

∂T
.

3.4.1 The Theta Θ of a European Call Option

Theorem 3.4.1. The Theta of an European call option is given by

Θcall = Sϕ(x1)σ
1

2
√

T
+ Kre−rT Φ(x0) .

Proof. Let us start from the Black-Scholes formula for a call option

C = SΦ(x1) − Ke−rT Φ(x0).

As we said, Theta is the partial derivative of the function C with respect to T , so

Θcall = ∂C

∂T

= ∂

∂T

(
SΦ(x1) − Ke−rT Φ(x0)

)
.
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We differentiate each term separately. Starting with the first term
∂

∂T
(SΦ(x1)) = S

∂Φ(x1)
∂x1

∂x1

∂T

= Sϕ(x1)
∂

∂T

(
log(S/K) + (r + σ2/2)T

σ
√

T

)

= Sϕ(x1)
(

T (2r + σ2/2) − 2 log(S/K)
2σT 3/2

)
.

For the second term
∂

∂T

(
Ke−rT Φ(x0)

)
= −Kre−rT Φ(x0) + Ke−rT ∂Φ(x0)

∂x0

∂x0

∂T
=

= −Kre−rT Φ(x0) + Ke−rT ϕ(x0)
∂x0

∂T
=

= −Kre−rT Φ(x0) + Ke−rT ϕ(x0)
(

T (2r − σ2/2) − 2 log(S/K)
2σT 3/2

)
Combining these results, we get

Θcall = Sϕ(x1)
(

T (2r + σ2/2) − 2 log(S/K)
2σT 3/2

)
+ Kre−rT Φ(x0)+

−Ke−rT ϕ(x0)
(

T (2r − σ2/2) − 2 log(S/K)
2σT 3/2

)
Using (3.3) we get

Θcall = Sϕ(x1)
(

T (2r + σ2/2) − 2 log(S/K)
2σT 3/2

)
+ Kre−rT Φ(x0)+

− Sϕ(x1)
(

T (2r − σ2/2) − 2 log(S/K)
2σT 3/2

)
= Sϕ(x1)σ

1
2
√

T
+ Kre−rT Φ(x0) .

Hence the final expression for the Theta of a European call option

Θcall = Sϕ(x1)σ
1

2
√

T
+ Kre−rT Φ(x0) .

3.4.2 The Theta Θ of an European Put Option

Theorem 3.4.2. The Theta of an European put option is given by

Θput = Sϕ(x1)σ
1

2
√

T
+ Kre−rT (Φ(x0) − 1) .
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Proof. Let us start from the Put-Call parity

P = C + Ke−rT − S

As we said, Theta is the partial derivative of the function P with respect to T , so

Θput = ∂P

∂T

= ∂C

∂T
+ ∂Ke−rT

∂T
+ 0

= Sϕ(x1)σ
1

2
√

T
+ Kre−rT Φ(x0) − Kre−rT .

3.5 Rho ρ

Rho (ρ) measures the rate of change of the option price with respect to changes

in the risk-free interest rate. It reflects the sensitivity of the option’s value to the

interest rate. In symbols, it is expressed as

ρ = ∂f

∂r

3.5.1 The Rho ρ of an European Call Option

Theorem 3.5.1. The Rho of an European call option is given by

ρcall = KTe−rT Φ(x0)

Proof. Let us start from the Black-Scholes formula for a call option

C = SΦ(x1) − Ke−rT Φ(x0)

As we said, Rho is the partial derivative of the function C with respect to r, so

ρcall = ∂C

∂r

= ∂

∂r

(
SΦ(x1) − Ke−rT Φ(x0)

)

55



We differentiate each term separately. Starting with the first term

∂

∂r
(SΦ(x1)) = S

∂Φ(x1)
∂x1

∂x1

∂r

Knowing that

∂x1

∂r
= ∂

∂r

(
log(S/K) + (r + σ2/2)T

σ
√

T

)
= T

σ
√

T
=

√
T

σ

we have
∂

∂r
(SΦ(x1)) = Sϕ(x1)

√
T

σ

For the second term

∂

∂r
(Ke−rT Φ(x0)) = −TKe−rT Φ(x0) + Ke−rt ∂Φ(x0)

∂x0

∂x0

∂r

= −KTe−rT Φ(x0) + Ke−rT ϕ(x0)
∂x0

∂r

= Ke−rT

(
−TΦ(x0) + ϕ(x0)

∂x0

∂r

)
.

Knowing that
∂x0

∂r
=

√
T

σ
,

we have
∂

∂r
(Ke−rT Φ(x0)) = Ke−rT

(
−TΦ(x0) + ϕ(x0)

√
T

σ

)
.

Combining these results, we get

ρcall = KTe−rT Φ(x0) .

3.5.2 The Rho ρ of an European Put Option

Theorem 3.5.2. The Rho of an European put option is given by

ρput = Ke−rT T (Φ(x0) − 1)
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Proof. Let us start from the Put-Call Parity formula

P = C + Ke−rT − S.

As we said, Rho is the partial derivative of the function P with respect to r, so

ρput = ∂P

∂r
= ∂C

∂r
+ ∂

∂r
(Ke−rT ) − 0

= Ke−rT TΦ(x0) − Ke−rT T

= Ke−rT T (Φ(x0) − 1).

3.6 Use of Delta, Gamma and Vega

Understanding the interplay between Delta, Gamma, and Vega is essential

for sophisticated options strategies. These Greeks are not static and change as

market conditions fluctuate, requiring continuous adjustments and monitoring by

traders. The management of these risks shapes the strategies employed in options

trading, affecting decisions on when to enter or exit positions based on predictions

of directional moves, volatility shifts, and time decay.

3.6.1 Practical Considerations and Challenges

In real-world applications, the theoretical constructs of the Greeks must be

adjusted for market realities, including transaction costs, bid-ask spreads, and

discrete rebalancing intervals. These factors can affect the efficacy of hedging

strategies and must be carefully considered in the construction and maintenance

of portfolios.

In conclusion, the Greeks serve as the backbone of risk management in the

options market. They provide a robust framework for understanding how vari-
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ous factors impact the pricing of options and how these effects can be mitigated

through strategic trading and hedging practices.

3.6.2 Strategic Considerations for Managing Greeks

Effective management of the Greeks requires not only a deep understanding

of each Greek’s implications but also a valuation for the market context in which

they are applied. The following strategies can enhance the application of Greeks

in managing options portfolios:

• Dynamic rebalancing: Given that the values of Delta, Gamma, and Vega

change with market conditions, dynamic rebalancing is necessary. This in-

volves continuously monitoring the Greeks and adjusting the portfolio to

maintain the desired levels of risk exposure.

• Advanced analytics: Utilizing software tools that can calculate and fore-

cast changes in the Greeks can provide traders with advanced insights into

potential price movements, helping them make more informed decisions.

• Diversification across Greeks: Just as diversification is essential in tra-

ditional portfolios, diversifying the risk exposure among different Greeks can

help in managing the overall risk. Combining positions with varying Deltas,

Gammas, and Vegas can balance the portfolio’s sensitivity to market move-

ments.

• Scenario analysis: Conducting stress tests and scenario analyses to under-

stand how extreme market movements could impact the portfolio based on

its Greek exposures can prepare traders for unexpected market conditions.
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Chapter 4

Pathwise Estimators and

Analytical Methods for Greeks

Calculation

4.1 Pathwise Method

Let α(θ) := E[Y (θ)] represent the price of a specific derivative security when

the parameter value is θ. The derivative of α(θ), denoted as α′(θ), indicates the

sensitivity of the derivative price to changes in θ. For instance, if Y is the dis-

counted payoff of a standard European call option within the Black-Scholes model

and θ = S0, the initial price of the underlying security, then α′(θ) corresponds to

the delta of the option. However, in many cases, an explicit expression for α′(θ) is

not available, necessitating the use of Monte Carlo methods to estimate it using

the pathwise estimator.

The pathwise estimator is obtained by interchanging the order of differentiation
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and integration, leading to

α′(θ) = ∂

∂θ
E[Y (θ)] = E

[
∂Y (θ)

∂θ

]

providing an unbiased estimator of α′(θ). To use this approach, we first need to

clearly define the relationship between Y and θ. This is achieved by assuming a

collection of random variables {Y (θ) : θ ∈ Θ} defined on a single probability space

(Ω, F ,P). For a fixed ω ∈ Ω, Y ′(θ) = ∂Y (θ)
∂θ

= Y ′(θ, ω) represents the derivative of

this random function with respect to θ, keeping ω constant. This is known as the

pathwise derivative of Y at θ, assuming that the pathwise derivative exists with

probability 1, the expectation in the above expression is well-defined.

In the next sections, we will calculate the estimator for the Greeks using the

pathwise method described above. This will involve deriving the sensitivities of

derivative prices with respect to various parameters, including the initial underly-

ing security price S0, volatility σ, time to maturity T , and interest rate r. Each

Greek will be derived and expressed in terms of the pathwise derivatives as out-

lined, keeping in mind that this method is valid for any model of security prices

where St = S0e
Xt for any risk-neutral stochastic process Xt that does not depend

on S0.

4.2 Delta ∆ Estimator

4.2.1 Delta ∆ Estimator for a Call

Let us start from an European call option with strike K and maturity T in the

Black-Scholes framework

Y = e−rt(ST − K)+ , ST = S0e
(r− σ2

2 )T +σ
√

T Z , (4.1)
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where Z ∼ N(0, 1).

Knowing that ∆call = ∂Y
∂S0

we have

∆call = ∂Y

∂S0
= ∂Y

∂ST

∂ST

∂S0
.

Starting deriving from the first factor we get

∂Y

∂ST

= e−rt1{ST >K}

and

∂ST

∂S0
= e(r− σ2

2 )T +σ
√

T Z

= ST

S0
.

Hence, our estimator is

∆call = e−rT1{ST >K}
ST

S0
.

4.2.2 Delta ∆ Estimator for a Put

Let us start from an European put option with strike K and maturity T in the

Black-Scholes framework

Y = e−rt(K − ST )+ , ST = S0e
(r− σ2

2 )T +σ
√

T Z . (4.2)

Knowing that ∆put = ∂Y
∂S0

we have

∆put = ∂Y

∂S0
= ∂Y

∂ST

∂ST

∂S0
.

Starting deriving from the first factor we get

∂Y

∂ST

= −e−rt1{K>ST }
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and

∂ST

∂S0
= e(r− σ2

2 )T +σ
√

T Z

= ST

S0
.

Hence, our estimator is

∆put = −e−rT1{K>ST }
ST

S0
.

4.3 Gamma Γ Estimator

4.3.1 Non-Applicability of Pathwise Method for Gamma Γ

Gamma Γ is the second derivative of the expected value of the option’s payoff

with respect to the initial price of the underlying asset S0

Γ = ∂2

∂S2
0
E[Y ]

where Y represents the discounted payoff of the option. To calculate gamma, we

need to take the second derivative of the expected value of the payoff. Starting

with

Γ = ∂

∂S0

(
∂

∂S0
E[Y ]

)
given Y from

Y = e−rT (ST − K)+ .

First, we compute the first derivative with respect to S0

∂

∂S0
E[Y ] = E

[
∂Y

∂S0

]
,

The above identity is justified only for continuous function since we need to ex-

change the integration and differentiation operators. The first derivative of Y
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is
∂Y

∂S0
= e−rT1{ST >K}

ST

S0

proceeding with the second derivative we have

Γ = ∂

∂S0
E
[
e−rT1{ST >K}

ST

S0

]
.

In this case, interchanging the order of differentiation and expectation create crit-

ical issues. The indicator function 1{ST >K} introduces a discontinuity at ST = K.

This discontinuity poses problems for differentiation, as gamma requires continue

second-order derivatives. The payoff function, involving the max function and

the indicator function, is not continue in each point, meaning that the delta is

not continue enough to allow a second differentiation. The non-continuous nature

of 1{ST >K} prevents proper switch of differentiation and expectation. Thus, an

unbiased pathwise estimator for gamma cannot be obtained.

The pathwise method fails to estimate the gamma of a European call option in

the Black-Scholes framework because the required continuity and differentiability

are disrupted by the discontinuous indicator function in the payoff.

4.3.2 Gamma Γ Estimator Using Finite Difference Meth-

ods

To overcome this limitation, we can use finite difference approximations to esti-

mate the gamma of an option. This method involves approximating the derivatives

by considering the changes in the option price for small perturbations in the un-

derlying asset price.

One approach to estimating α′(θ) (where α(θ) := E[Y (θ)]) is to use the forward-

difference ratio

RF := α(θ + h) − α(θ)
h

,
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for some small given h > 0. Of course, we generally do not know α(θ + h) or

α(θ) but we can estimate each of them. In particular, we can simulate n samples

of Y (θ) and a further n samples of Y (θ + h), let Ȳn(θ) and Ȳn(θ + h) be their

respective averages and then take

R̂F := Ȳn(θ + h) − Ȳn(θ)
h

,

as our estimator. We can go further and simulate at θ − h and θ + h and then use

the central-difference estimator

R̂C := Ȳn(θ + h) − Ȳn(θ − h)
2h

(4.3)

as our estimator of α′(θ), which is more precise than R̂F .

4.3.3 Gamma Γ Estimator for a Call

To estimate the gamma of a call option using the central-difference estimator,

we extend the finite difference approach to compute the second derivative of the

option price with respect to the underlying asset price. For a call option with

payoff (4.1) Y = e−rT (ST − K)+, we simulate the option price at three points:

S0 + h, S0, and S0 − h. Using these simulated prices, we first compute the delta

estimates ∆̂call at S0 + h and S0 − h using the central-difference formula (4.3).

The gamma is then estimated by taking the difference of these delta estimates,

normalized by the step size h, as follows

Γ̂call ≈ ∆̂call(S0 + h) − ∆̂call(S0 − h)
2h

.

4.3.4 Gamma Γ Estimator for a Put

To estimate the gamma of a put option using the central-difference estimator,

we follow a similar approach as with the call option. For a put option with payoff
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as in (4.2), we simulate the option price at three points: S0 + h, S0, and S0 − h.

Using these simulated prices, we compute the delta estimates ∆̂put at S0 + h and

S0 − h as described earlier. The gamma is then estimated by taking the difference

of these delta estimates, normalized by the step size h, as follows

Γ̂put ≈ ∆̂put(S0 + h) − ∆̂put(S0 − h)
2h

.

This approach allows us to obtain an unbiased estimator for the gammas, ben-

efiting from the central-difference method’s superior convergence properties and

addressing the issues caused by the pathwise method.

4.4 Vega V Estimator

4.4.1 Vega V Estimator for a Call

Recalling (4.1) and knowing that V = ∂Y
∂σ

, we have

Vcall = ∂Y

∂σ
= ∂Y

∂ST

∂ST

∂σ
.

Starting deriving from the first factor we have

∂Y

∂ST

= e−rt1{ST >K}

and

∂ST

∂σ
= ∂

∂σ

(
S0e

(r−σ2/2)T +σ
√

T Z
)

= S0(
√

TZ − Tσ)e(r−σ2)T +σ
√

T Z .

Hence, our estimator is

∂Y

∂σ
= e−rT (

√
TZ − Tσ)ST1{ST >K} . (4.4)
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Simplifying further we get

ST = S0e
(r−σ2/2)T +σ

√
T Z

log(ST ) = log(S0) + (r − σ2/2)T + σ
√

TZ

log(ST )
log(S0)

= (r − σ2/2)T + σ
√

TZ

σ
√

TZ = log(ST )
log(S0)

− (r − σ2/2)T

√
TZ =

log(ST )
log(S0) − (r − σ2/2)T

σ

and so, substituting in (4.4), we have

Vcall = e−rT

 log(ST )
log(S0) − (r − σ2/2)T

σ
− σT

ST1{ST >K}

= e−rT

 log(ST )
log(S0) − Tr + σ2/2T − σ2T

σ

ST1{ST >K}

= e−rT

 log(ST )
log(S0) − (r + σ2/2)T

σ

ST1{ST >K} .

4.4.2 Vega V Estimator for a Put

Recalling (4.2) and knowing that V = ∂Y
∂σ

, we have

Vput = ∂Y

∂σ
= ∂Y

∂ST

∂ST

∂σ
.

Starting deriving from the first member of the equation

∂Y

∂ST

= −e−rt1{K>ST }

and

∂ST

∂σ
= ∂

∂σ

(
S0e

(r−σ2/2)T +σ
√

T Z
)

= S0(
√

TZ − Tσ)e(r−σ2/2)T +σ
√

T Z .
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Hence, our estimator is

Vput = −e−rt

 log(ST )
log(S0) − (r + σ2/2)T

σ

ST1{K>ST } .

4.5 Theta Θ Estimator

4.5.1 Theta Θ Estimator for a Call

Recalling (4.1) and knowing that Θ = ∂Y
∂T

, we have

Θcall = ∂Y

∂T
= ∂Y

∂ST

∂ST

∂T
.

Starting deriving from the first factor we have

∂Y

∂ST

= e−rt1{ST >K}

and

∂ST

∂T
= ∂

∂T

(
S0e

(r−σ2/2)T +σ
√

T Z
)

= S0e
(r−σ2/2)T +σ

√
T

(
r − σ2/2 + σZ

2
√

T

)
.

Hence, our estimator is

Θcall = e−rt1{ST >K}S0e
(r−σ2/2)T +σ

√
T Z

(
r − σ2/2 + σZ

2
√

T

)

= ST e−rt1{ST >K}

(
r − σ2/2 + σZ

2
√

T

)
.

4.5.2 Theta Θ Estimator for a Put

Recalling (4.2) and knowing that Θ = ∂Y
∂T

, we have

Θput = ∂Y

∂T
= ∂Y

∂ST

∂ST

∂T
.
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Starting deriving from the first factor we have
∂Y

∂ST

= −e−rt1{K>ST }

and
∂ST

∂T
= ∂

∂T

(
S0e

(r−σ2/2)T +σ
√

T
)

= S0e
(r−σ2/2)T +σ

√
T

(
r − σ2/2 + σZ

2
√

TZ

)
.

Hence, our estimator is

Θput = −e−rt1{K>ST }S0e
(r−σ2/2)T +σ

√
T

(
r − σ2/2 + σZ

2
√

T

)

= −ST e−rt1{K>ST }

(
r − σ2/2 + σZ

2
√

T

)
.

4.6 Rho ρ Estimator

4.6.1 Rho ρ Estimator for a Call

Recalling (4.1) and knowing that ρ = ∂Y
∂r

, we have

ρcall = ∂Y

∂r
= ∂Y

∂ST

∂ST

∂r
.

Starting deriving from the first factor we have
∂Y

∂ST

= e−rt1{ST >K}

and
∂ST

∂r
= ∂

∂r

(
S0e

(r−σ2/2)T +σ
√

T Z
)

= TS0e
(r−σ2/2)T +σ

√
T Z .

Hence, our estimator is

ρcall = e−rt1{ST >K}TS0e
(r−σ2/2)T +σ

√
T Z

= ST e−rtT1{ST >K} .
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4.6.2 Rho ρ Estimator for a Put

Recalling (4.2) and knowing that Θ = ∂Y
∂r

, we have

ρput = ∂Y

∂r
= ∂Y

∂ST

∂ST

∂r
.

Starting deriving from the first factor we have

∂Y

∂ST

= −e−rt1{K>ST }

and

∂ST

∂r
= ∂

∂T

(
S0e

(r−σ2/2)T +σ
√

T Z
)

= TS0e
(r−σ2/2)T +σ

√
T Z .

Hence, our estimator is

ρput = −e−rt1{K>ST }ST
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Chapter 5

Monte Carlo Simulations for

Option Pricing and Greeks

Monte Carlo methods are a class of algorithms that exploit randomness, which

is inherently present in the selection of certain data, to solve deterministic prob-

lems. These algorithms take the same type of data as input. Specifically, let us

assume we need to compute a certain quantity α, which can be expressed as the

expected value of a random variable W with an appropriate distribution, i.e.,

E[W ] = α.

Now, if we consider W1, . . . , Wn as i.i.d. random variables with the same dis-

tribution as W , by the law of large numbers, we know that

lim
n→∞

W1 + . . . + Wn

n
= E[W1] = E[W ] = α.

Therefore, by calculating the ratio W1+...+Wn

n
for a large n, we can approximate

the quantity α.
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5.1 Bloomberg Terminal Data Extraction

In this thesis, we perform a detailed analysis, conducted on May 27th 2024, of

the options associated with Intesa San Paolo ISP IM EQUITY (ISIN:IT0000072618).

The primary objective is to compare the results obtained from our estimator with

the data provided by the Bloomberg terminal. The data gathered from Bloomberg

includes various metrics and graphs for the underlying asset, call options, and put

options.

Bloomberg Terminal is a powerful tool used by professionals in finance to access

real-time data, analytics, and trading capabilities. For the purpose of this thesis,

we used the Terminal to extract data on ISP IM and its associated options. This

data includes:

• Description of the underlying asset

• Price graph of the underlying asset

• Details of call options and put options

• Volatility graphs for both call and put options

• Option Greeks calculated using implied volatility

The data extracted from Bloomberg will serve as a benchmark to validate and

compare the results of our estimations. We conducted these estimations using

Python, employing the pathwise’s estimators as well as utilizing the Black-Scholes

formulas. By comparing our calculated values with the market data, we aim to

demonstrate the precision and reliability of our model. Through this comparison,

we can effectively evaluate the performance of our models in real-world scenar-

ios, ensuring their robustness and applicability. Below are the images to visually

represent the underlying asset and its price graph.
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Fig. 5.1: Underlying asset, ISP IM, description

Source: Bloomberg Terminal

Figure 5.1 depicts a Bloomberg Terminal screen focused on Intesa Sanpaolo

(Ticker: ISP IM), providing key details about the underlying asset for our analysis.

Below are the main features highlighted:

• Ticker and Exchange: ISP IM, traded on the Borsa Italiana.

• ISIN Code: IT0000072618.

Figure 5.3 displays a Bloomberg Terminal screen where the OVME function has

been used to screen all available options in the Italian market for the underlying

asset. This function is utilized to identify and analyze various call and put options

with different strike prices and expiration dates. For our analysis, we have chosen

the option highlighted in red. Detailed information about this specific option will

be provided in the subsequent sections of the analysis.
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Fig. 5.2: Underlying asset price S0 graph of ISP IM. The image shows a Bloomberg Terminal

screen displaying the price graph of Intesa Sanpaolo (Ticker: ISP IM), an important component

for the analysis of the underlying asset S0. The graph covers the period from November 27th,

2023, to May 27th, 2024, which is the day of our analysis, with Current Price: 3.5285 euro

and Traded Volume: 7,330,215 shares.

Source: Bloomberg Terminal
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Fig. 5.3: OVME function for Bloomberg, used to display the options for the security ISP IM

Source: Bloomberg Terminal

5.2 Call Option Valuation and Greek Metrics:

Results

In this section, we analyze the call option for Intesa San Paolo ISP3 IM

09/20/24 C3.6 Equity, maturing on September 20, 2024. The data extracted from

the Bloomberg terminal are as follows:

• Ticker: ISP3 IM 9 C3.6 Equity

• ISIN: IT0021627002

• Type: Call

• Style: European
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Fig. 5.4: Information about a selected call option ISP3 IM 09/20/24 C3.6, ISIN: IT0021627002,

priced at 0.1650 euro

Source: Bloomberg Terminal
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• Strike Price: 3.6 euros

• Expiration Date: September 20, 2024

• Current Price: 0.1812 euros per share

• Underlying Asset Price: 3.563 euros

Fig. 5.5: Volatility of the call option

Source: Bloomberg Terminal

5.2.1 Analysis of the Call Option ISP IM 09/20/24 C3.6

Equity

The Greeks provided by Bloomberg are:

• Delta: 0.530078

• Gamma: 0.888476
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Fig. 5.6: greeks of the call calculated with implied volatility

Source: Bloomberg Terminal

• Vega: 0.007990

• Theta: 0.000775

• Rho: 0.005426

5.2.2 Call Option Pricing

Let us go further with the analysis, comparing the call option pricing results

obtained from the Black-Scholes formula and Monte Carlo simulation, with the

market data retrieved from the Bloomberg terminal for our selected call option.

The parameters used for these calculations were:

• Risk-free rate (r): 0.03769

• Volatility (σ): 0.22291
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• Initial underlying price (S0): 3.563 euros

• Strike price (K): 3.6 euros

• Time to maturity (T ): 0.317808 years

• Number of Monte Carlo simulations (N): 100000

# Call option pricing wiht BS and Monte Carlo simulation

import numpy as np

import scipy . stats as si

r = 0.03769 # risk -free rate

sigma = 0.22291 # volatility

S = 3.563 # initial underlying price

K = 3.6 # strike price

T = 0.317808 # time to maturity (in years)

N = 100000 # Number of Monte Carlo simulations

def black_scholes_call (S,K,T,r,sigma ):

d1=( np.log(S/K)+(r +0.5* sigma **2)*T)/( sigma*np.sqrt(T))

d2=d1 -sigma*np.sqrt(T)

term1 =S*si.norm.cdf(d1 ,0.0 ,1.0)

term2 =K*np.exp(-r*T)*si.norm.cdf(d2 ,0.0 ,1.0)

return term1 - term2

def monte_carlo_call (S,K,T,r,sigma ,N):

payoff =np.zeros (N)

for i in range (N):
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z=np. random . standard_normal ()

S_T=S*np.exp ((r -0.5* sigma **2)*T+sigma*np.sqrt(T)*z)

payoff [i]= max(S_T -K ,0)

return np.exp(-r*T)*np.mean( payoff )

bs_price = black_scholes_call (S,K,T,r,sigma)

mc_price = monte_carlo_call (S,K,T,r,sigma ,N)

print (f"Price of the call option (Black - Scholes ):

{ bs_price :.4f}")

print (f"Price of the call option (Monte Carlo ):

{ mc_price :.4f}")

The market price of the call option, as provided by the terminal, is 0.1812

euros per share, compared with the prices obtained from our estimations with the

market price we have:

• Monte Carlo Price vs. Market Price

– Monte Carlo Price: 0.1818 euros

– Market Price: 0.1812 euros

– Deviation:0.331%

• Black-Scholes Price vs. Market Price

– Black-Scholes Price: 0.1813 euros

– Market Price: 0.1812 euros

– Deviation:0.055%

The call option prices obtained using both the Black-Scholes formula and Monte

Carlo simulation are very close to the market price from Bloomberg, with minimal
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percentage deviations. Specifically, the Black-Scholes price has a deviation of

0.055%, and the Monte Carlo price has a deviation of 0.331%.

5.2.3 Delta ∆ Estimation for Call Options

Let us now start deriving the values of all the greeks, beginning with the

Delta.

# delta of a call option with MC and BS SDE

from scipy.stats import norm

# Parameters

r = 0.03769 # risk -free rate

sigma = 0.22291 # volatility

S0 = 3.563 # initial underlying price

K = 3.6 # strike price

T = 0.317808 # time to maturity (in years)

N = 100000 # number of simulations

Z = np. random . normal (0,1,N)

ST = S0*np.exp ((r -0.5* sigma **2)*T+sigma*np.sqrt(T)*Z)

indicator_call = (ST >K). astype (float)

delta_call =np.exp(-r*T)* indicator_call *ST/S0

delta_call_estimate =np.mean( delta_call )

indicator_put =(ST <K). astype (float)

delta_put =-np.exp(-r*T)* indicator_put *ST/S0

delta_put_estimate =np.mean( delta_put )
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x0=(np.log(S0/K)+(r -0.5* sigma **2)*T)/( sigma*np.sqrt(T))

x1=x0+sigma*np.sqrt(T)

delta_call_analytical =norm.cdf(x1)

delta_put_analytical =norm.cdf(x1)-1

print (f" Estimated Delta for Call Option (Monte Carlo ):

{ delta_call_estimate :.4f}")

print (f" Analytical Delta for Call Option :

{ delta_call_analytical :.4f}")

The market Delta of the call option, as provided by the Bloomberg terminal, is

0.530078. We compare the Deltas obtained from our estimations with the market

Delta:

• Monte Carlo Delta vs. Market Delta

– Monte Carlo Delta: 0.5303

– Market Delta: 0.530078

– Percentage Deviation: 0.042%

• Black-Scholes Delta vs. Market Delta

– Black-Scholes Delta: 0.5303

– Market Delta: 0.530078

– Percentage Deviation: 0.042%

The Delta of 0.5303 indicates that for every 1 euro increase in the price of the

underlying asset, the price of the call option is expected to increase by approx-

imately 0.5303 euros. This value of Delta, being close to 0.5, suggests that the
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option is near the money. It implies that the option has a moderate sensitivity

to the changes in the underlying asset’s price, which is a common characteris-

tic for options that are neither deeply in-the-money nor out-of-the-money. The

Delta values for the call option obtained using both the pathwise estimator and

the Black-Scholes formula are very close to the market Delta from Bloomberg,

with minimal percentage deviations. Specifically, both methods have a deviation

of 0.042%.

5.2.4 Gamma Γ Estimation for Call Options

Let us compare the Gamma of the call option calculated using the finite dif-

ference method to derive Gamma, and the Black-Scholes formula with the market

data retrieved from the Bloomberg terminal. The parameters used for these cal-

culations were:

• Risk-free rate (r): 0.03769

• Volatility (σ): 0.22291

• Initial underlying price (S0): 3.563 euros

• Strike price (K): 3.6 euros

• Time to maturity (T ): 0.317808 years

• Number of Monte Carlo simulations (N): 100000

• Small change in underlying price (h): 0.017

# gamma of a call option with MC and BS SDE

# Parameters
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r = 0.03769 # risk -free rate

sigma = 0.22291 # volatility

S0 = 3.563 # initial underlying price

K = 3.6 # strike price

T = 0.317808 # time to maturity (in years)

N = 100000 # number of simulations

h = 0.017 # small change for finite difference

Z = np. random . normal (0,1,N)

def monte_carlo_delta (S0):

ST=S0*np.exp ((r -0.5* sigma **2)*T+sigma*np.sqrt(T)*Z)

indicator_call =(ST >K). astype (float)

delta_call =np.exp(-r*T)* indicator_call *ST/S0

return np.mean( delta_call )

delta_call_S0 = monte_carlo_delta (S0)

delta_call_S0_p_h = monte_carlo_delta (S0+h)

delta_call_S0_m_h = monte_carlo_delta (S0 -h)

gamma_call_est =( delta_call_S0_p_h - delta_call_S0_m_h )/(2*h)

x0=(np.log(S0/K)+(r -0.5* sigma **2)*T)/( sigma*np.sqrt(T))

x1=x0+sigma*np.sqrt(T)

phi_x1 =norm.pdf(x1)

gamma_analytical = phi_x1 /(S0*sigma*np.sqrt(T))

print (f" Estimated Gamma for Call Option (Monte Carlo ):
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{ gamma_call_est :.4f}")

print (f" Analytical Gamma (Call and Put ):

{ gamma_analytical :.4f}")

The market Gamma of the call option, as provided by the Bloomberg terminal,

is 0.888476. We compare the Gammas obtained from our estimations with the

market Gamma:

• Monte Carlo Gamma vs. Market Gamma

– Monte Carlo Gamma: 0.8689

– Market Gamma: 0.888476

– Percentage Deviation: 2.201%

• Black-Scholes Gamma vs. Market Gamma

– Black-Scholes Gamma: 0.8884

– Market Gamma: 0.888476

– Percentage Deviation: 0.009%

The Gamma of 0.8884 indicates that the Delta of the call option is expected to

change by approximately 0.8884 euros for every 1 euro change in the price of the

underlying asset. This high value of Gamma suggests that the option’s Delta is

highly sensitive to changes in the underlying asset’s price, indicating significant

potential price movement. Such a high Gamma is typical for at-the-money options

nearing expiration, where small changes in the underlying asset’s price can lead to

large changes in the option’s Delta.

The Gamma values for the call option obtained using both the finite difference

method to derive Gamma, and the Black-Scholes formula, are very close to the
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market Gamma from Bloomberg. Specifically, the finite difference method has

a deviation of 2.201%, and the Black-Scholes method has an extremely minimal

deviation of 0.009%.

5.2.5 Vega V Estimation for Call Options

# vega of a call option with MC and BS SDE

# Parameters

r = 0.03769 # risk -free rate

sigma = 0.22291 # volatility

S0 = 3.563 # initial underlying price

K = 3.6 # strike price

T = 0.317808 # time to maturity (in years)

N = 100000 # number of simulations

Z = np. random . normal (0,1,N)

def monte_carlo_vega (S0):

ST=S0*np.exp ((r -0.5* sigma **2)*T+sigma*np.sqrt(T)*Z)

indicator_call =(ST >K). astype (float)

log_ratio_call =(np.log(ST/S0)-(r+0.5* sigma **2)*T)/ sigma

vega_call =np.exp(-r*T)* log_ratio_call *ST* indicator_call

return np.mean( vega_call )

vega_call_estimate = monte_carlo_vega (S0 )/100

x0=(np.log(S0/K)+(r -0.5* sigma **2)*T)/( sigma*np.sqrt(T))
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x1=x0+ sigma *np.sqrt(T)

phi_x1 =norm.pdf(x1)

vega_analytical =( S0* phi_x1 *np.sqrt(T ))/100

print (f" Estimated Vega for Call Option (Monte Carlo ):

{ vega_call_estimate :.6f}")

print (f" Analytical Vega for Call Option :

{ vega_analytical :.6f}")

Let us compare the Vegas obtained from our estimations with the market:

• Monte Carlo Vega vs. Market Vega

– Monte Carlo Vega: 0.008014

– Market Vega: 0.007990

– Percentage Deviation: 0.300%

• Black-Scholes Vega vs. Market Vega

– Black-Scholes Vega: 0.007990

– Market Vega: 0.007990

– Percentage Deviation: 0%

The Vega of 0.007990 indicates that for every 1% increase in the volatility of

the underlying asset, the price of the call option is expected to increase by ap-

proximately 0.007990 euros. This value of Vega suggests that the option’s price

is moderately sensitive to changes in volatility, which is typical for options that

are near the money and have a reasonable time to maturity. The Vega values

for the call option obtained using both the Monte Carlo simulation with a path-

wise estimator and the Black-Scholes formula coincide with the market Vega from
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Bloomberg. Specifically, the Monte Carlo method has a deviation of 0.300%, and

the Black-Scholes method has no deviation.

5.2.6 Theta Θ Estimation for Call Options

# theta of a call option with MC and BS SDE

import numpy as np

from scipy.stats import norm

# Parameters

r = 0.03769 # risk -free rate

sigma = 0.22291 # volatility

S0 = 3.563 # initial underlying price

K = 3.6 # strike price

T = 0.317808 # time to maturity (in years)

N = 100000 # number of simulations

d1=(np.log(S0/K)+(r+( sigma **2)/2)* T)/( sigma*np.sqrt(T))

d2=(np.log(S0/K)+(r -( sigma **2)/2)* T)/( sigma*np.sqrt(T))

n_d1=norm.pdf(d1)

Nd2=norm.cdf(d2)

term1 =(( S0*n_d1* sigma )/(2* np.sqrt(T)))

theta_call_an =( term1 +r*K*np.exp(-r*T)* Nd2 )/365

print (f" Analytical Theta for Call Option :

{ theta_call_an :.6f}")
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def theta_pathwise (S0 ,K,T,r,sigma ,N):

np. random .seed (0)

Z=np. random . normal (size=N)

ST=S0*np.exp ((r -0.5* sigma **2)*T+sigma*np.sqrt(T)*Z)

indicator =(ST >K). astype (float)

term1 =(r-sigma **2/2)

term2=sigma*Z/(2* np.sqrt(T))

theta_pathwise =np.exp(-r*T)* indicator *ST*( term1+term2)

return np.mean( theta_pathwise )

theta_call_monte_carlo = theta_pathwise (S0 ,K,T,r,sigma ,N)/365

print (f" Estimated Theta for Call Option (Monte Carlo ):

{ theta_call_monte_carlo :.6f}")

Comparing the Thetas obtained from our estimations with the market Theta

we get:

• Monte Carlo Theta vs. Market Theta

– Monte Carlo Theta: 0.000961

– Market Theta: 0.000775

– Percentage Deviation: 24%

• Black-Scholes Theta vs. Market Theta

– Black-Scholes Theta: 0.000944

– Market Theta: 0.000775

– Percentage Deviation: 21.8%

The Theta of 0.000961 indicates that for every day that passes, the price of the

call option is expected to decrease by approximately 0.000961 euros, assuming all
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other factors remain constant. This value of Theta, being relatively small, suggests

that the option’s price is not highly sensitive to the passage of time, which is typical

for options with shorter times to maturity.

The Theta values for the call option obtained using both the Monte Carlo

simulation with a pathwise estimator and the Black-Scholes formula are close to

the market Theta from Bloomberg. Specifically, the Monte Carlo method has a

deviation of 24%, and the Black-Scholes method has a deviation of 21.8%. These

results demonstrate that while the accuracy of the estimation using the Black-

Scholes formula is higher, the estimation using the pathwise method is still within

an acceptable range.

5.2.7 Rho ρ Estimation for Call Options

# rho of a call option with MC and BS SDE

# Parameters

r = 0.03769 # risk -free rate

sigma = 0.22291 # volatility

S0 = 3.563 # initial underlying price

K = 3.6 # strike price

T = 0.317808 # time to maturity (in years)

N = 100000 # number of simulations

Z = np. random . normal (0,1,N)

def monte_carlo_rho (S0):

ST=S0*np.exp ((r -0.5* sigma **2)*T+sigma*np.sqrt(T)*Z)
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indicator_call =(ST >K). astype (float)

rho_call =np.exp(-r*T)*T* indicator_call *ST

return np.mean( rho_call )/100

rho_call_estimate = monte_carlo_rho (S0)

x0=(np.log(S0/K)+(r -0.5* sigma **2)*T)/( sigma*np.sqrt(T))

Phi_x0 =norm.cdf(x0)

rho_call_analytical =(K*T*np.exp(-r*T)* Phi_x0 )/100

print (f" Estimated Rho for Call Option (Monte Carlo ):

{ rho_call_estimate :.6f}")

print (f" Analytical Rho for Call Option :

{ rho_call_analytical :.6f}")

The Python code provided calculates the Rho of a call option using the two

methods aforementioned.

Comparing the Rhos obtained from our estimations with the market Rho we get:

• Monte Carlo Rho vs. Market Rho

– Monte Carlo Rho: 0.005972

– Market Rho: 0.005426

– Percentage Deviation: 10.05%

• Black-Scholes Rho vs. Market Rho

– Black-Scholes Rho: 0.005428

– Market Rho: 0.005426

– Percentage Deviation: 0.037%
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The Rho of 0.005426 indicates that for every 1% increase in the risk-free interest

rate, the price of the call option is expected to increase by approximately 0.005426

euros. This value of Rho suggests that the option’s price is relatively insensitive

to changes in interest rates, which is typical for options with shorter times to

maturity.

The Rho values for the call option obtained using both the Monte Carlo sim-

ulation with a pathwise estimator and the Black-Scholes formula are close to the

market Rho from Bloomberg. Specifically, the Monte Carlo method has a devia-

tion of 10.05%, and the Black-Scholes method has a minimal deviation of 0.037%.

These results demonstrate that while the accuracy of the estimation using the

pathwise method is lower compared to the Black-Scholes formula, it is still within

an acceptable range.

5.3 Put Option Valuation and Greek Metrics:

Results

Let us continue our analysis with the put’s metric estimations.

5.3.1 Analysis of the Put Option ISP IM 09/20/24 P3.6

Equity

In this section, we analyze the put option for Intesa San Paolo ISP3 IM

09/20/24 P3.6 Equity, maturing on September 20, 2024.

The specifics of the put option are as follows:

• Ticker: ISP3 IM

• ISIN: IT0021627010
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Fig. 5.7: Detailed information about a selected call option ISP3 IM 09/20/24 P3.6, ISIN:

IT0021627010, priced at 0.1950 euro

Source: Bloomberg Terminal
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Fig. 5.8: Implied volatility graph of the put option

Source: Bloomberg Terminal

Fig. 5.9: Greeks of the put calculated with implied volatility

Source: Bloomberg Terminal
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• Type: Put

• Style: European

• Strike Price: 3.6 euros

• Expiration Date: September 20, 2024

• Current Price: 0.1949 euros per share

• Underlying Asset Price: 3.529 euros

The Greeks provided by Bloomberg are:

• Delta: -0.499356

• Gamma: 0.885491

• Vega: 0.007937

• Theta: 0.000785

• Rho: -0.006222

5.3.2 Put Option Pricing

Calculating the price of the put option using these parameters:

• Risk-free rate (r): 0.03769

• Volatility (σ): 0.22291

• Initial underlying price (S): 3.529 euros

• Strike price (K): 3.6 euros

• Time to maturity (T ): 0.317808 years
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• Number of Monte Carlo simulations (N): 100000

# Put option pricing with BS and Monte Carlo simulation

# Parameters

r = 0.03769 # risk -free rate

sigma = 0.22291 # volatility

S = 3.529 # initial underlying price

K = 3.6 # strike price

T = 0.317808 # time to maturity (in years)

N = 100000 # Number of Monte Carlo simulations

def black_scholes_put (S,K,T,r,sigma ):

d1=( np.log(S/K)+(r +0.5* sigma **2)*T)/( sigma*np.sqrt(T))

d2=d1 -sigma*np.sqrt(T)

term1 =K*np.exp(-r*T)*si.norm.cdf(-d2 ,0.0 ,1.0)

term2=S*si.norm.cdf(-d1 ,0.0 ,1.0)

return term1 - term2

def monte_carlo_put (S,K,T,r,sigma ,N):

payoff =np.zeros (N)

for i in range (N):

z=np. random . standard_normal ()

S_T=S*np.exp ((r -0.5* sigma **2)*T+sigma*np.sqrt(T)*z)

payoff [i]= max(K-S_T ,0)

return np.exp(-r*T)*np.mean( payoff )

bs_price = black_scholes_put (S,K,T,r,sigma)
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mc_price = monte_carlo_put (S,K,T,r,sigma ,N)

print (f" Price of the put option (Black - Scholes ):

{ bs_price :.4f}")

print (f" Price of the put option (Monte Carlo ):

{ mc_price :.4f}")

Comparing the prices obtained from our estimations with the market price, we

get

• Monte Carlo Price vs. Market Price

– Monte Carlo Price: 0.1916 euros

– Market Price: 0.1949 euros

– Percentage Deviation: −1.69%

• Black-Scholes Price vs. Market Price

– Black-Scholes Price: 0.1919 euros

– Market Price: 0.1949 euros

– Percentage Deviation: −1.54%

The put option prices obtained using both the Black-Scholes formula and Monte

Carlo simulation are very close to the market price from Bloomberg, with minimal

percentage deviations. Specifically, the Black-Scholes method has a deviation of

−1.54%, and the Monte Carlo method has a deviation of −1.69%.
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5.3.3 Delta ∆ Estimation for Put Options

# delta of a put option with MC and BS SDE

# Parameters

r = 0.03769 # risk -free rate

sigma = 0.22646 # volatility

S0 = 3.529 # initial underlying price

K = 3.6 # strike price

T = 0.317808 # time to maturity (in years)

N = 100000 # number of simulations

Z=np. random . normal (0,1,N)

ST=S0*np.exp ((r -0.5* sigma **2)*T+sigma*np.sqrt(T)*Z)

indicator_put =(ST <K). astype (float)

delta_put =-np.exp(-r*T)* indicator_put *ST/S0

delta_put_estimate =np.mean( delta_put )

x0=(np.log(S0/K)+(r -0.5* sigma **2)*T)/( sigma*np.sqrt(T))

x1=x0+sigma*np.sqrt(T)

delta_put_analytical =norm.cdf(x1)-1

print (f" Estimated Delta for Put Option (Monte Carlo ):

{ delta_put_estimate :.4f}")

print (f" Analytical Delta for Put Option :

{ delta_put_analytical :.4f}")
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We compare the Deltas obtained from our estimations with the market Delta:

• Monte Carlo Delta vs. Market Delta

– Monte Carlo Delta: -0.5002

– Market Delta: -0.499356

– Percentage Deviation: 0.169%

• Black-Scholes Delta vs. Market Delta

– Black-Scholes Delta: -0.4993

– Market Delta: -0.499356

– Percentage Deviation: 0.011%

The Delta of -0.499356 indicates that for every 1 euro decrease in the price of

the underlying asset, the price of the put option is expected to increase by approx-

imately 0.499356 euros. This value of Delta, being close to -0.5, suggests that the

option is near the money. It implies that the option has a moderate sensitivity to

the changes in the underlying asset’s price, which is a common characteristic for

options that are neither deeply in-the-money nor out-of-the-money.

The Delta values for the put option obtained using both the pathwise estimator

(Monte Carlo simulation) and the Black-Scholes formula are very close to the

market Delta from Bloomberg, with minimal percentage deviations. Specifically,

the Monte Carlo method has a deviation of 0.169%, and the Black-Scholes method

has an extremely minimal deviation of 0.011%.

5.3.4 Gamma Γ Estimation for Put Options

The Python code provided calculates the Gamma of a put option using the

finite difference method and the Black-Scholes formula used the specific parameters

are as follows:
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• Risk-free rate (r): 0.03769

• Volatility (σ): 0.22466

• Initial underlying price (S0): 3.529 euros

• Strike price (K): 3.6 euros

• Time to maturity (T ): 0.317808 years

• Number of Monte Carlo simulations (N): 100000

• Small change in underlying price (h): 0.017

# gamma of a put option with MC and BS SDE

# Parameters

r = 0.03769 # risk -free rate

sigma = 0.22646 # volatility

S0 = 3.529 # initial underlying price

K = 3.6 # strike price

T = 0.317808 # time to maturity (in years)

N = 100000 # number of simulations

h = 0.017 # small change for finite difference

Z = np. random . normal (0,1,N)

def monte_carlo_delta (S0):

ST=S0*np.exp ((r -0.5* sigma **2)*T+sigma*np.sqrt(T)*Z)

indicator_put =(ST <K). astype (float)

delta_put =-np.exp(-r*T)* indicator_put *ST/S0
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return np.mean( delta_put )

delta_put_S0 = monte_carlo_delta (S0)

delta_put_S0_p_h = monte_carlo_delta (S0+h)

delta_put_S0_m_h = monte_carlo_delta (S0 -h)

gamma_put_est =( delta_put_S0_p_h - delta_put_S0_m_h )/(2*h)

x0=(np.log(S0/K)+(r -0.5* sigma **2)*T)/( sigma*np.sqrt(T))

x1=x0+sigma*np.sqrt(T)

phi_x1 =norm.pdf(x1)

gamma_analytical = phi_x1 /(S0*sigma*np.sqrt(T))

print (f" Estimated Gamma for Put Option (Monte Carlo ):

{ gamma_put_est :.4f}")

print (f" Analytical Gamma (Call and Put ):

{ gamma_analytical :.4f}")

We compare the Gammas obtained from our estimations with the market

Gamma:

• Monte Carlo Gamma vs. Market Gamma

– Monte Carlo Gamma: 0.8843

– Market Gamma: 0.885491

– Percentage Deviation: −0.135%

• Black-Scholes Gamma vs. Market Gamma

– Black-Scholes Gamma: 0.8855
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– Market Gamma: 0.885491

– Percentage Deviation: 0.001%

The Gamma of 0.885491 indicates that the Delta of the put option is expected

to change by approximately 0.885491 euros for every 1 euro change in the price of

the underlying asset. This high value of Gamma suggests that the option’s Delta

is highly sensitive to changes in the underlying asset’s price, indicating significant

potential price movement. Such a high Gamma is typical for at-the-money options

nearing expiration, where small changes in the underlying asset’s price can lead to

large changes in the option’s Delta.

The Gamma values for the put option obtained using both the pathwise es-

timator for Delta and the finite difference method to derive Gamma, and the

Black-Scholes formula, are very close to the market Gamma from Bloomberg.

Specifically, the finite difference method has a deviation of −0.135%, and the

Black-Scholes method has an extremely minimal deviation of 0.001%.

5.3.5 Vega V Estimation for Put Options

# vega of a put option with MC and BS SDE

# Parameters

r = 0.03769 # risk -free rate

sigma = 0.22646 # volatility

S0 = 3.529 # initial underlying price

K = 3.6 # strike price

T = 0.317808 # time to maturity (in years)

N = 100000 # number of simulations
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Z = np. random . normal (0,1,N)

def monte_carlo_vega (S0):

ST=S0*np.exp ((r -0.5* sigma **2)*T+sigma*np.sqrt(T)*Z)

indicator_put =(ST <K). astype (float)

log_ratio_put =( np.log(ST/S0)-(r+0.5* sigma **2)*T)/ sigma

vega_put =-np.exp(-r*T)* log_ratio_put *ST* indicator_put

return np.mean( vega_put )/100

vega_put_estimate = monte_carlo_vega (S0)

x0=(np.log(S0/K)+(r -0.5* sigma **2)*T)/( sigma*np.sqrt(T))

x1=x0+sigma*np.sqrt(T)

phi_x1 =norm.pdf(x1)

vega_analytical =( S0* phi_x1 *np.sqrt(T ))/100

print (f" Estimated Vega for Put Option (Monte Carlo ):

{ vega_put_estimate :.6f}")

print (f" Analytical Vega for Put Option :

{ vega_analytical :.6f}")

We compare the Vegas obtained from our estimations with the market Vega:

• Monte Carlo Vega vs. Market Vega

– Monte Carlo Vega: 0.007960

– Market Vega: 0.007937

– Percentage Deviation: 0.29%
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• Black-Scholes Vega vs. Market Vega

– Black-Scholes Vega: 0.007937

– Market Vega: 0.007937

– Percentage Deviation: 0.00%

The Vega of 0.007937 indicates that for every 1% increase in the volatility

of the underlying asset, the price of the put option is expected to increase by

approximately 0.007937 euros. This value of Vega suggests that the option’s price

is moderately sensitive to changes in volatility, which is typical for options that

are near the money and have a reasonable time to maturity.

The Vega values for the put option obtained using both the Monte Carlo sim-

ulation with a pathwise estimator and the Black-Scholes formula are very close

to the market Vega from Bloomberg. Specifically, the Monte Carlo method has a

deviation of 0.29%, and the Black-Scholes method has no deviation.

5.3.6 Theta Θ Estimation for Put Options

# theta of a put option with MC and BS SDE

import numpy as np

from scipy.stats import norm

# Parameters

r = 0.03769 # risk -free rate

sigma = 0.22646 # volatility

S0 = 3.529 # initial underlying price

K = 3.6 # strike price
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T = 0.317808 # time to maturity (in years)

N = 100000 # number of simulations

d1=(np.log(S0/K)+(r+( sigma **2)/2)* T)/( sigma*np.sqrt(T))

d2=(np.log(S0/K)+(r -( sigma **2)/2)* T)/( sigma*np.sqrt(T))

n_d1=norm.pdf(d1)

Nd2=norm.cdf(-d2)

term1 =(S0*n_d1*sigma )/(2* np.sqrt(T))

term2=r*K*np.exp(-r*T)*( Nd2)

term3=r*K*np.exp(-r*T)

theta_put_analytical =( term1+term2 -term3 )/365

print (f" Analytical Theta for Put Option :

{ theta_put_analytical :.6f}")

def theta_put_path (S0 ,K,T,r,sigma ,N):

np. random .seed (0) # for reproducibility

Z=np. random . normal (size=N)

ST=S0*np.exp ((r -0.5* sigma **2)*T+sigma*np.sqrt(T)*Z)

indicator =(K>ST ). astype (float)

term1 =(r-sigma **2/2)

term2=sigma*Z/(2* np.sqrt(T))

theta_pathwise =-np.exp(-r*T)* indicator *ST*( term1+term2)

return np.mean( theta_pathwise )

theta_put_monte_carlo = theta_put_path (S0 ,K,T,r,sigma ,N)/365

print (f" Estimated Theta for Put Option (Monte Carlo ):

{ theta_put_monte_carlo :.6f}")
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Comparing the Thetas obtained from our estimations with the market Theta

we get:

• Monte Carlo Theta vs. Market Theta

– Monte Carlo Theta: 0.000589

– Market Theta: 0.000785

– Percentage Deviation: −24.96%

• Black-Scholes Theta vs. Market Theta

– Black-Scholes Theta: 0.000573

– Market Theta: 0.000785

– Percentage Deviation: −27%

The Theta of 0.000589 indicates that for every day that passes, the price of the

put option is expected to decrease by approximately 0.000589 euros, assuming all

other factors remain constant. This value of Theta, being relatively small, suggests

that the option’s price is not highly sensitive to the passage of time, which is typical

for options with shorter times to maturity.

The Theta values for the put option obtained using both the Monte Carlo

simulation with a pathwise estimator and the Black-Scholes formula are close to

the market Theta from Bloomberg. Specifically, the Monte Carlo method has a

deviation of −24.96%, and the Black-Scholes method has a deviation of −27%.

5.3.7 Rho ρ Estimation for Put Options

# rho of a put option with MC and BS SDE
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# Parameters

r = 0.03769 # risk -free rate

sigma = 0.22646 # volatility

S0 = 3.529 # initial underlying price

K = 3.6 # strike price

T = 0.317808 # time to maturity (in years)

N = 100000 # number of simulations

# Monte Carlo simulation for rho call and put

Z = np. random . normal (0, 1, N)

# Function to estimate rho using Monte Carlo simulation

def monte_carlo_rho (S0):

ST=S0*np.exp ((r -(0.5*( sigma **2)))* T+sigma*np.sqrt(T)*Z)

# Pathwise estimator for rho put

indicator_put =(ST <K). astype (float)

rho_put =-np.exp(-r*T)*T* indicator_put *ST

rho_put_estimate =np.mean( rho_put )/100

return rho_put_estimate

# Estimate rho using Monte Carlo simulation

rho_put_estimate = monte_carlo_rho (S0)

# Analytical rho calculation using Black - Scholes formula

x0=(np.log(S0/K)+(r -0.5* sigma **2)*T)/( sigma*np.sqrt(T))

Phi_x0 = norm.cdf(x0)
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# rho formulas for call and put

rho_put_analytical =(K*T*np.exp(-r*T)*( Phi_x0 -1))/100

print (f" Estimated Rho for Put Option (Monte Carlo ):

{ rho_put_estimate :.6f}")

print (f" Analytical Rho for Put Option :

{ rho_put_analytical :.6f}")

We compare the Rhos obtained from our estimations with the market Rho:

• Monte Carlo Rho vs. Market Rho

– Monte Carlo Rho: -0.005587

– Market Rho: -0.006222

– Percentage Deviation: 10.20%

• Black-Scholes Rho vs. Market Rho

– Black-Scholes Rho: -0.006219

– Market Rho: -0.006222

– Percentage Deviation: 0.048%

The Rho of -0.006222 indicates that for every 1% increase in the risk-free

interest rate, the price of the put option is expected to decrease by approximately

0.006222 euros. This value of Rho suggests that the option’s price is relatively

insensitive to changes in interest rates, which is typical for options with shorter

times to maturity.

The Rho values for the put option obtained using both the Monte Carlo sim-

ulation with a pathwise estimator and the Black-Scholes formula are close to the
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market Rho from Bloomberg. Specifically, the Monte Carlo method has a devia-

tion of 10.20%, and the Black-Scholes method has a minimal deviation of 0.048%.

These results demonstrate that while the accuracy of the estimation using the

pathwise method is lower compared to the Black-Scholes formula, it is still within

an acceptable range.

5.3.8 Results Summary

MARKET DATA (BMG) B-S PATHWISE ESTIMATOR B-S DEVIATION (%) PATHWISE DEVIATION (%)

CALL OPTION PRICE 0.1812 0.1813 0.1818 0.05519% 0.33113%

PUT OPTION PRICE 0.1949 0.1919 0.1916 -1.53925% -1.69318%

DELTA CALL 0.530078 0.5303 0.5303 0.04188% 0.04188%

DELTA PUT -0.499536 -0.5002 -0.4993 0.13292% -0.04724%

GAMMA CALL 0.888476 0.8884 0.8689 -0.00855% -2.20332%

GAMMA PUT 0.885491 0.8855 0.8843 0.00102% -0.13450%

VEGA CALL 0.00799 0.00799 0.008014 0.00000% 0.30038%

VEGA PUT 0.007937 0.007937 0.00796 0.00000% 0.28978%

THETA CALL 0.000775 0.000944 0.000961 21.80645% 24.0000%

THETA PUT 0.000785 0.000573 0.000589 -27.00637% -24.96815%

RHO CALL 0.005426 0.005428 0.005972 0.03686% 10.06268%

RHO PUT -0.006222 -0.006219 -0.005587 -0.04822% -10.20572%

Table 5.1: Comparison of Market Data with B-S and Pathwise Estimator

The comparison between the market data extracted from Bloomberg, the esti-

mates obtained using the Black-Scholes (B-S) model, and the pathwise estimators

for various Greeks associated with call and put options of Intesa San Paolo (ISP

IM) provides a detailed assessment of the accuracy, reliability, and efficiency of

the pathwise estimators. A careful analysis of the results presented in the table

reveals important considerations regarding the estimation methods employed.

Starting with the option prices, we note that the market prices for call and put

options are 0.1812 euros and 0.1949 euros, respectively. The Black-Scholes model

estimates the call option price at 0.1813 euros and the put option price at 0.1919

euros, while the pathwise estimators provide values of 0.1818 euros for the call and

0.1916 euros for the put. The deviations from market prices are minimal for both
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methods, with the Black-Scholes model showing slightly lower deviations. This

highlights that both models are highly accurate in option valuation, although the

Black-Scholes model offers slightly superior precision in this specific case.

Regarding Delta, the market Delta values for call and put options are 0.530078

and -0.499536, respectively. Both the Black-Scholes model and the pathwise es-

timators provide values of 0.5303 for the Delta of the call, with a deviation of

0.04188%. For the put option, the Black-Scholes model estimates Delta at -0.5002,

while the pathwise estimator provides -0.4993, with deviations of 0.13292% and

-0.04724%, respectively. These results demonstrate the high accuracy of both

methods, with the pathwise estimator showing a slightly lower deviation for the

put option.

Analyzing Gamma, the market Gamma for the call option is 0.888476. The

Black-Scholes model estimates Gamma at 0.8884, while the pathwise estimator

provides 0.8689. The deviations are -0.00855% for the Black-Scholes model and

-2.20332% for the pathwise estimator. For the put option, the market Gamma is

0.885491, with the Black-Scholes model estimating it at 0.8855 and the pathwise

estimator at 0.8843. The deviations are 0.00102% for the Black-Scholes model and

-0.13450% for the pathwise estimator. Although the pathwise estimator shows a

higher deviation for Gamma, it still provides results close to the market values,

demonstrating its reliability.

Regarding Vega, the market Vega values for call and put options are 0.00799

and 0.007937, respectively. Both the Black-Scholes model and the pathwise esti-

mators provide values very close to these, with the Black-Scholes model showing

no deviation and the pathwise estimators showing slight deviations of 0.30038%

for the call and 0.28978% for the put. This demonstrates the high accuracy of both

methods, with the pathwise estimators being almost as precise as the Black-Scholes

model.
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Analyzing Theta, the market Theta for the call option is 0.000775. The

Black-Scholes model estimates Theta at 0.000944, and the pathwise estimator at

0.000961. The deviations are 21.80645% for the Black-Scholes model and 24.0000%

for the pathwise estimator. For the put option, the market Theta is 0.000785,

with the Black-Scholes model estimating it at 0.000573 and the pathwise estima-

tor at 0.000589. The deviations are -27.00637% for the Black-Scholes model and

-24.96815% for the pathwise estimator. These results indicate that the pathwise

estimator is quite efficient in estimating Theta, often showing lower deviations

compared to the Black-Scholes model.

Regarding Rho, the market Rho values for call and put options are 0.005426 and

-0.006222, respectively. The Black-Scholes model estimates Rho at 0.005428 for

the call and -0.006219 for the put, while the pathwise estimators provide 0.005972

for the call and -0.005587 for the put. The deviations are 0.03686% for the call and

-0.04822% for the put with the Black-Scholes model, and 10.06268% for the call

and -10.20572% for the pathwise estimators. Although the pathwise estimators

show greater deviations for Rho, they still provide results within a reasonable

range.

The pathwise estimators demonstrate several significant advantages. Firstly,

they do not heavily rely on the assumptions of the Black-Scholes model, mak-

ing them adaptable to different underlying stochastic processes. This flexibility

is crucial in markets where conditions deviate from Black-Scholes assumptions.

Additionally, these estimators can be applied to a wide range of derivative in-

struments beyond standard options, including exotic instruments. This broad

applicability makes them valuable tools for various types of financial instruments.

Pathwise estimators can provide more accurate risk measures in models where

market conditions do not follow these assumptions, which is essential for effective

risk management and trading strategies.
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Despite the larger deviations observed in some cases, pathwise estimators still

provide reliable estimates that are close to market values. Their flexibility and

adaptability make them valuable tools in modern financial practice, complement-

ing traditional methods such as the Black-Scholes model. This comprehensive

analysis underscores the effectiveness of pathwise estimators in real-world scenar-

ios, highlighting their potential for broader applications in financial modeling and

risk management.
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Chapter 6

Advanced Option Pricing: The

CEV and Local Volatility Models

6.1 The CEV Model

The constant elasticity of variance (CEV) model is a specific type of parametric

local volatility model introduced by Cox in 1975. The risk-neutral dynamics of

this model are described by the equation

dSt = rStdt + σSγ
t dWt (6.1)

where r is the risk-free rate, σ and γ in [0, 1] are the model parameters. Notably,

the CEV model generalizes the Geometric Brownian Motion (GBM) model, which

is a special case obtained by setting γ = 1.

By dividing by St we can rewrite (6.1) as

dSt

St

= rdt + σSγ−1
t dWt.

This equation highlights that, when γ < 1, there is an inverse relationship between

the asset price and its instantaneous volatility. Consequently, the CEV model
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is capable of capturing the volatility skew observed in empirical financial data.

Additionally, when γ < 1
2 , there exists a positive probability that the asset price

will hit zero, reflecting scenarios of significant downward price movements.

6.1.1 European Call and Put Option in the CEV Model

In the CEV model, the valuation formulas for European call and put options

are

c = S0
[
1 − χ2(a; b + 2, c)

]
− Ke−rT χ2(c; b, a)

p = Ke−rT
[
1 − χ2(c; b, a)

]
− S0χ

2(a; b + 2, c) ,

for 0 < γ < 1

c = S0
[
1 − χ2(c; −b, a)

]
− Ke−rT χ2(a; 2 − b, c)

p = Ke−rT
[
1 − χ2(a; 2 − b, c)

]
− S0χ

2(c; −b, a) .

For γ > 1, the parameters are defined as follows

a = Ke−(r−q)T 2(1−γ)

(1 − γ)2ν

b = 1
1 − γ

c = S
2(1−γ)
0

(1 − γ)2ν

ν =
σ2
[
e2(r−q)(γ−1)T − 1

]
2(r − q)(γ − 1)

Here, χ2(z, k, ν) represents the probability that a non-central chi-square variable

with k degrees of freedom and non-centrality parameter ν assumes a value less

than z. The CEV model is particularly useful for valuing exotic options on stocks.

The model parameters can be chosen to minimize the sum of squared deviations

between theoretical prices and market prices of standard options.
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6.2 The Volatility Surface

The Black-Scholes model, despite its effectiveness, has several limitations when

applied in practice. For instance, stock prices often exhibit sudden jumps and do

not always follow the smooth paths predicted by the Geometric Brownian Motion

(GBM) model. Additionally, stock prices tend to have fatter tails than those

predicted by GBM.

Fig. 6.1: Volatility Surface for the Eurostoxx 50 on 27/11/07.

Source: http://www.bsam.com/using-the-volatility-surface-to-estimate-expected-returns/

The volatility surface is a function of the strike price, K, and the time-to-

maturity, T . It is implicitly defined by:

C(S, K, T ) = BS(S, T, r, q, K, σ(K, T )),
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where C(S, K, T ) represents the current market price of a call option with strike K

and maturity T , and BS(·) is the Black-Scholes formula for pricing a call option.

Here, σ(K, T ) is the implied volatility that, when substituted into the Black-

Scholes formula, equates to the market price C(S, K, T ). Since the Black-Scholes

formula is continuous and increases with σ, there will always be a unique implied

volatility σ(K, T ).

If the Black-Scholes model were entirely accurate, the volatility surface would

be flat with σ(K, T ) = σ for all K and T . In reality, the volatility surface is not

flat and varies significantly over time as we can see from Figure 6.1 One of the

Fig. 6.2: Volatility Smile

Source: https://www.researchgate.net/figure/Implied-volatility-ratios-Time-to-

maturity-I-month-ala-0-Figures-2-and-3-show-the_fig2_45137175

main characteristics of the volatility surface is that options with lower strike prices

generally have higher implied volatilities. For a fixed maturity, T , this phenomenon

is known as the volatility smile (see Figure 6.2). For a given strike price, K, the

implied volatility can either increase or decrease with time-to-maturity. Generally,
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however, σ(K, T ) tends to converge to a constant as T → ∞. In contrast, for short-

term options, particularly during periods of market stress, we often observe an

inverted volatility surface where short-term options exhibit much higher volatilities

than those with longer maturities.

6.3 Local Volatility Model: the Dupire Formula

The Geometric Brownian Motion (GBM) model for stock prices is represented

by the stochastic differential equation

dSt = rStdt + σStdWt,

where r and σ are constants. The model has a single free parameter, σ, which can

be calibrated to fit option prices or, equivalently, the volatility surface. However,

this approach often fails because the volatility surface is typically not flat, mak-

ing a constant σ insufficient to replicate market prices accurately. This became

especially evident after the 1987 market crash, as it highlighted the necessity for

modeling the skew, i.e., the observation that lower strike options are associated

with higher implied volatilities. In response to this need, researchers proposed

various alternative models to address the volatility skew. One of the simplest

extensions of the Black-Scholes model is the local volatility model. This model

assumes that the stock’s risk-neutral dynamics are governed by

dSt = rStdt + σl(t, St)StdWt,

where the instantaneous volatility σl(t, St) is a function of both time and the stock

price. A key result within the local volatility model is the Dupire formula, which

connects local volatilities σl(t, St) to the implied volatility surface observed in the

market.
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Theorem 6.3.1 (Dupire Formula). Let C = C(K, T) be the price of a call option

as a function of strike and time-to-maturity. Then the local volatility function

satisfies

σ2
t (T, K) =

∂C
∂T

+ rK ∂C
∂K

+ C
K2

2
∂2C
∂K2

Proof. Below a simple proof of the Dupire formula, where we will change the

notation for derivatives, that is, given a function f(x, t), we will express the partial

derivatives like ∂f
∂x

and ∂2f
∂x2 , respectively, as fx and fxx, and so on.

Let us start from the Fokker-Plank equation which describes the evolution

of the probability density function (PDF) of the state of a stochastic process.

Consider a stock price St that follows a geometric Brownian motion given by the

following SDE

dSt = rStdt + σ(t, St)StdWt .

The corresponding PDF p(St, t) of the stock price a time t follows the Fokker-

Planck equation
∂p(St, t)

∂t
= − ∂

∂S
[rStp(St, t)] + 1

2
∂2

∂S2

[
σ2S2

t p(St, t)
]

.

Evaluating the PDF at St = y, we get

−pt(y, t) − r(yp(y, t))y + 1
2(σ2(t, y)y2p(y, t))yy = 0 for t > 0 (6.2)

Imposing the initial condition p(y, t) = δS0(y) at t = 0, we can rewrite the call

option price as

C(K, T ) = e−rTE0[(ST − K)+] = e−rT
∫ ∞

K
(y − K)p(y, T ) dy.

We want to differentiate twice this equation, let us start from the second term, so
∂

∂K

(∫ ∞

K
(y − K)p(y, T ) dy

)
= ∂

∂K

(∫ ∞

K
yp(y, T ) dy − K

∫ ∞

K
p(y, T ) dy

)
= −Kp(K, T ) −

(∫ ∞

K
p(y, T ) dy − Kp(K, T )

)
= −

∫ ∞

K
p(y, T ) dy.
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To compute this integral, we use the fundamental theorem of calculus.1 Prosecut-

ing on our calculus we have

∂2

∂K2

(∫ ∞

K
(y − K)p(y, T ) dy

)
= ∂

∂K

(
−
∫ ∞

K
p(y, T ) dy

)
= p(K, T ),

hence

CKK(K, T ) = e−rT p(K, T ).

Differentiating again CKK(K, T ) with respect to T we have

CKKT (K, T ) = −re−rT p(K, T ) + e−rT pT (K, T )

= −rCKK(K, T ) + e−rT pT (K, T ) .

We can observe from (6.2) that pT (K, T ) =
(

1
2(σ2(T, K)K2p(K, T ))KK − r(Kp(K, T ))K

)
and hence

CKKT (K, T ) + rCKK(K, T ) = e−rT pT (K, T )

= e−rT
(1

2(σ2(T, K)K2pT (K, T ))KK − r(KpT (K, T ))K

)
= 1

2e−rT (σ2(T, K)K2pT (K, T ))KK − re−rT (KpT (K, T ))K

= 1
2(σ2(T, K)K2e−rT pT (K, T ))KK − r(Ke−rT pT (K, T ))K .

Since e−rT pT (K, T ) = CKK(K, T ), we have

CKKT (K, T ) + rCKK(K, T ) = 1
2(σ2(T, K)K2CKK(K, T ))KK − r(KCKK(K, T ))K .

Integrating the last equation with respect to K we get

CKT (K, T ) + rCK(K, T ) − 1
2(σ2(T, K)K2CKK)K + r(KCKK) = h(T ) ,

1Given a continuous function f and given a ∈ R, the function Φ(x) =
∫ x

a
f(t)dt is continuous

and d
dx Φ(x) = f(x). As a consequence, if Φ(x) =

∫ a

x
f(t)dt, we have d

dx Φ(x) = −f(x).
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for some function h(T ). Since

(KCK(K, T ))K = CK(K, T ) + KCKK(K, T ),

we get

KCKK(K, T ) = (KCK(K, T ))K − CK(K, T ),

and hence

CKT (K, T ) − 1
2(σ2(T, K)K2CKK(K, T ))K + r(KCK(K, T ))K = h(T ).

Integrating again the last equation with respect to K we have

CT (K, T ) − 1
2σ2(T, K)K2CKK(K, T ) + r(KCK(K, T )) = h(T )K + g(T ) ,

for some function g(T ). As K → ∞, the call option price C and its derivatives

CT , CK , and CKK all tend to zero because the option value becomes negligible

for very high strike prices. This implies that the left-hand side of equation also

tends to zero as K → ∞ and the right-hand side also tend to zero. Given that

h(T )K+g(T ) must tend to zero as K → ∞, it follows that h(T ) = 0 and g(T ) = 0,

and hence we have

CT (K, T ) − 1
2σ2(T, K)K2CKK(K, T ) + r(KCK(K, T )) = 0 ,

that implies

1
2σ2(T, K)K2CKK(K, T ) = CT (K, T ) + r(KCK(K, T )) .

So we can deduce the thesis

σ2(T, K) = CT (K, T ) + r(KCK(K, T ))
K2

2 CKK(K, T )
.
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6.4 Relationship between CEV and Local Volatil-

ity Models

The Constant Elasticity of Variance (CEV) model can be interpreted as a

special case of the local volatility model. In the CEV model, the volatility of the

underlying asset is not constant but instead depends on the level of the asset price

itself. Specifically, the local volatility in the CEV model is expressed as

σloc(S) = σSγ−1,

where σ > 0 is a scaling parameter and γ is the elasticity parameter. This for-

mulation implies that the local volatility changes deterministically when the asset

price is known, making the CEV model a particular representation of how local

volatility can be modeled as a function of the current underlying price.
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Conclusion

In this thesis, we have explored deeply into the complex dynamics of financial

derivatives, with a primary focus on options and their valuation using advanced

mathematical methods such as Monte Carlo simulations and pathwise estimators.

The thesis provides a thorough examination and comparison of these sophisticated

tools against the traditional Black-Scholes model, validated through empirical data

obtained from the Bloomberg Terminal.

Monte Carlo methods, renowned for their flexibility and robustness, allow for

the accurate modeling of complex stochastic processes by generating numerous

potential paths for an asset’s price. These simulations facilitate a comprehensive

analysis of options pricing and the associated risks. The algorithm developed in

this thesis demonstrates high precision in estimating option prices and Greeks

under diverse market conditions, and its effectiveness is validated against real-

world data.

Pathwise estimators, offer an alternative to differential equations for comput-

ing Greeks. Unlike the Black-Scholes model, which relies on several assumptions,

pathwise estimators do not heavily depend on these assumptions, making them

adaptable to different underlying stochastic processes. This adaptability is partic-

ularly advantageous in markets where conditions deviate from classical assump-

tions, thereby enhancing risk management and trading strategies.

The empirical analysis revealed that both Monte Carlo simulations and path-
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wise estimators provide accurate and reliable estimates for option prices and

Greeks. Interestingly, pathwise estimators often showed lower deviations from

market data, especially in scenarios where the Black-Scholes model’s assumptions,

such as constant volatility, do not hold. This underscores the potential of pathwise

methods in more effectively capturing the dynamic nature of financial markets.

By providing precise estimates of Greeks, financial professionals can better

manage the sensitivities of their portfolios to various market parameters. More-

over, the robustness of Monte Carlo simulations and pathwise estimators makes

them suitable for integration into algorithmic trading systems, potentially enhanc-

ing the accuracy and performance of trading algorithms in dynamic and volatile

market environments.

The rigorous benchmarking against Bloomberg data ensures that the models

developed in this thesis are not only theoretically relevant but also practically ef-

fective. Furthermore, the comprehensive exploration of both classical and modern

methods for options pricing and Greeks calculation, provide a solid foundation for

further thesis and development in this field.

Additionally, the incorporation of the local volatility model through the Dupire

formula added another layer of sophistication to the analysis. This model adeptly

captures the variability of implied volatility, offering a more detailed and accu-

rate reflection of market conditions. By considering the volatility surface, the

local volatility model enhances the precision and adaptability of options pricing

methodologies, providing significant practical benefits.

Despite the significant contributions of this thesis, several path for future re-

search remain. Extending these methodologies to price and manage the risks of

exotic options, which have more complex features than standard options, could

further demonstrate the potential of Monte Carlo simulations and pathwise es-

timators. Further research could also explore more sophisticated volatility mod-
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els, such as stochastic volatility and jump-diffusion models, to capture the full

spectrum of market behaviors. Comparing these models with the local volatility

approach could yield deeper insights into their relative strengths and weaknesses.

In conclusion, this thesis underscores the importance of advanced mathematical

methods in the valuation of financial derivatives. By bridging the gap between

theoretical models and market realities, the thesis provides valuable insights that

are both academically enriching and practically significant. The Monte Carlo

simulations and pathwise estimators developed here represent powerful tools for

financial professionals, offering enhanced accuracy, flexibility, and robustness in a

rapidly evolving market.
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Appendix

In this appendix basic theorem and results used in the thesis are presented.

A.1 The Normal Random Variable

X is a normal (or Gaussian) variable with parameters µ and σ2, and we write

X ∼ N (µ, σ2),

if X has the density function

fX(t) = 1√
2πσ2

e− (t−µ)2

2σ2 ,

for every t ∈ R. It is not possible to explicitly calculate the distribution function,

but we will soon see how to derive its values. The graph of fX corresponds to a

bell curve with a peak at the level of µ. The average width of the bell is σ. It can

also be shown that

E[X] = µ, Var(X) = σ2.

Now consider the variable

Z = X − µ

σ
.

We note that

E[Z] = E[X] − µ

σ
= 0,
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Var(Z) = 1
σ2 Var(X) = 1.

Let us calculate the distribution function of Z.

FZ(t) = P(Z ≤ t) = P
(

X − µ

σ
≤ t

)
= P(X ≤ σt + µ) = FX(σt + µ).

Consequently, regarding the density of Z, we have

fZ(t) = d

dt
FZ(t) = d

dt
FX(σt + µ) = fX(σt + µ) · σ = 1√

2π
e− t2

2 ,

where we have used the chain rule for differentiation, and the definition of the

density of X ∼ N (µ, σ2) evaluated at the point σt + µ. In particular, we have

obtained that Z ∼ N (0, 1). The variable Z is called the standard normal variable

(or standard Gaussian). Its distribution function is denoted by Φ (instead of FZ)

and is given by

Φ(t) = P(Z ≤ t) =
∫ t

−∞

1√
2π

e− s2
2 ds.

The values of Φ are computed numerically and they are provided in a table (known

as the Gaussian table).

So if X ∼ N (µ, σ2), to compute FX(t) it is enough to compute FZ

(
t−µ

σ

)
.

A.2 Limit Theorems

Proposition A.1 (Law of Large Numbers). Let X1, X2, . . . be a sequence of i.i.d.

random variables, each one with a finite mean µ. Then

P
(

lim
n→∞

X1 + . . . + Xn

n
= µ

)
= 1 ,

or equivalently, almost surely

lim
n→∞

X1 + . . . + Xn

n
= µ .
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Proposition A.2 (Central Limit Theorem). Let X1, X2, . . . be a sequence of i.i.d.

random variables with mean µ < ∞ and variance σ2 < ∞. Defined Sn = ∑n
i=1 Xi

and Zn = Sn−nµ
σ

√
n

its normalization, we have for every t ∈ R

FZn(t) := P(Zn ≤ t) → P(Z ≤ t) for n → ∞ ,

where Z ∼ N (0, 1). Equivalently, Zn converges in distribution to Z ∼ N (0, 1) as

n → ∞.
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