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Introduction

This thesis explores the concept of martingales, a mathematical model used to

describe certain types of betting strategies, particularly in gambling. A martingale

system is a system where a player increases their bet after each loss with the belief

that a single win will recover all previous losses and yield a profit. Although the

simplicity of the system can make it appear appealing, it carries significant risks,

especially because it assumes the player has unlimited capital and that a win is

inevitable.

The martingale strategy has its roots in gambling, where it is commonly ap-

plied in games like roulette. A player, for instance, might bet on red, and if they

lose, they would double their next bet on red, repeating this process until they

win. While this may work in theory, the stakes quickly escalate during long losing

streaks, making it financially unsustainable for most. The mathematical underpin-

nings of this strategy are grounded in the study of stochastic processes, specifically

martingales, which model fair games where the expected value of future outcomes

equals the present value.

Beyond gambling, the martingale strategy has been adopted in financial mar-

kets, especially in forex trading. Traders use the same doubling mechanism after

losses, believing that the market will eventually move in their favor. However,

financial markets introduce additional complexities, such as leverage and market

volatility, which can amplify both the potential rewards and risks. A prolonged
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losing streak in such markets can lead to significant financial damage, often much

faster than in gambling scenarios due to the use of borrowed capital.

This thesis begins by outlining the mathematical foundation of martingales, ex-

plaining their role in stochastic processes and how they differ from related concepts

like supermartingales and submartingales. These variations account for situations

where the system is biased either against or in favor of the player, and understand-

ing these distinctions is key to grasping the broader implications of such strategies.

We will also discuss the Optional Stopping Theorem, which shows why quitting

strategies like martingales cannot turn an unfair game into a fair one.

In addition to their mathematical framework, this thesis examines the practical

applications and limitations of martingale strategies. While they offer a theoretical

promise of recovery, their real-world application is fraught with risks. We will

explore the emotional and psychological impact of using these strategies, as the

growing stakes after losses can create intense stress, leading to irrational decision-

making. Many individuals fall into the Gambler’s Fallacy, believing that after

several losses, a win is more likely, which often leads to further financial strain.

Finally, we will consider variations of the martingale system, such as the anti-

martingale approach, where bets are increased after wins, and fixed martingale

systems, which attempt to control the rapid escalation of bets. While these al-

ternatives offer some risk mitigation, they remain risky overall. By analyzing the

theoretical advantages and real-world pitfalls of martingales, this thesis aims to

provide a comprehensive understanding of why such systems may seem attrac-

tive, but in practice, they can lead to significant financial dangers if not carefully

managed.
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Chapter 1

Martingales

In this chapter, we will explore stochasic processes, which are collections of

random variables that evolves with respect to a change in a parameter such as time.

Specifically, we will focus on martingales, a special class of stochastic processes that

model fair games in the context of gambling.

1.1 Stochastic Processes and Filtration

Suppose we are at the casino and repeat a game many times. We are interest

in tracking the total amount of money won over several rounds. By denoting Xi

as the amount of money won in the i-th round, the total money won in the first n

rounds is given by:

Sn =
n∑

i=1
Xi. (1.1)

Thus, the total amount of money won during the rounds is described by the se-

quence of random variables S1, S2, S3, . . . , Sn, . . .. The sequence of random vari-

ables {Sn}n∈N>0 is an example of a stochastic process because it describes the

evolution of a quantity as the rounds progress. To determine Sn, we need to
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evaluate the values of X1, . . . , Xn. The series of random variables {Xn}n∈N>0 cap-

tures the information we gather throughout the rounds. This series is known as a

filtration.

Generally, a stochastic process consists of a sequence of random variables and

typically describes the progression of a random quantity as a parameter changes,

often representing time or the number of rounds. A filtration is a series of random

variables that embodies the information collected while observing the development

of a stochastic process. In the next section, we will focus on a specific type of

stochastic process called a martingale.

1.2 Martingales, Supermartingales and Submartin-

gales

Suppose we flip a coin many times and each time you win 1 euro if it lands on

heads and lose 1 euro if it lands on tails. Assume you start with an initial fixed

capital S0 > 0 and that the probability of heads is p ∈ [0, 1]. Let Xi denote the

amount of money won in the i-th round. Therefore,

Xi =


1, with probability p,

−1, with probability 1 − p,

(1.2)

and {Xn}n∈N is a family of i.i.d. random variables. Let Sn be the capital after n

rounds. Thus,

Sn = S0 +
n∑

i=1
Xi.

Assume we have finished the n-th round. We want to determine our average capital

at round n + 1. Since we have already played n rounds, we know the exact values

of X1, . . . , Xn. Therefore, we aim to compute

E[Sn+1 | X1, . . . , Xn].
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Note that, since we know the values of X1, . . . , Xn, we also know the value of

Sn = S0 + ∑n
i=1 Xi. Therefore,

Sn+1 = S0 +
n+1∑
i=1

Xi = S0 +
n∑

i=1
Xi + Xn+1 = Sn + Xn+1.

The only unknown part in Sn+1 is Xn+1. So

E[Sn+1 | X1, . . . , Xn] = E[Sn + Xn+1 | X1, . . . , Xn] =

= E[Sn | X1, . . . , Xn] + E[Xn+1 | X1, . . . , Xn].

Since Sn is known when knowing X1, . . . , Xn, then E[Sn | X1, . . . , Xn] = Sn.

Moreover, since {Xn}n∈N > 0 are independent, we have E[Xn+1 | X1, . . . , Xn] =

E[Xn+1]. So the previous equation becomes

E[Sn+1 | X1, . . . , Xn] = E[Sn | X1, . . . , Xn] + E[Xn+1 | X1, . . . , Xn] =

= Sn + E[Xn+1] = Sn + p − (1 − p) = Sn + 2p − 1.

So we have:

• if p = 1
2 , the coin is fair (hence the game is fair since E[Xi] = 0) and

E[Sn+1 | X1, . . . , Xn] = Sn,

that is, the average capital that we will have in the future round is what we

have now. This is the main property of the martingale.

• if p < 1
2 , the coin is not fair and the game is subfair since E[Xi] < 0. Moreover

E[Sn+1 | X1, . . . , Xn] < Sn,

that is, the average capital that we will have in the future round is less than

what we have now. This is the main property of the supermartingale.

So we have:
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• if p = 1
2 , the coin is fair (hence the game is fair since E[Xi] = 0) and

E[Sn+1 | X1, . . . , Xn] = Sn,

that is, the average capital that we will have in the future round is what we

have now. This is the main property of the martingale.

• if p < 1
2 , the coin is not fair and the game is subfair since E[Xi] < 0. Moreover

E[Sn+1 | X1, . . . , Xn] < Sn,

that is, the average capital that we will have in the future round is less than

what we have now. This is the main property of the supermartingale.

• if p > 1
2 , the coin is not fair and the game is superfair since E[Xi] > 0.

Moreover

E[Sn+1 | X1, . . . , Xn] > Sn,

that is, the average capital that we will have in the future round is more

than what we have now. This is the main property of the submartingale.

Let us describe better these stochastic processes. Note that {Xn}n∈N0 repre-

sents a filtration, that is the information that we accumulate during the rounds,

in order to evaluate the stochastic process {Sn}n∈N0 .

Definition 1.1. Given two sequences of random variables {Mn}n∈N0 and {Yn}n∈N0,

we say that {Mn}n∈N0 is a martingale with respect to the filtration {Yn}n∈N0 if

the following three conditions are satisfied:

(i) E[|Mn|] < ∞ for any fixed n ∈ N > 0;

(ii) {Mn}n∈N0 is adapted to the filtration {Yn}n∈N0, that is, knowing the value

of Y1, . . . , Yn, we know also the value of Mn;
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(iii) E[Mn+1 | Y1, . . . , Yn] = Mn.

Definition 1.2. Given two sequences of random variables {Mn}n∈N0 and {Yn}n∈N0,

we say that {Mn}n∈N0 is a supermartingale with respect to the filtration {Yn}n∈N0

if the following three conditions are satisfied:

(i) E[|Mn|] < ∞ for any fixed n ∈ N > 0;

(ii) {Mn}n∈N0 is adapted to the filtration {Yn}n∈N0, that is, knowing the value of

Y1, . . . , Yn, we know also the value of Mn;

(iii) E[Mn+1 | Y1, . . . , Yn] ≤ Mn.

Definition 1.3. Given two sequences of random variables {Mn}n∈N0 and {Yn}n∈N0,

we say that {Mn}n∈N0 is a submartingale with respect to the filtration {Yn}n∈N0

if the following three conditions are satisfied:

(i) E[|Mn|] < ∞ for any fixed n ∈ N > 0;

(ii) {Mn}n∈N0 is adapted to the filtration {Yn}n∈N0, that is, knowing the value of

Y1, . . . , Yn, we know also the value of Mn;

(iii) E[Mn+1 | Y1, . . . , Yn] ≥ Mn.

Note that if {Mn}n∈N>0 is a supermartingale and a submartingale, both with

respect to the filtration {Yn}n∈N>0, then {Mn}n∈N>0 is a martingale with respect

to the filtration {Yn}n∈N>0.

Proposition 1.2.1. Given two sequences of random variables {Mn}n∈N>0 and

{Yn}n∈N>0, we can state the following:

• if {Mn}n∈N>0 is a martingale with respect to the filtration {Yn}n∈N>0, then

E[Mn] remains constant for all n, meaning

E[Mn+1] = E[Mn] = · · · = E[M1];
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• if {Mn}n∈N>0 is a supermartingale with respect to the filtration {Yn}n∈N>0,

then E[Mn] is non-increasing as n increases, meaning

E[Mn+1] ≤ E[Mn] ≤ · · · ≤ E[M1];

• if {Mn}n∈N>0 is a submartingale with respect to the filtration {Yn}n∈N>0, then

E[Mn] is non-decreasing as n increases, meaning

E[Mn+1] ≥ E[Mn] ≥ · · · ≥ E[M1].

Proof. If {Mn}n∈N>0 is a martingale with respect to the filtration {Yn}n∈N>0, then

by condition (iii) in Definition 1.1, we have

Mn = E[Mn+1 | Y1, . . . , Yn].

Taking the expectation of both sides of this equality gives us

E[Mn] = E[E[Mn+1 | Y1, . . . , Yn]].

Using the Tower Property for the second member of the above identity, we get

E[Mn] = E[Mn+1].

Iterating this identity up to n = 1, we obtain the thesis. For the cases of a

supermartingale and a submartingale, the computation is identical, but we start

from property (iii) in Definition 1.2 and Definition 1.3, respectively.

Example 1.1. Suppose to repeat the same wager many times, and at each turn

you can win a euros (where a > 0) with probability p, lose b euros (where b > 0)

with probability q, or break even with probability r, where p + q + r = 1. We denote

by Xi the amount won in the i-th round, that is

Xi =



a, with probability p,

0, with probability r,

−b, with probability q.
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and {Xn}n∈N0 is a sequence of independent and identically distributed random

variables. Denote by Sn the total capital obtained in n rounds and by S0 the initial

capital (that we assume to be a fixed positive constant). Thus,

Sn = S0 +
n∑

i=1
Xi.

We want to investigate the stochastic process {Sn}n∈N0 in order to verify if it is

a (super/sub)martingale with respect to the filtration {Xn}n∈N0. Note first that

applying the Triangular Inequality (i.e., Proposition 3.2.4) we have

E[|Sn|] ≤ E
[∣∣∣∣∣S0 +

n∑
i=1

Xi

∣∣∣∣∣
]

= S0 +
n∑

i=1
E[|Xi|],

(1.3)

where we have used the fact that S0 > 0 by initial assumption. Since {Xn}n∈N0

are identically distributed, they also have the same expectation and hence the above

expression becomes

E[|Sn|] ≤ S0 + nE[|X1|], (1.4)

Note that

E[|X1|] = |a| · p + |0| · r + | − b| · q = ap + bq, (1.5)

where we have used the fact that a, b > 0 and hence −b is negative and its absolute

value is b. So we have

E[|Sn|] ≤ S0 + nE[|X1|] = S0 + n · (ap + bq) < ∞, (1.6)

for any fixed n ∈ N0. So we have proved the first property of (super/sub)martingales.

Let us investigate the second one: we have to verify that, given the values of

X1, . . . , Xn, we know the value of Sn, that is {Sn}n∈N0 is adapted to the filtration

{Xn}n∈N0. This is true since, given the values of X1, . . . , Xn, to compute Sn it is

enough to compute S0 + ∑n
i=1 Xi (recall that S0 is a fixed constant that we know
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from the start). So we have validated the second property. Let us now examine

the third one, that is, we have to investigate E[Sn+1|X1, . . . , Xn]. Note that, since

we know the values of X1, . . . , Xn, we also know the value of Sn = S0 + ∑n
i=1 Xi.

Hence, since

Sn+1 = S0 +
n+1∑
i=1

Xi

= S0 +
n∑

i=1
Xi + Xn+1

= Sn + Xn+1,

(1.7)

the only unknown part in Sn+1 is Xn+1. So

E[Sn+1|X1, . . . , Xn] = E[Sn + Xn+1|X1, . . . , Xn]

= E[Sn|X1, . . . , Xn] + E[Xn+1|X1, . . . , Xn].
(1.8)

Since Sn is known when knowing X1, . . . , Xn, then E[Sn|X1, . . . , Xn] = Sn. More-

over, since {Xn}n∈N0 are independent, we have E[Xn+1|X1, . . . , Xn] = E[Xn+1].

So the previous equation becomes

E[Sn+1|X1, . . . , Xn] = E[Sn|X1, . . . , Xn] + E[Xn+1|X1, . . . , Xn]

= Sn + E[Xn+1]

= Sn + ap − bq.

(1.9)

So

• if E[X1] = ap− bq = 0, {Sn}n∈N0 is a martingale with respect to the filtration

{Xn}n∈N0;

• if E[X1] = ap − bq < 0, {Sn}n∈N0 is a supermartingale with respect to the

filtration {Xn}n∈N0;

• if E[X1] = ap − bq > 0, {Sn}n∈N0 is a submartingale with respect to the

filtration {Xn}n∈N0.
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Note that the above considerations are independent of the probability of a tie r.

Example 1.2. We consider a slight modification of the previous example: suppose

that at each round you have to pay a fee that equals the expected gain in each round.

More precisely, our gain after n rounds is

Sn = S0 +
n∑

i=1
Xi − n · (ap − bq), (1.10)

where ap − bq is the fee paid in each round. We want to demonstrate that the

process {Sn}n∈N0 is a martingale with respect to the filtration {Xn}n∈N0 for any

possible value for a, b, p, q, r. Note first that by applying the Triangular Inequality

we have

E[|Sn|] ≤ E
[∣∣∣∣∣S0 +

n∑
i=1

Xi + |n · (ap − bq)|
∣∣∣∣∣
]

= S0 +
n∑

i=1
E[|Xi|] + n · |ap − bq|,

(1.11)

where we have employed the fact that S0 > 0 by initial assumption. Since {Xn}n∈N0

are uniformly distributed, they also have the same expectation, and hence the above

expression becomes

E[|Sn|] ≤ S0 + nE[|X1|] + n · |ap − bq|, (1.12)

Note that

E[|X1|] = |a| · p + |0| · r + | − b| · q = ap + bq, (1.13)

where we have utilized the fact that a, b > 0 and hence −b is negative and its

magnitude is b. So we have

E[|Sn|] ≤ S0 + nE[|X1|] = S0 + n · (ap + bq) + n · |ap − bq| < ∞, (1.14)

for any fixed n ∈ N0. So we have proven the first property of (super/sub)martingales.

Let us search for the second one: we need to verify that, knowing the values of
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X1, . . . , Xn, we know the value of Sn, that is {Sn}n∈N0 is adapted to the filtration

{Xn}n∈N0. This is true since, given the values of X1, . . . , Xn, to compute Sn it is

sufficient to compute S0 + ∑n
i=1 Xi − n · (ap − bq) (recall that S0 is a fixed con-

stant that we know from the beginning). So we have validated the second property.

Let us now examine the third one, that is, we need to study E[Sn+1|X1, . . . , Xn].

Note that, since we know the values of X1, . . . , Xn, we also know the value of

Sn = S0 + ∑n
i=1 Xi − n · (ap − bq). Hence, since

Sn+1 = S0 +
n+1∑
i=1

Xi − (n + 1)(ap − bq)

= S0 +
n∑

i=1
Xi + Xn+1 − (ap − bq) − n(ap − bq)

= Sn + Xn+1 − (ap − bq),

(1.15)

the only unknown part in Sn+1 is Xn+1. So

E[Sn+1|X1, . . . , Xn] = E[Sn + Xn+1 − (ap − bq)|X1, . . . , Xn]

= E[Sn|X1, . . . , Xn] + E[Xn+1|X1, . . . , Xn] − (ap − bq).

(1.16)

Since Sn is known when knowing X1, . . . , Xn, then E[Sn|X1, . . . , Xn] = Sn. Fur-

thermore, since {Xn}n∈N0 are independent, we have E[Xn+1|X1, . . . , Xn] = E[Xn+1].

So the previous equation becomes

E[Sn+1|X1, . . . , Xn] = E[Sn|X1, . . . , Xn] + E[Xn+1|X1, . . . , Xn] − (ap − bq)

= Sn + E[Xn+1] − (ap − bq)

= Sn + ap − bq − (ap − bq)

= Sn.

(1.17)

So we conclude that the stochastic process {Sn}n∈N0 defined previously is a mar-

tingale with respect to the filtration {Xn}n∈N0 for any possible value of a, b, p, q, r.
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1.3 Optional Stopping Theorem

Let us consider the example discussed in (1.2) and define τ as the first time in

which we get head, that is the first round i such that Xi = 1. Obviously τ is a

random variable since depends on the outcomes of the tossings. Note that τ can

be rewritten as

τ = inf{i ∈ N>0|Xi = 1} (1.18)

from which we get

{τ = k} = {X1 ̸= 1, X2 ̸= 1, . . . , Xk−1 ̸= 1, Xk = 1}. (1.19)

Indeed τ = k if and only if in the first k − 1 tossings we have not got head, while

at the k-th round we got head. We understand also that to establish if τ = k, we

need information up to round k. This last property defines what we call a stopping

time.

Definition 1.4. Given a filtration {Xn}n∈N>0, we say that a discrete random vari-

able τ is a stopping time with respect to the filtration {Xn}n∈N>0 if it assumes

values on N and to establish the occurrence of the event {τ = k} it is necessary

to know only the values of X1, . . . , Xk.The random variable τ in 1.18 is a stop-

ping time with respect to the filtration {Xn}n∈N>0 since 1.19 holds. If we instead

consider the random variable σ defined as the last time in which we get head, we

get

{σ = k} = {Xk = 1, Xk+1 ̸= 1, Xk+2 ̸= 1, . . .}. (1.20)

Indeed σ = k if and only if at the k-th round we get head and we have no

heads in the future rounds. Since to establish the occurrence of the event {σ =

k} we need to know future information (with respect to the k-th round), that is

Xk, Xk+1, Xk+2, . . ., we have that σ is not a stopping time with respect to the fil-
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tration {Xn}n∈N>0. The next result shows the distribution of a particular stopping

time. In particular this will prove that such a stopping time has finite expectation.

Proposition 1.3.1. Given a filtration {Xn}n∈N>0 of i.i.d. random variables con-

sider a value a ∈ Im(Xn), that is a is a value assumed by {Xn}n∈N>0. Let

0 < p = P (Xn = a) (and hence P (Xn ̸= a) = 1 − p). Define

τ = inf{k ∈ N>0 | Xk = a},

σ = inf{k ∈ N>0 | Xk ̸= a}.

Then τ and σ are both stopping times with respect to the filtration {Xn}n∈N>0 and

τ ∼ Geom(p), σ ∼ Geom(1 − p).

Consequently, we have E[τ ] = 1
p

< ∞ and E[σ] = 1
1−p

< ∞.

Proof. Note that

{τ = n} = {X1 ̸= a, X2 ̸= a, . . . , Xn−1 ̸= a, Xn = a},

{σ = n} = {X1 = a, X2 = a, . . . , Xn−1 = a, Xn ̸= a}.

Then

P (τ = n) = P (X1 ̸= a, X2 ̸= a, . . . , Xn−1 ̸= a, Xn = a),

P (σ = n) = P (X1 = a, X2 = a, . . . , Xn−1 = a, Xn ̸= a).

Since {Xn}n∈N>0 are i.i.d., then

P (τ = n) = P (X1 ̸= a) · P (X2 ̸= a) · . . . · P (Xn−1 ̸= a) · P (Xn = a)

= (1 − p)n−1 · p,
(1.21)

P (σ = n) = P (X1 = a) · P (X2 = a) · . . . · P (Xn−1 = a) · P (Xn ̸= a)

= pn−1 · (1 − p).
(1.22)
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Since P (Xi = a) = p and P (Xi ̸= a) = 1 − p, we have

P (τ = n) = (1 − p)n−1 · p = (1 − p)n−1 · p,

P (σ = n) = pn−1 · (1 − p) = pn−1 · (1 − p),

from which we get the thesis.

Remark 1. Note that τ and σ are not bounded random variables; that is, we cannot

claim with certainty that τ or σ are less than some specific constant. Indeed, a

geometric random variable has image N>0, which is not a bounded set. However,

τ and σ have finite expectations, meaning they are finite on average. Hence, we

can conclude that τ and σ are not bounded random variables, but they are finite on

average. Being geometric random variables, we can also assert that they are finite

with probability one. Indeed,

P(τ < ∞) =
∞∑

n=1
P(τ = n) =

∞∑
n=1

(1 − p)n−1p = p
∞∑

n=1
(1 − p)n−1.

We can rewrite the above sum as

p
∞∑

n=1
(1 − p)n−1 = p

∞∑
j=0

(1 − p)j = p · 1
1 − (1 − p) = 1,

where in the last identity we used the fact that, if |a| < 1, then ∑∞
n=0 an = 1

1−a
.

Similar considerations apply to σ; it is sufficient to swap p with 1 − p.

Refer back to Proposition 1.2.1. This proposition establishes a relationship

between the stochastic process at a fixed time n and at time 0. It is natural to

inquire whether such a relationship holds for a random time τ instead of the fixed

time n. The answer is provided by the Optional Stopping Theorem, which we state

in the context of martingales, supermartingales, and submartingales. Note that in

all three cases, the assumptions are the same.

Proposition 1.3.2. (Optional Stopping Theorem for Martingales). Let {Mn}n∈N

be a martingale and let τ be a stopping time both with respect to the same filtration

{Xn}n∈N. Assume that one of the following hypotheses is satisfied:
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(a) ∃C > 0 such that P(τ < C) = 1, that is τ is bounded almost surely;

(b) P(τ < ∞) = 1 and ∃C > 0 such that ∀n ∈ N it holds P(|Mτ | ≤ C) = 1,

that is τ is finite almost surely and {Mn}n∈N is uniformly bounded almost

surely. The word "uniformly" is referred to the fact that the constant C does

not depend on n;

(c) E[τ ] < ∞ and ∃C > 0 such that ∀n ∈ N it holds P(|Mτ∧(n+1) − Mτ∧n| ≤

C) = 1, that is τ is finite in average and {Mn}n∈N has uniformly bounded

increments almost surely. The word "uniformly" is referred to the fact that

the constant C does not depend on n;

(d) P(τ < ∞) = 1 and ∀n ∈ N, Mn ≥ 0, that is τ is finite almost surely and

{Mn}n∈N is a non-negative process.

Then E[Mτ ] < ∞ and

E[Mτ ] = E[M0].

Proposition 1.3.3. Let {Mn}n∈N be a supermartingale and let τ be a stopping

time both with respect to the same filtration {Xn}n∈N. Assume that one of the

following hypotheses is satisfied

(a) ∃C > 0 such that P(τ < C) = 1, that is τ is bounded almost surely;

(b) P(T < ∞) = 1 and ∃C > 0 such that ∀n ∈ N it holds P(|Mn| ≤ C) = 1,

that is τ is finite almost surely and {Mn}n∈N is uniformly bounded almost

surely. The word “uniformly” is referred to the fact that the constant C does

not depend on n;

(c) E[τ ] < ∞ and ∃C > 0 such that ∀n ∈ N it holds P(|Mn+1 − Mn| ≤ C) = 1,

that is τ is finite in average and {Mn}n∈N has uniformly bounded increments
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almost surely. The word “uniformly” is referred to the fact that the constant

C does not depend on n;

(d) P(τ < ∞) = 1 and ∀n ∈ NMn ≥ 0, that is τ is finite almost surely and

{Mn}n∈N is a non-negative process.

Then E[Mτ ] < ∞ and

E[Mτ ] ≤ E[M0].

Proposition 1.3.4. Let {Mn}n∈N be a submartingale and let τ be a stopping time

both with respect to the same filtration {Xn}n∈N. Assume that one of the following

hypotheses is satisfied

(a) ∃C > 0 such that P(τ < C) = 1, that is τ is bounded almost surely;

(b) P(T < ∞) = 1 and ∃C > 0 such that ∀n ∈ N it holds P(|Mn| ≤ C) = 1,

that is τ is finite almost surely and {Mn}n∈N is uniformly bounded almost

surely. The word “uniformly” is referred to the fact that the constant C does

not depend on n;

(c) E[τ ] < ∞ and ∃C > 0 such that ∀n ∈ N it holds P(|Mn+1 − Mn| ≤ C) = 1,

that is τ is finite in average and {Mn}n∈N has uniformly bounded increments

almost surely. The word ‚Äúuniformly‚Äù is referred to the fact that the

constant C does not depend on n;

(d) P(τ < ∞) = 1 and ∀n ∈ NMn ≥ 0, that is τ is finite almost surely and

{Mn}n∈N is a non-negative process.

Then E[Mτ ] < ∞ and

E[Mτ ] ≥ E[M0].
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Example 1.3. Consider the sequence {Xn}n∈N>0 defined as in (3.1) and define

Sn = ∑n
i=1 Xi. Let us consider the stopping time

τ = inf{n ≥ 0 | Xn = 1}.

We would like to understand if it is possible to apply the Optional Stopping Theorem

to understand the relation between E[Sτ ] and E[S1]. Hence, we have to verify if

one of the hypotheses (a), (b), (c), or (d) is verified by the process {Sn}n∈N>0 and

by the stopping time τ .

Note that τ is a stopping time of the form described in Proposition 1.3.1, and

hence we know that τ is a geometric random variable of parameter P(Xi = 1) =

p > 0. By Remark 1 we have that τ is a finite random variable almost surely,

but it is not bounded. So we have that P(τ < ∞) = 1 and there does not exist a

constant C > 0 (independent of n) such that P(τ ≤ C) = 1. Hence, we know that

hypothesis (a) of the Optional Stopping Theorem is not verified.

Let us try to verify hypothesis (b). We have already said that P(τ < ∞) = 1

and hence we have to verify if there exists a constant C independent of n such

that P(|Sn| < C) = 1. Note that Sn = ∑n
i=1 Xi and hence the values that Sn may

assume oscillate from its minimum (obtained when Xi = −1 for all i = 1, . . . , n)

and its maximum (obtained when Xi = 1 for all i = 1, . . . , n). So −n ≤ Sn ≤ n,

and hence |Sn| ≤ n. So we should define C = n, in order to have P(|Sn| ≤ C) = 1,

but such a C depends on n and hence it is not valid. This shows that the hypothesis

(b) of the Optional Stopping Theorem is not satisfied.

Let us see if hypothesis (c) is verified. By Proposition 1.3.1 we know E[τ ] <

∞. So we are left to see if there exists C > 0 (independent of n) such that

P(|Sn+1 − Sn| ≤ C) = 1. Note that

Sn+1 − Sn =
n+1∑
i=1

Xi −
n∑

i=1
Xi = Xn+1 +

n∑
i=1

Xi −
n∑

i=1
Xi = Xn+1,
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from which

|Sn+1 − Sn| = |Xn+1| ≤ max{|1|, | − 1|} = 1.

So if we choose C = 1, we have |Sn+1 − Sn| ≤ C for any n ∈ N>0 and hence

P(|Sn+1 − Sn| ≤ C) = 1

for any n ∈ N>0. Note that this time the constant C = 1 is independent of n and

then it is a valid constant for the theorem. So the hypothesis (c) of the Optional

Stopping Theorem is verified and we can conclude that

• if p = 1
2 (that implies that {Sn}n∈N>0 is a martingale with respect to the

filtration {Xn}n∈N>0), we get

E[Sτ ] = E[S1] = E[X1] = 0;

• if p ≤ 1
2 (that implies that {Sn}n∈N>0 is a supermartingale with respect to the

filtration {Xn}n∈N>0), we get

E[Sτ ] ≤ E[S1] = E[X1] = 1 · p − 1 · (1 − p) = 2p − 1;

• if p ≥ 1
2 (that implies that {Sn}n∈N>0 is a submartingale with respect to the

filtration {Xn}n∈N>0), we get

E[Sτ ] ≥ E[S1] = E[X1] = 1 · p − 1 · (1 − p) = 2p − 1.

In particular, it can be noted for example that, if p ≤ b
a+b

, it is not possible to have

E[Sτ ] > (a + b)p − b = E[X1].

For completeness, note that hypothesis (d) of the Optional Stopping Theorem

is not verified by the process since {Sn}n∈N>0 is not a non-negative process, that is

it may happen that Sn < 0 for some n (for example if X1 = . . . = Xn = −1 and

hence Sn = −n).
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In the context of gambling theory, the Optional Stopping Theorem is also

referred to as the Principle of Conservation of Fairness in a game. Essentially,

when given a game, a stopping time can be viewed as a quitting strategy. According

to this interpretation, the Principle of Conservation of Fairness asserts that if the

game meets any of the conditions (a), (b), (c), or (d), no quitting strategy exists

that can turn an unfair game into a fair one. For example, in the case of a

supermartingale, we observe that E[Sτ ] ≤ E[S1], which implies that no stopping

time τ satisfying the theorem’s conditions can result in E[Sτ ] > E[S1]. In upcoming

sections, we will explore betting strategies and how the Martingale system avoids

the Principle of Conservation of Fairness, allowing for the possibility of E[Sτ ] >

E[S1] even when {Sn}n∈N0 is a supermartingale.
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Chapter 2

Betting System

Imagine placing a bet on a game and let X represent the amount of money

gained or lost per unit bet. Suppose we continue to place the same bet multiple

times, and let X1, X2, . . . represent the amount of money won or lost per unit bet

in each round (for instance, if we place a bet of 7 in the third round, we would

win 7X3). It is clear that the random variables X1, X2, . . . are independent, as the

mechanics of the game do not depend on the previous rounds. Let’s consider the

scenario where, at round n, a certain amount of money Bn is bet, which naturally

depends on the outcomes of the previous rounds, specifically X1, . . . , Xn−1. In this

case, we can express:

B1 = g1 > 0, (2.1)

Bn = gn(X1, . . . , Xn−1) for n ≥ 2, (2.2)

where gn represents a decision rule that takes X1, . . . , Xn−1 as inputs and de-

termines the amount of money to be bet in round n. B1 is a fixed positive amount

g1 > 0 since the amount to bet in the first round is determined in a deterministic

way. Since Xn represents the amount of money won in round n per unit bet, and

Bn denotes the amount bet in the n-th round, the total amount of money won
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in the n-th round is BnXn. The sequences of variables {Xn}n∈N0 and {Bn}n∈N0

constitute a betting system. If we denote by Fn the total amount of money we

have at the end of the n-th round, then we have:

Fn = Fn−1 + BnXn for n ≥ 1, (2.3)

which, by iteration, becomes:

Fn = F0 +
n∑

i=1
BiXi, (2.4)

where F0 represents the initial amount of money (and thus is deterministic).

It is reasonable to assume that we cannot bet more than what we have in each

round, that is, Bn ≤ Fn−1 for n ≥ 1. We are interested in studying the sequence

{Fn}n∈N with respect to the filtration {Xn}n∈N. We assume that Xi takes on a

finite set of values to ensure that E[|Xi|] < ∞. The following result establishes

the relationship between (super/sub) fair games and (sub/super) martingales.

Proposition 2.0.1. Let {Xn}n∈N>0 be a sequence of i.i.d. random variables with

E[|Xi|] < ∞. Let {Bn}n∈N>0 be a sequence of random variables that satisfies 2.1.

If we define the sequence {Fn}n∈N as in 2.4, then:

• If E[X1] = 0, then {Fn}n∈N is a martingale with respect to the filtration

{Xn}n∈N>0.

• If E[X1] ≥ 0, then {Fn}n∈N is a submartingale with respect to the filtration

{Xn}n∈N>0.

• If E[X1] ≤ 0, then {Fn}n∈N is a supermartingale with respect to the filtration

{Xn}n∈N>0.

Proof. We begin by showing that:
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(i) E[|Fn|] < ∞ for any fixed n;

(ii) The sequence {Fn}n∈N is adapted to {Xn}n∈N>0 (that is, Fn is measurable

with respect to X1, . . . , Xn).

Finally, we need to explore the relationship between E[Fn+1|X1, . . . , Xn] and

Fn. Let’s begin by proving (i). Notice that by the triangular inequality:

E[|Fn|] = E
[∣∣∣∣∣F0 +

n∑
i=1

BiXi

∣∣∣∣∣
]

≤ E
[
|F0| +

∣∣∣∣∣
n∑

i=1
BiXi

∣∣∣∣∣
]

= |F0| +
n∑

i=1
E[|Bi| · |Xi|] = |F0| +

n∑
i=1

E[|Bi|] · E[|Xi|],
(2.5)

where equation 2.5 is derived. In the final inequality, we utilized the fact that F0

is a constant. Additionally, we leveraged the independence of Bi from Xi due to

Bi = gi(X1, . . . , Xi−1), which gives us the relationship:

E[|Bi| · |Xi|] = E[|Bi|] · E[|Xi|].

Note that Bi = gi(X1, . . . , Xi−1). Since Xi takes on only a finite number of possible

values (let‚Äôs say k values), the vector (X1, . . . , Xi−1) also takes on a finite number

of values (specifically ki−1 values). Therefore, gi(X1, . . . , Xi−1) also takes on a finite

number of values (at most ki−1), implying that Bi is bounded by some constant

Ki < ∞. Consequently, we have:

E[|Fn|] ≤ |F0| + E[|X1|]
n∑

i=1
Ki ≤ |F0| + E[|X1|] · n max

1≤i≤n
Ki < ∞, (2.6)

which completes the bound. The final inequality results from the fact that F0

and E[|X1|] are fixed values, whereas K1, . . . , Kn are finite constants, making their

maximum finite as well. This completes the proof of (i). Now, let’s prove (ii).

Recall the definition of Fn. Observe that since Bi = gi(X1, . . . , Xi−1), to deter-

mine Bi, it suffices to know X1, . . . , Xi−1. Therefore, to determine B1, . . . , Bn,
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it suffices to know X1, . . . , Xn−1. Consequently, by (3.11), we see that to deter-

mine Fn, it suffices to know X1, . . . , Xn. This establishes that the process {Fn}n∈N

is adapted to the filtration {Xn}n∈N>0 , proving (ii). Next, we need to compute

E[Fn+1|X1, . . . , Xn]. Recall that Bi = gi(X1, . . . , Xi−1). Therefore, we have:

E[Bi|X1, . . . , Xn] = Bi for i = 1, . . . , n + 1, (2.7)

E[Xi|X1, . . . , Xn] = Xi for i = 1, . . . , n. (2.8)

This leads us to:

E[BiXi|X1, . . . , Xn] = BiXi for i = 1, . . . , n. (2.9)

Therefore, we have:

E[Fn+1|X1, . . . , Xn] = E
[
F0 +

n+1∑
i=1

BiXi

∣∣∣∣X1, . . . , Xn

]
=

= F0 +
n∑

i=1
BiXi + E[Bn+1Xn+1|X1, . . . , Xn].

(2.10)

Finally:

= Fn + E[Bn+1Xn+1|X1, . . . , Xn] = Fn + Bn+1E[Xn+1|X1, . . . , Xn]. (2.11)

Since {Xn}n∈N>0 is a sequence of independent random variables, we have:

E[Xn+1|X1, . . . , Xn] = E[Xn+1] = E[X1] (i.i.d. distribution).

Thus, it follows that:

E[Fn+1|X1, . . . , Xn] = Fn + Bn+1E[X1].

Given that Bn+1 ≥ 0, we can conclude:

• E[Fn+1|X1, . . . , Xn] = Fn if E[X1] = 0;

• E[Fn+1|X1, . . . , Xn] ≥ Fn if E[X1] ≥ 0;

• E[Fn+1|X1, . . . , Xn] ≤ Fn if E[X1] ≤ 0.

This completes the proof.
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2.1 Martingale System

Suppose a gambler repeats the same bet multiple times. Assume that the

amount of money won for a unit bet at round i is given by

Xi =


1, if we win the i-th bet,

−1, if we lose the i-th bet.

and that

P(Xi = 1) = p ∈
(

0,
1
2

)
, P(Xi = −1) = 1 − p.

In this system, the gambler doubles their bet size after each loss and stops betting

after the first win.

We define the stopping time τ (with respect to the filtration {Xn}n∈N>0) as the

first time a win occurs. Therefore, we have

{τ = k} = {X1 = −1, . . . , Xk−1 = −1, Xk = 1}.

Given an initial bet B1 > 0 and an initial capital F0 > 0, and denoting by Bi the

amount of money bet in round i and by Fi our total capital at the end of round i,

we have:

F1 =


F0 + B1, if X1 = 1 (i.e., τ = 1),

F0 − B1, if X1 = −1 (i.e., τ > 1).

If we lose the first round (i.e., τ > 1), then:

F2 =


F0 − B1 + B2, if X1 = −1, X2 = 1 (i.e., τ = 2),

F0 − B1 − B2, if X1 = −1, X2 = −1 (i.e., τ > 2).

If we lose the first two rounds (i.e., τ > 2), then:

F3 =


F0 − B1 − B2 + B3, if X1 = −1, X2 = −1, X3 = 1 (i.e., τ = 3),

F0 − B1 − B2 − B3, if X1 = −1, X2 = −1, X3 = −1 (i.e., τ > 3).
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In general, if we lose the first n − 1 rounds (i.e., τ > n − 1), then:

Fn =


F0 − B1 − · · · − Bn−1 + Bn, if X1 = −1, . . . , Xn−1 = −1, Xn = 1 (i.e., τ = n),

F0 − B1 − · · · − Bn, if X1 = −1, X2 = −1, . . . , Xn = −1 (i.e., τ > n).

Note that if τ ≥ n, since each time we lose we double the bet size, we have:

Bn = 2Bn−1

and by iteration of this formula, we obtain:

Bn = 2Bn−1 = 22Bn−2 = 23Bn−3 = · · · = 2n−1B1.

So, we can express Fn as:

Fn =


F0 − B1 − 2B1 − 22B1 − · · · − 2n−2B1 + 2n−1B1, if τ = n,

F0 − B1 − 2B1 − 22B1 − · · · − 2n−2B1 − 2n−1B1, if τ > n,

which can be simplified as:

Fn =


F0 − B1(1 + 2 + 22 + · · · + 2n−2) + 2n−1B1, if τ = n,

F0 − B1(1 + 2 + 22 + · · · + 2n−2 + 2n−1), if τ > n,

That is:

Fn =


F0 − B1 · ∑n−2

i=0 2i + 2n−1B1, if τ = n,

F0 − B1 · ∑n−1
i=0 2i, if τ > n.

Recall that for any a ∈ R \ {1},
n∑

i=0
ai = an+1 − 1

a − 1 .
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We apply the above formula to express Fn. Thus, we have:

Fn =


F0 − B1 · 2n−1−1

2−1 + 2n−1B1 = F0 − 2n−1B1 + B1 + 2n−1B1, if τ = n,

F0 − B1 · 2n−1−1
2−1 = F0 − 2nB1 + B1, if τ > n,

which implies:

Fn =


F0 + B1, if τ = n,

F0 + B1 − 2nB1, if τ > n.

So, we deduce that:

P(Fτ = F0 + B1) = 1,

which indicates that when we stop, with probability 1, we have recovered all the

capital that we have bet during the rounds and won our initial bet B1. Moreover, if

τ > n, we can quantify the amount of money that we are losing, which is B1−2nB1,

a quantity that decreases exponentially. Additionally, since P(Fτ = F0 + B1) = 1,

we have:

E[Fτ ] = E[F0 + B1] ≥ B1 > 0 ⇒ E[Fτ ] ≥ E[F0].

This is precisely the opposite conclusion of the Optional Stopping Theorem for

supermartingales. Indeed, the capital process {Fn}n∈N forms a supermartingale

with respect to the filtration {Xn}n∈N>0 (because P(Xi = 1) = p < 1
2 and P(Xi =

−1) = 1−p). This conclusion does not contradict the Optional Stopping Theorem

for supermartingales; rather, it arises because the assumptions of the theorem are

not satisfied. Specifically, since τ represents the first round in which we win and

given that the individual bets are i.i.d., we have τ ∼ Geom(p), implying that

there exists no C > 0 such that P(τ < C) = 1. Moreover, it is also impossible to

find C > 0 (independent of n) such that P(|Fn| < C) = 1 because while we are
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losing rounds, our capital decreases exponentially fast, and hence |Fn| increases

exponentially fast. Note also that while we are losing rounds, the increments of

{Fn}n∈N increase exponentially fast. Indeed,

|Fn+1 − Fn| = |F0 + B1 − 2n+1B1 − (F0 + B1 − 2nB1)|

= |B1(2n − 2n+1)|

= B1 · 2n · |1 − 2| = 2nB1.

(2.12)

So, it is not possible to find a constant C > 0 such that P(|Fn+1 − Fn| ≤ C) = 1.

Finally, for any fixed value of F0, the process obviously does not satisfy Fn ≥ 0 for

all n ∈ N. Therefore, all the hypotheses of the Optional Stopping Theorem fail,

and as a result, this betting strategy allows us to have E[Fτ ] > E[F0] even though

{Fn}n∈N is a supermartingale with respect to the filtration {Xn}n∈N>0 . Regarding

the application of the martingale system, it is typically applied to situations such

as betting on even or odd (or equivalently red or black) in roulette, where the

probability p of winning is less than 1
2 , but not significantly so. For example,

when betting on even numbers in European roulette, the probability of winning is

p = 18
37 ≈ 0.49. Note also that since τ ∼ Geom(p), we have:

P(τ > k) = (1 − p)k.

Since τ > k implies that we have lost for k consecutive rounds (and this occurs

independently each time with probability 1 − p), if we bet on even numbers at the

European roulette, we have:

P(τ > k) =
(19

37

)k

,
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and hence:
P(τ > 1) ≈ 0.51, P(τ > 2) ≈ 0.26,

P(τ > 3) ≈ 0.14, P(τ > 4) ≈ 0.07,

P(τ > 5) ≈ 0.04, P(τ > 6) ≈ 0.02,

P(τ > 7) ≈ 0.01, P(τ > 8) ≈ 0.005.

So, for example, if we are able to maintain a capital F0 that guarantees we avoid

ruin before round 7, we have a 99% probability of winning the initial bet B1.

2.2 Applications of the martingale system

The Martingale system was first conceptualized in the context of gambling,

particularly in games like roulette. The core premise is straightforward: after

each loss, the gambler doubles their bet, ensuring that a single win will recover all

previous losses plus a profit equal to the original stake. For example, if a gambler

starts with a $10 bet and loses, they would bet $20 on the next round. If they

lose again, the next bet would be $40, and so on. The strategy hinges on the

assumption that a win is inevitable and that the gambler has sufficient capital to

withstand losing streaks.

Translating this strategy to financial markets, particularly in forex trading,

involves increasing the position size after each loss in the hope that a subsequent

trade will recover all previous losses and yield a profit. Unlike gambling, financial

markets offer various instruments and leverage options, making the Martingale

system both more versatile and riskier.

2.2.1 Forex trading

In forex trading, the Martingale strategy involves doubling the size of a trade

after each loss. For instance, a trader might start with a position of 1 lot. If the
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trade results in a loss, the next trade would be 2 lots, followed by 4 lots after

another loss, and so forth. The objective is to recover all previous losses with a

single winning trade.

Example 2.1. • Initial Trade: A trader buys 1 lot of EUR/USD at 1.1000

with a stop loss at 1.0950 (a loss of 50 pips).

• First Loss: EUR/USD drops to 1.0950. The trader doubles the position to

2 lots, now risking 100 pips.

• Second Loss: EUR/USD drops to 1.0900. The trader doubles again to 4

lots, risking 200 pips.

• Third Loss: EUR/USD drops to 1.0700. At this point, the required position

size would be 8 lots, risking 400 pips.

If the trend continues downward, the trader may quickly face margin calls or

account liquidation, resulting in substantial losses.

2.2.2 Investing

When applied to investing, the Martingale system can involve increasing the

investment amount in a particular asset after each loss. For example, an investor

might purchase shares of a stock, and if the stock price falls, they would purchase

additional shares to lower the average cost per share, anticipating that the stock

will eventually rebound.

Example 2.2. • Initial Investment: An investor buys 10 shares of a stock

at $50 each.

• First Loss: The stock price falls to $45. The investor buys an additional

20 shares.
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• Second Loss: The stock price drops to $40. The investor buys 40 more

shares.

• Third Loss: The stock price falls to $35. The investor buys 80 shares.

In this scenario, the investor has progressively doubled their holdings in a de-

clining stock, exponentially increasing their exposure. If the stock continues to fall,

the investor’s losses can accumulate rapidly.

2.2.3 Theoretical advantages

One of the primary attractions of the Martingale system is its simplicity. The

strategy does not require complex analysis or forecasting; it operates on a mechan-

ical principle of increasing investment after losses.

Theoretically, the Martingale system ensures that a single successful trade or

investment will recover all previous losses and generate a profit equal to the initial

investment. This can be particularly appealing in markets with mean-reverting

behavior, where prices oscillate around an average value.

In forex trading, leveraging the Martingale system can offer the additional

benefit of earning interest through carry trades. For example, if a trader holds a

position in a currency pair where the bought currency has a higher interest rate

than the sold currency, the trader can earn interest on the leveraged position,

potentially offsetting some losses during unfavorable market movements.

2.2.4 Critical Drawbacks and Risks

The most significant drawback of the Martingale system is the exponential

increase in risk. After each loss, the required investment doubles, leading to rapidly

escalating exposure. For example, starting with a $100 bet:

• 1st loss: $100
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• 2nd loss: $200

• 3rd loss: $400

• 4th loss: $800

• 5th loss: $1,600

• And so on...

This exponential growth means that a relatively short losing streak can deplete

a substantial portion of a trader’s or investor’s capital.

The Martingale system assumes that the trader has access to unlimited capital,

which is practically impossible. Most traders operate with finite resources, making

it likely that a prolonged losing streak will exhaust their funds before a recovery

occurs.

In leveraged markets like forex, the risks are magnified. Each time a position

is doubled, the margin requirement increases, and brokers may issue margin calls

if the trader’s account balance falls below required levels. Forced liquidation of

positions can occur before the trader has the chance to recover losses, leading to

significant financial losses.

Financial markets can experience extended trends where prices move consis-

tently in one direction for prolonged periods. In such scenarios, the Martingale

strategy becomes perilous, as the assumption that losses will eventually reverse

fails.

2.2.5 Variation of the Martingale System

Anti-Martingale Strategy: This strategy is also known as the "reverse Mar-

tingale," is an approach used in trading or gambling that focuses on increasing

the size of the position after a win rather than after a loss. The core idea behind
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this strategy is to capitalize on winning streaks while minimizing exposure during

losing streaks.

Unlike the traditional Martingale strategy, where the position size is doubled

after each loss to recover previous losses, the Anti-Martingale strategy aims to

maximize profits during favorable conditions. For example, a trader or gambler

might start with an initial position size of $100. After each win, they would double

the position size, moving to $200, then $400, and so on. This approach allows for

substantial profit gains during a streak of consecutive wins. However, if a loss

occurs, the position size is reset to the initial amount, thus limiting the potential

for large losses during unfavorable conditions. The strategy’s key advantage is

that it leverages the "hot hand" phenomenon, but it requires discipline to avoid

excessive risk when winning streaks do not materialize.

Fixed Martingale: It is a variation of the traditional Martingale strategy,

where instead of doubling the position size after each loss, the trader or bettor

increases their position size by a fixed increment. For instance, instead of increasing

the size by 100% (doubling), the trader might increase it by a smaller percentage,

such as 50%, after each loss.

The advantage of the Fixed Martingale approach is that it reduces the rate at

which exposure to risk grows during a losing streak. For example, if the initial

bet or position size is $100, a 50% increment would mean the next bet after a loss

would be $150, then $225, and so on. This slower growth rate can help the trader

or bettor withstand more extended periods of losses, as it requires less capital

to continue participating in the market or game. The strategy aims to strike a

balance between recovering losses and managing risk more conservatively than the

traditional Martingale method.

Martingale with Stop-Loss Limits: The Martingale strategy with stop-loss

limits is a modification designed to manage risk more effectively by imposing strict
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boundaries on how far the strategy can escalate. This variation incorporates stop-

loss limits that cap the maximum position size or the total number of consecutive

losses allowed.

For example, a trader might decide to limit their maximum position size to

$1,000 or restrict themselves to a maximum of three consecutive losses before halt-

ing further increases in position size. By doing so, the trader protects against the

risk of catastrophic losses that can occur with an unchecked Martingale strategy.

The key advantage of this approach is that it enforces a disciplined exit strategy,

ensuring that losses are limited and that the trader does not end up with an un-

sustainable level of exposure. This makes the strategy more practical for use in

real-world scenarios, where market conditions can be unpredictable, and extended

losing streaks can quickly lead to substantial financial damage.

2.2.6 Psychological and Behavioral Aspects

Emotional Strain: The Martingale system can induce significant emotional

stress for traders and gamblers due to the increasing financial stakes associated

with each successive loss. As the position size doubles after every loss, the pres-

sure to recover accumulated losses intensifies, often leading to heightened anxiety

and fear. This psychological burden can become overwhelming, especially during

prolonged losing streaks, where the risk of substantial financial loss looms large.

The emotional toll of the Martingale strategy can cause even experienced

traders to doubt their approach, resulting in impaired judgment. Under stress,

they may become prone to deviating from their original strategy, abandoning it

prematurely, or making impulsive decisions that further exacerbate losses. In ex-

treme cases, the combination of high financial exposure and psychological strain

can lead to a cycle of emotional distress and poor decision-making, diminishing

the effectiveness of the strategy and potentially leading to severe financial con-
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sequences. This is why the Martingale strategy, despite its theoretical appeal,

is often regarded as high-risk and requires not only substantial capital but also

considerable emotional resilience and discipline to execute effectively.

Cognitive Biases:Traders who employ the Martingale strategy may be partic-

ularly susceptible to cognitive biases that distort their decision-making processes.

One common bias is the Gambler’s Fallacy, the erroneous belief that the probabil-

ity of a win increases after a series of losses. This misconception arises from the

assumption that random events are self-correcting, leading traders to believe that

a loss streak is likely to be followed by a win.

This flawed reasoning can create a false sense of confidence, encouraging traders

to continue with the Martingale strategy despite facing significant and mounting

losses. As the financial stakes grow exponentially with each consecutive loss, the

belief that a win is "due" can lead to escalating risk-taking behavior. Instead of

reassessing the strategy based on objective market conditions or revisiting risk

management principles, traders may irrationally persist in the hope that the next

trade will recover all previous losses.

2.2.7 Considerations

The Martingale system presents an intriguing approach to recovering losses

through the systematic doubling of investment positions. Its simplicity and the

allure of guaranteed recovery make it appealing, especially to novice traders. How-

ever, the strategy’s inherent risks‚Äîexponential loss growth, capital requirements,

margin constraints, and psychological stress‚Äîrender it impractical and perilous

for most traders and investors.

In financial markets characterized by volatility, extended trends, and leverage,

the Martingale system’s assumption of inevitable recovery is often unfounded.

Prolonged losing streaks can lead to catastrophic losses, wiping out entire accounts
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and leaving traders financially devastated.

While variations like the anti-Martingale system offer some risk mitigation,

they do not fully address the fundamental issues inherent in the Martingale ap-

proach. Effective risk management, capital allocation, and disciplined trading

practices are essential for any strategy’s success, and the Martingale system falls

short in these critical areas.

Ultimately, the Martingale system should be approached with extreme caution.

Traders and investors are advised to thoroughly understand its mechanics, evaluate

their risk tolerance, and consider alternative strategies that offer more sustainable

and controlled risk exposure. Emphasizing diversification, proper position sizing,

and robust risk management frameworks can lead to more consistent and long-term

success in financial markets.
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Appendix

In this appendix there are some important results used in this thesis.

Proposition A.1 (Triangular Inequality). Given a, b ∈ R we have

|a ± b| ≤ |a| + |b| .

Proposition A.2 (Tower Property). Let X, Y be jointly distributed two random

variables. Then

E[E[X | Y ]] = E[X] .

Proposition A.3 (Law of Large Numbers). Let X1, X2, . . . be a sequence of i.i.d.

random variables with E[X1] = µ < ∞. Then

P
(

lim
n→∞

X1 + . . . + Xn

n
→ µ

)
= 1 ,

or equivalently almost surely we have

lim
n→∞

X1 + . . . + Xn

n
= µ .

Proposition A.4 (Central Limit Theorem). Let X1, X2, . . . be a sequence of i.i.d.

random variables with E[X1] = µ < ∞ and Var(X1) = σ2 < ∞. Define Sn =∑
i = 1nXi and Zn = Sn−nµ

σ
√

n
. Then for any t ∈ R we have

FZn(t) := P(Zn ≤ t) q.c.−→ P(Z ≤ t) for n → ∞ ,

where Z ∼ N (0, 1). Equivalently Zn converges in distribution to Z ∼ N (0, 1) for

n → ∞.
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Proposition A.5 (Weierstrass’ Theorem). Let f : D ⊂ Rn → R be a continuous

function and let D ⊂ Rn be a compact set in Rn (that is closed and bounded).

Then f admits global maximum and minimum in D.

36



Bibliography

[1] L. Bachelier, Calcul des probabilités, Calcul des probabilités, no. v. 1,

Gauthier-Villars, 1912.

[2] S. N. Ethier, The doctrine of chances: Probabilistic aspects of gambling, Prob-

ability and Its Applications, Springer, Berlin and Heidelberg, 2010.

[3] P. A. Griffin, The theory of blackjack, Huntington Press, Las Vegas, Revised

1993.

[4] J. L. Kelly JR., A new interpretation of information rate, ch. 3, pp. 25–34,

2011 (original version in 1956).

[5] C. Kempton, Horse play, optimal wagers and the kelly criterion, 2011.

[6] D. G. Luenberger, Investment science, Oxford University Press, 2014.

[7] L.C. Maclean, W.T. Ziemba, and E.O. Thorp, Kelly capital growth investment

criterion, the: Theory and practice, World Scientific Handbook In Financial

Economics Series, World Scientific Publishing Company, 2011.

[8] P. Marek, T. Toupal, and F. Vavra, Efficient distribution of investment capi-

tal, 2016.

37



[9] U. Matej, S. Gustav, H. Ondrej, and Z. Filip, Optimal sports betting strategies

in practice: an experimental review, IMA Journal of Management Mathemat-

ics 32 (2021), no. 4, 465–489.

[10] H. A. Mimun, Notes and slides of the course “gambling: Probability and de-

cision”, 2023.

[11] W. Poundstone, Fortune’s formula: The untold story of the scientific betting

system that beat the casinos and wall street, Farrar, Straus and Giroux, 2010.

[12] L. M. Rotando and E. O. Thorp, The kelly criterion and the stock market,

The American Mathematical Monthly 99 (1992), no. 10, 922–931.

[13] E. O. Thorp, Optimal gambling systems for favorable games, Revue de

l’Institut International de Statistique / Review of the International Statis-

tical Institute 37 (1969), no. 3, 273–293.

[14] E. O. Thorp, The kelly criterion in blackjack sports betting, and the stock

market, Chapter 54 in The Kelly Capital Growth Investment Criterion Theory

and Practice, World Scientific Publishing Co. Pte. Ltd., 2011, pp. 789–832.

[15] A. Tushia, Optimal betting using the kelly criterion, 2014.

38


	Introduction
	Martingales
	Stochastic Processes and Filtration 
	Martingales, Supermartingales and Submartingales
	Optional Stopping Theorem

	Betting System
	Martingale System
	Applications of the martingale system
	Forex trading
	Investing
	Theoretical advantages
	Critical Drawbacks and Risks
	Variation of the Martingale System
	Psychological and Behavioral Aspects
	Considerations


	Appendix
	Bibliography

