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Introduction

Decision-making problems are an everyday scenario and one of the most in-

triguing areas of study in the field of probability theory and behavioural science.

The study involves analysing how individuals assess new data to make informed

decisions. Each of us have faced this problem at least once and asked ourselves

these kind of questions: How do we make the best decision? Is there an opti-

mal strategy we can use? However simple the description of the decision-making

scenarios may seem, it is a difficult task to find the most efficient and profitable

solution to them. In this thesis, we will present a number of valid solutions using

probability theories and mathematical computations.

To begin, the following examples will serve to illustrate the concept of decision-

making problems. Imagine you are driving and looking for a parking spot: you

are happiest if you are able to park the car closest to where you need to go. In

fact, the longer you will have to walk once getting off the car the more you will

feel discontent about your choice. Note that the parking spots available are visible

to us one at a time and once we move past one, we cannot go back. Another

example is the following game. You have n treasure chests in front of you, each

one containing a cash prize that you can win. You can pick a chest and win the

amount of cash that you find inside of it. However, at the very start of the game

you have zero information about the prizes contained in each chest. It is the host’s

job (who is running the game) to open the chests for you, one at a time. Then,
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every time a chest is opened you must make a choice: you can either accept or

reject the prize. if you reject the prize, it is lost to you forever and the game will

continue; if instead you accept the prize, you end the game and earn the amount

you found inside the chest. How do you maximise your expected winnings? How

would you play this kind of games?

The irrevocable and time-critical decision under the uncertainty of possible

future events is what characterizes the classical online selection problem. Moreover,

in online selection problems, the random variables arrive in a sequential order, one

at a time, and reveal their value each at their turn. We begin Chapter 1 with a

theoretical background on the optimal stopping rule, or early stopping, to help the

reader understand the theory of online selection and follow the resolution of the

problem. In particular, in the first chapter, we are defining the optimal stopping

theory as a tool used in decision-making scenarios to maximise an expected payoff

or minimise an expected cost by choosing the timing of an action. What we focus

on is the probability of picking a time N , at which the observation is stopped, that

maximises the expected return.

We then move on to the analysis of two important problems in online selection,

the Secretary Problem and the Prophet Inequality. In both problems, an agent is

asked to make a decision and pick a value from a sequence of random variables.

The rule is simple: the agent can only accept one value from the sequence and it

cannot be one that has been previously rejected.

The Secretary Problem aims at maximising the probability of selecting the highest

value while the Prophet Inequality attempts to compare, in terms of expectations,

the performance of the gambler with the one of a prophet who knows the values

of the variables in advance.

Right after section 1.1 on the optimal stopping rule, we start with our analysis

on the Secretary Problem. The situation is exactly like the one we described for
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online selection problems. The decision-maker is now a boss who has to hire a

new worker from n applicants and our objective is to find the optimal strategy

which makes the boss select the best applicant for the position. In this chapter,

Ferguson’s work is central to our investigation of this problem [4].

The strategy that he used was to reject the first r−1 applicants and choose the next

one who was ranked the best relative to the past observations. We demonstrated

that the optimal stopping occurs at about 37%. Then, we observed that for a large

number of applicants, the probability that the strategy successfully picks the best

applicant is also equal to 37%. To confirm this number, we made a simulation on

MATLAB and derived Figure 1.1 from which we can see that the peak is achieved

exactly at around 0.4 like we expected from our computation.

We dedicated the rest of the chapter to the analysis of a different version of

the Secretary Problem. To be more precise, we used the concept of random walks

to define what a random walk stock exchange market is and to show a connection

with the Secretary Problem for the random walk. This would give the reader

a more real-life application of what we examined so far on the decision-making

problem. We heavily relied on both M. Hlynka and J.N. Sheahan [6] and Fama’s

works [3] for the last part of our examination on the Secretary Problem.

In Proposition 1.4.4 we were able to show that, differently from the classical view,

in this new version of the problem the probability of success of the strategy would

tend to zero as n tends to infinity. Therefore, as n tends to infinity, the optimal

strategy would be to pick the first element of the sequence. An interesting note

on our calculation of this probability is that it is surprisingly better than 1/n. In

fact, as we derived in section 1.4.1, the probability of picking the maximum value

under strategy Sk is equal to
√

2
πn

, where by Sk we mean the strategy of picking a

value k for k = 0, ..., n.

Finally, we defined the random walk market as “a market where successive price
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changes in individual securities are independent [3]” and proved the efficiency of

the random walk model over the technical approaches.

In the second chapter we focused on the Prophet Inequality. We based this

chapter on the research of Krengel, Sucheston and Garling in 1978 [7]. Our objec-

tive was to prove that the prophet can gain at most twice as much payoff as the

gambler. So in this scenario we have two agents: a gambler and a prophet. While

the prophet has knowledge on the values of the variables before they are revealed

to him, the gambler makes his choice on whether picking or rejecting a value as it

arrives to him. In other words, the gambler can gain information on their value

only after he has observed them. In this chapter we proved the central theorem of

the Prophet Inequality for independent random variables (Theorem 2.0.1):

E[maxiXi] ≤ 2E[Xτ ] .

This is known as the first of many prophet inequalities in the optimal stopping

theory and it aims at comparing the performance of online and offline algorithms

for problems that involve selecting one or more elements from a random sequence.

On the following section of the same chapter we deal with a variation of the

classic prophet inequality. In this case, the comparison is made between the perfor-

mance of a prophet with complete foresight and that of a gambler who is charged

a negative fixed cost for each observation. Our goal is the maximisation of the

following difference:

E[max1≤i≤n Yi] − E[Ysn].

In conclusion, using the theory from [1] we introduce a prophet inequality in a

difference form.

We hope that by the end of this work, the readers will be able to understand

and apply the strategies to solve decision-making problems more efficiently. Ad-
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ditionally, our aim for this thesis is to provide a clearer and more comprehensive

approach on how to make optimal choices regarding stopping times. We conclude

this brief introduction by encouraging the readers to engage with this work with

both curiosity and an open perspective.
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Chapter 1

The Secretary Problem

The Secretary Problem or the Marriage Problem appeared in the late 1950’s

and early 1960’s and gradually extended to now become a field within mathematics-

probability-optimisation. Many probabilists and statisticians tried to develop and,

at the same time, solve the problem. One of the firsts were Lindley (1961) Gilbert

and Mosteller (1966), and later Freeman (1983), Samuels (1985), and Tamaki

(1986). Simply put, the problem was described as one of picking the maximum

value of a sequence of n independent variables when no recall is allowed. We can

use Thomas S. Ferguson’s list of features of the Secretary Problem to have a clearer

view of the scenario [4]:

1. There is one secretarial position available.

2. The number n of applicants is known.

3. The applicants are interviewed sequentially in random order, each order be-

ing equally likely.

4. You can rank all applicants without ties. The decision to accept or reject

must be based only on the relative ranks of those applicants interviewed so

far.
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5. An applicant once rejected cannot later be recalled.

6. Your payoff is 1 if you choose the best and 0 otherwise.

For now, we will focus on the simplest form of the Secretary Problem and disregard

all its other variations. We can rewrite the features listed above and consider a

more formal definition of the problem such as the one Ferguson used: “A Secre-

tary Problem is a sequential observation and selection problem in which the payoff

depends on the observations only through their relative ranks and not otherwise on

their actual values [4].”

In the next section we will briefly explain the optimal stopping rule, a funda-

mental concept in the resolution of our problem.

1.1 Optimal Stopping Rule

The optimal stopping rule is often applied in probability theory and decision

theory. Originally, it was studied for problems arising in the sequential analysis of

statistical observations.

The theory is used in decision-making scenarios, exactly like the one we have

seen in the Secretary Problem, and it has the objective of maximising an expected

payoff or minimising an expected cost by making choices about the timing of an

action, given sequentially observed random variables. In simple terms, it applies

to situations where an individual has to make a decision or select an option from

a sequence of choices, but can only evaluate each option sequentially and cannot

return to a previously passed option.

Definition 1.1. Optimal stopping problems always have two elements:

(i) a sequence of random variables, X1, X2, ..., whose joint distribution is as-

sumed known, and
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(ii) a sequence of real-valued reward functions,

y0, y1(x1), y2(x1, x2), ..., y∞(x1, x2, ...).

Having established Definition 1.1, we continue with the layout of the problem

to identify the optimal stopping rule. Consider a situation where an individual

is asked to observe a sequence of random variables, X1, X2, ... coming one at a

time until they wish to stop. After observing X1 = x1, X2 = x2, ..., Xn = xn,

for n = 1, 2, ... they can either stop and earn a reward equal to yn(x1, ..., xn) or

continue the observation of Xn+1. If the individual does not take any observation,

their payoff will be equal to y0. Instead, if they never stop, they will receive

y∞(x1, x2, ...).

Remark 1. We assume the rewards are uniformly bounded above by a random

variable with finite expectation. In this way, all expectations will make sense.

The problem is to determine a randomised stopping rule or probability of stop-

ping using randomised decisions consisting of the the following sequence of func-

tions,

ϕ = (ϕ0, ϕ1(x1), ϕ2(x1, x2), ...),

where for all n and x1, ..., xn, 0 ≤ ϕn(x1, ..., xn) ≤ 1. If ϕn(x1, ..., xn) is either 0 or

1, the stopping rule is said to be non-randomised. Therefore, ϕ0 is the probability

that an individual does not take any observation, and ϕ1(x1) is the probability

that an individual observes X1 = x1 and accepts it. To summarise, the random

time N at which an individual stops the observation is defined by the stopping

rule, ϕ, and the sequence of observations, X = (X1, X2, ...), with 0 ≤ N ≤ ∞.

The probability mass function of N given X = x = (x1, x2, ...) is denoted by

ψ = (ψ0, ψ1, ..., ψ∞),

ψn(x1, ..., xn) = P(N = n|X = x) for n = 0, 1, 2, ...,

ψ∞(x1, x2, ...) = P(N = ∞|X = x).
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Finally, a stopping rule ϕ is chosen to maximise the expected return, V (ϕ)

ϕn(X1, ..., Xn) = P(N = n|N ≥ n,X = x) for n = 0, 1, ...

V (ϕ) = EyN(X1, ..., XN) = E
∞∑

j=0
ψj(X1, ..., Xj)yj(X1, ..., Xj) .

1.2 The Secretary Problem Solution

Going back to the initial problem, we will now find that there is a simple

solution to it. Recall the decision-making scenario: we have a secretary position

available and an applicant who has to be chosen from a group of n people who are

interviewed in a sequential and random order; the applicants are valued based on

their relative ranks and can either be rejected or accepted upon observation, with

only one chance of being accepted. Once they are rejected, they cannot be later

recalled.

The first step towards an optimal stopping requires us to restrict our attention

on an employer, or boss, who rejects the first r − 1 applicants, for some integer

r ≥ 1. The employer will then continue the observation and choose the next

applicant who has the best position in the ranking of the applicants rejected (r−1).

With this strategy, the probability of selecting the best applicant is 1/n for r = 1.

For n > 1, we write the probability as

ϕn(r) = P(this strategy makes us select the best applicant).

which we can further extend into

ϕn(r) =
n∑

j=r

P(jth applicant is best and we select it)

=
n∑

j=r

1
n

· r − 1
j − 1 = r − 1

n

n∑
j=r

1
j − 1

(1.1)

In equation (1.1), 1/n is the probability that the j-th applicant is the best among

n applicants, and r−1
j−1 is the probability that the rejected applicants r − 1 have
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values higher than the applicants before j.

Suppose the number of the applicants is large (n → ∞) and x = r
n
. Then the

above equation becomes

ϕn(r) = r − 1
n

n∑
j=r

1
j − 1 = r − 1

n

n∑
j=r

n

j − 1 · 1
n

=

= r − 1
n

n∑
j=r

1
j−1

n

· 1
n

= r − 1
n

1∑
i= r

n

1
i− 1

n

· 1
n

=

= (x− 1
n

)
1∑

i=x

1
i− 1

n

· 1
n

As n → ∞,

ϕn(r) = x ·
∫ 1

x

1
t
dt = x · [ln |t|]t=1

t=x>0 = x[0 − ln x] = −x ln x

Lastly, to determine the value of x that maximises this quantity we compute the

derivative with respect to x and set it higher than zero. Then, g(x) = −x ln x is

maximised when

g′(x) = − ln x− x · 1
x

= − ln x− 1 > 0

ln x < −1

eln x < e−1

x <
1
e

Therefore, if we let n tend to infinity, the optimal stopping (or probability of

success of choosing the best applicant) occurs at about 37% which is the value of

x that we were looking for.

x = 1/e ≈ 0, 37

In conclusion, this suggests us to wait until 37% of the candidates have been

interviewed and then pick the next relatively best one. By substituting the value

of x into equation (1.2) we find that the probability that the strategy picks the best
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applicant is also 37%. This solution is applied in the classical case of the Secretary

Problem which is very interesting and even more so due to it being so common.

In fact, many situations involve making decisions without the possibility of going

back and changing them. Therefore, as we have pictured the simplest form of the

problem we will now go on with additional strategies and the last insights to the

problem before concluding the chapter.

1.3 Simulations of the Secretary Problem

Let us define ST as the strategy that picks the first applicant k ≥ T such that

the value of the k-th applicant is bigger than maximal value seen between the first

T − 1 applicants.

The code below, written with MATLAB, computes the probability

P(ST chooses the best applicant) for T = 1, 2, . . . , n .

Such a probability is computed by the code by approximating the fraction of

successes over the total number of samples of the same experiment. This can be

found in the code as K(T)=c/samples and the experiment we are focusing on is the

one in which the Secretary Problem picks the maximum value in the sequence by

using strategy ST . Note that this approximation is justified by the Law of Large

Numbers A.4.

samples =100;

n =1000;

K=zeros (n ,1);

for T=1:n
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c=0;

for i=1: samples

correct = secretary (n,T);

c=c+ correct ;

end

K(T)=c/ samples ;

end

plot (1:n,K(1:n))

The function secretary(n,T) gives 1 if the strategy ST picks the maximum over the

n secretaries, otherwise, it gives 0. We write a code for this function and consider

secretaries samples value taken randomly from a discrete uniform distribution on

the set {1, 2, . . . , n}. The output of the code is Figure 1.1.

function correct = secretary (n,T)

v=zeros (n ,1);

for i=1:n

v(i)= randi(n);

end

M=v(1);

for i=2:n

if v(i)>M

M=v(i);

end

end
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max=v(1);

for i=2:T-1

if v(i)>max

max=v(i);

end

end

if T<n

j=T+1;

while v(j)<max && j<n

j=j+1;

end

S=v(j);

end

if T==n || j==n

S=v(n);

end

if S==M

correct =1;

else

correct =0;

end
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1.4 The Secretary Problem for the Random Walk

In the next pages we will discuss in more detail the ideas and solutions presented

in the paper authored by M. Hlynka and J.N. Sheahan [6]. The scholars solved the

Secretary Problem in a situation characterised by dependent values and showed

that the probability of success of their strategy tends to 0 as n tends to infinity,

which differs from the result obtained in the classical case where the probability

of success tends to 1/e when n tends to infinity.

Below are some notations to keep in mind:

(C1) {Xi} are i.i.d. random variables for i = 1, ..., n.,

(C2) Y0 = 0,

(C3) Yi = Yi−1 +Xi,

(C4) Y ∗ = max{Yi : 0 ≤ i ≤ n},

(C5) Y # = the value picked by using strategy S.
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Our objective is to find a strategy such that P(Y # = Y ∗) is maximised. In other

words, we want a strategy which can give us a high probability of picking the

optimal strategy. And by optimal strategy we mean one which can maximise the

probability of picking the largest value among n values with no recall allowed.

Assume that we are in a generalised one-dimensional random walk.

Definition 1.2. Let S0 be the strategy which picks Y0 = 0 for Y ∗. And let Sk (for

0 < k ≤ n) be the strategy that picks Yi after having looked at the values Y0, ..., Yk−1

such that Yi > max{Y0, ..., Yk−1}. Know that i ≥ k and that if no such Yi exists

then the value picked will be Yn.

Assumption A1. For i = 1, ..., n, let {Xi} be i.i.d. continuous random variables

with a distribution function F with density f symmetric about 0 and support equal

to an interval.

Assumption A2. For i = 1, ..., n, and m = 0, 1, ...,∞ let {Xi} be i.i.d. discrete

random variables such that P(Xi = m) = P(Xi = −m) = p(m) (the distribution is

symmetric about 0).

We derive the following properties:

Proposition 1.4.1. If assumption A1 holds then P(Y # = Y ∗) is the same for all

Sk and Sk is an optimal strategy.

Proposition 1.4.2. If assumption A2 holds then P(Y # = Y ∗) is the same for all

Sk.

Proposition 1.4.3. If assumption A2 hold then S0 is an optimal strategy.

We will focus on the discrete case and prove the properties following Gilbert

and Mosteller (1966).
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Proof. First, we define a candidate for Y # from the sequence {Yi} which has a

value greater than or equal to all the values observed until now. We can distinguish

two different events: (i), Yi = Y ∗, ‘win with Yi’ and (ii), Y # = Y ∗, ‘win’.

Let

g(i) = P(win with Yi|Yi ≥ Y0, Y1, ..., Yi−1)

and

h(i) = P(win with best strategy from i+ 1 on|Yi ≥ Y0, Y1, ..., Yi−1)

Then, given that g(0) = P(win with Y0) and h(n) = 1, if Yi is a candidate:

• An optimal strategy chooses Yi as Y ∗ if g(i) > h(i), in other words when

P(win with Yi) > P(win with Yi+1 on),

• An optimal strategy can either choose Yi as Y ∗ or wait for the next candidate

i′ with g(i′) > h(i′) if g(i) = h(i).

To show that S0 is an optimal strategy for {Xi} i.i.d. discrete random variables, we

only need to prove that g(0) ≥ h(0). This means that the probability of winning

by picking the candidate Y0 is greater than or equal to the probability of winning

by picking any other candidate from Y1 on, given that the picked candidate has

value higher than the values observed thus far.

Additionally, showing that S0 is an optimal strategy is the same as demon-

strating that Y0 = 0 is truly the maximum we can achieve. In fact, by Property

1.4.1 we know that the probability that S0 is an optimal strategy is the same for

all k = 0, ..., n. And to make the proof easier, we can use k = 0 which is equivalent

to using the strategy S0. Hence using this strategy is the same as saying that we

are choosing Y0.

Set u(r) = P(Y0 is a maximum for the random walk sequence Y0, ..., Yr), for
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0 ≤ k ≤ n:

g(k) = P(win with Yk|Yk ≥ Y0, ..., Yk−1)

= P(Yk is a maximum for the random walk sequence Yk, ..., Yn)

= P(W0 is the maximum for the random walk sequence W0, ...,Wn−k)

(where Wi = Yk+i − Yk)

= u(n− k),

(1.2)

h(k) = P(win with the best strategy from k + 1 on|Yk ≥ Y0, ..., Yk−1)

= P(win with the best strategy from step 1 on in a random walk sequence

W0, ...,Wn−k)

≥ P(win by picking the last element of a random walk sequence

W0, ...,Wn−k)

= P(win by picking the first element W0 of a random walk sequence

W0, ...,Wn−k)

= u(n− k).

(1.3)

From equation (1.3) we obtain h(k) ≥ u(n−k) and with equation (1.2)we arrive

to the conclusion that h(k) ≥ g(k) for 0 ≤ k ≤ n. So, an optimal strategy would

be to wait for the last value and choose it. However, what we wanted to prove was

the opposite situation. To clarify, we wanted to show that S0 is an optimal strategy

by demonstrating that g(0) ≥ h(0). This can be proven by replacing ‘≥’ with ‘=’

in the equation we computed above (1.3). Finally, we have that g(k) = h(k) for all

k (where 0 ≤ k ≤ n), and consequently, the optimal strategy is to pick Y0 = 0 for

Y ∗. This strategy is closely related to Feller’s observation that the maximum value

of a random walk is more likely to be at the start or at the end of the sequence
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than in the middle of it.

Proposition 1.4.4. Let n be a positive even integer and {Xi}n
i=0 be a sequence of

i.i.d. random variables with P(Xi = 1) = P(Xi = −1) = 0.5 and Yi = Y0 +∑i−1
j=0 Xj

for i = 0, ..., n with Y0 = 0 Then, if assumption A2 holds, for all k=0,1,...,n, using

strategy Sk,

P(Y # = Y ∗) =
(
n

n/2

)
1
2n

∼
n→∞

√
2
πn

1.4.1 Proof of Proposition 1.4.4

Recall that we are choosing an element only if it is the maximum of those seen

up to that point (unless it is the last element). Together with proposition 1.4.4,

this tells us that even though all of our strategies S0, S1, ..., Sn are equivalent, the

probability of choosing any element may not be the same. What interests us is

P(Y #
k = Y ∗

k |Sk). By proposition 1.4.2 we know that P(Y # = Y ∗) is the same for

all k = 0, 1, ..., n. Indeed, if we let Y # be the picked value under strategy Sk then

the probability is independent on the index k. Hence, since Y # = Y0 = 0 when

k = 0, we have

P(Y # = Y ∗) = P(Y ∗ = 0)

Since Y ∗ is the maximum value of the random walk, if Y ∗ = 0 then

P(Y ∗ = 0) = P(Yi ≤ 0 for all i = 1, ..., n)

So to prove the proposition we have to show that the following equation is true

P(Yi ≤ 0 for i = 1, ..., n) =
(
n

n/2

)
1
2n

∼
n→∞

√
2
πn

Consider the outcomes of Xi as prizes associated to a sequence of tossings of

a fair coin. At each time i the coin is tossed: we win 1 unit in case of head and

loose 1 unit in case of tail. Yi is the total gain in i tossings.
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We study the event of having a reward equal to r at time n, which is the event

of {Yn = r}. We want to compute the following probability pn,r := P(Yn = r),

where p denotes the number of heads and q, instead, denotes the number of tails

obtained in the first n tossings. We can write the system

Yn = r ↔


p− q = r,

p+ q = r.

We get p = n+r
2 and q = n−r

2 . Then we use the binomial coefficient to count the

number of ways in which we can choose the tossings that give head (p) out of the

total number of tossings (n). This number is equivalent to the number of paths

starting with Y0 and arriving with Yn = r since each path Y0, ..., Yn is obtained

through the sequence X1, ..., Xn.

Nn,r :=
(
n

n+r
2

)

The probability of the event of a path occurring has probability 1
2n since each Xi

can be either 1 or -1 and the total number of possible paths is equal to 2n. The

probability of winning r units at time n is

pn,r = Nn,r · 1
2n

=
(
n

n+r
2

)
· 1

2n

Because what we wanted to compute was the probability that all Yi are less than

or equal to zero, we can rewrite the above formula

pn,0 =
(
n
n
2

)
· 1

2n

Therefore

P(Yi ≤ 0 for i = 1, ..., n) = pn,o =
(
n
n
2

)
· 1

2n

This probability coincides to the probability of having a path with Y0 = 0 and

Yi ≤ 0 for all i = 1, ..., n. In conclusion, we prove our thesis by applying Stirling’s
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formula

pn,0 ∼
n→∞

√
2
πn

To sum up, the optimal strategy for our problem, which maximises the proba-

bility of getting the maximum of a random walk, involves picking either the first

or the last element of the sequence. A surprising fact to highlight is that this

probability is considerably better than 1/n which is what is indicated in Property

1.4.4.

As we have seen, the problem can have many solutions as well as a number

of versions and extensions. From a more practical perspective we can consider an

alternative way to describe the problem. Instead of a secretary, we might think of

a stock analyst as the protagonist of our scenario. He is in charge of picking the

day in which a particular stock will have the highest price during a given month.

And on the day when the analyst believes the stock to be the highest, he has to

call his client to let him know of his view. At the end, after having observed the

stock prices during the rest of the month, the analyst will receive a reward if he

was correct or nothing otherwise.

Regarding this subject, Fama (1965) had the opinion that the analysis and,

more specifically, the methods and solutions we have examined so far can be used

to help the stock analyst to make a decision. Even more so if the stock prices

behave like a random walk during the month, exactly like in the Secretary Problem.
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1.5 The Random Walk Theory and the Stock

Exchange Market

The stock exchange market is a market for shares in corporations. In partic-

ular, it is a secondary market where securities previously issued are bought and

sold, serving as a trading platform for investors. Compared to bonds, stocks are

riskier since they depend on the performance of the company. In fact, stocks ac-

tually represent ownership in a firm and can earn a return in two primary ways:

through the increasing price of the stock over time and through dividends paid to

stockholders. In this chapter we will focus on the first. In addition to this, there

are two different types of stocks: the common stock and the preferred stock. The

former type gives the stockholder the right to vote, receive dividends and residual

claim, however in case of bankruptcy all bills (wages, supplier’s bills, interest of

bondholders) will be paid before the common stockholder. On the other hand,

the preferred stock grants limited rights to the stockholder but provides a pref-

erential treatment and prior claim: cash dividends are not paid to the common

stockholders if the preferred stockholders have not yet been paid. Moreover, stocks

are exchanged and traded over various markets: organized exchanges (e.g. NYSE);

over the counter markets (e.g. NASDAQ); and electronic communication networks

or ECNs (e.g. instinet, selectnet, NYSE arca). Lastly, stocks can also be bought

and sold through exchange-traded funds (ETFs). ETFs are essentially baskets of

securities such as stocks, bonds or commodities and track the performance and

return of market indexes. They typically have low expense ratios and fewer broker

commissions than buying the stocks individually.

Moving on, we will see a connection between the stock exchange market and

the Secretary Problem for the random walk.
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1.5.1 Techniques for Predicting Stock Prices

As we have concluded in the first sections of this chapter, the Secretary Prob-

lem reflects issues similar to those concerning the work of market analysts in the

financial sector. Is there an efficient method for predicting stock market prices?

How is an analyst going to maximise his return? How can he optimally select

the highest price from the sequence of stock price changes? With these questions

in mind, Fama examined models of stock price behaviour and allowed us to see

the problem from a new and more practical perspective. He was interested in

describing one model in particular, the theory of random walks, which has gained

a significant importance in the field of finance and statistics.

In order to understand the relevance of random walks in stock market prices,

there are two common techniques often adopted by market professionals that need

to be discussed first: the “chartist” or “technical” theories, and the theory of fun-

damental or intrinsic value analysis. The former, in opposition to the random walk

theory (which we will talk about next), are based on the assumption that history

tends to repeat itself. In essence, this means that past patterns in individual se-

curities are used to predict the future behaviour of the series. The idea that the

series of successive price changes in individual securities are dependent is a key

element and characteristic of such technical models. Thus the chartist theories

assume that “the sequence of price changes prior to any given day is important in

predicting the price change for that day [3]”. An example of a chartist approach is

the Dow Theory.

Next, fundamental analysis assumes that an individual security has an intrinsic

value, or equilibrium price, at any given point in time. This value is based on the

security’s earning potential, which, in turn, can be influenced by the industry and

economic conditions, and other financial and company management qualitative
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factors as well. This theory suggests to predict the security future price by carefully

studying fundamental factors and determining whether the actual price is moving

up or down in comparison to its intrinsic value. In a nutshell, this theory holds

that determining the intrinsic value is the same as determining the future price of

the security.

To proceed, whilst the technical analysis focuses on past market data to forecast

future price movements, the random walk is a theory based on the concept that

prices are independent and reflect all available (and important) information. This

means that prices follow a random path, differently from the technical approach

we mentioned first. Moreover, the independence of successive price changes in

individual securities is a property of an efficient market also called by Fama as the

‘instantaneous adjustment’ property. This property has two important implica-

tions: first, the frequency with which actual prices overadjust to changes in intrin-

sic values will equal the frequency with which actual prices underadjust; second,

the event of changes in intrinsic values due to new information will be anticipated

by the market and preceded by the adjustment of actual prices. Furthermore,

an efficient market is defined as one where the intrinsic value provides a reliable

estimate of a security’s actual price at any given time. This definition implies that

current prices already reflect information from both past and anticipated future

events. However, in an uncertain world, intrinsic values can never be determined

exactly. Nevertheless, the collective actions of numerous market participants drive

actual prices to fluctuate randomly around their intrinsic values.

All in all, by definition, a random walk market is: “a market where successive

price changes in individual securities are independent [3].” Rephrased, it is a

market where the sequence of price changes has no memory or record of past

history. Hence, the random walk can be considered an adequate description of

reality or otherwise, depending on the actual degree of dependence in the series
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of price changes. Precisely, in order to be adequate the degree of dependence

must not be sufficient to make the expected profits of any more complicated and

mechanical procedures or other techniques greater than the expected profits under

the simple policy of buying and holding the security.

To prove the acceptability of the random walk model, empirical research has

been conducted to test the hypothesis that successive price changes are indeed

independent. With this intent, two approaches have been employed generating

different conclusions:

(i) The first approach relies primarily on common statistical tools like serial

correlation coefficients and analysis of runs of consecutive price changes of

the same sign.

(ii) The second approach tests directly different mechanical trading rules to see

if they provide profits greater than buy-and-hold.

Over the years, many studies have focused on the first approach to testing inde-

pendence and showed that the sample serial correlation coefficients computed for

successive price changes were extremely close to zero. This result is an empirical

evidence against the idea of dependence in the series of changes.

Despite the evidence presented, technical theorists continued to view the ran-

dom walk model as inadequate. It was in this context that Alexander’s filter

technique was introduced, aiming to apply more sophisticated criteria to analyze

the independence of successive price changes in financial markets.

The filter technique systematically generates buy and sell signals based on

specific percentage movements in the market, and incorporates the short-selling

investment strategy. The strategy, also called short position, requires an investor to

borrow shares of a stock (or another asset) and to sell them on the open market,
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planning to buy them back in the future at a lower price. Hence, the profit is

generated from a decline in the asset’s price during the holding period.

In our example, we will use a 5% filter: when the price of a security increases by

at least 5%, buy and hold the security until its price moves down at least 5% from

a subsequent high, at which simultaneously sell and go short. The short position

is maintained until the daily closing price rises at least 5% above a subsequent

low. This strategy can be divided into four steps:

• The initial buy signal allows the investor to profit from the continued rise in

price,

• The holding period helps the investor to benefit from any further increase in

price,

• The sell and short signal expects the downward trend to continue and allows

the investor to profit from further decline in price,

• Lastly, the short position period is held until the price rises by 5% which

signals to cover and buy the security, this signal assumes a continued raise

in price and another opportunity to profit from the upward movement.

In brief, the strategy was tested on individual securities, demonstrating that the

simple buy-and-hold method consistently yielded greater profits. This finding

confirmed the efficiency of the random walk model and supported the theory of

independence of price changes.
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Chapter 2

The Prophet Inequality

In this chapter we are going to focus on the classic Prophet Inequality, a math-

ematical tool used in the field of economics and decision theory, which involves

important mathematical theories such as the optimal stopping rules, pure online

algorithms and also mechanism design. The importance of the Prophet Inequal-

ity lies in its help to address fundamental questions about decision-making under

uncertainty.

The first to prove the famous Prophet Inequality were Krengel, Sucheston and Gar-

ling in 1978 [7]. In particular, their work explained the relative power of online

and offline algorithms in Bayesian settings. We will analyze the classic framework

in which it is set and try to reach to the final result through a mathematical proof.

The problem is the following: given a sequence of random numbers and a

reward equal to the value chosen, can we measure the performance of a gambler

compared to that of a “prophet” if the gambler is the person who is going to

make a choice without knowledge of the values in the sequence whilst the prophet

knows all the values in advance and can make the most rewarding decision? The

Prophet Inequality affirms that a gambler who knows the distribution of each

random variable can achieve at least half as much reward, in expectation, as a
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prophet who knows the sampled values of each random variable and can choose

the biggest one. In other words, we are considering a game in which two people are

playing: the gambler and the prophet. The gambler is a player who is observing a

sequence of independent, non-negative random variables with finite expectations.

From this sequence, a value is drawn in an indexed order, and after every draw the

gambler can either terminate the game by accepting the value observed or continue

the game and discard the value observed. His aim is to achieve the highest reward

possible and maximise the expected value related to it. On the other hand, the

prophet is someone who knows in advance the highest value in the sequence and

can easily achieve the best result.

Now that we have a clear picture of the problem we are back to our first

question, how is the gambler going to perform compared to the prophet? We will

try to answer to this question in the rest of the chapter.

To begin with, the term of ‘relative power’ refers to a comparative effectiveness

of using different methods and approaches in achieving a particular objective or,

in our case, solving a decision-making problem. The different methods used in our

problem are the online and offline algorithms in Bayesian settings. Offline algo-

rithms typically have access to the whole dataset at once while online algorithms

handle data as it arrives sequentially using the new data to change their estima-

tion. In our case, the Bayesian setting is the one in which the online algorithm

is linked to a gambler who knows the distribution from which the sequence will

be sampled, whereas the offline algorithm is instead linked to a prophet who can

foretell the entire sequence and stop at its maximum value.

What the three mathematicians showed is that, if we consider the game we

have described in the previous pages, the prophet can gain at most twice as much

payoff as the gambler, a player who must choose the stopping time based only on

the current and past observations.
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Suppose:

(A1) X1, X2, ..., Xn is a sequence of independent, non-negative, real-valued random

variables;

(A2) E[maxiXi] < ∞ the maximum value in the sequence has finite expectation;

(A3) a threshold is defined T = E[maxiXi] /2;

(A4) τ is a stopping time such that Xτ ≥ T .

Theorem 2.0.1 (Prophet inequality for independent random variables.). If the

assumptions defined above holds, then

E[maxiXi] ≤ 2E[Xτ ] .

The inequality compares the performance of online and offline algorithms for

problems that involve selecting one or more elements from a random sequence. We

are going to prove that there is an online algorithm whose expected payoff is at

least half of the expected weight of the maximum weight and that the factor 2 is

the optimal constant and cannot be improved.

Proof. First, we want to calculate the expectation of Xτ . By Lemma A.1

E[Xτ ] =
∫ +∞

0
P(Xτ > x)dx =

∫ T

0
P(Xτ > x)dx +

∫ +∞

T
P(Xτ > x)dx .

We have two cases:

(i) Xτ > x for x ∈ (T,+∞);

(ii) Xτ > x for x ∈ (0, T ].
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By assumptions 2, if Xi < T for all i = 1, ..., n, we assume τ = ∞ and define

X∞ := Xn. Moreover, p = P(maxiXi ≥ T ).

Let us start from point (i). Note that for any x > T we have

P(Xτ > x) =
n∑

i=1
P(Xτ > x|τ = i)P(τ = i) + P(Xτ > x|τ = ∞)P(τ = ∞) . (2.1)

We know that

P(Xτ > x|τ = ∞)P(τ = ∞) = P(X∞ > x|τ = ∞)P(τ = ∞) =

= P(Xn > x|τ = ∞)P(τ = ∞) = 0 · P(τ = ∞) = 0 .

So we have that the expression (2.1) becomes

P(Xτ > x) =
n∑

i=1
P(Xi > x|τ = i)P(τ = i) =

=
n∑

i=i−1
P(Xi > x|X1 < T,X2 < T, ..., Xi−1 < T,Xi > T ) · P(τ = i) .

(2.2)

Since the random variables {Xi}n
i=1 are independent

P(Xi > x|X1 < T,X2 < T, ..., Xi−1 < T,Xi > T ) = P(Xi > x|Xi > T ) =

= P(Xi > x,Xi > T )
P(Xi > T ) = P(Xi > x)

P(Xi > T ) .
(2.3)

Hence, by independence of the random variables and by (2.3), we can rewrite (2.2)

as

P(Xτ > x) =
n∑

i=1

P(Xi > x)
P(Xi > T ) · P(τ = i) =

=
n∑

i=1

P(Xi > x)
P(Xi > T ) · P(Xi > T ) · P(Xj < T for j = 1, ..., i− 1) =

=
n∑

i=1
P(Xi > x) · P(Xj < T for j = 1, ..., i− 1) .

(2.4)

Remark 1. It is possible to show that the probability of the event {maxiXi < T}

is less than or equal to the probability of the event {Xj < T for j = 1, ..., i− 1}.
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In simple words, the event of finding the highest value in the sequence X1, X2, ..., Xn

before the threshold value implies that all the other values in the sequence X1, X2, ..., Xi−1

are also found before the threshold value since there is no value higher than T .

As a result,

i− 1 < n ,

The probability of having the maximum value, one variable in the sequence, before

T is lower compared to the probability of having all the other values except for Xn

before T .

Indeed,

{maxiXi < T} =

= {X1 < T,X2 < T, ..., Xn < T} ⊆ {X1 < T,X2 < T, ..., Xi−1 < T} =

= {Xj < T for j = 1, ..., i− 1} ,

So the following statement holds true

P(maxiXi < T ) ≤ P(Xj < T for j = 1, ..., i− 1) ,

And by definition of p

P(Xj < T for j = 1, ..., i− 1) ≥ 1 − p .

Then, (2.4) becomes

P(Xτ > x) ≥
n∑

i=1
P(Xi > x) · (1 − p) = (1 − p)

n∑
i=1

P(Xi > x) . (2.5)

Next, we can easily see that by the union bound,

P(maxiXi > x) = P(∃ i such that Xi > x) = P(∪n
i=1{Xi > x} ≤

n∑
i=1

P(Xi > x) .

Hence, (2.5) becomes

P(Xτ > x) ≥ (1 − p)P(maxi > x) . (2.6)
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Let us now move to point (ii). Note that if x ≤ T , we have

P(Xτ > x) =
n∑

i=1
P(Xτ > x|τ = i)P(τ = i) + P(Xτ > x|τ = ∞)P(τ = ∞) =

=
n∑

i=1
1 · P(τ = i) + P(Xτ > x|τ = ∞)P(τ = ∞) =

≥
n∑

i=1
P(τ = i) = P(τ < ∞) = P(maxiXi > T ) = p .

(2.7)

Finally, by definition of T and by Lemma A.1

2T = E[maxiXi] =
∫ T

0
P(maxiXi > x)dx +

∫ +∞

T
P(maxiXi > x)dx =

≤
∫ T

0
1dx +

∫ +∞

T
P(maxiXi > x)dx = T +

∫ +∞

T
P(maxiXi > x)dx ,

so

2T ≤ T +
∫ +∞

T
P(maxiXi > x)dx ,

and

T ≤
∫ +∞

T
P(maxiXi > x)dx .

The above result, together with (2.6) and (2.7) help us prove Theorem 2.0.1. We

can show that

E[Xτ ] =
∫ +∞

0
P(Xτ > x)dx =

∫ T

0
P(Xτ > x)dx +

∫ +∞

T
P(Xτ > x)dx =

≥
∫ T

0
p dx +

∫ +∞

T
(1 − p)P(maxiXi > x)dx ≥ pT + (1 − p)T =

= T = 1
2 E[maxiXi] .

The last thing we want to show is that the constant 2 appearing in Theorem

2.0.1 is the optimal constant, it is not possible to find a value C ∈ (0, 2) for which

E[maxiXi] ≤ C E[Xτ ] for any stopping rule τ .

Assume n = 2, in other words, we have two random variables in the sequence X1
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and X2. Given ε ∈ (0, 1), we define X1 := 1 and

X2 =


1
ε
, with probability ε,

0, with probability 1 − ε.

We can observe that 1
ε
> 1 and E[X2] = E[X1] = 1. Therefore, under any stopping

rule τ , we have E[Xτ ] = 1. So,

max{X1, X2} =


1
ε
, with probability ε,

1, with probability 1 − ε.

From this we can compute

E[max{X1, X2}] = 2 − ε .

When ε → 0 we have the following result

E[max{X1, X2}] = 2 = 2 · 1 = 2 · E[Xτ ] .

2.1 The Prophet Inequality with Cost for Obser-

vations

The Prophet Inequality we have analysed in the previous section aimed at

comparing the performance of online and offline algorithms in the selection of a

value drawn from a random sequence. Now, we will consider a different problem

scenario where the comparison is made between the performance of a prophet with

complete foresight and the performance of a gambler who is observing a sequence

of i.i.d., real-valued random variables, exactly as in the classical Prophet Inequality

that we have just observed at the beginning of this chapter. What’s new is a non-

negative fixed cost charged for each observation. This case was described by E.
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Samuel-Cahn in 1992 [1], who introduced the main theorem for this new prophet

problem.

Before we begin with the mathematical analysis, there are some hypothesis

which need to be taken into account.

Assume:

(B1) Xi is independent, i = 1, 2, . . . , 0 ≤ Xi ≤ 1;

(B2) c ≥ 0 is a fixed constant;

(B3) the optimal stopping problem for the sequence Yi = Xi − ic, i = 1, 2, ...,

corresponds to a reward Xi minus a fixed cost c of sampling, for each obser-

vation;

(B4) V (Y1, ..., Yn) = sup {E[Yτ ] : τ ≤ n, τ is a stopping rule};

(B5) [x] denotes the largest integer smaller than x.

Theorem 2.1.1 (Difference Prophet Inequality with cost.). Let {Xi}n
i=1 be a se-

quence of i.i.d. with 0 ≤ Xi ≤ 1.

(a) For 0 ≤ c ≤ 1 fixed and a positive integer n,

E[ max
1≤i≤n

Yi] − V (Y1, ..., Yn) ≤
[1
c

]
c (1 − c)[1/c]+1, (2.8)

(b) For n ≥ 1 fixed and all c ≥ 0,

E[ max
1≤i≤n

Yi] − V (Y1, ..., Yn) ≤ (1 − 1/n)n+1, (2.9)

(c) For all c ≥ 0 and all finite or infinite sequences (n = +∞),

E[ max
1≤i≤n

Yi] − V (Y1, ..., Yn) ≤ e−1. (2.10)
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The theorem presents three different situations and defines the best possible

bound for each one of them based on the fixed cost and length of the sequence.

We will focus on the first inequality of the theorem (2.8).

Remark 2. We will consider only c ≤ 1, otherwise both the maximum and the

optimal stopping value will be obtained for n = 1 and the difference will be equal

to 0. The purpose of this note is to help with the explanation of Theorem 2.1.1.

2.2 Proof of the Difference Prophet Inequality

We assume n ≥ 2, otherwise the theorem is trivial. For the proof of the theorem

Chow and Robbins in 1961 have considered the optimal stopping problem (for

infinite horizon) for the payoff sequence Y ∗
i = max1≤j≤i Xj − ic, i = 1, 2, ..., where

X1, X2, ..., are i.i.d. with finite expectation and c > 0. They have shown that

there exists an optimal rule s given by:

s = inf{i : Xi ≥ β},

where β is the unique value for which E[max{X1 −β, 0}] = c. This result suggests

that since Yi ≤ Y ∗
i , the rule is also optimal for the payoff Yi = Xi − ic and as a

consequence E[Ys] = β. Moreover, we define sn = min{s, n} for Yi and all t ≤ n.

Then, we can set our goal to be the maximisation of the following difference:

E[max1≤i≤n Yi] − E[Ysn].

As the theorem suggests, this difference is always less than or equal to the right

hand-side of (2.8) and (2.9), and its maximum is achieved at the equality for special

Bernoulli random variables taking values of 0 and 1 with positive probability.

Moreover, let V (Y1, ..., Yn) = E[Ysn]. Lastly, for the purpose of the thesis, there are

two additional identities take note of:
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• The expectation of X1 given that the value of X1 is bigger or equal than

beta,

E[X1|X1 ≥ β] − β = c

u
, (2.11)

• And the probability of Xi assuming the value of 1,

p = c/(1 − β). (2.12)

Lemma 2.2.1.

E[Ysn] = β − (1 − u)n(β − E[X1|X1 < β]), (2.13)

Let u = P(X ≥ β) and the value in the equation equal to β when u = 1.

Proof. We start from the left side of the equation in (2.13)

E[Ysn] =
n∑

i=1
E[Ysn|sn = i]P(sn = i). (2.14)

Then we decompose the equation and study E[Ysn|sn = i] and P(sn = i) separately.

For i = 1, ..., n− 1:

E[Ysn|sn = i] = E[Yi|X1 < β, ..., Xi−1 < β,Xi ≥ β] =

= E[Xi − ic|X1 < β, ..., Xi−1 < β,Xi ≥ β] =

= E[Xi − ic|Xi ≥ β] = E[Xi|Xi ≥ β] − ic = E[X1|Xi ≥ β] − ic.

(2.15)

Recall the Law of Total Probability (Theorem 2.2). For i = n:

E[Ysn|sn = n] = E[Xn − nc|sn = n] =

= E[Xn − nc|{X1 < β, ..., Xn−1 < β,Xn ≥ β}∪

∪ {X < β, ..., Xn−1 < β,Xn < β}] =

= E[Xn − nc|X1 < β, ..., Xn−1 < β] = E[Xn − nc] = E[Xn] − nc =

= E[X1] − nc.

(2.16)
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For i = 1, ..., n− 1:

P(Sn = i) = P(X1 < β,X2 < β, ..., Xi−1 < β,Xi ≥ β) =

= P(X1 < β) · P(X2 < β)...P(Xi−1 < β) · P(Xi ≥ β) =

= (1 − u)i−1 · u.

(2.17)

Again, keep in mind Theorem 2.2. For i = n:

P(Sn = n) = P(X1 < β, ..., Xn < β) + P(X1 < β, ..., Xn−1 < β,Xn ≥ β) =

= P(X1 < β, ..., Xn−1 < β) = P(X1 < β)P(X2 < β)...P(Xn−1 < β) =

= (1 − u)n−1.

(2.18)

To simplify, set α = (E[X1] − nc)(1 − u)n−1. Then, given the results in (2.15),

(2.16), (2.17), and (2.18), (2.14) becomes

E[Ysn] =
n−1∑
i=1

E[Ysn|sn = i] · P(sn = i) + E[Ysn|sn = n] · P(sn = n) =

=
n−1∑
i=1

(E[X1|Xi ≥ β] − ic)(1 − u)i−1u+ α =

=
n−1∑
i=1

E[X1|Xi ≥ β](1 − u)i−1u−
n−1∑
i=1

ic(1 − u)i−1u+ α =

= E[X1|Xi ≥ β]u
n−1∑
i=1

(1 − u)i−1 + cu
n−1∑
i=1

i(1 − u)i−1(−1) + α.

Remark 3. Note that

i(1 − u)i−1 · (−1) = d

du
(1 − u)i.
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Therefore by the above mentioned Remark and by Lemma A.3, we can write

E[Ysn] = E[X1|X1 ≥ β]u
n−1∑
i=1

(1 − u)i−1 + cu
n−1∑
i=1

d

du
(1 − u)i + α =

= E[X1|X1 ≥ β]u · 1 − (1 − u)n−1

u
+ cu

d

du

n−1∑
i=1

(1 − u)i + α =

= E[X1|X1 ≥ β]u · 1 − (1 − u)n−1

u
+ cu

d

du
(1 − (1 − u)n

u
− 1) + α =

= E[X1|X1 ≥ β](1 − (1 − u)n−1) + c · [n(1 − u)n−1u− 1 + (1 − u)n]
u

+ α.

We put the original value of α back in the equation and set γ = E[X1|X1 ≥ β].

E[Ysn] = γ − γ(1 − u)n−1 + cn(1 − u)n−1 − c

u
+ c(1 − u)n

u
+ E[X1](1 − u)n−1+

− nc(1 − u)n−1 =

= γ − γ(1 − u)n−1 − c

u
+ c(1 − u)n

u
+ E[X1](1 − u)n−1 =

= γ − c

u
− γ(1 − u)n−1 + c(1 − u)n

u
+ E[X1](1 − u)n−1.

Remember (2.11), then

E[Ysn] = β − γ(1 − u)n−1 + (γ − β)(1 − u)n + E[X1](1 − u)n−1 =

= β − γ(1 − u)n−1 + γ(1 − u)n − β(1 − u)n + E[X1](1 − u)n−1 =

= β − β(1 − u)n − γ(1 − u)n−1(1 − (1 − u)) + E[X1](1 − u)n−1 =

= β − β(1 − u)n − γ(1 − u)n−1u+ E[X1](1 − u)n−1 =

= β − β(1 − u)n + (1 − u)n−1[E[X1] − γu].

(2.19)

Remark 4. Note that

E[X1] − γu = E[X1] − E[X1|X1 ≥ β]P(X1 ≥ β),

and

E[X1] = E[X1|X1 ≥ β]P(X1 ≥ β) + E[X1|X1 < β]P(X1 < β),

therefore the equation becomes

E[X1] − γu = E[X1|X1 < β]P(X1 < β) = (1 − u) · E[X1|X1 < β].
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Finally, we can rewrite (2.19) as (2.13)

E[Ysn] = β − β(1 − u)n + (1 − u)n−1(1 − u) · E[X1|X1 < β] =

= β − β(1 − u)n + (1 − u)n · E[X1|X1 < β] =

= β − (1 − u)n(β − E[X1|X1 < β]).

Having proved Lemma 2.2.1, we will now continue with the explanation of the

following proposition in order to prove the theorem. For this intent, consider:

• Xi ∼ Ber(p) of parameter p = c
1−β

,

• r = sup{i : 1 − ic > −c} for fixed values of c,

• Yi ≤ 0 for all i > r,

• Dn = E[max1≤i≤nYi] − E[Ysn].

Remark 5. By definition, r is the highest possible i value for which 1 − ic > −c,

in other words, it is the least upper bound for the set (−c, 1 − ic). We can affirm

that Y1 > Yr+1 since when taking r+1 the worst value assumed by payoff Y1(= −c)

is bigger than the best value assumed by payoff Yr+1(= 1 − (r + 1)c). Thus, Yj

cannot be the maximum payoff for values of j > r + 1.

Proposition 2.2.2. For all n ≥ r, and c and p fixed:

Dn ≤ Dr = (1 − p)r(r − 1)c. (2.20)

Proof. We know Dn to be the difference between the expected payoff of a prophet

with perfect foresight and the expected payoff of a gambler who is observing the

sequence of random variables and stopping at time sn. As we have successfully

proved E[Ysn], all is left to do now is to compute E[max1≤i≤nYi].

Firstly:
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• max{Y1, ..., Yn} = Yi for 2 ≤ i ≤ r,

• max{Y1, ..., Yn} = Y1.

As a result we have,

E[ max
1≤i≤n

Yi] = E[max
1≤i≤r

Yi] =
r∑

j=2
E[Yj| max

1≤i≤r
Yi = Yj]P(max

1≤i≤r
Yi = Yj)+

+ E[Y1| max
1≤i≤r

Yi = Y1]P(max
1≤i≤r

Yi = Y1).
(2.21)

To make the computation clearer we decompose equation (2.21) in three parts:

(i) For 2 ≤ j ≤ r,

E[Yj| max
1≤i≤r

Yi = Yj] = 1 − jc,

(ii) For 2 ≤ j ≤ r,

P(max
1≤i≤r

Yi = Yj) = P(Y1 = −c, ..., Yj−1 = −(j − 1)c, Yj = 1 − jc) =

=
j−1∏
k=1

P(Yk = −kc) · P(Yj = 1 − jc) = (1 − p)j−1p,

(iii)

E[Y1| max
1≤i≤r

Yi = Y1]P(max
1≤i≤r

Yi = Y1) =

= (1 − c)P(Y1 = 1 − c) + (−c)P(Y1 = −c, Y2 = −2c, ..., Yr = −rc) =

= (1 − c)p− c(1 − p)r.

We use our results to solve for E[max1≤i≤n Yi]:

E[ max
1≤i≤n

Yi] =
r∑

j=2
(1 − jc)(1 − p)j−1p+ (1 − c)p− c(1 − p)r =

=
r∑

j=2
(1 − p)j−1p−

r∑
j=2

jc(1 − p)j−1p+ (1 − c)p− c(1 − p)r.

(2.22)
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By applying A.3

r∑
j=2

(1 − p)j−1p = p
r∑

j=2
(1 − p)j−1 = p

r−1∑
k=1

(1 − p)k = p[1 − (1 − p)r

1 − (1 − p) − (1 − p)0] =

= p[1 − (1 − p)r

p
− 1] = 1 − (1 − p)r − p.

(2.23)

And

r∑
j=2

jc(1 − p)j−1p = cp
r∑

j=2
j(1 − p)j−1 = cp

r∑
j=2

[− d

dp
(1 − p)j] =

= −cp d
dp

· (
r∑

j=2
(1 − p)j) =

= −cp d
dp

· (1 − (1 − p)r+1

1 − (1 − p) − (1 − p)0 − (1 − p)1) =

= −cp d
dp

· (1 − (1 − p)r+1

p
− 1 − 1 + p) =

= −cp · [−(r + 1)(1 − p)r(−p) − (1 − (1 − p)r+1)
p2 + 1] =

= −cp · [ (r + 1)(1 − p)r

p
+ −1 + (1 − p)r+1

p2 + 1] =

= −c(r + 1)(1 − p)r − (1 − p)r+1

p
c+ c

p
− cp.

(2.24)

We use the solutions in (2.23) and (2.24) and rewrite equation (2.22).

E[ max
1≤i≤n

Yi] = c(r + 1)(1 − p)r + (1 − p)r+1

p
c− c

p
+ cp+ 1 − (1 − p)r − p+

+ (1 − c)p− c(1 − p)r =

= (1 − p)r[c(r + 1) − 1 − c+ (1 − p)
p

c] − c

p
+ cp+ 1 − p+ (1 − c)p.

(2.25)
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Recall the definition of p from (2.12). Equation (2.2) becomes

E[ max
1≤i≤n

Yi] = (1 − p)r[cr + c− 1 − c+ (1 − p)(1 − β)] − 1 + β + cp+ 1 − p+

+ p− cp =

= β + (1 − p)r[cr − 1 + (1 − p) − (1 − p)β] =

= β + (1 − p)r[cr − 1 + 1 − p− c] = β + (1 − p)r[c(r − 1) − β].

(2.26)

Then, by Lemma 2.2.1 and (2.26)

Dn = E[max1≤i≤nYi] − E[Ysn] =

= β + (1 − p)r[c(r − 1) − β] − β + (1 − u)n(β − E[X1|X1 < β]) =

= (1 − p)r[c(r − 1) − β] + (1 − u)n(β − E[X1|X1 < β]) =

= (1 − p)rc(r − 1) − β(1 − p)r + (1 − u)n(β − E[X1|X1 < β]).

To prove equation (2.20) we have to show that

−β(1 − p)r + (1 − u)n(β − E[X1|X1 < β]) ≤ 0.

Assuming n ≥ r, since (1 − p) = P(X1 = 0) and X1 = 0 when X1 < β, the above

inequality can be proven as shown below

E[β −X1|X1 < β]P(X1 < β)n − β(1 − p)n ≤

≤ E[β −X1|X1 < β]P(X1 < β)n − βP(X1 < β)n =

= P(X1 < β)n[E[β −X1|X1 < β] − β] =

= −E[X1|X1 < β]P(X1 < β)n ≤ 0.

Therefore we can establish

Dn ≤ Dr = (1 − p)r(r − 1)c,
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and demonstrate (2.8) since the maximum value of the equation is given for small

values of p. By definition, p is minimised if β = 0. So we can reach to the final

statement

Dn ≤ Dr = (1 − p)r(r − 1)c ≤ (1 − c)r(r − 1)c,

and by substituting r = 1 + [1
c
] we prove the theorem

Dn ≤ Dr ≤
[1
c

]
c (1 − c)[1/c]+1.
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Conclusion

In this thesis, our aim was to present two different online selection games, the

Secretary Problem in Chapter 1 and the Prophet Inequality in Chapter 2. Our

objective was to understand their impact on decision-making processes and its

application on real-life situations. We analysed how information can be managed

and assessed in the most efficient way and looked into different versions of the

problems. Furthermore, we were also interested in comparing the performance of

two individuals at opposite ends of the knowledge spectrum: one with no prior

information and the other with complete knowledge of future events.

Our analysis demonstrated that the implementation of the optimal stopping

rule can significantly improve decision accuracy in online selection scenarios. We

found that the strategies based on probability theories outperformed traditional

methods. Specifically, we have discussed this issue in the context of finance and

considered the situation where a stock analyst is asked to make an important

decision after observing a sequence of price changes taking place during a given

month. His task is to identify the peak day of the month during which stock prices

will be highest. By applying Alexander’s 5 percent filter technique for predicting

successive price changes we confirmed the efficiency of the random walk model

and supported the theory of independence of price movements. These findings are

crucial as they provide a new framework for approaching real-time decision-making

problems. However, it is important to keep in mind that the models we used for
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the resolution of our problem is always based on the assumption of independent

random variables.

To continue, knowing the peak of a random walk, which in our case is the stock

price, is crucial in our examination. In actual practice, this information allows

the short-selling investment strategy to achieve the highest possible profit. The

short position strategy involves borrowing shares of a stock and selling them on

the market to then buy them back later at a lower price. Being able to recognise

when the stock price is going to be the highest allows the investor to earn from the

decline in the stock price during the holding period. In simple words, the revenue

from selling at a high price and buying back at a low price will be the highest.

In conclusion, this thesis offers mathematical proofs and demonstrations that

enhance decision-making processes and improve strategies for maximising revenue.

It also identifies the optimal stopping time and calculates the probability of success

for the proposed strategy.
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Appendix

Lemma A.1. If X is a non-negative and real-valued random variable. Then

E[X] =
∫ +∞

0
P(X > x)dx

Theorem A.2 (Law of Total Probability). If B1, B2, B3, ..., is a partition of the

sample space S, then for any event A we have

P(A) =
∑

i

P(A ∩Bi)
∑

i

P(A|Bi)P(Bi)

In the special case where the partition is B and Bc

P(A) = P(A ∩B) + P(A ∩Bc)

Lemma A.3. For any a ∈ R with a ̸= 1
n−1∑
i=0

ai = 1 − an

1 − a

Theorem A.4 (Law of Large Numbers). If X1, X2, ... is a sequence of i.i.d. ran-

dom variables, each with finite mean µ. Then

X1 + ...+Xn

n
a.s.−−→ µ for n → ∞

P( lim
n→∞

X1 + ...+Xn

n
= µ) = 1
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