
Department of Economics and Finance

Chair of Gambling: Probability and Decision

PageRank Algorithm: Integrating

Markov Chains and Computational

Methods in Link Analysis

Supervisor:

Prof.

Hlafo Alfie Mimun

Candidate:

Marijana Pavlovska

273701

Academic Year 2023/2024

To my best friends Andrea, Anja and Tamara,

to my father, Dragan,

to my uncle, Mladen,

and to my mother, Nikoleta:

Thank you for your unconditional support and faith in me.

Contents

Introduction i

1 Markov Chains 1

1.1 Introductory Definitions and Properties 1

1.2 Transience and Recurrence . 4

1.3 Simple Random Walk on Z . 9

1.4 Stationary Distribution . 12

1.5 Period of a State and Aperiodic Markov Chains 12

1.6 Time Reversal and Reversible Markov Chains 16

1.7 Ergodic Theorem . 19

1.8 A Practical Example . 20

2 Markov Chains in PageRank Algorithm 27

2.1 Introduction . 27

2.2 The PageRank Algorithm . 28

2.2.1 Graph Theory Background 29

2.2.2 Calculating PageRank . 31

2.3 Integrating Markov Chains with PageRank 34

2.3.1 Mechanism of Integration 35

2.4 Practical Examples . 39

2.5 The Google Matrix . 47

2.6 Further Examples . 48

3 Conceptual Approach and Python Application 53

3.1 Network Components . 53

3.2 Directed Networks . 56

3.2.1 Network Degree . 56

3.2.2 Network Weight and Strength 57

3.3 Visualizing Networks with Python 59

3.3.1 Example Code for Undirected and Directed Graphs 59

3.3.2 Graphing Techniques . 62

3.3.3 Node and Edge Existence 64

3.3.4 Calculating Node and Edge Degree 64

3.3.5 Implementing Weight . 67

3.4 Network Graphs and PageRank Computation with Python 70

3.4.1 Example 1 . 70

3.4.2 Example 2 . 79

4 Real-Life Application 87

4.1 Introduction . 87

4.2 Twitter Dataset . 88

4.2.1 Setting Up the Environment 88

4.2.2 Creating the Directed Graph 88

4.2.3 PageRank Calculation . 92

4.2.4 Overview of the Top 10 Ranked Users 93

4.2.5 Analysis of In-Degree and Out-Degree for Top 10 Ranked

Users . 95

4.3 Final Thoughts . 97

Conclusion 99

Appendix 101

A.1 Dataset Overview . 101

A.2 Sample Data . 101

A.3 External Resources . 101

A.4 Sample PageRank Results . 102

A.5 PageRank Results . 102

Bibliography 103

Introduction

In today’s world, the ability to obtain information with just a single search and

a click has become second nature. Whether one uses Google, Mozilla, Internet Ex-

plorer, or any other search engine, the results displayed are driven by sophisticated

algorithms [4]. In this thesis, Google serves as the primary focus of discussion. For

instance, if one searches on Google for a traditional ajvar recipe—a dish popular

in the Balkans—the top result is likely from a reputable, well-known page. The

algorithm can be understood through the lens of game theory: each web page has

a certain probability of appearing at the top, similar to a tree where each branch

carries a probability, and each outcome offers a payoff.

The core idea behind Google’s PageRank algorithm is that a page’s relevance

is determined by the number and quality of links pointing to it [4]. The more

reputable the links, the higher the payoff, and thus, the higher the page ranks.

Since game theory is a branch of applied mathematics, the concepts described

here can be analyzed through mathematical and computational methods.

That said, PageRank can be understood through Markov processes [7, 8]. Imag-

ine a large restaurant with numerous tables, where a waiter serves customers. The

waiter’s movement or path from one table to another can be represented as a prob-

ability distribution between 0 and 1, visualized as a graph. If the waiter is at Table

1, there is a positive probability that he will eventually move to Table 2, and from

there to Table 3, and so on. The ability of the waiter to move from any table to

i

any other table reflects the concept of irreducibility. Additionally, the waiter can

decide when to return to a table, introducing the concept of aperiodicity.

These ideas are crucial when ranking web pages. Just as a waiter can move

between tables with a positive probability, a user can navigate from one web page

to another, and sometimes even to an unrelated page. This path resembles a

directed graph created by a user “surfing” the internet [4]. These graphs can be

visualized using Python, particularly with the NetworkX library [1].

Web surfing can be seen as a series of paths leading to specific results. Under-

standing the basis of these results and how to predict or influence them requires

a deep dive into Markov chains[7, 8] and Python[1, 3]. The topic is particularly

intriguing due to its diverse applications across various fields. The broad applica-

bility of PageRank—ranging from ranking search results and social network anal-

ysis to understanding protein interactions, academic influence, and even everyday

life—has greatly motivated my interest in this subject.

For instance, if a waiter frequents Table 3 more than others, it is likely because

that table has influential guests, drawing attention from others. Similarly, a web

page with a high PageRank is frequently visited and linked by other reputable

sources. In essence, it has the highest probability of being visited, i.e., PageR-

ank [4]. Markov chains and Python provide the tools to visualize, analyze, and

investigate these concepts through computational and mathematical approaches.

As mentioned, this has various applications, including the Twitter network [3, 5]

examined in this thesis, which consists of four chapters, each exploring different

aspects of the topic. More specifically:

1. Chapter 1: introduction Markov Chains’ basics and key properties with

examples.

2. Chapter 2: explanation using Markov Chains in the PageRank algorithm

with practical examples.

ii

3. Chapter 3: network theory, Python implementation, and PageRank calcu-

lation examples.

4. Chapter 4: application to a Twitter dataset, analyzing PageRank and user

rankings.

iii

Chapter 1

Markov Chains

1.1 Introductory Definitions and Properties

Definition 1.1. V is a state space, which is a countable or finite set. V =

{v1, v2, v3, . . . , vn}, where n is the number of elements in V . If V is countable

and infinite, then n = ∞.

Ann × n matrix P is a stochastic matrix if the following two properties hold:

P1: For i, j = 1, . . . , n, pij ∈ [0, 1].

P2: For i = 1, . . . , n, ∑n
j=1 Pi,j = 1.

The vector π(0) of length n is a probability distribution on V if the following

two properties hold:

D1 : For any j = 1, . . . , n, πj(0) ∈ [0, 1].

D2: ∑j πj(0) = 1.

Pi,j is the probability of moving from a state indexed by i to a state indexed by j.

Finally we define πi(t) := P (Xt = vi) and hence π(t) := (π1(t), . . . , πn(t)) is the

probability distribution of Xt.

1

Notation 1.1. In the entire chapter, we will write P t
i,j instead of (P t)i,j. So in

general, P t
i,j ̸= (Pi,j)t.

Definition 1.2. The process {Xt}t∈N is a Markov chain on the state space V

with transition matrix P and initial probability distribution π(0) if:

M1: The Markov property holds, that is, for any t ≥ 1 and i = 1, . . . , n, we

have:

P (Xt = vi | X1, . . . , Xt−1) = P (Xt = vi | Xt−1)

The Markov property tells us that the future, knowing the present,

is independent of the past.

M2: For any i = 1, . . . , n, P (X0 = vi) = πi(0).

M3: For any i, j = 1, . . . , n and t ≥ 1,

P (Xt = vj | Xt−1 = vi) = Pi,j

The Markov chain is time-homogeneous since the matrix P does not depend on

the time t.

Proposition 1.1.1. If {Xt} is a Markov chain with transition matrix P , then

π(t) = π(t − 1) · P for any t ≥ 1.

By iterating this formula, we get:

π(t) = π(t − 1) · P = π(t − 2) · P · P = π(t − 2) · P 2 = . . . = π(0) · P t.

So,

π(t) = π(0) · P t.

2

Example 1.1. Consider the graph G = (V, E), where V = {v1, v2, v3, v4} and

E = {(v1, v2), (v2, v3), (v3, v4), (v4, v1)}. G is the graph, V are the vertices, and E

are the edges of the “square graph”.

v1 v2

v3v4

p

q

Fig. 1.1: Square Layout of Node Transitions

• We start at vertex v1.

• At each round, we have the probability p of moving clockwise and the proba-

bility q of moving counterclockwise.

Let Xt be the position at time t. Since we start from vertex v1, we have P (X0 =

v1) = 1 and P (X0 = vi) = 0 for ∀i = 2, 3, 4. The probability distribution at round

t is:

π(t) = (π1(t), π2(t), π3(t), π4(t)) ,

where, πi(t) := P (Xt = vi). In our example, the initial probability distribution is:

π(0) = (1, 0, 0, 0) .

Note that, ∑4
i=1 πi(0) = ∑4

i=1 P (X0 = vi) = 1. The set V is called the state

space, which contains 4 elements. Define P as the 4 × 4 matrix such that for

i, j = 1, 2, 3, 4,

Pi,j = P (X1 = vj | X0 = vi).

3

Hence,

P =



0 p 0 q

q 0 p 0

0 q 0 p

p 0 q 0


P is the transition matrix, and it allows us to obtain the probability distribution

at time t from the probability distribution at time t − 1. To find the probability of

being in the state j at time 1, we multiply the probability of being in the state i

by the probability of moving from i to j for all i, and then sum all of these results

over all i’s, that is

πj(1) = P (X1 = vj) =
4∑

i=1
P (X1 = vj | X0 = vi)P (X0 = vi)

=
4∑

i=1
Pi,jπi(0) =

4∑
i=1

πi(0)Pi,j = (π(0) · P)j.

The universal formula, that is for any t > 0, for j = 1, 2, 3, 4 is:

πj(t) = P (Xt = vj) =
4∑

i=1
P (Xt = vj | Xt−1 = vi)P (Xt−1 = vi)

=
4∑

i=1
Pi,jπi(t − 1) = (π(t − 1) · P)j.

Hence,

π(t) = π(t − 1) · P.

1.2 Transience and Recurrence

Definition 1.3. Tj is the the Hitting time of the state vj ∈ V as the first time

t ≥ 1 in which the chain Xt visits the state vj (excluding time 0).

Tj := min{t ≥ 1 | Xt = vj},

with the convention that min ∅ = ∞.

4

Definition 1.4. Nj is the the number of visits of the state vj ∈ V as the

number of times that the chain visits vj (excluding time 0).

Nj :=
∞∑

t=1
1{Xt=vj}.

Definition 1.5. fi,j is the probability that, starting from state vi, the Markov

chain will eventually reach state vj at least once.

fi,j = P(Tj < ∞ | X0 = vi) = P(Nj ≥ 1 | X0 = vi).

Definition 1.6. We say that state vj is

• transient if fj,j < 1;

• recurrent if fj,j = 1.

Let {Xt}t∈N be a Markov chain defined on the state space V = {v1, . . . , vn},

where n could be finite or infinite. If Nj ≥ m for some m ≥ 1, it means the chain

visits state vj at least m times. Let t0 = 0 denote the starting time of our chain.

There exist times t1, t2, . . . , tm such that 1 ≤ t1 < t2 < . . . < tm. Each ti signifies

the moment when the chain reaches state vj for the i-th time. By definition at

these times, we have:

Xt1 = Xt2 = . . . = Xtm = vj .

Moreover, between any consecutive occurrences ti−1 and ti, the chain does not visit

vj, that is:

Xt ̸= vj for all t ∈ (ti−1, ti) .

This property ensures that the Markov chain {Xt} precisely hits state vj at time

ti, and during the interval (ti−1, ti), it visits in other states.

For i = 1, 2, . . . , m, let us define Ai an event that describes the chain from the

time it left state vj until it reaches vj again.

Ai = {Xt ̸= vj for all t ∈ (ti−1, ti), Xti
= vj} .

5

Alternatively,

Ai = {Xti−1+1 ̸= vj, Xti−1+2 ̸= vj, . . . , Xti−1 ̸= vj, Xti
= vj}

Note that the event {Nj ≥ m} occurs if there exists a sequence of times t1, . . . , tm

such that A1, . . . , Am occur, that is {Nj ≥ m} = ⋂m
i=1 Ai. Hence,

P (Nj ≥ m | X0 = vi) = P

(
m⋂

i=1
Ai | X0 = vi

)

is the probability of hitting vj at least m times given that X0 = vi. Note that

P

(
m⋂

i=1
Ai | X0 = vi

)
=

m∏
k=1

P

(
Ak |

k−1⋂
i=1

Ai ∩ {X0 = vi}
)

.

This expression uses the multiplication rule, which states that the joint proba-

bility of a sequence of events can be computed by multiplying the conditional

probabilities of each event given the previous ones. Moreover, we have:
m∏

k=1
P

(
Ak |

k−1⋂
i=1

Ai ∩ {X0 = vi}
)

=
m∏

k=2
P
(
Ak | Xtk−1 = vj

)
· P (A1 | X0 = vi).

The above formula follows from the Markov property. Indeed, the Markov property

ensures that the probability of transitioning to the next state depends solely on

the current state. Since each event Ak concludes when the chain reaches vj, we

only need to consider the current state vj. Moreover, due to the time-homogeneous

property, we have:
m∏

k=2
P (Ak | Xtk−1 = vj) · P (A1 | X0 = vi) = P (A1 | X0 = vj)m−1 · P (A1 | X0 = vi)

= (fj,j)m−1 · fi,j.

Indeed, the time-homogeneous property states that the probability of transitioning

between states is independent of the specific time step. The f terms were derived

using their definitions. Summarizing all the passages, we have:

P (Nj ≥ m | X0 = vi) = (fj,j)m−1 · fi,j.

6

Let us now look at the expected number of state visits vj given that the initial

state is vi, that is, E[Nj | X0 = vi]. This expectation can be expressed as

E[Nj | X0 = vi] =
∞∑

m=1
P(Nj ≥ m | X0 = vi) =

∞∑
m=1

(fjj)m−1 · fij.

Let k = m − 1; then the above summation can be rewritten as
∞∑

k=0
(fjj)k · fij.

Using the geometric series identity

∞∑
k=0

ak =


1

1−a
, if |a| < 1,

∞, if |a| ≥ 1 ,

we derive

E[Nj | X0 = vi] =
∞∑

k=0
(fjj)k · fij =


fij

1−fjj
, if vj is transient,

∞, if vj is recurrent.

This expression gives the expected number of state visits vj starting from state vi,

considering whether vj is transient or recurrent under the Markov chain dynamics.

Definition 1.7. The sequence {Xt}t∈N is an irreducible Markov chain if fi,j > 0

for all vi, vj ∈ S. This means that for any two states in the state space S, there is

a positive probability of transitioning from one state to the other. In terms of the

associated graph G, this implies that there is a path connecting any pair of vertices.

Therefore, saying that G is an irreducible graph is equivalent to stating that P is

an irreducible matrix.

Proposition 1.2.1. The state vj is

• transient if ∑∞
m=1 P m

j,j < ∞,

• recurrent if ∑∞
m=1 P m

j,j = ∞.

7

Proof. We have

E[Nj | X0 = vj] = E
[∞∑

m=1
1{Xm = vj} | X0 = vj

]

=
∞∑

m=1
P(Xm = vj | X0 = vj)

=
∞∑

m=1
P m

j,j.

Since

E[Nj | X0 = vj] =


∞, if vj is transient,

∞, if vj is recurrent,

we have established the thesis.

Proposition 1.2.2. If the state vi is recurrent and fij > 0, then the state vj is

also recurrent and fji = 1.

Proposition 1.2.3. If {Xt}t∈N is an irreducible Markov chain, then all states are

either transient or recurrent.

Proposition 1.2.4. An irreducible recurrent Markov chain visits every state in-

finitely often. This means that for each state vj in the state space V , the chain

will return to vj an infinite number of times. Formally, this can be expressed as:

P

 ∞⋂
m=1

⋃
k≥m

{Xk = vj}

 = 1 ∀vj ∈ V

This expression indicates that the probability of visiting state vj infinitely often is

1 for every state vj.

Proposition 1.2.5. An irreducible transient Markov chain visits no state infinitely

often. This means that for each state vj in the state space V , the chain will only

visit vj a finite number of times. Formally, this can be expressed as:

P

 ∞⋂
m=1

⋃
k≥m

{Xk = vj}

 = 0 ∀vj ∈ V

8

This expression indicates that the probability of visiting state vj infinitely often is

0 for every state vj.

1.3 Simple Random Walk on Z

Suppose a player is betting on a roulette game where each spin can result in either

winning or losing $1. The probabilities are given by

P (Winning the bet) = p, P (Losing the bet) = q .

Assume that

• the player starts with an initial balance X0 = 0.

• with each spin, the player either wins or loses.

• Xt is the player’s balance after the t-th spin.

• {Xt}t∈N is a Markov chain on state space Z since it satisfies the Markov

property. Knowing Xt−1, we can derive Xt as

Xt =


Xt−1 + 1, with probability p,

Xt−1 − 1, with probability q.

For any t ∈ N and j ∈ Z

P(Xt = j | Xt−1, . . . , X1) = P(Xt = j | Xt−1) .

The state space is countable, the transition matrix P and the initial probability

distribution has infinite dimensions. The transition matrix associated with {Xt}t∈N

is the matrix P such that for i, j ∈ Z

Pi,j := P(Xt = j | Xt−1 = i) =



p, if j = i + 1,

q, if j = i − 1,

0, if j ̸= {i − 1, i + 1}.

9

Hence, for example, we have P (X1 = 1) = p, P (X1 = −1) = q and

P (X2 = j) = P1,j · P (X1 = 1) + P−1,j · P (X1 = −1) = P (X2 = j) =

=



p · p + 0 · q = p2, if j = 2,

q · p + p · q = 2pq, if j = 0,

0 · p + q · q = q2, if j = −2,

0 · p + 0 · q = 0, if j = ±1.

The graph G associated with the Markov chain {Xt}t∈N has vertices representing

all possible states, which are elements of Z, the set of all integers. The edges of

G are defined by pairs (i, i + 1) for each integer i ∈ Z. This structure reflects

the transitions where each state i can transition to i + 1. The irreducibility of G

implies that there is always a path between any two states in Z.

Note that P m
0,0 is the probability that, starting at 0, the chain visits 0 at time

m. This probability can be different from 0 if and only if m is an even number.

So,

P m
0,0 =


> 0, if m is even;

= 0, if m is odd.

For this reason, let us write m = 2k for k ∈ N. To return to X2k = 0, the

chain must take k steps to the right and k steps to the left. Combinatorially, this

involves finding all possible rearrangements of k wins (W) and k losses (L), where

each arrangement corresponds to a feasible chain:

P
(2k)
0,0 =

(
2k

k

)
pkqk.

Here,
(

2k
k

)
represents the binomial coefficient, which counts the number of ways to

choose k steps (either W or L) from 2k total steps, and pkqk gives the probability

associated with each specific arrangement (where p and q are the probabilities of

10

winning and losing, respectively). When k is large, we can use Stirling’s formula

to asymptotically approximate k!, yielding:

k! ∼
√

2πk

(
k

e

)k

.

Thus, by Stirling’s formula for large k, we have:

(
2k

k

)
= (2k)!

(k!)2 ∼

√
4πk

(
2k
e

)2k

2πk
(

k
e

)2k = 22k

√
πk

∼ 22k = 4k.

Recalling the geometric series:

∞∑
k=1

ak =


1

1−a
, if a ∈ (0, 1),

∞, if a ≥ 1,

we have

∞∑
m=1

P m
0,0 =

∞∑
k=1

P 2k
0,0

=
∞∑

k=1

(
2k

k

)
(pq)k

≈
∞∑

k=1
4k(pq)k =

∞∑
k=1

(4pq)k

=


1

1−4pq
, if 4pq < 1,

∞, if 4pq ≥ 1.

Let us define g(p) = pq = p(1−p) = p−p2 and note that g(p) < 1
4 if p ∈ [0, 1]\

{
1
2

}
,

and g
(

1
2

)
= 1

4 . Thus, we conclude that the Markov chain {Xt}t∈N is recurrent if

p = 1
2 ; otherwise, it is transient.

In probability theory, the process {Xt}t∈N described here is known as a simple

random walk on Z. When p = q, it is specifically referred to as a symmetric simple

random walk on Z.

11

1.4 Stationary Distribution

Let V be the state space of a Markov chain {Xt}t∈N with transition matrix P .

Definition 1.8. A probability distribution ρ on the state space V is called a sta-

tionary distribution (or invariant distribution) for the matrix P (or equivalently,

for the Markov chain {Xt}t∈N with transition matrix P) if ρ = ρ · P .

Example 1.2. Let us find the stationary distribution ρ for the Markov chain from

Example 1.1:

(
ρ1 ρ2 ρ3 ρ4

)
·



0 p 0 q

q 0 p 0

0 q 0 p

p 0 q 0


=
(

ρ1 ρ2 ρ3 ρ4

)

The solutions for the system are proportional to the vector (1, 1, 1, 1), so the final

solution will be ρ = (c, c, c, c) with c ∈ R. Being a probability distribution, ρ has

to satisfy the following conditions:

• ρi ∈ [0, 1] for all i;

• ∑
i ρi = 1.

Thus, we need c = 1
4 , and hence ρ =

(
1
4 , 1

4 , 1
4 , 1

4

)
.

1.5 Period of a State and Aperiodic Markov Chains

Given a set of numbers A = {x1, . . . , xr}, we denote by gcd(A) the greatest

common divisor of the set A. For example, gcd(7, 42, 700) = 7.

Definition 1.9. Given a state vi ∈ S, we define the period of the state vi as

d(i) := gcd(D(i)),

12

where

D(i) := {t ∈ N \ {0} | P t
ii > 0}.

The set D(i) consists of the indices corresponding to the rounds in which the chain

returns to vi, and d(i) is the greatest common divisor of these indices.

Example 1.3. Consider the problem in Section 1.3. For all vi,

D(i) = {2, 4, 6, 8, . . .} = {2k | k ∈ N+} ⇒ d(i) = 2.

Proposition 1.5.1. If vi, vj ∈ S are such that fi,j > 0 and fj,i > 0, then d(i) =

d(j). In particular, in an irreducible Markov chain, all the states have the same

period, denoted as d(i), and hence we can speak about the period of the Markov

chain.

Definition 1.10. If an irreducible Markov chain has a period of state 1, we say

that the Markov chain is aperiodic.

Proposition 1.5.2. If an irreducible aperiodic Markov chain in S with transition

matrix P has a stationary distribution ρ, then it is recurrent, and for any vi, vj ∈ S

we have

lim
t→∞

P t
i,j = ρj.

Furthermore, ρj > 0 for all vj ∈ S.

Proposition 1.5.3. If the Markov chain does not possess a stationary distribution,

then for any vi, vj ∈ S, it holds that

lim
t→∞

P t
i,j = 0.

Proposition 1.5.4. An irreducible Markov chain in a finite state space S has a

stationary distribution.

13

Proof. Let P be the transition matrix of the Markov chain, and suppose that a

stationary distribution does not exist. Note that, being P a transition matrix,

we have ∑vj∈S P t
i,j = 1. According to Proposition 1.5.3, we have limt→∞ P t

i,j = 0.

Hence, ∑
vj∈S

lim
t→∞

P t
i,j = 0.

Being S finite, the summation over S is finite, and hence we can exchange the

limit and summation symbols. So we have

0 =
∑

vj∈S

lim
t→∞

P t
i,j = lim

t→∞

∑
vj∈S

P t
i,j = lim

t→∞
1 = 1,

which contradicts the hypothesis. Thus, we conclude that the stationary distribu-

tion exists.

Proposition 1.5.5. Let {Xt}t∈N be an irreducible, aperiodic, recurrent Markov

chain in S with transition matrix P . Then one of the following conclusions holds:

(a) E[Ti | X0 = vi] < ∞ for all vi ∈ S, and P has a unique stationary distribu-

tion ρ given by

ρi = 1
E[Ti | X0 = vi]

for vi ∈ S. In this case, the chain is said to be positive recurrent, and

Proposition 1.5.2 holds.

(b) E[Ti | X0 = vi] = ∞ for all vi ∈ S, and P has no stationary distribution.

In this case, the chain is said to be null recurrent, and Proposition 1.5.3

holds.

Example 1.4. Consider the Markov chain on the state space S = {v1, v2} with

fixed α, β ∈ (0, 1).

P =

1 − α α

β 1 − β

 .

14

• The associated graph is irreducible because we can get to any index from

any index.

• Recurrence of Irreducible Markov Chains: If the transition matrix P of a

Markov chain is irreducible and satisfies Pi,j > 0 for all i, j, then the chain

is recurrent.

• For the state v1 of a Markov chain, the set D(1) comprises all t ∈ N\{0} such

that P t
1,1 > 0. Given that 1 ∈ D(1), it follows that d(1) = gcd(D(1)) = 1.

Since the Markov chain is irreducible, Proposition 1.5.1 implies that d(2) =

d(1) = 1, hence confirming that the Markov chain is aperiodic.

Let us look for the stationary distribution of such a Markov chain. We have

(
ρ1 ρ2

)
·

1 − α α

β 1 − β

 =
(

ρ1 ρ2

)
.

So we need to solve the system of equations:

(1 − α)ρ1 + βρ2 = ρ1,

αρ1 + (1 − β)ρ2 = ρ2,

ρ1 + ρ2 = 1.

To solve this system, we have included the conditions ρ1 +ρ2 = 1 and ρ1, ρ2 ∈ [0, 1]

(since we want ρ to be a probability distribution). Hence, we obtain
ρ1 = β

α+β
,

ρ2 = α
α+β

.

Since the Markov chain is irreducible, aperiodic, and recurrent, by Proposition

1.5.5, the Markov chain is positive recurrent. According to Proposition 1.5.5, we

have

E[T1 | X0 = v1] = 1
ρ1

= α + β

β
, E[T2 | X0 = v2] = 1

ρ2
= α + β

α
.

15

1.6 Time Reversal and Reversible Markov Chains

Definition 1.11. A stochastic matrix P and a probability distribution λ are said

to be in detailed balance if

λiPi,j = λjPj,i for all i, j.

Proposition 1.6.1. If the stochastic matrix P and the probability distribution λ

are in detailed balance, then λ is a stationary distribution for P .

Proof. To be proven: λP = λ. Since λ and P are in detailed balance, we have

(λP)i =
∑

j

λjPj,i =
∑

j

λiPi,j = λi

∑
j

Pi,j = λi.

Therefore, because (λP)i = λi, there is a full probability distribution λ

λP = λ.

To determine a probability distribution λ that is in detailed balance with a

transition matrix P , the following steps can be followed:

1. Check for the existence of a stationary distribution for P by solving the

system ρ · P = ρ.

2. If the system has no solutions, then no probability distribution λ exists that

is in detailed balance with P .

3. If the system has a solution ρ, verify whether ρ satisfies the detailed balance

condition with P .

16

Specifically, if P is symmetric (i.e., Pi,j = Pj,i), the unique probability distribution

ρ that is in detailed balance with P is the uniform distribution over the state space

(i.e., ρi = ρj for all i, j). This is demonstrated as follows. For any i, j,

λiPi,j = λjPj,i ⇒ λiPi,j = λjPi,j ⇒ λi = λj.

Thus, the uniform distribution is the unique distribution in detailed balance with

a symmetric transition matrix P .

Proposition 1.6.2. Let P be irreducible and have a stationary distribution ρ.

Fix T ≥ 1. Suppose that {Xn}0≤n≤T is a Markov chain with initial probability

distribution ρ and transition matrix P . Define Y0 = XT and Yn = XT −n for

n ≥ 1. Then the process {Yn}0≤n≤T is a Markov chain with initial distribution ρ

and transition matrix P̂ , where the entries of P̂ satisfy the equations

ρjP̂j,i = ρiPi,j for all i, j.

Moreover, P̂ is also irreducible with stationary distribution ρ. The chain {Yn}0≤n≤T

is called the time-reversal of {Xn}0≤n≤T .

Definition 1.12. Let {Xn}n≥0 be a Markov chain with initial distribution ρ and

transition matrix P . If the Markov chain is irreducible, we say it is reversible

if, for every T ≥ 1, the sequence {XT −n}0≤n≤T also forms a Markov chain with

initial distribution ρ and transition matrix P .

Proposition 1.6.3. Let P be an irreducible stochastic matrix and let ρ be a prob-

ability distribution. Suppose {Xn}n≥0 is a Markov chain with initial distribution ρ

and transition matrix P . The following statements are equivalent:

• {Xn}n≥0 is reversible.

• P and ρ satisfy the detailed balance condition.

17

Example 1.5. Consider the Markov chain on the state space S = {v1, v2, v3} with

transition matrix

P =


0 2

3
1
3

1
3 0 2

3
2
3

1
3 0

 .

We want to determine if the Markov chain is reversible. Since the associated

graph is irreducible, it is sufficient to demonstrate the existence of a probability

distribution λ = (λ1, λ2, λ3) that satisfies the detailed balance condition with P . To

find such a probability distribution, we need first to find the stationary distributions

of P and then identify which are in detailed balance with P . Let us determine if

P has a stationary distribution by finding the solution ρ = (ρ1, ρ2, ρ3) of

(
ρ1 ρ2 ρ3

)


0 2
3

1
3

1
3 0 2

3
2
3

1
3 0

 =
(

ρ1 ρ2 ρ3

)
.

This gives the system of equations:

ρ1 · 0 + ρ2 · 1
3 + ρ3 · 2

3 = ρ1

ρ1 · 2
3 + ρ2 · 0 + ρ3 · 1

3 = ρ2

ρ1 · 1
3 + ρ2 · 2

3 + ρ3 · 0 = ρ3

ρ1 + ρ2 + ρ3 = 1

This system has the solution ρ = (c, c, c) for all c ∈ R. We choose c ∈ R such that∑3
i=1 ρi = 1 and ρi ∈ [0, 1] for i = 1, 2, 3. Hence,

1 =
3∑

i=1
ρi =

3∑
i=1

c = 3c ⇒ c = 1
3 .

So, ρ =
(

1
3 , 1

3 , 1
3

)
is a stationary distribution for P , and it is unique since it is

the only solution of the system that is also a probability distribution. To verify if

18

ρ =
(

1
3 , 1

3 , 1
3

)
is in detailed balance with P , we check if λ = ρ satisfies the system

of equations: 

λ1P1,2 = P2,1λ2

λ1P1,3 = P3,1λ3

λ2P2,3 = P3,2λ3

Examining each equation: For λ1P1,2 = P2,1λ2:

1
3 · 2

3 = 1
3 · 1

3
Simplifying gives 2

9 = 1
9 , which is false. Hence, we conclude that ρ is not in detailed

balance with P . Therefore, the Markov chain defined by the transition matrix P

and the stationary distribution ρ is not reversible.

1.7 Ergodic Theorem

Definition 1.13. Denote by Yi(n) the number of visits to the state vi before time

n, that is,

Yi(n) =
n−1∑
k=0

1{Xk=vi}.

Then Yi(n)
n

represents the proportion of time spent in state vi before time n.

Theorem 1.7.1 (Ergodic Theorem). Let P be irreducible and let λ be any distribu-

tion. Let {Xn}n∈N be a Markov chain on the state space S with initial distribution

λ and transition matrix P . Then

P
(

Yi(n)
n

−→
n→∞

1
E[Ti | X0 = vi]

)
= 1.

Moreover, if the Markov chain is positive recurrent, for any bounded function f :

S → R, we have:

P

 1
n

n−1∑
k=0

f(Xk) −→
n→∞

∑
vi∈S

ρif(vi)
 = 1,

where ρ is the unique stationary distribution of P .

19

In an irreducible and positive recurrent Markov chain, the average value of a

function f over all states converges over time to a weighted sum. Each state’s

contribution to this average is weighted by how often the chain visits that state,

as given by the stationary distribution ρ. This property highlights the long-term

behaviour and stability of the chain’s dynamics.

Example 1.6. Consider Example 1.4 with the transition matrix

P =

1 − α α

β 1 − β

 .

We have established that this Markov chain is irreducible and positive recurrent.

Furthermore, its stationary distribution is given by

ρ =
(

β

α + β
,

α

α + β

)
.

Let f be defined such that f(v1) = 1 and f(v2) = −1. According to the Ergodic

Theorem (Theorem 1.7.1), we have

1
n

n−1∑
k=0

f(Xk) −→
n→∞

ρ2 · f(v2) + ρ1 · f(v1) = β

α + β
· (−1) + α

α + β
· 1 = α − β

α + β
,

with probability 1.

1.8 A Practical Example

Example 1.7. Consider the matrix

P =


0 1/2 1/2

0 0 1

1 0 0


Consider the Markov chain on the state space S = {v1, v2, v3} with transition

matrix P , that is for t ≥ 1

P (Xt = vj | Xt−1 = vi) = Pij.

20

(a) Compute the 2-step transition matrix.

(b) Is the Markov chain irreducible?

(c) Compute the period of the state v1;

(d) Is the Markov chain aperiodic?

(e) Find a stationary distribution for the Markov chain.

(f) Is the Markov chain recurrent?

(g) Is the Markov chain positive recurrent? In the affirmative case compute

E[T1 | X0 = v1], where T1 = min{t ≥ 1 | Xt = v1}.

(h) Is the Markov chain reversible?

(i) Consider the function f : S → R such that f(v1) = 3, f(v3) = −3, f(v2) = 0.

Use the Ergodic Theorem to compute the almost sure limit of 1
n

∑n−1
k=0 f(Xk)

as n → +∞.

Solution:

The associated graph is drawn:

21

v1 v2

v3

1
2

1
2

1

1

Fig. 1.2: Markov chain graph

22

(a)

P 2 =


0 1/2 1/2

0 0 1

1 0 0


2

=


1/2 0 1/2

1 0 0

0 1/2 1/2


(b) The Markov chain is irreducible since for any i, j ∈ {1, 2, 3}, with i ̸= j,

there exists a path that starts at vi and arrives at vj.

(c) The period of v1 is defined as d(1) = gcd(D(1)), where

D(1) = {n ∈ N | P n
11 > 0}.

By exercise (3a) we know that P 2
1,1 > 0 and hence 2 ∈ D(1). Since

P 3
1,1 = P (X3 = v1 | X0 = v1) ≥ P (X3 = v1, X2 = v3, X1 = v2 | X0 = v1) = 1

2 ·1·12 > 0,

we have also that 3 ∈ D(1). Equivalently, we can show that P 3
1,1 > 0 by

computing P 3:

P 3 = P 2 · P

= 
1/2 0 1/2

1 0 1
2

0 1/2 1/2

 ·


0 1/2 1/2

0 0 1

1 0 0

 =


1/2 1/4 1/4

0 1/2 1/2

1/2 0 1/2


Since P 3

1,1 > 0, and {2, 3} ⊆ D(1), we have gcd(D(1)) = 1 and hence d(1) =

1.

(d) Since the Markov chain is irreducible, all the states have the same period.

So 1 = d(1) = d(2) = d(3) and hence the Markov chain is aperiodic.

(e) We have to find ρ = (ρ1, ρ2, ρ3) that solves the system

[
ρ1 ρ2 ρ3

]
·


0 1/2 1/2

0 0 1

1 0 0

 =
[
ρ1 ρ2 ρ3

]

23

that is 

ρ3 = ρ1,

1
2ρ1 + ρ2 = ρ3,

1
2ρ1 + ρ2 = ρ3,

⇒



ρ1 = c ∈ R,

ρ3 = ρ1 = c,

ρ2 = 1
2ρ1 = 1

2c.

That gives the solution

ρ =
[
c c

2 c

]
for c ∈ R.

To find the value of c, we have to impose the conditions ρi ∈ [0, 1] for i =

1, 2, 3 and ∑3
i=1 ρi = 1 that make ρ a probability distribution. So

ρi ∈ [0, 1] ⇔ c ∈ [0, 1],

1 =
3∑

i=1
ρi = 5

2c ⇒ c = 2
5 .

So ρ =
(

2
5 , 1

5 , 2
5

)
is a probability stationary distribution for the Markov chain.

Since ρ is also the unique probability distribution that satisfies the system

ρ · P = ρ, we have also that ρ is the unique stationary distribution of the

Markov chain.

(f) The Markov chain is irreducible, aperiodic and has a stationary distribution.

It follows that the Markov chain is also recurrent.

(g) The Markov chain has a unique stationary distribution, it is irreducible, ape-

riodic and recurrent. It follows that the Markov chain is also positive recur-

rent and

E[T1 | X0 = v1] = 1
ρ1

= 1
2
5

= 5
2 .

(h) The Markov chain is reversible if and only if the stationary distribution ρ is

in detailed balance with P , that is ρiPij = ρjPji for any i, j = 1, 2, 3. Since

ρ1P12 = 2
5 · 1

2 = 1
5 ̸= 0 = ρ2P21,

24

we have that P and ρ are not in detailed balance and hence the Markov chain

is not reversible.

(i) Since the Markov chain is irreducible and has stationary distribution ρ =(
2
5 , 1

5 , 2
5

)
, by the Ergodic Theorem we have that almost surely

lim
n→∞

1
n

n−1∑
k=0

f(Xk) =
3∑

i=1
ρif(vi) = 3 · ρ1 − 3 · ρ3 = 0.

25

Chapter 2

Markov Chains in PageRank

Algorithm

2.1 Introduction

Link analysis algorithms are critical to the success of web search engines as

they evaluate the importance and relevance of individual web pages. Notable

examples include HITS (Hyperlink Induced Topic Search), PageRank, and SALSA

(Stochastic Approach for Link Structure Analysis). These algorithms utilize the

link structure of web pages to optimize search accuracy and relevance. HITS,

developed by Jon Kleinberg, is a query-dependent (meaning its results can vary

based on the specific search query) algorithm that calculates the authority (a

measure of how trustworthy a page is) and hub values (a measure of how well a

page links to other important pages) of a page. The SALSA algorithm combines

the random walk feature of PageRank with the hub and authority concept from

HITS. After Google was founded in 1999, it quickly became the leader in Internet

search engines with the introduction of the PageRank algorithm, which changed

how search results were determined.

27

2.2 The PageRank Algorithm

PageRank is the most popular link-based ranking algorithm. When Google en-

tered the search engine market it quickly became highly efficient due to its query-

independent and content-independent nature.

(a) Query-independent: This means the search engine does not need to analyze a

specific query (word or phrase typed into a search engine to find information)

to rank the pages. It ranks pages based on their importance, not just the

search term used.

(b) Content-independent: This means the search engine does not look at the

actual content of the pages to rank them. Instead, it focuses on the links

between pages to decide their importance.

It operates faster by downloading, indexing, and ranking web pages offline. When

a user submits a query, the PageRank algorithm identifies and ranks the relevant

pages based on their PageRank, without analyzing the page content. PageRank

assesses a page’s importance based on the number of incoming links it receives,

with higher value given to links from reputable pages than those from less reputable

ones.

Definition 2.1. The PageRank algorithm views the Web as a directed labelled

graph where the nodes represent pages and the edges represent hyperlinks between

them. This directed graph structure is known as the Web Graph.

Proposition 2.2.1. A graph consists of two sets: V and E. The set V is a finite,

nonempty set of vertices, and the set E is a collection of pairs of vertices called

edges. The V (G) and E(G) represent the set of vertices and edges of the graph

G, respectively. A graph is denoted as: G = (V, E).

28

2.2.1 Graph Theory Background

A B

C D

E F

Fig. 2.1: Undirected Graph

Consider the undirected graph G in Figure 2.1. We have

V (G) ={A, B, C, D, E, F}

E(G) ={{A, B}, {A, C}, {A, D}, {B, D}, {C, D}, {C, E}, {D, E}, {D, F}, {E, F}}

This is not the Web Graph mentioned in Definition 2.1; being an undirected graph,

it does not have directed links from one node to the other. For PageRank, the

direction must be clearly defined to accurately represent the flow of influence or

importance across the nodes.

29

A B

C D

E F

Fig. 2.2: A Directed Web Graph G

In a directed graph, edges such as A → B and B → A are distinct. Therefore, the

edges (hyperlinks) in the web graph shown in Figure 2.2 can be written as:

E(G) ={(A, B), (B, A), (A, D), (D, A), (A, C), (C, A), (B, D), (D, B), (C, D),

(D, C), (C, E), (E, C), (E, D), (D, E), (D, F), (F, D), (E, F), (F, D)}

Meanwhile, the set of vertices V (G) (pages) remains the same as in the undirected

graph shown in Figure 2.1. In a directed graph with n vertices, the maximum

number of edges is n · (n − 1). For our graph with n = 6 vertices, the maximum

number of edges is 6 · (6 − 1) = 6 · 5 = 30. In simpler terms, if you have a

website with 6 pages, you could theoretically have up to 30 links between them if

every page links to every other page. PageRank uses these links to calculate the

importance of each page, helping Google decide which pages to show first in search

results.

30

2.2.2 Calculating PageRank

The PageRank of a page p, that we denote by PRp, is defined as

PRp = d
∑

q∈pa(p)

PRq

Oq

+ (1 − d) (2.1)

where 0 < d < 1 is the damping factor, pa(p) represents the set of pages pointing

to p, and Oq is the number of out-going links of page q.

PageRank calculates a page’s importance by combining the value from incoming

links (adjusted by the number of links on those pages) and a baseline value, which is

the damping factor. The damping factor accounts for the probability of randomly

jumping to any page, ensuring that every page has some rank, even if it has few

or no incoming links.

Example 2.1. Let us consider the following figure: The set of vertices is: V (G) =

1 2

Fig. 2.3: A Directed Web Graph with Nodes 1 and 2

{1, 2}, meaning the pages are 1 and 2. The set of edges is: E(G) = {(1, 2), (2, 1)}},

indicating 2 links between these two pages.

Using the PageRank (i.e., formula (2.1)) we calculate the rank for pages 1 and 2.

To start with, we assume the initial PageRank values as 1 and use the damping

factor d set to 0.85.

PageRank calculation of page 1:

PR1 = d

(
PR2

O2

)
+ (1 − d) ⇒ PR1 = 0.85

(1
1

)
+ (1 − 0.85) ⇒ PR1 = 1 . (2.2)

Similarly, we calculate the PageRank of page 2:

PR2 = d

(
PR1

O1

)
+ (1 − d) ⇒ PR2 = 0.85

(1
1

)
+ (1 − 0.85) ⇒ PR2 = 1 . (2.3)

31

The reason we consider the PageRank of page 1 in the calculation of PR2 and vice

versa is that pages 1 and 2 point to each other (see Figure 2.3).

Example 2.2. Let us take for example the following figure: The set of vertices

1 2

3

Fig. 2.4: A Directed Web Graph with Nodes 1, 2, and 3

is: V (G) = {1, 2, 3}, meaning the pages are 1, 2 and 3. The set of edges is:

E(G) = {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3)}, there are 5 links between these three

pages.

Using the PageRank formula in (2.1) we can now calculate the rank for pages 1, 2

and 3. To begin with, we assume the initial PageRank as 1 and do the calculation.

The damping factor d is set to 0.85.

PageRank calculation of page 1:

PR1 = d
(

PR2

O2
+ PR3

O3

)
+ (1 − d) ⇒ PR1 = 0.85

(1
2 + 1

1

)
+ (1 − 0.85)

⇒ PR1 = 1.425 .

(2.4)

To further explain what has been calculated above:

(a) The PageRank of page 2 is initially assumed to be 1. The number of out-

going links, O2, from page 2 is two, since this page points to pages 1 and 3

(see Figure 2.4).

(b) The PageRank of page 3 is initially assumed to be 1. The number of out-

going links, O3, from page 3 is one, since this page points only to page 1 (see

Figure 2.4).

32

(c) The damping factor of 0.85 in PageRank represents the probability that a

user follows links (85%) versus randomly jumping to any page (15%). This

balance ensures that all pages are reachable and prevents isolated pages from

having zero rank.

These factors: the initial PageRank values, the number of outgoing links, and the

damping factor of 0.85 are all used to calculate the PageRank of the first page.

Similarly, we calculate the PageRank of pages 2 and 3:

PR2 = d
(

PR1

O1

)
+ (1 − d) ⇒ PR2 = 0.85

(1.425
2

)
+ (1 − 0.85)

⇒ PR2 = 0.756
(2.5)

The reason we only consider the PageRank of page 1 in the calculation of PR2 in

(2.5) is that only page 1 points to page 2 (see Figure 2.4).

Lastly:

PR3 = d
(

PR1

O1
+ PR2

O2

)
+ (1 − d) ⇒ PR3 = 0.85

(1.425
2 + 0.756

2

)
+ (1 − 0.85)

⇒ PR3 = 1.077 .

(2.6)

Now, we consider the PageRank of pages 2 and 1 in the calculation of PR3 because

both pages 2 and 1 point to page 3 (see Figure 2.4).

In PageRank computation, convergence occurs when the iterative updates to

PageRank values stabilize, meaning the values no longer change significantly be-

tween iterations. This ensures that the PageRank scores accurately reflect page

importance. The details of this convergence process will be discussed in future

sections.

33

2.3 Integrating Markov Chains with PageRank

Researchers Langville et al. and Bianchini et al. have explored the connection

between the PageRank algorithm and Markov chains. This section discusses how

the PageRank algorithm relates to the Markov chain framework.

Theorem 2.3.1. A random surfer navigating the Web randomly selects an outgo-

ing link from one page to move to the next. This process can result in dead ends

(pages with no outgoing links) or cycles within a group of interconnected pages. To

address this, the surfer occasionally selects a random page from the entire Web.

This theoretical random walk is known as a Markov chain or process. The

limiting probability of an infinitely dedicated surfer visiting a particular page rep-

resents its PageRank.

A more intuitive explanation of Theorem 2.3.1:

1. Imagine a random surfer browsing the Web, clicking links to navigate from

one page to another.

2. Occasionally, the surfer encounters pages with no links or gets caught in

loops among a few pages.

3. To avoid this, the surfer sometimes jumps to a random page anywhere on

the Web.

4. This behavior models a Markov chain.

5. The PageRank of a page is the long-term probability that the surfer will visit

that page.

Proposition 2.3.2. The number of links to and from a page indicates its im-

portance. A page with more backlinks or incoming links is considered more

34

important. Backlinks from highly reputable pages carry more weight than those

from less significant pages. Additionally, if a reputable page links to several other

pages, its weight is distributed equally among those linked pages.

2.3.1 Mechanism of Integration

Initial Setup

PageRank assigns an initial value of PR(0)
p = 1

n
, where:

• PR(0)
p represents the initial PageRank value of a page p.

• 1
n

indicates that each page starts with an equal rank, where n is the total

number of pages on the Web.

• This initialization assumes that each page is equally likely to be the starting

point of a random surfer.

Iteration Formula

The PageRank algorithm iterates according to the following formula:

PR(k+1)
p =

∑
q∈pa(p)

PR(k)
q

Oq

(2.7)

where:

• p is a web page.

• q is a web page.

• PR(k+1)
p is the PageRank of page p at iteration k + 1.

• PR(k)
q is the PageRank of page q at iteration k.

• pa(p) is the set of pages linking to page p.

35

• Oq is the number of outgoing links from page q.

The above equation (2.7) is recursive, meaning the PageRank of p depends on the

PageRanks of pages linking to it. This was seen in (2.1).

Matrix Representation

The iterative process of the PageRank algorithm can be represented in matrix no-

tation. Let q(k) be the PageRank vector at iteration k, and let T be the transition

matrix for the Web. The update rule in matrix notation is:

q(k+1) = Tq(k)

where:

• q(k) is a column vector with each element representing the PageRank of a

page at iteration k.

• T is the transition matrix with the elements in it representing the probability

of moving from page one to page another.

If there are n pages on the Web, let T be an n × n matrix such that tpq is the

probability of moving from page p to page q in a time interval. Unfortunately, the

iterative process defined by

q(k+1) = Tq(k) (2.8)

can have convergence problems, such as:

• Cycles: The algorithm might get stuck in cycles, rotating through a subset

of pages without reaching a steady state.

• Starting Vector Dependency: The limit might depend on the initial

PageRank vector q0, resulting in different limiting distributions for different

36

starting points. In other words: if different people start their web surfing

from different pages, they might end up with different final rankings of pages

if the transition matrix does not have certain properties.

To address these issues, Brin and Page developed an irreducible and aperiodic

Markov chain characterized by a primitive transition probability matrix:

• Irreducible: A Markov chain is irreducible if every page can be reached

from any other page, ensuring there are no isolated subsets of pages.

• Aperiodic: A Markov chain is aperiodic if it does not return to any state

at fixed intervals, avoiding cycles.

• Primitive Matrix: A matrix is primitive if some power of the matrix has all

positive entries, ensuring the Markov chain is both irreducible and aperiodic,

thus guaranteeing a unique steady-state distribution.

Ensuring Irreducibility

Irreducibility guarantees the existence of a unique stationary distribution vector

q, which becomes the PageRank vector. This means that, regardless of where

you start on the web, the importance scores of all pages will eventually stabilize

to a single, unique distribution. The power method, when applied to a primitive

stochastic matrix T, will always converge to this unique stationary distribution q.

The key points are:

• Irreducibility: Ensures that every page can be reached from any other

page, meaning the web is fully connected without isolated groups.

• Unique Stationary Distribution: Because the web is fully connected,

there is one unique set of PageRank values where the importance scores of

pages stabilize.

37

• Power Method: This iterative method starts with an initial guess and

updates it using the transition matrix T. Due to the properties of a primitive

matrix, the method will converge to the unique stationary distribution q,

independent of the starting vector.

Proposition 2.3.3. The PageRank algorithm models the hyperlink structure of

the Web using a primitive stochastic matrix. Let T be an n × n matrix, where n is

the total number of pages on the Web. Each element tpq represents the probability

of moving from page p to page q in one step.

In the basic model, the transition probability is given by:

tpq = 1
|Op|

(2.9)

where |Op| is the number of outgoing links from page p. This means that if page p

has a set of forward links Op, the probability of moving to any one of these links,

including q, is equally distributed. The specific formula can be expressed as:

tpq =


1

|Op| if page p has a link to page q

0 otherwise
(2.10)

This means that

• if page p links to page q, the probability of transitioning from page p to page

q is 1
|Op| , where |Op| is the total number of outgoing links from page p. Thus,

each link is chosen with equal probability.

• if there is no link from page p to page q, the probability tpq is 0, meaning

there is no chance of moving from page p to page q in one step.

38

2.4 Practical Examples

Example 2.3. Let us consider the following example: The Web graph depicted in

Staff Student Alumni

Library Home Admin

Dept

Fig. 2.5: A sample Web Graph W of a University

Figure 2.5 illustrates a sample extracted from a university website. It consists of

7 pages: Home, Admin, Staff, Student, Library, Dept, and Alumni. This sample

Web graph is utilized for our Markov analysis and PageRank computations. By

using the formula (2.10) we can calculate the transition matrix, T for Figure 2.5:

T =



0 1/3 0 1/3 1/3 0 0

0 0 1/3 1/3 1/3 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0

1/6 1/6 1/6 1/6 0 1/6 1/6

0 0 1/3 0 1/3 0 1/3

0 0 0 1/3 1/3 1/3 0


39

The transition matrix T represents the probabilities of moving from one page to

another.

• Row q in T: Non-zero elements in row q indicate which pages are linked

from page q. This means that if page q links to other pages, those links will

be shown by non-zero values in row q.

• Column p in T: Non-zero elements in column p indicate which pages have

a link pointing to page p.

• Sum of Row q: If page q has links to other pages, the sum of the values

in row q of the matrix T will be 1. This ensures that all possible transitions

from page q (through its links) add up to 100%.

• Rows in T: Show where a page links to. The sum of values in a row is 1 if

there are links (outgoing links).

• Columns in T: Show where links to a page come from (incoming links).

Theorem 2.4.1. In the transition matrix, if the sum of any row is zero, it indicates

that there is a page with no forward links (outgoing links). This type of page is

called a dangling node or hanging node. Dangling nodes cannot exist in the

Web graph if it is to be represented using a Markov model.

The transition matrix for Figure 2.5 contains dangling nodes. Specifically, the third

row has a sum of 0.

Proposition 2.4.2. Langville et al. suggested addressing dangling nodes by re-

placing each row with e
n
, where e is a row vector of all ones and n is the number

of pages. In our example, n is 7.

40

We now apply the method in Proposition 2.4.2 to the graph in Figure 2.5:

T̄ =



0 1/3 0 1/3 1/3 0 0

0 0 1/3 1/3 1/3 0 0

1/7 1/7 1/7 1/7 1/7 1/7 1/7

0 0 0 0 1 0 0

1/6 1/6 1/6 1/6 0 1/6 1/6

0 0 1/3 0 1/3 0 1/3

0 0 0 1/3 1/3 1/3 0


Row 3 of the transition matrix T̄ (for the Alumni page) connects to all nodes,

Staff Student Alumni

Library Home Admin

Dept

Fig. 2.6: Modified Web Graph W using Proposition 2.4.2

including itself, illustrating a key aspect of stochastic matrices. Each entry rep-

resents the probability of transitioning from the Alumni page to other nodes. The

41

presence of a self-loop indicates a probability of remaining on the Alumni page

during transitions.

Proposition 2.4.3. Bianchini et al. and Singh et al. propose connecting a hypo-

thetical node, hi, with a self-loop and linking all dangling nodes to this hypothetical

node. This approach also ensures that the transition matrix becomes a stochastic

matrix.

We now apply the method from Proposition 2.4.3 to Figure 2.5:

T̄ =



0 1/3 0 1/3 1/3 0 0 0

0 0 1/3 1/3 1/3 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

1/6 1/6 1/6 1/6 0 1/6 1/6 0

0 0 1/3 0 1/3 0 1/3 0

0 0 0 1/3 1/3 1/3 0 0

0 0 0 0 0 0 0 1


The last row and column in the transition matrix T̄ correspond to the hypothetical

node hi, ensuring the Alumni page has a transition probability of 1, resolving its

status as a dangling page. The node hi has a self-loop with a transition probability

of 1, making the graph stochastic. Figure 2.7 below illustrates hi with a self-loop,

connecting to the Alumni page.

42

Staff Student Alumni

Library Home Admin

Dept

hi

Fig. 2.7: Modified Web Graph W using Proposition 2.4.3

43

Example 2.4. Let us consider the following: By using the formula (2.10) we can

A B

C D

E F

Fig. 2.8: A Directed Web Graph G

calculate the transition matrix, T for the graph G in Figure 2.8

T =



0 1
3

1
3

1
3 0 0

1
2 0 0 1

2 0 0
1
3 0 0 1

3
1
3 0

0 1
3

1
3 0 1

3 0

0 0 1
2 0 0 1

2

0 0 0 0 0 0



The transition matrix for Figure 2.8 has dangling nodes. Namely, the sixth row

has a sum of 0.

44

We now apply the method in Proposition 2.4.2 to the graph in Figure 2.8:

T̄ =



0 1
3

1
3

1
3 0 0

1
2 0 0 1

2 0 0
1
3 0 0 1

3
1
3 0

0 1
3

1
3 0 1

3 0

0 0 1
2 0 0 1

2
1
6

1
6

1
6

1
6

1
6

1
6



A B

C D

E F

Fig. 2.9: Modified Web Graph G using Proposition 2.4.2

45

We now apply the method from 2.4.3 to Figure 2.8:

T =



0 1
3

1
3

1
3 0 0 0

1
2 0 0 1

2 0 0 0
1
3 0 0 1

3
1
3 0 0

0 1
3

1
3 0 1

3 0 0

0 0 1
2 0 0 1

2 0

0 0 0 0 0 0 1

0 0 0 0 0 0 1



A B

C D

E F

hi

Fig. 2.10: Modified Web Graph G using 2.4.3

46

While ensuring that the transition matrix T̄ is stochastic is necessary, it does

not guarantee the convergence of the Markov model or the existence of a steady-

state vector.

A significant issue with T̄ is that it may not be regular. The general nature of

the Web often means that T̄ is not regular, as every node in the graph needs to

be connected to every other node (i.e., the matrix should be irreducible).

In reality, however, the Web is not fully connected; not every page links to every

other page, meaning the graph is not strongly connected. To address this, Brin

et al. modified the transition matrix so that all entries satisfy 0 < tpq < 1. This

adjustment ensures that T̄ is regular and guarantees that the sequence qn converges

to a unique, positive steady-state vector.

2.5 The Google Matrix

Proposition 2.5.1. The Google matrix, ¯̄T , is constructed by adding a perturbation

matrix E to the original transition matrix T̄ , weighted by a damping factor α. This

adjustment ensures that the resulting matrix ¯̄T is both stochastic (all rows sum to

1) and irreducible (every page can be reached from any other page, either directly

or indirectly). The formula for the Google matrix is given by:

¯̄T = αT̄ + (1 − α)E

where:f

• ¯̄T is the Google matrix, ensuring both stochasticity and irreducibility.

• α is the damping factor, with 0 < α < 1. It represents the probability that a

web surfer will continue clicking on links on the current page, typically set

to 0.85 according to researchers.

47

• T̄ is the original transition matrix, representing the probabilities of moving

from one page to another based on the link structure of the web.

• E is the perturbation matrix, which ensures that every page has a chance of

being visited, even if it is not directly linked and is defined as E = eet

n
, where:

– e is a column vector of all ones.

– et is the transpose of e, resulting in a row vector of all ones.

– n is the number of web pages (or the order of the matrix).

• 1 − α is the probability that a web surfer will jump to a random page rather

than following a link, accounting for random web surfing behaviour such as

typing a URL directly.

This construction of the Google matrix ensures that the PageRank algorithm can

find a unique, steady-state solution that accurately reflects the behaviour of real-life

web surfers.

2.6 Further Examples

We compute the Google Matrix as defined in the equation in Proposition 2.5.1

using the sample Web Graph W shown in Figure 2.6 and Web Graph G shown in

Figure 2.9, with a damping factor value of α = 0.85.

The resulting Google Matrix is represented by ¯̄T . This matrix can be normalized

to a stationary vector by calculating its powers until the matrix values become

stationary.

Example 2.5. Keeping in mind the formula in Proposition 2.5.1:

(a) α = 0.85;

48

(b)

T̄ =



0 1/3 0 1/3 1/3 0 0

0 0 1/3 1/3 1/3 0 0

1/7 1/7 1/7 1/7 1/7 1/7 1/7

0 0 0 0 1 0 0

1/6 1/6 1/6 1/6 0 1/6 1/6

0 0 1/3 0 1/3 0 1/3

0 0 0 1/3 1/3 1/3 0



(c) 1 − α = 0.15;

(d)

E = 1
7



1

1

1

1

1

1

1



·
[
1 1 1 1 1 1 1

]
.

We calculate the Google Matrix for Figure 2.6:

¯̄T = 0.85



0 1/3 0 1/3 1/3 0 0

0 0 1/3 1/3 1/3 0 0

1/7 1/7 1/7 1/7 1/7 1/7 1/7

0 0 0 0 1 0 0

1/6 1/6 1/6 1/6 0 1/6 1/6

0 0 1/3 0 1/3 0 1/3

0 0 0 1/3 1/3 1/3 0



+0.15



1/7 1/7 1/7 1/7 1/7 1/7 1/7

1/7 1/7 1/7 1/7 1/7 1/7 1/7

1/7 1/7 1/7 1/7 1/7 1/7 1/7

1/7 1/7 1/7 1/7 1/7 1/7 1/7

1/7 1/7 1/7 1/7 1/7 1/7 1/7

1/7 1/7 1/7 1/7 1/7 1/7 1/7

1/7 1/7 1/7 1/7 1/7 1/7 1/7


49

¯̄T =



0.0214 0.3048 0.0214 0.3048 0.3048 0.0214 0.0214

0.0214 0.0214 0.3048 0.3048 0.3048 0.0214 0.0214

0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429

0.0214 0.0214 0.0214 0.0214 0.8714 0.0214 0.0214

0.1631 0.1631 0.1631 0.1631 0.0214 0.1631 0.1631

0.0214 0.0214 0.3048 0.0214 0.3048 0.0214 0.3048

0.0214 0.0214 0.0214 0.3048 0.3048 0.3048 0.0214



The values presented correspond to the PageRank scores for the 7 pages in the

sample Web graph W . After performing enough iterations of the PageRank al-

gorithm, the resulting scores have reached a stable state, known as the stationary

vector. This indicates that the PageRank scores have converged and are no longer

significantly changing with additional iterations. Therefore, the stationary vector

represents the final ranking of each page in the web graph.

Assume that after a certain number of iterations, the stationary vector for our

sample 7-page Web graph W is:

s =
[
0.0798 0.1024 0.1404 0.16298 0.2917 0.1114 0.1114

]

The values in s indicate the relative importance of each page. Higher values mean

more important pages. For example, "Home" (with a score of 0.2917) is the most

important, while "Staff" (with a score of 0.0798) is the least important. This process

helps search engines rank web pages based on their importance and how often they

will likely be visited. This calculation will also be shown in Chapter 3 using Python.

Example 2.6. We do the same procedure as in Example 2.5 with the Web Graph

50

associated with Figure 2.9. We calculate the Google Matrix for Figure 2.9:

¯̄T = 0.85



0 1/3 1/3 1/3 0 0

1/2 0 0 1/2 0 0

1/3 0 0 1/3 1/3 0

0 1/3 1/3 0 1/3 0

0 0 1/2 0 0 1/2

1/6 1/6 1/6 1/6 1/6 1/6


+0.15



1/6 1/6 1/6 1/6 1/6 1/6

1/6 1/6 1/6 1/6 1/6 1/6

1/6 1/6 1/6 1/6 1/6 1/6

1/6 1/6 1/6 1/6 1/6 1/6

1/6 1/6 1/6 1/6 1/6 1/6

1/6 1/6 1/6 1/6 1/6 1/6



¯̄T =



0.025 0.30833333 0.30833333 0.30833333 0.025 0.025

0.45 0.025 0.025 0.45 0.025 0.025

0.30833333 0.025 0.025 0.30833333 0.30833333 0.025

0.025 0.30833333 0.30833333 0.025 0.30833333 0.025

0.025 0.025 0.45 0.025 0.025 0.45

0.16666667 0.16666667 0.16666667 0.16666667 0.16666667 0.16666667



After a certain number of iterations we get to a stationary vector. This calculation

will be shown in Chapter 3 using Python.

51

Chapter 3

Conceptual Approach and Python

Application

3.1 Network Components

Definition 3.1. A network G is composed of two key components:

• A set N of elements known as nodes or vertices.

• A set of node pairs, referred to as links or edges, where each link (i, j)

connects nodes i and j.

Definition 3.2. Networks can be classified as directed or undirected:

• A directed network, also known as a digraph, includes links where the

sequence of nodes indicates direction.

• An undirected network contains bi-directional links, making the node or-

der in a link irrelevant.

Definition 3.3. Networks can also be weighted or unweighted:

53

• In a weighted network, each link has an associated weight. A weighted

link (i, j, w) indicates a connection between nodes i and j with a weight w.

• In an unweighted network, all links carry the same weight, typically 1 for

the presence of a link or 0 for its absence.

Example 3.1. The following is an example of an undirected and unweighted net-

work:

Macedonia Serbia

Greece

Explanation: In this network, imagine a traveller going from Serbia to Greece

via Macedonia. All roads are bidirectional and equal in quality. The traveller can

travel freely between these cities without concern for road direction or quality.

Example 3.2. The following is an example of an undirected and weighted network

where thicker lines have weight twice as much as the thinner ones:

Macedonia Serbia

Greece

54

Explanation: In this network, roads between cities are still bidirectional, but

some roads are more efficient. The traveller prefers the thicker lines, representing

better-maintained roads, making the journey smoother or faster.

Example 3.3. The following is an example of a directed and unweighted network

with bent edges:

Macedonia Serbia

Greece

Explanation: In this network, roads have specific directions. The traveller must

follow the prescribed path from Serbia to Macedonia, then to Greece, and back.

The directionality of the roads dictates a route on how to get to Greece but does

not specify which roads are considered the most efficient.

Example 3.4. The following is an example of a directed and weighted network

where thicker lines have weight twice as much as the thinner ones:

Macedonia Serbia

Greece

55

Explanation: In this network, roads are directed and vary in quality. The trav-

eller must follow the directional paths and may prefer thicker, more efficient roads

for a smoother or quicker trip. The network enforces directionality and rewards

using better roads.

3.2 Directed Networks

Similarly, PageRank can be understood through the lens of weighted networks.

In PageRank, the importance or "weight" of a page is determined by its PageRank

score. Pages with higher PageRank scores are considered more important and thus

more likely to be preferred or prioritized. Pages with a higher PageRank score are

analogous to roads with greater weights in a network. Just as in a weighted network

where thicker lines indicate more efficient or preferred routes, a higher PageRank

signifies a more influential or significant page within the web.

Explanation: Much like how better-maintained roads are preferred for a

smoother journey, pages with higher PageRank scores are more likely to appear

at the top of search results.

3.2.1 Network Degree

Definition 3.4. The average degree ⟨k⟩ of a network is its number of links (or

neighbours) and is defined as:

⟨k⟩ = 2L

N

where:

(i) L is the number of edges.

(ii) N is the number of nodes.

56

Each edge in an undirected network contributes to the degree of two nodes, thus

2L represents the total degree contributions.

In a directed network, the degree of a node is split into incoming and outgoing

links. The in-degree (kin
i) is the number of incoming links (predecessors) to node i,

while the out-degree (kout
i) is the number of outgoing links (successors) from node

i.

Recalling Formula (2.1), Oq in the PageRank formula is equivalent to the

out-degree kout
i of a node. In other words, Oq represents the number of outgoing

links from a node, which directly relates to the out-degree kout
i in the network. Node

i coincides with node q.

3.2.2 Network Weight and Strength

Definition 3.5. We define the following terms:

• The weight wij of an edge connecting node i to node j indicates the strength

of their connection. We assume wij = 0 if there is no connection between

nodes i and j. In a network, weight is analogous to the PageRank score,

representing nodes’ importance or influence.

• In an undirected graph, the weighted degree or strength of a node i is calcu-

lated as:

si =
∑

j

wij

• In a directed graph, the weighted in-degree or strength of a node i is given

by:

sin
i =

∑
j

wji

• In a directed graph, the weighted out-degree of a node i is determined by:

sout
i =

∑
j

wij

57

Example 3.5. Let us consider the data from Example 1.7. The graph is weighted

and directed: The weights of the edges are as follows:

v1 v2

v3

1
2

1
2

1

1

Fig. 3.1: Markov chain graph

w1,2 = 1
2 , w1,3 = 1

2 , w3,1 = 1, w2,3 = 1.

The weighted degrees for each node are:

s1,out = w1,2 + w1,3 = 1,

s1,in = w3,1 = 1,

⇒ s1 = s1,out + s1,in = 1 + 1 = 2.

s2,out = w2,3 = 1,

s2,in = w1,2 = 1
2 ,

⇒ s2 = s2,out + s2,in = 1 + 1
2 = 3

2 .

s3,out = w3,1 = 1,

s3,in = w1,3 + w2,3 = 1
2 + 1 = 3

2 ,

⇒ s3 = s3,out + s3,in = 1 + 3
2 = 5

2 .

The average degree:

⟨k⟩ = 2L

N
⇒ ⟨k⟩ = 2 × 4

3 = 8
3 ≈ 2.67.

58

3.3 Visualizing Networks with Python

Importing the relevant libraries:

1 import matplotlib . pyplot as plt #used for creating

visualizations and plots

2 import networkx as nx #creating , manipulating and analyzing

graphs and networks

3.3.1 Example Code for Undirected and Directed Graphs

Example: Undirected Graph of Former Yugoslav Countries

To illustrate an undirected graph representing the countries of former Yugoslavia

and their neighbouring connections, use the following Python code:

1 G = nx.Graph () #this is how you create an undirected and

empty graph

2 G. add_node (’Macedonia ’) # we add a single node ’Macedonia ’

to the graph; this is one way to add nodes

3 nodes_to_add = [’Serbia ’, ’Slovenia ’, ’Croatia ’, ’Montenegro

’, ’B&H’] #we create a list of nodes

4 G. add_nodes_from (nodes_to_add) #we add all nodes from the

list to the graph; this is another way

5 edges_to_add = [(" Slovenia ", " Croatia "), (" Croatia ", "B&H"),

(" Croatia ", " Serbia "), ("B&H", " Serbia "), (" Serbia ", "

Montenegro "), (" Montenegro ", "B&H"),

6 (" Serbia ", " Macedonia ")] #list of edges (connections) to add

to the graph

7 G. add_edges_from (edges_to_add) #we add all edges from the

list to the graph; another way to add edges is G. add_edge

59

(’ Macedonia ’, ’Serbia ’), one by one

8 nx.draw(G, with_labels =True , node_size =2500 , font_size =9) #

draw the graph with labels , set node size to 2500 , and

font size to 9:

9 #G: the graph object to be drawn.

10 # with_labels : boolean and if True , node labels are drawn

Fig. 3.2: Plot generated from the code above.

60

Example: Directed Graph of a LUISS Student Taking a Shuttle

The following Python code illustrates the creation of a directed graph using Net-

workX, representing a LUISS student taking the shuttle between different loca-

tions:

1 D = nx. DiGraph () # create an empty directed graph

2 nodes_to_add =(’Pola ’, ’Parenzo ’, ’Romania ’) #we make a list

of nodes to be added to the empty graph

3 D. add_nodes_from (nodes_to_add) #add the nodes from the list

above

4 edges_to_add = [("Pola", " Parenzo "), (" Parenzo ", " Romania "),

(" Romania ", " Parenzo "), (" Parenzo ", "Pola")] # define

edges (directed connections) to be added to the graph

5 D. add_edges_from (edges_to_add) # adding the edges

6 nx.draw(D, with_labels =True , node_color =’red ’, node_size

=2500 , font_size =11)

7 #draw the directed graph with labels , set node color to red ,

node size to 2500 , and font size to 11

8 #D: the directed graph object to be drawn

9 # with_labels : boolean ; if True , node labels are drawn

10 # node_color : color of the nodes

11 # node_size : size of the nodes

12 # font_size : size of the labels ’ font

In this example, nodes represent locations, and directed edges represent the shut-

tle’s direction between these locations.

61

Fig. 3.3: Plot generated from the code above.

3.3.2 Graphing Techniques

We will run these codes and show the output for the Yugolsav countries example

(3.3.1).

Listing nodes:

1 G.nodes ()

Output: NodeView((’Macedonia’, ’Serbia’, ’Slovenia’, ’Croatia’, ’Montenegro’,

’B&H’)).

Listing edges:

1 G.edges ()

Output: EdgeView([(’Macedonia’, ’Serbia’), (’Serbia’, ’Croatia’), (’Serbia’,

’B&H’), (’Serbia’, ’Montenegro’), (’Slovenia’, ’Croatia’), (’Croatia’,

’B&H’), (’Montenegro’, ’B&H’)])

Iteration over edges:

1 for edge in G.edges:

2 print(edge)

62

Output:

(’Macedonia’, ’Serbia’)

(’Serbia’, ’Croatia’)

(’Serbia’, ’B&H’)

(’Serbia’, ’Montenegro’)

(’Slovenia’, ’Croatia’)

(’Croatia’, ’B&H’)

(’Montenegro’, ’B&H’))

Iteration over nodes:

1 for node in G.nodes:

2 print(node)

Output:

Macedonia

Serbia

Slovenia

Croatia

Montenegro

B&H

Number of nodes:

1 G. number_of_nodes ()

Output: 6

Number of edges:

1 G. number_of_edges ()

Output: 7

Creating a list of neighbours:

63

1 neighbors_of_Macedonia = list(G. neighbors (’Macedonia ’))

2 print(neighbors_of_Macedonia)

Output: [’Serbia’]

3.3.3 Node and Edge Existence

To check if a node is present in a graph:

1 G. has_node (’Macedonia ’)

2 # or

3 ’Serbia ’ in G.nodes

Output: True

To check if two nodes are connected by an edge:

1 G. has_edge (’Macedonia ’, ’Serbia ’)

2 # or

3 (’B&H’, ’Croatia ’) in Graph.edges

Output: True

3.3.4 Calculating Node and Edge Degree

One of the key aspects to investigate for a node in a graph is the number of

connections it has with other nodes.

1 len(list(G. neighbors (’Macedonia ’)))

This will return 1. However, since this is a common operation, NetworkX offers a

more straightforward method to obtain this information:

1 G. degree (’Macedonia ’)

64

Remark 1. Up until this point, we have run the code for the Yugoslav countries.

The same procedure can be applied to the LUISS Shuttle case, except for the node

degree case, where incoming and outgoing links are distinguished. In the following

section, we will run the corresponding code for this case.

Instead of the symmetric relationship "neighbors", nodes in directed graphs have

predecessors ("in-neighbors") and successors ("out-neighbors"):

• Predecessor: If there is a directed edge (i, j), then i is a predecessor of j.

• Successors: If there is a directed edge (i, j), then j is a successor of i.

• Neighbors: If there is an edge (i, j), then j is a neighbor of i, and i is a

neighbor of j.

1 print(’Successors of Parenzo :’, list(D. successors (’Parenzo ’)

))

2 #get the successors of the node ’Parenzo ’ (nodes that ’

Parenzo ’ points to);

3 #D. successors (’ Parenzo ’) returns an iterator over these

successor nodes

4 #we use the list () function to convert this iterator into a

list for easy handling and printing

5 print(’Predecessors of Parenzo :’, list(D. predecessors (’

Parenzo ’)))

6 #get the predecessors of the node ’Parenzo ’ (nodes that

point to ’Parenzo ’);

7 #D. predecessors (’ Parenzo ’) returns an iterator over these

predecessor nodes

8 #we use the list () function to convert this iterator into a

list for easy handling and printing

65

Output:

Successors of Parenzo: [’Romania’, ’Pola’]

Predecessors of Parenzo: [’Pola’, ’Romania’]

To check the number of predecessors of a node:

1 D. in_degree (’Parenzo ’)

Output: 2

To check the number of successors of a node:

1 D. out_degree (’Parenzo ’)

Output: 2

In a directed graph, relationships between nodes are represented by edges that have

a specific direction, like arrows pointing from one node to another. To understand

the connectivity of a particular node, we often examine its incoming and outgoing

edges.

• Incoming Edges: These are edges pointing toward a node, indicating which

other nodes have a direct connection leading to it.

• Outgoing Edges: These are edges pointing away from a node, showing

which other nodes it directly connects to.

To check the the incoming edges:

1 D. in_edges (’Parenzo ’)

Output: InEdgeDataView([(’Pola’, ’Parenzo’), (’Romania’, ’Parenzo’)])

To check the the outgoing edges:

1 D. out_edges (’Parenzo ’)

Output: OutEdgeDataView([(’Parenzo’, ’Romania’), (’Parenzo’, ’Pola’)])

66

3.3.5 Implementing Weight

To illustrate the concept of edge weights, we will use the graph from Example 1.7.

The graph is weighted and directed. The following Python code demonstrates how

to create and visualize this graph:

1 W = nx. DiGraph () # create a directed and weighted empty graph

2 W. add_edge (’v1’, ’v2’, weight =1/2)

3 W. add_edge (’v1’, ’v3’, weight =1/2)

4 W. add_edge (’v2’, ’v3’, weight =1)

5 W. add_edge (’v3’, ’v1’, weight =1)

6 #W. add_edge (node1 , node2 , weight =value):

7 # function : adds a directed edge from node1 to node2 with a

specified weight

8 #usage: adds edges with weights between nodes in the graph

9 pos = nx. spring_layout (W, seed =42)

10 # generate positions for nodes pos function is used

11 #nx. spring_layout (G, seed =42):

12 # function : computes positions for nodes using the spring

layout algorithm

13 #usage: positions nodes in a visually appealing way , with

the seed parameter for reproducibility

14 nx.draw(W, pos , with_labels =True , node_color =’lightblue ’,

node_size =2000 , font_size =15, font_weight =’bold ’,

edge_color =’gray ’)

15 edge_labels = nx. get_edge_attributes (W, ’weight ’)

16 # function : retrieves edge attributes for labeling

17 #usage: returns a dictionary with edge labels for drawing

18 nx. draw_networkx_edge_labels (W, pos , edge_labels = edge_labels

, font_color =’red ’)

67

19 # function : draws labels on the edges

20 #usage: displays the weight of each edge in red color

21 plt.show () #to display the plot

Fig. 3.4: Plot generated from the code above.

In order to print the weights of each edge:

1 for (i, j, w) in W.edges(data=’weight ’):

2 if w > 0:

3 print(f"Edge from {i} to {j} has weight {w}")

4 # iterate over all edges in the graph W, including their

weights

5 #W.edges(data=’ weight ’) returns an iterator of tuples (node1

, node2 , weight)

Output:

Edge from v1 to v2 has weight 0.5

Edge from v1 to v3 has weight 0.5

Edge from v2 to v3 has weight 1

Edge from v3 to v1 has weight 1

To get the strength of a given node:

68

1 W. degree (’v1’, weight =’weight ’)

2 #this method calculates the weighted degree of the specified

node (’v1 ’)

Output: 2.0

To print the adjacency matrix (transition matrix):

1 import scipy # import the SciPy library , which provides

support for sparse matrices (in which most elements are

0) among other things

2 W = nx. DiGraph ()

3 W. add_edge (’v1’, ’v2’, weight =1/2)

4 W. add_edge (’v1’, ’v3’, weight =1/2)

5 W. add_edge (’v2’, ’v3’, weight =1)

6 W. add_edge (’v3’, ’v1’, weight =1)

7 adj_matrix = nx. adjacency_matrix (W, weight =’weight ’)

8 # generate the adjacency matrix of the graph , including edge

weights

9 #the ’weight ’ parameter specifies that weights should be

used

10 print(adj_matrix . todense ())

11 #print the adjacency matrix as a dense matrix

12 #dense matrix : provides a complete view of the matrix ,

showing all elements including zeros , which can be

helpful for visualization or understanding the full

structure of the matrix

13 # sparse : only non -zero elements and their indices are stored

Output:

[[0. 0.5 0.5]

69

[0. 0. 1.]

[1. 0. 0.]]

As illustrated, this is the transition matrix used in PageRank calculations. In

the following section, we will compute transition matrices and perform PageRank

calculations using Python.

3.4 Network Graphs and PageRank Computa-

tion with Python

3.4.1 Example 1

Revisiting Example 2.3, we will now visualize the network using Python.

1 import networkx as nx

2 import matplotlib . pyplot as plt

3 W = nx. DiGraph ()

4 nodes = ["Staff", " Student ", " Alumni ", "Admin", "Dept", "

Library ", "Home"]

5 W. add_nodes_from (nodes)

6 edges = [("Staff", "Home", 1/3) , ("Staff", " Student ", 1/3) ,

("Staff", " Library ", 1/3) ,

7 (" Student ", "Home", 1/3) , (" Student ", " Library ",

1/3) , (" Student ", " Alumni ", 1/3) ,

8 (" Library ", "Home", 1),

9 ("Home", "Staff", 1/6) ,("Home", " Student ", 1/6) ,("

Home", " Library ", 1/6) ,("Home", " Alumni ", 1/6) ,(

"Home", "Dept", 1/6) ,("Home", "Admin", 1/6) ,

10 ("Admin", " Alumni ", 1/3) , ("Admin", "Home", 1/3) ,("

Admin", "Dept", 1/3) ,

70

11 ("Dept", " Library ", 1/3) ,("Dept", "Home", 1/3) ,("

Dept", "Admin", 1/3)]

12 W. add_weighted_edges_from (edges)

13 pos = nx. spring_layout (W)

14 nx.draw(W, pos , with_labels =True , node_color =’lightblue ’,

node_size =2000 , font_size =10, font_weight =’bold ’,

edge_color =’black ’)

15 plt.show ()

Fig. 3.5: Plot generated from the code above.

71

The code gives the transition matrix for the graph:

1 adj_matrix = nx. adjacency_matrix (W, weight =’weight ’)

2 print(adj_matrix . todense ())

Output:

[[0. 0.33333333 0. 0. 0. 0.33333333

0.33333333]

[0. 0. 0.33333333 0. 0. 0.33333333

0.33333333]

[0. 0. 0. 0. 0. 0.

0.]

[0. 0. 0.33333333 0. 0.33333333 0.

0.33333333]

[0. 0. 0. 0.33333333 0. 0.33333333

0.33333333]

[0. 0. 0. 0. 0. 0.

1.]

[0.16666667 0.16666667 0.16666667 0.16666667 0.16666667 0.16666667

0.]]

Checking if there are any dangling nodes:

1 W. out_degree (’Staff ’)

2 W. out_degree (’Home ’)

3 W. out_degree (’Library ’)

4 W. out_degree (’Admin ’)

5 W. out_degree (’Alumni ’)

6 W. out_degree (’Dept ’)

7 W. out_degree (’Student ’)

72

8 # check the out - degree (number of outgoing links) for each

specified node in the graph W

9 #a node is considered dangling if its out - degree is 0 (i.e.,

it has no outgoing links)

Output:

3

6

1

3

0

3

3

We can see that the Alumni page is a dangling node. This cannot happen in

PageRank if it is to be a Markov Process.

Solution: As described in Proposition 2.4.2, we address the issue of dangling

nodes using the same approach, implemented in Python.

1 import networkx as nx

2 import matplotlib . pyplot as plt

3 W = nx. DiGraph ()

4 nodes = ["Staff", " Student ", " Alumni ", "Admin", "Dept", "

Library ", "Home"]

5 W. add_nodes_from (nodes)

6 edges = [("Staff", "Home", 1/3) , ("Staff", " Student ", 1/3) ,

("Staff", " Library ", 1/3) ,

7 (" Student ", "Home", 1/3) , (" Student ", " Library ", 1/3) , (

" Student ", " Alumni ", 1/3) ,

8 (" Library ", "Home", 1),

73

9 ("Home", "Staff", 1/6) ,("Home", " Student ", 1/6) ,("Home",

" Library ", 1/6) ,

10 ("Home", " Alumni ", 1/6) ,("Home", "Dept", 1/6) ,("Home", "

Admin", 1/6) ,

11 ("Admin", " Alumni ", 1/3) , ("Admin", "Home", 1/3) ,("Admin

", "Dept", 1/3) ,

12 ("Dept", " Library ", 1/3) ,("Dept", "Home", 1/3) ,("Dept",

"Admin", 1/3)]

13 W. add_weighted_edges_from (edges)

14 for node in W.nodes ():

15 # iterate through each node in the graph

16 if W. out_degree (node) == 0:

17 #check if the node is dangling (i.e., has no outgoing links)

18 W. add_edge (node , "Staff", weight =1/ len(W.nodes))

19 W. add_edge (node , " Student ", weight =1/ len(W.nodes))

20 W. add_edge (node , " Alumni ", weight =1/ len(W.nodes))

21 W. add_edge (node , "Admin", weight =1/ len(W.nodes))

22 W. add_edge (node , " Library ", weight =1/ len(W.nodes))

23 W. add_edge (node , "Dept", weight =1/ len(W.nodes))

24 W. add_edge (node , "Home", weight =1/ len(W.nodes))

25 #add outgoing links from this node to all the other nodes:

so we implement a technique where we assign 1/n weight

and we make that node that pointed to nothing now point

to every node

26 print(f"Out - degree of {node} after fixing : {W.

out_degree (node)}")

27 pos = nx. spring_layout (W)

28 nx.draw(W, pos , with_labels =True , node_color =’lightblue ’,

node_size =2000 , font_size =10, font_weight =’bold ’,

74

edge_color =’black ’)

29 plt.title(" Directed Graph W after Fixing Dangling Nodes")

30 plt.show ()

Output: Out-degree of Alumni after fixing: 7

Double-checking:

1 W. out_degree (’Alumni ’)

Output: 7

Fig. 3.6: Plot generated from the code above.

75

After addressing the issue of dangling nodes, the updated transition matrix is as

follows:

1 adj_matrix = nx. adjacency_matrix (W, weight =’weight ’)

2 print(adj_matrix . todense ())

Output:

[[0. 0.33333333 0. 0. 0. 0.33333333

0.33333333]

[0. 0. 0.33333333 0. 0. 0.33333333

0.33333333]

[0.14285714 0.14285714 0.14285714 0.14285714 0.14285714 0.14285714

0.14285714]

[0. 0. 0.33333333 0. 0.33333333 0.

0.33333333]

[0. 0. 0. 0.33333333 0. 0.33333333

0.33333333]

[0. 0. 0. 0. 0. 0.

1.]

[0.16666667 0.16666667 0.16666667 0.16666667 0.16666667 0.16666667

0.]]

Let us proceed with calculating the Google matrix:

1 import numpy as np # fundamental library for numerical and

scientific computing in Python

2 def google_matrix (T, alpha): # define the function to create

the Google Matrix

3 n = T.shape [0] #get the number of nodes in the

transition matrix T; T.shape [0]: accesses the number

of rows in the matrix T

76

4 E = np.ones ((n, n)) / n

5 # create a matrix E where each element is 1/n (uniform

distribution)

6 #this represents the probability of randomly jumping to any

node and is equally likely

7 G = alpha * T + (1 - alpha) * E

8 # calculate the Google Matrix G

9 #G = alpha * T + (1 - alpha) * E

10 #alpha * T scales the original transition matrix T by the

damping factor alpha

11 #(1 - alpha) * E adds a uniform distribution to account for

random jumps

12 #this ensures that there is a probability of jumping to any

node , not just following the usual transition

probabilities

13 return G

14 T = np.array ([[0.0 , 0.33333333 , 0.0, 0.0, 0.0, 0.33333333 ,

0.33333333] ,

15 [0.0 , 0.0, 0.33333333 , 0.0, 0.0, 0.33333333 ,

0.33333333] ,

16 [0.14285714 , 0.14285714 , 0.14285714 , 0.14285714 ,

0.14285714 , 0.14285714 , 0.14285714] ,

17 [0.0 , 0.0, 0.33333333 , 0.0, 0.33333333 , 0.0,

0.33333333] ,

18 [0.0 , 0.0, 0.0, 0.33333333 , 0.0, 0.33333333 ,

0.33333333] ,

19 [0.0 , 0.0, 0.0, 0.0, 0.0, 0.0, 1.0] ,

20 [0.16666667 , 0.16666667 , 0.16666667 , 0.16666667 ,

0.16666667 , 0.16666667 , 0.0]])

77

21 alpha = 0.85

22 G = google_matrix (T, alpha)

23 # creating the Google Matrix using the defined function

24 print(" Google Matrix :\n", G)

Output:

Google Matrix:

[[0.02142857 0.3047619 0.02142857 0.02142857 0.02142857 0.3047619

0.3047619]

[0.02142857 0.02142857 0.3047619 0.02142857 0.02142857 0.3047619

0.3047619]

[0.14285714 0.14285714 0.14285714 0.14285714 0.14285714 0.14285714

0.14285714]

[0.02142857 0.02142857 0.3047619 0.02142857 0.3047619 0.02142857

0.3047619]

[0.02142857 0.02142857 0.02142857 0.3047619 0.02142857 0.3047619

0.3047619]

[0.02142857 0.02142857 0.02142857 0.02142857 0.02142857 0.02142857

0.87142857]

[0.16309524 0.16309524 0.16309524 0.16309524 0.16309524 0.16309524

0.02142857]]

We can compute the PageRank using Python:

1 pagerank = nx. pagerank (W, alpha =0.85 , weight =’weight ’)

2 # calculate PageRank for each node in the graph W

3 #nx. pagerank (G) is a general form

4 #alpha =0.85 is the damping factor , which balances the

following links and random jumps

78

5 # weight =’ weight ’ means it uses edge weights in the

calculation

6 print(" PageRank :")

7 for node , rank in pagerank .items ():

8 #loop through each node and its PageRank score

9 #print the node and its corresponding PageRank score

10 #the nx. pagerank () function returns a dictionary where keys

are node labels and values are the corresponding PageRank

scores

11 #call the .items () method on the dictionary to get a view of

the key -value pairs (that is how we get pagerank .items ()

)

12 print(f"{node }: {rank}")

Output:

PageRank:

Staff: 0.0798020288250451

Student: 0.1024128935466225

Alumni: 0.14036885245403036

Admin: 0.11135184916867426

Dept: 0.11135184916867426

Library: 0.16297971717560775

Home: 0.29173280966134585

3.4.2 Example 2

We will analyze Example 2.4 and perform the same analysis using Python in this

subsection.

79

1 import networkx as nx

2 import matplotlib . pyplot as plt

3 W=nx. DiGraph ()

4 nodes =[’A’, ’B’, ’C’, ’D’, ’E’, ’F’]

5 W. add_nodes_from (nodes)

6 edges =[(’A’,’B’, 1/3) , (’A’,’C’, 1/3) ,(’A’,’D’, 1/3) ,(’B’,’A

’ ,1/2) ,(’B’,’D’ ,1/2) , (’C’,’A’ ,1/3) ,(’C’,’D’ ,1/3) ,(’C’,’E

’ ,1/3) ,(’D’,’B’ ,1/3) ,(’D’,’E’ ,1/3) ,

7 (’D’,’C’ ,1/3) ,(’E’,’C’ ,1/2) ,(’E’,’F’ ,1/2)]

8 W. add_weighted_edges_from (edges)

9 pos=nx. spring_layout (W)

10 nx.draw(W, pos , with_labels =True , node_color =’lightblue ’,

node_size =2000 , font_size =10, font_weight =’bold ’,

edge_color =’black ’)

11 plt.show ()

80

Fig. 3.7: Plot generated from the code above.

81

The code gives the transition matrix for the graph:

1 adj_matrix = nx. adjacency_matrix (W, weight =’weight ’)

2 print(adj_matrix . todense ())

Output:

[[0. 0.33333333 0.33333333 0.33333333 0. 0.]

[0.5 0. 0. 0.5 0. 0.]

[0.33333333 0. 0. 0.33333333 0.33333333 0.]

[0. 0.33333333 0.33333333 0. 0.33333333 0.]

[0. 0. 0.5 0. 0. 0.5]

[0. 0. 0. 0. 0. 0.]]

Checking if there are any dangling nodes:

1 W. out_degree (’A’)

2 W. out_degree (’B’)

3 W. out_degree (’C’)

4 W. out_degree (’D’)

5 W. out_degree (’E’)

6 W. out_degree (’F’)

Output:

3

2

3

3

2

0

We can see that the F page is a dangling node.

82

Solution: As described in Proposition 2.4.2, we address the issue of dangling

nodes using the same approach, implemented in Python.

1 import networkx as nx

2 import matplotlib . pyplot as plt

3 W=nx. DiGraph ()

4 nodes =[’A’, ’B’, ’C’, ’D’, ’E’, ’F’]

5 W. add_nodes_from (nodes)

6 edges =[(’A’,’B’, 1/3) , (’A’,’C’, 1/3) ,(’A’,’D’, 1/3) ,(’B’,’A

’ ,1/2) ,(’B’,’D’ ,1/2) , (’C’,’A’ ,1/3) ,(’C’,’D’ ,1/3) ,(’C’,’E

’ ,1/3) ,(’D’,’B’ ,1/3) ,(’D’,’E’ ,1/3) ,

7 (’D’,’C’ ,1/3) ,(’E’,’C’ ,1/2) ,(’E’,’F’ ,1/2)]

8 W. add_weighted_edges_from (edges)

9 for node in W.nodes ():

10 if W. out_degree (node)==0:

11 W. add_edge (node , "A", weight =1/ len(W.nodes))

12 W. add_edge (node , "B", weight =1/ len(W.nodes))

13 W. add_edge (node , "C", weight =1/ len(W.nodes))

14 W. add_edge (node , "D", weight =1/ len(W.nodes))

15 W. add_edge (node , "E", weight =1/ len(W.nodes))

16 W. add_edge (node , "F", weight =1/ len(W.nodes))

17 print(f"Out - degree of {node} after fixing : {W.

out_degree (node)}")

18 pos = nx. spring_layout (W)

19 nx.draw(W, pos , with_labels =True , node_color =’lightblue ’,

node_size =2000 , font_size =10, font_weight =’bold ’,

edge_color =’black ’)

20 plt.title(" Directed Graph W after Fixing Dangling Nodes")

21 plt.show ()

83

Output: Out-degree of F after fixing: 6

Double-checking:

1 W. out_degree (’F’)

Output: 6

Fig. 3.8: Plot generated from the code above.

84

After addressing the issue of dangling nodes, the updated transition matrix is as

follows:

1 adj_matrix = nx. adjacency_matrix (W, weight =’weight ’)

2 print(adj_matrix . todense ())

Output:

[[0. 0.33333333 0.33333333 0.33333333 0. 0.]

[0.5 0. 0. 0.5 0. 0.]

[0.33333333 0. 0. 0.33333333 0.33333333 0.]

[0. 0.33333333 0.33333333 0. 0.33333333 0.]

[0. 0. 0.5 0. 0. 0.5]

[0.16666667 0.16666667 0.16666667 0.16666667 0.16666667 0.16666667]]

Next, we will proceed with the computation of the Google matrix:

1 import numpy as np

2 def google_matrix (T, alpha):

3 n = T.shape [0]

4 E = np.ones ((n, n)) / n

5 G = alpha * T + (1 - alpha) * E

6 return G

7 T = np.array ([[0.0 , 0.33333333 , 0.33333333 , 0.33333333 , 0.0,

0.0] ,

8 [0.5 , 0.0, 0.0, 0.5, 0.0, 0.0] ,

9 [0.33333333 , 0.0, 0.0, 0.33333333 , 0.33333333 , 0.0] ,

10 [0.0 , 0.33333333 , 0.33333333 , 0.0, 0.33333333 , 0.0] ,

11 [0.0 , 0.0, 0.5, 0.0, 0.0, 0.5] ,

12 [0.16666667 , 0.16666667 , 0.16666667 , 0.16666667 ,

0.16666667 , 0.16666667]])

13 alpha = 0.85

85

14 G = google_matrix (T, alpha)

15 print(" Google Matrix :\n", G)

Google Matrix:

[[0.025 0.30833333 0.30833333 0.30833333 0.025 0.025]

[0.45 0.025 0.025 0.45 0.025 0.025]

[0.30833333 0.025 0.025 0.30833333 0.30833333 0.025]

[0.025 0.30833333 0.30833333 0.025 0.30833333 0.025]

[0.025 0.025 0.45 0.025 0.025 0.45]

[0.16666667 0.16666667 0.16666667 0.16666667 0.16666667 0.16666667]]

With the updated transition matrix, we compute the PageRank using Python:

1 pagerank = nx. pagerank (W, alpha =0.85 , weight =’weight ’)

2 print(" PageRank :")

3 for node , rank in pagerank .items ():

4 print(f"{node }: {rank}")

Output:

PageRank:

A: 0.16287151524282845

B: 0.14572882210740518

C: 0.2137958726952636

D: 0.20901810495555176

E: 0.16015802747251817

F: 0.10842765752643249

Node C has the highest PageRank of 0.2138, indicating it is the most important

node, while node F has the lowest PageRank of 0.1084, suggesting it is the least

important node.

86

Chapter 4

Real-Life Application

4.1 Introduction

In the modern era of connectivity, social media has improved how individuals

interact, share information, and influence one another. Among these platforms,

Twitter stands out as a vital tool for public discourse, enabling millions of users to

connect, engage, and exchange ideas instantaneously. Understanding the dynamics

of influence within such a vast network is a key focus in network science and social

media analysis.

This investigation focuses on network analysis, which examines the relation-

ships between individual entities, specifically Twitter users, and how information

flows through these connections. PageRank, a robust technique originally designed

for ranking web pages, has since become a popular method for evaluating influence

in social networks.

The objective of this study is to apply these concepts to deepen our understand-

ing of the influence structure on Twitter. By examining a dataset of anonymized

Twitter interactions, the aim is to uncover patterns of connectivity and identify

influential users within the network. These insights have far-reaching implications,

87

from understanding the spread of information online to identifying key figures in

various social and cultural movements.

4.2 Twitter Dataset

The twitter_combined.txt1 file contains a list of edges representing a Twitter

network. To protect user privacy, the data has been anonymized, with each number

serving as an ID for a user. The users in the first column represent Twitter users

who follow others.

4.2.1 Setting Up the Environment

To begin our analysis in Jupyter, we first need to install the necessary libraries to

ensure that our code runs properly.

1 !pip install networkx

2 !pip install matplotlib

Next, we import these libraries:

1 import networkx as nx

2 import matplotlib . pyplot as plt

4.2.2 Creating the Directed Graph

We create a DiGraph object using all the edges from the twitter_combined.txt

file:

1 import networkx as nx

1This dataset is sourced from the following link, and all the information provided is extracted

from there: https://snap.stanford.edu/data/ego-Twitter.html.

88

https://snap.stanford.edu/data/ego-Twitter.html

2 # general form: import library_name as alias

3 D=nx. DiGraph ()

4 with open(’twitter_combined .txt ’, ’r’) as file:

5 #open the file ’twitter_combined .txt ’ for reading ; r stands

for read mode

6 # general form: with open(’ file_path ’, ’mode ’) as

file_variable :

7 for line in file:

8 #to iterate through every line

9 # general form: for item in iterable :

10 user , follower =map(int , line.split ())

11 #line.split () is to split each line into 2 strings ; map

function is to convert them to integers so they can be

added to the graph

12 # general form: variable1 , variable2 = map(

conversion_function , iterable .split ())

13 # purpose : split a string into parts , convert each part to a

specific type , and unpack the result

14 D. add_edge (user , follower) #add a directed edge from

user to follower

15 print(f" Number of nodes: {D. number_of_nodes ()}")

16 print(f" Number of edges: {D. number_of_edges ()}")

Output:

Number of nodes: 81306

Number of edges: 1768149

The nodes, representing users in this context, can also be viewed as webpages,

while the edges that represent the following links can be seen as hyperlinks. This

showcases the diverse applications of the PageRank algorithm.

89

Remark 2. Generating a visualization of the entire Twitter network, with over one

million edges, would be too large and computationally intensive to handle within

the Jupyter Notebook environment. Consequently, only a subset of the network was

visualized for practical reasons.

To create a smaller subset of this rather large network:

1 import matplotlib . pyplot as plt

2 import networkx as nx

3 % matplotlib inline

4 D=nx. DiGraph ()

5 with open(’twitter_combined .txt ’, ’r’) as file:

6 for line in file:

7 user , follower =map(int , line.split ())

8 D. add_edge (user , follower)

9 subgraph_nodes = list(D.nodes ()) [:100] # selects the first

100 nodes from the full graph D to create a smaller

subgraph

10 subgraph = D. subgraph (subgraph_nodes) # creates the subgraph

11 pos = nx. spring_layout (subgraph , seed =42) # generates the

layout positions for the nodes in the subgraph , arranging

them for a clear visualization

12 nx. draw_networkx (subgraph , pos , node_size =50, node_color =’

blue ’)

13 plt. figure (figsize =(12 , 12)) #sets the size of the figure to

12 x12 inches for better visibility

14 plt.title(" Subset of Large Network ")

15 plt.show ()

90

Fig. 4.1: Plot generated from the code above.

91

4.2.3 PageRank Calculation

Subsequently, we calculate the PageRank for this large network:

1 import networkx as nx

2 D = nx. DiGraph ()

3 with open(’twitter_combined .txt ’, ’r’) as file:

4 for line in file:

5 user , follower = map(int , line.split ())

6 D. add_edge (user , follower)

7 page_rank = nx. pagerank (D)

8 print(" PageRank :")

9 for node , rank in page_rank .items (): # print each user ID

and their PageRank score from the dictionary (page_rank .

items ())

10 print(f"User {node }: {rank :.6f}")

Remark 3. The output of the PageRank computation is extensive and includes

scores for all nodes in the graph. Only the PageRank scores for the 20 generated

users by Python are shown below for brevity. The complete PageRank results can

be found in Appendix A.5.

Output:

PageRank:

User 214328887: 0.000031

User 34428380: 0.000668

User 17116707: 0.000056

User 28465635: 0.000132

User 380580781: 0.000066

User 18996905: 0.000287

92

User 221036078: 0.000016

User 153460275: 0.000029

User 107830991: 0.000048

User 17868918: 0.000270

User 151338729: 0.000122

User 222261763: 0.000041

User 19705747: 0.000111

User 88323281: 0.000147

User 19933035: 0.000008

User 149538028: 0.000076

User 158419434: 0.000080

User 17434613: 0.000052

User 153226312: 0.000075

User 364971269: 0.000009

4.2.4 Overview of the Top 10 Ranked Users

We then write the code to generate the output for the top 10 users:

1 import networkx as nx

2 import heapq # this is a Python module that provides

functions for working with heaps (a type of priority

queue) and it is used to efficiently retrieve the

smallest or largest elements from a collection

3 D = nx. DiGraph ()

4 with open(’twitter_combined .txt ’, ’r’) as file:

5 for line in file:

6 user , follower = map(int , line.split ())

7 D. add_edge (user , follower)

93

8 page_rank = nx. pagerank (D)

9 top_10_users =heapq. nlargest (10, page_rank .items (), key=

lambda x: x[1])

10 # heapq. nlargest (n, iterable , key=None):

11 # finds the n largest elements from iterable

12 # n: number of largest elements to retrieve

13 # iterable : the collection to search through

14 # key: optional function to specify which part of each item

to use for comparison

15 # lambda x: x[1] extracts the second element of each tuple

for sorting , 0 if we want the first element

16 print("Top 10 Most Influential Users and Their PageRank

Scores :")

17 for user , rank in top_10_users :

18 print(f"User {user }: {rank :.6f}")

Output:

Top 10 Most Influential Users and Their PageRank Scores:

User 115485051: 0.004331

User 116485573: 0.004133

User 813286: 0.002339

User 40981798: 0.001372

User 7861312: 0.001254

User 11348282: 0.001222

User 17093617: 0.001076

User 15439395: 0.001031

User 18396070: 0.001029

User 14230524: 0.001014

94

4.2.5 Analysis of In-Degree and Out-Degree for Top 10

Ranked Users

In this subsection, we examine the in-degree and out-degree of the top 10 users

based on their PageRank scores. The in-degree represents the number of followers

each user has, while the out-degree indicates how many users they follow. Spe-

cial attention is given to the second-highest ranked user to understand why they

might have such a high PageRank, exploring their network position and interaction

patterns.

In-degree and out-degree of the top 10 users:

1 print("In - degree and Out - degree of Top 10 Users:")

2 for user , _ in top_10_users : # _ is used when we want to

omit the second variable and it is not important in the

context

3 #we iterate through the 10 users

4 in_degree = D. in_degree (user)

5 out_degree = D. out_degree (user)

6 #we calculate the in and out degrees and then we print them

7 print(f"User {user} - In - degree : { in_degree }, Out - degree

: { out_degree }")

Output:

In-degree and Out-degree of Top 10 Users:

User 115485051 - In-degree: 3383, Out-degree: 1

User 116485573 - In-degree: 4, Out-degree: 1

User 813286 - In-degree: 2647, Out-degree: 1111

User 40981798 - In-degree: 3216, Out-degree: 119

User 7861312 - In-degree: 2074, Out-degree: 224

95

User 11348282 - In-degree: 1707, Out-degree: 172

User 17093617 - In-degree: 1186, Out-degree: 687

User 15439395 - In-degree: 1108, Out-degree: 334

User 18396070 - In-degree: 265, Out-degree: 45

User 14230524 - In-degree: 1214, Out-degree: 62

Analyzing the second-highest-ranked user:

1 second_highest_user = top_10_users [1][0] #from a list with

tuples [(user1 , rank1), (user2 , rank2) ,...] [1] means we

take the second tuple and [0] indicates that we are

interested in the first item of that tuple , i.e: user2

2 second_highest_in_degree = D. in_degree (second_highest_user)

3 second_highest_out_degree = D. out_degree (second_highest_user

)

4 print(f" Second highest ranked user: { second_highest_user }")

5 print(f"In - degree : { second_highest_in_degree }")

6 print(f"Out - degree : { second_highest_out_degree }")

Output:

Second highest ranked user: 116485573

In-degree: 4

Out-degree: 1

We observe that the user has relatively few incoming and outgoing links. To

understand why this user is ranked so highly, we examine the ‘in_edges‘ and

‘out_edges‘ functions in NetworkX.

1 D. out_edges (second_highest_user)

2 D. in_edges (second_highest_user)

Output:

96

OutEdgeDataView([(116485573, 115485051)])

InEdgeDataView([(114636253, 116485573), (115485051, 116485573),

(11625912, 116485573), (12771872, 116485573)])

The second-highest-ranked user is significant because the top-ranked user, 115485051,

follows them. This is shown in the code above. This connection highlights the

central role of the second-highest-ranked user in the network. In the PageRank

algorithm, when a more important page links to a less important one, it boosts

the latter’s rank. This is what occurs in this case: the second-highest-ranked user

gains significance because they are followed by the top-ranked user, 115485051.

4.3 Final Thoughts

This study applied PageRank to a portion of the Twitter network to identify

key users and understand their roles within the network. The findings revealed

that the second-highest-ranked user, despite having only a few direct connections,

is highly influential due to being followed by the top-ranked user.

This highlights an important aspect of PageRank: influence is determined not

just by the number of connections, but also by the significance of the users or

pages making those connections. Endorsements from high-status individuals or

pages can significantly elevate a user’s or page’s ranking, illustrating how influence

and importance are distributed in complex ways within a network.

Pages that are linked to by other significant pages are considered more impor-

tant themselves, creating a hierarchy of relevance. A link from a highly respected

page (like a major news site or a renowned academic journal) carries more weight

than a link from a blog.

97

Conclusion

Throughout the dissertation the PageRank algorithm is explored, starting with

examining the foundational concepts of Markov chains through practical examples.

After explaining the basis, practical examples were also used to illustrate how

Markov chains are integrated within the PageRank algorithm. It was demonstrated

that pages, or nodes in the Markov chain model, can be represented as a directed

graph, where links denote hyperlinks with positive probabilities, captured in the

transition matrix, consistent with the Markov process nature of PageRank.

Furthermore, the PageRank algorithm was implemented using Python and the

NetworkX library. This approach enabled the representation of graphs and data

using a programming language, rather than manually, allowing for the analysis of

larger datasets, including a Twitter dataset with over 80,000 PageRank calcula-

tions.

PageRank is extended beyond web analysis to various domains. Consider a

political analysis, where nodes could represent political parties or politicians, and

edges could signify alliances or collaborations. A high PageRank score in this

context might indicate significant influence or centrality within the network.

On a broader level, viewing life events through the lens of a Markov chain

offers a unique perspective. Calculating PageRank in this context could help iden-

tify which life events are most central in shaping personal journeys. Major life

milestones–such as going to school, graduating, or getting married–are modelled

99

as nodes in the chain. Transitions between these events occur with certain pos-

itive probabilities, creating links or edges that represent new achievements. The

concepts of irreducibility and aperiodicity in life’s transitions are also evident: one

can graduate and get married, then later return to school and graduate again, il-

lustrating the absence of a fixed timeline or predetermined path. Mathematically,

each individual’s PageRank scores are tailored and optimal to their unique life

path.

100

Appendix

A.1 Dataset Overview

Dataset Name: Twitter Combined Dataset

Number of Nodes: 81,306

Number of Edges: 1,768,149

A.2 Sample Data

Below is a sample of the dataset:

214328887 34428380

17116707 28465635

380580781 18996905

221036078 153460275

107830991 17868918

...

A.3 External Resources

The full dataset is available at https://snap.stanford.edu/data/ego-Twitter.

html.

101

https://snap.stanford.edu/data/ego-Twitter.html
https://snap.stanford.edu/data/ego-Twitter.html

A.4 Sample PageRank Results

Below is a sample of the PageRank results for the dataset. This sample includes

a subset of user rankings with their corresponding PageRank scores:

PageRank:

User 214328887: 0.000031

User 34428380: 0.000668

User 17116707: 0.000056

User 28465635: 0.000132

User 380580781: 0.000066

...

A.5 PageRank Results

The PageRank results for all nodes in the dataset were calculated using the

PageRank algorithm in NetworkX. The full results can be accessed online at the

following link:

PageRank Results.

102

https://drive.google.com/file/d/15NiZcKxXiCaoavE5H5O2r9JN-10ORTUQ/view?usp=drive_link

Bibliography

[1] C. A. Davis, S. Fortunato, and F. Menczer, A first course in network science,

ch. Network Elements, Cambridge University Press, 2020.

[2] Stewart N. Ethier, The doctrine of chances: Probabilistic aspects of gambling,

Springer, 2010.

[3] J. Humpherys, T. J. Jarvis, and E. Evans (eds.), Foundations of applied math-

ematics, lab manual for volume 1, ch. The PageRank Algorithm, Brigham

Young University, Department of Mathematics, 2024, Available at http:

//foundations-of-applied-mathematics.github.io/.

[4] R. Kumar, A. G. K. Leng, and A. K. Singh, Application of markov chain in

the pagerank algorithm, Transition 1 (1912).

[5] J. Leskovec and J. Mcauley, Ego-twitter dataset (twitter combined), https:

//snap.stanford.edu/data/ego-Twitter.html, 2012, Stanford Network

Analysis Project (SNAP).

[6] David A. Levin and Yuval Peres, Markov chains and mixing times, vol. 107,

American Mathematical Soc., 2017.

[7] H. A. Mimun, Gambling: Probability and decision - exercises 9, 2021.

103

http://foundations-of-applied-mathematics.github.io/
http://foundations-of-applied-mathematics.github.io/
https://snap.stanford.edu/data/ego-Twitter.html
https://snap.stanford.edu/data/ego-Twitter.html

[8] H. A. Mimun, Notes and slides of the course “gambling: Probability and de-

cision”, https://sites.google.com/view/hlafoalfie-mimun/teaching/

gambling-probability-and-decision-20202021, 2023.

[9] B. Moor, Mathematics behind google’s pagerank algorithm, Ph.D. thesis, 2018.

[10] James R. Norris, Markov chains, no. 2, Cambridge University Press, 1998.

[11] S. M. Ross, Introductory statistics, Academic Press, 2017.

104

https://sites.google.com/view/hlafoalfie-mimun/teaching/gambling-probability-and-decision-20202021
https://sites.google.com/view/hlafoalfie-mimun/teaching/gambling-probability-and-decision-20202021

	Introduction
	Markov Chains
	Introductory Definitions and Properties
	Transience and Recurrence
	Simple Random Walk on Z
	Stationary Distribution
	Period of a State and Aperiodic Markov Chains
	Time Reversal and Reversible Markov Chains
	Ergodic Theorem
	A Practical Example

	Markov Chains in PageRank Algorithm
	Introduction
	The PageRank Algorithm
	Graph Theory Background
	Calculating PageRank

	Integrating Markov Chains with PageRank
	Mechanism of Integration

	Practical Examples
	The Google Matrix
	Further Examples

	Conceptual Approach and Python Application
	Network Components
	Directed Networks
	Network Degree
	Network Weight and Strength

	Visualizing Networks with Python
	Example Code for Undirected and Directed Graphs
	Graphing Techniques
	Node and Edge Existence
	Calculating Node and Edge Degree
	Implementing Weight

	Network Graphs and PageRank Computation with Python
	Example 1
	Example 2

	Real-Life Application
	Introduction
	Twitter Dataset
	Setting Up the Environment
	Creating the Directed Graph
	PageRank Calculation
	Overview of the Top 10 Ranked Users
	Analysis of In-Degree and Out-Degree for Top 10 Ranked Users

	Final Thoughts

	Conclusion
	Appendix
	Dataset Overview
	Sample Data
	External Resources
	Sample PageRank Results
	PageRank Results
	Bibliography

