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Introduction

We live in a world where game theory plays a decisive role in many aspects

of life, from business to politics. In corporate America, shareholders choose their

board of directors based on mathematical principles, while geopolitical conflicts

are navigated through game theory strategies. Ultimately, game theory is a branch

of applied mathematics.

The modern political climateis highly polarized; for example, people in the

United States sometimes refuse to marry individuals who voted for a different

political party. This polarization highlights the urgent need for common ground

to stabilize society.

The goal of this thesis is to analyze the consensus-reaching process through

mathematical models. To suggest possible solutions for the ongoing crisis.

To achieve this, I will employ a game-theoretical approach to decision-making,

which uses mathematical methods to solve real-life dilemmas, from playing poker

to determining investment strategies in real estate [5, 9]. As described in these

sources, we approach every relevant outcome as an event with associated proba-

bilities, such as reaching or not reaching a consensus.

I aim to develop a general model by utilizing the results of numerous exper-

iments. Therefore, I will conduct over 100,000 simulations. Given that we are

examining the behavior of a group of people essentially a network of people the

best way to simulate and experiment with networks is through computational
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power, specifically using Python and the NetworkX library [8].

To ensure normal and high-quality results, I chose the Erdos-Renyi graph

among random graphs [4], as it generates a portion of all possible connections

between agents, thus making the experiments more random.

To decide if a network of people can reach consensus, I selected a model from the

field of opinion dynamics. This field seeks to provide explanations and algorithms

for how ideas spread among people. I will utilize the DeGroot opinion model

to define how opinions are spread. This model captures my interest because it

considers that opinions are formed based on our own views and the influence of

others, with each element affecting us to varying degrees [3].

The DeGroot consensus model is based on Markov chains [1]. Markov chains

are a mathematical tool that examines stochastic processes, a series of events where

the probability of the next event depends on the current situation. For example,

moving around a house can be considered a stochastic process. When I am in

my room, I have a 100 percent probability of going to the living room, but when

I am in the living room, I can go to the kitchen, bathroom, or bedroom with

some probability distribution. Each probability distribution should sum up to 100

percent.

DeGroot treats each agent as a node in a network, and each link in the network

represents the influence of others’ opinions with varying strengths. There can be

self-loops, meaning an agent takes their own opinion into account while forming a

new one. This resembles the phrase, “You are an average of the five people closest

to you”. Since the sum of the strength of the opinions equals 100 percent, we can

treat this whole system as a stochastic process by applying Markov chains.

Even though Markov chains have been with us for more than a century, thanks

to enormous computational power, they are more relevant than ever and should

be treated as such.
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1. Chapter One: A deep dive into Markov chains.

2. Chapter Two: An introduction to opinion models, with a focus on the DeG-

root model.

3. Chapter Three: An exploration of network science and its applications in

Python.

4. Chapter Four: The creation of an experimental lab, conducting experiments,

and discussing the results.
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Chapter 1

Markov Chains

1.1 Introductory Definitions and Properties

Notation 1.1.1. In the entire chapter, we will write P t
i,j instead of (P t)i,j. So in

general, P t
i,j ̸= (Pi,j)t.

Definition 1.1.1. V is a state space, which is a countable or finite set. V =

{v1, v2, v3, . . . , vn}.

n is the number of elements in V . If V is countable and infinite, then

n = ∞.

The n × n matrix P is a stochastic matrix if the following two properties hold:

P1: For i, j = 1, . . . , n, pij ∈ [0, 1].

P2: For i = 1, . . . , n, ∑n
j=1 Pi,j = 1.

πi(t) := P (Xt = vi) and π(t) := (π1(t), . . . , πn(t)) is the probability distribution

of Xt. The vector π(0) of length n is a probability distribution on V if the

following two properties hold:

D1: For any j = 1, . . . , n, πj(0) ∈ [0, 1].
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D2: ∑j πj(0) = 1. Pi,j is the probability of moving from a state indexed by i

to a state indexed by j.

Definition 1.1.2. The process {Xt}t∈N is a Markov chain on the state space V

with transition matrix P and initial probability distribution π(0) if:

M1: The Markov property holds. That is, for any t ≥ 1 and i = 1, . . . , n, we

have:

P (Xt = vi | X1, . . . , Xt−1) = P (Xt = vi | Xt−1)

The Markov property tells us that the future is independent of the past and depends

only on the present.

M2: For any i = 1, . . . , n, P (X0 = vi) = πi(0).

M3: For any i, j = 1, . . . , n and t ≥ 1,

P (Xt = vj | Xt−1 = vi) = Pi,j

The Markov chain is time-homogeneous since the matrix P does not depend

on the time t.

Proposition 1.1.2.

π(t) = π(t − 1) · P for any t ≥ 1.

By iterating this formula, we get:

π(t) = π(t − 1) · P = π(t − 2) · P · P = π(t − 2) · P 2 = . . . = π(0) · P t.

So,

π(t) = π(0) · P t.

Example 1.1.1. Consider the graph G = (V, E), where V = {v1, v2, v3, v4} and

E = {(v1, v2), (v2, v3), (v3, v4), (v4, v1)}.

G is the graph, V are the vertices, and E are the edges of the “square graph”.
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• We start on vertex v1.

• At each round, we have the probability p of moving clockwise and the proba-

bility q of moving counterclockwise.

Let Xt be the position at time t. Since we start from vertex v1, we have P (X0 =

v1) = 1 and P (X0 = vi) = 0 for ∀i = 2, 3, 4. The probability distribution at round

t is

π(t) = (π1(t), π2(t), π3(t), π4(t)) ,

where, πi(t) := P (Xt = vi).

In our example, the initial probability distribution is

π(0) = (1, 0, 0, 0) .

Note that, ∑4
i=1 πi(0) = ∑4

i=1 P (X0 = vi) = 1.

The set V is called the state space, which contains 4 elements. Define P as the

4 × 4 matrix such that for i, j = 1, 2, 3, 4,

Pi,j = P (X1 = vj | X0 = vi).

Hence

P =



0 p 0 q

q 0 p 0

0 q 0 p

p 0 q 0


P is the transition matrix, and it allows us to obtain the probability distribution

at time t from the probability distribution at time t − 1.

In order to find the probability of being in state j at time 1, we multiply the

probability of being in state i by the probability of moving from i to j for all i, and

then sum all of these results over all i’s, that is

3



πj(1) = P (X1 = vj) =
4∑

i=1
P (X1 = vj | X0 = vi)P (X0 = vi)

=
4∑

i=1
Pi,jπi(0) =

4∑
i=1

πi(0)Pi,j = (π(0) · P )j.

The universal formula, that is for any t > 0, for j = 1, 2, 3, 4 is

πj(t) = P (Xt = vj) =
4∑

i=1
P (Xt = vj | Xt−1 = vi)P (Xt−1 = vi)

=
4∑

i=1
Pi,jπi(t − 1) = (π(t − 1) · P )j.

Hence,

π(t) = π(t − 1) · P.

1.2 Transience and Recurrence

Definition 1.2.1. Tj is the the Hitting time of the state vj ∈ V as the first time

t ≥ 1 in which the chain Xt visits the state vj (excluding time 0).

Tj := min{t ≥ 1 | Xt = vj},

with the convention that min ∅ = ∞.

Definition 1.2.2. Nj is the the number of visits of the state vj ∈ V as the

number of times that the chain visits vj (excluding time 0).

Nj :=
∞∑

t=1
1{Xt=vj}.

Definition 1.2.3. fi,j is the probability that, starting from state vi, the Markov

chain will eventually reach state vj at least once.

fi,j = P(Tj < ∞ | X0 = vi) = P(Nj ≥ 1 | X0 = vi).
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Definition 1.2.4. We say that state vj is

• transient if fj,j < 1;

• recurrent if fj,j = 1.

Let {Xt}t∈N be a Markov chain defined on the state space V = {v1, . . . , vn},

where n could be finite or infinite.

If Nj ≥ m for some m ≥ 1, it means the chain visits state vj at least m times.

Let t0 = 0 denote the starting time of our chain. There exist times t1, t2, . . . , tm

such that 1 ≤ t1 < t2 < . . . < tm. Each ti signifies the moment when the chain

reaches state vj for the i-th time.

By definition at these times, we have

Xt1 = Xt2 = . . . = Xtm = vj .

Moreover, between any consecutive occurrences ti−1 and ti, the chain does not visit

vj, that is

Xt ̸= vj for all t ∈ (ti−1, ti) .

This property ensures that the Markov chain {Xt} precisely hits state vj at

time ti, and during the interval (ti−1, ti), it visits in other states.

For i = 1, 2, . . . , m, let us define Ai an event that describes the chain from the

time it left state vj until it reaches vj again.

Ai = {Xt ̸= vj for all t ∈ (ti−1, ti), Xti
= vj} .

Alternatively,

Ai = {Xti−1+1 ̸= vj, Xti−1+2 ̸= vj, . . . , Xti−1 ̸= vj, Xti
= vj}

Note that the event {Nj ≥ m} occurs if there exists a sequence of times

t1, . . . , tm such that A1, . . . , Am occur, that is {Nj ≥ m} = ⋂m
i=1 Ai. Hence

P (Nj ≥ m | X0 = vi) = P

(
m⋂

i=1
Ai | X0 = vi

)
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is the probability of hitting vj at least m times given that X0 = vi. Note that

P

(
m⋂

i=1
Ai | X0 = vi

)
=

m∏
k=1

P

(
Ak |

k−1⋂
i=1

Ai ∩ {X0 = vi}
)

.

This expression uses the multiplication rule, which states that the joint proba-

bility of a sequence of events can be computed by multiplying the conditional

probabilities of each event given the previous ones. Moreover we have

m∏
k=1

P

(
Ak |

k−1⋂
i=1

Ai ∩ {X0 = vi}
)

=
m∏

k=2
P
(
Ak | Xtk−1 = vj

)
· P (A1 | X0 = vi).

The above formula is due to the Markov property. Indeed the Markov property

ensures that the probability of transitioning to the next state depends solely on

the current state. Since each event Ak concludes when the chain reaches vj, we

only need to consider the current state vj. Moreover due the time-homogeneous

property

m∏
k=2

P (Ak | Xtk−1 = vj) · P (A1 | X0 = vi) = P (A1 | X0 = vj)m−1 · P (A1 | X0 = vi) =

= (fj,j)m−1 · fi,j.

Indeed the time-homogeneous property states that the probability of transitioning

between states is independent of the specific time step. The f terms were derived

using their definitions.

Summarising all the passages we have

P (Nj ≥ m | X0 = vi) = (fj,j)m−1 · fi,j .

Let us now look at the expected number of visits to state vj given that the

initial state is vi, that is E[Nj | X0 = vi]. This expectation can be expressed as

E[Nj | X0 = vi] =
∞∑

m=1
P(Nj ≥ m | X0 = vi) =

∞∑
m=1

(fjj)m−1 · fij .
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Let k = m − 1, then the above summation can be rewritten as ∑∞
k=0(fjj)k · fij.

Using the geometric series identity

∞∑
k=0

ak =


1

1−a
, if |a| < 1,

∞, if |a| ≥ 1 ,

we derive

E[Nj | X0 = vi] =
∞∑

k=0
(fjj)k · fij =


fij

1−fjj
, if vj is transient,

∞, if vj is recurrent.

This expression gives the expected number of visits to state vj starting from state

vi, considering whether vj is transient or recurrent under the Markov chain dy-

namics.

Definition 1.2.5. {Xt}t∈N is an irreducible Markov chain if fi,j > 0 for all vi, vj ∈

S. This means that, for any two states in the state space S, there is a positive

probability of transitioning from one state to the other. In terms of the associated

graph G, this implies that there is a path connecting any pair of vertices. Therefore,

saying that G is an irreducible graph is equivalent to saying that P is an irreducible

matrix.

Proposition 1.2.1. The state vj is

• transient if ∑∞
m=1 P m

j,j < ∞,

• recurrent if ∑∞
m=1 P m

j,j = ∞.

Proof. We have

E[Nj | X0 = vj] = E
[ ∞∑

m=1
1{Xm = vj} | X0 = vj

]
=

=
∞∑

m=1
P(Xm = vj | X0 = vj) =

∞∑
m=1

P m
j,j.
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Since

E[Nj | X0 = vj] =


∞, if vj is transient

∞, if vj is recurrent,

we have the thesis.

Proposition 1.2.2. If the state vi is recurrent and fij > 0, then the state vj is

also recurrent and fji = 1.

Proposition 1.2.3. If {Xt}t∈N is an irreducible Markov chain, then all states are

either transient or recurrent.

Proposition 1.2.4. An irreducible recurrent Markov chain visits every state in-

finitely often. This means that for each state vj in the state space V , the chain

will return to vj an infinite number of times. Formally, this can be expressed as:

P

 ∞⋂
m=1

⋃
k≥m

{Xk = vj}

 = 1 ∀vj ∈ V

This expression indicates that the probability of visiting state vj infinitely often is

1 for every state vj.

Proposition 1.2.5. An irreducible transient Markov chain visits no state infinitely

often. This means that for each state vj in the state space V , the chain will only

visit vj a finite number of times. Formally, this can be expressed as:

P

 ∞⋂
m=1

⋃
k≥m

{Xk = vj}

 = 0 ∀vj ∈ V

This expression indicates that the probability of visiting state vj infinitely often is

0 for every state vj.
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1.3 Simple Random Walk on Z

Suppose there is a trader in the stock market where each trade can result in

either winning or losing $1. The probabilities are given by

P (Gaining a dollar) = p, P (Losing a dollar) = q .

Assume that

• the trader starts with an initial balance X0 = 0.

• each trade, the trader either wins or loses.

• Xt is the trader’s balance after the t-th trade.

• {Xt}t∈N is a Markov chain on state space Z since it satisfies the Markov

property. Knowing Xt−1, we can derive Xt:

Xt =


Xt−1 + 1, with probability p,

Xt−1 − 1, with probability q.

for any t ∈ N and j ∈ Z

P(Xt = j | Xt−1, . . . , X1) = P(Xt = j | Xt−1) .

The state space is countable, the transition matrix P and the initial probabil-

ity distribution have infinite dimensions. The transition matrix associated with

{Xt}t∈N is the matrix P such that for i, j ∈ Z

Pi,j := P(Xt = j | Xt−1 = i) =



p, if j = i + 1,

q, if j = i − 1,

0, if j ̸= {i − 1, i + 1}.

9



Hence, for example we have P (X1 = 1) = p, P (X1 = −1) = q and

P (X2 = j) = P1,j · P (X1 = 1) + P−1,j · P (X1 = −1) = P (X2 = j) =

=



p · p + 0 · q = p2, if j = 2,

q · p + p · q = 2pq, if j = 0,

0 · p + q · q = q2, if j = −2,

0 · p + 0 · q = 0, if j = ±1.

The graph G associated with the Markov chain {Xt}t∈N has vertices represent-

ing all possible states, which are elements of Z, the set of all integers. The edges

of G are defined by pairs (i, i + 1) for each integer i ∈ Z. This structure reflects

the transitions where each state i can transition to i + 1.

The irreducibility of G implies that there is always a path between any two

states in Z.

Note that P m
0,0 is the probability that, starting at 0, the chain visits 0 at time

m. This probability can be different from 0 if and only if m is an even number.

So,

P m
0,0 =


> 0, if m is even;

= 0, if m is odd.

For this reason, let us write m = 2k for k ∈ N. In order to return to X2k = 0, the

chain must take k steps to the right and k steps to the left. Combinatorially, this

involves finding all possible rearrangements of k wins (W) and k losses (L), where

each arrangement corresponds to a feasible chain

P
(2k)
0,0 =

(
2k

k

)
pkqk

Here,
(

2k
k

)
represents the binomial coefficient, which counts the number of ways to

choose k steps (either W or L) from 2k total steps, and pkqk gives the probability

10



associated with each specific arrangement (where p and q are the probabilities of

winning and losing, respectively). When k is large, we can use Stirling’s formula

to asymptotically approximate k! getting

k! ∼
√

2πk

(
k

e

)k

.

So, by Stirling’s formula for large k, we have
(

2k

k

)
= (2k)!

(k!)2 ∼

√
4πk

(
2k
e

)2k

2πk
(

k
e

)2k = 22k

√
πk

∼ 22k = 4k

Recalling the geometric series

∞∑
k=1

ak =


1

1−a
, if a ∈ (0, 1),

∞, if a ≥ 1 ,

we have
∞∑

m=1
P m

0,0 =
∞∑

k=1
P 2k

0,0 =
∞∑

k=1

(
2k

k

)
(pq)k ≈

∞∑
k=1

4k(pq)k =

=
∞∑

k=1
(4pq)k =


1

1−4pq
, if 4pq < 1,

∞, if 4pq ≥ 1.

let us define g(p) = pq = p(1−p) = p−p2 and note that g(p) < 1
4 if p ∈ [0, 1]\

{
1
2

}
,

and g
(

1
2

)
= 1

4 . Thus, we conclude that the Markov Chain {Xt}t∈N is recurrent if

p = 1
2 ; otherwise, it is transient.

In probability theory, the process {Xt}t∈N described here is known as a simple

random walk on Z. When p = q, it is specifically referred to as a symmetric simple

random walk on Z.

1.4 Stationary Distribution

V is the state space of a Markov chain {Xt}t∈N with transition matrix P .
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Definition 1.4.1. A probability distribution ρ on the state space V is called a

stationary distribution (or invariant distribution) for the matrix P (or equivalently,

for the Markov chain {Xt}t∈N with transition matrix P ) if ρ = ρ · P .

Example 1.4.1. Let us find the stationary distribution ρ for the Markov chain

from Example 1.1.1

(
ρ1 ρ2 ρ3 ρ4

)
·



0 p 0 q

q 0 p 0

0 q 0 p

p 0 q 0


=
(

ρ1 ρ2 ρ3 ρ4

)

The solutions for the system are proportional to the vector (1, 1, 1, 1), so the final

solution will be ρ = (c, c, c, c) with c ∈ R. Being a probability distribution ρ has to

satisfy these two conditions:

• ρi ∈ [0, 1] for all i;

• ∑
i ρi = 1.

So we need c = 1
4 and hence ρ =

(
1
4 , 1

4 , 1
4 , 1

4

)
.

1.5 Period of a State and Aperiodic Markov Chains

Given a set of numbers A = {x1, . . . , xr} we denote by gcd(A) the greatest

common divisor of the set A. For example gcd(7, 42, 700) = 7.

Definition 1.5.1. Given a state vi ∈ S, we define the period of the state vi as

d(i) := gcd(D(i)),

where D(i) := {t ∈ N \ {0} | P t
ii > 0}. D(i) is the set of indices corresponding

to the rounds in which the chain returns to vi, and d(i) is the greatest common

divisor of these indices.
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Example 1.5.1. Consider the problem in Section 1.3. For all vi,

D(i) = {2, 4, 6, 8, . . .} = {2k | k ∈ N+} ⇒ d(i) = 2

.

Proposition 1.5.1. If vi, vj ∈ S are such that fi,j > 0 and fj,i > 0, then d(i) =

d(j). In particular, in an irreducible Markov chain all the states have the same

period, denoted as d(i), and hence we can speak about the period of the Markov

chain.

Definition 1.5.2. If an irreducible Markov chain has period of state 1, we say

that the Markov chain is aperiodic.

Proposition 1.5.2. If an irreducible aperiodic Markov chain in S with transition

matrix P has a stationary distribution ρ, then it is recurrent and for any vi, vj ∈ S

we have

lim
t→∞

P t
i,j = ρj.

Furthermore, ρj > 0 for all vj ∈ S.

Proposition 1.5.3. If the Markov chain does not possess a stationary distribution,

then for any vi, vj ∈ S, it holds that limt→∞ P t
i,j = 0.

Proposition 1.5.4. An irreducible Markov chain in a finite state space S has a

stationary distribution.

Proof. Let P be the transition matrix of the Markov chain, and suppose that a

stationary distribution does not exist. Note that, being P a transition matrix,

we have ∑vj∈S P t
i,j = 1. According to Proposition 1.5.3, we have limt→∞ P t

i,j = 0.

Hence ∑vj∈S limt→∞ P t
i,j = 0 . Being S finite, the summation over S is finite and

hence we can exchange the symbols of limit and summation. So we have

0 =
∑

vj∈S

lim
t→∞

P t
i,j = lim

t→∞

∑
vj∈S

P t
i,j = lim

t→∞
1 = 1 ,

13



that contradicts the hypothesis. So we conclude that the stationary distribution

exists.

Proposition 1.5.5. Let {Xt}t∈N be an irreducible, aperiodic, recurrent Markov

chain in S with transition matrix P . Then one of the following conclusions holds:

(a) E[Ti | X0 = vi] < ∞ for all vi ∈ S, and P has a unique stationary distribu-

tion ρ given by

ρi = 1
E[Ti | X0 = vi]

for vi ∈ S. In this case, the chain is said to be positive recurrent, and

Proposition 1.5.2 holds.

(b) E[Ti | X0 = vi] = ∞ for all vi ∈ S, and P has no stationary distribution.

In this case, the chain is said to be null recurrent, and Proposition 1.5.3

holds.

Example 1.5.2. Consider the Markov chain on the state space S = {v1, v2} with

fixed α, β ∈ (0, 1).

P =

1 − α α

β 1 − β

 .

• The associated graph is irreducible because we can get to any index from

any index.

• Recurrence of Irreducible Markov Chains: If the transition matrix P of a

Markov chain is irreducible and satisfies Pi,j > 0 for all i, j, then the chain

is recurrent.

• For the state v1 of a Markov chain, the set D(1) comprises all t ∈ N\{0} such

that P t
1,1 > 0. Given that 1 ∈ D(1), it follows that d(1) = gcd(D(1)) = 1.

Since the Markov chain is irreducible, Proposition 1.5.1 implies that d(2) =

d(1) = 1, hence confirming that the Markov chain is aperiodic.

14



Let us look for the stationary distribution of such a Markov chain. We have

(
ρ1 ρ2

)
·

1 − α α

β 1 − β

 =
(

ρ1 ρ2

)

So we have to solve the system of equations

(1 − α)ρ1 + βρ2 = ρ1

αρ1 + (1 − β)ρ2 = ρ2

ρ1 + ρ2 = 1

To solve this system, we have added the conditions ρ1 + ρ2 = 1 and ρ1, ρ2 ∈ [0, 1]

(since we want ρ to be a probability distribution). Hence,

(1 − α)ρ1 + βρ2 = ρ1

αρ1 + (1 − β)ρ2 = ρ2

ρ1 + ρ2 = 1

⇒


ρ1 = β

α+β

ρ2 = α
α+β

Since the Markov chain is irreducible, aperiodic, and recurrent, then by Proposition

1.5.5, the Markov chain is positive recurrent. According to Proposition 1.5.5, we

have

E[T1 | X0 = v1] = 1
ρ1

= α + β

β
, E[T2 | X0 = v2] = 1

ρ2
= α + β

α
.

1.6 Time Reversal and Reversible Markov Chains

Definition 1.6.1. A stochastic matrix P and a probability distribution λ are said

to be in detailed balance if

λiPi,j = λjPj,i for all i, j.

Proposition 1.6.1. If the stochastic matrix P and the probability distribution λ

are in detailed balance, then λ is a stationary distribution for P .
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Proof. To be proved λP = λ. Since λ and P are in detailed balance, we have

(λP )i =
∑

j

λjPj,i =
∑

j

λiPi,j = λi

∑
j

Pi,j = λi.

Therefore, because (λP )i = λi there is a full probability distribution λ

λP = λ.

To determine a probability distribution λ that is in detailed balance with a

transition matrix P , the following steps can be followed:

1. Check for the existence of a stationary distribution for P by solving the

system ρ · P = ρ.

2. If the system has no solutions, then no probability distribution λ exists that

is in detailed balance with P .

3. If the system has a solution ρ, verify whether ρ satisfies the detailed balance

condition with P .

Specifically, if P is symmetric (i.e., Pi,j = Pj,i), the unique probability distri-

bution ρ that is in detailed balance with P is the uniform distribution over the

state space (i.e., ρi = ρj for all i, j). This is demonstrated as follows. For any i, j,

λiPi,j = λjPj,i ⇒ λiPi,j = λjPi,j ⇒ λi = λj.

Thus, the uniform distribution is the unique distribution in detailed balance with

a symmetric transition matrix P .

Proposition 1.6.2. Let P be irreducible and have an stationary distribution ρ.

Fix T ≥ 1. Suppose that {Xn}0≤n≤T is a Markov chain with initial probability

16



distribution ρ and transition matrix P . Define Y0 = XT and Yn = XT −n for

n ≥ 1. Then the process {Yn}0≤n≤T is a Markov chain with initial distribution ρ

and transition matrix P̂ , where the entries of P̂ satisfy the equations

ρjP̂j,i = ρiPi,j for all i, j.

for all i, j. Moreover, P̂ is also irreducible with stationary distribution ρ. The

chain {Yn}0≤n≤T is called the time-reversal of {Xn}0≤n≤T .

Definition 1.6.2. Let {Xn}n≥0 be a Markov chain with initial distribution ρ and

transition matrix P . If the Markov chain is irreducible, we say it is reversible if,

for every T ≥ 1, the sequence {XT −n}0≤n≤T also forms a Markov chain with initial

distribution ρ and transition matrix P .

Proposition 1.6.3. Let P be an irreducible stochastic matrix and let ρ be a prob-

ability distribution. Suppose {Xn}n≥0 is a Markov chain with initial distribution ρ

and transition matrix P . The following statements are equivalent:

• {Xn}n≥0 is reversible.

• P and ρ satisfy the detailed balance condition.

Example 1.6.1. Consider the Markov chain on the state space S = {v1, v2, v3}

with transition matrix

P =


0 2

3
1
3

1
3 0 2

3
2
3

1
3 0


We want to determine if the Markov chain is reversible. Since the associated

graph is irreducible, it is sufficient to demonstrate the existence of a probability

distribution λ = (λ1, λ2, λ3) that satisfies the detailed balance condition with P . To

find such a probability distribution we need to first find the stationary distributions

of P and then identify which of them are in detailed balance with P . So let us
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determine if P has a stationary distribution, that is, let us find the solution ρ =

(ρ1, ρ2, ρ3) of

(
ρ1 ρ2 ρ3

)


0 2
3

1
3

1
3 0 2

3
2
3

1
3 0

 =
(

ρ1 ρ2 ρ3

)



ρ1 · 0 + ρ2 · 1
3 + ρ3 · 2

3 = ρ1

ρ1 · 2
3 + ρ2 · 0 + ρ3 · 1

3 = ρ2

ρ1 · 1
3 + ρ2 · 2

3 + ρ3 · 0 = ρ3

ρ1 + ρ2 + ρ3 = 1

This system has solution ρ = (c, c, c) for all c ∈ R. We have to choose c ∈ R such

that ∑3
i=1 ρi = 1 and ρi ∈ [0, 1] for i = 1, 2, 3. Hence,

1 =
3∑

i=1
ρi =

3∑
i=1

c = 3c ⇒ c = 1
3 .

So ρ =
(

1
3 , 1

3 , 1
3

)
is a stationary distribution for P and it is unique, since it is the

unique solution of the system above that is also a probability distribution. To verify

if ρ =
(

1
3 , 1

3 , 1
3

)
is in detailed balance with P , we check if λ = ρ satisfies the system

of equations: 

λ1P1,2 = P2,1λ2

λ1P1,3 = P3,1λ3

λ2P2,3 = P3,2λ3

Let us examine each equations. For λ1P1,2 = P2,1λ2:
1
3 · 2

3 = 1
3 · 1

3
Simplifying gives 2

9 = 1
9 , which is false. Hence we conclude that ρ is not in detailed

balance with P . Therefore, the Markov chain defined by the transition matrix P

and the stationary distribution ρ is not reversible.
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1.7 Ergodic Theorem

Definition 1.7.1. Denote by Yi(n) the number of visits to the state vi before time

n, that is

Yi(n) =
n−1∑
k=0

1{Xk=vi}.

Then Yi(n)
n

is the proportion of time before time n spent in state vi.

Theorem 1.7.1 (Ergodic Theorem). Let P be irreducible and let λ be any distribu-

tion. Let {Xn}n∈N be a Markov chain on the state space S with initial distribution

λ and transition matrix P . Then

P
(

Yi(n)
n

−→
n→∞

1
E[Ti | X0 = vi]

)
= 1.

Moreover, if the Markov chain is positive recurrent, for any bounded function f :

S → R we have

P

 1
n

n−1∑
k=0

f(Xk) −→
n→∞

∑
vi∈S

ρif(vi)
 = 1,

where ρ is the unique stationary distribution of P .

In an irreducible and positive recurrent Markov chain, the average value of a

function f over all states converges over time to a weighted sum. Each state’s

contribution to this average is weighted by how often the chain visits that state,

as given by the stationary distribution ρ. This property highlights the long-term

behavior and stability of the chain’s dynamics.

Example 1.7.1. Consider Example 1.5.2

P =

1 − α α

β 1 − β

 .

We have established that this Markov chain is irreducible and positive recurrent.

Furthermore, its stationary distribution is given by

ρ =
(

β

α + β
,

α

α + β

)
.
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Let f be defined such that f(v1) = 1 and f(v2) = −1. According to the Ergodic

Theorem (Theorem 1.7.1), we have

1
n

n−1∑
k=0

f(Xk) −→
n→∞

ρ2 · f(v2) + ρ1 · f(v1) = β

α + β
· (−1) + α

α + β
· 1 = α − β

α + β
,

with probability 1.
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Chapter 2

Opinion Dynamics

2.1 Introductory Definitions

Opinions can be of two types:

• Discrete (Binary or more): for instance, I like apple or not.

• Continuous: I have an appreciation rating for this restaurant that is a real

value (for example a real valued between 0 and 5).

2.2 Discrete Opinions Majority Model

2.2.1 Introductory Definitions

Definition 2.2.1. In the Majority Model, nodes (representing agents) in an undi-

rected graph update their opinions based on the majority opinion of their neighbors.

Definition 2.2.2. There are three options for the agent’s own opinion

• Yes - The agent considers their own opinion with the same importance as

the opinions of their neighbors. In other words, their own opinion is treated
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just like any other neighbor’s opinion.

• No - The agent completely ignores their own opinion and only considers the

opinions of their neighbors.

• Yes, but with special weight - The agent considers their own opinion,

but it carries a different weight compared to their neighbors’ opinions. This

means their own opinion could be either more or less influential than a neigh-

bor’s opinion.

Definition 2.2.3. The timing of how updates are made in the model can

significantly influence the final outcome. There are several options for updating

the nodes:

• Synchronous Updating:

– All nodes are updated simultaneously based on the opinions in the pre-

vious configuration.

• Asynchronous Updating in Fixed Order:

– Nodes are updated one by one in a predetermined, fixed order. As each

node is updated, the graph is immediately changed to reflect this new

opinion before moving on to the next node in the sequence.

• Asynchronous Updating in Random Order:

– Nodes are updated one by one, but in a random order that is chosen

anew for each iteration.

These different methods of updating can lead to different behaviors and results

in the model, making the choice of timing crucial for the dynamics of opinion

formation.
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Definition 2.2.4. When updating opinions in a social network model, ties can

occur when the number of opinions among a node’s neighbors is evenly split. In

such cases, it’s necessary to decide how the node should proceed. There are several

approaches to break ties:

• Keep: The agent keeps their own opinion.

• Random: The agent randomly chooses a new opinion from the set of possible

opinions. This approach ensures that the tie is broken unpredictably.

• Switch: The agent switches their opinion to the opposite of their current

opinion.

Each method has implications for how the model evolves over time and can influ-

ence the dynamics of consensus formation or polarization in the network.

Notation 2.2.1. For the future graphs we will use the notation in following pic-

ture.
v0 v1

v2v3

Example 2.2.1. Consider the following network and the Majority dynamics with

following rules:

• timing of the updating: Synchronously

• ties: keep

1 0

10

Updating
1 0

10
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Example 2.2.2. Consider the following network and the Majority dynamics with

following rules:

• Timing of the updating: asynchronous-fixed order 0, 1, 2, 3

• Ties: keep

1 0

10

Updating
0 0

10

0 0

00

Updating
0 0

00

Example 2.2.3. Consider the following network and the Majority dynamics with

following rules:

• Timing of the updating: asynchroneous-random order 0, 1, 2, 3

• Ties: keep

• Starting with index 0 (with probability 0.25) or index 2( with probability 0.25)

1 0

10

Final Result
0 0

00

• Starting with index 1 (with probability 0.25) or index 3 (with probability 0.25)
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1 0

10

Final Result
1 1

11

2.2.2 Stationary configuration and Consensus

Definition 2.2.5. There are two possible outcomes for any discrete dynamic.

1. Stationary Configuration:

• Consensus: All agents converge to the same opinion, resulting in a

stationary state where no one changes their opinion anymore.

• Polarization: At least two different opinions persist in the society

despite the dynamic process.

2. Non-Stationary Behavior: Agents continue to change their opinions in-

definitely without reaching a consensus.

Proposition 2.2.2.

• Consensus configurations are stationary configurations

• There may exist stationary configurations that are not consensus.

Proposition 2.2.3.

• In general, the dynamic does not converge to consensus.

• In one-dimensional and two-dimensional grids, the dynamic in the asyn-

chronous models converges and there is emergence of the consensus.
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2.2.3 Exit probability

Definition 2.2.6. The exit probability is a function defined as follows

• Argument: Initial fraction of agents with opinion 1.

• Output: The likelihood that the sequence of opinion configurations converges

to consensus on opinion 1.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Initial Fraction

Ex
it

Pr
ob

ab
ili

ty

Fig. 2.1: Exit Probability as a function of the initial fraction of opinion 1

2.2.4 Average opinion

Definition 2.2.7. Average Opinion: The average opinion is defined as the

arithmetic mean of the opinions across all nodes in a network.
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2.3 Coevolution of Opinions and the graph

2.3.1 Network assortativity

Network assortativity refers to the tendency of nodes in a network to connect

with other nodes that are similar to themselves in some way. Nodes in a network

become similar to their neighbors through two main mechanisms: social influence

and selection.

• Social influence refers to the process by which individuals adapt their

behaviors, attitudes, or attributes to be more like those of their connected

peers.

• Selection refers to the tendency of individuals to form connections with

others who are already similar to them. This mechanism operates on the

principle that people prefer to associate with those who share similar at-

tributes, interests, or social statuses.

1. Initial similarity and connection formation (selection): Initially,

individuals may seek out and form connections with those who are al-

ready similar to them. This is the selection process in action.

2. Increase in similarity through interaction (social influence):

Once connections are established, ongoing interactions lead to social

influence, where connected individuals become even more similar over

time.

Example 2.3.1. Consider a coevolution models where both opinions and networks

evolve over time. Every iteration requires two rules:

• Rule for updating the opinion.
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• Rule updating the graph (connections between nodes)

Asynchronous Dynamic

• Initialization: Select random opinions for agents

• 1. We go over all nodes in a random order.

2. For each node i, pick a random neighbor j with a different opinion than

i if it exists.

3. With probability p, the link between i and j is rewired to a randomly

chosen non-neighbor of i with the same opinion as i. If no such non-

neighbor exists, keep the link intact (Selection).

4. Otherwise, with probability 1 − p, i takes the opinion of j (Influence).

5. If no such neighbor exists, go to the next node.

General behavior of this dynamic

• The number of links is constant.

• Impact of the selection step:

– Decreases the number of pairs of nodes that are linked and have different

opinions (mismatches).

– Strictly decreases the number of mismatches if there exists a non-neighbor

with the same opinion as node i.

• Impact of the influence step: Can increase or decrease the number of miss-

matches

Proposition 2.3.1. From any graph, the previous dynamic converges to a graph

such that:
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1. There may be several connected components. Regardless of the initial config-

uration of the graph (which nodes are connected to each other), the dynamic

process described will eventually lead to a state where the graph is divided

into several connected components.

2. All nodes in the same connected component have the same opinion. In sim-

pler terms, all nodes within a connected component are directly or indirectly

connected to each other.

The parameter p plays a crucial role in the dynamics of opinion formation and

network structure evolution. Here’s an elaboration on its impact.

Low p:

• Opinions homogenize: when p is low, the likelihood of rewiring links between

nodes (selection step) is minimal. Nodes tend to maintain their existing

connections over time.

• Network stability: due to the low probability of rewiring, the overall network

structure remains largely unchanged. Nodes retain their initial connectivity

patterns.

High p:

• Opinions almost do not change: with a high p, nodes frequently rewire their

connections based on their opinions (selection step). This leads to a network

where nodes are strongly connected to others sharing the same opinion.

• Group formation: nodes tend to cluster into groups or communities where all

members hold similar opinions. This clustering effect is intensified as nodes

selectively rewire to reinforce existing opinion alignments.
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2.4 Continuous opinions: De Groot Model

2.4.1 Intuition

Example 2.4.1. Consider the following synchronous model. The opinion of the

society is the average of the opinions of the agents. The Restaurant Quality

Evaluation model can be described as follows:

• The quality of a restaurant is a real number in the interval [0, 5].

• There are N agents.

• Each agent i goes to the restaurant and evaluates it.

• Each agent obtains an opinion xi, which is randomized around the true qual-

ity of the restaurant.

• The opinions are aggregated by taking their average:

x̄N = 1
N

N∑
i=1

xi

• All agents communicate their opinions to their neighbors. Subsequently, each

agent updates their own opinion based on the aggregated average opinion of

their neighbors.

• There are two criticisms of this simplified model that we will address:

1. Not all agents interact with the same neighbors.

2. Some individuals are more influential than others.

DeGroot’s model provides a framework for understanding how individuals

update their opinions through iterative interactions with others in a social network.
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• Naive opinion aggregation: The model uses a simple rule where each

agent updates their opinion based on the opinions of their neighbors.

• Local information exchange: Agents consider the opinions of their imme-

diate neighbors, reflecting the idea of observing and aggregating information

from their local social environment.

• Adaptation to changes: If an agent’s neighbors suddenly change their

opinions, the agent may adjust their own opinion to reflect new information

or insights learned indirectly from their neighbors’ interactions.

• Weighted average update: At each iteration, each agent updates their

opinion by taking a weighted average of the opinions of their neighbors. This

process continues iteratively until opinions converge or reach a stable state.

Example 2.4.2. Consider a society with three agents updating their opinions as

follows:

• Agent A calculates the average opinion, including their own opinion.

• Agent B considers the average opinion by including their own opinion and

Agent A’s opinion, but excluding Agent C’s opinion.

• Agent C updates their opinion based solely on their own opinion.

Let us denote by P(t) the vector whose j-th entry is the opinion of agent j at
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time t.

A

B C 11
2

1
3

1
3

1
3

1
2

Starting review

P(1) =
(

0 0 1
)

Review after second iteration

P(2) =


1/3 · 0 + 1/3 · 0 + 1/3 · 1

1/2 · 0 + 1/2 · 0

1 · 1

 =


1/3

0

1


Review after third iteration

P(3) =


1/3 · 1/3 + 1/3 · 0 + 1/3 · 1

1/2 · 1/3 + 1/2 · 0

1 · 1

 =


4/9

1/6

1


Review after infinite iterations

lim
t→∞

P(t) =


1

1

1
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2.4.2 Introduction

Definition 2.4.1 (Subjective probability distribution). For i = 1, . . . , K, Fi refers

to a person’s personal belief or assessment of the likelihood of different outcomes

or values of a variable. Unlike objective or frequentist probabilities.

Consider a group of K individuals, who must act together as a team. Suppose that

each of the K individuals can specify their own subjective probability distribution

for the unknown value for some parameter value θ.

Proposition 2.4.1. θ may be regarded as any arbitrary variable whose value is

not completely known to the K individuals. The value of θ is assumed to lie on an

abstract parameter space Ω that is endowed with a σ-field of measurable subsets for

which probabilities can be specified. Thus, Fi, . . . , FK are subjective probabilities

over Ω which represent the prior beliefs about θ of the K individuals. In other

words, for any measurable set A in the parameter space Ω, Fi(A) is the prior

probability of individual i that the value of θ lies in A.

Definition 2.4.2. The set {F1, . . . , FK} represents the beliefs about the assign-

ment of θ by the agents. The set {F1(A), . . . , FK(A)} represents the beliefs of the

assignment of the probability of event A by the agents.

Definition 2.4.3. p1, . . . , pk represent the weights that agent j assigns to the opin-

ions of all other agents in the group.

Proposition 2.4.2. If ∑k
i=1 pi = 1, then ∑k

i=1 Pi · Fi denotes a probability distri-

bution over Ω, for which the probability of any measurable set A is ∑k
i=1 Pi · Fi(A).

In simple terms, if we have a stochastic weight distribution, we can calculate the

probability of event A by weight-averaging the values of the subjective probability

distribution. This collective assessment is often referred to as the opinion pool.
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The precision of this model faces a significant obstacle: its accuracy relies

heavily on the correct distribution of weights. the Degroot model should fix this

problem

Weighing the Opinion of others

To address this challenge in the DeGroot model, each agent will have their own

subjective distribution, where each agent assigns weights to the opinions of others

based on factors such as expertise, closeness, and personal preferences.

Definition 2.4.4. Pi,j denotes the weight that agent i assigns to the opinion dis-

tribution of agent j.

Definition 2.4.5. If for every i and j, Pi,j ≥ 0 and ∑k
i=1 Pi,j = 1, and the agent

knows the subjective distributions F1, . . . , Fk, then the agent will revise their own

distribution from {Fi} to

Fi1 =
k∑

j=1
Pi,j · Fj

Definition 2.4.6. Let P denote a K ×K stocastic matrix comprising the elements

Pi,j for i, j = 1, . . . , k.

Let us define

• Initial Distributions:

F′ = (F ′
1, F ′

2, . . . , F ′
k)

• Updated Distributions after the first iteration:

F′1 = (F ′1
1 , F ′1

2 , . . . , F ′1
k )

Hence

F′1 = P · F′
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Iteration: after the first iteration, we have moved from the set {F1, . . . , FK}

to the set {F 1
1 , . . . , F 1

K}. If we iterate the procedure again, we have

F 2
i =

k∑
j=1

Pi,j · F 1
j

and hence

F′2 = P · F′1 .

The general formula will be:

F′n = P · F′n−1
. (2.1)

It is assumed that the members of the group will continue to make these re-

visions until the revisions stop changing any member’s subjective distribution. In

other words,

F(n) = F(n−1) = . . . = F∗

2.4.3 Convergence to a Consensus

Definition 2.4.7. The opinion configuration converges to consensus if

lim
n→∞

Fin = F ∗ for all i = 1, . . . , k

Proposition 2.4.3. Following (2.1) and Proposition 1.5.2, a consensus can be

reached if and only if there exists a vector π = (π1, . . . , πk) such that

lim
n→∞

P n
ij = πi

Proposition 2.4.4. If Proposition 2.4.3 is satisfied for every i and j, then π =

(π1, . . . , πk) are necessary, non-negative, and ∑k
i=1 πi = 1. Thus, when consensus

is reached, the common subjective probability distribution of each of the k agents

will be
k∑

i=1
πi · Fi.
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2.4.4 Conditions for Convergence

Theorem 2.4.5. If there exists at least one positive integer n such that the n-th

column of the matrix P n consists of positive elements, then a consensus will be

reached. In simple words, if there is an agent that affects the opinion of everybody

in the group, consensus will be reached.

Theorem 2.4.6. If all the recurrent states (agents) of the Markov chain com-

municate with each other and are aperiodic, then a consensus will be reached. In

simple words, if there exists a direct or indirect connection between agents, and the

cycle of connection is not periodic, then consensus will be reached.

2.4.5 Calculation of the Consensus

Theorem 2.4.7. Suppose consensus is reached, and let ∑k
i=1 πi · Fi denote the

common subjective distribution. Then, π = (π1, . . . , πk) is the unique stationary

vector.

Example 2.4.3. Consider the transition matrix

P =

1
2

1
2

1
4

3
4



A B
1
2

1
4

1
2

3
4

There is a unique stationary distribution π =
(

1
3 , 2

3

)
. Therefore, by Theorem 2.4.7,

the consensus distribution of both agents will converge to 1
3 · F1 + 2

3 · F2.
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Example 2.4.4. Consider the transition matrix

P =



1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2



A B

C D

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

00 00

In this example, there is no global consensus distribution. However, the pairs of

agents have reached local consensus with the following local consensus distributions

1
2 · F1 + 1

2 · F2 and 1
2 · F3 + 1

2 · F4
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Chapter 3

Networks & Python

3.1 Network Elements

Definition 3.1.1. A network G consists of two main components:

• A set of N elements, called nodes or vertices.

• A set of pairs of nodes, called links or edges. The link (i, j) joins the nodes

i and j.

Definition 3.1.2. A network can be directed or undirected:

• A directed network, also called a digraph, has directed links where the

order of the nodes in a link reflects the direction.

• An undirected network has bi-directional links, and the order of the nodes

in a link does not matter.

Definition 3.1.3. A network can be weighted or unweighted:

• In a weighted network, links have associated weights. The weighted link

(i, j, w) represents a connection between nodes i and j with a weight w.
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• In an unweighted network, all links have equal weight, typically 1 or 0 for

the presence or absence of a link.

Example 3.1.1. The following is an example of an undirected and unweighted

network:

A B

C

D

The following is an example of an undirected and weighted network where thicker

lines have weight twice as much as the thinner ones:

A B

C

D

The following is an example of an directed and unweighted network: :

A B

C

D

The following is an example of an directed and weighted network where thicker

lines have weight twice as much as the thinner ones:

A B

C

D
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3.2 Handling Network in Python

3.2.1 Undirected Graph

Importing the relevant librarries

1 import matplotlib . pyplot as plt

2 import networkx as nx

This line tells Jupyter notebook to draw graphics inline

1 % matplotlib inline

Creating the graph

1 Graph = nx.Graph ()

Adding nodes

1 Graph = nx.Graph ()

2 Graph. add_node (’A’)

3 nodes_to_add =[’B’, ’C’, ’D’]

4 Graph. add_nodes_from ( nodes_to_add )

Adding Edges

1 Graph. add_edge (’A’,’B’)

2 edges_to_add = [(’a’, ’C’), (’B’, ’C’), (’C’, ’D’)]

3 Graph. add_edges_from ( edges_to_add )

Represent graphically

1 nx.draw(Graph , with_labels =True)

Save to PDF
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1 plt. savefig (’output_graph .pdf ’)

Additional ways to customize the graph (excluding the execution of this code

section).

1 nx.draw(Graph ,

2 with_labels =True ,

3 node_color =’blue ’,

4 node_size =1600 ,

5 font_color =’white ’,

6 font_size =16 ,)

A B

C

D

Fig. 3.1: Undirected Graph resulted by the code above

3.2.2 Graph Methods

Listing nodes

1 Graph.nodes ()

Listing edges

1 Graph.edges ()
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Iteration over edges

1 for edge in G.edges

iteration over nodes

1 for node in Graph.nodes:

Number of nodes

1 G. number_of_nodes ()

Number of edges

1 G. number_of_edges ()

Creating list of neighbors

1 neighbors_of_A = list(Graph. neighbors (’A’))

3.2.3 Node and Edge Existence

To check if a node is present in a graph

1 Graph. has_node (’A’)

2 or

3 ’D’ in G.nodes

To check if two nodes are connected by an edge:

1 Graph. has_edge (’A’, ’B’)

2 or

3 (’C’, ’D’) in Graph.edges
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3.2.4 Predecessor,Successors and neighbors

Definition 3.2.1. We define

• Predecessor: If there is a directed edge (i, j), then i is a predecessor of

j.

• Successors: If there is a directed edge (i, j), then j is a successor of i.

• Neighbors: If there is an edge (i, j), then j is a neighbor of i and i

is a neighbor of j.

To check number of predecessor of a node

1 Graph. predecessors

To check number of successors of a node

1 Graph. successors

To check number of neighbors of a node

1 Graph. neighbors

3.2.5 Networks Structures

To draw a bipartite graph

1 graph = nx. complete_bipartite_graph (2 ,3)
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To draw a cycle graph

1 graph = nx. cycle_graph (3)

To draw a path graph

1 graph = nx. cycle_graph (5)

3.3 Density and Sparsity

Definition 3.3.1. The maximum number of links in an undirected network with

N nodes is the number of distinct pairs of nodes, which can be expressed as

Lmax =
(

N

2

)
= N(N − 1)

2 .

Every node can be connected to N − 1 other nodes, but we have to divide by two

because a link from node A to node B is considered the same as a link from node

B to node A.

Definition 3.3.2. We define

• the density of a network with N nodes and L links is given by:

d = L

Lmax
;
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• density in an undirected network

d = 2L

N(N − 1) ;

• density in a directed network

d = L

N(N − 1) .

Definition 3.3.3. Let us define the following structure of networks:

• a complete network is a network that has d = 1.

• a sparse network is a network that has d smaller than 1.

• in the case of a large network with an increasing number of nodes:

– If the number of links is growing proportionally to the number of added

nodes, the network is considered sparse.

– If the number of links is growing at a rate faster than linear with respect

to the number of added nodes, the network is considered dense.

To check density of the network

1 nx. density (Graph)

3.4 Subnetwork

Creating a complete graph with 10 Nodes.

1 k10 = nx. complete_graph (10)

Creating A Subnetwrok that includes Nodes 0,2,4,8 from the 10 graph.

1 sub_network_of_k10 = K10. subgraph ([0, 2, 4, 8])
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0

1

2

3
4

5

6

7

8

9

Fig. 3.2: k10 graph resulted by the code above.

0

8

2

4

Subgraph of K10

Fig. 3.3: The subgraph of k10 resulted by the code above.

3.5 Degree

To check the Degree of a node (Number of neighbors).

1 len(list(Graph. neighbors (’A’)))

2 or

3 Graph. degree (’A’)

To check the number of successors.

1 Graph. out_degree
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To check the number of predecessors.

1 Graph.in. degree

3.6 Wieght

Definition 3.6.1. We define

• the weight wij of an edge from node i to node j represents the strength of the

connection between them.

• the weighted degree of a node i in an undirected graph is given by:

si =
∑

j

wij

• the weighted in-degree of a node i in a directed graph is given by:

sin
i =

∑
j

wji

• The weighted out-degree of a node i in a directed graph is given by:

sout
i =

∑
j

wij

3.7 The Erdos-Renyi mode

Definition 3.7.1. The Erdos-Renyi model, denoted as G(n, p), is a classic model

for generating random graphs. In this model, a graph is constructed by connecting

n labeled nodes randomly. Each possible edge between two nodes is included in

the graph with probability p, independently of every other edge. Formally, the

probability of generating a specific graph with n nodes and M edges is given by:

pM(1 − p)(
n
2)−M
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In simpler terms, the algorithm for generating a graph using the G(n, p) model

iterates over every possible edge between nodes (
(

n
2

)
possible edges). For each edge,

it is created with probability p. As p varies from 0 to 1, the model transitions from

graphs with very few edges to graphs with many edges. When p = 1
2 , every graph

on n vertices is equally likely, and the total number of possible graphs is 2(n
2).

Here is an example of how to use this function in Python:

1 G = nx. erdos_renyi_graph (n, p, seed=None , directed =False)

• n - Number of nodes in the graph.

• p - Probability of edge creation.

• seed - Seed for the random number generator to ensure reproducibility.

• directed - A boolean parameter that specifies whether the graph is directed

(True) or undirected (False).

3.8 Analysis of the DeGroot Model Behavior Netweok

Approach

The goal of this experiment is to investigate how the number of random pre-

decessors affects the likelihood of reaching consensus in a directed graph.

1. We begin by constructing a directed graph with X nodes, where X is an

integer ranging from 10 to 100, with increments of 10.

2. For each graph, we perform Y iterations, where Y is an integer ranging from

1 to X − 1, with increments of 1. Here, Y represents the number of random

predecessors allocated to each node.
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3. The consensus of the network is evaluated using the second DeGroot’s the-

orem (i.e. Theorem 2.4.6). The theorem assesses whether the network can

reach consensus under the given configuration of random predecessors.

4. Each allocation of Y predecessors is repeated 30 times to ensure the results

are statistically significant and to normalize the data. Instead of a binary

outcome, we calculate the probability of reaching consensus.

5. Once the number of links per node reaches the total number of nodes minus

one, the aggregated data is used to create a bar plot graph. This visualization

depicts the probability of consensus as a function of the number of random

predecessors.

6. Because we have ten graphs, we will have ten bar plots. The results from the

bar plots will help determine how varying the number of random predecessors

influences the likelihood of the network achieving consensus.
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Create Directed Graph with X Nodes

Create Y Edges

Applying the Second Theorem of Degroot

Calculate the normalized probability

Prepare Data for Plot

Plotting

X represents numbers from

10 to 100 with jumps of 10

Y represents the range of

numbers between 1 and X

Repeated 30 times

Repeating for the range from 0 to Y

Repeating the whole process 10 times

We are starting with importing the relevant libraries

1 import matplotlib . pyplot as plt

2 from matplotlib . backends . backend_pdf import PdfPages

3 import networkx as nx

4 import random

Initialize global counters

1 number_of_consensus = 0
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2 number_of_recurrent_and_not_aperiodic = 0

3 number_of_non_recurrent_and_not_aperiodic = 0

4 number_of_non_recurrent_and_aperiodic = 0

This function takes an argument a number and returns a directed graph with the

corresponding number of nodes.

1 def creating_directed_graph ( number_of_nodes ):

2 G = nx. DiGraph ()

3 nodes_to_add = range( number_of_nodes )

4 G. add_nodes_from ( nodes_to_add )

5 return G

This function takes a graph and a number as arguments and returns a directed

graph with each node having the corresponding number of random predecessors.

1 def assigning_edges (G, number_of_edges_per_node ):

2 for node in G.nodes:

3 possible_targets = [ target for target in G.nodes if

target != node]

4 targets = random . sample ( possible_targets ,

number_of_edges_per_node )

5 for target in targets :

6 G. add_edge (target , node)

This function checks if the graph can reach consensus, and if not, it determines

the reason.

1 def second_Degroot_theorem (G):

2 global number_of_consensus ,

number_of_recurrent_and_not_aperiodic ,

number_of_non_recurrent_and_not_aperiodic ,

number_of_non_recurrent_and_aperiodic
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3 if nx. is_strongly_connected (G) and nx. is_aperiodic (G):

4 number_of_consensus += 1

5 elif nx. is_strongly_connected (G) and not nx. is_aperiodic

(G):

6 number_of_recurrent_and_not_aperiodic += 1

7 elif not nx. is_strongly_connected (G) and not nx.

is_aperiodic (G):

8 number_of_non_recurrent_and_not_aperiodic += 1

9 elif not nx. is_strongly_connected (G) and nx. is_aperiodic

(G):

10 number_of_non_recurrent_and_aperiodic += 1

This function is the core of the code. For every possible number of random prede-

cessors for each node, the function calculates the probability of reaching consensus

and aggregates all the results into a list ready for plotting.

1 def experiment ( number_of_nodes , trials =30):

2 global number_of_consensus ,

number_of_recurrent_and_not_aperiodic ,

number_of_non_recurrent_and_not_aperiodic ,

number_of_non_recurrent_and_aperiodic

3 list_of_probability_distribution = []

4 for n in range (1, number_of_nodes ):

5 number_of_consensus = 0

6 number_of_recurrent_and_not_aperiodic = 0

7 number_of_non_recurrent_and_not_aperiodic = 0

8 number_of_non_recurrent_and_aperiodic = 0

9 for _ in range( trials ):

10 G = creating_directed_graph ( number_of_nodes )

11 assigning_edges (G, n)
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12 second_Degroot_theorem (G)

13 probability_consensus = number_of_consensus / trials

14 probability_non_recurrent_and_not_aperiodic =

number_of_non_recurrent_and_not_aperiodic /

trials

15 probability_recurrent_and_not_aperiodic =

number_of_recurrent_and_not_aperiodic / trials

16 probability_non_recurrent_and_aperiodic =

number_of_non_recurrent_and_aperiodic / trials

17 list_of_probability_distribution . append ((

probability_consensus ,

probability_non_recurrent_and_not_aperiodic ,

probability_recurrent_and_not_aperiodic ,

probability_non_recurrent_and_aperiodic ))

18 return list_of_probability_distribution

In this function, we plot the graph. Notice that we are using the ax.set method

and not the regular plt method. ax represents the coordinates of the specific plot.

We are planning to have 10 plots, so each plot needs to have its own index.

1 def plot_results (ax , list_of_probability_distribution ,

number_of_nodes ):

2 n_values = range(len( list_of_probability_distribution ))

3 probability_consensus_values = [ result [0] for result in

list_of_probability_distribution ]

4 probability_non_recurrent_and_not_aperiodic_values = [

result [1] for result in

list_of_probability_distribution ]

5 probability_recurrent_and_not_aperiodic_values = [ result

[2] for result in list_of_probability_distribution ]

54



6 probability_non_recurrent_and_aperiodic_values = [ result

[3] for result in list_of_probability_distribution ]

7 bar_width = 0.4

8 ax.bar(n_values , probability_consensus_values , color=’

blue ’, width=bar_width , edgecolor =’blue ’, label=’

Probability of Consensus ’)

9 ax.bar(n_values ,

probability_non_recurrent_and_not_aperiodic_values ,

color=’red ’, width=bar_width , edgecolor =’red ’, label=

’Probability of Non - Consensus and Not Aperiodic ’,

bottom = probability_consensus_values )

10 ax.bar(n_values ,

probability_recurrent_and_not_aperiodic_values , color

=’green ’, width=bar_width , edgecolor =’green ’, label=’

Probability of Recurrent and Not Aperiodic ’, bottom =[

i+j for i,j in zip( probability_consensus_values ,

probability_non_recurrent_and_not_aperiodic_values )])

11 ax.bar(n_values ,

probability_non_recurrent_and_aperiodic_values , color

=’orange ’, width=bar_width , edgecolor =’orange ’, label

=’Probability of Non - Recurrent and Aperiodic ’, bottom

=[i+j+k for i,j,k in zip( probability_consensus_values

, probability_non_recurrent_and_not_aperiodic_values ,

probability_recurrent_and_not_aperiodic_values )])

12 ax. set_xlabel (’Number of Edges per Node (n)’, fontsize

=10)

13 ax. set_ylabel (’Probability ’, fontsize =10)

14 ax. set_title (f’Nodes: { number_of_nodes }’, fontsize =12)

15 ax. legend ( fontsize =8)
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16 ax. tick_params (axis=’both ’, which=’major ’, labelsize =8)

17 ax.grid(False)

This function creates a 2x5 grid of plots. It runs everything described before

10 times, creating 10 directed graphs with X number of nodes, where X ranges

from 10 to 100 in increments of 10. Thus, it creates 10 corresponding bar plots.

Eventually, the program saves the grid as a PDF.

1 with PdfPages (’consensus_plots2 .pdf ’) as pdf:

2 fig , axes = plt. subplots (2, 5, figsize =(20 , 10))

3

4 for idx , number_of_nodes in enumerate (range (10, 101, 10)

):

5 ax = axes[idx // 5, idx % 5]

6 probability_distribution = experiment (

number_of_nodes )

7 plot_results (ax , probability_distribution ,

number_of_nodes )

8 plt. tight_layout ()

9 pdf. savefig (fig)

10 plt.show ()

11 plt.close(fig)
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def creating_directed_graph(X):

assigning_edges(G, Y):

second_Degroot_theorem(G):

experiment():

return list_of_probability_distribution

plot_results():

for _ in range(trials)

for n in range(number_of_nodes):

fig, axes = plt.subplots(2, 5))

Code output:

• Blue: Probability of reaching consensus.

• Yellow: Probability of not reaching consensus because the system is not

recurrent but aperiodic.

• Red: Probability of not reaching consensus because the network is neither

recurrent nor aperiodic.
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The plots are indexed as follows:1 2 3 4 5

6 7 8 9 10


The y-axis represents the probability, while the x-axis represents the number of

random predecessors per node.
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Fig. 3.4: A graph resulting from the code above.
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Chapter 4

Analysis of the dynamic DeGroot

Model Behavior in Erdos-Renyi

Graphs

4.1 Introduction

This chapter aims to analyze the behavior of the module in a simulated envi-

ronment and to verify if the resulting outcomes correspond to the expected values

as determined by theoretical mathematics. The analysis will be organized into

four sections:

1. Environment Creation: An explanation of the code used to create the

simulation environment.

2. Experiment Setups: Detailed descriptions of five experimental setups us-

ing flexible code from section 1.

3. Results: Presentation of the outcomes of each experiment, plotted in four

graphs.
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4. Discussion: A brief discussion of the results obtained from the experiments.

4.2 Environment Creation

• networkx is a library for creating and manipulating complex networks.

• quantecon is a library that has specialized methods to deal with Markov

chains and other economic models.

• numpy is a library for linear algebra operations and other numerical compu-

tations.

• random is a module that has methods related to random processes.

• matplotlib is a library to plot data.

• matplotlib.backends.backend_pdf helps save the plot of subplots as one

file.

1 import networkx as nx

2 import quantecon as qe

3 import numpy as np

4 import random

5 import matplotlib . pyplot as plt

6 from matplotlib . backends . backend_pdf import PdfPages

This function takes as arguments:

• n - number of nodes in the graph

• y - number of links per node, including the self loop

• w - weight. Each node will have a weight of w for the self loop, and all the

successors will have (1 − w)/number of successors
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The function returns t - the transition matrix of the graph by:

• creating an n x n matrix

• every row represents the weight distribution of each node, so for each row,

the function will assign a self loop with weight w

• for each node, the function will select y-1 random other nodes excluding

itself and assign (1 − w)/number of successors to each successor

1 def create_directed_graph_random_successors (n, y, w):

2 if not isinstance (n, int) or n <= 0:

3 raise ValueError ("The size parameter must be a

positive integer .")

4 t = np.zeros ((n, n))

5 for i in range(n):

6 t[i, i] = w

7 if y - 1 > n - 1:

8 raise ValueError (" Number of successors must be

less than number of nodes.")

9 succ_weigh = (1 - w) / (y - 1)

10 random_indices = [j for j in range(n) if j != i]

11 selected_indices = np. random . choice ( random_indices ,

size=y - 1, replace =False)

12 for j in selected_indices :

13 t[i, j] = succ_weigh

14 if t.shape [0] != t.shape [1]:

15 raise ValueError (f" Matrix is not square : shape = {t.

shape}")

16 return t
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• t - number of nodes in the graph

• p2 - edge rearrangement probability, the probability that every possible node

has to eliminate a link, excluding the self-loop

The function returns t, the transition matrix by:

• excluding nodes that have only self-loop, The function will iterate over each

node

• with probability p2 a node will eliminate a link and will create a new link

with another node with the same weight to retain the stochastic properties

of the matrix

The function takes the following arguments:

• n - Number of nodes in the graph.

• p1 - Probability of edge creation in the Erdos-Renyi model.

• w - Weight for the self-loop. Each node will have a weight of w for the

self-loop, and the remaining weight will be distributed equally among the

outgoing links (excluding the self-loop).

The function returns t - the transition matrix of the graph by:

• Creating an n x n matrix.

• Ensuring that every node has a self-loop with weight w. If a self-loop does

not exist initially, it will be added.

• Distributing the remaining weight (1 − w) equally among the outgoing links

for each node (excluding the self-loop).
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1 def creating_directed_weighted_erdos_renyi_graph (n, p1 , w):

2 G = nx. erdos_renyi_graph (n, p1 , seed=None , directed =True

)

3 for node in G.nodes ():

4 if not G. has_edge (node , node):

5 G. add_edge (node , node)

6 t = nx. to_numpy_array (G)

7 for i in range(len(t)):

8 c1 =np.sum(t[i] == 1)

9 if c1 == 1:

10 continue

11 t[i][i]= w

12 for j in range(len(t)):

13 if i !=j and t[i][j] != 0:

14 t[i][j]= (1-w)/(c1 -1)

15 return t

This function takes as arguments:

• t - Transition matrix, which must be a 2D square matrix.

• p2 - Edge rearrangement probability, the probability that every possible node

has to eliminate a link, excluding the self-loop.

This function returns the updated transition matrix t by:

• Iterating over each node. With probability p2, it eliminates one of the succes-

sors and creates a link with a new successor, maintaining the same assigned

weight to preserve the stochastic properties of the matrix.
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1 def rearrange_edges (t, p2):

2 rows , cols = t.shape

3 for i in range(rows):

4 if t[i, i] == 1:

5 continue

6 if np. random .rand () >= p2:

7 continue

8 row = t[i, :]

9 non_empty = np. nonzero (row)[0]

10 empty = np.where(row == 0) [0]

11 if len( non_empty ) == 0 or len(empty) == 0 or len(

non_empty ) == 1:

12 continue

13 random_non_empty = np. random . choice ( non_empty )

14 random_empty = np. random . choice (empty)

15 if random_non_empty == i:

16 continue

17 t[i, random_empty ] = t[i, random_non_empty ]

18 t[i, random_non_empty ] = 0

19

20 return t

This function takes as arguments:

• n - the number of agents (or nodes) in the graph.

The function returns o ,opinion vector by:

• Generates random values uniformly distributed between 0.01 and 0.99.

• Returns an array of size n, where each element is a random value within the
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specified range.

1 def generate_random_vector (n):

2 if not isinstance (n, int) or n <= 0:

3 raise ValueError ("The size parameter must be a

positive integer .")

4 random_values = np. random . uniform (0.01 , 0.99 , n)

5 rounded_values = np.round( random_values , 3)

6 return rounded_values

This function takes as arguments:

• t - Transition matrix, which must be a 2D square matrix.

• o - Opinion vector, which must be a 1D array of length equal to the number

of rows (or columns) in t.

The function returns result - The converged consensus by:

• Matrix Validation: Ensure that t is a 2D square matrix.

• Stationary Distribution Calculation: Utilize a specialized Markov chain

library to compute the stationary distribution of the transition matrix. This

distribution is the eigenvector corresponding to the eigenvalue 1.

• Converged Consensus Calculation: Compute the converged consensus

by performing a weighted sum. Multiply the transition matrix by the opinion

vector. Ensure that the matrix and vector dimensions are compatible and

that the order of operations is correctly maintained.

1 def converged_consensus (t, o):

2 if not ( isinstance (t, np. ndarray ) and len(t.shape) == 2

and t.shape [0] == t.shape [1]):
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3 raise ValueError (f" Transition matrix is not square :

shape = {t.shape}")

4 mc = qe. MarkovChain (t)

5 st = mc. stationary_distributions

6 first_st = st [0]

7 if len( first_st ) != len(o):

8 raise ValueError (" Dimension mismatch between

stationary distribution and opinion vector .")

9 result = np.dot(first_st , o)

10 return result

This function checks if the transition matrix satisfies the second DeGroot the-

orem by verifying if the matrix is aperiodic and irreducible. In simple terms, it

checks:

• Whether there exists a path of finite length p between every pair of states, en-

suring that every state can be reached from every other state. This confirms

the irreducibility of the matrix.

• Whether the Markov chain does not have a fixed cycle length for returning to

the same state, which means it is aperiodic. This ensures that the number

of steps required to return to a given state does not follow a predictable

pattern.

By verifying these conditions, the function ensures that the transition matrix rep-

resents a Markov chain where the long-term behavior converges to a unique steady-

state distribution, as guaranteed by the second DeGroot theorem.

1 def degroot_theorem (t):

2

3 mc = qe. MarkovChain (t)
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4 is_irreducible = mc. is_irreducible

5 is_aperiodic = mc. is_aperiodic

6 return is_irreducible and is_aperiodic

This function takes as arguments:

• t - Transition matrix, which must be a 2D square matrix.

• o - Opinion vector, which must be a 1D array of length equal to the number

of rows (or columns) in t.

• p2 - Edge rearrangement probability, the probability that every possible node

has to eliminate a link, excluding the self-loop.

The function returns the following counted data:

• c - Number of iterations it takes to reach a consensus.

• dc/c - the ratio of iteration with states that satisfied the second Degroot

theorem to the total number of iterations

• dco - The difference between the theoretical converged opinion and the av-

erage value in the opinion vector at the time of final iteration.

• dmm - The difference between the highest value and the lowest value in the

opinion vector.

• Start a loop until the system converges to consensus. In this system, consen-

sus is considered a state in which the absolute difference between the highest

value and the lowest value in the opinion vector does not exceed 0.1. This

value can be adjusted to obtain more precise results.
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• The function returns c, dc/c, dco, and dmm. The function returns dc/c to

provide a probability value rather than a count, making the analysis more

feasible.

1 def counter (t,o,p2):

2 c =0

3 dc =0

4 dco =0

5 dmm = 0

6 (c_s) = converged_consensus (t,o)

7 while abs(np.max(o) - np.min(o)) >0.1:

8 if c >= 100:

9 mean_o = np.mean(o)

10 dmm = abs(np.max(o) - np.min(o))

11 print(np.max(o) ,np.min(o))

12 dco =abs(mean_o -c_s)

13 return np.nan , dc/c, dco ,dmm

14 rearrange_edges (t, p2)

15 o = np.dot(t,o)

16 if degroot_theorem (t):

17 dc += 1

18 c += 1

19 dmm = abs(np.max(o) - np.min(o))

20 mean_o = np.mean(o)

21 dco =abs(mean_o -c_s)

22 return c, dc/c, dco , dmm

This function takes the next arguments

• n - Number of nodes in the graph.
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• w - Weight for the self-loop. Each node will have a weight of w for the

self-loop.

• p2 - Edge rearrangement probability. This is the probability that any possible

node will eliminate a link, excluding the self-loop.

• p1 - Probability of edge creation in the Erdos-Renyi model.

• y - Number of links per node, including the self-loop.

• variable - A variable that can be any of the aforementioned variables (n, w,

p2, p1, or y). When one of these variables is chosen, it is transformed into a

list of numbers that will be iterated over. The function conducts experiments

using this changing variable while keeping all other variables static.

The function returns the following lists of data. The length of each list varies

depending on the number of elements in the list produced by the changing variable:

• l2 - Each element in this list represents the average number of iterations

needed to reach consensus for each value of the changing variable.

• ld2 - Each element in this list represents the average probability of being in

the second DeGroot state during the iterations of the counter for each value

of the changing variable.

• ldco2 - Each element in this list represents the average difference between

the theoretical converged opinion and the average value in the opinion vector

at the time of the final iteration for each value of the changing variable.

• ldmm2 - Each element in this list represents the average difference between

the highest and lowest values in the opinion vector for each value of the

changing variable.

69



• l1 - Each element in this list represents the number of iterations needed to

reach consensus for one value of the changing variable.

• ld1 - Each element in this list represents the probabilities of being in the

second DeGroot state during the iterations for one value of the changing

variable.

• ldco1 - Each element in this list represents the differences between the the-

oretical converged opinion and the average value in the opinion vector at the

time of the final iteration for one value of the changing variable.

• ldmm1 - Each element in this list represents the differences between the high-

est and lowest values in the opinion vector for one value of the changing

variable.

• For each element in the changing variable list, the function runs the counter

30 times to normalize the data.

• Results from each run of the counter are stored in the lists ending with 1.

• After the normalization process, the lists ending with 1 are averaged, and

the resulting averages are stored in the lists ending with 2. Each average

corresponds to the index of the current changing variable.

This function is highly versatile and can be customized for different graph creation

methods. Depending on the desired graph type, you can choose the appropriate

graph creator function and delete the other. Below are two example graph creator

functions, demonstrating how to select and use one of them.

1 def lists_Creator (n, w, p2 ,p1 , y, variable ):

2 l2 = []

3 ld2 = []
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4 lco2 = []

5 ldmm2 = []

6 if variable == "n":

7 variable_list = list(range (10, 101, 1)) # Integers

8 elif variable == "w":

9 variable_list = np. arange (0.1 , 0.91 , 0.1). tolist ()

# Floating -point

10 elif variable == "p1":

11 variable_list = np. arange (0.01 , 1.01 , 0.01). tolist ()

# Floating -point

12 elif variable == "p2":

13 variable_list = np. arange (0.01 , 1.01 , 0.01). tolist ()

# Floating -point

14 elif variable == "y":

15 variable_list = list(range (2,n)) # Integers

16 else:

17 raise ValueError (" Invalid variable name")

18 print(f" Processing variable : { variable }")

19 print(f" Variable list: { variable_list }")

20 for idx , element in enumerate ( variable_list ):

21 print("ok")

22 if variable == "n":

23 n = element

24 elif variable == "w":

25 w = element

26 elif variable == "p2":

27 p2 = element

28 elif variable == "y":

29 y = element
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30 o = generate_random_vector (n)

31 l1 = []

32 ld1 = []

33 lco1 = []

34 ldmm1 = []

35 for _ in range (30):

36 #t = create_directed_graph_random_successors (n,

y, w)

37 #t = create_directed_graph_random_successors (n,

y, w)

38 if degroot_theorem (t):

39 c, p, dco , dmm = counter (t, o, p2)

40 l1. append (c)

41 ld1. append (p)

42 lco1. append (dco)

43 ldmm1. append (dmm)

44 average_iteration = np. nanmean (l1)

45 average_probability_of_degroot_state = np. nanmean (

ld1)

46 average_difference_average_opinion_and_converged =

np. nanmean (lco1)

47 average_difference_average_max_min_opinion = np.

nanmean (ldmm1)

48 l2. append ( average_iteration )

49 ld2. append ( average_probability_of_degroot_state )

50 lco2. append (

average_difference_average_opinion_and_converged )

51 ldmm2. append (

average_difference_average_max_min_opinion )

72



52 return l2 , ld2 , lco2 , ldmm2

This function plots and saves the plots as pdf

1 def plot_results (l2 , ld2 , lco2 , ldmm2 , variable , filename =’

plots.pdf ’):

2

3 titles = [’Average Iteration (l2)’, ’Average Probability

of Degroot State (ld2)’,

4 ’Average Difference Between Average Opinion

and Converged State (lco2)’,

5 ’Average Difference Between Max and Min

Opinion (ldmm2)’]

6

7 data = [l2 , ld2 , lco2 , ldmm2]

8

9 fig , axs = plt. subplots (2, 2, figsize =(14 , 10))

10 axs = axs. flatten ()

11

12 for ax , dat , title in zip(axs , data , titles ):

13 x = np. arange (len(dat))

14 bar_width = 0.4

15 ax.bar(x - bar_width /2, dat , color=’purple ’,

edgecolor =’none ’, width=bar_width , align=’center ’

)

16

17 ax. set_title (title)

18 ax. set_xlabel ( variable )

19 ax. set_ylabel (’Value ’)

20
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21 interval = max (1, len(dat) // 10)

22

23 ax. set_xticks (x[:: interval ])

24 ax. set_xticklabels ([ str(i) for i in x[:: interval ]],

rotation =45)

25 plt. tight_layout ()

26

27 plt. savefig (filename , format =’pdf ’)

28

29 plt.show ()

4.3 DeGroot Model in Costume Random Graph

Markov chains approach

4.3.1 Experiment 1-Nodes per link

1 n = 100

2 w = 0.5

3 p1 = 1

4 p2 = 0.1

5 y = 0

6 variable = ’y’

7 l2 , ld2 , lco2 , ldmm2 = lists_Creator (n, w, p2 , p1 , y,

variable )

8 plot_results (l2 , ld2 , lco2 , ldmm2 , variable , ’plots1 .pdf ’)
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4.4 DeGroot Model in Costume Erdos-Renyi Graph

Markov chains approach

4.4.1 Experiment 2 -Number of Nodes

1 n = 0

2 w = 0.9

3 p1 = 0.07

4 p2 = 0.11

5 y = 9

6 variable = ’n’

7 l2 , ld2 , lco2 , ldmm2 = lists_Creator (n, w, p2 , p1 , y,

variable )

8 plot_results (l2 , ld2 , lco2 , ldmm2 , variable , ’plots.pdf ’)

4.4.2 Experiment 3 -Weight distribution

1 n = 100

2 w = 0

3 p1 = 0.1

4 p2 = 0.11

5 y = 9

6 variable = ’w’

7 l2 , ld2 , lco2 , ldmm2 = lists_Creator (n, w, p2 , p1 , y,

variable )

8 plot_results (l2 , ld2 , lco2 , ldmm2 , variable , ’plots.pdf ’)
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4.4.3 Experiment 4 -Edge probability

1 n = 100

2 w = 0.9

3 p1 = 0

4 p2 = 0.11

5 y = 9

6 variable = ’p1’

7 l2 , ld2 , lco2 , ldmm2 = lists_Creator (n, w, p2 , p1 , y,

variable )

8 plot_results (l2 , ld2 , lco2 , ldmm2 , variable , ’plots.pdf ’))

4.4.4 Experiment 5- Edge Rearrangement Probability

1 n = 100

2 w = 0.9

3 p1 = 0.07

4 p2 = 0

5 y = 9

6 variable = ’p2’

7 l2 , ld2 , lco2 , ldmm2 = lists_Creator (n, w, p2 , p1 , y,

variable )

8 plot_results (l2 , ld2 , lco2 , ldmm2 , variable , ’plots.pdf ’)
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Fig. 4.1: A graph resulting from Experiment 1.

4.5 Experiment Results

4.6 Results Analysis

4.6.1 Experiment 1

Even though the experiment was constricted by the counter function, so the

system didn’t reach true consensus, we observe that even with a distance of around

0.1 between the extreme views, the average opinion is almost identical to the
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Fig. 4.2: A graph resulting from Experiment 2.

theoretical value.

Regarding the iteration, the system operates in a threshold dynamic. Up until

a density of 20 percent, there is an improvement. However, beyond this threshold,

additional links do not make the system reach consensus faster.

4.6.2 Experiment 2

In this experiment, we discovered that when the p1 edge probability is fixed,

there is a threshold of minimum edges required for the system to reach consensus.
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Fig. 4.3: A graph resulting from Experiment 3.

4.6.3 Experiment 3

In this experiment, we concluded that there is an exponential correlation be-

tween the weight of the self-loop and the number of iterations needed to reach

consensus.

4.6.4 Experiment 4

In this experiment, we discovered that an edge probability of 3 percent is

sufficient to reach a consensus. We also observed a decrease in the number of

79



0 9 18 27 36 45 54 63 72 81 90
p1

0

10

20

30

40

Va
lu

e

Average Iteration (l2)

0 9 18 27 36 45 54 63 72 81 90
p1

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Average Probability of Degroot State (ld2)

0 9 18 27 36 45 54 63 72 81 90
p1

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Va
lu

e

Average Difference Between Average Opinion and Converged State (lco2)

0 9 18 27 36 45 54 63 72 81 90
p1

0.00

0.02

0.04

0.06

0.08

0.10

Va
lu

e

Average Difference Between Max and Min Opinion (ldmm2)

Fig. 4.4: A graph resulting from Experiment 4.

iterations needed until the edge probability reaches 18 percent, after which any

additional edges do not further decrease the iterations needed to reach consensus.

4.6.5 Experiment 5

In this experiment, we concluded that the more nodes change neighbors, the

less time is needed to reach consensus. In my opinion, this occurs because it

eliminates the possibility of creating weakly connected sub-networks, which can

develop significantly different views.
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Fig. 4.5: A graph resulting from Experiment 5.
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Conclusion

Throughout this thesis, I have analyzed the fundamental concepts and ap-

plications necessary to understand and implement the DeGroot opinion model

within dynamic random graphs. The thesis began with an in-depth examination of

Markov chains as the mathematical foundation for modeling stochastic processes.

Then it explores opinion models, focusing on the DeGroot model to understand

how opinions spread and reach consensus. Using Python and the NetworkX li-

brary, I simulated network structures and conducted over 100,000 computational

experiments, which resulted with some interesting insights.

On a macro level, I was fascinated by the precision of theoretical mathematical

methods compared to the results obtained from simulations. On a micro level, the

exploration of how to move towards finding common ground has several implica-

tions for policy suggestions.

The results demonstrate that the more we listen to others, the easier it becomes

to reach a common ground, even though consensus has not always been achieved.

Additionally, simulations showed that exposure to individuals outside of one’s echo

chamber increases the likelihood of reaching common ground for the entire society.

Mathematically speaking, if each person establishes at least one meaningful

connection outside their echo chamber, the society as a whole can stabilize its

political climate.
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