Contents
1 Introduction

2 Lory: System Design and Workflow
2.1 Wake Word Detection and Listening State
2.1.1 Wake Word Detection using Picovoice Porcupine
2.1.2 Listening State and Audio Processing
2.1.3 Audio Feedback and User Experience
2.2 Command Processing
2.2.1 Processing the User’s Command and Response Handling .
2.2.2 Stripping the Response for Further Classification
2.2.3 Command Extraction and Error Handling
2.3 Classification and Intent Recognition
2.3.1 Implementation L.
2.3.2 Data Visualization and Preprocessing
2.3.3 Model Preparation and Training
2.3.4 Intent Prediction L.
2.3.5 Command Execution Process

3 Results and Execution
3.1 Intent Recognition and Slot Extraction
3.2 Command Execution: The Role of the controller() Function . . .
3.2.1 Executing the Command
3.3 Video Demonstration Overview

4 Future Enhancements and Conclusion
4.1 Wrapping Up the Watch App
4.2 Future Improvements Lo
4.3 Conclusion

N

© © © 00001~ Ut Ut ix

Theses Report: LORY

Nadeer Salem

September 2024

1 Introduction

The rapid development of artificial intelligence (AI) in recent years has opened
up new possibilities in how humans interact with technology. Virtual assistants,
in particular, have become an integral part of many people’s daily lives, with
products like Siri, Alexa, and Google Assistant leading the charge. However,
these systems often have limitations, particularly in their ability to interact with
physical objects or perform more complex, integrated tasks across devices.

The goal of this project is to introduce Lory—an Al assistant built using
the GPT API—aims to go beyond those limitations. The initial idea for Lory
came from the creation of a simple, hard-coded chatbot, one that could provide
fixed responses to specific questions. This type of chatbot would be perfect
for businesses or restaurants looking to automate frequently asked questions
(FAQs), providing quick, accurate responses to customers. However, as the
project evolved, I saw an opportunity to take it further and create a more
dynamic assistant that could do more than just answer questions.

Lory was designed to be a hands-free voice assistant, responding to the wake
word ”Hey Lory.” Once activated, Lory listens for a voice prompt, processes the
input, and delivers vocal responses, allowing for seamless, hands-free interac-
tions. This functionality makes Lory a highly practical tool for everyday tasks,
particularly when multitasking or working in environments where physical in-
teraction with devices may be difficult.

When ChatGPT initially launched, it was primarily a tool for chat com-
pletion, excelling at generating text responses but confined to a purely virtual
environment. At that point, I envisioned creating an Al that could do more
than just respond—it should interact with my computer and control various
applications. As an indie developer, it took me some time to build these fea-
tures, and by the time I did, larger companies had begun releasing similar Al
capabilities.

Rather than feeling discouraged, I decided to push the boundaries further
and develop Lory into an assistant capable of interacting not just with software
but also with the physical world. By adding features like robot arm integra-
tion, I am ensuring that Lory can bridge the gap between virtual intelligence
and real-world functionality—something that, while being prototyped by other
companies, still holds vast untapped potential for innovation.

At this stage, the project is primarily for personal use, and I do not yet intend
to release it to the public. The focus remains on refining Lory’s capabilities to
fit my own needs before considering a broader implementation. However, the
potential for expansion is vast, and future iterations may eventually lead to a
public version.

Developing Lory has not been without its challenges. As an indie developer, 1
faced several technical hurdles, particularly when it came to integrating AT with
physical devices and computer systems. Debugging the various components,
ensuring reliable interactions, and creating a seamless user experience were all
learning experiences that shaped the project. These challenges, while difficult,
provided a deep understanding of both AI development and practical robotics,
which are critical to Lory’s functionality.

The development of Lory progressed from a basic FAQ bot to a more compre-
hensive personal assistant. Now, Lory not only handles communication but also
interacts with my computer, opening applications and managing my workspace.
One of Lory’s key features is the ability to organize tasks through a customized
To-Do list that is divided into three sections: 'To-Do,” "To-Fix,” and 'Done’ (be-
cause let’s be honest, I tend to break things!). In addition to this, Lory can send
emails, write notes, search the web, and perform various other administrative
tasks that help keep my day running smoothly.

Currently, I am working on expanding Lory’s capabilities to further enhance
its functionality. One of the key advancements includes a smartwatch app that
allows me to prepare my office with a single click. By the time I walk into the
room, my computer will be up and running, my task lists will be displayed, and
T’ll have a brief overview of the day’s news waiting for me. Additionally, I am
developing a robot arm integration, which will enable Lory to interact with the
physical world more tangibly. This expansion will open the door for further
automation, allowing Lory to assist with tasks that require physical action,
bringing my vision of a truly interactive Al assistant even closer to reality.

2 Lory: System Design and Workflow

|

|

StartLory NI S S— Keyword detection BERSN
a7 | A ‘\\

i
i
i
aaaaaaaaaaaaa
i
i

A N\,
\ \
N N\ \\\ i
i \ \ ERROR s Give Feedback to the user
| \ \
\ \
\ \
Send to Lory (GPT) \ N
\ SR
% N \ 3

i
|
Print response Strip response } 18P2 700 task required?
i
P other parts.

i
|

L . | .
Say it to the user [RTEYERRE g — 10— predict which intent to exccute. ~——» TN RSNy — ovecuting the task required

Figure 1: The execution of a task flowchart

The Lory Al assistant operates through a structured process designed to
efficiently handle user commands while providing clear feedback and error han-
dling. Below is a brief explanation of the workflow:

1. Wake Word Detection and Listening State: Upon startup, Lory
enters a direct listening state, ready to capture any command given by the
user. If no command is detected within a certain period, Lory transitions
into standby mode. In standby, it listens for the wake word “Hey Lory”
to reactivate and return to the listening state for user input.

2. Command Processing: Once a valid command is identified, it is sent
to Lory for further analysis. Lory processes the command by splitting the
response into distinct parts. The first part of the response is immediately
communicated back to the user vocally, offering instant feedback. The
remaining parts are then forwarded to the classification module for deeper
analysis.

3. Classification and Intent Recognition: The classifier analyzes each
part of the stripped response sequentially. If the second part indicates
that "no task is required,” Lory seamlessly returns to its listening state,
waiting for the next user prompt. In the case where a task is necessary,
the classifier accurately predicts the user’s intent and prepares for task
execution.

4. Task Execution: Upon intent prediction, the system relays the predicted
intent to the executioner module, which carries out the corresponding task.
Lory ensures that the task is executed promptly and provides feedback to
the user regarding the success or failure of the operation.

5. Error Handling and Vocal Feedback: If an error occurs at any stage
during the process, Lory responds with vocal feedback, specifying the na-
ture of the error. In cases where the error is not explicitly detailed and
Lory simply states that ”something went wrong,” the user can inquire for
more details. Upon request, Lory will provide further information regard-
ing the error, ensuring transparency in error diagnosis and correction.

2.1 Wake Word Detection and Listening State

In the brief overview, I introduced how the wake word detection works with
Picovoice Porcupine. Now, let us explore the process more thoroughly, and I
will explain how I have adjusted the system for my personal use to make it more
efficient.

2.1.1 Wake Word Detection using Picovoice Porcupine

def keywordDetection():
try:

porcupine = pvporcupine.create(
access_key= pv_key,
keyword_paths=["models/wakeWordRaspberry.ppn"]
)

recoder = PvRecorder(device_index=-1,
frame_length=porcupine.frame_length)

recoder.start()

while True:
keyword_index = porcupine.process(recoder.read())
if keyword_index >= O:
recoder.stop()
porcupine.delete()
return chat()
except Exception as e:
print("error: ", e)
ms.add_message("console", e)
recoder.stop()
porcupine.delete()

Picovoice Porcupine is a highly efficient on-device wake word detection engine.
It operates entirely offline, ensuring fast response times and privacy. Normally,
it continuously listens for the predefined wake word “Hey Lory,” filtering out
background noise and waiting for a match. When the wake word is detected, it
triggers the system to stop listening for the keyword and start processing the
user’s input.

However, for my personal use, I found it more convenient to skip this step.
Instead of waiting for the wake word, I have set Lory to directly enter the

listening state as soon as it starts up. This allows me to give my command
right away without needing to first say "Hey Lory.” This modification helps
me streamline my workflow, saving time when I am ready to interact with the
system right from the start.

Once the wake word or the initial command is detected, the system clears any
resources used for listening to the wake word. This helps free up memory and
processing power to focus on understanding and executing the user’s command.
After this, the system transitions smoothly into the prompt detection phase,
where it processes the command that follows.

2.1.2 Listening State and Audio Processing

Now the system enters a continuous listening state, where it actively monitors
the microphone for any audio input after detecting the wake word.

with sr.Microphone() as source:
r.adjust_for_ambient_noise(source, 1)
print("listening...")
ms.add_message("console", "listening...")
starting_sound()
audio = r.listen(source)

print ("Processing...")
ms.add_message("console", "processing...")
confermation_sound()

To manage the system’s operation in real-time, a while True loop is em-
ployed, which allows the assistant to run continuously, handling both listening
and processing of user input. Within this loop, the microphone is initialized
using the SpeechRecognition library’s Microphone object whenever the system
is ready to listen for commands. The library’s adjust for ambient noise function
is called with the source parameter, which dynamically adjusts the system’s
sensitivity to background noise over a 1-second period. This ensures that Lory
can accurately focus on the user’s speech while filtering out any environmen-
tal sounds that may interfere with recognition. The same loop also oversees
the system’s transition into the processing phase, where the captured audio is
transcribed and responded to. At this point, the assistant enters the listening
phase, indicated by a console message and an audio cue (represented by start-
ing_sound()). This vocal or auditory feedback informs the user that the system
is actively listening for a command.

Once the system is ready, it captures the audio input using the r.listen()
method. This method pauses the loop until the user speaks, at which point it
collects the audio data for further processing. After successfully capturing the
audio, the system transitions to the processing phase, providing another audi-
tory signal (confirmation sound()) and updating the console with a ” processing”
message to inform the user of the next step.

Once the audio input is captured, the system proceeds to analyze and tran-
scribe it. This is where the code discussed earlier comes into play. The audio
data is passed to the containsSpeech(audio) function to determine if the input
contains valid speech. If valid speech is detected, the system creates a tempo-
rary .wav file, transcribes the audio using the Whisper API, and deletes the file
afterward to manage resources.

Check if the audio contains speech
if contains_speech(audio):
with open("TemporaryFiles/mySpeech.wav", "wb") as f:
f.write(audio.get_wav_data())

with open("TemporaryFiles/mySpeech.wav", "rb") as f:
try:
prompt = client.audio.transcriptions.create(
model="whisper-1",
file=f,
language= "en",
response_format="text",
)
except Exception as e:
print(e)

os.remove (’TemporaryFiles/mySpeech.wav’)
else:
prompt = ""

The smooth transition from the listening state to the processing state ensures
that user input is captured efficiently and converted into a format that can be
understood by the assistant.

2.1.3 Audio Feedback and User Experience

The use of auditory cues during the listening and processing phases enhances
the user experience by providing real-time feedback. The user is informed when
the system is actively listening and when it is working on transcribing their
command. These feedback mechanisms are important for hands-free operation,
as they give the user a sense of control and awareness without needing to look
at a screen.

2.2 Command Processing

Once the audio input is transcribed into a valid text prompt, the system verifies
whether the prompt meets the required conditions for further processing. The
prompt must have a minimum length and contain at least one recognizable word.

2.2.1 Processing the User’s Command and Response Handling

If the prompt meets these conditions, the system prepares it to be sent to
Lory (GPT API) for processing. The prompt is added to the messages list
with the appropriate role ("user”) and content (prompt). This list allows for a
conversational context to be maintained throughout the interaction.

messages.append ({"role": "user", "content": promptl})
ms.add_message("chat", "- " + prompt)

The prompt is then sent to Lory for processing via the send_to_lory(messages)function,
which handles the API interaction with the GPT model. The response received
from Lory is appended to the chat messages and sent to the connected app for
display. Since LoryBox does not have a built-in console or screen, these chat
messages and system logs are transmitted to the external application, which
shows the conversation and system status on the user’s device.

Note: The function ‘ms.add_message‘ is used to send these messages to the
external app since LoryBox does not have a built-in console or screen.

loryResponse = send_to_lory(messages)
ms.add_message("chat", " " + loryResponse)

Now what if the prompt does not meet the validity requirements? If the
prompt does not meet the validity requirements, the system plays a sound cue
indicating that it is returning to the standby state and waits for the next wake
word trigger.

else:
ending_sound ()
print("standing by...")
ms.add_message("console", "standing by...")
return keywordDetection()

2.2.2 Stripping the Response for Further Classification

Once a valid response is received from Lory, it must be parsed to extract ac-
tionable content. The system employs regular expressions to strip the response
into specific segments. The first part of the response is extracted by searching
for the text before the pipe (—) symbol or until the end of the string. This
portion is considered the vocal response that Lory will speak back to the user.

stripedResponse = re.search(r’~(.*7)(7=\|[$)’, loryResponse,
re .DOTALL) .group (1) .strip()
openAiSay(stripedResponse)

2.2.3 Command Extraction and Error Handling

The next step involves searching for a command in the response. Commands are
enclosed within pipe (—) symbols, so the system uses another regular expression
to capture the content between the pipes. This command, if detected, is then
passed to the classifier for execution. If no command is detected, the system
logs an appropriate message, and the original prompt is used as a fallback.

try:
command = re.search(z’\|||(.*?)\|||’, loryResponse,
re.DOTALL) .group(1) .strip()
except:
print("no command detected")
ms.add_message("console", "no command detected")
command = prompt

By splitting the response into distinct parts, the system is able to differ-
entiate between what should be spoken back to the user and what commands
should be executed in the background. This structured approach ensures that
the system can both interact conversationally with the user and perform tasks
as directed.

2.3 Classification and Intent Recognition

One of the essential components of an Al assistant like Lory is its ability to
understand what the user is asking. This is done through classification and
intent recognition. The system needs to determine the type of action or
task the user wants to perform based on the spoken command. To achieve
this, we use a command model that takes the user’s input, classifies it into
predefined intents, extracts relevant information, and assigns a confidence score
to its prediction.

2.3.1 Implementation

The user’s spoken command is passed to the model with the function call

intent, slot, confidence = cm.command(command.lower())

This step ensures that the command is lowercased for consistent processing. The
command model, represented as cm, analyzes the input and classifies it into a
predefined intent, returning a tuple consisting of the intent, the slot (relevant
information for executing the intent), and the confidence score (a float value
between 0 and 1 that indicates how certain the model is about the classification).
The result is printed to the console using print(intent, slot, confidence). To keep
track of the system’s decisions, the console logs the returned values with the
command ms.add_message(”console”, f”[intent, slot, float(confidence)]”). This
ensures that the message is added to the ms object, which handles console
messages, formatted as ”[intent, slot, confidence]”.

intent, slot, confidence = cm.command(command.lower())
print(intent, slot, confidence)
ms.add_message("console", f£"[{intent}, {slot}, {float(confidence)}]")

2.3.2 Data Visualization and Preprocessing

Before diving into the model architecture, it is crucial to understand the dataset
that the model is trained on. The dataset consists of several intents, each as-
sociated with example patterns (user inputs) and slots (specific information for
executing tasks).

In the following sample, we see how the intent name, patterns, and slots
work together:

— name: turn on

patterns:
- run the server
- fire up the 3D printer again
- fire up the server
- please turn on the lights
- please turn on the Raspberry Pi
- Lights on

slots:
- device: 3D printer, server, lights, light, Raspberry Pi
- location: my room, desk

e The name represents the intent that the model will predict, in this case,
”turn on.”

e Patterns are example inputs that the user may say. The model is trained
on these patterns to predict the intended action or intent.

e Slots specify additional information required to perform the task. For
instance, if the user says ”turn on the server” the model predicts the
“turn on” intent. However, to determine what should be turned on, it
looks at the slots to identify the device (in this case, ”server”).

This is just an example of the data structure used in my personal project.
In the future, when I publish it, the system will be more dynamic and
flexible, allowing it to handle a wider variety of tasks and inputs more
effectively.

2.3.3 Model Preparation and Training

The following is responsible for preparing the data, building the neural network,
and training the model for intent classification. It processes user inputs, trans-

10

forms them into machine-readable formats, and defines the model’s architecture.
Now, we are going to explore what is inside the Commands model (cm).

1. Data Preprocessing: The initial step involves tokenizing the patterns
(user inputs) and extracting relevant features for training:

wrds = nltk.word_tokenize(pattern) # breaks the pattern (text)
into tokens (words)
words.extend(wrds) # adds each tokenized word into the ’words’ list
docs_x.append(wrds) # stores tokenized patterns
docs_y.append(intent ["name"]) # stores the intent name
corresponding to the pattern

Here, the model gathers all words from the input patterns and associates
them with their respective intents. Tokenization helps in breaking down
sentences into individual words.

2. Stemming: The words are converted to their base form (stems) and
lowercased:

words = [stemmer.stem(w.lower()) for w in words if w != "?"]

Stemming reduces words to their root form, making the model more effi-
cient by reducing word variations (e.g., "running” becomes ”run”).

3. Bag of Words and One-Hot Encoding: The data is transformed into
a format suitable for training the model:

out_empty = [0 for _ in range(len(labels))] # creates an empty
one-hot vector for labels
for x, doc in enumerate(docs_x):

bag = []
wrds = [stemmer.stem(w) for w in doc] # stems each word in the
pattern

for w in words:
if w in wrds:
bag.append(1) # assigns 1 if the word is in the pattern
else:
bag.append(0) # assigns O otherwise
output_row = out_emptyl[:]
output_row[labels.index(docs_y[x])] = 1 # one-hot encodes the
intent label

This creates a numerical representation of the input, where the presence
of words is marked by 1, and their absence by 0. Similarly, intents are
represented as one-hot encoded vectors, where each intent corresponds to
a unique vector.

11

4. Model Architecture: The model is defined using TFLearn’s DNN (Deep
Neural Network) structure:

net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)

net = tflearn.fully_connected(net, 8)

net = tflearn.fully_connected(net, len(output([0]),

activation="softmax")
net = tflearn.regression(net)
model = tflearn.DNN(net)

The network consists of an input layer (with the size of the training data),
two hidden layers (each with 8 neurons), and an output layer that uses the
softmax activation function to classify the input into one of the predefined
intents.

5. Training and Saving the Model: The model is trained with the pre-
processed data:

model.fit(training, output, n_epoch=1000, batch_size=8,
show_metric=True)
model.save("models/brainModel")

The model is trained for 1000 epochs with a batch size of 8. After training,
it is saved as brainModel for later use.

6. Bag of Words Function: This function converts any user input into the
same bag of words format for prediction:

def bag_of_words(s, words):

bag = [0 for _ in range(len(words))]

s_words = nltk.word_tokenize(s)

s_words = [stemmer.stem(word.lower()) for word in s_words]

for se in s_words:

for i, w in enumerate(words):
if w == se:
bagli]l =1
return numpy.array(bag)

The bag-of-words(s, words) function ensures that new user inputs can be
converted into a format the trained model understands.

2.3.4 Intent Prediction

The core function for predicting user intent is responsible for interpreting the
input and identifying the most likely task the user wants to perform. The
function command(inp: str) takes the user’s input, processes it, and returns the
predicted intent, the detected slots, and the confidence score of the prediction.

12

Here is an overview of how the function works:

1.

Input Processing:

if inp != "no task required":
results = model.predict([bag_of_words(inp, words)]) [0]
results_index = numpy.argmax(results)
name = labels[results_index]

The user’s input is first processed into a bag of words format. The trained
model then predicts the intent by returning a list of probabilities. The
highest probability corresponds to the predicted intent, which is found
using numpy.argmaz(results).

Threshold Check:

if results([results_index] >= 0.85:

A confidence threshold of 85% is set. If the model’s confidence in the
predicted intent is greater than or equal to 85%, the system proceeds to
extract slots (additional information such as room or object).

Slot Extraction:

for d in intent["slots"]:
for slot, values in d.items():
slot_values = [v.strip() for v in values.split(’,’)]
slots[slot] = slot_values

Once the intent is predicted, the system searches for any slots associated
with that intent. Slots provide the context needed to execute the task,
such as specifying a room or object. The system tokenizes the input and
checks for the presence of the slot values.

Slot Detection:

for i in range(len(tokens) - value_length + 1):
if tokens[i:i+value_length] == value_tokens:
slot_values_detected[slot] .append(value)

The system compares the tokenized user input with the possible slot val-
ues. If any of the slot values match, they are stored as slots_mentioned.

Return the Result:

return intent_name, slots_mentioned, results[results_index]

13

If the confidence level is high enough, the function returns the predicted
intent name, the detected slots, and the confidence score. If no match is
found or the confidence is low, it returns None for both the intent and
slots, along with the confidence score.

6. Handling 'No Task Required’:

else:
return None, None, 1

In case the system detects no task is required (e.g., the input is "no task
required”), the function returns None for both intent and slots but sets
the confidence to 1 to avoid any errors in the system’s return handling.

2.3.5 Command Execution Process

Once the system successfully recognizes an intent and identifies the relevant
slots from a user’s input, the next step is to execute the command. This process
is initiated by sending the predicted intent, along with the associated slots and
prompt, to the executioner component of the system using the following function
call in the main code:

commandExecutionar.controller(intent, slots, prompt, loryResponse)

The controller() function acts as the decision-maker, using a series of if-
statements to determine which task should be executed based on the provided
parameters:

def controller(intent:str, slots:dict, prompt="", loryResponse=""):

e intent: This is the core instruction, such as ”turn on” or ”search web,”
that determines what kind of task the system needs to perform.

e slots: These provide context or specifics for the task. For instance, in
the command ”turn on the server,” the intent is ”turn on,” and the slot
is "server.”

e prompt: The user’s full input is passed through this parameter, allowing
the system to extract additional details when necessary. For example, in a
web search command, the prompt helps the system know what specifically
needs to be searched.

e loryResponse: Lory generates structured responses, some of which are
not shown to the user but guide the system. In tasks like managing a to-do
list or writing notes, this parameter helps the system organize content—for
example, identifying the task’s content and determining where to add it
in the list.

14

Through these parameters, the controller() function evaluates the input and
triggers the appropriate task. For instance, if the intent is ”turn on,” and the
slot is ”server,” the function will proceed to check the server status and perform
the required actions to turn it on.

15

3 Results and Execution

In this chapter, I will demonstrate the full execution flow of the system from
intent recognition to task completion. Using the example command, ”turn on
the server,” we will show how the system processes user input, predicts the
intent, identifies the slots, and executes the task.

3.1 Intent Recognition and Slot Extraction

The first step in the execution process is recognizing the user’s intent and ex-
tracting the relevant slots from the input. The command() function is respon-
sible for processing the user’s input and predicting the intent.

For the input ” turn on the server,” the function works as follows:

def command(inp:str):
if inp != "no task required":
results = model.predict([bag_of_words(inp, words)]) [0]
results_index = numpy.argmax(results)
name = labels[results_index]

Here, the input is first converted into a bag-of-words representation, allow-
ing the model to process it. The model then predicts a list of confidence scores
for each possible intent, and the intent with the highest confidence is selected
using numpy.argmaz(). In this case, the predicted intent is ”turn on.”

Next, the function checks if the confidence level of the prediction is high
enough (in this case, a threshold of 0.85 is used). For the input "turn on the
server,” the confidence score returned is extremely high: 0.9999249. Since the
score exceeds the threshold, the function proceeds to extract the slots:

if results[results_index] >= 0.85:
slots_mentioned = {}
for intent in data["intents"]:

if intent["name"] == name:
intent_name = name
slots = {}

for d in intent["slots"]:
for slot, values in d.items():
slot_values = [v.strip() for v in values.split(’,’)]
slots[slot] slot_values

At this point, the system has determined that the intent is ”turn on,” and
now it looks for any relevant slots, such as ”server.” The slot information is
stored in the slots_mentioned dictionary, and the system uses token matching
to find slot values within the user input:

tokens = word_tokenize (inp)
slot_values_detected = {}

16

for slot, values in slots.items():
slot_values_detected[slot] = []
for value in values:
value_tokens = word_tokenize(value)
value_length = len(value_tokens)

for i in range(len(tokens) - value_length + 1):

if tokens[i:i+value_length] == value_tokens:
slot_values_detected[slot] .append(value)
break

slots_mentioned.update(slot_values_detected)

In this case, the function would return:
e Intent: ”"turn on”
e Slots: ”device”: [’server”]

e Confidence: 0.9999249

3.2 Command Execution: The Role of the controller()
Function

Once the intent and slots are identified, the controller() function takes over to
execute the command. For the example command “turn on the server,” the
controller() function uses a series of if-statements to determine the appropriate
actions based on the intent and slots.

Here is the relevant code snippet for handling the ”turn on” intent:

if intent == "turn on":
if slots:
if "device" in slots.keys():
if "server" in slots["device"]:
ip = "192.168.x.x"
plug = PyP100.P100(ip, email, password)

In this case, the controller() function first checks if the intent is ”turn on” and
verifies that slots are present. It then checks if the slot key ”device” is available
and specifically looks for ”server” in the slot values.

3.2.1 Executing the Command

1. Checking Raspberry Pi Status: If the "server” slot is detected, the
function proceeds by checking the status of the Raspberry Pi. This in-
volves using a smart plug to power on the Raspberry Pi if it is off:

if not is_raspberrypi_ready("192.168.x.x", "nadeer", "password"):

17

openAiSay(random.choice(["Raspberry pi is not online, sir. I
will turn it on right away.",
"I found that the raspberry is still off,
I am truning it on right now.",
"I couldn’t connect to the raspberry,
sir. it seems to be turned off, I
will activate it and try again."]))
plug.turnOn()

. Starting the Server: After the Raspberry Pi is ready, the function
attempts to start the server. It uses SSH to execute a command that
activates a virtual environment and starts the server script:

try:

command = ’ssh nadeer@192.168.x.x "source
/home/nadeer/Desktop/ve/bin/activate; cd
/home/nadeer/Desktop/LoryCommands; nohup python server.py
&"7

subprocess.Popen(command, shell=True)

The function then monitors the server’s status by sending HTTP requests
and handles retries if the server does not respond immediately:

while True:
try:
response = requests.get("http://192.168.x.x:5000")
if response.status_code == 200:
break
except (requests.ConnectionError, requests.Timeout):
attempts += 1
openAiSay(f"trying to connect again, attempt number
{attempts}")
if attempts >= 5:
raise Exception("server not responding")
time.sleep(2)

. Providing Feedback: Finally, the function provides feedback based on
whether the server was successfully activated or if an error occurred:

openAiSay(random.choice(activation_success_dict["server"]))

If an error occurs during the activation process, it is caught and reported:

except Exception as e:
print("error: ", e)
openAiSay(random.choice(activation_error_dict["server"]))

18

3.3 Video Demonstration Overview

In the accompanying video, I demonstrate the multitasking capabilities of the
Lory assistant, specifically within the context of my work on the robotic arm.
The video begins with a voice command to Lory, explaining that there is an
issue with the robot arm. I then instruct Lory to search Google for a NEMA 17
stepper motor on Amazon, highlighting its ability to perform web searches. Fol-
lowing this, I command Lory to open the Fusion 360 software, which I use for 3D
modeling, and simultaneously request it to turn on the 3D printer, showcasing
the system’s ability to handle multiple tasks concurrently.

A timelapse sequence is then shown, capturing the process of my work on the
robot arm, illustrating the hands-on aspect of the project. After completing the
task, I instruct Lory to put the computer to sleep, demonstrating the assistant’s
ability to manage device states efficiently.

This video serves as a practical demonstration of Lory’s interactive features
and multitasking capabilities, particularly in a real-world use case involving
both software and hardware components.

You can watch the demo by clicking here!

19

https://youtu.be/qXNFCVgl5Cs

4 Future Enhancements and Conclusion

4.1 Wrapping Up the Watch App

As T approach the conclusion of my work on the Lory assistant, I have suc-
cessfully wrapped up the development of the watch app. This app now allows
Lory to prepare my entire workspace with just one click, streamlining my daily
routine and improving efficiency. The app was developed using Android Studio,
which provided a versatile platform for designing and managing the various in-
terfaces and features necessary for seamless interaction between my watch and
the Lory system.

In the development process, I utilized Android Studio’s built-in support
for Wear OS, which helped me connect the watch app to LoryBox via HTTP.
The watch app sends commands to the LoryBox, allowing it to execute tasks
like turning on devices or loading up specific setups. This functionality, as
demonstrated in my results video, showcases how Lory integrates seamlessly
with my workspace, allowing for efficient and automated setup with just one
click.

4.2 Future Improvements

Looking ahead, Lory’s capabilities have room for expansion, especially in in-
teracting with the physical world. After completing the robot arm, I plan to
explore the integration of lightweight drones that are fully aware of their sur-
roundings. These drones would leverage modules like the Arduino Nano and
ESP32-CAM to process visual data and navigate autonomously. This expan-
sion into real-world spaces would allow Lory to control objects with even greater
precision and responsiveness. Although this may not seem like a project directly
related to my current work and might appear not worth the time, I chose it as
my first step because of the unique challenges I'll face. These challenges include
optimizing drone navigation, improving real-time processing of visual data, and
ensuring seamless communication between Lory and the drones. Overcoming
these obstacles will help me build the skills necessary for achieving larger goals
in the future. Plus, the process itself is enjoyable for me, making it both a
valuable and fun endeavor.

Improving Lory’s file management capabilities is another key area for en-
hancement. Lory could become more adept at organizing, categorizing, and
retrieving files, making it an even more powerful assistant in handling both
digital and physical tasks. Additionally, I envision Lory assisting with online
businesses by performing business analysis, generating statistics, and providing
clients with their needs. This would allow Lory to not only support my workflow
but also contribute to business management and client services.

My vision for Lory’s future extends beyond drones. While I plan to start with
lightweight drones, my broader goal is to expand Lory’s control over various sys-
tems and environments. One idea is integrating Lory with a CCTV system, en-
abling it to track my movements and adjust its behavior dynamically—whether

20

controlling lights, managing devices, or responding to my presence in specific
areas. The CCTV system could also serve as a traditional security tool, with
Lory monitoring my workspace or home when needed.

These are just a few of the projects I envision, and as Lory evolves, it has
the potential to handle increasingly complex tasks, seamlessly blending digital
and physical worlds.

Lastly, I am considering adding features that enable Lory to assist in creating
3D models. While still a developing field for Al assistants, 3D modeling has vast
potential for applications such as prototyping and design. This would bring Lory
closer to offering a comprehensive set of tools for creators, expanding its utility
even further.

4.3 Conclusion

Throughout this project, I have explored the development of Lory, an Al assis-
tant designed to streamline tasks and integrate seamlessly into both digital and
physical environments. From improving personal productivity with the ability
to prepare my workspace via a watch app, to future expansions like robot arms,
drones, and CCTYV integration, Lory’s potential continues to grow.

The journey hasn’t been without its challenges, but each obstacle has pushed
me toward finding innovative solutions. With future enhancements in sight—such
as improved file management, business analytics, and even 3D modeling—the
possibilities for Lory’s applications are vast. This project represents the founda-
tion of something much larger, and I am excited to continue expanding Lory’s
capabilities in the future.

Lory is not just an assistant—it’s a continually evolving system that will
one day be capable of handling complex tasks across different domains, from
helping manage my workspace to integrating into online businesses and the
physical world.

21

	Introduction
	Lory: System Design and Workflow
	Wake Word Detection and Listening State
	Wake Word Detection using Picovoice Porcupine
	Listening State and Audio Processing
	Audio Feedback and User Experience

	Command Processing
	Processing the User's Command and Response Handling
	Stripping the Response for Further Classification
	Command Extraction and Error Handling

	Classification and Intent Recognition
	Implementation
	Data Visualization and Preprocessing
	Model Preparation and Training
	Intent Prediction
	Command Execution Process

	Results and Execution
	Intent Recognition and Slot Extraction
	Command Execution: The Role of the controller() Function
	Executing the Command

	Video Demonstration Overview

	Future Enhancements and Conclusion
	Wrapping Up the Watch App
	Future Improvements
	Conclusion

