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An application of the PageRank algorithm to the measurement of individual 

contributions in teams 

 

 

1) Introduction 

The aim of this presentation is to apply Google’s Page Rank algorithm to the measurement of individual 

contributions in teams. This will be possible following the model of the study of Müller J. and Uppmann T.1 Then, 

as an exercise, the result will be applied to the PRIN 2022 PNRR final ranking, in order to assess the performance 

of Italian universities when working together in research projects.  

In the first part, Google’s Page Rank algorithm will be described and analyzed both from a theoretical and a 

mathematical point of view. Topics that will be covered are: the functioning of a search engine and why Google’s 

one of the most well-renowned ones, the random surfing model, how to answer the problem of assigning a value 

for each page in a database and how to use this data to create a link matrix that can be later utilized to find a 

final ranking for the network considered. The paper will also show how some problems involving these 

calculations can be overcome, i.e. webs with dangling nodes and webs with nonunique rankings.  

In addition, elements of linear algebra like matrices, vector spaces, eigenvectors, eigenvalues, Markov chains, 

the Power method and the Perron-Frobenius theorem will be introduced to provide a better understanding of 

the model and the calculations involved.  

Then, the application provided by Müller J. and Uppmann T. in the article Eigenvalue productivity: Measurement 

of individual contributions in teams (2022) is shown, analyzing not only the assumptions and formulas involved, 

but also the basic ideas behind how an individual can actually “increase” the productivity of his teammates and 

what are the variables implicated in this process. To conclude this part of the presentation, an easy and artificial 

example is given, to provide the reader with a practical and “visual” idea of the concepts just described.  

Finally, the EPV model will be applied to the Prin 2022 for the ranking of Italian universities and public research 

entities. After a presentation of the idea behind the PRIN and its basic rules, the analysis will proceed taking into 

consideration the results of the sector SH1 for the year 2022.  Universities will be ranked with some modifications 

of the original model: the pair-success ratios for universities working in the same team will be evaluated with a 

different method based on the arithmetic mean and a value of 0 assigned to all the other pairwise interactions. 

In conclusion, the results obtained will be described and analyzed.  

 

 

 

 

 

 

 

 
1 Müller J., Uppmann T., Eigenvalue productivity: Measurement of individual contributions in teams, “PLOS ONE”, vol.17, 
n.1, September 2022 
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2) Google’s PageRank algorithm  

Google’s prominence as a search engine is by now well-recognized worldwide. It’s functioning and ranking system 

had a significant influence on the development and structure of the internet as we know it today. 

A key element in Google’s success is its algorithm PageRank, created by Sergey Brin and Lawrence Page. The 

algorithm ranks the importance of each page on the web quantitively, according to an eigenvector of a weighted 

link matrix. The consequent result is that the user gets the most relevant and helpful pages first, instead of having 

to go through screens and screens of irrelevant links before finding the one in line with his original search. Some 

data2 that helps understanding the enormous size of the web and the big challenge of finding a good quality 

page of the required information: 8% (in web terms) is the rate of creation of new pages per week and, according 

to some observations, only 20% of the new pages will be accessed by users after 1 year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  

A model explaining the functioning of PageRank is the random surfing model, which gives the probability that a 

random user visits a web page. This is represented thought a random walk on the web in which the user clicks 

link after link that is presented to him. The probability of visiting a certain page is affected by a variety of factors 

like: the number of links leading to the page, the frequency with which the surfer arrives on pages containing 

those links, the order of outgoing links on those pages. In general, links from a long list of web pages and links 

from unpopular websites have a low value, while links from popular pages which don’t link many other pages 

are valuable and will greatly increase the probability that a random survey arrives on a certain page.  

More in general, the functioning of a search engine (including Google’s) can be summarized in this process: 

software called crawlers (in Google’s case “Googlebot”), crawl all public web pages and locate them. They go 

from link to link and bring data about those pages back to Google’s servers. Usually there is a list of web addresses 

from past crawls with a similar objective, which is the starting point for the new search. Crawlers also consider 

new sites, changes to existing sites and dead links in their search process.  

After crawling, information is organized by indexing. This step includes storing all the information about words 

and locations of the fetched web pages into a database that can later be retrieved. Therefore, if a user searches 

the same keyword, results will be retrieved faster. 

Finally, thanks to an algorithm, the importance of each page in the database is rated, so that the more important 

pages will be presented first, showing the results in descending order of relevance. 

In addition, we must consider that, when we make a search on Google, Google tries to determine the highest 

quality results, which have many factors including things like users’ location, language, device (desktop or phone) 

and previous queries. Google doesn’t accept payment to rank pages in a higher position, the ranking is done only 

algorithmically.  

The focus of this presentation is on the step of rating the importance of each page in the database. A problem 

arises: what’s the right criterion to meaningfully define and quantify the “importance” of a page? We will try to 

show how Google’s PageRank algorithm answers the question and the many possible applications of the 

algorithm. 

 

 

 

 

 
2 Statistics from Singh P., Vidyarty A., Power rank: An interactive web page ranking algorithm, chapter from Principles of Big 
Graph: In-depth Insight, Biswas A., Deka G., Patgiri R., Elsevier (January 2022), 1^st edition 
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3) Mathematical background for a better understanding of the model 

In the next paragraphs, we will describe the Page Rank algorithm. To provide a better understanding, we will go 

through the basic definitions of concepts like matrices, linear spaces, eigenvectors, eigenvalues, Markov chains 

and the Perron-Frobenius theorem.  

-Matrices: 

A matrix is a rectangular array, in which each entry 𝑎𝑖𝑗  is a number.  An 𝑚 × 𝑛 matrix (with 𝑚 and 𝑛 positive 

integers), has 𝑚 rows and 𝑛 colums. 𝑚 × 𝑛 is read as “𝑚 𝑏𝑦 𝑛". 

According to the standard mathematical convention, it is possible to represent a matrix in any one of three ways: 

an uppercase letter such as 𝐴, 𝐵 or 𝐶; a representative element enclosed in brackets like [𝑎𝑖𝑗], [𝑏𝑖𝑗] or [𝑐𝑖𝑗]; a 

rectangular array of numbers, like the one presented below: 

[

𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 ⋱ 𝑎2𝑛

⋮ ⋮ ⋮ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

] 

The entry 𝑎𝑖𝑗  is in the 𝑖𝑡ℎ row and the 𝑗𝑡ℎ column. The index 𝑖 is called the “row subscript” because it identifies 

the row in which the entry lies, and the index 𝑗 is called the “column subscript” because it identifies the column 

in which the entry lies.  

A matrix that has only one column, is a “column matrix” or “column vector”. Similarly, a matrix that has only one 

row, is a “row matrix” or “row vector”. Boldface lowercase letters often designate column matrices and row 

matrices. 

When 𝑚 = 𝑛, the matrix is square of order 𝑛 and the entries 𝑎11, 𝑎22, 𝑎33 … 𝑎𝑛𝑛 are the main diagonal entries. 

One relevant square matrix in mathematics is the “identity matrix” 𝐼, in which all the elements of the principal 

diagonal are one and all the other ones are zero. In the next paragraphs we will use the identity matrix as a tool 

to find the eigenvalues and eigenvectors of a matrix.  

Furthermore, a diagonal matrix is a square matrix in which all off-diagonal entries are zero. Entries on the main 

diagonal may or may not be zero. Examples of diagonal matrices are: 

𝐴 = [
2 0 0
0 3 0
0 0 1

] and 𝐵 = [
−1 0 0
0 0 0
0 0 5

] 

It is worth mentioning that the identity matrix 𝐼 is a particular type of diagonal matrix: one with all ones in its 

diagonal entries.  

Two matrices are equal when their corresponding entries are equal. A formal definition is two matrices 𝐴 = [𝑎𝑖𝑗] 

and 𝐵 = [𝑏𝑖𝑗] are equal when they have the same size (𝑚 × 𝑛) and 𝑎𝑖𝑗 = 𝑏𝑖𝑗 for 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛. 

One common use of matrices is to represent systems of linear equations. The matrix derived from the coefficients 

and constant terms of a system of linear equations called the “augmented matrix” of the system. The matrix 

containing only the coefficients is the “coefficient matrix” of the system. 

 Relevant operations concerning matrices are matrix addition, subtraction, and scalar multiplication. First, two 

matrices can be added only if they have the same size (the sum of two matrices of different sizes is undefined). 

To perform matrix addition, we just have to add corresponding entries or, in other words If 𝐴 = [𝑎𝑖𝑗] and 𝐵 =

[𝑏𝑖𝑗] are matrices of size 𝑚 × 𝑛, then their sum is the 𝑚 × 𝑛 matrix 𝐴 + 𝐵 = [𝑎𝑖𝑗 + 𝑏𝑖𝑗]. 
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Moreover, referring to real numbers as “scalars”, to multiply a matrix 𝐴 by a scalar 𝑐,  we multiply each entry in 

𝐴 by 𝑐: If 𝐴 = [𝑎𝑖𝑗] is an 𝑚 × 𝑛 matrix and 𝑐 is a scalar, then the scalar multiple of 𝐴 by 𝑐 is the 𝑚 × 𝑛 matrix 

𝑐𝐴 = [𝑐𝑎𝑖𝑗]. 

Considering two matrices of the same size 𝐴 and 𝐵, the operation 𝐴 − 𝐵 represents the sum of 𝐴 and (−1)𝐵. 

That is, 𝐴 − 𝐵 = 𝐴 + (−1)𝐵. 

Finally, as far as matrix multiplication is concerned, for the product of two matrices to be defined, the number 

of columns of the first matrix must equal the number of rows of the second matrix. To find the entry in the 𝑖𝑡ℎ 

row and the 𝑗𝑡ℎ column of the product 𝐴𝐵, multiply the entries in the 𝑖𝑡ℎ row of 𝐴 by the corresponding entries 

in the 𝑗𝑡ℎ column of 𝐵 and then add the results. A more formal definition of matrix multiplication is: If 𝐴 = [𝑎𝑖𝑗] 

is an 𝑚 × 𝑛 matrix and 𝐵 = [𝑏𝑖𝑗] is an 𝑛 × 𝑝 matrix, then the product 𝐴𝐵 is an 𝑚 × 𝑝 matrix 𝐴𝐵 = [𝑐𝑖𝑗] where: 

𝑐 = ∑ 𝑎𝑖𝑘𝑏𝑖𝑘 = 𝑎𝑖1𝑏1𝑖 + 𝑎𝑖2𝑏2𝑗 + 𝑎𝑖3𝑏3𝑗 + ⋯+ 𝑎𝑖𝑛𝑏𝑛𝑗

𝑛

𝑘=1

 

In general, for the properties listed above, matrix multiplication is not commutative. It is usually not true that 

the product 𝐴𝐵 is equal to the product 𝐵𝐴. 

Below is shown the general pattern for matrix multiplication: 

3 

A practical example of matrix multiplication is given by the formal definition of the general properties of the 

identity matrix 𝐼 : If A is a matrix of size 𝑚 × 𝑛, then the properties 𝐴𝐼𝑛 = 𝐴 and 𝐼𝑚𝐴 = 𝐴 are true.  

Considering the matrix equation 𝐴𝒙 = 𝒃, where 𝐴 is the coefficient matrix of the system, and 𝒙 and 𝒃 are column 

matrices, the system can be represented in a more convenient way by partitioning the matrices 𝐴 and 𝒙 in the 

manner shown below. 

𝐴𝒙 = 𝒙𝟏𝒂1 + 𝒙𝟐𝒂𝟐 + ⋯+ 𝒙𝒏𝒂𝒏 = 𝒃 

𝒙𝟏 [

𝑎11

𝑎21

⋮
𝑎𝑚1

] + 𝒙𝟐 [

𝑎21

𝑎22

⋮
𝑎𝑚2

] + ⋯+ 𝒙𝒏 [

𝑎1𝑛

𝑎2𝑛

⋮
𝑎𝑚𝑛

] 

𝒂𝟏, 𝒂𝟐…𝒂𝒏 are the columns of the matrix 𝐴. The expression is called “linear combination” of the column matrices 

𝒂𝟏, 𝒂𝟐…𝒂𝒏 with coefficients 𝒙𝟏, 𝒙𝟐…𝒙𝒏. Furthermore, the system 𝐴𝒙 = 𝒃 is consistent if and only if  𝒃 can be 

expressed as such a linear combination, where the coefficients of the linear combination are a solution of the 

system.  

Another worth-mentioning feature of matrices is the inverse of a matrix. According to the general definition: an 

𝑛 × 𝑛 matrix 𝐴 is “invertible” (or “nonsingular”) where there exist an 𝑛 × 𝑛 matrix 𝐵 such that 𝐴𝐵 = 𝐵𝐴 = 𝐼𝑛, 

 
3 Image from Larson R., Elementary linear Algebra, Cengage Learning (2017), 8^th edition 
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where 𝐼𝑛 is the identity matrix of order 𝑛. The matrix 𝐵 is the multiplicative inverse of 𝐴. A matrix that doesn’t 

have an inverse is called “noninvertible” (or “singular”). 

Not all square matrices have inverses and nonsquare matrices do not have them. If 𝐴 is of size 𝑚 × 𝑛 and 𝐵 is of 

size 𝑛 × 𝑚, then the products 𝐴𝐵 and 𝐵𝐴 are of different sizes and can be different. However, if a matrix has an 

inverse, then its inverse is unique. The inverse of 𝐴 is denoted as 𝐴−1.  

Another relevant operation concerning matrices is the determinant of a matrix, a single numerical value used to 

calculate the inverse of a matrix or to solve systems of linear equations. The determinant of a matrix 𝐴 can be 

referred to as det (𝐴) or |𝐴|. It is possible to define a determinant only for square matrices. Let 𝐴 be a 2 × 2 

matrix such that 𝐴 = [
𝑎11 𝑎12

𝑎21 𝑎22
], the general formula for det (𝐴) is: 

det(𝐴) = 𝑎11𝑎22 − 𝑎12𝑎21 

Instead, for matrices size 3 × 3, the general approach is to break down the matrix into smaller 2 × 2 matrices as 

shown below:  

[

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] = 𝑎11 [
𝑎22 𝑎23

𝑎32 𝑎33
] − 𝑎12 [

𝑎21 𝑎23

𝑎31 𝑎33
] + 𝑎13 [

𝑎21 𝑎22

𝑎31 𝑎32
] 

For each element 𝑎1𝑖 in the top row, block out the row and column it belongs to, and calculate the determinant 

of the remaining uncovered 2 × 2 matrix, then multiply that by 𝑎1𝑖. The determinant is the sum of those values, 

alternating addition and subtraction. 

Furthermore, the general definition of the determinant of a square matrix is: If 𝐴 is a square matrix of order 𝑛 ≥

2, then the determinant of 𝐴 is the sum of the entries in the first row of 𝐴 multiplied by their respective cofactors. 

That is: 

det(𝐴) = |𝐴| = ∑𝑎1𝑗𝐶1𝑗 = 𝑎11𝐶11 + 𝑎12𝐶12 + ⋯+ 𝑎1𝑛𝐶1𝑛

𝑛

𝑗=1

 

For more clarifications on this topic see: Larson R. Elementary linear Algebra, Cengage Learning (2017), 

8𝑡ℎedition, chapter 3, page 112. 

Moreover, a matrix is diagonalizable when it is similar to a diagonal matrix. In other words: An 𝑛 × 𝑛 matrix 𝐴 is 

diagonalizable when there exists an invertible matrix 𝑃 such that 𝑃−1𝐴𝑃 is a diagonal matrix. Another condition 

used to establish if a 𝑛 × 𝑛 matrix is diagonalizable or not is to check if it has 𝑛 linearly independent 

eigenvectors4. It’s diagonalizable only if it does. 

-Vector Spaces:  

The term vector derives from the Latin word vectus, meaning “carrying”. The idea is that if a person were to carry 

something from the origin to the point (𝑥1, 𝑥2), then the trip could be represented by the directed line segment 

from (0, 0) to (𝑥1, 𝑥2). The ordered pair used to represent the terminal point also represents the vector: 𝒙 =

(𝑥1, 𝑥2), (vectors are represented by lowercase letters set in boldface type such as u, v, w, and x). The 

components of the vector 𝒙 are its coordinates 𝑥1 and 𝑥2. 

Basic vector operations are vector addition and scalar multiplication. In the first case, vectors are added by adding 

their respective components. In the second, each component of a vector is multiplied by a scalar 𝑐.  

These two operations share ten properties that are summarized below:  

 
4 The concept of eigenvector will be explained in the next paragraphs.  
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5 

In the list, the zero vector 𝟎 is the “additive identity” of the vector 𝒖 while the vector −𝒖 is its “additive inverse”. 

The discussion of vectors in the plane can be extended to a discussion of vectors in 𝑛-space. An 𝑛-tuple 

(𝑥1, 𝑥2, 𝑥3 … , 𝑥𝑛) can be considered as a point in 𝑅𝑛 with the 𝑥𝑖 as its coordinates or as a vector 𝒙, with the 𝑥𝑖 

as its components. 

More in general, an ordered 𝑛-tuple represents a vector in 𝑛-space, and the set of all 𝑛-tuples is 𝑛-space and is 

denoted by 𝑅𝑛.  

As for vectors in the plane, the sum of two vectors in 𝑅𝑛 and the scalar multiple of a vector in 𝑅𝑛 are the standard 

operations in 𝑅𝑛. Their ten properties are the same as the ones listed above.  

The notions just presented were necessary to properly define what a vector space is.  

Let 𝑉 be a set on which two operations (vector addition and scalar multiplication) are defined. If the listed axioms 

are satisfied for every 𝒖, 𝒗, and 𝒘 in 𝑉 and every scalar (real number) 𝑐 and 𝑑, then 𝑉 is a vector space. 

6 

From this definition we can infer that a vector space consists of four entities: a set of vectors, a set of scalars, 

and two operations. Examples of vector spaces are: 𝑅2 with the standard operations, the set of all continuous 

functions defined on the real number line and the set of all 𝑛 × 𝑛 square matrices. 

Vector spaces are efficient in mathematics because, once a theorem has been proved for an abstract vector 

space, it can then be applied to the vector space in analysis without the need of further proof.  

 
5 Image from Larson R., Elementary linear Algebra, Cengage Learning (2017), 8^th edition 
6 Image from Larson R., Elementary linear Algebra, Cengage Learning (2017), 8^th edition 
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Furthermore, in many applications of linear algebra, vector spaces occur as “subspaces” of larger spaces. In 

general, a nonempty subset of a vector space is a subspace when it is a vector space with the same operations 

defined in the original vector space. In order to test if a subset of a vector space is a subspace of it, it is sufficient 

to check two closure conditions: If 𝑊 is a nonempty subset of a vector space 𝑉, then 𝑊 is a subspace of 𝑉 if and 

only if the two closure conditions listed below hold: 

1. If u and v are in 𝑊, then u+v is in 𝑊. 

2. If u is in 𝑊 and 𝑐 is a scalar, then 𝑐 ×u is in 𝑊. 

It is worth mentioning that, after 𝑊 is verified being a subspace of 𝑉, all ten properties of 𝑉 are directly inherited 

by 𝑊, so there is no need of further verification.  

An interesting property of vector spaces with finite dimension7 is that each vector in it can be represented as a 

“linear combination” of a selected number of vectors in the space. For example, setting a vector 𝒗 in a vector 

space 𝑉, it can be written in the form: 𝒗 = 𝑐1𝒖1 + 𝑐2𝒖𝟐 + ⋯+ 𝑐𝑘𝒖𝑘, with 𝒖𝟏, 𝒖𝟐, … , 𝒖𝒌 as vectors and 

𝑐1, 𝑐2, … , 𝑐𝑘 as scalars. 

If every vector in a vector space can be written as a linear combination of vectors in a set, then the set is a 

“spanning set” of the vector space. The general definition is: If 𝑆 = {𝒗1, 𝒗2, … , 𝒗𝑘} is a set of vectors in a vector 

space 𝑉, then the span of 𝑆 is the set of all linear combinations of the vectors in S,  

𝑠𝑝𝑎𝑛(𝑆) = {𝑐1𝒗1 + 𝑐2𝒗2 + ⋯+ 𝑐𝑘𝒗𝑘: 𝑐1, 𝑐2, … , 𝑐𝑘  𝑎𝑟𝑒 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠} 

When 𝑠𝑝𝑎𝑛(𝑆) = 𝑉, it is said that 𝑆 spans 𝑉 or that 𝑉 is spanned by {𝒗1, 𝒗2, … , 𝒗𝑘}. 

In addition, a set of vectors in a vector space can be “linear dependent” or “linear independent”. For the same 

set 𝑆 of the vector space 𝑉 as before: if the vector equation 𝑐1𝒗1 + 𝑐2𝒗2 + ⋯+ 𝑐𝑘𝒗𝑘 = 𝟎 has only the trivial 

solution 𝑐1 = 0, 𝑐2 = 0,… , 𝑐𝑘 = 0 , then the vectors in 𝑆 are linearly independent. On the other hand, if there 

are nontrivial solutions other than the trivial one, then the vectors in 𝑆 are linearly dependent.  

As far as spanning sets are concerned, if a spanning set in a vector space has both linearly independent vectors 

and spans the entire space, then it is a “basis” for the vector space. A set of vectors 𝑆 = {𝒗1, 𝒗2, … , 𝒗𝑛} in a 

vector space 𝑉 is a basis for 𝑉 when the conditions below are true: 

1. 𝑆 spans 𝑉 

2. 𝑆 is linearly independent. 

If a vector space has a basis with a finite number of vectors, then it is “finite dimensional”. Otherwise, it’s “infinite 

dimensional”. 

The notion of basis of a vector space is essential in order to set its dimension. If a vector space 𝑉 has a basis 

consisting of 𝑛 vectors, then the number 𝑛 is the dimension of 𝑉, denoted by 𝑑𝑖𝑚(𝑉) = 𝑛. When 𝑉 consists of 

the zero vector alone, the dimension of 𝑉 is defined as zero. For example, the dimension of 𝑅𝑛 with the standard 

operations is 𝑛. 

-Eigenvalues and Eigenvectors:  

The origins of the terms eigenvalue and eigenvector are from the German word Eigenwert, meaning “proper 

value”. 

Eigenvalues and eigenvectors have many important applications, one of which is the topic of our presentation.  

 
7 For the formal definition of what is the dimension of a vector space see the following part.  
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One of the central problems in mathematics is the so-called “eigenvalue problem”: when 𝐴 is an 𝑛 × 𝑛 matrix (a 

square matrix), do non-zero vectors 𝒙 in 𝑅𝑛 exist such that 𝐴𝒙 is a scalar multiple of 𝒙? Formally, does  𝐴𝒙 = 𝜆𝒙 

apply?  

The scalar, denoted by the Greek letter lambda (𝜆), is called eigenvalue of the matrix 𝐴, and the nonzero vector 

𝒙 is called an eigenvector of 𝐴 corresponding to 𝜆. 

Considering a two-dimensional space, if 𝜆 is an eigenvalue of a matrix 𝐴 and 𝒙 is an eigenvector of 𝐴 

corresponding to 𝜆, then multiplication of 𝒙 by the matrix A produces a vector 𝜆𝒙 that is parallel to 𝒙, as is shown 

geometrically below. 

8 

From the previous considerations, we can derive a general definition of eigenvalue and eigenvector: let A be a 

𝑛 × 𝑛 matrix. The scalar 𝜆 is an eigenvalue of A when there is a nonzero vector 𝒙 such that 𝐴𝒙 = 𝜆𝒙. The vector 

𝒙 is an eigenvector of A corresponding to 𝜆. 

From this definition we can say that an eigenvector can’t be zero. (If 𝒙 is the zero vector, then 𝐴𝟎 = 𝜆𝟎, which is 

true for any real value of 𝜆, so this can’t be a solution.) On the other hand, it is possible to have 𝜆 = 0. 

A matrix can have more than one eigenvector. In fact, if the matrix 𝐴 is an 𝑛 × 𝑛 matrix with an eigenvalue 𝜆, 

and a corresponding eigenvector 𝒙, then every nonzero scalar multiple of 𝒙 is also an eigenvector of 

𝐴. Considering 𝑐, a nonzero scalar and 𝐴𝒙 = 𝜆𝒙: 𝐴(𝑐𝒙) = 𝑐(𝐴𝒙) = 𝑐(𝜆𝒙) = 𝜆(𝑐𝒙). 

In addition, if 𝒙𝟏 and 𝒙2 are eigenvectors corresponding to the same eigenvalue 𝜆, then their sum is also an 

eigenvector corresponding to 𝜆 : 𝐴(𝒙𝟏 + 𝒙𝟐) = 𝐴𝒙𝟏 + 𝐴𝒙𝟐 = 𝜆𝒙𝟏 + 𝜆𝒙𝟐 = 𝜆(𝒙𝟏 + 𝒙𝟐). 

The set of all the eigenvectors of an eigenvalue 𝜆, together with the zero vector, is a special subspace of 𝑅𝑛 called 

the eigenspace of 𝜆. The general definition is: if A is an 𝑛 × 𝑛 matrix with an eigenvalue 𝜆, then the set of all 

eigenvectors of 𝜆, together with the zero vector is a subspace of 𝑅𝑛. This subspace is the eigenspace of 𝜆. 

Mathematically, we can write the eigenspace as {𝒙: 𝒙 is an eigenvector of 𝜆} ∪ {𝟎}. 

Determining the eigenvalues and corresponding eigenspaces of a matrix can involve algebraic manipulation. In 

the next paragraphs we will describe the series of step that are necessary to find them.  

To find the eigenvalues and eigenvectors of an 𝑛 × 𝑛 matrix 𝐴, we set 𝐼 , the 𝑛 × 𝑛 identity matrix. Rewriting 

𝐴𝒙 = 𝜆𝒙 as 𝜆𝐼𝒙 = 𝐴𝒙 and rearranging gives (𝜆𝐼 − 𝐴)𝒙 = 0. 

This homogeneous system of equations has nonzero solutions if and only if the coefficient matrix (𝜆𝐼 − 𝐴) is not 

invertible (if and only if its determinant is zero). Which is represented mathematically by the equation 

 
8 Image from Larson R., Elementary linear Algebra, Cengage Learning (2017), 8^th edition 
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det(𝜆𝐼 − 𝐴) = 0 , also called the “characteristic equation” of 𝐴. Moreover, when expanded to polynomial form, 

the polynomial |𝜆𝐼 − 𝐴| is the “characteristic polynomial” of 𝐴.  

|𝜆𝐼 − 𝐴| = 𝜆𝑛 + 𝑐𝑛−1𝜆
𝑛−1+. . . +𝑐2𝜆

2 + 𝑐1𝜆 + 𝑐0 

So, the eigenvalues of an 𝑛 × 𝑛 matrix 𝐴 correspond to the roots of the characteristic polynomial of 𝐴. 

The next theorem formally states this solution: Let 𝐴 be an 𝑛 × 𝑛 matrix.  An eigenvalue of 𝐴 is a scalar 𝜆 such 

that 𝑑𝑒𝑡(𝜆𝐼 − 𝐴) = 0. The eigenvectors of A corresponding to 𝜆 are the nonzero solutions of (𝜆𝐼 − 𝐴) = 0. 

A brief and more informal description of the steps required to find eigenvalues and eigenvectors can be divided 

into three parts. In the first, taking the 𝑛 × 𝑛 matrix 𝐴, we form the characteristic equation |𝜆𝐼 − 𝐴| = 0, (it will 

be a polynomial equation of degree 𝑛 in the variable 𝜆, like in the formula written above). In the second, we find 

the real roots of the characteristic equation, the solutions are the eigenvalues of 𝐴. In the third, for each 

eigenvalue 𝜆𝑖, we find the eigenvectors corresponding to it, by solving the homogeneous system (𝜆𝑖𝐼 − 𝐴)𝒙 =

0.  

If an eigenvalue 𝜆𝑖 occurs as a multiple root of the characteristic polynomial (it occurs 𝑘 times), then we say that  

𝜆𝑖 has multiplicity 𝑘. This implies that (𝜆 − 𝜆𝑖)𝑘 is a factor of the characteristic polynomial. 

Furthermore, the set of all the eigenvectors 𝒙𝟏, 𝒙𝟐, 𝒙𝟑 …𝒙𝒏 that correspond to distinct eigenvalues 

𝜆1, 𝜆2, 𝜆3 …𝜆𝑛 of the 𝑛 × 𝑛 matrix 𝐴 is linearly independent.  

-Markov Chains: 

Many types of applications involve a finite set of states {𝑆1 , 𝑆2, … , 𝑆𝑛} of a population and a mechanism to move 

from one state to the other. We assume the movement occurs at a specified moment of time. 

If it is possible to go from state 𝑆𝑖 to state 𝑆𝑗, we say that 𝑆𝑗 is “accessible” from 𝑆𝑖. Furthermore, two states are 

said to “communicate” if they are accessible to each other. We can write 𝑆𝑖 ↔ 𝑆𝑗. From the graphical point of 

view, communication between two states is represented by two directed paths from 𝑆𝑖 to 𝑆𝑗 and from 𝑆𝑗 to 𝑆𝑗. 

Following this reasoning, the communication relation is an equivalence relation with the properties of symmetry, 

reflexivity and transitivity. 

The probability that a member of a population will change from the 𝑗𝑡ℎ state to the 𝑖𝑡ℎ state is represented by 

a number 𝑝𝑖𝑗, where 0 ≤ 𝑝𝑖𝑗 ≤ 1. A probability of 𝑝𝑖𝑗 = 0 means that the member is almost sure9 not to change 

from the 𝑗𝑡ℎ state to the 𝑖𝑡ℎ state, whereas a probability of 𝑝𝑖𝑗 = 1 means that the member is almost sure10 to 

change from the 𝑗𝑡ℎ state to the 𝑖𝑡ℎ state. The set of all these probabilities can be put into 𝑃, the “matrix of 

transition probabilities”, which gives the probabilities of each possible type of transition (or change) within the 

population. At each transition, each member in a given state must either stay in that state or change to another 

state. From the point of view of probabilities, this means that the sum of the entries in any column of 𝑃 is 1. 

 For instance, in the figure below, in the first column 𝑝11 + 𝑝21 + ⋯+ 𝑝𝑛1 = 1. 

 
9 The notation almost sure instead of sure referred to the probability takes into consideration the fact that the set of 
outcomes on which the event doesn’t occur has probability equal to 0, even thought the set might not be empty. This is 
the case when the sample space taken into consideration is an infinite set. 
10 As in 8, events with probability 1 not necessarily include all possible outcomes.  
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𝑃 is a “stochastic matrix”, (the term “stochastic” means “regarding conjecture”), because is a square matrix with 

all positive entries and the sum of the entries in each column is equal to 1. The general definition for a stochastic 

matrix is an 𝑛 × 𝑛 matrix 𝑃 is a stochastic matrix when each entry is a number between 0 and 1 inclusive, and 

the sum of the entries in each column of 𝑃 is 1. 

Providing some mathematical examples, the matrix 𝐴 is stochastic since is a square matrix with all the entries 

between 0 and 1 and the sum of its columns is 1. On the other hand, matrix 𝐵 is not stochastic. Even if 𝐵 is a 

square matrix with entries between 0 and 1, the sum of the entries in each column is not 1. 

𝐴 = [
0.9 0.8
0.1 0.2

] , 𝐵 = [

1

2

1

4

0
3

4

] 

An important remark to make is that, in our discussion, we will consider only “column-stochastic matrices”, in 

which the sum of each column sums up to 1. In reality, also “row-stochastic matrices” exist (matrices where the 

sum of the entries of each row sums up to 1, but the other characteristic properties for stochastic matrices 

remain the same: the matrix is a square matrix, and the entries are nonnegative numbers between zero and 

one). For the reason just stated, in the following paragraphs, we will consider as synonyms “stochastic matrix” 

and “column-stochastic matrix”, without taking into consideration the row-stochastic ones.  

A stochastic matrix, representing a matrix of transitional probabilities can be referred to as “state matrix”, a 

matrix in which the entries represent portions of the whole. 

The concept of stochastic matrix is essential to define what is a Markov Chain.  

A “Markov chain”, named after Russian mathematician Andrey Andreyevich Markov (1856–1922), is a sequence 

{𝑋𝑛} of state matrices that are related by the equation 𝑋𝑘+1 = 𝑃𝑋𝑘, with 𝑃 as a stochastic matrix.  

In a Markov chain, the future depends only upon the present and not upon the past: only the most recent point 

in time affects what happens next. This means that 𝑋𝑡+1 depends upon 𝑋𝑡, but not upon 𝑋𝑡−1, . . . , 𝑋1, 𝑋0; if 𝑋𝑡  is 

known. 

In his first application of the model, A. Markov studied the sequence of 20,000 letters in A.S. Pushkin’s poem 

“Eugeny Onegin” discovering the stationary vowel probability of a vowel following another vowel and of a vowel 

following a consonant. This experiment was relevant not for the result in itself, but for the consideration Markov 

gave to the temporal aspect: his calculations were based on the assumption that a random event can depend 

only on its most recent past.  This is called the Markov Property. 

In general, the 𝑛𝑡ℎ state matrix of a Markov chain for which 𝑃 is the matrix of transition probabilities and 𝑋0 is 

the initial state matrix is 𝑋𝑛 = 𝑃𝑛𝑋0. It is relevant to empathize that, in a Markov chain, we always have to 

assume that the matrix 𝑃 of transition probabilities remains constant between states. 

 
11 Image from Larson R., Elementary linear Algebra, Cengage Learning (2017), 8^th edition 
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A real-life case for a better understanding of this concept could be the process of analyzing a population finding 

the state matrix representing the portions of that population in each state in three years. This is computed by 

repeated multiplication of the initial state matrix 𝑋0 by the matrix of transition probabilities 𝑃. Consequently: 

𝑋1 = 𝑃𝑋0, 𝑋2 = 𝑃2𝑋0 and 𝑋3 = 𝑃3𝑋0. 

Continuing the process of calculating states year after year, the state matrix 𝑋𝑛 eventually reaches a “steady 

state”. That is, as long as the matrix 𝑃 does not change, the matrix product 𝑃𝑛𝑋 approaches a limit 𝑋. This limit 

is the “steady state matrix”. 

Furthermore, a stochastic matrix 𝑃 can be “regular” or “not regular”. In the first case, some power of 𝑃 has only 

positive entries. In the second, every power of 𝑃 has zeros in its entries.  For a regular stochastic matrix 𝑃, the 

sequence of successive powers, 𝑃2, 𝑃3, … , 𝑃𝑛 approaches a stable matrix 𝑃. The entries in each column of 𝑃 are 

equal to the corresponding entries in the steady state matrix 𝑋̅. If 𝑃 is not regular, then the corresponding Markov 

chain may or may not have a unique steady state matrix. 

A summary for finding the steady state matrix 𝑋̅ of a Markov chain is: check that the matrix of transition 

probabilities 𝑃 is a regular matrix, solve the system of linear equations obtained from the matrix equation 𝑃𝑋 =

𝑋 along with the equation 𝑥1 + 𝑥2 + ⋯+ 𝑥𝑛 = 1, and finally check the solution found in the matrix equation 

𝑃𝑋 = 𝑋. 

A Markov Chain with 𝑛 different States {𝑆1, 𝑆2, … , 𝑆𝑛} and a matrix 𝑃 of transition probabilities can be 

represented by a directed graph in which edges are given by transitions with nonzero probabilities connecting 

the states. In the paragraphs below we will describe different types of Markov chain, providing also a graphical 

representation.  

Markov chains can be used to model real-life situations, one of these is the so called “absorbing” one. 

Considering a Markov chain with 𝑛 different states {𝑆1, 𝑆2, … , 𝑆𝑛}, the 𝑖𝑡ℎ state 𝑆𝑖 is an absorbing state when, in 

the matrix of transition probabilities 𝑃, 𝑝𝑖𝑗 = 1. That is, the entry on the main diagonal of 𝑃 is 1 and all other 

entries on the 𝑖𝑡ℎ column of 𝑃 are 0.  

For a general-purpose classification of the states, a state is said to be “recurrent” if, any time that we leave that 

state, we will return to that state in the future with probability one. On the other hand, if the probability of 

returning is less than one, the state is called “transient”. 

An absorbing Markov chain has two properties: the Markov Chain has at least one absorbing state and it is 

possible for a member of the population to move from any nonabsorbing state to an absorbing state in a finite 

number of transitions.  

A relevant remark to make is that, if the matrix of transition probabilities  𝑃 of a Markov chain is absorbing, it is 

not granted that also the Markov chain is so. We will provide two examples for a better understanding of this 

concept. 

Considering the matrix below, the second state, represented by the second column, is absorbing, but the 

corresponding Markov Chain is not. The reason is that it is not possible to move from the states 𝑆3 and 𝑆4 to the 

state 𝑆2. 
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On the other hand, in the second example, the matrix 𝑃 has two absorbing states 𝑆2 and 𝑆4. The corresponding 

Markov chain is absorbing because it is possible to move from either the nonabsorbing states (𝑆1 and 𝑆3 ) to 

either of the absorbing states (𝑆2 and 𝑆4) in one step.  

14    15 

 

The steady state matrix for an absorbing Markov chain has nonzero values only in the absorbing states, since 

these states “absorb” the population. In general, an absorbing Markov chain with one absorbing state has a 

unique steady state matrix regardless of the initial state matrix. Furthermore, an absorbing Markov chain with 

two or more absorbing states has an infinite number of steady state matrices, which depend on the initial state 

matrix.  

The opposite of an absorbing Markov chain is the “irreducible” one: a Markov Chain in which all states 

communicate with each other. Graphically, an irreducible Markov chain is represented by a strongly connected 

graph.   

Another relevant property of Markov chains is periodicity, which measures if the chain returns or not to state 

𝑖 at regular times. Periodicity uses the variable 𝑑(𝑖) (for 𝑆𝑖 ) as a reference frame.  

If 𝑑(𝑖) ≠ 1, the chain returns to state 𝑖 at regular times. In this case we say that state 𝑖 is “periodic”. On the other 

hand, if 𝑑(𝑖) = 1 the chain returns at state 𝑖 can occur at irregular times (or it can also never occur). Under such 

conditions, state 𝑖 is “aperiodic”. 

States that communicate have the same period: if 𝑆𝑖 ↔ 𝑆𝑗, then 𝑑(𝑖) = 𝑑(𝑗). If states don’t communicate, then 

they are aperiodic. 

 
12   Image from Larson R., Elementary linear Algebra, Cengage Learning (2017), 8^th edition 
13   Image from Larson R., Elementary linear Algebra, Cengage Learning (2017), 8^th edition 
14   Image from Larson R., Elementary linear Algebra, Cengage Learning (2017), 8^th edition 
15   Image from Larson R., Elementary linear Algebra, Cengage Learning (2017), 8^th edition 
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A Markov chain can be “periodic” or “aperiodic”, depending on their states. In general, an irreducible Markov 

chain is aperiodic if and only if all its states are aperiodic, otherwise it is periodic. 

A useful method to check if a Markov Chain is aperiodic or not is to use the greatest common divisor (gcd) 

between two numbers, for example 𝑚 and 𝑙. If gcd (𝑚, 𝑙)=1, then 𝑚 and 𝑙 are said to be co-prime. If we can find 

two co-prime numbers 𝑙 and 𝑚 such that 𝑝𝑖𝑖
(𝑙)

> 0 and 𝑝𝑖𝑖
(𝑚)

> 0, then we can conclude that state 𝑖 is aperiodic. 

That is, we can go from state 𝑖 to itself in 𝑙 steps, and also in 𝑚 steps. If we have an irreducible Markov chain, 

this means that the chain is aperiodic. Since the number 1 is co-prime to every integer, any state with a self-

transition is aperiodic. 

-The Power Method: 

As stated before, eigenvalues of an 𝑛 × 𝑛 matrix are found by solving the characteristic equation: |𝜆𝐼 − 𝐴| =

𝜆𝑛 + 𝑐𝑛−1𝜆
𝑛−1 + ⋯+ 𝑐2𝜆

2 + 𝑐1𝜆 + 𝑐0. The problem with this method is that, for large values of 𝑛, it is 

complicated and time consuming to solve.  

The alternative approach that is presented below is the Power Method: an iterative method with the aim of 

approximating “dominant eigenvalues” (the eigenvalues of a square matrix 𝐴 that are largest in absolute value).  

This is possible if we consider a square matrix 𝐴 with 𝑛 linearly independent eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑛, and the 

corresponding eigenvectors 𝒗1, 𝒗2, … , 𝒗𝑛. As the eigenvalues are scalars, we can rank them such that: |𝜆1| >

|𝜆2|… > |𝜆𝑛|. In addition, eigenvectors can be considered as a basis for the vector space since they are linear 

independent and span it. Consequently, it is possible to write: 𝒙0 = 𝑐1𝒗1 + 𝑐2𝒗2 + ⋯+ 𝑐𝑛𝒗𝑛.  

By multiplying both sides by 𝐴 we get: 𝐴𝒙0 = 𝑐1𝐴𝒗1 + 𝑐2𝐴𝒗2 + ⋯+ 𝑐𝑛𝐴𝒗𝑛. 

Considering also 𝐴𝒙0 = 𝜆𝒙0:  𝐴𝒙0=𝑐1𝜆1𝒗1 + 𝑐2𝜆2𝒗2 + ⋯+ 𝑐𝑛𝜆𝑛𝒗𝑛. 

Formally, the general definition of a dominant eigenvalue is “Let 𝜆1, 𝜆2 …𝜆𝑛 be the eigenvalues of an 𝑛 × 𝑛 matrix 

𝐴, 𝜆1 is called the dominant eigenvalue of 𝐴 if |𝜆1| > |𝜆𝑖|, 𝑖 = 2,…𝑛. The eigenvectors corresponding to 𝜆1 are 

called the dominant eigenvectors of 𝐴”. Where |𝑎| is the absolute value of the real number 𝑎.  

A relevant remark to make is that not every matrix has a dominant eigenvector.  

To apply the Power method, we have to assume that the square matrix 𝐴 has a dominant eigenvalue with 

corresponding dominant eigenvectors. Then we set the initial approssimation 𝒙0 of one of the dominant 

eigenvectors of 𝐴. 𝒙0 must be a nonzero vector in 𝑅𝑛. With the first iteration we get: 

𝐴𝒙0 = 𝑐1𝜆1 [𝒗1 +
𝑐2

𝑐1

𝜆2

𝜆1
𝒗2 + ⋯+

𝑐𝑛

𝑐1

𝜆𝑛

𝜆1
𝒗𝑛] = 𝑐1𝜆1𝒙1, where 𝒙1 = 𝒗1 +

𝑐2

𝑐1

𝜆2

𝜆1
𝒗2 + ⋯+

𝑐𝑛

𝑐1

𝜆𝑛

𝜆1
𝒗𝑛 is a new vector. 

This result ends the first iteration. Then, it is possible to multiply 𝐴 to 𝒙1 to start the second iteration, obtaining:  

𝐴𝒙1 = 𝜆1 [𝒗1
𝑐2

𝑐1

𝜆2
2

𝜆1
2 𝒗2 + ⋯+

𝑐𝑛

𝑐1

𝜆𝑛
2

𝜆1
2 𝒗𝑛] = 𝜆1𝒙2 and  𝒙2 = 𝒗1 +

𝑐2

𝑐1

𝜆2
2

𝜆1
2 𝒗2 + ⋯+

𝑐𝑛

𝑐1

𝜆𝑛
2

𝜆1
2 𝒗𝑛. 

We can continue multiply 𝐴 with the new vector we get from the iteration 𝑘 times:  

𝐴𝒙𝑘−1 = 𝜆1 [𝒗1

𝑐2

𝑐1

𝜆2
𝑘

𝜆1
𝑘 𝒗2 + ⋯+

𝑐𝑛

𝑐1

𝜆𝑛
𝑘

𝜆1
𝑘 𝒗𝑛] = 𝜆1𝒙𝑘 

Since 𝜆1 is the dominant eigenvalue, the ratio 
𝜆𝑖

𝜆1
< 1 for all 𝑖 > 1. So, when 𝑘 is increased to a sufficient large, 

the ratio (
𝜆𝑛

𝜆1
)
𝑘

will be close to zero.  

For large powers of 𝑘, and by properly scaling this sequence, we obtain a good approximation of the dominant 

eigenvector of 𝐴. The term “scaling” refers to the fact that it is best to “scale down” each approximation before 

proceeding with the next iteration: determine the component of 𝐴𝒙𝒊 that has the largest absolute value and 
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multiply the vector by the reciprocal of this component, for a resulting vector with components of value less 

than or equal to one.  

The power method with scaling converges to a dominant eigenvector. A sufficient condition for convergence is 

that the matrix 𝐴 is diagonalizable and has a dominant eigenvalue. If 𝐴 is an 𝑛 × 𝑛 diagonalizable matrix with a 

dominant eigenvalue, then there exists a nonzero vector 𝒙𝟎 such that the sequence of vectors given by 

𝐴𝒙𝟎, 𝐴
2𝒙𝟎, 𝐴

3𝒙𝟎, … , 𝐴𝑘𝒙𝟎, … approaches a multiple of the dominant eigenvector of 𝐴. 

-the Perron-Frobenius theorem:  

The Perron-Frobenius theorem was developed by Oskar Perron in 1907 and Georg Frobenius in 1912. This theory 

has important applications in probability theory, economics, social networks, and demography.  The general 

definition is: if all entries of an 𝑛 × 𝑛  real matrix 𝐴 are positive, then it has a unique maximal eigenvalue. Its 

eigenvector has strictly positive entries.    

This implies that, if we have a matrix 𝐴 ≥ 0, then the dominant eigenvalue of 𝐴, 𝑟(𝐴), is real-valued and non-

negative. For any other eigenvalue 𝜆 of 𝐴, |𝜆| ≤ 𝑟(𝐴). Finally, we can find a nonnegative and nonzero eigenvector 

𝒙 such that 𝐴𝒙 = 𝑟(𝐴)𝒙.  

Moreover, if 𝐴 is also irreducible then the eigenvector 𝒙 associated with the eigenvalue 𝑟(𝐴) is strictly positive 

and there exists no other positive eigenvector 𝒙 (except scalar multiples of 𝒙), associated with 𝑟(𝐴). 

For example, given the irreducible nonnegative matrix 𝐴: 

𝐴 = [
0.3 0.2 0.3
0.2 0.4 0.3
0.2 0.5 0.1

] 

Thanks to the Perron-Frobenius theorem we get the value of its dominant eigenvalue 𝜆 = 0.8444. 

 

 

 

 

4) Mathematical explanation of the model 

The web is formed of millions and millions of pages which are interconnected with each other through a series 

of links. At each web page can be assigned a number called “score” or “importance score”, rating quantitatively 

the webpage’s importance. Such value must be a nonnegative real number and is delivered from the links made 

to that page from other web pages. The web thus becomes a democracy where pages vote for the importance 

of other pages by linking on them.  

This concept can be represented graphically through a directed graph with a set of vertices (web pages) and a 

set of edges (links) which join a pair of vertices. An arrow starting from a page and pointing another indicates a 

link. The graph is directed since each edge has a direction, a starting and an ending vertex.  

Below we can see a graphical representation: 
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On various websites it is possible to find an approximation of a page’s PageRank. This reported value is based on 

a scale of 10. For instance, the home page of “The American Mathematical Society” has a PageRank of 8. It is 

important to underline that it is only an approximation, since Google declines to publish actual PageRank in the 

attempt to frustrate those who would manipulate the ranking in their favor.  

Denoting as 𝑘 (with 𝑘 as a real number) the “importance score” of a web page, we can set 𝑘 ≤ 𝑛, where 

𝑛  represents the total number of pages in the web of interest. Comparing consequently, if 𝑘 = 0, the page has 

the lowest possible importance score. Each link to page 𝑘 becomes a vote for page 𝑘’s importance and adds to 

its final value. Comparing page 𝑖 and page 𝑗, the first is more important than the latter if 𝑘𝑖 > 𝑘𝑗.  

Another relevant feature to consider in our analysis is that each page has its own relative importance, influencing 

our study in assessing a value for 𝑘. Therefore, a link to page 𝑖 from an important page should boost 𝑘𝑖’s value 

more than a link from an unimportant page. Even if this principle is correct in itself, it could be used to gain extra 

influence by a web page, by simply linking to lots of other pages, resulting in a too self-referential scheme. 

Therefore, in our model, for each link the web page gets a total of one vote, weighted by that web page’s score, 

which is divided up among all its outgoing links. In addition, a link from a page to itself is not counted. 

Mathematically, 𝑘𝑖’s value can be expressed as 𝑘𝑖 = ∑
𝑘𝑗

𝑛𝑗

𝑛
𝑗=0  , where 𝑘𝑗 is the importance score of page 𝑗 and 𝑛𝑗 

the number of outgoing links from page 𝑗. All the numbers are assumed to be positive.  

Thanks to the formula to find a value for  𝑘𝑖, the web ranking problem can be transformed into a problem of 

finding an eigenvector for a square matrix. Calling 𝐴 the “link matrix” of a given web, we search for an eigenvector 

𝒙 with eigenvalue 𝜆 equal to 1 for the matrix 𝐴. We also call 𝒙 a “stationary vector” of 𝐴. (By definition, 𝐴𝒙 = 𝜆𝒙 

with 𝒙 ≠ 0, for eigenvalues 𝜆 and eigenvectors 𝒙 of a matrix 𝐴). Using this formula, we obtain a ranking of pages 

which is more accurate and different from the one we could obtain by simply counting back links. 

Taking as an example the previous graph: 

𝐴 =

[
 
 
 
 
 0 0 1

1

2
1

3
0 0 0

1

3

1

2
0

1

2
1

3

1

2
0 0]

 
 
 
 
 

, with eigenvectors equal to 1 all the multiples of the vector 𝒙 = [

12
4
9
6

]. The subsequent results 

are the importance scores: 𝑥1 =
12

31
≈ 0.378, 𝑥2 =

4

31
≈ 0.129, 𝑥3 =

9

31
≈ 0.290, 𝑥4 =

6

31
≈ 0.194. 

In general, the link matrix 𝐴 has 1 as an eigenvalue if the web has no dangling nodes (pages without outgoing 

links). This result is used in the study of Markov chains, in which the principle applies: A square matrix is a column 

stochastic matrix if all of its entries are nonnegative and the entries in each column sum to 1. The matrix 𝐴 for 

 
16 Image taken from Brian K., Leise T., The $25,000,000,000 Eigenvector: The Linear Algebra behind Google, “Siam 
REVIEW”, vol.48 n.3, September 2006 
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the web in analysis has no dangling nodes and the sum of the elements present in each column is equal to 1, so 

it is column stochastic.  

From this example we can derive the general proposition: every column stochastic matrix has 1 as an eigenvalue. 

Formally we can write: dim(𝑉1(𝐴)) = 1, where 𝑉1(𝐴) represents the eigenspace for the eigenvalue 1 of a 

column-stochastic matrix 𝐴. Its dimension is equal to 1 so that there is a unique eigenvector 𝒙, such that Σ𝑖𝑥𝑖 =

1. 

However, using the previously explained formula may bring some issues in the process of ranking the elements 

of a web. Worth mentioning examples are webs with nonunique rankings and webs with dangling nodes. 

As far as dangling nodes are concerned, the link matrix 𝐴 contains one or more columns of zeros. 𝐴 is column-

substochastic: the column sums of A are less than or equal to 1 and all its eigenvectors are less or equal to 1, but 

1 need not actually be an eigenvalue for 𝐴. 

Later, in our discussion, we will present a solution to this problem provided thanks to the Power method.  

On the other hand, webs with nonunique rankings consist of 𝑟 disconnected sub-webs 𝑊1,𝑊2 …𝑊𝑟  , resulting 

in a difficulty to find a common reference frame for comparing the scores of pages in one sub-web with those 

into another.  In fact, the link matrix 𝐴 doesn’t yield a unique ranking for all the webs, instead provides more 

eigenvectors that can be considered as a solution to the problem, and it is not clear which should be used for 

the final ranking. This situation arises since dim (𝑉1(𝐴)) ≥ 𝑟, and there is no unique importance score vector 𝒙 

with Σ𝑖𝑥𝑖 = 1; which are values different from the ones of the previous example. We summarize the problem 

with the following graph and corresponding link matrix 𝐴. 

17 

𝐴 =

[
 
 
 
 
 
 
0 1 0 0 0
1 0 0 0 0

0 0 0 1
1

2

0 0 1 0
1

2
0 0 0 0 0]

 
 
 
 
 
 

 

 𝑉1(𝐴) is two-dimensional (dim(𝑉1(𝐴)) > 1) and so there is not a unique importance score vector 𝒙 with Σ𝑖𝑥𝑖=1.  

To solve the problem, we must assume that the matrix 𝐴 has a block diagonal structure, where 𝐴𝑖  represents the 

link matrix for 𝑊𝑖. This result is possible if we consider each sub-web 𝑊𝑖 as a web on its own. Each matrix 𝐴𝑖  is 

column-stochastic with some eigenvector 𝒗𝒊 with value 1. In addition, for each 𝑖 between 1 and 𝑟, we create a 

 
17 Image from Brian K., Leise T., The $25,000,000,000 Eigenvector: The Linear Algebra behind Google, “Siam REVIEW”, 
vol.48 n.3, September 2006 
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vector 𝒘𝑖, which has zero components for the elements corresponding to blocks other than block 𝑖, making them 

linearly independent eigenvectors for 𝐴 with eigenvalue 1. 

𝐴 = [

𝐴1 0 ⋯ 0
0 𝐴2 … 0
0 ⋮ ⋱ 0
0 0 0 𝐴𝑟

], 𝒘1 =

(

 
 

𝑣1

0
0
⋮
0 )

 
 

 and 𝒘2 =

(

 
 

0
𝑣2

0
⋮
0 )

 
 

 , …, 𝐰𝑟 =

(

 
 

0
0
⋮
0
𝑣𝑟)

 
 

 

 

so that        𝐴𝒘𝑖 = 𝐴

(

 
 
 
 

0
⋮
0
𝒗𝑖

0
⋮
0 )

 
 
 
 

= 𝒘𝑖 

In addition, a possible remedy for dim(𝑉1(𝐴)) > 1 is given by a modification to the link matrix 𝐴. This solution 

applies to all the 𝑛-page webs without dangling nodes, including the case with multiple sub-webs.  

Calling 𝑆 an 𝑛 × 𝑛 column-stochastic matrix such that dim(𝑉1(𝑆)) = 1, we can calculate 𝑀, a matrix which is 

the weighted average of the link matrix 𝐴 and 𝑆. 

𝑀 = (1 − 𝑚)𝐴 + 𝑚𝑆 

𝑚 is a value between 0 and 1, (Google sets 𝑚 = 0.15). The matrix 𝑀 is column-stochastic and dim(𝑉1(𝑀)) =

1.  

Two extreme cases are: 𝑚 = 0 and 𝑚 = 1. In the first one 𝑀 = 𝐴,  (we get the problem discussed in the above 

part). When this happens, 𝑀 is sub-stochastic as 𝐴, but the formula doesn’t provide a solution for dangling 

nodes. In the second case 𝑀 = 𝑆: this is the most egalitarian result achievable since all web pages are equally 

important.  

Considering again 𝑀 = 𝐴, we can set the equation 𝒙 = 𝑀𝒙 as: 𝒙 = (1 − 𝑚)𝐴𝒙 + 𝑚𝒔, with 𝒔 as a column vector 

with all entries 1 𝑛⁄ . This further step is really important in our reasoning for a variety of reasons that will be 

explained in the next paragraphs.  

First, the advantage of using 𝑀 instead of 𝐴 is that it enables us to compare pages in different sub-webs. This is 

possible thanks to the properties of matrix 𝑀.  We can say that if 𝑀 is positive and column-stochastic, then any 

eigenvector in 𝑉1(𝑀) has all positive or all negative components. Consequently, if each entry 𝑀𝑖𝑗 of 𝑀 is strictly 

positive for all 𝑖 and 𝑗, then dim(𝑉1(𝑀)) = 1.  

A good approach to show this result is to use a contradiction: if we suppose that there are two linearly 

independent vectors 𝒗 and 𝒘 in the subspace 𝑉1(𝑀); then, for any real number 𝑠 the vector 𝒙 = 𝒗 + 𝑠𝒘 must 

be in 𝑉1(𝑀), with all negative or all positive components. But it is a general proposition in linear algebra that the 

vector obtained by two linearly independent vectors and some choice of 𝑠, must contain components of mixed 

sign, a contradiction. We conclude that 𝑉1(𝑀) can’t contain two linearly independent vectors, and so it has 

dimension 1.  

Second, the column vector 𝒔  with all entries 1 𝑛⁄  helps us solve the problem of dangling nodes, being an 

application of the Power Method, thanks to its general principle of “convergence”.  

The reasoning behind this is the random surfing model explained in the introduction of this text: if we surf 

randomly, at some point we will surely get stuck at a dangling node, a page with no links. To keep going we will 
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choose the next page at random, pretending that a dangling node has a link to every other page in the web. This 

is a probabilistic interpretation of the link matrix. The direct effect is its modification: the columns of all zeros 

corresponding to a dangling node will be replaced with a column in which each entry has a value of 1 𝑛⁄ . The 

new matrix obtained is stochastic and, by property, always has a stationary vector. 

A relevant example to show why the Power Method is so important is Google’s real-life link matrix 𝐻: a square 

matrix with 𝑛 = 25 𝑏𝑖𝑙𝑙𝑖𝑜𝑛 columns and rows. Most of the entries in 𝐻 are zero: studies show that web pages 

have on average about ten links, meaning that, on average, all but 10 entries in every column are 0. Furthermore, 

considering all 25,000,000,000 Google’s pages, it is more probable to find some dangling nodes than in simpler 

models like the ones presented above. 

Following this theory and coming back to our reasoning with matrix 𝑀, we begin by choosing a vector 𝒙0as a 

candidate for the stationary vector 𝒙, and then produce a sequence of vectors 𝒙𝑘by 𝒙𝑘+1 = 𝑀𝒙𝑘. The general 

principle is that the sequence 𝒙𝑘 will converge to the stationary vector 𝒙, which will tell the relative importance 

of each page. 

As the connectivity of the graph increases (a larger number of edges), convergence is usually achieved after fewer 

iterations, and the convergence curves for directed and undirected graph practically overlap. 

Without the just explained reasoning, in applying 𝒙𝑘+1 = 𝑀𝒙𝑘 , a page with no links would have taken all the 

importance from the other pages in each iterative step, without passing it to any other page. The final effect is 

that all the importance is drained off the web and the ranking of all the pages is zero. 

For instance, considering a simple web of two pages in which only one is linked to the other while the other has 

no links, after only three iterations of the presented algorithm, the result would be that the importance score of 

both pages is zero. 

Finally, after explaining all the reasoning behind Google’s Page rank algorithm and the mathematic calculations 

involved, we can give a general and more schematic definition, providing the formula for the importance score 

𝑘𝑖 of page 𝑖.  

𝑘𝑖[𝐴] =
𝑚

𝑁
+ (1 − 𝑚)(∑

𝑘𝑗

𝑛𝑗

𝑛

𝑘=1

) 

Now, 𝑁 is the total number of pages in the web in analysis. The number 𝑑 = (1 − 𝑚) = 0.85 is Google’s 

“dumping factor”, which represents the probability that the random surfer will continue to click link after link 

iteration after iteration, without finding any dangling node. Instead, the probability that the random clicking will 

eventually stop is represented by 𝑚 = 0.15. 𝑛 represents the number of pages in the web containing at least a 

link towards the link matrix 𝐴. 𝑘𝑗 is the importance score of each page linking page 𝑖, and 𝑛𝑗 the number of 

outgoing links from page 𝑗. 
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5) Real-life application of the model 

Google’s algorithm PageRank has many possible real-life applications. The one we will describe and try to 

replicate in our analysis is the measurement of individual contributions in teams18, taking as a unit of measure 

the coworker productivity also called eigenvalue productivity (EVP). 

In general, when people are divided in teams and work together, the productivity of the team as a whole is 

evident and can be assessed in relation to a variety of observable and relatively easy to measure variables, for 

example: the quality of the final product, total sales, revenues, percentage of wins, points scored, number of 

orders, etc.  

On the other hand, measuring the productivity of each team member is not readily identifiable, even if a fixed 

task is assigned to each of its components. This difficulty is inherently associated with the very nature of 

teamwork: a team is not just the sum of its members’ abilities and the interaction between team members is 

“multifaceted”. Coworkers interact, and the output is the result of the combination of their capacities and 

productivities. In addition, the interplay of workers also depends on their actual willingness to cooperate. A 

worker can work efficaciously only if he goes along with his endeavor. (Without the necessary cooperation and 

coordination, problems like free riding and moral hazard can arise in teams). This multiplicity of interactions 

raises the question of how one can consistently define and then calculate coworker productivities from the 

team’s observed data.   

A real-life example can be found in team sports. Throughout the years, a variety of units of measure have been 

used to infer the coworker productivity of a player: number of goals scored, assist provided, duels won, ball 

touches. However, these numbers wrongly attribute successful actions to an individual player, while they are the 

joint product of the player and his teammates. A player performs well only if the other components of the team 

are willing to lay the proper groundwork for the player ‘s success. 

Consequently, we can state that the team productivity of a player depends on the productivities of all the 

teammates, and in particular on the ones of its “neighbors” in the field: empirical evidence is showing that some 

combinations of positions or some pairs of players are more complementary than others.   

Summarizing: In a team, the team productivity of coworker 𝑖 depends positively on the productivity of all other 

teammates and, in particular, of those who are “adjacent to” or “central for” that player. Specifically, the more a 

teammate of coworker 𝑖 contributes to the team, the better will be the conditions for worker 𝑖 to perform well 

and contribute to the success of the team. Since this is true for any team member, the productivities of all 

coworkers on a team must be determined simultaneously. 

The aim of the model that will be presented here is to formalize this concept mathematically, in a general and 

flexible way that can be applied to distinct economic contests and with many different available databases. 

Moreover, since EVP provides the ranking of team members, it can also be related to the literature on ranking.  

Before the mathematical explanation, further clarifications on basic assumptions are needed.  

First, the general pattern is that groups arrive at more rational decisions than do individuals, suggesting that 

teamwork outperforms individual actors. 

Moreover, the approach used is to calculate the coworker productivities of a given team assigned to a given task. 

The decision process of the manager on the optimal composition of the team or on how and why he/she selected 

a specific worker for a given project is not part of the model. This kind of decisions are considered as exogenously 

determined. 

 
18 In the next paragraphs we will make an in-depth description of the research article: M𝑢̈ller J., Uppmann T., Eigenvalue 
productivity: Measurement of individual contributions in teams, “PLOS ONE”, vol.17, n.1, September 2022 
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In addition, certain team roles are more important for team performance than others. The recognition of a single 

member of a team will produce positive “spillover effects” on the performance of other team members, as well 

as the overall team performance, via social influences processes. This is particularly the case when the 

distinguished individual has a central position in the team. In fact, there are some individuals that, when added 

to a team, consistently lead to an outperformance of the team over its predicted one. Beyond they’re task-

specific skills, these people have higher social skills and seem to motivate teammates to exert more individual 

effort.  

As far as team structure is concerned, the more centralized one is considered as the most successful. The degree 

and type of centralization of a team is frequently analyzed in network analysis, which studies the interactions 

between nodes and how they work in case of externalities.   

Considering a team 𝑁 = {1, 2… , 𝑛} of a fixed set of 𝑛 workers, and assuming the productivity of each worker as 

nonnegative, we can write the formula for the productivity of worker 𝑖 as:  

𝑝𝑖(𝑁) =
1

𝜆
∑ 𝑔𝑖𝑗(𝑁)𝑝𝑗(𝑁)𝑗𝜖𝑁 ,  ∀𝑖𝜖𝑁 

Where 𝑔𝑖𝑗(𝑁) ≥ 0 quantifies the extent to which worker 𝑖 benefits from the coworker productivity of worker 𝑗. 

It can be interpreted as a measure of the productivity-enhancing effect worker 𝑗 exerts on worker 𝑖’s productivity, 

thanks to 𝑗’s proficiencies, team skills, social competencies, etc. Following the model, the corresponding 

𝑔𝑖𝑖(𝑁) ≥ 0 represents the idiosyncratic productivity of worker 𝑖, which is the productivity he would have without 

the “positive effect” of his teammate’s productivities. A remark to make is that, as previously stated, team 

members receptiveness for other member’s constitutions is not symmetric. Mathematically, it is mirrored by the 

fact that usually 𝑔𝑖𝑗  and 𝑔𝑗𝑖  are not equal. 

𝜆 > 0 is a strictly positive normalization factor, used to adjust values in the model. By multiplying the 

productivities of the workers by 
1

𝜆
 , they are reduced to a value between 0 and 1. The sum of all the normalized 

𝑝𝑖(𝑁) will be equal to 1. Graphically, this concept could be represented by a function with the area under the 

graph equal to 1. An example is the standard normal distribution of a normalized Gaussian function.  

Since the relation just presented holds for all the workers in 𝑁, we can write the equation system: 

𝒑(𝑁) ≡
1

𝜆
𝐺(𝑁)𝒑(𝑁) 

𝒑(𝑁) = (𝑝𝑖, … , 𝑝𝑛)(𝑁) is the vector of coworker productivities. 𝐺(𝑁), instead, represents the matrix of the 

coefficients measuring the extent to which individual productivities of team members affect each other: 𝐺(𝑁) ≡

[𝑔𝑖𝑗(𝑁)]
𝑖,𝑗∈𝑁

≥ 𝟎.  

The matrix of pairwise productivities coefficients 𝐺 is nonnegative, nonzero, and irreducible with main diagonal 

elements being normalized to unity, i. e.  𝑔𝑖𝑖(𝑁) = 1, so that 𝐺 ≥ 𝐼. 

(For a more general definition: 𝑔𝑖𝑖(𝑁) = 𝑐, where 𝑐 is a nonnegative constant. In this way it is possible to write 

𝐺 ≥ 𝑐𝐼, even if for the purpose of our model is sufficient 𝐺 ≥ 𝟎). 

The main diagonal elements of the productivity matrix 𝐺 represent stand-alone productivities of the team 

members, which can be interpreted as fixed effects in economic terms. These productivities include intrinsic and 

idiosyncratic components that can be employed on a stand-alone basis, for example in solo projects. The team-

dependent productivities, instead, are captured by the off-diagonal elements of 𝐺. 

Since in our model we are interested in conceptualizing and measuring team productivities, any heterogeneity 

in stand-alone productivities is disregarded. Such assumption is mirrored by the fact that diagonal elements of 

𝐺 are homogeneous, for example 𝑔𝑖𝑖(𝑁) = 1, ∀𝑖𝜖𝑁.  
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In order to be able to compute also stand-alone productivities and relaxing the assumption, the required team 

data must have a richer structure, including also statistics from projects carried on by a single person. With this 

information available, the EPV can be generalized by substituting the constant diagonal (1, … ,1) with the non-

homogeneous stand-alone productivities (𝑔11, … , 𝑔𝑛𝑛).  

Following the method presented above about how to find eigenvalues and eigenvectors of a matrix, with the 

help of the identity matrix 𝐼, we can rearrange the previous formula as: 

𝜆𝒑 = 𝐺𝒑 

𝜆𝐼𝒑 = 𝐺𝒑 

(𝐺 − 𝜆𝐼)𝒑 = 𝟎 

This system has a solution in 𝒑 if and only if det(𝐺 − 𝜆𝐼) = 𝟎, for 𝒑 ≠ 𝟎. This reasoning is equal to 𝜆 being an 

eigenvalue of 𝐺, and 𝒑 being the corresponding eigenvector. Since 𝒑 is the vector of individual productivities we 

want to determine, we refer to the concept of coworker productivities as eigenvalue productivity (EVP).  

In addition, by definition of an eigenvector we can conclude that 𝒑 > 𝟎. Consequently, it is possible to prove the 

uniqueness of the EVP: for any nonnegative, irreducible 𝑛 × 𝑛 matrix of pairwise, directional production 

coefficients 𝐺, the eigenvalue productivity vector 𝒑 > 𝟎, is unique up to a scalar. 

This result is possible thanks to the Perron-Frobenius theorem, according to which a real square matrix with 

positive entries (𝐺 in our case) has a unique real eigenvalue of largest magnitude, with a corresponding 

eigenvector having strictly positive components (𝒑(𝑁)).  

The EPV vector is uniquely defined (except for scaling), since the corresponding Markov Chain is irreducible by 

assumption.  

Eigenvalue productivity provides a ranking of team members. To do so, EVP relies on the pairwise interactions of 

all team members. These interactions include both intrinsic and behavioral characteristics. 

The EPV vector has convenient economic properties, namely symmetry, permutation covariance, null player 

property, aggregate balance, differentiability, relative monotonicity, absolute monotonicity, duplication 

monotonicity. 

The property of symmetry, from the ancient Greek συμμετρία, states that a mathematical object remains 

unchanged under a set of operation transformations. For example, in linear algebra, a symmetric matrix is a 

matrix that is equal to its transpose. Formally, considering the matrix 𝐴, it is symmetric if 𝐴 = 𝐴𝑇. In the context 

of social interactions symmetry is used in a variety of cases, for example in the assessment of reciprocity, 

empathy, sympathy and dialogue between individuals. In our model, it is related to the fact that players 

contributing equally to each team member should be treated identically.  

On the other hand, permutation covariance is a measure of the variability of the act of ordering or changing the 

linear ordering of the members of a set (ordered or not).  In the model in analysis, this property requires that a 

renumbering or renaming of the players should not affect their productivity measures. Therefore, upon 

renumbering the players, the productivity measures should change accordingly.  

The properties of symmetry and permutation covariance represent natural properties for a productivity 

measure. 

For the null player property, if a player is a null player, (a player 𝑖 of 𝑁 who is contributing nothing to the 

productivity of the other team members), then he should be assigned a productivity measure of zero. Another 

relevant feature of this property is that null players can be added or removed from the team without affecting 

the EPV values of the other players, including the other null players if any. Also, the so-called nullifying players 
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exist: a player that makes every coalition in which is put earn zero worth. We will not consider them in our 

analysis.  

On the other hand, the property of aggregate balance sets that if all players contribute equally in total terms, 

then the same productivity measure should be assigned to each team member, irrespective of the distribution 

of their pairwise productivities. It is important to underline that this property doesn’t require that two players 

contributing in equal total terms have the same productivity measure, unless all other 𝑛 − 2  players also 

contribute to the same amount or unless the two players contribute equally to each player for symmetry. 

In mathematics, the property of differentiability describes a function whose derivative exists in all its domain. 

The graph of a differentiable function has a non-vertical tangent line for each point in which it is defined. A 

differentiable function doesn’t contain any break, angle or cusp. For the case in analysis, differentiability sets 

that small productivity changes do not bring sudden changes in the productivity measure: small changes in the 

productivity matrix lead to small changes in the productivity measure.  

Moreover, the concept of monotonicity is generally used to indicate the property of a function or a sequence of 

being increasing or decreasing. For example, a function of an ordered set 𝐸 is monotonic if for each couple of 

points 𝑥1 and 𝑥2 in 𝐸 with 𝑥1 < 𝑥2, the function is 𝑓(𝑥1) < 𝑓(𝑥2) (increasing monotonicity); or  𝑓(𝑥2) < 𝑓(𝑥1) 

(decreasing monotonicity).  

In our model, relative monotonicity and absolute monotonicity consider the effects of nonnegative and nonzero 

perturbations of the 𝑖𝑡ℎ row of 𝐺: player 𝑖 becomes more productive than at least one other player, so the 

productivity measure should mirror this increase in productivity.  

Finally, the property of duplication monotonicity considers the case in which a clone of the player 𝑖 is added to 

the team 𝑁. The direct consequence is that the productivity of player 𝑖 doesn’t increase: adding clones decreases 

the productivity measure of all players whose characteristics are duplicated. The more clones of player 𝑖 are part 

of the team, the less crucial this type of player becomes.  

In order to compute the matrix 𝐺, the first step is to delete from the set of workers 𝑁, the ones that weren’t in 

action during the period of our study. Then, for each pair of workers {𝑖, 𝑗} in 𝑁, we must consider all the projects 

in which 𝑖 and 𝑗 worked together: for each of them the ratio of the points in a “success measure” to the maximal 

numbers of points the team (including players 𝑖 and 𝑗) could have achieved is computed. This point ratio, denoted 

as 𝑠𝑖𝑗, measures the success performance of the pair over all team compositions.  

Then, all the projects in which worker 𝑖 was a member of the team are considered. In this case worker 𝑗 may or 

may not be part of the team. The points these teams have achieved are divided by the maximal number of points 

they could have potentially gained. The result is the point ratio measuring the success performance of worker 𝑖, 

denoted as: 𝑠𝑖𝑖. 

Consequently, the pair-success ratio of workers that have been jointly included in team compositions during the 

period is set as: 𝑠𝑖𝑗 = √𝑠𝑖𝑖𝑠𝑗𝑗. 

Collecting all the pair-success ratio gives the symmetric matrix 𝑆 ≡ (𝑠𝑖𝑗)𝑖,𝑗∈𝑁. 

Then we compute the ratio 𝑔𝑖𝑗(𝑁) ≡
𝑠𝑖𝑗

𝑠𝑗𝑗
 , which is the relative performance of the pair {𝑖, 𝑗} compared to the 

overall performance of worker 𝑗, an effect attributable to the cooperation with worker 𝑖. This definition explains 

why the main diagonal elements equal unity, since 𝑔𝑖𝑖(𝑁) ≡
𝑠𝑖𝑖

𝑠𝑖𝑖
= 1, ∀𝑖 ∈ 𝑁. 

The elements of the 𝑖𝑡ℎ row of 𝐺 represent the increase in productivity of each worker 𝑗, due to the contributions 

of worker 𝑖. Therefore, the 𝑖𝑡ℎ column of 𝐺 shows how each of the team members contributes to the 
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performance of 𝑖. Following this reasoning, the matrix 𝐺 represents all relative normalized pairwise performance 

measures.  

In the next paragraphs we will provide a simple and artificial example, showing how the matrix 𝐺 and the EPV 

vector can be calculated and how the EPV is consistent with the differences in productivities of the team 

members that are observable after a close look at the data.  

A team 𝑁 of five workers is considered (𝑁 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸}). Team members have worked over seventeen 

projects in six different compositions over a given period of time. The results of each specific team performance 

has been evaluated on a ratio of 26 out of 51 possible abstract points of success. The detailed results for the 

specific team composition are displayed below:

19 

From the data provided, we can infer that the success of a team improved whenever C joined it, so 𝐶 must have 

a relatively high coworker productivity.  Comparing 𝐴𝐶𝐷 with 𝐴𝐷𝐸, 𝐴𝐷𝐸 with 𝐴𝐶𝐸, 𝐵𝐷𝐸 with 𝐵𝐶𝐷, and 𝐵𝐷𝐸 

with 𝐵𝐶𝐸; the ratio of achieved points to maximal points has gone up by replacing 𝐷 or 𝐸 by 𝐶.  

Another important observation to make is that 𝐴 and 𝐵 were never included in the same team composition: this 

situation can arise for workers with the same area of expertise, for example IT specialists or goalies in team 

sports. However, team performance has improved each time 𝐵 has been replaced by 𝐴. In addition, team 

performance has declined each time 𝐷 was included. The EPV should then assign a higher coworker productivity 

to 𝐴 than 𝐵, and a particularity low value for 𝐷.  

From the data provided in the previous table, it is possible to compute the individual results for each worker of 

𝑁, by disregarding the projects in which he/she was not included in the team composition:  

20 

Taking the data, we can write the matrix of pairwise success 𝑆 and then compute the matrix 𝐺, following the 

steps described above.  

 
19 Image from Müller J., Uppmann T., Eigenvalue productivity: Measurement of individual contributions in teams, “PLOS 
ONE”, vol.17, n.1, September 2022 
20 Image from Müller J., Uppmann T., Eigenvalue productivity: Measurement of individual contributions in teams, “PLOS 
ONE”, vol.17, n.1, September 2022 
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Finally, we can calculate the dominant eigenvalue of 𝐺: 𝜆 = 4.97. The associated eigenvector (the EPV) is 𝑝(𝑁) =

(1, 0.7849, 1.3276, 0.4492, 0.9203).  

The EPV values of the workers mirror the observations made before the calculation, as workers 𝐴 and 𝐶 have 

high values of coworker productivity (1 and 1.3276 respectively), while 𝐵 and 𝐷 are low (0.7849 and 0.4492).  

 

 

 

6) The EPV applied to the PRIN 2022 

In the next paragraphs we will present an application of the EPV model21 to some real-word data: the PRIN 2022 

research program.  

PRIN which stands for Progetti di ricerca di Rilevante Interesse Nazionale or Projects of research of relevant 

national interest, is a contest of the MUR (the Italian ministry of university and research) 22. The aim of the PRIN 

is the promotion of the national system of research with the financing of project of public research to strengthen 

the interaction between universities and research institutions and enabling Italy’s participation to the initiatives 

of the Programma Quadro di ricerca ed innovazione dell’innovazione europea (also called Horizon 202023).  

The PRIN finances three-year projects that are demanding both from the point of view of the number of 

professors and researchers involved and from the one of the funds needed, which are much more than what a 

single institution could provide, for example universities.  

The candidates that can present this project are Italian universities (public and private), and all public research 

entities working inside the MUR located in Italy. 

The principles of the program are three. According to the first one the scientific coordinator called PI (principal 

investigator) must have a high-quality scientific profile. In addition, it sets some conditions on the originality of 

the project, the adequacy of the applied method and its feasibility. The second principle states that it can be 

financed a project relative to any research field. Finally, the third one establishes that the MUR must guarantee 

adequate financing.  

The project is divided in three macro-areas: Life sciences (LS category), Physical, Chemical, Engineering Sciences 

(PE category), Social and Human sciences (SH category). 

 
21 We will use the same notation of the EPV model to the PRIN analysis.   
22 Before called Ministero dell’Istruzione e del Merito or ministry of the education and merit.  
23 Horizon 2020 is an EU research and innovation program, with almost €77 billion of funding, created to achieve smart, 
sustainable and inclusive economic growth. The goal is to ensure Europe produces world-class science and technology, 
removes barriers to innovation and makes it easier for the public and private sectors to work together in delivering 
solutions to the big challenges our society faces. 
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The focus will be on the SH1 category, which includes as areas of study individuals, markets, organizations, 

economics, finance and management.   

Taking the data from the documents: Bando PRIN 2022 PNRR: Allegato C Piano dei Costi e dei Contributi24 and 

ALLEGATO A - GRADUATORIE SETTORE SH125, it is possible to apply the model developed by Müller J. and 

Uppmann T.26, to measure the level of individual contributions of universities and research entities when working 

in teams. First, we will make a list of the required steps necessary to compute the ranking. Then, an application 

with some modifications of the EPV model is presented.  

Universities were divided in teams of two to four members and each team was assigned a certain score. All the 

teams involved into the ranking provided by the PRIN 2022 and the final score they obtained were taken into 

consideration.  

Then, for each university 𝑖 the value 𝑠𝑖𝑖  is estimated, computing the arithmetic mean of all the projects in which 

𝑖 contributed.  The values of the points obtained are expressed in a range from 0 to 100 and represent 

percentage points. Below there is a list of the Italian universities and public research entities involved, with the 

corresponding scores:  

Ranking University / Research Entity Score 

1 LA SAPIENZA 88 

2 CATANIA 87 

3 UNICUSANO 86 

4 BASILICATA 86 

5 FEDERICO II 85 

6 ROMA TRE 85 

7 UNINT 85 

8 PIEMONTE ORIENTALE 85 

9 BOCCONI 84,22222222 

10 MILANO 83,625 

11 GRAN SASSO 83 

12 PARTHENOPE 82,5 

13 CAMERINO 82,5 

14 TORINO 82,42857143 

15 TOR VERGATA 82,33333333 

16 AQUILA 82 

17 CA' FOSCARI 81,85714286 

18 CATTOLICA 81,71428571 

19 BOLOGNA 81,69230769 

20 BOLZANO 81 

21 TRENTO 81 

22 PERUGIA 81 

23 GIUSEPPE DE GENNARO 81 

24 CALABRIA 81 

25 TERAMO 81 

 
24 ALLEGATO C-Piano dei Costi e dei Contributi, “Ministero dell’Università e della Ricerca”, see Appendix  
25 ALLEGATO A - GRADUATORIE SETTORE SH1, “Ministero dell’Università e della Ricerca”, 
https://www.mur.gov.it/sites/default/files/2023-07/DD%20n.%201206%20SH1_Allegato%20A.pdf 
26 Müller J., Uppmann T., Eigenvalue productivity: Measurement of individual contributions in teams, “PLOS ONE”, vol.17, 
n.1, September 2022 
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26 LINK CAMPUS 81 

27 LUISS 80,2 

28 ALTI STUDI LUCCA 80 

29 MEDITERRANEA 80 

30 POLITECNICO DI TORINO 79,5 

31 PAVIA 79,5 

32 MILANO BICOCCA 79,4 

33 PADOVA 79,3 

34 CONSIGLIO NAZIONALE RICERCHE 79,2 

35 SANT'ANNA 79 

36 POLITECNICO DI MILANO 79 

37 GENOVA 79 

38 FERRARA 78,5 

39 PALERMO 78,5 

40 FIRENZE 78,33333333 

41 PARMA 78 

42 PISA 77,66666667 

43 BERGAMO 77,6 

44 MODENA REGGIO EMILIA 77 

45 SIENA 77 

46 POLITECNICO MARCHE 77 

47 LUMSA 77 

48 MESSINA 77 

49 CAGLIARI 77 

50 BARI ALDO MORO 77 

51 VERONA 76 

52 POLITECNICO BARI 76 

53 CHIETI-PESCARA 75,5 

54 UDINE 75 

55 CARLO CATTANEO 75 

56 TUSCIA 75 

57 SANNIO DI BENEVENTO 75 

58 FOGGIA 75 

59 FORO ITALICO 75 

60 BRESCIA 75 

 

By following the EPV model, it is possible to compute the values 𝑠𝑖𝑗 = √𝑠𝑖𝑖𝑠𝑗𝑗, representing the pair-success ratio 

of the universities 𝑖 and 𝑗 working together in the same team. Consequently, we can construct the matrix 𝑆0 ≡

(𝑠𝑖𝑗)𝑖,𝑗∈𝑁 and calculate the relative performance of the pair of universities {𝑖, 𝑗} compared to the overall 

performance of university 𝑗, expressed by the ratio 𝑔𝑖𝑗 ≡
𝑠𝑖𝑗

𝑠𝑗𝑗
 . The matrix 𝐺0 is formed by all these ratios. From 𝐺0 

we get a list of the corresponding eigenvalues: from the dominant eigenvalue of 𝐺0, 𝜆0, we get the corresponding 

eigenvector 𝒑0 providing us with the ranking of the universities and the research entities involved.  

In the next paragraphs we will show that, we can make a modification to our model by creating a matrix 𝑆1 with 

the pair-success ratios 𝑠𝑖𝑗 expressed in the form of the arithmetic mean of the project in which the two 

universities or research entities 𝑖 and 𝑗 worked together. For the remaining pair-success ratios, representing the 
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case in which the two entities didn’t work together in any project, a value of 0 is assigned. From the resulting 

matrix 𝑆1, we obtain the corresponding matrix 𝐺1, by applying the previously explained formula 𝑔𝑖𝑗 =
𝑠𝑖𝑗

𝑠𝑗𝑗
 .  

The dominant eigenvalue of 𝐺1 is 𝜆1 = 8,574154006. The ranking provided by the eigenvector 

 𝒑𝟐 ,  corresponding to  𝜆1, is shown below:  for the name of each university there is the corresponding value 

assigned to it, listed from the largest to the smallest.  

Ranking University / Research Entity Corresponding score from the eigenvector 

1 PADOVA 0,318509885 

2 BOLOGNA 0,306984043 

3 TORINO 0,291476497 

4 POLITECNICO DI MILANO 0,274690652 

5 BOCCONI 0,24627073 

6 MILANO 0,223790727 

7 TRENTO 0,216685288 

8 CA' FOSCARI 0,211551994 

9 POLITECNICO DI TORINO 0,198143249 

10 MILANO BICOCCA 0,193452274 

11 LUISS 0,188772575 

12 PAVIA 0,187111271 

13 BERGAMO 0,179016929 

14 CONSIGLIO NAZIONALE RICERCHE 0,168911782 

15 CATTOLICA 0,161723724 

16 LA SAPIENZA 0,155008195 

17 BOLZANO 0,122628501 

18 PIEMONTE ORIENTALE 0,115280359 

19 SANT'ANNA 0,109351281 

20 FIRENZE 0,107328055 

21 VERONA 0,103455657 

22 POLITECNICO MARCHE 0,09300768 

23 PARTHENOPE 0,085624606 

24 UDINE 0,084403041 

25 CARLO CATTANEO 0,083110222 

26 PALERMO 0,080768743 

27 CHIETI-PESCARA 0,080699248 

28 PISA 0,080160927 

29 LUMSA 0,08003566 

30 ROMA TRE 0,077788404 

31 AQUILA 0,076797316 

32 FEDERICO II 0,071782665 

33 SIENA 0,066430756 

34 MODENA REGGIO EMILIA 0,062931138 

35 GENOVA 0,06256882 

36 POLITECNICO BARI 0,062427289 

37 CAMERINO 0,06131811 

38 GRAN SASSO 0,058155144 

39 BARI ALDO MORO 0,056720862 

40 TOR VERGATA 0,050212014 
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41 PERUGIA 0,04748086 

42 FERRARA 0,04705536 

43 MEDITERRANEA 0,043676317 

44 CATANIA 0,043045939 

45 MESSINA 0,042052206 

46 FORO ITALICO 0,040530473 

47 ALTI STUDI LUCCA 0,039853544 

48 UNICUSANO 0,030735657 

49 TERAMO 0,027564674 

50 PARMA 0,026596894 

51 BASILICATA 0,024440546 

52 FOGGIA 0,023136356 

53 TUSCIA 0,022301076 

54 SANNIO DI BENEVENTO 0,0212215 

55 UNINT 0,01793423 

56 GIUSEPPE DE GENNARO 0,017070105 

57 CALABRIA 0,017070105 

58 CAGLIARI 0,008770716 

59 BRESCIA 0,008260833 

60 LINK CAMPUS 0,006629389 

 

From the just presented data, we can see a final ranking of the universities and research entities working in teams 

for the PRIN 2022 projects. The first ranked is the University of Padova, which obtained the highest score 

(0,318509885); while the last ranked is the Link Campus University which obtained the lowest one 

(0,006629389) compared to all the other participants involved.   

Such results provide a different ranking from the one given by the simple arithmetic mean of the projects in 

which the universities took part27. The reason of this divergence is given by the operations made in the models. 

In the classification provided by the arithmetic mean, the value of each university is “weighted” for the number 

of projects in which it was involved. Consequently, if a university worked in many of them, obtaining both high 

and low scores, the resulting value will be an average between all the scores earned. On the other hand, a 

university working in just one project, will obtain a score reflecting just the value gained in that single one.  

For example, the University of Padova28 took part in ten projects. For each of them, it obtained a different score 

(98,81,80,79,77,77,76,75,75,75), but the final value corresponding to the university was 79,3 in the arithmetic 

mean ranking. The University of Catania, instead, worked in only one project with a final value of 87. The 

resulting classification puts Catania before Padova ( 2𝑛𝑑 and 33𝑟𝑑 position respectively).  

The problem with this reasoning is that it doesn’t take into consideration the number of projects in which the 

universities collaborated, penalizing the ones that obtained a wide range of scores, e.g. the University of Padova.  

In contrast, our modification of the EPV model, considers the number of projects in which the university or 

research entity took part by modifying the matrix formed by all the pair-success ratios: assigning a value 

corresponding to the arithmetic mean of the projects in which the two universities collaborated, otherwise 

 
27 See the table at page 26 and 27. 
28 For more clarifications on the data see the Appendix below. 
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setting the value equal to 0 if they didn’t work together. Consequently, in the new ranking, The University of 

Padova is in the 1𝑠𝑡  position, while the University of Catania is in the 44𝑡ℎ one. 

In conclusion, by applying our modification of the EPV model, it is possible to obtain a more precise ranking for 

evaluating individual contributions in teams rather than the simple arithmetic mean.  
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