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An application of the PageRank algorithm to the measurement of individual
contributions in teams

1) Introduction

The aim of this presentation is to apply Google’s Page Rank algorithm to the measurement of individual
contributions in teams. This will be possible following the model of the study of Miiller J. and Uppmann T.1 Then,
as an exercise, the result will be applied to the PRIN 2022 PNRR final ranking, in order to assess the performance
of Italian universities when working together in research projects.

In the first part, Google’s Page Rank algorithm will be described and analyzed both from a theoretical and a
mathematical point of view. Topics that will be covered are: the functioning of a search engine and why Google’s
one of the most well-renowned ones, the random surfing model, how to answer the problem of assigning a value
for each page in a database and how to use this data to create a link matrix that can be later utilized to find a
final ranking for the network considered. The paper will also show how some problems involving these
calculations can be overcome, i.e. webs with dangling nodes and webs with nonunique rankings.

In addition, elements of linear algebra like matrices, vector spaces, eigenvectors, eigenvalues, Markov chains,
the Power method and the Perron-Frobenius theorem will be introduced to provide a better understanding of
the model and the calculations involved.

Then, the application provided by Miiller J. and Uppmann T. in the article Eigenvalue productivity: Measurement
of individual contributions in teams (2022) is shown, analyzing not only the assumptions and formulas involved,
but also the basic ideas behind how an individual can actually “increase” the productivity of his teammates and
what are the variables implicated in this process. To conclude this part of the presentation, an easy and artificial
example is given, to provide the reader with a practical and “visual” idea of the concepts just described.

Finally, the EPV model will be applied to the Prin 2022 for the ranking of Italian universities and public research
entities. After a presentation of the idea behind the PRIN and its basic rules, the analysis will proceed taking into
consideration the results of the sector SH1 for the year 2022. Universities will be ranked with some modifications
of the original model: the pair-success ratios for universities working in the same team will be evaluated with a
different method based on the arithmetic mean and a value of 0 assigned to all the other pairwise interactions.
In conclusion, the results obtained will be described and analyzed.

1 Miiller J., Uppmann T., Eigenvalue productivity: Measurement of individual contributions in teams, “PLOS ONE”, vol.17,
n.1, September 2022



2) Google’s PageRank algorithm

Google’s prominence as a search engine is by now well-recognized worldwide. It’s functioning and ranking system
had a significant influence on the development and structure of the internet as we know it today.

A key element in Google’s success is its algorithm PageRank, created by Sergey Brin and Lawrence Page. The
algorithm ranks the importance of each page on the web quantitively, according to an eigenvector of a weighted
link matrix. The consequent result is that the user gets the most relevant and helpful pages first, instead of having
to go through screens and screens of irrelevant links before finding the one in line with his original search. Some
data? that helps understanding the enormous size of the web and the big challenge of finding a good quality
page of the required information: 8% (in web terms) is the rate of creation of new pages per week and, according
to some observations, only 20% of the new pages will be accessed by users after 1 year.

A model explaining the functioning of PageRank is the random surfing model, which gives the probability that a
random user visits a web page. This is represented thought a random walk on the web in which the user clicks
link after link that is presented to him. The probability of visiting a certain page is affected by a variety of factors
like: the number of links leading to the page, the frequency with which the surfer arrives on pages containing
those links, the order of outgoing links on those pages. In general, links from a long list of web pages and links
from unpopular websites have a low value, while links from popular pages which don’t link many other pages
are valuable and will greatly increase the probability that a random survey arrives on a certain page.

More in general, the functioning of a search engine (including Google’s) can be summarized in this process:
software called crawlers (in Google’s case “Googlebot”), crawl all public web pages and locate them. They go
from link to link and bring data about those pages back to Google’s servers. Usually there is a list of web addresses
from past crawls with a similar objective, which is the starting point for the new search. Crawlers also consider
new sites, changes to existing sites and dead links in their search process.

After crawling, information is organized by indexing. This step includes storing all the information about words
and locations of the fetched web pages into a database that can later be retrieved. Therefore, if a user searches
the same keyword, results will be retrieved faster.

Finally, thanks to an algorithm, the importance of each page in the database is rated, so that the more important
pages will be presented first, showing the results in descending order of relevance.

In addition, we must consider that, when we make a search on Google, Google tries to determine the highest
quality results, which have many factors including things like users’ location, language, device (desktop or phone)
and previous queries. Google doesn’t accept payment to rank pages in a higher position, the ranking is done only
algorithmically.

The focus of this presentation is on the step of rating the importance of each page in the database. A problem
arises: what'’s the right criterion to meaningfully define and quantify the “importance” of a page? We will try to
show how Google’s PageRank algorithm answers the question and the many possible applications of the
algorithm.

2 Statistics from Singh P., Vidyarty A., Power rank: An interactive web page ranking algorithm, chapter from Principles of Big
Graph: In-depth Insight, Biswas A., Deka G., Patgiri R., Elsevier (January 2022), 17st edition
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3) Mathematical background for a better understanding of the model

In the next paragraphs, we will describe the Page Rank algorithm. To provide a better understanding, we will go
through the basic definitions of concepts like matrices, linear spaces, eigenvectors, eigenvalues, Markov chains
and the Perron-Frobenius theorem.

-Matrices:

A matrix is a rectangular array, in which each entry a;; is a number. An m X n matrix (with m and n positive
integers), has m rows and n colums. m X nis read as “m by n".

According to the standard mathematical convention, it is possible to represent a matrix in any one of three ways:
an uppercase letter such as A, B or C; a representative element enclosed in brackets like [aij], [bij] or [cij]; a
rectangular array of numbers, like the one presented below:

a1 Q12 - Qip
A1 Gz ™ Qzp
An1 Am2 *° Amn

The entry a;; is in the ith row and the jth column. The index i is called the “row subscript” because it identifies
the row in which the entry lies, and the index j is called the “column subscript” because it identifies the column
in which the entry lies.

A matrix that has only one column, is a “column matrix” or “column vector”. Similarly, a matrix that has only one
row, is a “row matrix” or “row vector”. Boldface lowercase letters often designate column matrices and row
matrices.

When m = n, the matrix is square of order n and the entries a1, a3, a3z ... a,, are the main diagonal entries.
One relevant square matrix in mathematics is the “identity matrix” I, in which all the elements of the principal
diagonal are one and all the other ones are zero. In the next paragraphs we will use the identity matrix as a tool
to find the eigenvalues and eigenvectors of a matrix.

Furthermore, a diagonal matrix is a square matrix in which all off-diagonal entries are zero. Entries on the main
diagonal may or may not be zero. Examples of diagonal matrices are:

2 00 -1 0 O
A=|0 3 OlandB=|0 0 O
0 0 1 0 0 5

It is worth mentioning that the identity matrix I is a particular type of diagonal matrix: one with all ones in its
diagonal entries.

Two matrices are equal when their corresponding entries are equal. A formal definition is two matrices A = [aij]

and B = [bij] are equal when they have the same size (m X n) and a;j = b;jjforl1<i<mand1 <j<n.

One common use of matrices is to represent systems of linear equations. The matrix derived from the coefficients
and constant terms of a system of linear equations called the “augmented matrix” of the system. The matrix
containing only the coefficients is the “coefficient matrix” of the system.

Relevant operations concerning matrices are matrix addition, subtraction, and scalar multiplication. First, two
matrices can be added only if they have the same size (the sum of two matrices of different sizes is undefined).
To perform matrix addition, we just have to add corresponding entries or, in other words If A = [al-j] and B =
[bij] are matrices of size m X n, then their sum is the m X n matrix A + B = [aij + bij].



Moreover, referring to real numbers as “scalars”, to multiply a matrix A by a scalar ¢, we multiply each entry in
Aby c: If A = [a;;] is an m X n matrix and c is a scalar, then the scalar multiple of A by c is the m X n matrix
cA = [caij].

Considering two matrices of the same size A and B, the operation A — B represents the sum of A and (—1)B.
Thatis, A—B =A+ (—1)B.

Finally, as far as matrix multiplication is concerned, for the product of two matrices to be defined, the number
of columns of the first matrix must equal the number of rows of the second matrix. To find the entry in the ith
row and the jth column of the product AB, multiply the entries in the ith row of A by the corresponding entries
in the jth column of B and then add the results. A more formal definition of matrix multiplicationis: If A = [aij]
is anm X n matrix and B = [bij] is ann X p matrix, then the product AB is an m X p matrix AB = [cl-j] where:

n

c= Z Aircbik = Ai1by; + Qipbyj + agzbzj + -+ A by
=1

In general, for the properties listed above, matrix multiplication is not commutative. It is usually not true that
the product AB is equal to the product BA.

Below is shown the general pattern for matrix multiplication:

Ay dyy dyy . T

by, by, .. .08 .. b lp
Uy Uyy Ayy « .+ . Ay . ; / P Cr1 Cano v v Capiis o +7Cn
i Wby byy . - R, . . /)_,l, o =il 5 =t
o : . Dy Dy . . .. . . Dy, 2 .
a, dap ap . . . a, . . : . Cn € ¢, ¢y
x b..b.,...008...b : *
nl nl ny np < .
L (Iml uw" ”m‘ ’ . ”/uu Al _( m Cm2 - fCmj *Yapd

A practical example of matrix multiplication is given by the formal definition of the general properties of the
identity matrix I : If A is a matrix of size m X n, then the properties Al,, = A and I, A = A are true.

Considering the matrix equation Ax = b, where A is the coefficient matrix of the system, and x and b are column
matrices, the system can be represented in a more convenient way by partitioning the matrices A and x in the
manner shown below.

Ax = xqa, + xpa3 + -+ x,a, = b

aiq az1 Ain

az1 az2 azn
X1 . + X9 . + -+ x, .

am1 am2 Amn

aq, a,...a, are the columns of the matrix A. The expression is called “linear combination” of the column matrices
a4, a;..a, with coefficients x4, x5...x,,. Furthermore, the system Ax = b is consistent if and only if b can be
expressed as such a linear combination, where the coefficients of the linear combination are a solution of the
system.

Another worth-mentioning feature of matrices is the inverse of a matrix. According to the general definition: an
n X n matrix A is “invertible” (or “nonsingular”) where there exist an n X n matrix B such that AB = BA = I,,,

3 Image from Larson R., Elementary linear Algebra, Cengage Learning (2017), 8/th edition



where I, is the identity matrix of order n. The matrix B is the multiplicative inverse of A. A matrix that doesn’t
have an inverse is called “noninvertible” (or “singular”).

Not all square matrices have inverses and nonsquare matrices do not have them. If A is of size m X n and B is of
size n X m, then the products AB and BA are of different sizes and can be different. However, if a matrix has an
inverse, then its inverse is unique. The inverse of 4 is denoted as A~ 1.

Another relevant operation concerning matrices is the determinant of a matrix, a single numerical value used to
calculate the inverse of a matrix or to solve systems of linear equations. The determinant of a matrix A can be
referred to as det (A) or |A|. It is possible to define a determinant only for square matrices. Let A be a 2 X 2
a1 A2

matrix such that A = [
a1 Qzz

], the general formula for det (4) is:

det(4) = a11az; — a12071

Instead, for matrices size 3 X 3, the general approach is to break down the matrix into smaller 2 X 2 matrices as
shown below:

[an a2 Qi3

Az dzs az1 dzz a1 Qp;
a1 dzz Az3|=a [ ]—a [ ]+a [ ]
Hlas, ass 12laz; ass Blas; as

azp Gz dszz

For each element a4; in the top row, block out the row and column it belongs to, and calculate the determinant
of the remaining uncovered 2 X 2 matrix, then multiply that by a;;. The determinant is the sum of those values,
alternating addition and subtraction.

Furthermore, the general definition of the determinant of a square matrix is: If A is a square matrix of ordern >
2, then the determinant of A is the sum of the entries in the first row of A multiplied by their respective cofactors.
That is:

n
det(4) = |A| = z a1jCyj = aq1C11 + a12C15 + -+ a0y
j=1

For more clarifications on this topic see: Larson R. Elementary linear Algebra, Cengage Learning (2017),
8t"edition, chapter 3, page 112.

Moreover, a matrix is diagonalizable when it is similar to a diagonal matrix. In other words: Ann X n matrix A is
diagonalizable when there exists an invertible matrix P such that P~ AP is a diagonal matrix. Another condition
used to establish if a n X n matrix is diagonalizable or not is to check if it has n linearly independent
eigenvectors®. It’s diagonalizable only if it does.

-Vector Spaces:

The term vector derives from the Latin word vectus, meaning “carrying”. The idea is that if a person were to carry
something from the origin to the point (x4, x;,), then the trip could be represented by the directed line segment
from (0, 0) to (x4, x;). The ordered pair used to represent the terminal point also represents the vector: x =
(x1,x5), (vectors are represented by lowercase letters set in boldface type such as u, v, w, and x). The
components of the vector x are its coordinates x; and x,.

Basic vector operations are vector addition and scalar multiplication. In the first case, vectors are added by adding
their respective components. In the second, each component of a vector is multiplied by a scalar c.

These two operations share ten properties that are summarized below:

4 The concept of eigenvector will be explained in the next paragraphs.



Let u, v, and w be vectors in the plane, and let ¢ and d be scalars.

I. u + visa vector in the plane. Closure under addition
2.ut+tv=v+u Commutative property of addition
J(lutv)+w=u+(v+w Associative property of addition

4. u+0=mn Additive identity property

S.u+(—u) =0 Additive inverse property

6. cu is a vector in the plane. Closure under scalar multiplication

7. c(u +v) =cu+cv Distributive property

8. (¢ + du cu + du Distributive property

9. c(du) = (cd)u Associative property of multiplication

10. I(u) u Muluplicative identity property s

In the list, the zero vector 0 is the “additive identity” of the vector u while the vector —u is its “additive inverse”.

The discussion of vectors in the plane can be extended to a discussion of vectors in n-space. An n-tuple
(x1, X5, X3 ..., X,) can be considered as a point in R™ with the x; as its coordinates or as a vector x, with the x;
as its components.

More in general, an ordered n-tuple represents a vector in n-space, and the set of all n-tuples is n-space and is
denoted by R™.

As for vectors in the plane, the sum of two vectors in R™ and the scalar multiple of a vector in R™ are the standard
operations in R™. Their ten properties are the same as the ones listed above.

The notions just presented were necessary to properly define what a vector space is.

Let V be a set on which two operations (vector addition and scalar multiplication) are defined. If the listed axioms
are satisfied for every w, v, and w in V and every scalar (real number) c and d, then V is a vector space.

Addition
l.u+visinV Closure under additior
2.ut+tv=v+u Commutative property
Jbut+(v+w=(m+v)+w Associative pro
4. V has a zero vector 0 such that for Additive identity
everyuinV,u+ 0=u
5. For every nin V, there is a vector Additive inverse
in V denoted by —u such that
u+(-u)=0.
Scalar Multiplication
6. cuisinV Closure under scalar multiplication
7. clu + v) =cu + cv Distnibutive property
8. (c + du = cu + du Distributive property
9. cldu) = (cd)u Associative property
10. I(u) = u Scalar identit 6

From this definition we can infer that a vector space consists of four entities: a set of vectors, a set of scalars,
and two operations. Examples of vector spaces are: R? with the standard operations, the set of all continuous
functions defined on the real number line and the set of all n X n square matrices.

Vector spaces are efficient in mathematics because, once a theorem has been proved for an abstract vector
space, it can then be applied to the vector space in analysis without the need of further proof.

5 Image from Larson R., Elementary linear Algebra, Cengage Learning (2017), 8/th edition
6 lmage from Larson R., Elementary linear Algebra, Cengage Learning (2017), 8/th edition



Furthermore, in many applications of linear algebra, vector spaces occur as “subspaces” of larger spaces. In
general, a nonempty subset of a vector space is a subspace when it is a vector space with the same operations
defined in the original vector space. In order to test if a subset of a vector space is a subspace of it, it is sufficient
to check two closure conditions: If W is a nonempty subset of a vector space V, then W is a subspace of V if and
only if the two closure conditions listed below hold:

1. IfuandvareinW, thenu+visinW.
2. IfuisinW and cis a scalar, then ¢ Xu isin W.

It is worth mentioning that, after W is verified being a subspace of V, all ten properties of V are directly inherited
by W, so there is no need of further verification.

An interesting property of vector spaces with finite dimension’ is that each vector in it can be represented as a
“linear combination” of a selected number of vectors in the space. For example, setting a vector v in a vector
space V, it can be written in the form: v = cquq + couy + -+ + cuy, with uq, uy, ..., u, as vectors and
€1,C3, -, Cy as scalars.

If every vector in a vector space can be written as a linear combination of vectors in a set, then the set is a
“spanning set” of the vector space. The general definition is: If S = {v,,v,, ..., Vi } is a set of vectors in a vector
space V, then the span of S is the set of all linear combinations of the vectors in S,

span(S) = {c,vq + v, + -+ + Vi €4, Co, ..., € Are Teal numbers}
When span(S) =V, itis said that S spans V or that V is spanned by {v{,v,, ..., Uy }.

In addition, a set of vectors in a vector space can be “linear dependent” or “linear independent”. For the same
set S of the vector space V as before: if the vector equation ¢; v, + c, v, + -+ + ¢, V), = 0 has only the trivial
solution¢; = 0,¢, =0, ...,c, = 0, then the vectors in S are linearly independent. On the other hand, if there
are nontrivial solutions other than the trivial one, then the vectors in S are linearly dependent.

As far as spanning sets are concerned, if a spanning set in a vector space has both linearly independent vectors
and spans the entire space, then it is a “basis” for the vector space. A set of vectors S = {v,,v,, ..., v, } in a
vector space V is a basis for V when the conditions below are true:

1. SspansV
2. Sislinearly independent.

If a vector space has a basis with a finite number of vectors, then it is “finite dimensional”. Otherwise, it’s “infinite
dimensional”.

The notion of basis of a vector space is essential in order to set its dimension. If a vector space V has a basis
consisting of n vectors, then the number n is the dimension of V, denoted by dim(V) = n. When V consists of
the zero vector alone, the dimension of V is defined as zero. For example, the dimension of R™ with the standard
operations is n.

-Eigenvalues and Eigenvectors:

The origins of the terms eigenvalue and eigenvector are from the German word Eigenwert, meaning “proper
value”.

Eigenvalues and eigenvectors have many important applications, one of which is the topic of our presentation.

7 For the formal definition of what is the dimension of a vector space see the following part.



One of the central problems in mathematics is the so-called “eigenvalue problem”: when A is an n X n matrix (a
square matrix), do non-zero vectors x in R™ exist such that Ax is a scalar multiple of x? Formally, does Ax = Ax

apply?

The scalar, denoted by the Greek letter lambda (1), is called eigenvalue of the matrix 4, and the nonzero vector
x is called an eigenvector of A corresponding to A.

Considering a two-dimensional space, if A is an eigenvalue of a matrix A and x is an eigenvector of A
corresponding to A, then multiplication of x by the matrix A produces a vector Ax that is parallel to x, as is shown
geometrically below.

AX

Ax

Ax=Ax. A>0 Ax= Ax, A<0

From the previous considerations, we can derive a general definition of eigenvalue and eigenvector: let A be a
n X n matrix. The scalar A is an eigenvalue of A when there is a nonzero vector x such that Ax = Ax. The vector
X is an eigenvector of A corresponding to A.

From this definition we can say that an eigenvector can’t be zero. (If x is the zero vector, then AQ = A0, which is
true for any real value of 4, so this can’t be a solution.) On the other hand, it is possible to have 4 = 0.

A matrix can have more than one eigenvector. In fact, if the matrix A is an n X n matrix with an eigenvalue 1,
and a corresponding eigenvector x, then every nonzero scalar multiple of x is also an eigenvector of
A. Considering ¢, a nonzero scalar and Ax = Ax: A(cx) = c(Ax) = c(Ax) = A(cx).

In addition, if x;1 and x, are eigenvectors corresponding to the same eigenvalue A, then their sum is also an
eigenvector corresponding to A : A(xq + x3) = Axq + Axy = Axq + Ax3 = A(x1 + X3).

The set of all the eigenvectors of an eigenvalue 4, together with the zero vector, is a special subspace of R™ called
the eigenspace of A. The general definition is: if A is an n X n matrix with an eigenvalue A, then the set of all
eigenvectors of A, together with the zero vector is a subspace of R™. This subspace is the eigenspace of A.
Mathematically, we can write the eigenspace as {x: x is an eigenvector of A1} U {0}.

Determining the eigenvalues and corresponding eigenspaces of a matrix can involve algebraic manipulation. In
the next paragraphs we will describe the series of step that are necessary to find them.

To find the eigenvalues and eigenvectors of an n X n matrix A, we set I , the n X n identity matrix. Rewriting
Ax = Ax as AIx = Ax and rearranging gives (A — A)x = 0.

This homogeneous system of equations has nonzero solutions if and only if the coefficient matrix (A1 — A) is not
invertible (if and only if its determinant is zero). Which is represented mathematically by the equation

8 Image from Larson R., Elementary linear Algebra, Cengage Learning (2017), 8/ th edition



det(AI — A) = 0, also called the “characteristic equation” of A. Moreover, when expanded to polynomial form,
the polynomial |AI — A| is the “characteristic polynomial” of A.

AL — Al = A" + ¢ AV 14 40 A2 + A + ¢
So, the eigenvalues of an n X n matrix A correspond to the roots of the characteristic polynomial of A.

The next theorem formally states this solution: Let A be an n X n matrix. An eigenvalue of A is a scalar A such
that det(Al — A) = 0. The eigenvectors of A corresponding to A are the nonzero solutions of (A — A) = 0.

A brief and more informal description of the steps required to find eigenvalues and eigenvectors can be divided
into three parts. In the first, taking the n X n matrix 4, we form the characteristic equation |AI — A| = 0, (it will
be a polynomial equation of degree n in the variable 4, like in the formula written above). In the second, we find
the real roots of the characteristic equation, the solutions are the eigenvalues of A. In the third, for each
eigenvalue 1;, we find the eigenvectors corresponding to it, by solving the homogeneous system (4,1 — A)x =
0.

If an eigenvalue A; occurs as a multiple root of the characteristic polynomial (it occurs k times), then we say that
A; has multiplicity k. This implies that (1 — A;)k is a factor of the characteristic polynomial.

Furthermore, the set of all the eigenvectors xq,Xx;,x3..x, that correspond to distinct eigenvalues
A1, Ay, A3 ... A, of the n X n matrix A4 is linearly independent.

-Markov Chains:

Many types of applications involve a finite set of states {S;, S5, ..., S, } of a population and a mechanism to move
from one state to the other. We assume the movement occurs at a specified moment of time.

If it is possible to go from state S; to state S;, we say that S; is “accessible” from §;. Furthermore, two states are
said to “communicate” if they are accessible to each other. We can write S; & S;. From the graphical point of
view, communication between two states is represented by two directed paths from §; to §; and from §; to ;.
Following this reasoning, the communication relation is an equivalence relation with the properties of symmetry,
reflexivity and transitivity.

The probability that a member of a population will change from the jth state to the ith state is represented by
anumber p;;, where 0 < p;; < 1. A probability of p;; = 0 means that the member is almost sure® not to change
from the jth state to the ith state, whereas a probability of p;; = 1 means that the member is almost sure'® to
change from the jth state to the ith state. The set of all these probabilities can be put into P, the “matrix of
transition probabilities”, which gives the probabilities of each possible type of transition (or change) within the
population. At each transition, each member in a given state must either stay in that state or change to another
state. From the point of view of probabilities, this means that the sum of the entries in any column of P is 1.

For instance, in the figure below, in the first column py; + pa1 + -+ pp1 = 1.

% The notation almost sure instead of sure referred to the probability takes into consideration the fact that the set of
outcomes on which the event doesn’t occur has probability equal to 0, even thought the set might not be empty. This is
the case when the sample space taken into consideration is an infinite set.

10 As in 8, events with probability 1 not necessarily include all possible outcomes.
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P is a “stochastic matrix”, (the term “stochastic” means “regarding conjecture”), because is a square matrix with
all positive entries and the sum of the entries in each column is equal to 1. The general definition for a stochastic
matrix is an n X n matrix P is a stochastic matrix when each entry is a number between 0 and 1 inclusive, and
the sum of the entries in each column of P is 1.

Providing some mathematical examples, the matrix A is stochastic since is a square matrix with all the entries
between 0 and 1 and the sum of its columns is 1. On the other hand, matrix B is not stochastic. Even if B is a
square matrix with entries between 0 and 1, the sum of the entries in each column is not 1.

11
a3y 8%e-f
4

An important remark to make is that, in our discussion, we will consider only “column-stochastic matrices”, in
which the sum of each column sums up to 1. In reality, also “row-stochastic matrices” exist (matrices where the
sum of the entries of each row sums up to 1, but the other characteristic properties for stochastic matrices
remain the same: the matrix is a square matrix, and the entries are nonnegative numbers between zero and
one). For the reason just stated, in the following paragraphs, we will consider as synonyms “stochastic matrix”
and “column-stochastic matrix”, without taking into consideration the row-stochastic ones.

A stochastic matrix, representing a matrix of transitional probabilities can be referred to as “state matrix”, a
matrix in which the entries represent portions of the whole.

The concept of stochastic matrix is essential to define what is a Markov Chain.

A “Markov chain”, named after Russian mathematician Andrey Andreyevich Markov (1856—1922), is a sequence
{X,,} of state matrices that are related by the equation X, ; = PX},, with P as a stochastic matrix.

In a Markov chain, the future depends only upon the present and not upon the past: only the most recent point
in time affects what happens next. This means that X;,, depends upon X;, but not upon X;_, ..., X1, Xq; if X; is
known.

In his first application of the model, A. Markov studied the sequence of 20,000 letters in A.S. Pushkin’s poem
“Eugeny Onegin” discovering the stationary vowel probability of a vowel following another vowel and of a vowel
following a consonant. This experiment was relevant not for the result in itself, but for the consideration Markov
gave to the temporal aspect: his calculations were based on the assumption that a random event can depend
only on its most recent past. This is called the Markov Property.

In general, the nth state matrix of a Markov chain for which P is the matrix of transition probabilities and X, is
the initial state matrix is X,, = P"X,,. It is relevant to empathize that, in a Markov chain, we always have to
assume that the matrix P of transition probabilities remains constant between states.

1 Image from Larson R., Elementary linear Algebra, Cengage Learning (2017), 8 th edition
11



A real-life case for a better understanding of this concept could be the process of analyzing a population finding
the state matrix representing the portions of that population in each state in three years. This is computed by
repeated multiplication of the initial state matrix X, by the matrix of transition probabilities P. Consequently:
X, = PXy, X, = P?X, and X5 = P3X,,.

Continuing the process of calculating states year after year, the state matrix X,, eventually reaches a “steady

state”. That is, as long as the matrix P does not change, the matrix product P™X approaches a limit X. This limit
is the “steady state matrix”.

Furthermore, a stochastic matrix P can be “regular” or “not regular”. In the first case, some power of P has only
positive entries. In the second, every power of P has zeros in its entries. For a regular stochastic matrix P, the
sequence of successive powers, P2, P3, ..., P approaches a stable matrix P. The entries in each column of P are
equal to the corresponding entries in the steady state matrix X. If P is not regular, then the corresponding Markov
chain may or may not have a unique steady state matrix.

A summary for finding the steady state matrix X of a Markov chain is: check that the matrix of transition
probabilities P is a regular matrix, solve the system of linear equations obtained from the matrix equation PX =
X along with the equation x; + x, + --- + x,, = 1, and finally check the solution found in the matrix equation
PX =X.

A Markov Chain with n different States {S;,S,,...,S,} and a matrix P of transition probabilities can be
represented by a directed graph in which edges are given by transitions with nonzero probabilities connecting
the states. In the paragraphs below we will describe different types of Markov chain, providing also a graphical
representation.

Markov chains can be used to model real-life situations, one of these is the so called “absorbing” one.
Considering a Markov chain with n different states {S;,S,, ..., S}, the ith state S; is an absorbing state when, in
the matrix of transition probabilities P, p;; = 1. That is, the entry on the main diagonal of P is 1 and all other
entries on the ith column of P are 0.

For a general-purpose classification of the states, a state is said to be “recurrent” if, any time that we leave that
state, we will return to that state in the future with probability one. On the other hand, if the probability of
returning is less than one, the state is called “transient”.

An absorbing Markov chain has two properties: the Markov Chain has at least one absorbing state and it is
possible for a member of the population to move from any nonabsorbing state to an absorbing state in a finite
number of transitions.

A relevant remark to make is that, if the matrix of transition probabilities P of a Markov chain is absorbing, it is
not granted that also the Markov chain is so. We will provide two examples for a better understanding of this
concept.

Considering the matrix below, the second state, represented by the second column, is absorbing, but the
corresponding Markov Chain is not. The reason is that it is not possible to move from the states S3 and S, to the
state S,.

12
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On the other hand, in the second example, the matrix P has two absorbing states S, and S,. The corresponding
Markov chain is absorbing because it is possible to move from either the nonabsorbing states (S; and S5 ) to
either of the absorbing states (S, and S,) in one step.

) A 20% 20% A - N
100% / P — \*100%
S S, S5 Sy “‘“0( 7 2()%
: 0% So%/ l  20% “
05 0 02 0}5§; \ 10%} |
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02 0 01 1|§; " N .

The steady state matrix for an absorbing Markov chain has nonzero values only in the absorbing states, since
these states “absorb” the population. In general, an absorbing Markov chain with one absorbing state has a
unique steady state matrix regardless of the initial state matrix. Furthermore, an absorbing Markov chain with
two or more absorbing states has an infinite number of steady state matrices, which depend on the initial state
matrix.

The opposite of an absorbing Markov chain is the “irreducible” one: a Markov Chain in which all states
communicate with each other. Graphically, an irreducible Markov chain is represented by a strongly connected
graph.

Another relevant property of Markov chains is periodicity, which measures if the chain returns or not to state

i at regular times. Periodicity uses the variable d (i) (for S; ) as a reference frame.

If d(i) # 1, the chain returns to state i at regular times. In this case we say that state i is “periodic”. On the other
hand, if d(i) = 1 the chain returns at state i can occur at irregular times (or it can also never occur). Under such
conditions, state i is “aperiodic”.

States that communicate have the same period: if S; © §;, then d(i) = d(j). If states don’t communicate, then
they are aperiodic.

Image from Larson R., Elementary linear Algebra, Cengage Learning (2017), 8”th edition
Image from Larson R., Elementary linear Algebra, Cengage Learning (2017), 8”th edition
Image from Larson R., Elementary linear Algebra, Cengage Learning (2017), 8 th edition

Image from Larson R., Elementary linear Algebra, Cengage Learning (2017), 8”th edition
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A Markov chain can be “periodic” or “aperiodic”, depending on their states. In general, an irreducible Markov
chain is aperiodic if and only if all its states are aperiodic, otherwise it is periodic.

A useful method to check if a Markov Chain is aperiodic or not is to use the greatest common divisor (gcd)
between two numbers, for example m and . If gcd (m, [)=1, then m and [ are said to be co-prime. If we can find

two co-prime numbers [ and m such that pi(i > 0 and p(m) > 0, then we can conclude that state i is aperiodic.
That is, we can go from state i to itself in [ steps, and also in m steps. If we have an irreducible Markov chain,
this means that the chain is aperiodic. Since the number 1 is co-prime to every integer, any state with a self-
transition is aperiodic.

-The Power Method:

As stated before, eigenvalues of an n X n matrix are found by solving the characteristic equation: |Al — A| =
A+ cp AV + o+ ¢,4% + ¢4 + ¢y. The problem with this method is that, for large values of n, it is
complicated and time consuming to solve.

The alternative approach that is presented below is the Power Method: an iterative method with the aim of
approximating “dominant eigenvalues” (the eigenvalues of a square matrix A that are largest in absolute value).
This is possible if we consider a square matrix A with n linearly independent eigenvalues 44,1, ..., 4,, and the
corresponding eigenvectors v;, V5, ..., V. As the eigenvalues are scalars, we can rank them such that: [1,]| >
|A5] ... > |A,|. In addition, eigenvectors can be considered as a basis for the vector space since they are linear
independent and span it. Consequently, it is possible to write: Xy = ¢,V + coV5 + -+ + V5.

By multiplying both sides by A we get: Axy = ¢1Av, + ¢, AV, + -+ + AV,
Considering also Axy = Axg: AXg=C1A1V1 + A,V + -+ + A, V.

Formally, the general definition of a dominant eigenvalue is “Let 14, 4, ... A,, be the eigenvalues of ann X n matrix
A, A1 is called the dominant eigenvalue of A if |A1| > |4;|, i = 2, ...n. The eigenvectors corresponding to A, are
called the dominant eigenvectors of A”. Where |a| is the absolute value of the real number a.

A relevant remark to make is that not every matrix has a dominant eigenvector.

To apply the Power method, we have to assume that the square matrix A has a dominant eigenvalue with
corresponding dominant eigenvectors. Then we set the initial approssimation x, of one of the dominant
eigenvectors of A. x, must be a nonzero vector in R™. With the first iteration we get:

A A
Axo - Clll [‘Ul + CZ 2172 + + C_n_n
Al C1 11

This result ends the ﬁrst iteration. Then, it is possible to multiply A to x; to start the second iteration, obtaining:

Ay

] = c; A1 x4, Where x; = v, + ——vz 4ogn v, is a new vector.

A3 cn Az

cy A2
22 v2+ -+ 22V
c A{

Axy =14 [171 v2 44 vn] Ai1x5 and x, = v, +=

€1 /12
We can continue multiply A with the new vector we get from the iteration k times:

c A3 Cn A
Vg ——Vy+ -+

Axp1 =14 Tk
C1 Allc C1 /1’;

= A1xi

Since A4 is the dominant eigenvalue, the ratio A—l < 1foralli> 1. So, when k is increased to a sufficient large,
1

m\E

the ratio (/1”) will be close to zero.
1

For large powers of k, and by properly scaling this sequence, we obtain a good approximation of the dominant

eigenvector of A. The term “scaling” refers to the fact that it is best to “scale down” each approximation before

proceeding with the next iteration: determine the component of Ax; that has the largest absolute value and
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multiply the vector by the reciprocal of this component, for a resulting vector with components of value less
than or equal to one.

The power method with scaling converges to a dominant eigenvector. A sufficient condition for convergence is
that the matrix A is diagonalizable and has a dominant eigenvalue. If A is an n X n diagonalizable matrix with a
dominant eigenvalue, then there exists a nonzero vector xo such that the sequence of vectors given by
Axg, A%xg, A3xy, ..., A¥xy, ... approaches a multiple of the dominant eigenvector of A.

-the Perron-Frobenius theorem:

The Perron-Frobenius theorem was developed by Oskar Perron in 1907 and Georg Frobenius in 1912. This theory
has important applications in probability theory, economics, social networks, and demography. The general
definition is: if all entries of an n X n real matrix A are positive, then it has a unique maximal eigenvalue. Its
eigenvector has strictly positive entries.

This implies that, if we have a matrix A = 0, then the dominant eigenvalue of 4, r(A), is real-valued and non-
negative. For any other eigenvalue A of 4, |1| < r(A). Finally, we can find a nonnegative and nonzero eigenvector
x such that Ax = r(4)x.

Moreover, if A is also irreducible then the eigenvector x associated with the eigenvalue r(A4) is strictly positive
and there exists no other positive eigenvector x (except scalar multiples of x), associated with r(4).

For example, given the irreducible nonnegative matrix A:
03 02 03
A=10.2 04 0.3
0.2 05 01

Thanks to the Perron-Frobenius theorem we get the value of its dominant eigenvalue A = 0.8444.

4) Mathematical explanation of the model

The web is formed of millions and millions of pages which are interconnected with each other through a series
of links. At each web page can be assigned a number called “score” or “importance score”, rating quantitatively
the webpage’s importance. Such value must be a nonnegative real number and is delivered from the links made
to that page from other web pages. The web thus becomes a democracy where pages vote for the importance
of other pages by linking on them.

This concept can be represented graphically through a directed graph with a set of vertices (web pages) and a
set of edges (links) which join a pair of vertices. An arrow starting from a page and pointing another indicates a
link. The graph is directed since each edge has a direction, a starting and an ending vertex.

Below we can see a graphical representation:

15
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On various websites it is possible to find an approximation of a page’s PageRank. This reported value is based on
a scale of 10. For instance, the home page of “The American Mathematical Society” has a PageRank of 8. It is
important to underline that it is only an approximation, since Google declines to publish actual PageRank in the
attempt to frustrate those who would manipulate the ranking in their favor.

Denoting as k (with k as a real number) the “importance score” of a web page, we can set k < n, where
n represents the total number of pages in the web of interest. Comparing consequently, if k = 0, the page has
the lowest possible importance score. Each link to page k becomes a vote for page k’s importance and adds to
its final value. Comparing page i and page j, the first is more important than the latter if k; > k;.

Another relevant feature to consider in our analysis is that each page has its own relative importance, influencing
our study in assessing a value for k. Therefore, a link to page i from an important page should boost k;’s value
more than a link from an unimportant page. Even if this principle is correct in itself, it could be used to gain extra
influence by a web page, by simply linking to lots of other pages, resulting in a too self-referential scheme.
Therefore, in our model, for each link the web page gets a total of one vote, weighted by that web page’s score,
which is divided up among all its outgoing links. In addition, a link from a page to itself is not counted.

. , k . . ,
Mathematically, k;’s value can be expressed as k; = ?zon_] , where k; is the importance score of page j and n;
Jj

the number of outgoing links from page j. All the numbers are assumed to be positive.

Thanks to the formula to find a value for k;, the web ranking problem can be transformed into a problem of
finding an eigenvector for a square matrix. Calling A the “link matrix” of a given web, we search for an eigenvector
X with eigenvalue A equal to 1 for the matrix A. We also call x a “stationary vector” of A. (By definition, Ax = Ax
with x # 0, for eigenvalues A and eigenvectors x of a matrix A). Using this formula, we obtain a ranking of pages
which is more accurate and different from the one we could obtain by simply counting back links.

Taking as an example the previous graph:

0 0 1 1
1 12
- 0 0 O 4
A= i : ; | with eigenvectors equal to 1 all the multiples of the vector x = 9| The subsequent results
- - 0 -
3 2 2
6
11 9 0
_3 2 |

are the importance scores: x; = % ~ 0.378,x, = % ~ 0.129,x; = 3;’1 ~ 0.290,x, = % ~ 0.194.

In general, the link matrix A has 1 as an eigenvalue if the web has no dangling nodes (pages without outgoing
links). This result is used in the study of Markov chains, in which the principle applies: A square matrix is a column
stochastic matrix if all of its entries are nonnegative and the entries in each column sum to 1. The matrix A for

16 Image taken from Brian K., Leise T., The $25,000,000,000 Eigenvector: The Linear Algebra behind Google, “Siam

REVIEW”, vol.48 n.3, September 2006
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the web in analysis has no dangling nodes and the sum of the elements present in each column is equal to 1, so
it is column stochastic.

From this example we can derive the general proposition: every column stochastic matrix has 1 as an eigenvalue.

Formally we can write: dim(Vl(A)) = 1, where V;(A4) represents the eigenspace for the eigenvalue 1 of a
column-stochastic matrix A. Its dimension is equal to 1 so that there is a unique eigenvector x, such that ;x; =
1.

However, using the previously explained formula may bring some issues in the process of ranking the elements
of a web. Worth mentioning examples are webs with nonunique rankings and webs with dangling nodes.

As far as dangling nodes are concerned, the link matrix A contains one or more columns of zeros. 4 is column-
substochastic: the column sums of A are less than or equal to 1 and all its eigenvectors are less or equal to 1, but
1 need not actually be an eigenvalue for A.

Later, in our discussion, we will present a solution to this problem provided thanks to the Power method.

On the other hand, webs with nonunique rankings consist of r disconnected sub-webs W;, W, ... W, , resulting
in a difficulty to find a common reference frame for comparing the scores of pages in one sub-web with those
into another. In fact, the link matrix A doesn’t yield a unique ranking for all the webs, instead provides more
eigenvectors that can be considered as a solution to the problem, and it is not clear which should be used for
the final ranking. This situation arises since dim (V;(4)) = r, and there is no unique importance score vector x
with Z;x; = 1; which are values different from the ones of the previous example. We summarize the problem
with the following graph and corresponding link matrix A.

1 3
™
//5
) 471

17

0 1 0 0 O

1 0 0 0 O

1

4=0 00 1 3

00101

2
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Vi (A) is two-dimensional (dim(V1 (A)) > 1) and so there is not a unique importance score vector x with X;x;=1.
To solve the problem, we must assume that the matrix A has a block diagonal structure, where A; represents the
link matrix for W;. This result is possible if we consider each sub-web W; as a web on its own. Each matrix 4; is
column-stochastic with some eigenvector v; with value 1. In addition, for each i between 1 and r, we create a

7 Image from Brian K., Leise T., The 525,000,000,000 Eigenvector: The Linear Algebra behind Google, “Siam REVIEW”,

vol.48 n.3, September 2006
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vector w;, which has zero components for the elements corresponding to blocks other than block i, making them
linearly independent eigenvectors for A with eigenvalue 1.

A, 0 0 V1 0
0 12 0
0 4, .. O )
A= 0 : - olw= 0 [andw,=| 0 |,..w, =] !
s : : 0
0 0 0 A, 0 0 "
0
0
sothat Aw;=A|v; |=w;
0
0

In addition, a possible remedy for dim(V;(4)) > 1 is given by a modification to the link matrix A. This solution
applies to all the n-page webs without dangling nodes, including the case with multiple sub-webs.

Calling S an n X n column-stochastic matrix such that dim(Vl (S)) = 1, we can calculate M, a matrix which is
the weighted average of the link matrix A and S.

M=(1-m)A+mS

m is a value between 0 and 1, (Google sets m = 0.15). The matrix M is column-stochastic and dim(Vl(M)) =
1.

Two extreme cases are: m = 0 and m = 1. In the first one M = A, (we get the problem discussed in the above
part). When this happens, M is sub-stochastic as A, but the formula doesn’t provide a solution for dangling
nodes. In the second case M = S: this is the most egalitarian result achievable since all web pages are equally
important.

Considering again M = A, we can set the equation x = Mx as: x = (1 — m)Ax + ms, with s as a column vector
with all entries 1/n. This further step is really important in our reasoning for a variety of reasons that will be
explained in the next paragraphs.

First, the advantage of using M instead of A is that it enables us to compare pages in different sub-webs. This is
possible thanks to the properties of matrix M. We can say that if M is positive and column-stochastic, then any
eigenvector in V; (M) has all positive or all negative components. Consequently, if each entry M;; of M is strictly
positive for all i and j, then dim(Vl(M)) =1.

A good approach to show this result is to use a contradiction: if we suppose that there are two linearly
independent vectors v and w in the subspace V; (M); then, for any real number s the vector x = v + sw must
be in V; (M), with all negative or all positive components. But it is a general proposition in linear algebra that the
vector obtained by two linearly independent vectors and some choice of s, must contain components of mixed
sign, a contradiction. We conclude that V; (M) can’t contain two linearly independent vectors, and so it has
dimension 1.

Second, the column vector s with all entries 1/n helps us solve the problem of dangling nodes, being an
application of the Power Method, thanks to its general principle of “convergence”.

The reasoning behind this is the random surfing model explained in the introduction of this text: if we surf

randomly, at some point we will surely get stuck at a dangling node, a page with no links. To keep going we will
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choose the next page at random, pretending that a dangling node has a link to every other page in the web. This
is a probabilistic interpretation of the link matrix. The direct effect is its modification: the columns of all zeros
corresponding to a dangling node will be replaced with a column in which each entry has a value of 1/n. The
new matrix obtained is stochastic and, by property, always has a stationary vector.

A relevant example to show why the Power Method is so important is Google’s real-life link matrix H: a square
matrix with n = 25 billion columns and rows. Most of the entries in H are zero: studies show that web pages
have on average about ten links, meaning that, on average, all but 10 entries in every column are 0. Furthermore,
considering all 25,000,000,000 Google’s pages, it is more probable to find some dangling nodes than in simpler
models like the ones presented above.

Following this theory and coming back to our reasoning with matrix M, we begin by choosing a vector x%as a
candidate for the stationary vector x, and then produce a sequence of vectors x*by x*¥*1 = Mx¥. The general
principle is that the sequence x* will converge to the stationary vector x, which will tell the relative importance
of each page.

As the connectivity of the graph increases (a larger number of edges), convergence is usually achieved after fewer
iterations, and the convergence curves for directed and undirected graph practically overlap.

Without the just explained reasoning, in applying x**1 = Mx* , a page with no links would have taken all the
importance from the other pages in each iterative step, without passing it to any other page. The final effect is
that all the importance is drained off the web and the ranking of all the pages is zero.

For instance, considering a simple web of two pages in which only one is linked to the other while the other has
no links, after only three iterations of the presented algorithm, the result would be that the importance score of
both pages is zero.

Finally, after explaining all the reasoning behind Google’s Page rank algorithm and the mathematic calculations
involved, we can give a general and more schematic definition, providing the formula for the importance score

k; of page i.
n
ki[A] —N‘l'(l—m)(E ;)

k=17

Now, N is the total number of pages in the web in analysis. The number d = (1 — m) = 0.85 is Google’s
“dumping factor”, which represents the probability that the random surfer will continue to click link after link
iteration after iteration, without finding any dangling node. Instead, the probability that the random clicking will
eventually stop is represented by m = 0.15. n represents the number of pages in the web containing at least a
link towards the link matrix A. k; is the importance score of each page linking page i, and n; the number of
outgoing links from page j.
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5) Real-life application of the model

Google’s algorithm PageRank has many possible real-life applications. The one we will describe and try to
replicate in our analysis is the measurement of individual contributions in teams?8, taking as a unit of measure
the coworker productivity also called eigenvalue productivity (EVP).

In general, when people are divided in teams and work together, the productivity of the team as a whole is
evident and can be assessed in relation to a variety of observable and relatively easy to measure variables, for
example: the quality of the final product, total sales, revenues, percentage of wins, points scored, number of
orders, etc.

On the other hand, measuring the productivity of each team member is not readily identifiable, even if a fixed
task is assigned to each of its components. This difficulty is inherently associated with the very nature of
teamwork: a team is not just the sum of its members’ abilities and the interaction between team members is
“multifaceted”. Coworkers interact, and the output is the result of the combination of their capacities and
productivities. In addition, the interplay of workers also depends on their actual willingness to cooperate. A
worker can work efficaciously only if he goes along with his endeavor. (Without the necessary cooperation and
coordination, problems like free riding and moral hazard can arise in teams). This multiplicity of interactions
raises the question of how one can consistently define and then calculate coworker productivities from the
team’s observed data.

A real-life example can be found in team sports. Throughout the years, a variety of units of measure have been
used to infer the coworker productivity of a player: number of goals scored, assist provided, duels won, ball
touches. However, these numbers wrongly attribute successful actions to an individual player, while they are the
joint product of the player and his teammates. A player performs well only if the other components of the team
are willing to lay the proper groundwork for the player ‘s success.

Consequently, we can state that the team productivity of a player depends on the productivities of all the
teammates, and in particular on the ones of its “neighbors” in the field: empirical evidence is showing that some
combinations of positions or some pairs of players are more complementary than others.

Summarizing: In a team, the team productivity of coworker i depends positively on the productivity of all other
teammates and, in particular, of those who are “adjacent to” or “central for” that player. Specifically, the more a
teammate of coworker i contributes to the team, the better will be the conditions for worker i to perform well
and contribute to the success of the team. Since this is true for any team member, the productivities of all
coworkers on a team must be determined simultaneously.

The aim of the model that will be presented here is to formalize this concept mathematically, in a general and
flexible way that can be applied to distinct economic contests and with many different available databases.
Moreover, since EVP provides the ranking of team members, it can also be related to the literature on ranking.

Before the mathematical explanation, further clarifications on basic assumptions are needed.

First, the general pattern is that groups arrive at more rational decisions than do individuals, suggesting that
teamwork outperforms individual actors.

Moreover, the approach used is to calculate the coworker productivities of a given team assigned to a given task.
The decision process of the manager on the optimal composition of the team or on how and why he/she selected
a specific worker for a given project is not part of the model. This kind of decisions are considered as exogenously
determined.

18 In the next paragraphs we will make an in-depth description of the research article: Miiller J., Uppmann T., Eigenvalue

productivity: Measurement of individual contributions in teams, “PLOS ONE”, vol.17, n.1, September 2022
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In addition, certain team roles are more important for team performance than others. The recognition of a single
member of a team will produce positive “spillover effects” on the performance of other team members, as well
as the overall team performance, via social influences processes. This is particularly the case when the
distinguished individual has a central position in the team. In fact, there are some individuals that, when added
to a team, consistently lead to an outperformance of the team over its predicted one. Beyond they’re task-
specific skills, these people have higher social skills and seem to motivate teammates to exert more individual
effort.

As far as team structure is concerned, the more centralized one is considered as the most successful. The degree
and type of centralization of a team is frequently analyzed in network analysis, which studies the interactions
between nodes and how they work in case of externalities.

Considering ateam N = {1, 2 ...,n} of a fixed set of n workers, and assuming the productivity of each worker as
nonnegative, we can write the formula for the productivity of worker i as:

PI(N) = 3 X jen 91 (N)PI (N), VieN

Where g;;(N) = 0 quantifies the extent to which worker i benefits from the coworker productivity of worker j.
It can be interpreted as a measure of the productivity-enhancing effect worker j exerts on worker i’s productivity,
thanks to j’s proficiencies, team skills, social competencies, etc. Following the model, the corresponding
gii(N) = 0 represents the idiosyncratic productivity of worker i, which is the productivity he would have without
the “positive effect” of his teammate’s productivities. A remark to make is that, as previously stated, team
members receptiveness for other member’s constitutions is not symmetric. Mathematically, it is mirrored by the
fact that usually g;; and g;; are not equal.

A >0 is a strictly positive normalization factor, used to adjust values in the model. By multiplying the
productivities of the workers by % , they are reduced to a value between 0 and 1. The sum of all the normalized

pt(N) will be equal to 1. Graphically, this concept could be represented by a function with the area under the
graph equal to 1. An example is the standard normal distribution of a normalized Gaussian function.

Since the relation just presented holds for all the workers in N, we can write the equation system:

1
P(N) = ~G(N)p(V)

p(N) = (p%, ...,p™)(N) is the vector of coworker productivities. G(N), instead, represents the matrix of the
coefficients measuring the extent to which individual productivities of team members affect each other: G(N) =

[gij(zv)]i‘jEN > 0.

The matrix of pairwise productivities coefficients G is nonnegative, nonzero, and irreducible with main diagonal
elements being normalized to unity, i.e. g;;(N) = 1,sothatG > 1.

(For a more general definition: g;; (N) = ¢, where c is a nonnegative constant. In this way it is possible to write
G = cl, even if for the purpose of our model is sufficient G = 0).

The main diagonal elements of the productivity matrix G represent stand-alone productivities of the team
members, which can be interpreted as fixed effects in economic terms. These productivities include intrinsic and
idiosyncratic components that can be employed on a stand-alone basis, for example in solo projects. The team-
dependent productivities, instead, are captured by the off-diagonal elements of G.

Since in our model we are interested in conceptualizing and measuring team productivities, any heterogeneity
in stand-alone productivities is disregarded. Such assumption is mirrored by the fact that diagonal elements of
G are homogeneous, for example g;;(N) = 1, VieN.
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In order to be able to compute also stand-alone productivities and relaxing the assumption, the required team
data must have a richer structure, including also statistics from projects carried on by a single person. With this
information available, the EPV can be generalized by substituting the constant diagonal (1, ...,1) with the non-
homogeneous stand-alone productivities (g11, ---» Inn)-

Following the method presented above about how to find eigenvalues and eigenvectors of a matrix, with the
help of the identity matrix I, we can rearrange the previous formula as:

Ap =Gp
Alp = Gp
(G—-ADp=0

This system has a solution in p if and only if det(G — AI) = 0, for p # 0. This reasoning is equal to A being an
eigenvalue of G, and p being the corresponding eigenvector. Since p is the vector of individual productivities we
want to determine, we refer to the concept of coworker productivities as eigenvalue productivity (EVP).

In addition, by definition of an eigenvector we can conclude that p > 0. Consequently, it is possible to prove the
uniqueness of the EVP: for any nonnegative, irreducible n X n matrix of pairwise, directional production
coefficients G, the eigenvalue productivity vector p > 0, is unique up to a scalar.

This result is possible thanks to the Perron-Frobenius theorem, according to which a real square matrix with
positive entries (G in our case) has a unique real eigenvalue of largest magnitude, with a corresponding
eigenvector having strictly positive components (p(N)).

The EPV vector is uniquely defined (except for scaling), since the corresponding Markov Chain is irreducible by
assumption.

Eigenvalue productivity provides a ranking of team members. To do so, EVP relies on the pairwise interactions of
all team members. These interactions include both intrinsic and behavioral characteristics.

The EPV vector has convenient economic properties, namely symmetry, permutation covariance, null player
property, aggregate balance, differentiability, relative monotonicity, absolute monotonicity, duplication
monotonicity.

The property of symmetry, from the ancient Greek cuuuetpia, states that a mathematical object remains
unchanged under a set of operation transformations. For example, in linear algebra, a symmetric matrix is a
matrix that is equal to its transpose. Formally, considering the matrix 4, it is symmetric if A = AT. In the context
of social interactions symmetry is used in a variety of cases, for example in the assessment of reciprocity,
empathy, sympathy and dialogue between individuals. In our model, it is related to the fact that players
contributing equally to each team member should be treated identically.

On the other hand, permutation covariance is a measure of the variability of the act of ordering or changing the
linear ordering of the members of a set (ordered or not). In the model in analysis, this property requires that a
renumbering or renaming of the players should not affect their productivity measures. Therefore, upon
renumbering the players, the productivity measures should change accordingly.

The properties of symmetry and permutation covariance represent natural properties for a productivity
measure.

For the null player property, if a player is a null player, (a player i of N who is contributing nothing to the
productivity of the other team members), then he should be assigned a productivity measure of zero. Another
relevant feature of this property is that null players can be added or removed from the team without affecting
the EPV values of the other players, including the other null players if any. Also, the so-called nullifying players
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exist: a player that makes every coalition in which is put earn zero worth. We will not consider them in our
analysis.

On the other hand, the property of aggregate balance sets that if all players contribute equally in total terms,
then the same productivity measure should be assigned to each team member, irrespective of the distribution
of their pairwise productivities. It is important to underline that this property doesn’t require that two players
contributing in equal total terms have the same productivity measure, unless all other n — 2 players also
contribute to the same amount or unless the two players contribute equally to each player for symmetry.

In mathematics, the property of differentiability describes a function whose derivative exists in all its domain.
The graph of a differentiable function has a non-vertical tangent line for each point in which it is defined. A
differentiable function doesn’t contain any break, angle or cusp. For the case in analysis, differentiability sets
that small productivity changes do not bring sudden changes in the productivity measure: small changes in the
productivity matrix lead to small changes in the productivity measure.

Moreover, the concept of monotonicity is generally used to indicate the property of a function or a sequence of
being increasing or decreasing. For example, a function of an ordered set E is monotonic if for each couple of
points x; and x, in E with x; < x,, the functionis f(x;) < f(x;) (increasing monotonicity); or f(x,) < f(x;1)
(decreasing monotonicity).

In our model, relative monotonicity and absolute monotonicity consider the effects of nonnegative and nonzero
perturbations of the it" row of G: player i becomes more productive than at least one other player, so the
productivity measure should mirror this increase in productivity.

Finally, the property of duplication monotonicity considers the case in which a clone of the player i is added to
the team N. The direct consequence is that the productivity of player i doesn’t increase: adding clones decreases
the productivity measure of all players whose characteristics are duplicated. The more clones of player i are part
of the team, the less crucial this type of player becomes.

In order to compute the matrix G, the first step is to delete from the set of workers N, the ones that weren’t in
action during the period of our study. Then, for each pair of workers {i, j} in N, we must consider all the projects
in which i and j worked together: for each of them the ratio of the points in a “success measure” to the maximal
numbers of points the team (including players i and j) could have achieved is computed. This point ratio, denoted
as s;j, measures the success performance of the pair over all team compositions.

Then, all the projects in which worker i was a member of the team are considered. In this case worker j may or
may not be part of the team. The points these teams have achieved are divided by the maximal number of points
they could have potentially gained. The result is the point ratio measuring the success performance of worker i,
denoted as: s;;.

Consequently, the pair-success ratio of workers that have been jointly included in team compositions during the
period is set as: s;; = ,/S;;Sjj-

Collecting all the pair-success ratio gives the symmetric matrix S = (Sij); jen-

Then we compute the ratio g;;(N) = zl , which is the relative performance of the pair {i, j} compared to the
J]

overall performance of worker j, an effect attributable to the cooperation with worker i. This definition explains
why the main diagonal elements equal unity, since g;;(N) = ? =1,Vi EN.

i

The elements of the it" row of G represent the increase in productivity of each worker j, due to the contributions
of worker i. Therefore, the it" column of G shows how each of the team members contributes to the
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performance of i. Following this reasoning, the matrix G represents all relative normalized pairwise performance
measures.

In the next paragraphs we will provide a simple and artificial example, showing how the matrix G and the EPV
vector can be calculated and how the EPV is consistent with the differences in productivities of the team
members that are observable after a close look at the data.

A team N of five workers is considered (N = {4, B, C,D, E}). Team members have worked over seventeen
projects in six different compositions over a given period of time. The results of each specific team performance
has been evaluated on a ratio of 26 out of 51 possible abstract points of success. The detailed results for the

specific team composition are displayed below:
no. compositions projects points max. pts. ratio
1 ACD 2 3 6 L
2 ACE 4 12 12 1
3 ADE 3 1 9 1
4 BCD 3 4 9
5 BCE 2 6 6 1
6 BDE 3 0 9 0
sum 17 26 51 x 19

From the data provided, we can infer that the success of a team improved whenever C joined it, so C must have
a relatively high coworker productivity. Comparing ACD with ADE, ADE with ACE, BDE with BCD, and BDE
with BCE; the ratio of achieved points to maximal points has gone up by replacing D or E by C.

Another important observation to make is that A and B were never included in the same team composition: this
situation can arise for workers with the same area of expertise, for example IT specialists or goalies in team
sports. However, team performance has improved each time B has been replaced by A. In addition, team
performance has declined each time D was included. The EPV should then assign a higher coworker productivity
to A than B, and a particularity low value for D.

From the data provided in the previous table, it is possible to compute the individual results for each worker of
N, by disregarding the projects in which he/she was not included in the team composition:

worker incl. in composition points max. pts. S;
A {1, 2, 3} 16 27 1
B {4, 5, 6} 10 24 &
C {1,2, 4,5} 25 33 =
D {1, 3, 4, 6} 8 33 =
E {2, 3,5, 6} 19 36 2 20

Taking the data, we can write the matrix of pairwise success S and then compute the matrix G, following the
steps described above.

% Image from Miiller J., Uppmann T., Eigenvalue productivity: Measurement of individual contributions in teams, “PLOS
ONE”, vol.17, n.1, September 2022
20 Image from Miiller J., Uppmann T., Eigenvalue productivity: Measurement of individual contributions in teams, “PLOS

ONE”, vol.17, n.1, September 2022
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16 2v5 5 4 13 1 8 11 11 156
27 9 6 15 21 35 10 10 133
25 5 2 2 2 3v/5 1 22 11 72
9 12 3 9 5 8 25 12 95

S=| 5 2 25 7 11,6= 45 8 1 Z 36
6 3 33 15 ’ 32 5 40 19
4 2 7 8 1 9 8 77 2
15 9 15 33 18 20 15 125 19
13 2 1 1 19 117 24 33 11 1
21 5 18 36 112 25 25 48

Finally, we can calculate the dominant eigenvalue of G: 1 = 4.97. The associated eigenvector (the EPV) isp(N) =
(1,0.7849,1.3276,0.4492,0.9203).

The EPV values of the workers mirror the observations made before the calculation, as workers A and C have
high values of coworker productivity (1 and 1.3276 respectively), while B and D are low (0.7849 and 0.4492).

6) The EPV applied to the PRIN 2022

In the next paragraphs we will present an application of the EPV model?! to some real-word data: the PRIN 2022
research program.

PRIN which stands for Progetti di ricerca di Rilevante Interesse Nazionale or Projects of research of relevant
national interest, is a contest of the MUR (the Italian ministry of university and research) 22. The aim of the PRIN
is the promotion of the national system of research with the financing of project of public research to strengthen
the interaction between universities and research institutions and enabling Italy’s participation to the initiatives
of the Programma Quadro di ricerca ed innovazione dell’innovazione europea (also called Horizon 202023).

The PRIN finances three-year projects that are demanding both from the point of view of the number of
professors and researchers involved and from the one of the funds needed, which are much more than what a
single institution could provide, for example universities.

The candidates that can present this project are Italian universities (public and private), and all public research
entities working inside the MUR located in Italy.

The principles of the program are three. According to the first one the scientific coordinator called PI (principal
investigator) must have a high-quality scientific profile. In addition, it sets some conditions on the originality of
the project, the adequacy of the applied method and its feasibility. The second principle states that it can be
financed a project relative to any research field. Finally, the third one establishes that the MUR must guarantee
adequate financing.

The project is divided in three macro-areas: Life sciences (LS category), Physical, Chemical, Engineering Sciences
(PE category), Social and Human sciences (SH category).

21 We will use the same notation of the EPV model to the PRIN analysis.

22 Before called Ministero dell’lstruzione e del Merito or ministry of the education and merit.

2 Horizon 2020 is an EU research and innovation program, with almost €77 billion of funding, created to achieve smart,
sustainable and inclusive economic growth. The goal is to ensure Europe produces world-class science and technology,
removes barriers to innovation and makes it easier for the public and private sectors to work together in delivering

solutions to the big challenges our society faces.
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The focus will be on the SH1 category, which includes as areas of study individuals, markets, organizations,
economics, finance and management.

Taking the data from the documents: Bando PRIN 2022 PNRR: Allegato C Piano dei Costi e dei Contributi?* and
ALLEGATO A - GRADUATORIE SETTORE SH1%, it is possible to apply the model developed by Miiller J. and
Uppmann T.2%, to measure the level of individual contributions of universities and research entities when working
in teams. First, we will make a list of the required steps necessary to compute the ranking. Then, an application
with some modifications of the EPV model is presented.

Universities were divided in teams of two to four members and each team was assigned a certain score. All the
teams involved into the ranking provided by the PRIN 2022 and the final score they obtained were taken into
consideration.

Then, for each university i the value s;; is estimated, computing the arithmetic mean of all the projects in which
i contributed. The values of the points obtained are expressed in a range from 0 to 100 and represent
percentage points. Below there is a list of the Italian universities and public research entities involved, with the
corresponding scores:

Ranking University / Research Entity Score
1 LA SAPIENZA 88
2 CATANIA 87
3 UNICUSANO 86
4 BASILICATA 86
5 FEDERICO II 85
6 ROMA TRE 85
7 UNINT 85
8 PIEMONTE ORIENTALE 85
9 BOCCONI 84,22222222
10 MILANO 83,625
11 GRAN SASSO 83
12 PARTHENOPE 82,5
13 CAMERINO 82,5
14 TORINO 82,42857143
15 TOR VERGATA 82,33333333
16 AQUILA 82
17 CA' FOSCARI 81,85714286
18 CATTOLICA 81,71428571
19 BOLOGNA 81,69230769
20 BOLZANO 81
21 TRENTO 81
22 PERUGIA 81
23 GIUSEPPE DE GENNARO 81
24 CALABRIA 81
25 TERAMO 81

24 ALLEGATO C-Piano dei Costi e dei Contributi, “Ministero dell’Universita e della Ricerca”, see Appendix

25 ALLEGATO A - GRADUATORIE SETTORE SH1, “Ministero dell’Universita e della Ricerca”,
https://www.mur.gov.it/sites/default/files/2023-07/DD%20n.%201206%20SH1_Allegato%20A.pdf

26 Miiller J., Uppmann T., Eigenvalue productivity: Measurement of individual contributions in teams, “PLOS ONE”, vol.17,

n.1, September 2022
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26 LINK CAMPUS 81
27 LUISS 80,2
28 ALTI STUDI LUCCA 80
29 MEDITERRANEA 80
30 POLITECNICO DI TORINO 79,5
31 PAVIA 79,5
32 MILANO BICOCCA 79,4
33 PADOVA 79,3
34 CONSIGLIO NAZIONALE RICERCHE 79,2
35 SANT'ANNA 79
36 POLITECNICO DI MILANO 79
37 GENOVA 79
38 FERRARA 78,5
39 PALERMO 78,5
40 FIRENZE 78,33333333
41 PARMA 78
42 PISA 77,66666667
43 BERGAMO 77,6
44 MODENA REGGIO EMILIA 77
45 SIENA 77
46 POLITECNICO MARCHE 77
47 LUMSA 77
48 MESSINA 77
49 CAGLIARI 77
50 BARI ALDO MORO 77
51 VERONA 76
52 POLITECNICO BARI 76
53 CHIETI-PESCARA 75,5
54 UDINE 75
55 CARLO CATTANEO 75
56 TUSCIA 75
57 SANNIO DI BENEVENTO 75
58 FOGGIA 75
59 FORO ITALICO 75
60 BRESCIA 75

By following the EPV model, it is possible to compute the values s;; = /sil-s]-j, representing the pair-success ratio

of the universities i and j working together in the same team. Consequently, we can construct the matrix Sy =

(sij)ijen and calculate the relative performance of the pair of universities {i,j} compared to the overall

performance of university j, expressed by the ratio g;; = jﬂ . The matrix G, is formed by all these ratios. From G
J]

we get a list of the corresponding eigenvalues: from the dominant eigenvalue of G, 1,5, we get the corresponding

eigenvector p, providing us with the ranking of the universities and the research entities involved.

In the next paragraphs we will show that, we can make a modification to our model by creating a matrix S; with
the pair-success ratios s;; expressed in the form of the arithmetic mean of the project in which the two
universities or research entities i and j worked together. For the remaining pair-success ratios, representing the
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case in which the two entities didn’t work together in any project, a value of 0 is assigned. From the resulting

matrix S;, we obtain the corresponding matrix G4, by applying the previously explained formula g;; = o

Sij

The dominant eigenvalue of G; is 44 =8,574154006. The ranking provided by the eigenvector
P2, corresponding to A4, is shown below: for the name of each university there is the corresponding value

assigned to it, listed from the largest to the smallest.

Ranking University / Research Entity Corresponding score from the eigenvector
1 PADOVA 0,318509885
2 BOLOGNA 0,306984043
3 TORINO 0,291476497
4 POLITECNICO DI MILANO 0,274690652
5 BOCCONI 0,24627073
6 MILANO 0,223790727
7 TRENTO 0,216685288
8 CA' FOSCARI 0,211551994
9 POLITECNICO DI TORINO 0,198143249
10 MILANO BICOCCA 0,193452274
11 LUISS 0,188772575
12 PAVIA 0,187111271
13 BERGAMO 0,179016929
14 CONSIGLIO NAZIONALE RICERCHE 0,168911782
15 CATTOLICA 0,161723724
16 LA SAPIENZA 0,155008195
17 BOLZANO 0,122628501
18 PIEMONTE ORIENTALE 0,115280359
19 SANT'ANNA 0,109351281
20 FIRENZE 0,107328055
21 VERONA 0,103455657
22 POLITECNICO MARCHE 0,09300768
23 PARTHENOPE 0,085624606
24 UDINE 0,084403041
25 CARLO CATTANEO 0,083110222
26 PALERMO 0,080768743
27 CHIETI-PESCARA 0,080699248
28 PISA 0,080160927
29 LUMSA 0,08003566
30 ROMA TRE 0,077788404
31 AQUILA 0,076797316
32 FEDERICO Il 0,071782665
33 SIENA 0,066430756
34 MODENA REGGIO EMILIA 0,062931138
35 GENOVA 0,06256882
36 POLITECNICO BARI 0,062427289
37 CAMERINO 0,06131811
38 GRAN SASSO 0,058155144
39 BARI ALDO MORO 0,056720862

40 TOR VERGATA 0,050212014
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41 PERUGIA 0,04748086
42 FERRARA 0,04705536
43 MEDITERRANEA 0,043676317
44 CATANIA 0,043045939
45 MESSINA 0,042052206
46 FORO ITALICO 0,040530473
47 ALTI STUDI LUCCA 0,039853544
48 UNICUSANO 0,030735657
49 TERAMO 0,027564674
50 PARMA 0,026596894
51 BASILICATA 0,024440546
52 FOGGIA 0,023136356
53 TUSCIA 0,022301076
54 SANNIO DI BENEVENTO 0,0212215

55 UNINT 0,01793423
56 GIUSEPPE DE GENNARO 0,017070105
57 CALABRIA 0,017070105
58 CAGLIARI 0,008770716
59 BRESCIA 0,008260833
60 LINK CAMPUS 0,006629389

From the just presented data, we can see a final ranking of the universities and research entities working in teams
for the PRIN 2022 projects. The first ranked is the University of Padova, which obtained the highest score
(0,318509885); while the last ranked is the Link Campus University which obtained the lowest one
(0,006629389) compared to all the other participants involved.

Such results provide a different ranking from the one given by the simple arithmetic mean of the projects in
which the universities took part?’. The reason of this divergence is given by the operations made in the models.

In the classification provided by the arithmetic mean, the value of each university is “weighted” for the number
of projects in which it was involved. Consequently, if a university worked in many of them, obtaining both high
and low scores, the resulting value will be an average between all the scores earned. On the other hand, a
university working in just one project, will obtain a score reflecting just the value gained in that single one.

For example, the University of Padova?® took part in ten projects. For each of them, it obtained a different score
(98,81,80,79,77,77,76,75,75,75), but the final value corresponding to the university was 79,3 in the arithmetic
mean ranking. The University of Catania, instead, worked in only one project with a final value of 87. The
resulting classification puts Catania before Padova ( 2™¢ and 33™¢ position respectively).

The problem with this reasoning is that it doesn’t take into consideration the number of projects in which the
universities collaborated, penalizing the ones that obtained a wide range of scores, e.g. the University of Padova.

In contrast, our modification of the EPV model, considers the number of projects in which the university or
research entity took part by modifying the matrix formed by all the pair-success ratios: assigning a value
corresponding to the arithmetic mean of the projects in which the two universities collaborated, otherwise

27 See the table at page 26 and 27.

28 For more clarifications on the data see the Appendix below.
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setting the value equal to O if they didn’t work together. Consequently, in the new ranking, The University of
Padova is in the 15t position, while the University of Catania is in the 44" one.

In conclusion, by applying our modification of the EPV model, it is possible to obtain a more precise ranking for
evaluating individual contributions in teams rather than the simple arithmetic mean.
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innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-
2020 en

10.3 POWER METHOD FOR APPROXIMATING EIGENVALUES, “Statistical Physics Group”,
https://ergodic.ugr.es/cphys/LECCIONES/FORTRAN/power method.pdf

11.2.4 Classification of States, “Introduction to Probability, Statistics and Random Processes”,
https://www.probabilitycourse.com/chapter11/11 2 4 classification of states.php
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Piano dei Costi e dei Contributi

34



Settore ERC: SH1

n° | Nome Responsabile Ateneo/Ente Codice Fiscale Contributo MUR /
dell’'Unita Ateneo/Ente costo totale
1. P20227XP7P - Costo progetto: 269.782
1 Francesca Universita della 80003950781 131.031
GRASSETTI CALABRIA
2 Giovanni VILLANI Universita degli Studi 80002170720 81.138
di BARI ALDO MORO
3 Armando SACCO Universita degli Studi 80018240632 57.613
di NAPOLI
"Parthenope"
2. P2022L7T42 - Costo progetto: 289.160
4 Marco BATTAGLINI Universita 80024610158 104.892
Commerciale "Luigi
Bocconi" MILANO
5 Francesco LANCIA Universita "Ca' 80007720271 32.666
Foscari" VENEZIA
6 Alessia RUSSO Universita degli Studi 80006480281 34.708
di PADOVA
7 Valerio LEONE Universita degli Studi 80209930587 116.894
SCIABOLAZZA di ROMA "La
Sapienza"
3. P2022C3XSS - Costo progetto: 157.694
8 Paolo ROBERTI Libera Universita di 94060760215 54.194
BOLZANO
9 Riccardo GHIDONI | Universita degli Studi 80007010376 103.500
di BOLOGNA
4. P2022KHP8L - Costo progetto: 258.458
10 Monica LANGELLA | Universita degli Studi 00876220633 180.407
di Napoli Federico Il
11 Marco Giovanni Universita degli Studi 80019600925 78.051
NIEDDU di CAGLIARI
5. P20223THLS - Costo progetto: 284.876
12 Elisabetta DE CAO Universita degli Studi 80007010376 120.257
di BOLOGNA
13 Massimo ANELLI Universita 80024610158 117.381
Commerciale "Luigi
Bocconi" MILANO
14 Silvia MENDOLIA Universita degli Studi 80088230018 47.238

di TORINO

6. P2022EN9P) - Costo progetto: 299.291
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n® | Nome Responsabile Ateneo/Ente Codice Fiscale Contributo MUR /
dell’Unita Ateneo/Ente costo totale
15 Pier Paolo Universita del 80008870752 120.048
MIGLIETTA SALENTO
16 Raffaele IANNONE | Universita degli Studi 80018670655 89.920
di SALERNO
17 Alessandra Politecnico di BARI 93051590722 89.323
CAPOLUPO
7. P20224K95M - Costo progetto: 299.869
18 Marco MODICA Gran Sasso Science 01984560662 165.169
Institute - Scuola di
dottorato
internazionale
19 Pietro PIZZUTO Universita degli Studi 80023730825 134.700
di PALERMO
8. P2022LRLBH - Costo progetto: 282.815
20 Julien SAUVAGNAT Universita 80024610158 141.407
Commerciale "Luigi
Bocconi" MILANO
21 Annalisa Universita degli Studi 00876220633 141.408
SCOGNAMIGLIO di Napoli Federico Il
9. P202223J4) - Costo progetto: 181.282
22 Paolo LI DONNI Universita degli Studi 80023730825 154.294
di PALERMO
23 Vincenzo CARRIERI Universita della 80003950781 26.988
CALABRIA
10. P2022XJWAT - Costo progetto: 174.391
24 Giovanni Universita degli Studi 00876220633 89.480
IMMORDINO di Napoli Federico Il
25 Fabrizio Universita Cattolica 02133120150 84.911
PANEBIANCO del Sacro Cuore
11. P20227H2XW - Costo progetto: 206.750
26 Agne KAJACKAITE Universita degli Studi 80012650158 115.436
di MILANO
27 Stephanie HEGER Universita degli Studi 80007010376 91.314
di BOLOGNA
12. P2022SRWSN - Costo progetto: 299.999
28 Stefano DI Universita degli Studi 80018670655 180.366
BUCCHIANICO di SALERNO
29 Matteo DELEIDI Universita degli Studi 80002170720 119.633
di BARI ALDO MORO
13. P2022H483A - Costo progetto: 284.951
30 Valerio DOTTI Universita "Ca' 80007720271 147.786

Foscari" VENEZIA

36



n° | Nome Responsabile Ateneo/Ente Codice Fiscale Contributo MUR /
dell’'Unita Ateneo/Ente costo totale
31 Luca ROSSINI Universita degli Studi 80012650158 137.165
di MILANO
14. P2022JTSFB - Costo progetto: 299.925
32 Fabio Gaetano Universita degli Studi 94045260711 123.350
SANTERAMO di FOGGIA
33 Giuseppe MAGGIO | Universita degli Studi 80023730825 114.006
di PALERMO
34 Teresa RANDAZZO Universita degli Studi 80018240632 62.569
di NAPOLI
"Parthenope"
15. P2022FT9ZK - Costo progetto: 266.436
35 Giulia GIUPPONI Universita 80024610158 142.076
Commerciale "Luigi
Bocconi" MILANO
36 | Vincenzo SCRUTINIO | Universita degli Studi 80007010376 124.360
di BOLOGNA
16. P2022WM82K - Costo progetto: 298.072
37 Dario SALERNO Universita degli Studi 80018240632 108.422
di NAPOLI
"Parthenope”
38 Helen CHIAPPINI Universita degli Studi 93002750698 94.981
"G. d'Annunzio”
CHIETI-PESCARA
39 Stefano ZEDDA Universita degli Studi 80019600925 94.669
di CAGLIARI
17. P202233ZTR - Costo progetto: 269.881
40 Stefano SCHIAVO Universita degli Studi 00340520220 93.419
di TRENTO
41 Mariagrazia Scuola Superiore di 93008800505 88.166
ALABRESE Studi Universitari e
Perfezionamento
Sant'Anna
42 Giuseppe Universita degli Studi 02772010878 88.296
MANGIONI di CATANIA
18. P2022Z3TP8 - Costo progetto: 299.797
43 | Mattea Regina STEIN | Universita degli Studi 00876220633 229.688
di Napoli Federico Il
44 Davide DEL PRETE Universita degli Studi 80018240632 70.109
di NAPOLI
"Parthenope"

19. P20227JN7R - Costo progetto: 245.251
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n° | Nome Responsabile Ateneo/Ente Codice Fiscale Contributo MUR /
dell'Unita Ateneo/Ente costo totale
45 Maria Rosaria Universita degli Studi 80018240632 121.251
CARILLO di NAPOLI
"Parthenope"
46 Damiano Bruno Universita della 80003950781 62.000
SILIPO CALABRIA
47 | Tommaso OLIVIERO | Universita degli Studi 00876220633 62.000
di Napoli Federico |l
20. P2022XT8C8 - Costo progetto: 269.696
48 Elisa LUCIANO Universita degli Studi 80088230018 127.938
di TORINO
49 Marco SCARSINI Luiss Libera Universita 02508710585 117.588
internazionale degli
studi sociali Guido
Carli
50 Fabio FAGNANI Politecnico di TORINO 00518460019 24.170
21. P20229YMBZ - Costo progetto: 246.000
51 Marta MELEDDU Universita degli Studi 00196350904 158.377
di SASSARI
52 Pierpaolo DUCE Consiglio Nazionale 80054330586 75.099
delle Ricerche
53 Fabrizio CESARONI | Universita degli Studi 80004070837 12.524
di MESSINA
22. P2022NK39A - Costo progetto: 255.457
54 Andrea SCOZZARI UNICUSANO 09073721004 115.887
Universita degli Studi
Niccoloé Cusano -
Telematica Roma
55 Federica RICCA Universita degli Studi 80209930587 72.076
di ROMA "La
Sapienza"
56 Lorenzo Universita degli Studi 04400441004 67.494
LAMPARIELLO ROMA TRE
23. P2022KTM7H - Costo progetto: 245.868
57 | Ruggiero SARDARO | Universita degli Studi 94045260711 88.330
di FOGGIA
58 Concetta NAZZARO | Universita degli Studi 01114010620 79.580
del SANNIO di
BENEVENTO
59 Rosanna SALVIA Universita degli Studi 96003410766 77.958
della BASILICATA
24. P2022R8ZTW - Costo progetto: 269.134
60 Tiziano DISTEFANO | Universita degli Studi 01279680480 106.134

di FIRENZE
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n°® | Nome Responsabile Ateneo/Ente Codice Fiscale Contributo MUR /
dell'Unita Ateneo/Ente costo totale
61 Mauro VICCARO Universita degli Studi 96003410766 59.000
della BASILICATA
62 Luca SALVATICI Universita degli Studi 04400441004 104.000
ROMA TRE
25. P20229CJRS - Costo progetto: 269.315
63 Alessandra Scuola Normale 80005050507 54.345
CARACENI Superiore di PISA
64 | Giuseppe BUCCHERI | Universita degli Studi 93009870234 63.163
di VERONA
65 Piero MAZZARISI Universita degli Studi 80002070524 151.807
di SIENA
26. P2022ANZ72 - Costo progetto: 244.407
66 Amelia MANUTI Universita degli Studi 80002170720 104.450
di BARI ALDO MORO
67 Paola SPAGNOLI Universita degli Studi 02044190615 112.450
della Campania "Luigi
Vanvitelli"
68 Barbara BARBIERI Universita degli Studi 80019600925 27.507
di CAGLIARI
27. P2022A9N8) - Costo progetto: 269.682
69 Alessio D'AMATO Universita degli Studi 80213750583 97.892
di ROMA "Tor
Vergata"
70 Amedeo Universita degli Studi 97136680580 96.408
ARGENTIERO Internazionali di
ROMA (UNINT)
71 | Elisabetta MARZANO | Universita degli Studi 80018240632 75.382
di NAPOLI
"Parthenope”
28. P2022WP49F - Costo progetto: 241.217
72 Olivier Karl Universita degli Studi 02044190615 171.217
BUTZBACH della Campania "Luigi
Vanvitelli"
73 Paolo COCCORESE | Universita degli Studi 80018670655 35.000
di SALERNO
74 Roberto Giovanni Universita degli Studi 01021630668 35.000
BASILE dell'AQUILA
29. P20228CHNL - Costo progetto: 269.696
75 Luca REGIS Universita degli Studi 80088230018 140.550
di TORINO
76 Andrea FLORI Politecnico di MILANO | 80057930150 52.247
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n°® | Nome Responsabile Ateneo/Ente Codice Fiscale Contributo MUR /
dell’'Unita Ateneo/Ente costo totale
77 Anna Maria Universita degli Studi 94021400026 48.866
GAMBARO del PIEMONTE
ORIENTALE "Amedeo
Avogadro"-Vercelli
78 Luca TRAPIN Universita degli Studi 80007010376 28.033
di BOLOGNA
30. P2022ZRPBL - Costo progetto: 240.465
79 Domenico Universita degli Studi 80040520639 107.452
SALVATORE Suor Orsola Benincasa
- NAPOLI
80 Antonio RICCIARDI Universita della 80003950781 50.513
CALABRIA
81 Ezio RIGGI Consiglio Nazionale 80054330586 82.500
delle Ricerche
31. P2022B5HR?7 - Costo progetto: 262.656
82 Matteo Carlo Maria Universita Cattolica 02133120150 162.495
SANDI del Sacro Cuore
83 | Gianmarco DANIELE | Universita degli Studi 80012650158 23.243
di MILANO
84 Maria Anna LEONE | Universita degli Studi 80007270186 38.909
di PAVIA
85 Andrea GUARISO Universita degli Studi 12621570154 38.009
di MILANO-BICOCCA
32. P2022JH22T - Costo progetto: 245.349
86 Katia CORSI Universita degli Studi 00196350904 140.349
di SASSARI
87 Daniela MANCINI Universita degli Studi 92012890676 105.000
di TERAMO
33. P2022HTXXM - Costo progetto: 203.446
88 Hannes WAGNER Universita 80024610158 91.334
Commerciale "Luigi
Bocconi" MILANO
89 Monica BILLIO Universita "Ca' 80007720271 112.112
Foscari" VENEZIA
34. P2022RF38Y - Costo progetto: 232.323
90 Corrado Universita degli Studi 02044190615 116.573
CUCCURULLO della Campania "Luigi
Vanvitelli"
91 Massimo ARIA Universita degli Studi 00876220633 115.750

di Napoli Federico Il

35. P2022N2TPJ - Costo progetto: 269.851
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n® | Nome Responsabile Ateneo/Ente Codice Fiscale Contributo MUR /
dell'Unita Ateneo/Ente costo totale
92 Daniele GIACHINI Scuola Superiore di 93008800505 94.495
Studi Universitari e
Perfezionamento
Sant'Anna
23 Alina SIRBU Universita di PISA 80003670504 41.171
94 Rosita CAPURRO Universita degli Studi 80018240632 47.683
di NAPOL
"Parthenope”
25 Fabrizio FORMARI Universita degli Studi 81001910439 86.502
di CAMERING
36. P2022YY9P2 - Costo progetto: 174.899
96 Francesco Flaviano | Universita degli Studi 00876220633 130.000
RUSS0 di Napoli Federico Il
97 Marcello D'’AMATO Universita degli Studi 80040520639 44,899
Suor Orsola Benincasa
- NAPOLI
37. P2022FKLHH - Costo progetto: 269.545
98 Andrea FILIPPETTI Consiglio Nazionale 80054330586 105.559
delle Ricerche
299 Mara GIUA Universita degli Studi 04400441004 101.992
ROMA TRE
100 Roberto GABRIELE Universita degli Studi 00340520220 61.994
di TRENTO
38. P2022LWZZX - Costo progetto: 242.386
101 Diego Angelo Universita degli Studi B0O019600925 89.175
Gaetano di CAGLIARI
REFORGIATO
RECUPERO
102 Gianluigi DE Universita degli Studi 24045260711 76.967
PASCALE di FOGGIA
103 Maria CIPOLLINA Universita degli Studi 92008370709 76.244
del MOLISE
39. P20224K52W - Costo progetto: 238.732
104 Andrea TOMO Universita degli Studi 00876220633 77.719
di Mapoli Federico ||
105 Aizhan Universita degli Studi 80018240632 69.705
TURSUNBAYEWVA di NAPOL
"Parthenope”
106 Gilda ANTOMELLI Universita degli Studi 01114010620 44,958
del SANNIO di

BENEVENTO
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n° | Nome Responsabile Ateneo/Ente Codice Fiscale Contributo MUR /
dell’Unita Ateneo/Ente costo totale
107 Mario PEZZILLO Universita degli Studi 02044190615 46.350
IACONO della Campania "Luigi
Vanvitelli"
40. P2022FLLPY - Costo progetto: 269.594
108 Alessio TEI Universita degli Studi 00754150100 122.327
di GENOVA
109 Cristiano Consiglio Nazionale 80054330586 73.008
CERVELLERA delle Ricerche
110 | Giacomo BORACCHI! | Politecnico di MILANO 80057930150 74.259
41. P20228FFHF - Costo progetto: 269.927
111 | Giacomo PALLANTE | Universita degli Studi 00340520220 114.333
di TRENTO
112 Daniele CURZI Universita degli Studi 80012650158 57.561
di MILANO
113 | Alessandro PALMA Gran Sasso Science 01984560662 98.033
Institute - Scuola di
dottorato
internazionale
42. P2022XLL94 - Costo progetto: 240.500
114 Domenico LISI Universita degli Studi 02772010878 158.730
di CATANIA
115 Massimo Universita degli Studi 80006510806 31.265
FINOCCHIARO "Mediterranea" di
CASTRO REGGIO CALABRIA
116 Concetta Universita della 80003950781 50.505
CASTIGLIONE CALABRIA
43. P20225P48L - Costo progetto: 268.013
117 Paolo BARBIERI Universita degli Studi 80007010376 112.388
di BOLOGNA
118 | Luciano FRATOCCHI | Universita degli Studi 01021630668 51.550
dell'AQUILA
119 | Albachiara BOFFELLI | Universita degli Studi 80004350163 57.250
di BERGAMO
120 Antonella Maria Politecnico di MILANO 80057930150 46.825
MORETTO
44. P2022CW4HX - Costo progetto: 242.037
121 Rocco ROMA Universita degli Studi 80002170720 146.680
di BARI ALDO MORO
122 | Valeria BORSELLINO | Universita degli Studi 80023730825 47.570
di PALERMO
123 | Fabio Albino MADAU | Universita degli Studi 00196350904 47.787
di SASSARI
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n® | Nome Responsabile Ateneo/Ente Codice Fiscale Contributo MUR /
dell'Unita Ateneo/Ente costo totale
45. P2022XMYWW - Costo progetto: 269.999
124 Maria SAVONA Luiss Libera Universita 02508710585 197.999
internazionale degli
studi sociali Guido
Carli
125 Rinaldo Universita degli Studi 81001910439 72.000
EVANGELISTA di CAMERINO
46. P2022YHPWZ - Costo p : 243.000
126 Andrea ISONI Universita degli Studi 80019600925 121.500
di CAGLIARI
127 Enrica CARBONE Universita degli Studi 02044190615 121,500
della Campania "Luigi
Vanvitelli"
47. P2022B22W?2 - Costo progetto: 241.997
128 Michele BATTISTI Universita degli Studi 80023730825 127.997
di PALERMO
129 | Massimo DEL GATTO | Universita degli Studi 93002750698 114.000
"G. d'Annunzio"
CHIETI-PESCARA
48, P2022EJABP - Costo progetto: 269.579
130 | Claudio SOREGAROLI | Universita Cattolica 02133120150 140.604
del Sacro Cuore
131 | Stefanella STRANIERI | Universita degli Studi 80012650158 128.975
di MILAND
49. P2022LP43N - Costo progetto: 268.834
132 Francesco YOMNA Universita degli Studi 80012650158 146.578
di MILANO
133 Marco GRAZZI Universita Cattolica 02133120150 122,256
del Sacro Cucre
50. P2022TALJF - Costo progetto: 269.753
134 Sibilla Bl GUIDA Scuola IMT Alti Studi - 920375704469 135.753
LUCCA
135 Luca POLONIO Universita degli Studi 12621570154 134.000
di MILANO-BICOCCA
51. P2022MLZEB - Costo progetto: 262.170
136 Andrea Pier Universita degli Studi 80088230018 140,000
Giovanni GALLICE di TORINO
137 Edoardo GRILLO Universita degli Studi 800056480281 122,170
di PADOVA

52. P2022AB2P3 - Costo progetto: 265.807
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n° | Nome Responsabile Ateneo/Ente Codice Fiscale Contributo MUR /
dell'Unita Ateneo/Ente costo totale
138 Carlo Andrea Universita degli Studi 00448820548 87.056
BOLLINO di PERUGIA
139 | Massimo GIANNINI | Universita degli Studi 80213750583 80.831
di ROMA "Tor
Vergata"
140 Maria FERRARA Universita degli Studi 80018240632 60.131
di NAPOLI
"Parthenope”
141 Marzio Domenico Universita degli Studi 80012650158 37.789
GALEOTTI di MILANO
53. P20224A38A - Costo progetto: 269.804
142 | Giustina SECUNDO LUM "Giuseppe 93135780729 81.000
Degennaro"
143 Renato PASSARO Universita degli Studi 80018240632 63.000
di NAPOLI
"Parthenope”
144 Alberto Michele Universita della 80003950781 62.899
FELICETTI CALABRIA
145 | Barbara BIGLIARDI | Universita degli Studi 00308780345 62.905
di PARMA
54. P2022C97X7 - Costo progetto: 267.829
146 Fabio BARTOLINI Universita degli Studi 80007370382 99.101
di FERRARA
147 Silvia CODERONI Universita degli Studi 92012890676 83.712
di TERAMO
148 Paolo SCKOKAI Universita Cattolica 02133120150 85.016
del Sacro Cuore
55. P2022ENNYP - Costo progetto: 171.540
149 Marco NICOLOSI LINK CAMPUS 11933781004 140.000
University
150 Rocco CICIRETTI Universita degli Studi 80213750583 31.540
di ROMA "Tor
Vergata"
56. P20227AWSW - Costo progetto: 259.240
151 | Anna D'AMBROSIO | Politecnico di TORINO 00518460019 123.348
152 Alessandro Universita degli Studi 80088230018 57.281
MANELLO di TORINO
153 Greta FALAVIGNA Consiglio Nazionale 80054330586 78.611
delle Ricerche
57. P2022EZBTE - Costo progetto: 269.966
154 Carlo D'IPPOLITI Universita degli Studi 80209930587 146.323
di ROMA "La
Sapienza"
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n® | Nome Responsabile Ateneo/Ente Codice Fiscale Contributo MUR /
dell'Unita Ateneo/Ente costo totale
155 Luca FANTACCI Universita degli Studi 80012650158 123.643
di MILANO
58. P20225MJWS8 - Costo progetto: 265.703
156 Silvia MUZZIOLI Universita degli Studi 00427620364 137.938
di MODENA e REGGIO
EMILIA
157 Andrea CIPOLLINI Universita degli Studi 80023730825 40.838
di PALERMO
158 Massimiliano Universita degli Studi 80006510806 40.988
FERRARA "Mediterranea” di
REGGIO CALABRIA
159 Arianna AGOSTO Universita degli Studi 80007270186 45,939
di PAVIA
59. P20228SXNF - Costo progetto: 269.366
160 Paolo PIN Universita degli Studi 80002070524 148.566
di SIENA
161 | Marco MANTOVANI | Universita degli Studi 12621570154 120.800
di MILANO-BICOCCA
60. P2022X8LWS - Costo progetto: 99.726
162 Piera BELLO Universita degli Studi 80004350163 40.600
di BERGAMO
163 | Martina CELIDONI Universita degli Studi 80006480281 47.132
di PADOVA
164 | Vincenzo GALASSO Universita 80024610158 11.994
Commerciale "Luigi
Bocconi" MILANO
61. P2022MB44K - Costo progetto: 237.798
165 Leonardo CORBO Universita degli Studi 80007010376 136.500
di BOLOGNA
166 | Federica BRUNETTA | Luiss Libera Universita 02508710585 101.298
internazionale degli
studi sociali Guido
Carli
62. P20227KSFW - Costo progetto: 221.154
167 Annalisa CALOFFI Universita degli Studi 01279680480 102.992
di FIRENZE
168 Silvia Rita SEDITA Universita degli Studi 80006480281 17.994
di PADOVA
169 Diego D'ADDA Universita Politecnica 00382520427 100.168
delle MARCHE

63. P2022NTXX5 - Costo progetto: 245.823
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n° | Nome Responsabile Ateneo/Ente Codice Fiscale Contributo MUR /
dell’'Unita Ateneo/Ente costo totale
170 Marco FABBRI Universita degli Studi 80007010376 69.431
di BOLOGNA
171 Matteo RIZZOLLI Libera Universita degli 02635620582 174.392
Studi "Maria
SS.Assunta" - LUMSA
172 Andrea GERACI Universita degli Studi 80007270186 2.000
di PAVIA
64. P2022TTPK7 - Costo progetto: 234.134
173 Ennio BILANCINI Scuola IMT Alti Studi - 92037570469 125.033
LUCCA
174 Leonardo Universita degli Studi 01279680480 109.101
BONCINELLI di FIRENZE
65. P2022RYFET - Costo progetto: 245.317
175 Francesco Universita degli Studi 80088230018 140.300
QUATRARO di TORINO
176 Marco VIVARELLI Universita Cattolica 02133120150 105.017
del Sacro Cuore
66. P2022P5CHH - Costo progetto: 146.200
177 Antonio NICOLO' Universita degli Studi 80006480281 119.568
di PADOVA
178 | Antonio MIRALLES | Universita degli Studi 80004070837 26.632
ASENSIO di MESSINA
67. P2022N3JTK - Costo progetto: 244.847
179 | Marco MINCIULLO Universita Cattolica 02133120150 122.440
del Sacro Cuore
180 | Alessandro ZATTONI | Luiss Libera Universita 02508710585 122.407
internazionale degli
studi sociali Guido
Carli
68. P2022ACFL7 - Costo progetto: 244.693
181 Erica SANTINI Universita degli Studi 00340520220 42.283
di TRENTO
182 Lorena Maria Universita degli Studi 12621570154 100.259
D'AGOSTINO di MILANO-BICOCCA
183 Diletta PEGORARO | Politecnico di MILANO 80057930150 102.151
69. P2022FWHWM - Costo progetto: 245.967
184 | Eleonora MATTEAZZI | Universita degli Studi 93009870234 142.145
di VERONA
185 Ylenia BRILLI Universita "Ca' 80007720271 95.532

Foscari" VENEZIA
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n® | Nome Responsabile Ateneo/Ente Codice Fiscale Contributo MUR /
dell’Unita Ateneo/Ente costo totale
186 | Pamela GIUSTINELLI Universita 80024610158 8.290
Commerciale "Luigi
Bocconi" MILANO
70. P2022C4WES9 - Costo progetto: 233.570
187 Daniela Universita degli Studi 80002070524 128.520
SORRENTINO di SIENA
188 Davide ELTRUDIS Universita degli Studi 80019600925 105.050
di CAGLIARI
71. P20222WWWA - Costo progetto: 245.783
189 Antonio Universita degli Studi 80006480281 130.662
PARBONETTI di PADOVA
190 | Costantino VISCONTI | Universita degli Studi 80023730825 115.121
di PALERMO
72. P20227RKF9 - Costo progetto: 246.000
191 Elias CARRONI Universita degli Studi 80007010376 97.000
di BOLOGNA
192 | Alessandro RUBINO | Universita degli Studi 80002170720 74.500
di BARI ALDO MORO
193 Carlo GALLIER Libera Universita di 94060760215 74.500
BOLZANO
73. P2022S3KE9 - Costo progetto: 245.977
194 Antonio GHEZZI Politecnico di MILANO 80057930150 90.174
195 Antonio MESSENI Politecnico di BARI 93051590722 77.864
PETRUZZELLI
196 | Federico CAVIGGIOLI | Politecnico di TORINO 00518460019 77.939
74. P2022BXP5X - Costo progetto: 242.886
197 Silvia TIEZZI Universita degli Studi 80002070524 121.443
di SIENA
198 Chiara RAPALLINI Universita degli Studi 01279680480 121.443
di FIRENZE
75. P2022HXLBF - Costo progetto: 238.000
199 | Niloofar KAZEMARGI | Universita degli Studi 93002750698 118.000
"G. d'Annunzio”
CHIETI-PESCARA
200 Simona LEONELLI Universita degli Studi 80006480281 86.250
di PADOVA
201 | Paolo SPAGNOLETTI | Luiss Libera Universita 02508710585 33.750

internazionale degli
studi sociali Guido
Carli

76. P2022JASLC - Costo progetto: 183.917
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n° | Nome Responsabile Ateneo/Ente Codice Fiscale Contributo MUR /
dell'Unita Ateneo/Ente costo totale
202 Simone QUERCIA Universita degli Studi 93009870234 136.921
di VERONA
203 Francesco Universita degli Studi 80004350163 46.996
FALLUCCHI di BERGAMO
77. P2022B7PYX - Costo progetto: 246.001
204 Laura GIRELLA Universita degli Studi 00427620364 94.355
di MODENA e REGGIO
EMILIA
205 Stefano ZAMBON Universita degli Studi 80007370382 75.816
di FERRARA
206 Alessandro LAl Universita degli Studi 93009870234 75.830
di VERONA
78. P2022HBE93 - Costo progetto: 230.730
207 | Roberta RABELLOTTI | Universita degli Studi 80007270186 132.588
di PAVIA
208 Stefano BRESCHI Universita 80024610158 98.142
Commerciale "Luigi
Bocconi" MILANO
79. P20229EL9W - Costo progetto: 230.312
209 Laura ABRARDI Politecnico di TORINO 00518460019 92.674
210 Fabio MANENTI Universita degli Studi 80006480281 44.806
di PADOVA
211 Stefano COMINO Universita degli Studi 80014550307 46.416
di UDINE
212 Mirco TONIN Libera Universita di 94060760215 46.416
BOLZANO
80. P2022SHJIN - Costo progetto: 180.878
213 Paola CANTARELLI Scuola Superiore di 93008800505 96.471
Studi Universitari e
Perfezionamento
Sant'Anna
214 Matilde MILANESI Universita degli Studi 01279680480 84.407
di FIRENZE
81. P2022C44KE - Costo progetto: 230.488
215 | Arianna MARTINELLI | Scuola Superiore di 93008800505 95.023
Studi Universitari e
Perfezionamento
Sant'Anna
216 Gianluca MURGIA Universita degli Studi 80002070524 89.302
di SIENA
217 Andrea URBINATI Universita "Carlo 02015300128 46.163
Cattaneo" - LIUC
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n°® | Nome Responsabile Ateneo/Ente Codice Fiscale Contributo MUR /
dell'Unita Ateneo/Ente costo totale
82. P2022)ZRWS - Costo progetto: 231.000
218 | Francesco Saverio Universita degli Studi 01279680480 138.600
PAVONE di FIRENZE
219 Daniele VILONE Consiglio Nazionale 80054330586 92.400
delle Ricerche
83. P2022BNNEY - Costo progetto: 186.379
220 Elisa TOSETTI Universita degli Studi 80006480281 119.950
di PADOVA
221 Francesco Universita "Ca' 80007720271 32,729
MOSCONE Foscari" VENEZIA
222 | Veronica VINCIOTTI | Universita degli Studi 00340520220 33.700
di TRENTO
84. P2022LFR5M - Costo progetto: 230.504
223 Raffaele Universita degli Studi 80029030568 118.504
CORTIGNANI della TUSCIA
224 Giovanni CERULLI Consiglio Nazionale 80054330586 112.000
delle Ricerche
85. P2022XTLM2 - Costo progetto: 230.692
225 Marco CORAZZA Universita "Ca' 80007720271 115.346
Foscari" VENEZIA
226 | Silvia ROMAGNOLI | Universita degli Studi 80007010376 115.346
di BOLOGNA
86. P2022KMRB8A - Costo pro;etto: 210.134
227 Lucia LEPORATTI Universita degli Studi 00754150100 163.904
di GENOVA
228 | Nicola PONTAROLLO | Universita degli Studi 98007650173 46.230
di BRESCIA
87. P202239XAE - Costo progetto: 230.529
229 Fabiana PIROLA Universita degli Studi 80004350163 98.010
di BERGAMO
230 Monica ROSSI Politecnico di MILANO | 80057930150 63.293
231 Rossella POZZI Universita "Carlo 02015300128 69.226
Cattaneo" - LIUC
88. P20225M45W - Costo progetto: 225.615
232 Laura BERARDI Universita degli Studi 93002750698 76.976
"G. d'Annunzio”
CHIETI-PESCARA
233 | Filippo GIORDANO | Libera Universita degli 02635620582 74.430
Studi "Maria

SS.Assunta” - LUMSA
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n® | Nome Responsabile Ateneo/Ente Codice Fiscale Contributo MUR /
dell'Unita Ateneo/Ente costo totale
234 Paolo ESPOSITO Universita degli Studi 01114010620 74.209
del SANNIO di
BENEVENTO
89. P2022NXPBB - Costo progetto: 227.708
235 Kai ZHU Universita 80024610158 196.708
Commerciale "Luigi
Bocconi" MILANO
236 Toloue MIANDAR Universita degli Studi 80007010376 31.000
di BOLOGNA
90. P2022MWX)JY - Costo progetto: 229.850
237 Pierpaolo Universita degli Studi 94045260711 84.740
MAGLIOCCA di FOGGIA
238 | Angelo BONFANTI Universita degli Studi 93009870234 73.715
di VERONA
239 | Francesco CAPUTO | Universita degli Studi 00876220633 71.395
di Napoli Federico Il
91. P20222XM58 - Costo progetto: 230.584
240 Alessandro Universita di PISA 80003670504 76.874
STEFANINI
241 Mattia CATTANEO Universita degli Studi 80004350163 76.855
di BERGAMO
242 Massimiliano DE Universita degli Studi 80006480281 76.855
LEONI di PADOVA
92. P2022ZK7AK - Costo progetto: 230.484
243 | Donato IACOBUCCI | Universita Politecnica 00382520427 122.952
delle MARCHE
244 Ugo FRATESI Politecnico di MILANO | 80057930150 107.532
93. P2022R248L - Costo progetto: 211.101
245 | Valeria MAGGIAN Universita "Ca' 80007720271 102.961
Foscari" VENEZIA
246 | Natalia MONTINARI | Universita degli Studi 80007010376 108.140
di BOLOGNA
94. P2022LR3C5 - Costo progetto: 207.316
247 Andrea TENUCCI Scuola Superiore di 93008800505 108.520
Studi Universitari e
Perfezionamento
Sant'Anna
248 Sara Giovanna Universita degli Studi 00427620364 98.796

MAURO

di MODENA e REGGIO

EMILIA

95. P20227EJEE - Costo progetto: 230.882
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n° | Nome Responsabile Ateneo/Ente Codice Fiscale Contributo MUR /
dell'Unita Ateneo/Ente costo totale
249 Ambra POGGI Universita degli Studi 80088230018 115.441
di TORINO
250 Elena Francesca Universita degli Studi 12621570154 115.441
MESCHI di MILANO-BICOCCA
96. P2022HYP9M - Costo progetto: 230.993
251 Giovanni SOGARI Universita degli Studi 00308780345 140.217
di PARMA
252 Simone MANCINI Universita di PISA 80003670504 90.776
97. P20228W222 - Costo progetto: 230.925
253 | Francesca VICENTINI | Universita degli Studi 80229010584 190.925
di ROMA "Foro
Italico”
254 | Giuseppe CAPPIELLO | Universita degli Studi 80007010376 40.000

di BOLOGNA
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ALLEGATO A - GRADUATORIE SETTORE SH1

Graduatoria Settore SH1 Linea A - Principale
{1 P1can mene & 40 onm alla data o pubblcozione del bando PRIN 2022 PNRR sone evidenzioty in verde

Llindice o equitd rappresento V'egua distribuzione tra i numero di pov ol genere b ¢ fe e o chaseun progetto. £ un mamero compveso tra 1 e 0 dowe 1
rappresenta lo mossime equitd e 0 fo minima equitd

N “"“! Principal Investigator Ente Punteggio |  Altricriteri
| ita ¢ lal |
Universita Commerclale "Lulgl
4 I
1 |P2022L7T42 |BATTAGLINI Marco |Bocconi” MILANO 98
2 |P2022C3XSS |ROBERTI Paoclo Libera Universita di BOLZANO 91 Criterio 1: 37
3 |P20223THLS |DE CAO Elisabetta Unliversita degli Studi di BOLOGNA 91 Criterio 1: 36!
Universita Commerciale "Luigl '
4 |P2022LRLBH |SAUVAGNAT Julien [Bocconi” MiLANO 90 Criterio 1: 37
Universita degll Studi di Napoli Criterio 1: 36
5 |P2022X)WAT [IMMORDINO Glovanni Federico Il a0 Criterio 3: 28
Criterio 1: 36
|
6 |P20227H2XW |KAJACKAITE Agne Universita degli Studi di MILANO a0 Criterio 3: 27
7 |P2022HA483A |DOTTI Valerio Universita "Ca' Foscarl" VENEZIA 89
Universita Commerciale "Luigi
i
8 |P2022FT9ZK |GIUPPONI Giulia Bocconi® MILANO 88
Criterio 1: 35
9 |P2022332TR  [SCHIAVO Stefano Universita degli Stud| di TRENTO 87 Criterio 3: 27
Equita: 1,00 (2M; 2 F)
Criterio 1: 35
10 |P2022XT8C8  [LUCIANO Elisa Unlversita deghi Studi di TORINO 87 i
Equity: 0,80 (3 M; 2 F)
11 [P2022NK39A [scozzarl Andrea MIELEVING LI dagn St 86 Criterio 1: 36
Niccold Cusano -Telematica Roma
12 |P2022R8ZTW |DISTEFANO Tiziano Universita degli Stud di FIRENZE 86 Criterio 1: 35
13 [P20229CIRS |LIVIERI Giulia Scuola Normale Superiore di PISA 86 Criterio 1: 33
14 [P2022A9N8) [D'AMATO Alessio 3::“'::"’ Segh d) ol NOMA " Tor 85 Criterio 1: 34
15 |P20228CHNL |REGIS Luca Universita degli Studi di TORINO 85 Criterio 1: 33
16 |P2022B5HR7 |[SANDI Matteo Carlo Maria  |Universita Cattolica del Sacro Cuore 84 Criterio 1: 36
Universith Commerciale "Luigi ey
17 |P2022HTXXM |WAGNER Hannes Boccon!" MILANO 84 Criterio 1: 33
Scuola Superiore di Studi Universitari -
18 |P2022N2TP) |GIACHINI Daniele o Ravfeonsranis Sant'Abina 83 Criterio 1: 36
Criterio 1: 34
19 [P2022FKLHH  [FILIPPETTI Andrea Consiglio Nazionale delle Ricerche 83 it :2
Equita: 1,00 (4 M; 4 F)
Criterio 1: 34
20 [P2022FLLPY  |TEI Alessio Universita degli Studi di GENOVA 83 i s 28
Equita: 0,25 (7M; 1 F)
21 |P20228FFHF |PALLANTE Glacomo Universita degli Studi di TRENTO 83 Criterio 1: 32
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ALLEGATO A - GRADUATORIE SETTORE 5H1

Codice
N : Principal Investigator Ente Punteggio Altri criteri
22 |P20225P48L |BARBIERI Paclo Universita degll Stud| di BOLOGNA 82 Criterio 1: 35
23 [P2022XMYWWSAVONA Maria LHIELIEAN UnNesealth IEAmnAX Gl 82 Criterio 1: 34
degli studi soclali Guido Carli
24 |P2022E)A8P [SOREGAROLI Claudio Universita Cattolica del Saero Cusre g1 Sty 3
Criterio 3: 23|
Criterio 1: 34
25 (P2022LP43N  [VONA Francesco Universita degll Studi di MILANO 821
Criterio 3: 22|
Criterio 1: 33|
Criterio 3: 24
26 [P2022TALIF  |DI GUIDA Sibilla Scuola IMT Altl Studi - LUCCA 81 S
Equita: 1,00 (1 M; 1 F)
Criterio 1: 33,
27 |P2022NLZER grﬂg: f‘"dr" e Universita degll Studi di TORINO 81 Crbaro e
Equita: 0,00 (2 M; O F)
Criterio 1: 32|
Criterio 3: 25
28 [P2022AB2P3 |BOLLINO Carlo Andrea Universitd degll Studi di PERUGIA 81 Bty
Equitd: 1,00 (4 M; 4 F)
Criterio 1: 32
Criterio 3: 25
29 |P20224A38A [SECUNDO Giustina LUM "Gluseppe Degennaro" 81 e
Equita: 0,73 (7 M; 4 F)
Criterio 1: 32|
Criterio 3: 25
30 |P2022097%7  |BARTOLINI Fabio Universith degll Stud di FERRARA g1
Equita: 0,29 (6 M; 1 F)
31 |P2022ENNYP |NICOLOSI Marco LINK CAMPUS University g1 trieno L
Criterio 3: 24
y Criterio 1: 32
32 |P20227AWSW|D'AMBROSIO Anna Politecnico di TORING 80 ;
Criterio 3: 25
Criterio 1: 32,
Criterio 3: 24
Universita degll Studi di ROMA "L
33 |P2022€26TE |D'IPPOLITI Carle e sl 4 80 Equitd: 0,80 (2 M; 3 F)
Sapienza
Nascita Pl 3X4/XX/1981
Criterio 1: 32|
Criterio 3: 24
Universith degll Studl di MODENA e
34 |P20225MIWE [MUZZIOLI Silv) 80 : ;
vl REGGIO EMILIA Equita: 0,80 (9 M; 6 F)
Mascita P1: XX/XX/1974
35 |P202285KNF  |PIN Paclo Universita degll Studi di SIENA 80 triano 1 82
Criterio 3: 21
36 |P2022XBLWS |BELLO Plera Universita degll Stud di BERGAMD 80 Criterio 1: 30
37 |P2022MBA4K |CORBO Leanardo Universith degll Studl di BOLOGNA 19 Criterio 1: 32
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ALLEGATO A - GRADUATORIE SETTORE SH1

Codice
N° Principal In ator Ente Pu io Altri criteri
beogetin pal Investig ntegg
Criterio 1: 31
38 [P20227KSFW |CALOEFI Annalisa Universita degli Studi di FIRENZE 79 o ade
Equita: 1,00 (3M; 3F)
Criterio 1: 31
Criterio 3: 24
39 |P2022NTXX5 |FABBRI Marco Universita degli Studi di BOLOGNA 79 -
Equita: 0,73 (7 M; 4 F)
40 |P2022TTPK7 |BILANCINI Ennio Scuola IMT Alti Studi - LUCCA 79 Criterio 1: 30
41 |P2022RYFET |QUATRARO Francesco Universita degli Studi di TORINO 78
42 |P2022PSCHH |NICOLO' Antonio Universita degli Studi di PADOVA 77 Criterio 1: 36
43 [P2022N3ITK |MINCIULLO Marco Universita Cattolica del Sacro Cuore 77 Criterio 1: 32
a4 |P2022ACEL7  |SANTINI Erica Universita degli Studi di TRENTO 77 Gieial a1
Criterio 3: 22
Criterio 1: 31
45 |P2022FWHWMMATTEAZZI Eleonora Universita degli Studi di VERONA 77
Criterio 3: 21
Criterio 1: 30
46 |P2022CAWES |SORRENTINO Danlela Universita degli Studi di SIENA 77
Criterio 3: 25
Criterio 1: 30
47 |P20222WWWAPARBONETTI Antonio Universita degli Studi di PADOVA 77
Criterio 3: 24
, Criterio 1: 30
48 |P20227RKF9 |CARRONI Elias Universita degli Studi di BOLOGNA 77
Criterio 3: 23
49 [P2022S3KES |GHEZZI Antonio Politecnico di MILANO 76 Criterio 1: 34
Criterio 1: 32
| -
50 [P20228%PSX  |TIEZ2) Silvia Universita degli Studi di SIENA 76 Hitario 220
Equita: 1,00 (2 M; 2 F)
Criterio 1: 32
Universita degli Studi "G. d’Annunzio” Criterio 3: 20
P H
51 |P2022HXLBF |KAZEMARGI Niloofar CHIETI-PESCARA 76 .
Equita: 0,60 (3 M; 7 F)
52 |P2022JASLC  |QUERCIA Simone Universita degli Studi di VERONA 76 Lrimiriiad
Criterio 3: 22
Universita degli Studi di MODENA e Criterio 1: 31
53 |P2022B7PYX |GIRELLA Laura REGGIO EMILIA 76 Criterio 3: 21
54 |P2022HBE9S3 |RABELLOTTI Roberta Universita degli Studi di PAVIA 75 Criterio 1: 35
Criterio 1: 34
55 |P20229EL9W |ABRARDI Laura Politecnico di TORINO 75 )
Criterio 3: 18
Criterio 1: 34
56 |P2022sHN  |CANTARELLI Paola Scuola Superiore di Studi Universitari 75 Criterio 3: 17

e Perfezionamento Sant'Anna

Equita: 1,00 (2 M; 2 F)
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ALLEGATO A - GRADUATORIE SETTORE 5H1

Codice
N° Principal Investigator Ente Punteggio Altri criteri
progetto P
Criterio 1: 34
57 |P2022C44KE | MARTINELLI Arianna Scunla Superiore di Studll Universitarl 75 Criterio 3: 17
e Perfezionamento Sant'Anna
Equita: 0,86 (3 M; 4 F)
58 |P2022JZRWS |PAVOME Francesco Saverio [Universitd degll Studi di FIRENZE 75 Criterio 1: 33
59 [P2022BNMEY |TOSETTI Elisa Universita degli Studi di PADOVA 75 Criterio 1: 31
Criterio 1: 30
60 |P2022LFRSM |CORTIGNAMI Raffaele Universita degli Studi della TUSCLA 75
Criterio 3: 25
Criterio 1: 30
61 [P2022XTLM2 |CORAZZA Marco Universith "Ca' Foscari" VEMEZIA 75 Criterio 3: 23
Equita: 0,94 (9 M; & F)
Criterio 1: 30
62 |P2022KMRBA |LEPORATTI Lucia Universita degli Studi di GENOVA 75 Criterio 3: 23
Equits: 0,80 (3 M; 2 F)
Criterio 1: 30
Crit: 3:23
63 |P202239XAE |PIROLA Fabiana Unlversits degll Studi di BERGAMO 75 ritero
Equits: 0,67 (3 M; 6 F)
Criterio 1: 30
Universita degh Studi "G, d"Annunzio™ Criterio 3: 22
64 (P20225M45W |BERARDI Lal 75
e CHIETI-PESCARA
Equita: 0,86 (4 M; 3 F}
Criterio 1: 30
Uni Ita lale "Lul .
65 |P2022NXPBB |ZHU Kai - ! “';:" M::-.f:;r:a oLig 75 Criterio 3: 22
aeea Equits: 0,67 (2 M; 4 F)
Criterio 1: 30
66 |P2022MWXIY |MAGLIOCCA Plerpaclo Universits degll Studi di FOGGIA 75 Criterio 3: 22
Equita: 0,59 (12 M:; 5 F)
Criterio 1: 30
67 |P20222%M58 |STEFANINI Alessandro Universita di PISA 75 CriteriecS: 22
Equita: 0,50 (6 M; 2 F)
Criterio 1: 30
68 [P2022ZK7AK [|ACOBUCCI Donata Universita Politecnica delle MARCHE 75 Criterio 3: 22
Equita: 0,40 (4 M: 1 F)
69 |P2022R248L |MAGGIAN Valeria Universit "Ca’ Foscari” VENEZIA 75 Criberld: 3
Criterio 3: 21
Criterio 1: 29
5 la s i di Studi Unl itari
70 |P2022LR3CS  |TENUCCI Andrea ::; :ﬂ;:z::m Sa:t' A.-.:::m i 75 Criterio 3: 25
Equits: 1,00 {2 M; 2 F]
Criterio 1: 29
71 |P20227EJEE |POGGI Ambra Universita degli Studi di TORINO 75 Criterio 3: 25

Equita: 0,67 (2 M; 4 F)
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ALLEGATO A - GRADUATORIE SETTORE SH1

N° Kodis Principal Investigator Ente Punteggio Altri criteri
progetto :
72 [P2022HYPOM [s0GARI Giovanni Universita degll Studi di PARMA 75 Otteria:2: 29
Criterio 3: 22
| di "
73 [P20228W222 VICENTINI Francesca :::l'i‘; o DR St iAo g Criteio 1: 26
Graduatoria Eenon SH1 Linea B - Sud
N° ezt Principal Investigator Ente Punteggio Altri criteri
1 |P20227XP7P |GRASSETTI Francesca Universita della CALABRIA 90
2 |P2022KHP8L |LANGELLA Monica Universita degli Studi di Napoli 89
3 |P2022ENSP) IMIGLIETTA Pier Paolo Universita del SALENTO 82 Criterio 1: 34
4 |p20224K95M |MoDICA Marco Gran Sasso Science In'stltute - Scuola 82 Crlteqo 1:33
di dottorato internazionale Criterio 3: 25
s (202223141  |Li pONNI Paclo Universita degll Studi di PALERMO 82 Crlteffo 1:33
Criterio 3: 24
6 |P2022SRWEN |DI BUCCHIANICO Stefano  [Universita degll Studi di SALERNO 82 Criterio 1: 32
7 |p2022)1sE8  |SANTERAMO Fabio Gaetano Universita degli Studi di FOGGIA a1 Criterio 1: 32
Criterio 3: 25!
8 |p2022wms2x lsaterno pario :Jnlverslth de-gll Studi di NAPOL) 81 Crlterfo 1:32
Parthenope Criterio 3: 24
9 |P2022Z3TP8 |STEIN Mattea Regina Universita degli Studi di Napoli 80
10 [P20227IN7R  |cARILLO Maria Rosaria :Jnlverslté de-gll Studi di NAPOLI 79
Parthenope
11 [P20229YMBZ |MELEDDU Marta Universita degli Studi di SASSARI 78 Criterio 1: 32
12 [P2022KTM7H ISARDARO Ruggiero Universita degll Studi di FOGGIA 78 Criterio 1: 29
13 [P2022ANZ72 [MANUTI Amelia Universita degll Studi di BARI ALDO 77 Criterio 1: 32
14 |P2022WPA9F |BUTZBACH Olivier Karl Universita degli Studi della Campania 77 Criterio 1: 31
15 |P2022ZRPBL  |SALVATORE Domenico Universita degli Studi Suor Orsola 76 Criterio 1: 30
16 |P2022JH22T |CORS! Katia Universita degli Studi di SASSARI 76 Criterio 1: 29
17 |P2022RF38Y |CUCCURULLO Corrado :I’""""““ degll Stud] della Campania | 75 Criterio 1: 33
18 [P2022YY9P2 |RUSSO Francesco Flaviano  [Universita degll Studi di Napoli 75 Criterio 1: 32
19 [P20220Wz2x REFORGIATO RECUPERO Unliversita degli Studi di CAGLIARI 7 Critefio 1: 31
Diego Angelo Gaetano
20 |p20224k52W [TOMO Andrea Unlverslta degli Studi di Napoli 5 Crlteq‘o 1:30
Federico Il Criterio 3: 23
21 |P2022x1t9a  |List Domenico Universita degli Studi di CATANIA 75 Criterio 1: 30
Criterio 3: 22
Universita degli Studl di BARI ALDO Criterio 1: 30
]
22 |P2022CWAHX |ROMA Rocco MORO 75 Criterio 3: 21
23 |p2022vHPW2 |ISONI Andrea Universita degli Studi di CAGLIARI 75 Criterio 1: 30
Criterio 3: 20
24 |P2022B22W2 [BATTISTI Michele Universita degli Studi di PALERMO 75 Criterio 1: 29]
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