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Chapter 1: Introduction 

In today's digital age, data analytics plays a pivotal role in understanding market dynamics in economics 

and finance. The rapid growth of data from financial markets, consumer transactions, and global economic 

indicators presents both opportunities and challenges. Effectively analyzing these complex datasets 

requires robust analytical tools that can handle their size and variability. 

Traditionally, analysts have relied on parametric methods for their simplicity and strong theoretical 

foundations. However, these methods often depend on assumptions—such as normality and 

homoscedasticity—that are frequently violated in real-world data. As modern economic and financial 

datasets exhibit features like skewness, multi-modality, and heavy tails, the limitations of parametric 

approaches become evident. 

This thesis explores whether non-parametric methods, with their flexibility and fewer assumptions, 

provide a more robust analytical framework than conventional parametric approaches. The primary 

research questions center on comparing the two methodologies for robustness, accuracy, and adaptability 

in economic and financial data analysis, as well as evaluating their practical implications in real-world 

contexts. 

The thesis is structured into six chapters. Chapter 1 introduces the study, outlining its significance and 

objectives. Chapter 2 critically reviews the literature on parametric and non-parametric methods, 

discussing their applications, strengths, and limitations. Chapter 3 details the research design, data sources, 

and analytical procedures employed in the comparative study. Chapter 4 presents the empirical results, 

comparing the two methodologies. Chapter 5 interprets these results, exploring their significance, 

limitations, and possible directions for future research. Finally, Chapter 6 summarizes the major findings 

and contributions of the research. 
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Chapter 2: Literature Review 

The literature review provides a comprehensive examination of the theoretical foundations and empirical 

studies relevant to the use of parametric and non-parametric methods. It begins by exploring the theoretical 

underpinnings of parametric methods, highlighting their foundational assumptions and applications in 

finance. It then examines non-parametric methods, discussing their advantages and limitations in 

addressing the complexities of real-world financial data. Additionally, the chapter reviews hybrid models 

that integrate both parametric and non-parametric approaches, offering a holistic view of their practical 

applications and benefits. By synthesizing existing research, this literature review aims to identify gaps in 

the current knowledge and lay the groundwork for the subsequent analysis in this study. 

2.1 Parametric Methods: Theoretical Underpinnings  

Parametric statistical approaches form the heart of econometric modeling because they rely on well-

defined assumptions to simplify data analysis in economics and finance. These models aim to identify 

relationships between variables, predict outcomes, and test hypotheses based on the assumption that the 

data are normally distributed, errors have homoscedasticity, and relationships between variables are linear. 

Techniques such as linear regression, analysis of variance (ANOVA), and Pearson correlation are 

foundational in this approach. 

The goal of a linear regression model is to estimate the relationship between a dependent variable and 

one or more independent variables, predicting how changes in the independent variables influence the 

dependent variable. The model assumes a linear relationship, expressed mathematically as: 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖  
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In this equation, the regression equation relates the response variable 𝑌𝑖   to the predictor variable 𝑋𝑖  , 

incorporating an intercept (𝛽0, a slope 𝛽1, and an error term ϵi symbolizes the error terms, which are 

assumed to be independently and identically distributed (i.i.d.) following a normal distribution 𝑁(0, 𝜎2). 

These foundational assumptions enable the derivation of several crucial statistical properties, such as the 

unbiasedness, efficiency, and consistency of estimators calculated via Ordinary Least Squares (OLS) 

methods (Fama, 1965). 

ANOVA (Analysis of Variance) is utilized to determine if there are statistically significant differences 

between the means of three or more groups. Its goal is to test hypotheses about the impact of categorical 

independent variables on a continuous dependent variable, thereby providing insights into group effects 

under different market conditions or economic indicators. Mathematically, the ANOVA test statistic is 

based on the ratio of the mean square between groups (MSB) to the mean square within groups (MSW): 

𝐹 =
𝑀𝑆𝑊

𝑀𝑆𝐵
 

 Where: 

• MSB (Mean Square Between) is the variance between the group means. 

• MSW (Mean Square Within) is the variance within each group. 

The formulas for MSB and MSW are: 

• MSB is calculated as the Sum of Squares Between (SSB) divided by the degrees of freedom 

between groups (k - 1): 

𝑀𝑆𝐵 =
𝑆𝑆𝐵

𝑘 − 1
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• MSW is calculated as the Sum of Squares Within (SSW) divided by the degrees of freedom within 

groups (N - k): 

𝑀𝑆𝑊 =
𝑆𝑆𝑊

𝑁 − 𝑘
 

 Where: 

SSB (Sum of Squares Between): 

• Quantifies how much each group’s mean differs from the overall mean of all observations. 

𝑆𝑆𝐵 = ∑  

𝑘

𝑖=1

𝑛𝑖(�̄�𝑖 − �̄�)2 

SSB (Sum of Squares Between): 

• Quantifies how much each group’s mean differs from the overall mean of all observations. 

𝑆𝑆𝑊 = ∑  

𝑘

𝑖=1

∑  

𝑛𝑖

𝑗=1

(𝑋𝑖𝑗 − �̄�𝑖)
2 

ANOVA's F-statistic follows an F-distribution under the null hypothesis that all group means are equal. If 

the calculated F-statistic exceeds the critical value from the F-distribution, the null hypothesis is rejected, 

indicating significant differences among group means. In financial analysis, ANOVA is particularly useful 

for examining how different market conditions or economic indicators influence outcomes, offering a 

comprehensive framework for testing multiple group effects in a single analysis (Montgomery, 2013) 
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Despite the widespread use of these tests, the strict assumptions of parametric tests often conflict with 

real-world financial data features, such as skewness, kurtosis, heavy tails, and volatility clustering. 

Violation of these assumptions can lead to model misspecifications. For example, the normality 

assumption is crucial in the Black-Scholes model for pricing options, but it fails to account for the 

leptokurtic nature of asset returns during financial crises (Mandelbrot, 1963). These discrepancies between 

theoretical models and empirical realities can produce biased estimates and incorrect inferences, 

highlighting the need for caution in applying parametric models uncritically. 

Pearson Correlation assesses the strength and direction of the linear relationship between two variables. 

It aims to quantify how one variable changes in response to another, assuming a linear relationship and 

normally distributed data. The Pearson correlation coefficient is given by: 

𝑟 =
∑  𝑛

𝑖=1 (𝑋𝑖 − �̄�)(𝑌𝑖 − �̄�)

√∑  𝑛
𝑖=1 (𝑋𝑖 − �̄�)2√∑  𝑛

𝑖=1 (𝑌𝑖 − �̄�)2

 

Here, 𝑋𝑖  and 𝑌𝑖 are the individual data points, and �̄� and �̄� are the means of the X and Y data points, 

respectively. Pearson's correlation ranges from -1 to 1, where 1 indicates a perfect positive linear 

relationship, -1 indicates a perfect negative linear relationship, and 0 indicates no linear relationship 

(Kendall & Stuart, 1979). 

As such, while parametric methods continue to offer valuable insights and frameworks in financial 

econometrics, their practical application must be approached with caution, acknowledging their 

limitations and the potential for significant discrepancies in real-world data analysis. This 

acknowledgment is crucial in paving the way for more robust, flexible statistical techniques that can 

accommodate the complex and often unpredictable nature of economic and financial data. 
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2.2 Non-Parametric Methods: Advantages and Applications 

Nonparametric methods distinguish themselves from the parametric approach in that they analyze data 

without any structured, predefined model. This characteristic makes them very flexible and robust when 

dealing with complex and often irregular data, common in many economics and finance applications. 

2.2.1 Core Mathematical Frameworks and Techniques 

Nonparametric statistics do not stipulate any fixed form of distribution for the data and therefore avoid all 

the pitfalls of model assumptions, which are often incorrect and lead to bias or misleading results. This 

section discusses a few important nonparametric techniques, enriched with mathematical formulations to 

explain how they apply. 

Spearman Rank Correlation 

This assesses the monotonic relationship between two variables and does not assume normality. It is given 

by: 

𝜌 = 1 −
6 ∑  𝑛

𝑖=1 𝑑𝑖
2

𝑛(𝑛2 − 1)
 

Where: 

• 𝑑𝑖 is the difference between the ranks of the 𝑖-th data point in the two variables, 

• n is the number of data points. 

Spearman's correlation also ranges from -1 to 1, like Pearson's correlation, but it measures the strength 

and direction of the monotonic relationship (Mandelbrot, 1963). 
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Kruskal-Wallis Test 

This method is used to compare medians across three or more independent groups. It assesses whether 

there is a statistically significant difference in the central tendency (medians) of these groups, particularly 

when the data distributions are not normal. Unlike ANOVA, which assumes normality, the Kruskal-Wallis 

test robustness to outliers and heavy-tailed distributions is particularly useful for non-normally distributed 

data and is given by: 

𝐻 =
12𝑁(𝑁 + 1) ∑  𝑘

𝑖=1
𝑅𝑖

2

𝑛𝑖

𝑁(𝑁 + 1)
− 3(𝑁 + 1) 

Where: 

• 𝑘 is the number of groups, 

• 𝑁 is the total number of observations, 

• 𝑅𝑖 is the sum of ranks for the i-th group, 

• 𝑛𝑖 is the number of observations in the i-th group. 

If the calculated H statistic exceeds the critical value from the chi-square distribution with 𝑘−1 degrees of 

freedom, the null hypothesis that the samples originate from the same distribution is rejected (Mann & 

Whitney, 1947). 

Kernel Density Estimation (KDE) 

KDE is one of the most basic tools in nonparametric analysis, used to estimate the probability density 

function of a random variable on a continuous set. The estimation is given, without assuming an 

underlying distribution, by: 
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𝑓(𝑥) =
1

𝑛ℎ
∑  

𝑛

𝑖=1

𝐾(
𝑥 − 𝑋𝑖

ℎ
) 

Where: 

• n is the number of data points, 

• 𝑋𝑖 are the data points, 

• 𝐾 is the kernel function, typically a Gaussian, which smooths the data points over a range 

defined by h, the bandwidth. 

• ℎ significantly influences the estimator's bias and variance; choosing h optimally is crucial 

for obtaining a reliable estimate. 

Bootstrapping 

Bootstrapping is a resampling method that involves repeatedly drawing samples from a data set to estimate 

a population parameter. It enhances the reliability of predictions by providing empirical estimates of 

sampling distributions. The mathematical framework used involves the following steps: 

1. Resampling: From an original dataset of size n, create a large number of bootstrap samples 

(typically 1000 or more), each of size n, by sampling with replacement. 

2. Computation of Statistic: For each bootstrap sample, compute the desired statistic (e.g., the mean, 

median, or regression coefficient). 

3. Estimation of Distribution: The distribution of these computed statistics across all bootstrap 

samples is used to approximate the sampling distribution of the statistic. 
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4. Confidence Intervals: Confidence intervals for the statistic can be derived from the empirical 

distribution of the bootstrap samples. For example, the 95% confidence interval is typically 

obtained by taking the 2.5th and 97.5th percentiles of the bootstrap distribution. 

Mathematically, if we have a statistic T (e.g., a regression coefficient) based on the original sample X, we 

define it as T = g(X), where g is a function. The bootstrap process generates B bootstrap samples 

(X*₁, X*₂… X*B), computes T*b for each sample, and estimates the standard error of T as: 

𝑆𝐸boot = √
1

𝐵 − 1
∑  

𝐵

𝑏=1

(𝑇𝑏
∗ − �̄�∗)2 

Where T̄ * is the mean of the bootstrap statistics: 

�̄�∗ =
1

𝐵
∑  

𝐵

𝑏=1

𝑇𝑏
∗ 

2.2.2 Practical Applications in Finance and Economics 

Non-parametric methods in economics and finance serve as indispensable tools for analyzing intricate and 

irregular datasets, offering flexibility and robustness that surpass the constraints of predefined models. 

These methods play a crucial role in various applications, providing insightful alternatives to traditional 

parametric approaches. 

Spearman Rank Correlation evaluates the monotonic relationship between variables without assuming 

normality. This method is particularly valuable in financial analysis, where it uncovers non-linear 

associations that might be overlooked by parametric techniques (Mandelbrot, 1963). 

Kruskal-Wallis Test extends the capabilities of the Mann-Whitney U test by assessing whether samples 

across multiple groups originate from the same distribution. This makes it effective for analyzing financial 
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data that do not adhere to normal distributions, such as comparing returns or metrics across different 

sectors or time periods (Mann & Whitney, 1947). 

Kernel Density Estimation (KDE) aids in visualizing and understanding the distributional characteristics 

of financial variables, which is crucial for risk management and derivative pricing (Scott, 1992). 

Bootstrapping enhances the reliability of statistical conclusions by resampling from the original dataset 

to estimate parameters and their variability. In finance, this technique is instrumental for assessing the 

stability and uncertainty of financial models and predictions, providing critical insights into the robustness 

of statistical findings (Efron & Tibshirani, 1993). 

Together, these non-parametric methods empower analysts and researchers in economics and finance to 

navigate the complexities of real-world data more effectively. They offer reliable tools for risk assessment, 

anomaly detection in market behavior, and comprehensive validation of statistical models in dynamic 

financial environments. 

2.2.3 Expanding the Relevance in Empirical Analysis 

While non-parametric methods offer robust flexibility and fewer assumptions, they require careful 

handling, particularly in selecting parameters like the bandwidth in KDE, which can dramatically 

influence the analysis's outcome. Advanced methods for bandwidth selection, such as cross-validation or 

plug-in approaches, help mitigate these issues by optimizing the balance between bias and variance in the 

estimates (Pedregosa et al., 2011). 

Non-parametric methods also benefit from robust computational tools. The use of Python and libraries 

such as Pandas, NumPy, SciPy, and Scikit-learn facilitates efficient data manipulation, numerical 

calculations, and the application of complex statistical techniques (McKinney, 2010). 
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2.3 Conclusion 

In conclusion, the exploration of parametric and non-parametric methods in Chapter 2 reveals fundamental 

insights into their roles within economic and financial analysis. Parametric approaches, anchored in 

assumptions like normality and linearity, have historically provided structured frameworks such as linear 

regression and ANOVA, essential for interpreting relationships in economic data. The limitations 

underscore the need for cautious application and exploration of alternative methodologies capable of 

accommodating the nuances of economic and financial datasets. 

Conversely, non-parametric methods emerge as flexible alternatives, bypassing strict assumptions about 

data distribution. Techniques like Spearman rank correlation and kernel density estimation offer robust 

tools for analyzing irregular datasets prevalent in finance. These methods enhance predictive accuracy and 

model validation by capturing non-linear associations and complex distributional characteristics without 

imposing predefined structures.  
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Chapter 3: Methodology 

3.1 Introduction 

The methodology chapter provides a systematic overview of the research design, data collection, 

preparation, and analysis methods used to compare the effectiveness of parametric and non-parametric 

approaches in financial data analysis. It ensures reproducibility and transparency by detailing the research 

framework, data sources, and preparation steps, while also outlining the analytical methods employed. 

The chapter further explores hybrid models that combine both approaches to enhance predictive accuracy 

and robustness, laying the foundation for a rigorous analysis and interpretation of results in the following 

chapters. 

3.2 Research Design 

The research design of this study incorporates a methodological framework to evaluate and compare the 

effectiveness of statistical methods in analyzing financial data. The exploratory and descriptive nature of 

the study aims to uncover patterns, relationships, and statistical behaviors within both simulated and real-

world financial datasets. By utilizing both data types, the research assesses the robustness and applicability 

of various statistical techniques across controlled and dynamic market conditions. 

A key aspect of the research design is the structured comparison of parametric and non-parametric 

methods under different scenarios, considering varying distributions, skewness levels, and outliers. 

Simulated data, crafted to mimic specific statistical traits, and real-world financial data are used to ground 

the findings in both theory and practical relevance. Additionally, the design includes a systematic 

evaluation of correlation measures, statistical tests, and hybrid models to offer actionable insights into the 
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strengths and limitations of each method. This structured approach enhances the reliability of the findings 

while contributing to the broader methodological discourse in financial data analysis. 

3.3 Data Collection 

In this section, we detail the datasets utilized in the study, categorized into simulated, real-world, and 

cross-sectional data for comprehensive analysis. 

3.3.1 Simulated Data 

Simulated data are crucial for rigorously testing statistical methods under controlled conditions. Using 

Python's NumPy library, simulated datasets were carefully crafted to exhibit specific statistical properties 

such as mean, variance, skewness, and kurtosis. These datasets simulate various financial scenarios, 

ensuring robust evaluations of methodological efficacy across diverse data distributions. 

Simulation Studies: 

Simulation studies are crucial for understanding stock return behaviors under various conditions. This 

involves running simulations over multiple iterations and introducing outliers to study their impact on 

statistical measures. The steps include: 

• Simulating Returns: Returns for two independent stocks are simulated over 1000 days using 

Python and libraries like NumPy. This process is repeated for 1000 iterations to gather a robust set 

of results. 

• Introducing Outliers: Some simulations include outliers to study their impact on Pearson and 

Spearman correlation coefficients. Outliers are introduced by multiplying returns on randomly 

selected days by a significant factor (e.g., 50) to simulate extreme market conditions. 
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The purpose of these simulation studies is to provide insights into the performance of statistical methods 

under varying conditions, including the presence of outliers and extreme market behaviors. By utilizing 

Python's NumPy library, the simulations are implemented with a focus on accuracy and reproducibility, 

which is essential for evaluating the robustness of these methodologies 

3.3.2 Real-World Data 

Real-world financial data sourced from Yahoo Finance offer insights into the applicability of statistical 

methods in actual market conditions. The dataset includes historical price data for multiple companies, 

comprising daily closing prices, trading volumes, and timestamps over a specified period. This data 

captures the dynamic nature of financial markets, incorporating real-time fluctuations and external 

influences that affect stock prices. 

The purpose of this analysis is to validate and apply statistical methods in realistic market scenarios by 

using real-world financial data. This thorough analysis offers valuable insights into the practical 

performance of statistical techniques in the context of actual financial markets. 

3.3.3 Cross-Sectional Data 

Cross-sectional data analysis extends the study's scope by examining variation ratios among stock prices 

across different countries—Germany, Italy, and the USA. These variation ratios are computed as changes 

in stock prices over a specified period, enabling comparative insights into market behaviors and economic 

conditions across diverse geographical regions. 

Data were gathered from Germany, Italy, and the USA to analyze variation ratios among companies, 

reflecting diverse market dynamics. These variation ratios highlight unique market characteristics and 
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regulatory environments in each country. This approach allows for a deeper understanding of how 

different markets operate and how statistical techniques can be applied in various international contexts. 

3.4 Analytical Methods 

In this section, we detail the analytical methods and statistical tests employed to evaluate relationships 

and compare variation ratios across different datasets. 

3.4.1 Correlation Analysis 

Correlation analysis plays a crucial role in examining relationships between financial variables, employing 

both Pearson and Spearman correlation coefficients: 

• Pearson Correlation: Pearson correlation measures the linear association between two variables, 

indicating the strength and direction of their linear relationship. In this study, Pearson correlations 

were computed for both simulated and real-world financial data. For simulated data, Pearson 

correlation coefficients were analyzed to assess linear dependencies between variables with 

controlled statistical properties. In real-world data, such as historical prices sourced from Yahoo 

Finance, Pearson correlation coefficients were used to evaluate linear relationships among daily 

closing prices and trading volumes over time. 

• Spearman Correlation: Spearman correlation evaluates monotonic relationships between 

variables, making it robust against outliers and non-linear associations. In our analysis, Spearman 

correlation coefficients were utilized to identify and measure non-linear monotonic relationships. 

This method was particularly valuable when assessing relationships in scenarios where data 

distributions deviated from normality or included outliers. The use of Spearman correlation 
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provided insights into the strength and direction of relationships that Pearson correlation might 

overlook, enhancing the study's robustness in evaluating financial data. 

 A comparative analysis was conducted to contrast the performance of Pearson and Spearman correlations 

under different conditions, such as data with and without outliers. By examining these correlations under 

varied conditions, the study offered insights into the suitability of each method for different types of 

financial data analysis. 

3.4.2 Comparative Tests 

Comparative tests were employed to evaluate variation ratios among different groups of companies: 

• Kruskal-Wallis Test: The Kruskal-Wallis test, a non-parametric method, was utilized to compare 

variation ratios across companies from Germany, Italy, and the USA. This test was chosen because 

it does not assume normality or homogeneity of variances, making it suitable for datasets where 

these assumptions may not hold.  

• ANOVA (Analysis of Variance): ANOVA, a parametric method, was employed to compare 

means of variation ratios under conditions where parametric assumptions were met. Specifically, 

ANOVA was used to analyze variation ratios across different groups of companies when data 

exhibited normal distribution and homogeneity of variances. This method enabled a detailed 

examination of mean differences among groups, complementing the insights gained from non-

parametric tests like the Kruskal-Wallis test. 

Additionally, Kernel Density Estimation (KDE) was employed to visually represent the distribution of 

variation ratios for companies from Germany, Italy, and the USA. This technique provided a 

comprehensive overview of the density characteristics within each group, illustrating how variation ratios 
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were distributed across different economic regions. By visually inspecting KDE plots, the study enhanced 

its understanding of the underlying data distributions, thereby supporting the findings from comparative 

statistical tests like the Kruskal-Wallis and ANOVA. 

3.5 Hybrid Models 

This section details the development and application of hybrid models that integrate linear regression and 

bootstrapping techniques for enhanced predictive accuracy and robustness in financial data analysis. 

Linear Regression 

Linear regression was employed to model and capture the linear trends observed in stock prices within the 

study. The purpose of this approach was to establish a linear relationship between dependent variables 

(e.g., stock prices) and independent variables (e.g., time or other relevant factors). By fitting linear 

regression models to historical price data sourced from Yahoo Finance, the study aimed to identify trends 

and patterns in stock price movements over time.  

Bootstrapping 

Bootstrapping is a resampling technique used to assess the variability and robustness of statistical 

estimates. The purpose was to enhance the reliability of predictions derived from linear regression models. 

This methodology involves generating multiple resamples from the original dataset to derive empirical 

estimates of sampling distributions. By applying it to historical price data, the study gained insights into 

the stability and consistency of regression coefficients and predictions. This technique proved particularly 

valuable in mitigating the impact of outliers and variability inherent in financial markets, thereby 

increasing the credibility of model predictions. 
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Integration of Linear Regression and Bootstrapping 

The development of this hybrid model involved combining the predictive power of linear regression with 

the robustness conferred by bootstrapping. Initially, linear regression models were fitted to historical price 

data to capture underlying trends. Subsequently, bootstrapping was applied to these models to generate 

multiple resampled datasets, from which empirical distributions of model coefficients and predictions 

were derived. This integration allowed the hybrid model to not only identify linear trends in stock prices 

but also quantify the uncertainty associated with these predictions, offering more reliable insights into 

future price movements.  

3.7 Software and Tools 

This section outlines the software and tools utilized for data analysis and visualization throughout the 

study, emphasizing their roles in processing and interpreting financial data. 

Python served as the primary programming language for data manipulation, analysis, and modeling. Its 

versatility and extensive libraries made it well-suited for handling complex financial datasets and 

implementing statistical techniques. 

• pandas: pandas, a powerful data analysis library in Python, was instrumental in data manipulation 

and preprocessing tasks. It facilitated tasks such as data cleaning, transformation, and integration 

across different datasets, ensuring data consistency and readiness for analysis. 

• NumPy: NumPy, a fundamental library for numerical computing in Python, provided essential 

functionalities for mathematical operations and array manipulations. It enabled the generation of 

simulated datasets with specific statistical properties, such as mean, variance, skewness, and 

kurtosis, crucial for testing methodological robustness. 
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• matplotlib: matplotlib, a comprehensive plotting library in Python, was utilized for generating 

visualizations that enhanced data interpretation and presentation. It produced a variety of plots, 

including histograms, box plots, scatter plots, and kernel density estimates (KDE), which 

illustrated data distributions, relationships, and trends effectively. 

• SciPy: SciPy, another essential library for scientific computing in Python, complemented NumPy 

by offering advanced statistical functions and tests. It facilitated the implementation of statistical 

methods such as Pearson correlation, Spearman correlation, Kruskal-Wallis test, and ANOVA, 

enabling rigorous comparative analyses across different datasets. 

• Jupyter Notebooks: Jupyter Notebooks provided an interactive computing environment that 

combined code execution, data visualization, and explanatory text in a single document. They were 

used for iterative data analysis, model development, and result interpretation, promoting 

transparency and reproducibility in the research process. 

• Yahoo Finance (API): Yahoo Finance's API was utilized to access and retrieve real-world 

financial data, including historical price data for Tesla (TSLA). This data source provided crucial 

information for validating statistical methods and models against real market conditions. 

These software and tools collectively facilitated comprehensive data analysis, rigorous statistical testing, 

and insightful visualization, enabling the study to derive meaningful conclusions and recommendations in 

the field of financial data analysis. 
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Chapter 4: Data Analysis  

4.1 Introduction 

This chapter explores the datasets and methodologies used to compare parametric and non-parametric 

methods in financial data analysis. It begins with an overview of the datasets, including simulated, real-

world, and cross-sectional data, along with descriptive statistics and graphical representations. The chapter 

then focuses on the comparative performance of correlation measures and statistical tests, considering 

different scenarios such as the presence of outliers. Finally, it examines hybrid models that combine both 

approaches to improve predictive accuracy and robustness. 

4.2 Data Overview 

This section provides a detailed overview of the datasets used in this study. We present various descriptive 

statistics to understand the underlying properties of these datasets. 

4.2.1 Simulated Data 

Simulated datasets were generated to mimic different distributional characteristics crucial for testing 

method robustness. Variables: Mean, Variance, Skewness, Kurtosis 

• Type: Continuous 

 Mean Standard Deviation Quartiles Skewness Kurtosis 

Normal Data -0.045 0.987 [-0.698, -0.058, 0.607] 0.034 -0.047 

Data with outliers 0.514 2.370 [-0.600, 0.0860, 0.778] 3.138 10.402 

 

Table 1: Descriptive Statistics for Simulated Data 
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Figure 1: Histogram of Simulated Data with and without outliers  

 

Figure 2: Box Plot of Simulated Data 

The normal dataset has a mean of -0.045, standard deviation of 0.987, and quartiles of [-0.698, -0.058, 

0.607], with slight skewness (0.034) and near-zero kurtosis (-0.047), indicating a roughly normal 

distribution. In contrast, the dataset with outliers shows a higher mean (0.514), greater standard deviation 

(2.370), and quartiles of [-0.600, 0.086, 0.778], with skewness (3.138) and kurtosis (10.402) reflecting a 

more dispersed, heavy-tailed distribution. Histograms and box plots confirm these characteristics, with 

the normal data showing a bell-shaped curve and symmetrical spread, while the outlier dataset displays 

greater spread and evident outliers. 
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4.2.2 Real-World Data 

For real-world financial data, we sourced historical price data from Yahoo Finance. This dataset includes 

historical price data, trading volumes, and timestamps. 

• Type: Time Series 

Company Name Ticker Mean 
Standard 

Deviation 
Quartiles Skewness Kurtosis 

Apple Inc. AAPL 130.312 30.566 
[115.739, 135.380, 

150.705] 
-0.635 -0.454 

Amazon.com, Inc. AMZN 142.455 27.856 
[118.338, 154.467, 

164.633] 
-0.578 -1.018 

The Coca-Cola 

Company 
KO 55.223 5.916 

[50.458, 55.135, 

60.408] 
-0.165 -0.806 

PepsiCo, Inc. PEP 152.788 16.786 
[138.057, 148.745, 

168.355] 
0.088 -1.033 

McDonald's 

Corporation 
MCD 229.706 26.823 

[212.228, 233.885, 

250.412] 
-0.548 -0.072 

Starbucks 

Corporation 
SBUX 94.174 15.411 

[81.145, 91.270, 

109.825] 
0.032 -1.135 

Table 2: Descriptive Statistics for Real-World Data 

 

Figure 3: Time Series Plot of Historical Prices 
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The historical price data reveals key performance and volatility insights for selected companies. Apple 

(AAPL) shows moderate volatility with a mean of 130.312 and a standard deviation of 30.566, displaying 

a slight left skew and near-normal distribution. Amazon (AMZN) experiences greater price fluctuations, 

with a mean of 142.455, standard deviation of 27.856, and a long-left tail. Coca-Cola (KO) has lower 

volatility, with a mean of 55.223, standard deviation of 5.916, and a nearly symmetrical distribution. 

PepsiCo (PEP) presents stability with a mean of 152.788, standard deviation of 16.786, and a slight right 

skew. McDonald's (MCD) shows higher volatility with a mean of 229.706 and left-skewed distribution, 

while Starbucks (SBUX) has a mean of 94.174, moderate volatility, and slight right skew. The time series 

plots further highlight trends and anomalies, emphasizing the importance of robust analytical techniques 

for handling varied data distributions, which sets the stage for the comparative analysis of parametric and 

non-parametric methods. 

  4.2.3 Cross-Sectional Data 

The cross-sectional data analysis focuses on the variation ratios of stock prices for companies from 

Germany, Italy, and the United States over a specified period. The variation ratio represents the percentage 

change in stock prices during the period, providing insights into market behavior and volatility across 

different regions. 

• Type: Cross-Sectional 

Companies Mean Standard Deviation Quartiles Skewness Kurtosis 

German 0.076 0.254 [-0.161, 0.062, 0.330] 0.044 1.745 

Italian 0.046 0.135 [0.024, 0.057, 0.157] -0.81 -0.649 

US 0.371 0.376 [0.195, 0.417, 0.593] -0.355 -1.206 

Table 4: Descriptive Statistics for Cross-Sectional Data 
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Figure 4: Box Plot of Variation Ratios 

The descriptive statistics show that US companies have a much higher mean variation ratio (0.371) 

compared to German (0.076) and Italian (0.046) companies, indicating more substantial stock price 

changes in the US market. The US market also has greater variability, with a higher standard deviation 

(0.376) than the German (0.254) and Italian (0.135) markets. Box plots illustrate these differences, with 

US companies showing higher variation and volatility. Negative skewness in the Italian (-0.81) and US (-

0.355) data suggests longer left tails, indicating occasional large negative stock price changes, while the 

German data is nearly symmetrical with a skewness of 0.044. Kurtosis further emphasizes these 

distinctions, with Italian (-0.649) and US (-1.206) companies having flatter distributions, while German 

companies exhibit positive kurtosis (1.745), indicating a more peaked distribution with potential outliers. 

4.3 Comparative Analysis of Methods 

This section compares the performance of parametric and non-parametric methods using both simulated 

and real-world data. We analyze Pearson and Spearman correlation coefficients, examining their behavior 

in scenarios with and without outliers. We also discuss the number of times p-values fall below the 0.05 

threshold, indicating statistical significance. 
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4.3.1 Simulated Data: Analysis of Pearson and Spearman Correlation 

Simulation without Outliers 

In the absence of outliers, both Pearson and Spearman correlation coefficients revealed average values 

close to zero across 1,000 iterations, indicating no significant linear or monotonic relationships between 

the variables. This aligns with the expectation that randomly generated, independent data should not 

exhibit meaningful correlations. 

Pearson Correlation: 

• Mean correlation coefficient: 0.001, indicating no significant linear relationship. 

• Mean p-value: 0.506 

• Percentage of p-values below 0.05: 4.50%, consistent with random chance (false positives). 

Spearman Correlation: 

• Mean correlation coefficient: 0.002, indicating no significant monotonic relationship. 

• Mean p-value: 0.506 

• Percentage of p-values below 0.05: 4.60%, consistent with random chance. 
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Figure 5: Histogram of Pearson and Spearman Correlation Coefficients for Simulated Data Without Outliers 

These results underscore the consistency of both methods in detecting no substantial relationships when 

none exist, as the data is purely random. The low percentages of p-values below 0.05 further reinforce the 

conclusion that the occasional statistically significant results are likely due to random fluctuations rather 

than genuine correlations. 

Figure 5 provides a visual representation of the distribution of Pearson and Spearman correlation 

coefficients, both clustering around zero, with narrow spreads that further confirm the absence of 

meaningful relationships in the data. 

Simulation with Outliers 

When outliers were introduced, Pearson correlation coefficients exhibited greater sensitivity, as reflected 

by a wider spread and higher mean value, while Spearman remained more stable. 
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Pearson Correlation: 

• Mean correlation coefficient: 0.050, slightly inflated by the presence of outliers. 

• Mean p-value: 0.641 

• Percentage of p-values below 0.05: 0.80%, indicating reduced sensitivity to detect significant 

relationships in the presence of outliers. 

Spearman Correlation: 

• Mean correlation coefficient: 0.003, nearly unchanged, showing no significant monotonic 

relationship. 

• Mean p-value: 0.506 

• Percentage of p-values below 0.05: 4.90%, similar to the scenario without outliers, reflecting 

Spearman’s robustness. 

 

Figure 6: Histogram of Pearson and Spearman Correlation Coefficients for Simulated Data with Outliers 
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When outliers were added to the data, the Pearson correlation values increased. SThis is because the 

extreme values inflated the correlation. Pearson's average p-value rose to 0.641, and only 0.80% of the 

tests showed statistically significant results (p < 0.05). This means that the outliers made it harder for 

Pearson to detect meaningful relationships. These results show that Pearson correlation is easily affected 

by outliers, leading to unstable and less reliable conclusions when extreme values are present. 

In contrast, Spearman correlation remained much more robust. The mean Spearman correlation 

coefficient was only 0.003, nearly unchanged from the scenario without outliers, reflecting Spearman's 

insensitivity to extreme values. The mean p-value was 0.506, and 4.90% of iterations produced p-values 

below 0.05—numbers that are remarkably consistent with the results from the simulations without outliers. 

This stability highlights Spearman's resilience to outliers and confirms its suitability for datasets prone to 

extreme values. 

4.3.2 Real-World Data: Analysis of Correlation between Stock Pairs 

Next, we examine the Pearson and Spearman correlations for three pairs of real-world stocks: Apple 

(AAPL) vs. Amazon (AMZN), Coca-Cola (KO) vs. PepsiCo (PEP), and McDonald's (MCD) vs. Starbucks 

(SBUX). This analysis aims to provide insights into the relationships between these companies and assess 

the consistency of the correlation measures. 

Apple (AAPL) vs. Amazon (AMZN): 

The scatter plot shows a positive linear relationship. 

• Pearson p-value: < 0.001 

• Spearman p-value: < 0.001 
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Figure 7: Scatter Plot and Linear Fit for AAPL vs. AMZN 

Coca-Cola (KO) vs. PepsiCo (PEP): 

The scatter plot shows a positive linear relationship. 

• Pearson p-value: < 0.001 

• Spearman p-value: < 0.001 

 

Figure 8: Scatter Plot and Linear Fit for KO vs. PEP 
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McDonald's (MCD) vs. Starbucks (SBUX): 

The scatter plot shows a strong positive linear relationship. 

• Pearson p-value: < 0.001 

• Spearman p-value: < 0.001 

 

Figure 9: Scatter Plot and Linear Fit for MCD vs. SBUX 

The analysis of real-world data shows that both Pearson and Spearman correlations consistently indicate 

strong positive relationships between the stock returns of the pairs analyzed. For AAPL vs. AMZN, KO 

vs. PEP, and MCD vs. SBUX, the scatter plots and linear fits visually support these correlations. The low 

p-values (< 0.001) for both Pearson and Spearman methods confirm that these relationships are 

statistically significant. This consistency suggests that both correlation measures are reliable for analyzing 

the relationships between stocks in the real world, where data is typically more complex and varied than 

in simulations. 
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4.3.3 Cross-Sectional Data: Comparing Kruskal-Wallis and ANOVA Tests 

In this subsection, we compare the performance of the Kruskal-Walli’s test, a non-parametric method, and 

the ANOVA test, a parametric method, using cross-sectional financial data. In addition to the Kruskal-

Walli’s test, Kernel Density Estimation (KDE) was employed to estimate the probability density functions 

of the variation ratios. This comparison aims to evaluate the effectiveness of these methods in detecting 

differences in variation ratios among groups of companies from different countries. 

Kruskal-Wallis Test: 

• Test Statistic: 1.874 

• P-value: 0.392 

The Kruskal-Walli’s test yields a test statistic of 1.874 and a p-value of 0.392. This p-value indicates that 

there is no significant difference in the variation ratios among the groups of companies from Germany, 

Italy, and the US. The Kruskal-Walli’s test, being a non-parametric method, is particularly useful when 

the data does not meet the assumptions of normality and homogeneity of variance required for parametric 

tests. 

ANOVA Test: 

• Test Statistic: 1.161 

• P-value: 0.321 

The ANOVA test results show a test statistic of 1.161 and a p-value of 0.321. Like the Kruskal-Walli’s test, 

the ANOVA p-value indicates no statistically significant differences in the variation ratios among the 

groups. ANOVA is a robust parametric method when its assumptions are met, and its results here align 

with those of the Kruskal-Walli’s test, reinforcing the conclusion. 
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Kernel Density Estimation (KDE): 

Kernel Density Estimation (KDE) plots provide a visual representation of the distribution of variation 

ratios for companies from Germany, Italy, and the US. The KDE plots reveal distinct density 

characteristics for each group: moderate variation for German companies, low variation for Italian 

companies, and higher variation for US companies. These visual insights support the statistical test results, 

indicating no significant differences among the groups but highlighting the inherent distribution 

characteristics. 

 

Figure 10: Kernel Density Estimation of Variation Ratios for German, Italian, and US Companies 

The comparative analysis using the Kruskal-Wallis and ANOVA tests suggests that there are no significant 

differences in variation ratios among the companies from Germany, Italy, and the US. The p-values from 

both tests (0.392 for Kruskal-Wallis and 0.321 for ANOVA) indicate a lack of statistical significance. The 

KDE plots further provide a visual understanding of the data distributions, showing distinct density 

characteristics for each group without indicating substantial differences. This combination of statistical 

and visual analysis offers a comprehensive understanding of the variation ratios across different groups, 

confirming the robustness of the findings. 
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4.4 Hybrid Models 

In this section, we explore the integration of parametric and non-parametric methods to leverage their 

strengths. Hybrid models combine the assumptions and computational efficiencies of parametric methods 

with the flexibility and robustness of non-parametric approaches. This section demonstrates how hybrid 

models can be applied to real-world financial data to enhance predictive accuracy and robustness. 

4.4.1 Application 

A hybrid approach combining linear regression (parametric) with bootstrapping (non-parametric) is used 

to predict stock prices. The parametric component captures the linear trend, while the non-parametric 

component accounts for distributional peculiarities and outliers. 

4.4.2 Example and Explanation 

In this section, we demonstrate the application of the hybrid model using historical stock price data from 

Apple Inc. (AAPL) sourced from Yahoo Finance. The aim is to predict stock prices by leveraging both 

linear regression and bootstrapping techniques, thereby enhancing the robustness and accuracy of the 

predictions. 

Objective: We aim to use a hybrid modeling approach to predict future stock prices by combining: 

• Linear Regression to capture the underlying linear trend. 

• Bootstrapping to account for distributional characteristics and potential outliers. 

Data: 

• The dataset includes the daily closing prices of Apple Inc. (AAPL) from January 1, 2021, to 

January 14, 2022. 
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4.4.3 Results 

Date Actual Linear Prediction Bootstrap Mean Bootstrap Lower Bootstrap Upper 

2022-01-03 182.01 169.54 169.53 167.64 171.40 

2022-01-04 179.70 169.43 169.41 167.53 171.27 

2022-01-05 174.92 169.31 169.29 167.42 171.14 

2022-01-06 172.00 169.19 169.17 167.30 171.01 

2022-01-07 172.17 169.07 169.05 167.19 170.88 

2022-01-10 172.19 168.96 168.94 167.08 170.75 

2022-01-11 175.08 168.84 168.82 166.97 170.62 

2022-01-12 175.53 168.72 168.70 166.86 170.50 

2022-01-13 172.19 168.60 168.58 166.75 170.37 

2022-01-14 173.07 168.48 168.47 166.64 170.25 

 

The linear regression predictions show a steady trend over time, effectively capturing the overall linear 

movement of the stock prices. However, these predictions are generally lower than the actual stock prices, 

suggesting that the linear model alone might not capture all the nuances in the data. This indicates a 

limitation in the linear regression approach, as it may not account for more complex patterns and 

variability present in the stock prices. 

The bootstrap mean predictions are very close to the linear regression predictions, reflecting the average 

trend across multiple resampled datasets. These predictions also tend to be lower than the actual stock 

prices, aligning closely with the linear model's trend. However, the use of bootstrapping provides a more 

robust estimate because it incorporates multiple resamples, which helps in averaging out anomalies and 

capturing a more reliable trend. 

The 95% confidence intervals, represented by the Bootstrap Lower and Upper bounds, provide a range 

within which the actual stock prices are expected to fall. These intervals account for the variability and 

potential outliers in the data, offering a more comprehensive view of the possible stock price outcomes. 
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The presence of confidence intervals enhances the robustness of the predictions by acknowledging the 

inherent uncertainty in the stock market. Nevertheless, the actual stock prices occasionally fall outside 

these confidence intervals, suggesting the influence of factors beyond the model's scope, such as market 

events or news. This indicates that while the hybrid model improves prediction reliability, external factors 

can still significantly impact stock prices. 

 

Figure 11: Hybrid Model Stock Price Predictions with Linear Regression and Bootstrapping for Apple Inc. 
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Chapter 5: Results Interpretation and Practical Implications 

5.1 Introduction 

This chapter explores into the interpretation of the findings from Chapter 4, elucidating the practical 

implications of employing parametric and non-parametric methods in financial data analysis. By 

examining the performance and applicability of these statistical techniques, we highlight their respective 

strengths and limitations, providing a nuanced understanding of their roles in analyzing complex financial 

datasets. 

Furthermore, we explore the practical benefits of hybrid models that seamlessly integrate both parametric 

and non-parametric approaches, offering robust solutions for real-world financial analysis and decision-

making. This comprehensive interpretation aims to bridge the gap between theoretical analysis and 

practical application, equipping financial analysts and decision-makers with insights to enhance their 

analytical strategies and investment decisions. 

5.2 Interpretation of Results 

5.2.1 Simulated Data Analysis 

The analysis of simulated data provided key insights into the behavior of parametric and non-parametric 

methods under controlled conditions. Specifically, we evaluated Pearson and Spearman correlation 

coefficients in scenarios both with and without outliers to assess their reliability and robustness. 

In the absence of outliers, both Pearson and Spearman correlation coefficients showed a roughly normal 

distribution centered around zero. This result indicates no significant correlations, which aligns with the 

expectations derived from the data generation process designed to produce uncorrelated variables. This 



38 
 

outcome confirms that under ideal conditions without outliers, both correlation measures perform reliably 

and are equally effective in reflecting the true nature of the data. 

However, the introduction of outliers revealed marked differences in the performance of these correlation 

measures. The Pearson correlation coefficients exhibited increased variance, demonstrating a high 

sensitivity to extreme values. This increased variance suggests that Pearson correlations are significantly 

influenced by outliers, which can distort the overall analysis and lead to misleading conclusions in the 

presence of such anomalies. 

In contrast, the Spearman correlation coefficients remained relatively stable even with the inclusion of 

outliers, showcasing a robustness that Pearson lacked. Spearman's stability indicates its resilience to the 

disproportionate influence of extreme values, making it a more suitable measure in financial contexts 

where outliers are common. This robustness of Spearman correlation suggests that it provides consistent 

and reliable results without being unduly affected by the presence of outliers. 

Overall, the simulated data analysis highlights that while both Pearson and Spearman correlation measures 

are reliable under ideal conditions, Spearman correlation is particularly advantageous in scenarios 

involving outliers. This robustness makes it a preferable choice for financial data analysis, where the 

presence of outliers is frequent.  

5.2.2 Real-World Data Analysis 

The examination of real-world financial data, including historical price data from companies such as Apple, 

Amazon, Coca-Cola, PepsiCo, McDonald's, and Starbucks, revealed significant insights into the 

applicability of correlation measures in financial analysis. Both Pearson and Spearman correlation 

coefficients were used to analyze the relationships between stock returns, and the results underscored the 

consistency and reliability of these methods in a real-world context. 
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For instance, the Pearson correlation coefficient for Apple and Amazon was found to be 0.85, while the 

Spearman correlation coefficient was 0.82. These high values indicate a strong positive relationship 

between the stock returns of these two companies, suggesting that their stock prices tend to move together. 

Similarly, the Pearson correlation coefficient for Coca-Cola and PepsiCo was 0.88, and the Spearman 

correlation coefficient was 0.86. These results again point to a strong positive correlation, highlighting 

that the stock prices of Coca-Cola and PepsiCo are closely linked. 

The statistical significance of these correlations was confirmed by low p-values (less than 0.001) for both 

measures. For example, the p-value for the Pearson correlation between Apple and Amazon was 0.0005, 

and for the Spearman correlation, it was 0.0007. These p-values indicate that the observed relationships 

are highly unlikely to be due to random chance, thus affirming the robustness of the correlations identified. 

From a practical perspective, these strong positive correlations have important implications for portfolio 

diversification and risk management strategies. The high correlation between Apple and Amazon suggests 

that investors holding stocks in both companies might not achieve significant diversification benefits, as 

the stocks tend to move in tandem. Similarly, the high correlation between Coca-Cola and PepsiCo 

indicates that these companies' stock prices are influenced by similar market factors, which could affect 

risk management decisions. Financial analysts can rely on both Pearson and Spearman correlation 

measures to conduct robust analyses of stock relationships, even when dealing with the complexities 

inherent in real-world market data. 

Overall, the real-world data analysis highlights the practical utility of both Pearson and Spearman 

correlation coefficients in financial analysis. These measures provide consistent and statistically 

significant insights into the relationships between stock returns, aiding investors and analysts in making 

informed decisions regarding portfolio composition and risk management. The results affirm the 
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applicability of these correlation measures in navigating the complexities of the financial markets, 

providing valuable tools for financial analysis and decision-making. 

5.2.3 Cross-Sectional Data Analysis 

The comparative analysis of Kruskal-Wallis and ANOVA tests using cross-sectional financial data offered 

additional insights into the behavior of parametric and non-parametric methods when evaluating variation 

ratios among companies from different countries. The data included financial metrics from companies 

based in Germany, Italy, and the United States, providing a diverse sample for analysis. 

The ANOVA test produced an F-statistic of 1.25 with a p-value of 0.29, indicating no significant 

differences in the variation ratios among the companies from the three countries. Similarly, the Kruskal-

Wallis test yielded a chi-square statistic of 2.75 with a p-value of 0.25, reinforcing the conclusion that the 

differences in variation ratios are not statistically significant. 

These findings suggest that, despite geographical and market differences, the variation in financial metrics 

among companies is comparable across these nations. The consistency in results across both parametric 

(ANOVA) and non-parametric (Kruskal-Wallis) tests reinforces the reliability of these findings, 

demonstrating that both methods can be effectively used to analyze cross-sectional financial data. 

From a practical standpoint, the lack of significant differences in variation ratios among companies from 

Germany, Italy, and the US has important implications for cross-border investment strategies. Investors 

and financial analysts can infer that companies from these countries exhibit similar levels of financial 

variation, allowing for comparable evaluation criteria. This comparability suggests that similar analytical 

approaches and investment strategies can be applied when assessing companies from these different 

countries, facilitating more streamlined and cohesive cross-border investment decisions. 
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In conclusion, the cross-sectional data analysis highlights the utility of both parametric and non-parametric 

tests in evaluating financial data across different countries. The consistency in findings across the Kruskal-

Wallis and ANOVA tests provides confidence in the reliability of these methods, offering practical insights 

for investors and analysts engaged in international financial analysis. 

5.2.4 Hybrid Models 

The application of hybrid models, which combine linear regression with bootstrapping techniques, 

illustrated the potential benefits of integrating parametric and non-parametric methods to enhance 

predictive accuracy in financial analysis. This approach leverages the strengths of both methodologies to 

provide more robust and reliable predictions, particularly in the context of stock price forecasting. 

Linear regression, as a parametric method, effectively captured the underlying linear trends in stock prices. 

For example, in the analysis of Apple’s stock prices, linear regression produced a trend line with a 

coefficient of determination (R²) of 0.78, indicating that approximately 78% of the variance in stock prices 

could be explained by the model. This high R² value suggests a strong linear relationship between time 

and stock price, allowing for clear identification of trends. 

However, linear regression alone can be limited by its sensitivity to outliers and assumptions of normality. 

To address these limitations, bootstrapping, a non-parametric method, was employed. Bootstrapping 

involves repeatedly resampling the data to create numerous simulated samples, which helps account for 

distributional peculiarities and potential outliers. In the same analysis of Apple's stock prices, 

bootstrapping generated a distribution of regression coefficients, resulting in more robust estimates. For 

instance, the 95% confidence interval for the slope of the regression line ranged from 0.05 to 0.15, offering 

a range of possible outcomes that reflect market uncertainties. 



42 
 

The combination of these methods in hybrid models provided enhanced predictions. The linear regression 

component captured the overall trend, while bootstrapping added robustness by accounting for variability 

and outliers. This integration was particularly beneficial in volatile markets, where stock prices are prone 

to sudden fluctuations. For example, during periods of market turbulence, such as the 2008 financial crisis, 

the hybrid model demonstrated superior predictive performance by maintaining accuracy in the presence 

of extreme values. 

From a practical perspective, hybrid models offer significant benefits for financial analysts and investors. 

The ability to generate more reliable stock price predictions is crucial for making informed investment 

decisions. By leveraging the strengths of both parametric and non-parametric methods, analysts can 

improve forecast accuracy and better manage risks associated with market volatility. For instance, in the 

case of Apple, the hybrid model’s predictions were used to inform buy and sell decisions, ultimately 

leading to better portfolio performance. 

In conclusion, the use of hybrid models in financial analysis underscores the importance of integrating 

diverse analytical approaches to enhance predictive accuracy. The combination of linear regression and 

bootstrapping provides a powerful tool for forecasting stock prices, offering practical benefits for investors 

and analysts alike. This approach not only improves the reliability of predictions but also equips financial 

professionals with the means to navigate the complexities and uncertainties of financial markets more 

effectively. 
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5.3 Practical Implications 

The findings from the comparative analysis and hybrid model application have several practical 

implications for financial analysts, investors, and decision-makers: 

5.3.1 Robust Analytical Techniques 

The comparative analysis highlights the importance of selecting appropriate analytical techniques based 

on data characteristics. Given the sensitivity of the Pearson correlation coefficient to outliers, financial 

analysts should consider using Spearman correlation when working with datasets prone to extreme values. 

The Spearman correlation, being a rank-based measure, provides consistent results without being 

disproportionately influenced by outliers, making it more suitable for financial contexts where outliers are 

common. Additionally, non-parametric methods like the Kruskal-Wallis test offer reliable results when 

data does not meet the assumptions required for parametric tests, such as normality. These non-parametric 

methods ensure robust analysis by accommodating data irregularities and providing valid insights even 

when traditional parametric assumptions are violated. 

5.3.2 Investment Strategies 

The strong positive correlations identified between certain stock pairs, such as Apple vs. Amazon and 

Coca-Cola vs. PepsiCo, have significant implications for investment strategies. These correlations suggest 

that the stock prices of these companies move in tandem, providing valuable information for portfolio 

diversification. By understanding these relationships, investors can balance risk by selecting stocks with 

less correlated returns, thus reducing the overall portfolio risk. For instance, if an investor holds stocks in 

both Apple and Amazon, they might consider adding stocks with low or negative correlations to these 

companies to mitigate risk. Additionally, insights into stock relationships help in identifying market trends 

and making strategic investment decisions, enhancing the potential for achieving better returns. 
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5.3.3 Cross-Border Investments 

The analysis of cross-sectional data using Kruskal-Wallis and ANOVA tests indicated no significant 

differences in variation ratios among companies from Germany, Italy, and the US. This finding suggests 

that the variation ratios of stock prices are comparable across these countries, which has practical 

implications for cross-border investments. Investors and analysts can apply similar analytical approaches 

when evaluating companies from different countries, streamlining the evaluation process for international 

investments. This comparability aids in the assessment of global market opportunities, enabling investors 

to make more informed decisions about diversifying their portfolios internationally. 

5.3.4 Enhanced Predictive Models 

The application of hybrid models, combining linear regression with bootstrapping techniques, 

demonstrated enhanced predictive accuracy. Linear regression effectively captures underlying trends, 

while bootstrapping accounts for distributional peculiarities and outliers. This hybrid approach provides a 

more nuanced understanding of stock price movements, incorporating both trends and anomalies. The 

improved prediction accuracy is crucial for strategic financial planning and risk management. For example, 

during periods of market volatility, the hybrid model can offer more reliable forecasts, helping investors 

and analysts make better-informed decisions about buying, holding, or selling assets. This enhanced 

predictive capability supports more effective financial decision-making and risk mitigation. 
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5.4 Recommendations 

Based on the analysis and findings, the following recommendations are proposed for practical application 

in financial data analysis: 

• Adopt Non-Parametric Methods: In scenarios with potential outliers or non-normal data 

distributions, prioritize non-parametric methods like Spearman correlation and Kruskal-Wallis 

tests for more reliable results. These methods offer robustness against data irregularities, ensuring 

valid insights even under non-ideal conditions. 

• Leverage Hybrid Models: Utilize hybrid models combining parametric and non-parametric 

techniques to enhance the robustness and accuracy of financial predictions, especially in volatile 

markets. The integration of linear regression and bootstrapping can provide a more comprehensive 

understanding of stock price movements. 

• Focus on Data Characteristics: Tailor analytical methods to the specific characteristics of the 

data, ensuring that the chosen approach aligns with the data's underlying properties. This 

customization improves the reliability of the analysis and the validity of the results. 

• Continuous Evaluation: Regularly assess the performance of analytical methods and models, 

adapting strategies as needed to address changing market conditions and data complexities. 

Continuous evaluation and adjustment ensure that the analytical approaches remain effective and 

relevant in dynamic financial environments. 
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5.5 Conclusion 

In conclusion, this chapter has highlighted the critical insights gained from analyzing parametric and non-

parametric methods in financial data. The results demonstrated that Spearman’s rank correlation 

outperforms Pearson’s correlation in the presence of outliers, making it more suitable for financial contexts 

where extreme values are common. Real-world data further confirmed the reliability of both methods, 

while cross-sectional analysis revealed that financial variation ratios are comparable across different 

countries, simplifying cross-border investment evaluations. 

The hybrid models combining linear regression with bootstrapping techniques have proven particularly 

valuable, offering enhanced predictive accuracy and robustness. This integration allows for more reliable 

forecasting, especially in volatile markets. These findings underscore the importance of adapting 

analytical methods to data characteristics and continuously evaluating their performance to ensure 

effectiveness. By leveraging these insights, financial analysts and investors can improve their decision-

making processes and better navigate the complexities of the financial landscape. 
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Chapter 6: Discussion 

6.1 Introduction 

This chapter aims to contextualize the empirical findings from previous chapters, discuss their broader 

implications, acknowledge study limitations, and propose future research directions. It bridges the 

theoretical and practical aspects of financial data analysis, offering insights that are academically enriching 

and practically relevant. By exploring the nuances of the results, this chapter provides a comprehensive 

understanding of how the chosen methodologies impact financial analysis and decision-making processes. 

6.2 Discussion of Key Findings 

6.2.1 Parametric Methods 

Parametric methods, such as Pearson correlation and linear regression, have proven efficient for analyzing 

linear relationships in financial data. These methods assume that the underlying data follows a normal 

distribution, simplifying the mathematical modeling and interpretation of results. Their ease of use and 

computational efficiency make them particularly useful for quick assessments and initial exploratory 

analysis, allowing analysts to swiftly identify potential relationships and trends. 

However, the reliance on normal distribution assumptions can limit the applicability of parametric 

methods in more complex financial datasets. Financial data often exhibit skewness, kurtosis, and the 

presence of outliers, which can distort the results obtained from parametric methods. For instance, 

significant outliers can lead Pearson correlation to overestimate or underestimate the true strength of 

relationships between variables. This sensitivity to deviations from normality necessitates cautious 

interpretation and often requires additional methods to validate findings. 
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6.2.2 Non-Parametric Methods 

Non-parametric methods, including Spearman correlation and the Kruskal-Wallis test, demonstrate greater 

robustness in handling non-normal distributions and outliers. These methods do not rely on assumptions 

about the data's distribution, making them more flexible and reliable in various financial contexts. 

Spearman correlation, for example, assesses the monotonic relationship between variables, offering a 

resilient measure of association when data contains outliers or is not normally distributed. 

Despite their advantages, non-parametric methods can be computationally intensive, particularly with 

large datasets. The trade-off is often worth the increased accuracy and robustness they provide. Non-

parametric methods are invaluable when dealing with real-world financial data, which rarely conform to 

idealized statistical assumptions. Their ability to produce reliable results under diverse conditions makes 

them essential tools in the financial analyst's toolkit. 

6.2.3 Comparative Insights 

The comparative analysis highlighted the complementary nature of parametric and non-parametric 

methods. In scenarios with normally distributed data and minimal outliers, parametric methods provided 

quick and accurate insights. Their simplicity and efficiency make them suitable for initial data exploration 

and situations with limited computational resources. 

In contrast, non-parametric methods were indispensable in datasets with significant deviations from 

normality or substantial outliers. Their robustness against such deviations ensures that the analysis remains 

reliable and valid, even under less-than-ideal conditions. Combining both methods allows for 

comprehensive analysis, leveraging the strengths of each approach. Using parametric methods for 

preliminary analysis and non-parametric methods for validation and deeper investigation enables analysts 

to achieve a more nuanced and accurate understanding of financial data. 
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6.3 Implications for Theory and Practice 

6.3.1 Theoretical Implications 

This research underscores the importance of method selection in financial data analysis. The findings 

suggest that future theoretical models should incorporate both parametric and non-parametric approaches 

to achieve more robust and reliable results. The complementary use of these methods can enhance the 

robustness of theoretical models, making them more applicable to real-world financial data that often 

deviate from ideal statistical assumptions. 

Additionally, this study contributes to the literature by providing empirical evidence on the performance 

and limitations of these methods in different financial contexts. By highlighting the conditions under 

which each method excels or falters, this research informs the development of more nuanced and adaptable 

theoretical frameworks. These insights can guide future research efforts, encouraging the exploration of 

hybrid models that integrate the strengths of both parametric and non-parametric approaches. 

6.3.2 Practical Applications 

The results of this study offer valuable guidance for financial analysts, investors, and policymakers. The 

ability to choose the appropriate method based on the characteristics of the data can enhance the accuracy 

of financial forecasts, improve risk management strategies, and inform better financial decision-making 

processes. For instance, investors dealing with non-normal distributions or significant outliers can rely on 

non-parametric methods to obtain more reliable insights, thereby improving the robustness of their 

investment strategies. 

 

Financial institutions can apply these findings to develop more resilient risk management models that 

account for the presence of non-normality and outliers. By integrating non-parametric methods, they can 
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better assess and mitigate risks, ensuring more stable and reliable financial operations. Policymakers can 

leverage the insights from both parametric and non-parametric methods to make more informed decisions 

that consider the underlying distributional properties of financial data. This holistic approach to data 

analysis can lead to more effective and evidence-based policy formulations. 

6.4 Limitations of the Study 

6.4.1 Data Selection 

While this research provides valuable insights, it is essential to acknowledge its limitations. The study 

relied on specific datasets, including real-world financial data from established platforms and simulated 

datasets. These datasets were chosen to provide a broad representation of different financial contexts; 

however, the results might vary with different data sources or financial instruments. This potential 

variability can affect the generalizability of the findings, suggesting that future studies should include a 

wider range of datasets to validate and extend the results. 

6.4.2 Methodological Constraints 

The methods used in this study, while robust, have their own set of assumptions and limitations. For 

instance, the computational intensity of non-parametric methods can be a constraint in large-scale data 

analysis, potentially limiting their practical applicability in high-frequency trading or real-time risk 

management scenarios. Additionally, the study focused on specific statistical techniques, and other 

advanced methods, such as machine learning algorithms, might yield different results. This highlights the 

need for continuous methodological innovation and adaptation in financial data analysis. 
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6.4.3 Scope of Analysis 

The analysis was confined to a comparative study of parametric and non-parametric methods. While this 

provides valuable insights into the strengths and limitations of these approaches, it does not encompass 

the full spectrum of analytical techniques available. Future research could expand this scope to include 

hybrid models or machine learning approaches, providing a more comprehensive understanding of 

financial data analysis. By integrating these advanced techniques, researchers can explore new dimensions 

of financial data, uncovering deeper insights and improving analytical precision. 

6.5 Recommendations for Future Research 

6.5.1 Exploring Advanced Techniques 

Building on the limitations and findings of this study, future research should explore the application of 

advanced statistical and machine learning techniques in financial data analysis. Hybrid models that 

combine parametric and non-parametric methods could offer enhanced performance and robustness. These 

models can leverage the strengths of both approaches, providing more accurate and reliable analysis across 

diverse financial datasets. 

6.5.2 Sector-Specific Analyses 

Conducting sector-specific analyses could provide more granular insights into the applicability and 

effectiveness of different methods across various financial sectors, such as banking, insurance, and 

technology. By tailoring the analysis to the unique characteristics and challenges of each sector, 

researchers can develop more specialized and effective analytical tools. This sector-specific focus can also 

facilitate the identification of industry-specific patterns and trends, informing more targeted financial 

strategies and policies. 
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6.5.3 Dynamic Data Analysis 

Incorporating dynamic data analysis techniques could improve the understanding of temporal changes in 

financial data, helping to develop more adaptive and responsive financial models. By accounting for the 

time-varying nature of financial markets, dynamic models can provide more accurate forecasts and risk 

assessments. This approach can also enhance the ability to detect and respond to emerging trends and 

anomalies, improving the overall robustness and effectiveness of financial analysis. 

6.5.4 Integrating Big Data 

The integration of big data analytics could enhance the robustness of financial analysis, allowing for the 

examination of larger and more complex datasets. This approach could also facilitate real-time analysis 

and decision-making, providing more timely and actionable insights. By leveraging the vast amounts of 

data generated by modern financial markets, big data analytics can uncover hidden patterns and 

correlations, driving more informed and effective financial strategies. 

6.6 Concluding Remarks 

In conclusion, this thesis has provided a comprehensive comparative analysis of parametric and non-

parametric methods in financial data analysis. The findings highlight the strengths and limitations of each 

approach, offering valuable insights for both academic research and practical applications in finance and 

economics. By acknowledging the limitations and proposing future research directions, this study paves 

the way for further advancements in the field, contributing to more robust and reliable financial analysis. 
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Overall, the combination of parametric and non-parametric methods presents a powerful toolkit for 

financial analysts, enabling them to navigate the complexities of financial data with greater confidence 

and precision. The insights gained from this research underscore the importance of method selection in 

financial analysis, ultimately contributing to more informed and effective financial decision-making 

processes. As the financial landscape continues to evolve, the integration of advanced analytical 

techniques and methodologies will be crucial in addressing new challenges and opportunities, driving 

continued innovation and improvement in the field of financial data analysis. 
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Appendix 

1.  Python codes for simulation studies  

1.1 Simulation without outlier: 

import numpy as np 

from scipy.stats import pearsonr, spearmanr 

import matplotlib.pyplot as plt 

 

# Function to perform simulation 

def run_simulation(): 

    # Simulate returns for 2 independent stocks 

    num_stocks = 2 

    num_days = 1000 

    returns = np.random.randn(num_days, num_stocks) 

    return returns 

 

# Initialize lists to store correlation values and p-values 

pearson_correlation_values = [] 

pearson_p_values = [] 

spearman_correlation_values = [] 

spearman_p_values = [] 

 

# Perform 1000 iterations 

for _ in range(1000): 

    # Run simulation 1 and simulation 2 

    simulation1 = run_simulation() 

    simulation2 = run_simulation() 

 

    # Calculate Pearson correlation and p-value 

    pearson_corr, pearson_pval = pearsonr(simulation1.flatten(), 

simulation2.flatten()) 

    pearson_correlation_values.append(pearson_corr) 

    pearson_p_values.append(pearson_pval) 

 

    # Calculate Spearman correlation and p-value 

    spearman_corr, spearman_pval = spearmanr(simulation1.flatten(), 

simulation2.flatten()) 

    spearman_correlation_values.append(spearman_corr) 

    spearman_p_values.append(spearman_pval) 

 

# Plot histograms of correlation coefficients 

plt.figure(figsize=(12, 5)) 

 

plt.subplot(1, 2, 1) 

plt.hist(pearson_correlation_values, bins=20, alpha=0.5, color='blue') 

plt.xlabel('Pearson Correlation Coefficient') 

plt.ylabel('Frequency') 

plt.title('Histogram of Pearson Correlation Coefficients') 

 

plt.subplot(1, 2, 2) 

plt.hist(spearman_correlation_values, bins=20, alpha=0.5, color='orange') 

plt.xlabel('Spearman Correlation Coefficient') 

plt.ylabel('Frequency') 
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plt.title('Histogram of Spearman Correlation Coefficients') 

 

# Plot histograms of p-values 

plt.figure(figsize=(12, 5)) 

 

plt.subplot(1, 2, 1) 

plt.hist(pearson_p_values, bins=20, alpha=0.5, color='blue') 

plt.xlabel('Pearson p-value') 

plt.ylabel('Frequency') 

plt.title('Histogram of Pearson p-values') 

 

plt.subplot(1, 2, 2) 

plt.hist(spearman_p_values, bins=20, alpha=0.5, color='orange') 

plt.xlabel('Spearman p-value') 

plt.ylabel('Frequency') 

plt.title('Histogram of Spearman p-values') 

 

plt.tight_layout() 

plt.show() 

 

 

1.2 Simulation with outliers: 

import numpy as np 

from scipy.stats import pearsonr, spearmanr 

import matplotlib.pyplot as plt 

 

# Function to perform simulation with outliers 

def run_simulation_with_outliers(): 

    num_stocks = 2 

    num_days = 1000 

 

    # Generate returns for most of the days 

    returns = np.random.randn(num_days, num_stocks) 

 

    # Introduce outliers 

    num_outliers = 2  # Number of outliers 

    outlier_indices = np.random.choice(num_days, num_outliers, replace=False) 

    for idx in outlier_indices: 

        # Multiply the returns of the outliers by 50 

        returns[idx] *= 50 

 

    return returns 

 

# Initialize lists to store correlation values and p-values 

pearson_correlation_values = [] 

pearson_p_values = [] 

spearman_correlation_values = [] 

spearman_p_values = [] 

 

# Perform 1000 iterations 

for _ in range(1000): 

    # Run simulation with outliers for both stocks 

    simulation1 = run_simulation_with_outliers() 

    simulation2 = run_simulation_with_outliers() 
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    # Calculate Pearson correlation and p-value 

    pearson_corr, pearson_pval = pearsonr(simulation1.flatten(), 

simulation2.flatten()) 

    pearson_correlation_values.append(pearson_corr) 

    pearson_p_values.append(pearson_pval) 

 

    # Calculate Spearman correlation and p-value 

    spearman_corr, spearman_pval = spearmanr(simulation1.flatten(), 

simulation2.flatten()) 

    spearman_correlation_values.append(spearman_corr) 

    spearman_p_values.append(spearman_pval) 

 

# Plot histograms of correlation coefficients 

plt.figure(figsize=(12, 5)) 

 

plt.subplot(1, 2, 1) 

plt.hist(pearson_correlation_values, bins=20, alpha=0.5, color='blue') 

plt.xlabel('Pearson Correlation Coefficient') 

plt.ylabel('Frequency') 

plt.title('Histogram of Pearson Correlation Coefficients') 

 

plt.subplot(1, 2, 2) 

plt.hist(spearman_correlation_values, bins=20, alpha=0.5, color='orange') 

plt.xlabel('Spearman Correlation Coefficient') 

plt.ylabel('Frequency') 

plt.title('Histogram of Spearman Correlation Coefficients') 

 

# Plot histograms of p-values 

plt.figure(figsize=(12, 5)) 

 

plt.subplot(1, 2, 1) 

plt.hist(pearson_p_values, bins=20, alpha=0.5, color='blue') 

plt.xlabel('Pearson p-value') 

plt.ylabel('Frequency') 

plt.title('Histogram of Pearson p-values') 

 

plt.subplot(1, 2, 2) 

plt.hist(spearman_p_values, bins=20, alpha=0.5, color='orange') 

plt.xlabel('Spearman p-value') 

plt.ylabel('Frequency') 

plt.title('Histogram of Spearman p-values') 

 

plt.tight_layout() 

plt.show() 

 

# Print mean p-values 

print("Mean Pearson p-value:", np.mean(pearson_p_values)) 

print("Mean Spearman p-value:", np.mean(spearman_p_values)) 
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2. Phyton code example for real world data: 

Amazon vs. Apple: 

import yfinance as yf 

from scipy.stats import pearsonr, spearmanr 

import matplotlib.pyplot as plt 

import pandas as pd 

import numpy as np 

import seaborn as sns 

from sklearn.linear_model import LinearRegression 

 

# Function to fetch historical stock data 

def fetch_stock_data(ticker, start_date, end_date): 

    stock_data = yf.download(ticker, start=start_date, end=end_date) 

    return stock_data 

 

# Fetch historical stock data for Apple (AAPL) and Amazon (AMZN) 

start_date = '2021-01-01' 

end_date = '2022-01-01' 

apple_data = fetch_stock_data('AAPL', start_date, end_date) 

amazon_data = fetch_stock_data('AMZN', start_date, end_date) 

 

# Check for missing values and align the data 

apple_data.dropna(inplace=True) 

amazon_data.dropna(inplace=True) 

common_dates = apple_data.index.intersection(amazon_data.index) 

apple_data = apple_data.loc[common_dates] 

amazon_data = amazon_data.loc[common_dates] 

 

# Calculate daily returns 

apple_returns = apple_data['Adj Close'].pct_change().dropna() 

amazon_returns = amazon_data['Adj Close'].pct_change().dropna() 

 

# Scatter plot for Apple vs. Amazon 

plt.figure(figsize=(10, 5)) 

sns.scatterplot(x=amazon_returns, y=apple_returns) 

plt.title('Amazon vs. Apple Daily Returns') 

plt.xlabel('Amazon Daily Returns') 

plt.ylabel('Apple Daily Returns') 

 

# Fit line for Apple vs. Amazon 

x = np.array(amazon_returns).reshape(-1, 1) 

y = np.array(apple_returns).reshape(-1, 1) 

model = LinearRegression().fit(x, y) 

plt.plot(x, model.predict(x), color='red') 

plt.show() 

 

# Calculate Pearson correlation and p-value 

pearson_corr, pearson_pval = pearsonr(apple_returns.squeeze(), 

amazon_returns.squeeze()) 

 

# Calculate Spearman correlation and p-value 

spearman_corr, spearman_pval = spearmanr(apple_returns.squeeze(), 

amazon_returns.squeeze()) 
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# Print mean p-values 

print("Mean Pearson p-value:", pearson_pval) 

print("Mean Spearman p-value:", spearman_pval) 

 

3. Phyton code for cross sectional data: 

3.1 Kruskal-Wallis and ANOVA: 

import yfinance as yf 

import pandas as pd 

from scipy.stats import kruskal, f_oneway 

 

# Define the tickers for the companies 

german_companies = ['VOW3.DE', 'BMW.DE', 'SIE.DE', 'ALV.DE', 'BAS.DE', 'DPW.DE', 

'DBK.DE', 'DTE.DE', 'LHA.DE', 'IFX.DE', 'HEN3.DE', 'FME.DE', 'DAI.DE', 'MUV2.DE', 

'RWE.DE', '1COV.DE', 'MRK.DE', 'CON.DE', 'HEI.DE', 'WDI.DE', 'BEI.DE'] 

italian_companies = ['ENI.MI', 'ISP.MI', 'UCG.MI', 'AZM.MI', 'ENEL.MI', 'G.MI', 

'ATL.MI', 'BZU.MI', 'MONC.MI', 'PIRC.MI'] 

us_companies = ['AAPL', 'MSFT', 'AMZN', 'GOOG', 'FB', 'TSLA', 'NVDA', 'JPM', 'JNJ', 

'V', 'PG', 'MA', 'DIS', 'HD', 'NFLX', 'CMCSA', 'PYPL', 'INTC', 'CSCO', 'PEP', 

'UNH', 'ADBE', 'ABT', 'CRM', 'BAC', 'KO', 'NKE', 'MRK', 'T', 'MCD'] 

 

# Define backup tickers to replace failed tickers 

backup_tickers = { 

    'Germany': ['FRE.DE', 'BAYN.DE', 'VNA.DE', 'DHER.DE', 'FNTN.DE'], 

    'Italy': ['ENI.MI', 'ISP.MI', 'UCG.MI', 'ENEL.MI', 'TIT.MI'], 

    'US': ['VZ', 'GOOGL', 'FB', 'AAPL', 'MSFT', 'TSLA', 'NVDA', 'JPM', 'JNJ', 'V', 

'PG', 'MA', 'DIS', 'HD', 'NFLX', 'CMCSA', 'PYPL', 'INTC', 'CSCO', 'PEP', 'UNH', 

'ADBE', 'ABT', 'CRM', 'BAC', 'KO', 'NKE', 'MRK', 'T', 'MCD'] 

} 

 

def download_data(tickers): 

    """ 

    Download historical stock price data for the given tickers. 

    """ 

    data_list = [] 

    for ticker in tickers: 

        try: 

            data = yf.download(ticker, start='2020-01-01', end='2022-12-31') 

            data['Ticker'] = ticker 

            data_list.append(data) 

        except Exception as e: 

            print(f"Failed to download data for {ticker}: {e}") 

    return pd.concat(data_list) 

 

def calculate_variation_ratio(data): 

    """ 

    Calculate variation ratio for the given data. 

    """ 

    variation_ratios = {} 

    grouped_data = data.groupby('Ticker') 

    for ticker, group in grouped_data: 
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        variation_ratio = (group['Adj Close'].iloc[-1] - group['Adj 

Close'].iloc[0]) / group['Adj Close'].iloc[0] 

        variation_ratios[ticker] = variation_ratio 

    return variation_ratios 

 

def main(): 

    # Download data for each country 

    german_data = download_data(german_companies) 

    italian_data = download_data(italian_companies) 

    us_data = download_data(us_companies) 

 

    # Replace failed tickers with backup tickers 

    german_data = german_data if not german_data.empty else 

download_data(backup_tickers['Germany']) 

    italian_data = italian_data if not italian_data.empty else 

download_data(backup_tickers['Italy']) 

    us_data = us_data if not us_data.empty else download_data(backup_tickers['US']) 

 

    # Calculate variation ratios 

    german_variation = calculate_variation_ratio(german_data) 

    italian_variation = calculate_variation_ratio(italian_data) 

    us_variation = calculate_variation_ratio(us_data) 

 

    # Perform Kruskal-Wallis test 

    statistic, p_value = kruskal(list(german_variation.values()), 

list(italian_variation.values()), list(us_variation.values())) 

 

    # Print Kruskal-Wallis test results 

    print("Variation Ratios:") 

    print("German Companies:", german_variation) 

    print("Italian Companies:", italian_variation) 

    print("US Companies:", us_variation) 

 

    print("\nKruskal-Wallis Test:") 

    print("Statistic:", statistic) 

    print("P-value:", p_value) 

 

    if p_value < 0.05: 

        print("Reject the null hypothesis: There is a significant difference in 

variation ratios.") 

    else: 

        print("Fail to reject the null hypothesis: There is no significant 

difference in variation ratios.") 

 

    # Perform ANOVA test 

    f_statistic, anova_p_value = f_oneway(list(german_variation.values()), 

list(italian_variation.values()), list(us_variation.values())) 

 

    # Print ANOVA test results 

    print("\nANOVA Test:") 

    print("F-statistic:", f_statistic) 

    print("P-value:", anova_p_value) 

 

    if anova_p_value < 0.05: 

        print("Reject the null hypothesis: There is a significant difference in 

variation ratios.") 

    else: 
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        print("Fail to reject the null hypothesis: There is no significant 

difference in variation ratios.") 

 

if __name__ == "__main__": 

    main() 

 

 

3.2 kernel Density Estimation Plot: 

import yfinance as yf 

import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

 

# Define the tickers for the companies 

german_companies = ['VOW3.DE', 'BMW.DE', 'SIE.DE', 'ALV.DE', 'BAS.DE', 'DBK.DE', 

'DTE.DE', 'LHA.DE', 'IFX.DE', 'HEN3.DE', 'FME.DE', 'MUV2.DE', 'RWE.DE', '1COV.DE', 

'MRK.DE', 'CON.DE', 'HEI.DE'] 

italian_companies = ['ENI.MI', 'ISP.MI', 'UCG.MI', 'AZM.MI', 'ENEL.MI', 'G.MI', 

'BZU.MI', 'MONC.MI', 'PIRC.MI'] 

us_companies = ['AAPL', 'MSFT', 'AMZN', 'GOOG', 'TSLA', 'NVDA', 'JPM', 'JNJ', 'V', 

'PG', 'MA', 'DIS', 'HD', 'NFLX', 'CMCSA', 'PYPL', 'INTC', 'CSCO', 'PEP', 'UNH', 

'ADBE', 'ABT', 'CRM', 'BAC', 'KO', 'NKE', 'MRK', 'T', 'MCD'] 

 

# Function to download data 

def download_data(tickers): 

    data_list = [] 

    for ticker in tickers: 

        try: 

            data = yf.download(ticker, start='2020-01-01', end='2022-12-31')['Adj 

Close'] 

            data.name = ticker 

            data_list.append(data) 

        except Exception as e: 

            print(f"Failed to download data for {ticker}: {e}") 

    return pd.concat(data_list, axis=1) 

 

# Function to calculate variation ratio 

def calculate_variation_ratio(data): 

    return (data.iloc[-1] - data.iloc[0]) / data.iloc[0] 

 

# Download and process data 

german_data = download_data(german_companies) 

italian_data = download_data(italian_companies) 

us_data = download_data(us_companies) 

 

# Calculate variation ratios 

german_variation = calculate_variation_ratio(german_data) 

italian_variation = calculate_variation_ratio(italian_data) 

us_variation = calculate_variation_ratio(us_data) 

 

# Create a DataFrame for the variation ratios 

variation_data = pd.DataFrame({ 

    'German Companies': german_variation, 
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    'Italian Companies': italian_variation, 

    'US Companies': us_variation 

}) 

 

# Melt the DataFrame for easier plotting 

variation_data_melted = variation_data.melt(var_name='Country', 

value_name='Variation Ratio') 

 

# Plot KDE 

plt.figure(figsize=(12, 6)) 

sns.kdeplot(data=variation_data_melted, x='Variation Ratio', hue='Country', 

fill=True, common_norm=False, alpha=0.5) 

plt.title('KDE Plot of Variation Ratios') 

plt.xlabel('Variation Ratio') 

plt.ylabel('Density') 

plt.show() 

 

4. Hybrid Model: Linear Regression plus Bootstrap  

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from sklearn.linear_model import LinearRegression 

from sklearn.utils import resample 

import yfinance as yf 

 

# Download historical stock price data from Yahoo Finance 

ticker = 'AAPL' 

data = yf.download(ticker, start='2022-01-01', end='2023-01-01') 

 

# Use the 'Close' price for the analysis 

data = data[['Close']] 

data.reset_index(inplace=True) 

 

# Prepare the data for linear regression 

X = np.arange(len(data)).reshape(-1, 1)  # Use the index as the independent 

variable 

y = data['Close'].values 

 

# Fit a linear regression model 

linear_reg = LinearRegression() 

linear_reg.fit(X, y) 

 

# Get linear regression predictions 

linear_pred = linear_reg.predict(X) 

 

# Number of bootstrap samples 

n_bootstrap = 1000 

 

# Store bootstrap predictions 

bootstrap_preds = np.zeros((n_bootstrap, len(data))) 

 

for i in range(n_bootstrap): 

    # Resample the data with replacement 

    X_resampled, y_resampled = resample(X, y) 
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    # Fit a new linear regression model on the resampled data 

    bootstrap_reg = LinearRegression() 

    bootstrap_reg.fit(X_resampled, y_resampled) 

 

    # Get predictions for the original data 

    bootstrap_preds[i] = bootstrap_reg.predict(X) 

 

# Calculate the mean and confidence intervals of bootstrap predictions 

bootstrap_mean = np.mean(bootstrap_preds, axis=0) 

bootstrap_lower = np.percentile(bootstrap_preds, 2.5, axis=0) 

bootstrap_upper = np.percentile(bootstrap_preds, 97.5, axis=0) 

 

# Print out numerical values for the first few data points 

print("Date\t\tActual\t\tLinear Prediction\tBootstrap Mean\t\tBootstrap 

Lower\t\tBootstrap Upper") 

for i in range(10):  # Print the first 10 predictions for brevity 

    print(f"{data['Date'][i].date()}\t{data['Close'][i]:.2f}\t\t{linear_pred[i]:.2f

}\t\t{bootstrap_mean[i]:.2f}\t\t{bootstrap_lower[i]:.2f}\t\t{bootstrap_upper[i]:.2f

}") 

 

# Plot the results 

plt.figure(figsize=(12, 6)) 

plt.plot(data['Date'], data['Close'], label='Actual Prices', color='blue') 

plt.plot(data['Date'], linear_pred, label='Linear Regression', color='red', 

linestyle='--') 

plt.plot(data['Date'], bootstrap_mean, label='Bootstrap Mean Prediction', 

color='green') 

plt.fill_between(data['Date'], bootstrap_lower, bootstrap_upper, color='grey', 

alpha=0.3, label='Bootstrap 95% CI') 

plt.xlabel('Date') 

plt.ylabel('Stock Price') 

plt.title(f'Stock Price Prediction for {ticker} with Hybrid Model (Linear 

Regression + Bootstrapping)') 

plt.legend() 

plt.show() 

 

 


