
 

 

 

Degree Program in Data Science and Management 
Course of Data Visualization 

 

 

 

Leveraging Machine Learning for Churn Prediction: 
 Techniques, Challenges, and Integration with 

Customer Lifetime Value 
 

 

 

 

SUPERVISOR 
Prof. Blerina Sinaimeri 

CANDIDATE 
Lorenzo Carucci  

STUDENT NUMBER 
760981 

CO-SUPERVISOR 
Prof. Alessio Martino 

 

ACADEMIC YEAR 
2023/2024 

  



1 
  

 

 

 

 

 

 

 

 

 

 

 

A sincere thank you to my family for their unconditional support. I 

would also like to thank the Accenture team, particularly my tutor 

Saverio Salatino, for the opportunity and support provided throughout 

the course of my thesis. A special thanks goes to Professor Blerina 

Sinaimeri for her invaluable guidance 



2 
  

Abstract 
This master’s thesis provides an in-depth exploration of various 

machine learning methodologies aimed at improving the prediction of 

customer churn in the context of digital media services. The case study 

focuses on a leading provider of digital entertainment, where customer 

churn presents a significant challenge for long-term business 

sustainability, with a significant part of the work carried out by 

Accenture, in Technology - Cloud First division. The research was 

motivated by the need for efficient predictive models to help mitigate 

churn and enhance customer retention strategies. 

The thesis investigates key machine learning algorithms, including 

Logistic Regression, Decision Forest, Neural Networks, and Boosted 

Decision Trees, all central to developing robust churn prediction 

models. The study employs a comprehensive dataset to construct and 

test various models, each evaluated for its ability to accurately predict 

customer churn. Additionally, a feature importance analysis is 

conducted to identify the most influential factors driving customer 

churn. 

In conclusion, the combined use of multiple machine learning 

algorithms and ensemble methods significantly enhances the ability to 

predict customer churn. This enables better customer retention 

strategies and more informed decision-making within the company. The 

findings contribute to the field of predictive analytics by comparing 

various machine learning models and proposing an innovative 

ensemble approach, providing valuable insights for future applications 

in customer behaviour analysis and risk management. 

For legal and privacy reasons, the real names of Accenture’s client 

company and the device being analysed cannot be used in this work, 

and from now on, it will be referred to as OTT.  

  



3 
  

Table of Contents 

1. Introduction ....................................................................................... 7 

1.1 Motivations ...................................................................................... 7 

1.2 Context of the Study ......................................................................... 8 

1.3 Overview of the Thesis ...................................................................... 9 

2. Literature Review ............................................................................. 10 

2.1 The Costumer Churn Problem ......................................................... 11 

2.2 Key Terms and Definitions ............................................................... 12 

2.3 Introduction to Churn Classification Models ..................................... 13 

2.4 Introduction to Gradient Boosting Techniques .................................. 16 

2.5 LightGBM: An Optimized and Scalable Gradient Boosting 

Framework .......................................................................................... 18 

2.6 Unbalanced Class Problem ............................................................. 18 

2.7 SMOTE Approach ............................................................................ 20 

3. Data Overview and Methods ............................................................. 22 

3.1 Approach Explanation ..................................................................... 23 

3.2 Input Data ...................................................................................... 25 

3.2.1 Login Table .......................................................................... 25 

3.2.2 Content Table ...................................................................... 26 

3.2.3 Subscription ........................................................................ 26 

3.2.4 Watching Table .................................................................... 27 

3.2.5 App Execution Table ............................................................ 28 

3.2.6 Purchase ............................................................................ 28 

3.3 Data Transformation ....................................................................... 29 

3.4 Data Migration and Cloud Overview ................................................. 31 



4 
  

3.5 CAR Dataset ................................................................................... 34 

3.5.1 Data Cleaning ..................................................................... 37 

3.5.2 Missing Values Handling ...................................................... 39 

3.5.3 Data Exploration .................................................................. 42 

4. Preprocessing and Model Overview................................................... 47 

4.1 Data Processing Steps for Churn Analysis ........................................ 47 

4.2 Data Preprocessing: Correlation Matrix Considerations .................... 48 

4.2.1 Data Preprocessing: Filter-Based Feature Selection 

Module Settings ........................................................................... 52 

4.2.2 Data Preprocessing: Feature Selection.................................. 55 

4.2.3 Final CAR Dataset ................................................................ 58 

4.3 Split and SMOTE Operations ............................................................ 60 

4.4 Algorithms Explanation ................................................................... 62 

4.4.1 Two-Class Logistic Regression ............................................. 62 

4.4.2 Two-Class Neural Network ................................................... 63 

4.4.3 Two-Class Decision Forest ................................................... 64 

4.4.4 Two-Class Boosted Decision Tree ......................................... 65 

4.5 Result ............................................................................................ 66 

4.6 Tuning ............................................................................................ 69 

4.7 Tuning Result ................................................................................. 71 

5. Model Implementation ..................................................................... 76 

5.1 Model Inference: Application for Predictions on New Data................. 76 

5.2 Churn Probability and Targeted Retention Strategies Based on 

Risk Levels .......................................................................................... 77 

6. Conclusion ...................................................................................... 79 

7. References ...................................................................................... 81 



5 
  

List Of Figures 
Figure 3.1: Process steps 

Figure 3.2:  Data manipulation process 

Figure 3.3:  Import Query 

Figure 3.4:  Azure Dashboard 

Figure 3.5:  Target Classed Distribution Pie Chart 
Figure 3.6:  SQL Transformation Input Data 

Figure 3.7:  SQL Query from Three Class to Two 

Figure 3.8:  Linear Correlation and Principal Statistics 

Figure 3.9:  Columns Dropped Operations 

Figure 3.10:  Cleaning Missing Data Operation 

Figure 3.11: Mont Login Distribution 

Figure 3.12: Device Used Distribution 

Figure 3.13: Content Costumer Distribution 

Figure 3.14:  App Login Distribution 

Figure 4.1: Correlation Matrix  

Figure 4.2:  Code to calculate PCA variance 

Figure 4.3:  Filter Based Feature Selection 

Figure 4.4: 15 Most Correlated Variables with Target Variable 

Figure 4.5: Filter Code High Correlation Variables  

Figure 4.6: Variables Correlation above 0.9 

Figure 4.7: Final CAR Dataset 

Figure 4.8: Split and SMOTE Operation in Azure 

Figure 4.9: Models Performance Comparison 

Figure 4.10: Models Performance Comparison After Tuning 

Figure 4.12: Confusion Matrix Comparison 

Figure 4.11: Roc Curves Comparison 

Figure 5.1: Churn Strategies 

 

 
 



6 
  

List Of Tables 
Table 3.2:  Input data tables with related number of rows and columns 

Table 3.2:  CAR dataset features 
Table 3.3:  Name and Number of Columns with Missing Values  

Table 4.1:  Variables Name Dropped and Reason 

Table 4.2:  Variables Name Dropped from Original Dataset  
Table 4.3: Models Performance 

Table 4.4: Models Performance After Tuning 

 

 

 

 

 

 

 

 

 

 

 



7 
  

 

 

 

Chapter 1 

Introduction  

 

1.1 Motivations 

Understanding customer behaviour and predicting their future choices is 

crucial for any company. In today's highly competitive market, businesses 

must not only attract customers but also retain them by anticipating their 

needs and preferences. By gaining insights into consumer behaviour, 

companies can tailor their products and services to meet the evolving 

demands of their target audience. This proactive approach not only 

enhances customer satisfaction but also drives business growth and 

sustainability. Moreover, with the advent of advanced data analytics and 

machine learning, companies now have powerful tools at their disposal to 

analyse vast amounts of customer data and derive actionable insights. 

Therefore, investing in understanding and predicting customer behaviour 

is not just beneficial but essential for any company aiming to stay ahead in 

the market. This study is motivated by the need to understand and predict 

customer behaviour. It aims to harness the capabilities of advanced 

Machine Learning algorithms to develop effective predictive models that 

can provide valuable insights into future customer choices. In this way, 



8 
  

businesses can enhance their strategic planning and decision-making 

processes. 

 

1.2 Context of the Study 

This thesis is conducted within the framework of a leading European 

telecommunications company’s operations, with a market capitalization 

of approximately ten billion euros in 2023. The company offers a wide range 

of services including fixed and mobile telecommunications, internet 

services, digital content, and entertainment solutions through its OTT (over 

the top video system) platform. The OTT platform is the company's on-

demand streaming service, providing a vast selection of movies, TV series, 

documentaries, and sports content. The OTT, therefore, offers the 

possibility, through a set-top box, to access a portal where various external 

partner applications such as DAZN, Netflix, and many others are available, 

as well as the OTT’s own app. This study is conducted in collaboration with 

Accenture, in Technology - Cloud First division, a leader in providing cloud-

based solutions to business challenges. This collaboration has enriched 

the research by providing access to robust, industry-proven 

methodologies and high-quality data. The research is specifically designed 

to predict customer behaviour related to content consumption and 

subscription services on the OTT platform. Understanding and anticipating 

customer preferences is crucial for the company, as it allows for improving 

content offerings, increasing customer satisfaction, and optimizing 

marketing and retention strategies. Moreover, with the advent of advanced 

Machine Learning and Big Data technologies, the company can analyse 

large volumes of customer data to extract valuable insights and make more 

informed decisions. This data-driven approach not only helps enhance the 

user experience on the OTT platform but also strengthens company's 

position as a leader in the telecommunications and digital services 

industry. 



9 
  

1.3 Overview of the Thesis 

The thesis is structured to provide a thorough understanding of the 

customer churn problem and the proposed solutions. Chapter 2 presents 

an extensive literature review, discussing the issue of customer churn in 

digital media services and its implications for business sustainability. It 

also introduces key concepts and machine learning techniques, such as 

Logistic Regression, Decision Forest, Neural Networks, and Boosted 

Decision Trees, which form the theoretical foundation of the study. 

Chapter 3 provides a detailed overview of the dataset used, highlighting all 

the steps involved to get the final dataset. Chapter 4 is dedicated to 

presenting the machine learning models developed, evaluating their 

performance metrics, and emphasizing the importance of different 

features in influencing churn predictions. In Chapter 5 is discussed the 

implementation of the best performer model and the possible strategies in 

churn context. Finally, Chapter 6 concludes the study by summarizing the 

findings, discussing their implications, and offering insights into the 

potential of machine learning for predicting customer churn and 

supporting more effective customer retention strategies. 



10 
  

 

 

 

Chapter 2  

Literature Review 

 

Summary 

The literature review provides an in-depth analysis of several key topics 

relevant to the research conducted in this thesis. 

The first area of exploration is the issue of churn, a significant problem 

affecting businesses globally. Emphasizing its consequences the 

necessity of efficient and accurate predictive models for churn prediction 

becomes clear.  

The review then explores the essential terminology and foundational 

concepts, equipping readers with a thorough understanding of the 

language and ideas employed throughout the study. 

Further on, the focus shifts to examining the different kinds of churn and 

specifics of machine learning techniques applied to churn prediction. 

Particular attention here will be given to the Gradient Boosting Machines 

(GBMs) technique and to LightGBM, a highly efficient variant of Gradient 

Boosting Decision Trees. 

Finally, the literature review investigates how to handle unbalanced 

datasets with a particular focus on SMOTE operation. 



11 
  

These insights shed light on the applications of machine learning methods 

to solve the problem of churn, providing valuable context and guiding the 

development of the models in this study. 

 

2.1 The Costumer Churn Problem 

In recent years, the number of mobile phone users has grown significantly. 

In developed countries, wireless telecommunications markets are 

becoming saturated, with mobile phone penetration rates exceeding 

100%, indicating more subscriptions than inhabitants. Consequently, 

customer retention has become a priority for telecommunications 

operators [1]. 

The term "Customer Churn" refers to the loss of customers from a service 

company.  It has a substantial impact on company sales and incurs 

opportunity costs, as acquiring new customers is much more expensive 

than retaining existing ones. For this reason, businesses implement 

customer retention strategies and often depend on their ability to forecast 

which customers are likely to leave [2]. 

Long-term customers are more profitable and less sensitive to 

competition, and losing customers results in opportunity costs due to 

reduced sales. Even a small improvement in customer retention can 

significantly increase profits [1]. 

Models for predicting customer churn are designed to identify customers 

who are most likely to leave, enabling companies to enhance the 

effectiveness of retention strategies and minimize the costs related to 

customer loss [1].  

As stated in [3], there are three main types of churns:  

• Active churn, where the customer decides to terminate the contract 

and switch to another provider due to dissatisfaction or more 

advantageous offers. 



12 
  

• Rotational churn, where the customer ends the contract without 

intending to switch to a competitor, typically due to changes in 

personal circumstances, such as financial issues or geographic 

relocation. 

• Passive or involuntary churn, where the company itself terminates the 

contract for reasons such as non-payment of bills.  

Additionally, churn can be divided into: 

• Total churn, where the contract is completely cancelled. 

• Hidden churn, where the contract remains active, but the customer no 

longer uses the service.  

• Partial churn, where the customer significantly reduces their use of the 

service while maintaining a minimal connection with the company. 

 

2.2 Key Terms and Definitions 

In this section, we define several key terms referenced throughout the 

literature review to enhance readers' understanding of the discussed 

concepts.  

As we said in the previous paragraph Customer Churn refers to the loss of 

customers. Also known as customer attrition, defection, or turnover, this 

phenomenon is inevitable for any service business. It holds significant 

importance for companies, and its measurement is reflected in a key 

performance indicator known as the churn rate [4]. Churn rate is a critical 

metric that represents the percentage of customers who discontinue their 

relationship with the company over a specific period. It is calculated by 

dividing the number of churned customers by the total number of 

customers at the start of the period [5].   

It can be categorized into voluntary churn where customers leave by their 

own choice, often due to issues such as unmet expectations or switching 

to competitors, and involuntary churn. In contrast, involuntary churn 

occurs for reasons beyond the customer's control, such as failed 



13 
  

payments due to expired credit cards, insufficient funds, or payment 

system errors [6]. 

A thorough understanding of these terms is essential for grasping the 

concept of churn prediction and its implications for maintaining customer 

relationships and overall business stability. 

 

2.3 Introduction to Churn Classification 

Models 

In this paragraph, the literature on the machine learning algorithms that 

will be used in this paper will be explored in depth. 

In the research community, different machine learning algorithms have 

been proposed to face the churning prediction problem. Such methods 

include Logistic Regression, Decision Trees, Neural Network, Regression 

Analysis, Support Vector Machines, Naïve Bayes, Decision Forest, 

Sequential Pattern Mining and Market Basket Analysis, Linear 

Discriminant Analysis, and Rough Set Approach [7]. 

Here the focus will be on only four algorithms which will be the ones used: 

Neural Network, Logistic Regression, Decision Forest, and Decision Trees. 
Artificial Neural Networks (ANNs) is a common algorithm to address 

complex problems, such as the churn prediction problem [7]. 

Artificial neural networks are computational systems designed based on 

the structure and function of the human brain. They consist of multiple 

layers of nodes, or artificial "neurons." Each node in a neural network acts 

as a computational unit that receives one or more inputs, processes them 

using a set of weights and an activation function, and produces an output. 

Artificial neural networks are used to tackle complex problems such as 

pattern recognition, classification, and regression [8]. 

Artificial neural networks function through a supervised learning process, 

where the network is trained using pairs of input data and their associated 

outputs. The process starts with a Forward Pass, during which the inputs 



14 
  

flow through the network and produce a prediction. Following this, the 

Error Calculation takes place, where the discrepancy between the 

predicted output and the actual target value is assessed using a cost 

function, such as mean squared error. Lastly, in the Backward Pass, the 

computed error is sent backward through the network, allowing the 

weights to be adjusted by an optimization algorithm like gradient descent, 

to minimize the error in future iterations [9]. 

The second model tested is Logistic Regression. Regression is a 

statistical technique used to estimate relationships between different 

variables. It encompasses a variety of methods for modelling and analysing 

multiple variables, with a particular focus on the connection between a 

dependent variable and one or more independent variables. Regression 

can be divided into linear regression and logistic regression. In the context 

of customer churn, linear regression is not widely used, as it is more 

suitable for predicting continuous values. In contrast, Logistic Regression 

is a probabilistic statistical model used for classification. This type of 

regression is employed to generate binary predictions on a categorical 

variable, such as customer churn, based on one or more predictor 

variables, like customer characteristics. [7]. 

According to [10] this is how the model works: logistic regression 

calculates the probability that a given instance belongs to one of the two 

classes. This is done using the logit function. 

𝑙𝑜𝑔𝑖𝑡(𝑝) = log (
𝑝

1 − 𝑝
) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋𝑛 

Where p is the probability of belonging to class 1 (positive), β0 is the 

intercept, and β1,β2,…,βn are the coefficients of the predictor variables 

X1,X2,…,Xn. Logistic regression uses a sigmoid function to map any real 

value to a range between 0 and 1: 

𝑝(𝑋) =  
1 

1 +  𝑒{−(𝛽0+ 𝛽1𝑋1+ …+ 𝛽𝑛𝑋𝑛)}
 

This result represents the estimated probability that the outcome is 

positive (class 1). A threshold (usually 0.5) is also used to decide which 



15 
  

class to assign an observation to. If p(X)>0.5 the observation is classified 

as class 1 otherwise as class 0. 

Then I tested a Decision Tree that is are hierarchical structures designed 

to represent a series of decisions that can generate classification rules for 

a specific dataset. In these structures, leaves denote class labels, while 

branches represent the combinations of features that lead to those labels. 

Although Decision Trees may struggle with capturing complex, non-linear 

relationships between attributes, they can still achieve high accuracy in 

predicting customer churn, depending on the nature of the data being 

analysed [7]. In this work, however, a classic version of the Decision Tree 

will not be used. On Azure ML, an algorithm called Two-Class Boosted 

Decision Tree will be used. This algorithm uses an implementation of 

Gradient Boosting. This implementation is optimized for binary 

classification tasks. Specifically, it leverages the LightGBM framework, 

which is known for its efficiency and scalability. LightGBM, developed by 

Microsoft, is a highly efficient gradient boosting framework based on 

decision tree algorithms, and it forms the core of Azure's boosting 

capabilities. This topic, however, will be explored in more detail later in this 

chapter. 

The last model is a Decision Forest is an ensemble learning method 

primarily used for classification and regression tasks. It operates by 

constructing a multitude of decision trees during training time and outputs 

the class that is the mode of the classes (classification) or mean prediction 

(regression) of the individual trees. The underlying principle behind 

Decision Forests is to combine the predictions of multiple decision trees 

to improve accuracy and avoid overfitting [11]. The strength of the Random 

Forest algorithm lies in its ability to manage diverse features and capture 

non-linear relationships, which enhances its overall predictive 

performance for the churn task [12]. 

 



16 
  

2.4 Introduction to Gradient Boosting 

Techniques 

In these paragraphs, the gradient boosting technique and the LightGBM 

framework will be explored in more detail as it will be used throughout this 

paper to address the problem of churn classification. 

First, it is important to specify that Boosting is a method through which we 

can apply an ensemble learning method, which means using more than 

one classifier. This will reduce the probability of making a wrong prediction, 

assuming that classifiers are independent. The goal of ensemble methods 

is to combine different classifiers into a “metaclassifier” that has better 

generalization performance than each individual classifier alone. 

Ensemble methods can be built from different classification algorithms 

(for instance decision trees, SVM, logistic regression classifiers) or using 

the same classification algorithm and fitting different subsets of the 

training data (ex-random forest). There are three other methods through we 

can use ensemble classifiers: majority voting, bootstrap/bagging and 

stacking but they will not be discussed in this context. 

Boosting has been effectively utilized for predicting customer churn in both 

retail and telecommunications sectors. [7] 

The idea behind boosting is that each subsequent predictor focuses on 

correcting the errors made by the previous predictors. Classifier 1 is 

trained on the entire dataset, with equal weights assigned to each 

example. After training, the weights of the examples that were 

misclassified by Classifier 1 are increased. Classifier 2 is then trained on 

the same dataset, but with these adjusted weights, emphasizing the 

harder-to-predict examples. Classifier 3 follows a similar process, 

focusing even more on the examples that the previous classifiers struggled 

with. The final prediction is made based on a weighted combination of the 

predictions from all classifiers, where more accurate classifiers have a 

greater influence [7]. 



17 
  

There are many forms of the boosting algorithm, but the most common are 

AdaBoost and Gradient Boosting. This paragraph will cover only the 

second. 

The key idea behind GBMs (Gradient Boosting Machines) is to iteratively 

improve the model by focusing on correcting the errors made by previous 

models. At the heart of GBMs are decision trees. These decision trees are 

used as the building blocks for the ensemble. The process involves adding 

trees sequentially, where each new tree is trained to correct the residual 

errors from the previous trees. This method leverages gradient descent to 

minimize a loss function, optimizing the model's performance iteratively 

[13]. 

According to [13], in more mathematical words, given a loss function  

𝐿(𝑦, 𝐹(𝑥)), where y represents the observed value, 𝐹(𝑥) is the model's 

prediction, and x denotes the input features, the goal is to find an 

𝐿(𝑦, 𝐹(𝑥)) that minimizes the expected value of   𝐿(𝑦, 𝐹(𝑥)). The model 

begins with an initial prediction 𝐹0(𝑥), and at each iteration, a new tree 

ℎ(𝑥) is added to further reduce the loss. The final model 𝐹𝑚(𝑥) is composed 

of the sum of m trees: 

𝐹𝑚(𝑥) =  𝐹{𝑚−1}(𝑥) +  ℎ𝑚(𝑥) 

The tree ℎ𝑚(𝑥) is selected to minimize the sum of the losses over all training 

instances. The parameter updates are guided by the gradient of the loss 

function with respect to the predicted values. In this way, GBMs 

progressively learn from the residuals of previous trees, continuously 

improving the reduction of overall loss. 

GBMs are highly effective in modelling complex, non-linear relationships, 

and they are capable of handling large and high-dimensional datasets. In 

conclusion, GBMs are versatile and powerful algorithms that offer robust 

predictive capabilities, making them an essential tool in various machine 

learning applications. 



18 
  

2.5 LightGBM: An Optimized and Scalable 

Gradient Boosting Framework 

LightGBM (Light Gradient Boosting Machine), is a machine learning 

algorithm that implements the Gradient Boosting Decision Tree (GBDT) 

method [14]. 

LightGBM is recognized for its efficiency and strong performance in a 

variety of machine learning tasks, including multi-class classification. A 

key distinction between LightGBM and algorithms like XGBoost is the 

approach to constructing decision trees. Unlike XGBoost, which builds 

trees level by level, LightGBM grows them leaf-wise, focusing on the leaves 

that will most effectively reduce loss. To enhance computational 

efficiency, LightGBM introduces two innovative techniques: Gradient-

based One-Side Sampling (GOSS), which speeds up the calculation of 

information gain by excluding a large portion of data with small gradients, 

and Exclusive Feature Bundling (EFB), which reduces data dimensionality 

by grouping mutually exclusive features. These innovations make 

LightGBM significantly faster than models like XGBoost, while delivering 

comparable or even superior accuracy [14]. 

 

2.6 Unbalanced Class Problem 

This session will cover a topic that is prevalent in nearly all churn 

classification tasks. Class imbalance is a significant feature of many 

datasets utilized in churn prediction modelling. A common bias of many 

standard classification algorithms is to show a tendency to favour the 

majority class, which can negatively impact their performance, particularly 

when it comes to accurately predicting the minority class [15].  

The are different challenges related to class imbalance like, the unequal 

distribution between classes, which makes it difficult for classifiers to 

accurately predict the minority class, as many algorithms tend to focus on 



19 
  

overall accuracy, overlooking the imbalance. Additionally, the limited 

availability of data for the minority class restricts the information available 

to the classifier, making learning more complex. Another significant 

challenge is the overlap between classes, where shared characteristics 

make it difficult to distinguish between the two classes. Finally, internal 

class imbalance, known as small disjuncts, arises when sub-groups within 

a class have different sizes, further complicating classification accuracy 

[16]. 

There are two common methods to handle class imbalance classification: 

1) Data-Level Approaches and 2) Algorithm-Level Approaches.  
As described in this paper by Ali, Shamsuddin and Ralescu [16] data-level 

approaches for handling class imbalance focus on manipulating data 

before classification, primarily through sampling and feature selection 

techniques.  

Sampling can be divided into under-sampling, which reduces instances of 

the majority class but may remove valuable information, and over-

sampling, which increases minority class examples but risks overfitting, as 

seen with the SMOTE technique. Advanced methods, such as cluster-

based sampling, improve accuracy while mitigating the limitations of 

traditional techniques.  

Feature selection helps eliminate irrelevant or redundant features, 

enhancing the model's ability to distinguish between classes and reducing 

computational complexity. However, the application of feature selection 

to imbalanced classes is still underexplored, offering research 

opportunities to develop more effective approaches. While these methods 

are essential, they also present challenges like the risk of overfitting and 

information loss, necessitating the development of more sophisticated 

techniques. 

Now the focus shifts to the different methods aimed at addressing the 

class imbalance problem through direct modifications to learning 

algorithms (Algorithm-Level Approach) rather than through data 

manipulation.  



20 
  

As stated in [16] improved algorithms have been adapted to effectively 

learn from the imbalanced class distribution, enhancing the model's ability 

to recognize the minority class. Examples like z-SVM and GSVM-RU 

introduce additional parameters and granular computing techniques to 

optimize class separation. "One-class learning" algorithms focus 

exclusively on the minority class, avoiding biases introduced by learning 

from majority classes. An example is CCNND, which utilizes the 

distribution of nearest neighbor distances to improve the classification 

boundary for the minority class. Cost-sensitive learning is another 

approach, where classifiers are modified to assign higher error costs to the 

misclassification of the minority class, as seen in cost-sensitive SVMs and 

neural networks optimized with Partial Swarm Optimization (PSO). 

As described in this paper by Zhu, Baesens and Broucke [15] there are also 

various ensemble solutions to address class imbalance in churn 

prediction by combining learning models to improve performance.  

These include bagging and its variants, such as UnderBagging and 

SMOTEBagging, which use under-sampling and over-sampling to balance 

the data. Boosting methods, like RUSBoost and SMOTEBoost, 

progressively correct errors, while balanced and weighted random forests 

place greater penalties on minority class misclassifications.  

Finally, hybrid solutions like EasyEnsemble and BalanceCascade 

incorporate under-sampling and sequential processing to enhance 

predictions.  

 

2.7 SMOTE Approach 

In this last paragraph of the chapter more attention will be given to the 

SMOTE technique since, as will be seen in the chapter on Models, it was 

the technique implemented. 

SMOTE (Synthetic Minority Over-sampling Technique) is an over-sampling 

technique that generates new synthetic examples for the minority class in 

an imbalanced dataset. The goal is to balance the class distribution 



21 
  

without simply replicating existing data, but by creating new data points 

that enhance the model's ability to generalize [17].  

This method helps reduce overfitting compared to traditional 

oversampling, which simply replicates existing minority samples [18]. 

SMOTE employs the K-nearest neighbours’ algorithm to identify the closest 

neighbours of minority samples. These neighbours are then used to 

generate new synthetic samples along the line connecting them to the 

original sample [18]. 

According to [draft3] the algorithm works like this: 

• A starting point is defined: For each example X0 belonging to the 

minority class, K nearest neighbours are selected, which also belong to 

the minority class. 

A new synthetic example Z is generated along the line connecting X0 and 

one of its K nearest neighbours X. The formula used to generate Z is, where 

w is a random number uniformly distributed in the interval [0,1]: 

 

𝑍 =  𝑋0 +  𝑤 ⋅ (𝑋 −  𝑋0) 
 

SMOTE's mathematical formula generates new synthetic samples by 

calculating the distance between existing minority samples and their 

nearest neighbours, then multiplying that distance by a random number 

between 0 and 1[18]. 

SMOTE offers several advantages and disadvantages. Among its strengths, 

SMOTE is widely used for its simplicity and effectiveness in improving 

classifier performance on imbalanced datasets by reducing the overfitting 

problem that can occur when minority class data is simply replicated. 

However, SMOTE also has limitations. It may generate unrealistic samples, 

particularly in high-dimensional spaces, or create samples that intrude 

into the decision boundary of the majority class [17]. 



22 
  

 

 

 

Chapter 3  

Data Overview and Methods 

 

Summary 

This chapter offers a detailed overview of the data utilized in this study. It 

begins by presenting a summary of the entire churn process and then shifts 

the focus to the data. 

In particular, the various data sources will be explored in detail, including 

the Login Table, the Watching Table, the Content Table, the Subscription 

Table, the App Execution Table and finally the Purchase Table. Each data 

source is individually explained, providing insights into the nature of the 

data it offers and its relevance to the study. 

Furthermore, this chapter details the necessary data cleaning procedures 

undertaken to prepare the data for analysis. It explains how missing values 

were addressed and describes any other modifications or transformations 

performed to ensure the data is in an appropriate format for the 

subsequent modelling processes. 

In addition, the final Dataset (CAR) obtained from the manipulation of all 

the tables is presented. 



23 
  

All the six table have been processed and stored in the integrate 

environment of SQL Server Management Studio (SSMS), while the final 

dataset CAR has been uploaded to the Microsoft cloud platform Azure 

Machine Learning Studio. 

 

3.1 Approach Explanation 

In this paragraph, each step, which can be seen schematically in the 

flowchart below, used to develop the churn model will be explained in 

detail. 

 
 

Figure 3.1: Process steps 
First, the time frame in which customer behaviours were analysed to form 

our database is from April 2023 to December 2023, hence nine months. In 

the first step, the parameters to define who is considered a churner are 

clarified: a customer who has not logged into the OTT platform in the last 



24 
  

three months (a time interval chosen by the company) or a customer who 

has cancelled their subscription to the OTT platform. It is important to 

emphasize that the subscription structure is very complex, as the OTT has 

various partnerships with several subscription streaming services that 

offer a wide range of on-demand content, including movies, TV shows, 

documentaries, and live events, such as DAZN, Netflix, Disney+, and 

Amazon Prime Video. Therefore, a customer could have a subscription to 

the OTT but at the same time be subscribed to the other four partners 

mentioned earlier. If the customer decides to cancel with all four partners 

but keeps the subscription with the OTT active, they would not be 

considered a churner. 

Subsequently, in the second step, the Customer Analytics Record (CAR) is 

defined, which represents the actual dataset. The CAR takes data from a 

wide range of sources, which will be explained in detail later, combining 

them to have the broadest possible database. The CAR was built by 

observing customers in the past for whom behaviour is known, and 

customers were divided into churners or non-churners (following the 

definition provided in the previous step). The CAR is a table that 

consolidates all data at the customer level, thus making all data available 

for modelling and analysis purposes. It is designed to have a single row per 

customer with all related measures. 

In the third and fourth steps, respectively model training and evaluation, 

various models and configurations of models are tested on the cloud 

platform Machine Learning Studio. The predictive classification model is 

trained to recognize and isolate the distinctive characteristics of the two 

subsets. The result of the training is a function capable of assigning each 

user a measure of the probability that they will churn or remain loyal. 

Subsequently, the most performant model in predicting the likelihood of 

user churn is chosen. This choice is guided by different metrics like AUC, 

F1-Score, Recall and Precision. From the most performant results, it is 

possible to compare the different resulting measures to identify the "Best 

performer" model. 



25 
  

In the last step, target identification for campaign, the "best performer" 

model is applied to customers for whom behaviour is unknown, and a 

score (probability of churn/loyalty) is produced for each. Users at high risk 

of churn are identified and can be subject to specific campaigns or other 

targeted customer actions. 

 

3.2 Input Data 

The following sections offer detailed information about the different 

sources utilized to construct the CAR database. To obtain the final dataset, 

six tables were joined together. This information is essential for 

understanding the dataset’s relevance and usefulness in analysing 

costumer behaviour in the context of churn prediction. 

Below, you can see a summary table of the initial data. 

 

Table Names Number of 
Rows 

Number of  
Columns 

Login 301.488.075 33 

Watching 123.452.508 66 

Content 76.913 2 

Subscription 4.048.695 42 

App Execution 71.419.620 35 

Purchase 26.942 54 
 

Table 3.1:  Input data tables with related number of rows and columns  

 

3.2.1 Login Table 

The ‘login’ table contains information related to all logins to the OTT within 

the period from April 2023 to December 2023, totalling 9 months. It is 

important to clarify the interpretation of these logins. 'Login' does not only 



26 
  

refer to the initial access where credentials are entered to log into the OTT, 

but also to the opening of the OTT on one's device. This conclusion was 

reached because the presence of multiple daily logins associated with 

individual customers made it unlikely that each login involved credential 

entry every time.  

The table originally contained 301,488,075 rows and 33 variables, each 

representing specific aspects of customer login behaviour and device 

usage over a specified period. Some of the variables included in the 

dataset are ‘Year_Month’ , indicates the specific month and year, 

‘Num_Login’ the total number of logins, providing a measure of user 

engagement (a decline in login frequency can be an early indicator of 

churn) and ‘Login_No_Weekend’, ‘Login_Weekend’ (differentiates 

between weekday and weekend logins, which can reveal differences in 

user behaviour that might indicate dissatisfaction or growing disinterest). 

These variables collectively enable a comprehensive analysis of customer 

login behaviour, device preferences, and usage patterns over time, all of 

which are fundamental for churn prediction. 

 

3.2.2 Content Table 

Content" is a table that associates the ID of a content with the description 

of said content. For example, Netflix (a partner app) is coded as 0; the 

"Content" table associates ID 0 with the description Netflix. 

It originally contained 76.913 rows and 2 columns, respectively ID and 

Description. 

 

3.2.3 Subscription 

In the Subscription table there are information about activation and 

cancellation of the various services present on the OTT. 

The table originally contained 4.048.695 rows and 42 columns. Some 

columns of interest to our analysis are: 



27 
  

Columns (‘ID_SUBSCRIPTION_START_DATE’, ‘ID_SUBSCRIPTION_ACTIVA

TION_DATE’, ‘ID_ SUBSCRIPTION_ END_ DATE’) indicating start, activation 

and end date of subscription.  Then there are also columns with 

information about the first and the last login and the first and the last 

fruition of the service (‘ID_SUBSCRIPTION_FIRST_USER_LOGIN’, 

ID_SUBSCRIPTION_LAST_USER_LOGIN’, ID_SUBSCRIPTION_FIRST_USER

_FRUITION’, ID_SUBSCRIPTION_LAST_USER_FRUITION’). 

 

3.2.4 Watching Table  

The "watching" table contains information related to the duration of 

viewing, indicating how long the customer remains active on the platform. 

It also includes information about the channel being watched on the OTT. 

It is important to specify that the "watching" table provides viewing times 

and channel data for both OTT and third-party apps. As explained earlier, 

the OTT not only has its own channels but also acts as an intermediary for 

the channels of apps with which our company has established 

partnerships. Therefore, in this table, we do not have specific indications 

of which partner app the customer is using, only whether they are on an 

OTT channel or a third-party app. 

The table originally contained 123.452.508 rows and 66 variables. Some of 

the variables included in the dataset are: ‘num_time_band’, ‘h00_06’, 

‘h06_12’, ‘h12_15’, ‘h15_18’, ‘h18_21’, ‘h21_24’, ‘morning_slot’, 

‘afternoon_slot’, ‘evening_slot’; indicating the distribution of views by time 

band. Other variables are: ‘Documentaries’, ‘Junior’, ‘Live’, ‘Music’, 

‘TV_Programmes’ and ‘Series’; indicating the distribution of views by 

content genre, useful for understanding user preferences and how 

changes might predict churn. 

 



28 
  

3.2.5 App Execution Table 

It is a table that indicates how many launches of a specific app have been 

executed. It originally contained 71.419.620 rows and 35 columns. As 

previously explained, the 'watching' table does not specify which third-

party apps are used. The 'App Execution Table' is useful because it allows 

us to understand how many launches of a particular app have been made. 

For example, if in a month the DAZN app is opened thirty times while 

Disney+ only twice, by comparing these data with the 'watching' table, it is 

possible to understand the proportions of service usage. 

 

3.2.6 Purchase 

Purchase is a table containing information about different financial 

transactions. These transactions can be of various types since the different 

apps offer their customers the possibility to purchase or rent specific 

content on the OTT platform. 

The purchase table originally contained 26.942 rows and 54 columns. 

Some columns of relevance are:’num_purchase’ indicating the total 

number of costumer purchases, ‘purchase_RENTAL’ and 

‘purchase_PURCHASE’ indicating the type of transaction carried out. 

There are also information about the type of content purchased 

(‘purchase_Documentaries’, ‘purchase_Junior’,  ‘purchase_Live’, ‘purcha

se_Music’, ‘purchase_TV_Programmes’, ‘purchase_Series’) and 

concerning which day of the week the purchase was completed 

(‘purchase_day_Mon’, ‘purchase_day_Tue’, ‘purchase_day_Wed’, ‘purch

ase_day_Thu’, ‘purchase_day_Fri’, ‘purchase_day_Sat’, ‘purchase_day_S

un’). All these variables provide different insights into customers' content 

purchasing habits 

 



29 
  

3.3 Data Transformation 

In this paragraph, all the data cleaning and preprocessing procedures 

applied to the six tables to ensure data accuracy and completeness will be 

discussed.  

In the image below, it is possible to see a schematic representation of how 

all the data originally present in the tables described in the previous 

chapters were filtered and manipulated to construct the final CAR dataset. 

 

 
Figure 3.2:  Data manipulation process 

It is important to note that the tables provided by the client to Accenture 

were compiled in such a way as to discard, from the start, accounts 

considered defective (i.e., accounts with too much missing data).  

Since the tables were processed using SQL Server Management Studio, 

they do not contain duplicates. This is because the variable 

ID_USER_ACCOUNT, present in almost all tables (except the Content 

table), was used as the primary key, meaning, a duplicate primary key is 

not possible. 

As shown in figure 3.2, each table underwent manipulations to construct 

the final CAR (Customer Analytics Record). Before explaining the 

operations performed on each table, let’s define what is meant by 



30 
  

flattening and transposition. Flattening refers to converting a complex data 

structure into a simpler one. In our context, this means taking the original 

data aggregated for each account and creating a tabular structure where 

each row represents an account, and each column represents a specific 

metric for that account. Transposition of KPIs by month refers to organizing 

the data in such a way that, for each account, the KPIs are broken down by 

month. 

Starting with the Login Table, as shown in the diagram, a filter is applied for 

the variable visitors, and the KPIs (Key Performance Indicators) for each 

account and month are calculated, such as monthly, quarterly, and 

weekday averages. This is done to obtain enough informative data to 

understand user behaviour. For example, during the time slot from 2:00 PM 

to 5:00 PM, you know it’s either a child returning from school, a housewife, 

or a retiree. This step was taken because a second part of the project 

assigned to Accenture involved customer clustering, which, however, will 

not be covered in this thesis. A group by operation is then performed for 

each account to obtain the main KPIs. 

In the Watching Table, all views with a duration of less than 60 seconds are 

discarded. This choice is guided by the following consideration: if the 

viewing time is less than 60 seconds, the customer is merely scrolling 

through channels without genuine interest in watching that specific 

channel. For this table as well, watching averages are calculated monthly 

and associated with the account, followed by a group by operation for each 

account to obtain the main KPIs. The Content Table is aggregated, as 

shown in the graph, with the Watching Table in the first step. 

In the App Execution Table, a filter for visitors to apps is applied. The aim of 

this step is to select a reduced number of all available applications 

because, in the original table, a single app was named in many different 

ways (for example, Prime Video and Amazon, which are two separate 

elements in the table, are grouped into the same category). Finally, a group 

by operation is performed for each individual account. 



31 
  

In the Purchase Table, like the previous ones, a filter for visitors is applied, 

and the KPIs are calculated for each account and month. A group by 

operation is then performed for each account. 

In the Subscription Table, the filter 'subscription_end_date < 20240401' is 

applied. This filter excludes from the analysis all accounts whose 

subscription ends after April 1, 2024. This means that the analysis focuses 

only on accounts that could potentially cancel the service within the period 

of interest, namely between April 2023 and December 2023. 

In the final step, all tables are combined into a single dataset, which is the 

CAR (Customer Analytics Record). Specifically, as seen in figure 3.2, the 

Login, Watching, and App Execution Tables are joined using a left join that 

retains all the rows from the first table (account) and adds the 

corresponding rows from the other two tables based on a common 

identifier, which is the primary key 'account'. 

 

3.4 Data Migration and Cloud Overview  

The CAR dataset was subsequently migrated to Machine Learning Studio. 

On Azure, all the operations described from this point onward were 

performed. In the figure 3.3 is showed the query needed to import the 

dataset. 

 

 
Figure 3.3:  Import Query 
 

Instead, the figure 3.4 shows how the operation looks in the new Azure 

environment. 

 



32 
  

 
Figure 3.4:  Azure Dashboard 
Azure Machine Learning Studio is a cloud-based platform developed and 

officially launched by Microsoft in June 2014. It is a public cloud service 

provided by Microsoft Azure that works as a computing service over the 

public internet, making resources such as servers and application 

available to everyone that want to use them. 

As stated in [19] Cloud computing is a rapidly growing technology in the 

field of business innovation. Thanks to its flexibility and adaptability, it 

enables new approaches to working, operating, and managing business 

activities. Platforms like Azure allow users to access files and applications 

stored in the cloud from any location, eliminating the need to be physically 

close to the hardware. Cloud computing has proven to be advantageous 

for both consumers and businesses. 

The implementation of machine learning algorithms in the cloud presents 

numerous opportunities for more efficient resource management. Cloud-

based machine learning environments offer preconfigured computer 

clusters with statistical software, freeing customers from the need to 

install and manage their own clusters [20] 

Specifically, as stated in [21] some advantages of using cloud platform for 

machine learning tasks are: 

• Cloud platforms provide unmatched scalability, enabling businesses 

to adjust their computing resources up or down effortlessly according 

to demand. This adaptability is especially advantageous for machine 

learning tasks that require different levels of computational power and 

storage capacity. 



33 
  

• Machine learning platforms hosted in the cloud remove the necessity 

for costly on-premises hardware and software setups. This allows 

businesses to utilize cutting-edge machine learning tools and 

technologies without incurring the substantial upfront expenses 

related to purchasing and maintaining physical infrastructure [22]. 

• The cloud platform's role is to manage applications through quality 

control mechanisms, enhancing the collaboration capabilities among 

multiple groups involved [23]. 

• Cloud service providers are making significant investments in artificial 

intelligence and machine learning consistently enhance their platforms 

with cutting-edge machine learning technologies, including 

advancements in deep learning, neural networks, and natural language 

processing. This approach allows businesses to utilize the latest 

innovations without the necessity of substantial investments in new 

hardware or software [21].  

There are not only advantages in using cloud platform. Some 

disadvantages of using cloud platform like Azure Machine Learning 

Studio for machine learning tasks are: 

• A stable and dependable internet connection is essential for machine 

learning systems that operate in the cloud. Inadequate internet access 

can interrupt data transmission, resulting in inaccurate outcomes and 

diminished efficiency. This reliance on internet connectivity can be a 

major disadvantage in regions where internet connections are 

unreliable or slow [24] 

• One significant drawback of cloud computing is the latency. When data 

is sent to the cloud for processing and then returned to the client, there 

can be a noticeable delay. This latency can negatively impact the 

performance and responsiveness of machine learning models [25]. 

• Storing data in the cloud requires sharing sensitive information with 

third-party providers, which raises concerns about security and 

privacy. Despite the implementation of stringent security protocols by 



34 
  

cloud providers, data breaches and unauthorized access can still 

happen, putting sensitive and proprietary information at risk [26]. 

Overall, cloud computing is expected to remain a key player in the future of 

IT, helping organizations become more agile, efficient, and innovative 

amidst rapid technological advancements. This trend will likely propel 

further innovations in AI and machine learning in the years ahead [19]. 

 

3.5 CAR Dataset 

After manipulating all six tables and merging them, we obtain the final CAR 

dataset containing the necessary data to profile an individual's behaviours 

and somehow teach the model which behavioural trends anticipate a 

possible cancellation of the OTT service. 

The following table shows the dataset in its entirety. The CAR consists of 

63 features and 1.169.990 observations. It is important clarify that there 

are some variables whose name has been changed as they contained the 

original name of the client company and the OTT platform, and as 

explained at the beginning of this thesis, for legal reasons it is not possible 

to cite them. The modified variables are marked with two asterisks (**). 

 

Variable Names Variable Names 
ID_USER sum_NUM_APP_EXECUTIONS 
min_year_month avg_NUM_APP_EXECUTIONS 
max_year_month sum_app_Netflix 
count_months_login sum_app_Dazn 
count_months_watching sum_app_Disney 
count_months_purchase sum_app_Prime_video 
count_months_app sum_app_OTTgames ** 
sum_login_Weekend sum_app_Other_Partner 
sum_login_no_Weekend avg_app_Netflix 
sum_num_login avg_app_Dazn 
sum_num_view avg_app_Disney 
sum_playback avg_app_Prime_video 
avg_login_Weekend avg_app_OTTgames ** 
avg_login_no_Weekend avg_app_Other_Partner 
avg_num_login flag_Offer_OTTvision ** 



35 
  

avg_num_view flag_Partnership_Amazon_Prime 
avg_playback flag_Partnership_Dazn 
avg_flag_fruition flag_Partnership_Disney 
avg_ratio_fruition_login flag_Partnership_Other_Partner 
max_num_deviced flag_Partnership_Netflix 
sum_num_dist_view flag_Offer_type_Mobile 
sum_num_view_linear flag_Offer_type_OLO 
sum_num_view_vod flag_Offer_type_Residential 
sum_num_purchase sum_Category_Other 
sum_sum_purchase_price sum_login_dev_2ndSCREEN 
avg_num_purchase sum_login_dev_CTV 
avg_sum_purchase_price sum_login_dev_STB 
sum_Cinema sum_login_dev_WEB 
sum_Documentaries sum_login_dev_OTHER 
sum_Junior Target 
sum_Music  
sum_TV_Programmes  
sum_Series  

Table 3.2:  CAR dataset features 
The dependent variable, the one the model tries to predict, is the last 

feature of table 3.2. The variable ‘Target’ is a multi-class categorical 

variable (three classes) with integer data. 

The initial idea was to build a highly specific model. By highly specific, I 

mean a model capable of predicting not only if an individual was likely to 

churn or remain loyal but also to predict if the churn would occur only on 

specific partner apps. Remember that the OTT platform is a portal that, in 

addition to having its own channels, also has channels from third-party 

partner apps. 

Initially, to also monitor the dynamics of the partners, three classes were 

identified in the dependent variable ‘Target’: 0 for those who do not cancel 

anything, 1 for those who cancel some subscriptions but remain loyal to 

the OTT, and 2 for those who cancel the OTT regardless of what the 

customer does with other subscriptions. 



36 
  

 
Figure 3.5:  Target Classed Distribution Pie Chart 
However, this approach, although very interesting, was not feasible 

because classes 1 and 2 were too small (only 25002 observations for class 

1 as we can see from figure 3.5). Therefore, the two classes 0 and 1 were 

aggregated, resulting in a binary categorical variable where class 0 

represents loyal customers and class 1 represents churners. The new 

dependent variable is called ‘TARGET_BINARY’. 

In the figure below, the approach just explained is shown in the Azure 

Machine Leaning environment. 



37 
  

 
Figure 3.6:  SQL Transformation Input Data 

 

Meanwhile, in figure 3.7, you can observe the executed query. 

 

Figure 3.7:  SQL Query from Three Class to Two 

 

3.5.1 Data Cleaning  

In this paragraph, the cleaning and exploration operations of the dataset 

are discussed. A univariate analysis was performed for each feature in the 

dataset. Univariate analysis involves evaluating each variable individually 

by observing its statistics. Thanks to the ‘Summarize Data’ module in 

Azure, it is possible to observe the main statistics of the variables, such as 

Unique Value Count, Minimum and Maximum Value, Mean, Standard 

Deviation, and many others. Strategies were then defined for each 

variable: 1) Remove the variable from the dataset if it is not useful or 

significant for the analysis; 2) Keep the variable in the dataset for 

subsequent analysis; 3) Apply preprocessing techniques to improve the 

quality of the variable (e.g., handling missing values, etc.). It was decided 



38 
  

to exclude variables that presented a single value (0) for each user. This is 

because such variables do not provide useful information for the analysis, 

as they are constant and thus lack variability. 

Subsequently, a multivariate analysis was conducted, which considers the 

relationships between multiple variables simultaneously, using the 

correlation matrix. The correlation matrix allows us to understand how 

correlated the different measures are with each other. From the correlation 

matrix, it emerged that certain variables are strongly correlated with each 

other. For the time being, the variables are not excluded from the dataset, 

but this issue will be addressed in the next chapter dedicated to models 

and, specifically, to data preprocessing. Additionally, thanks to the 

statistical summary of the variables obtained through the 'Summarize 

Data' module, it was also possible to identify potential outliers. If the 

maximum or minimum value is significantly distant from the mean (e.g., 

more than three times the standard deviation), this may indicate the 

presence of outliers. However, the extreme values detected were 

considered consistent with the distributions, so no actions were taken to 

remove them. 

The operations translated into the Azure environment can be seen in the 

figure below. 

 

 
Figure 3.8:  Linear Correlation and Principal Statistics 

Then, as can be seen from Figure 3.9, using the 'Select Columns in Dataset' 

block, we exclude certain features. 



39 
  

 

Figure 3.9:  Columns Dropped Operations 

Six columns are excluded: ‘ID_USER’, ‘min_year_month’, 

‘max_year_month’, ‘sum_sum_purchase_price’, ‘sum_login_dev_OTHER’ 

and ‘Target’. 

Starting with the last one, it is simply excluded because it was the original 

dependent variable with values 0, 1, and 2, and has been replaced with 

‘TARGET_BINARY’. 

The variable ‘sum_sum_purchase_price’ was dropped since it contained 

all null values and the same goes for ‘sum_login_dev_OTHER’. 

The variables ‘min_year_month’ and ‘max_year_month’ (indicating the first 

and last month of access to the OTT during the analysis period) were 

excluded because we are not interested in temporal correlation, such as 

identifying periods with a higher number of churners. Instead, we aim to 

investigate other types of causes. 

The last variable, ‘ID_USER’, was not included in the analysis as we do not 

want to associate the churner with a number that only represents the 

customer's ID. The dataset now consists of 58 features.  

 

3.5.2 Missing Values Handling 

In this paragraph, the process of identifying and handling missing values 

will be discussed. A total of 32 columns containing missing values were 

identified. As shown in figure 3.13, the missing value cleaning operation in 

the Azure tool involves the addition of a specific block. 



40 
  

 

 
Figure 3.10:  Cleaning Missing Data Operation 

In table 3.3, we can observe in detail which columns contain missing 

values and how many missing values there are for each column. 

 

 

VARIABLE NAMES MISSING VALUES EACH 
COLUMNS 

sum_playback; sum_num_view; 

avg_num_view; avg_playback; 

avg_rapporto_fruition_login; 

sum_num_dist_view; 

sum_num_view_linear; 

sum_num_view_vod; 

sum_Cinema; 

sum_Documentaries; sum_Junior; 

sum_Music; sum_ 

TV_Programmes; sum_Series; 

sum_Category_Other; 

431287 

sum_num_purchase; 

avg_num_purchase; 

avg_sum_purchase_price; 
1156930 



41 
  

sum_NUM_APP_EXECUTIONS; 

avg_NUM_APP_EXECUTIONS; 

sum_app_Netflix; sum_app_Dazn; 

sum_app_Disney; 

sum_app_Prime_video; 

sum_app_OTTgames **; 

sum_app_Other_Partner; 

avg_app_Netflix; avg_app_Dazn; 

avg_app_Disney; 

avg_app_Prime_video; 

avg_app_OTTgames **; 

avg_app_Other_Partner; 

558885 

Table 3.3:  Name and Number of Columns with Missing Values  

Missing values can be handled using various techniques, such as 

imputation (replacing missing data with the mean, median, or mode), 

deletion (removing rows or columns with missing values), or by using 

algorithms that are robust to missing data. The choice of method depends 

on the nature of the data and the impact of missing values on the analysis 

or model performance.  

Missing data can arise from various sources, such as data entry mistakes, 

non-responses in surveys, or incomplete data collection processes. The 

process of imputation involves estimating and filling in the missing values 

using the available data, which helps in ensuring more comprehensive and 

accurate analyses. 

In this sense Azure Machine Learning provides the ability to set parameters 

for data cleaning. Specifically, there are: 

• The 'Minimum missing value percentage' which specifies the 

minimum percentage of missing values in a column for it to be 

considered for cleaning. The value is set to 0, meaning that all columns, 

even those with just one missing value, will be considered.  



42 
  

• The 'Maximum missing value percentage' specifies the maximum 

percentage of missing values in a column that can be considered for 

cleaning. The value is set to 1, meaning that even columns with all 

values missing will be considered.  

• The 'Cleaning mode' determines how the missing values will be 

handled. The parameter is set to "Custom substitution value," which 

means that the missing values will be replaced with a value specified 

by the user.  

• The 'Replacement value' indicates the value that will be used to 

replace the missing values when the "Cleaning mode" is set to "Custom 

substitution value." The replacement value is 0. This decision was 

guided by the simple fact that the CAR was built by initially eliminating 

variables containing many missing values. 

 

3.5.3 Data Exploration 
In this last paragraph is now interesting to better observe the behaviour of 

some features to try to gain insights from the data contained in the CAR. 

In Figure 3.10, we can see the distribution of the variable 

'count_months_login'. This variable contains information related to the 

total number of months in which each user logged in during the analysis 

period of 9 months. 



43 
  

 
Figure 3.11: Mont Login Distribution 

This chart reveals a clear situation, namely that about 38% (443,074) of 

subscribers logged in at least once each month. This percentage 

represents the potential core customer base (those who show the greatest 

loyalty). We can observe a uniform distribution for the other months 

around 8%. We notice a peak of customers, amounting to 16% of the total, 

who logged in only 1 month. Users who logged in fewer months (1-2 

months) might be at risk of churn and, therefore, are the ones to whom 

retention strategies should be applied. 

In Figure 3.9, we can see the distribution of different modes of accessing 

the OTT services. It is the analysis of the following variables: 

sum_login_dev_2ndSCREEN, sum_login_dev_CTV, sum_login_dev_STB, 

sum_login_dev_WEB. The acronyms related to the types of login devices 

represent the following categories: 2ndSCREEN for secondary devices 

such as tablets or smartphones used in combination with another primary 

device; CTV (Connected TV) for Internet-connected televisions that can 

access online content; STB (Set-Top Box) for devices connected to a 

television to receive and decode digital television signals; and WEB for 

access through a web browser. 

 



44 
  

 
Figure 3.12:  Device Used Distribution 

It is evident from the histogram that users accessing the OTT service via 

STB are the majority. STB users are likely stable and loyal users, as these 

devices are generally associated with long-term contracts with the 

operator. The use of secondary devices is less frequent compared to other 

devices. Users who primarily access the service through 2ndSCREEN may 

be more mobile and less inclined to prolonged viewing sessions. Users 

using connected TVs represent a significant, but not dominant, part of the 

user base. This group may include families or users who prefer viewing on 

larger screens. Finally, users accessing via the web may be younger and 

more tech-savvy, preferring the flexibility of browser access. Therefore, 

STB users are the least likely to be at risk of churn, whereas there is a higher 

risk for users of other devices. 

From the figure below, by analysing the variables related to the content 

consumed by customers, it is possible to better understand their viewing 

preferences. To improve the visualization and make the representation 

more uniform, a logarithmic scale was used to compress the differences 

between the column lengths. 

 



45 
  

 
Figure 3.13:  Content Costumer Distribution 

The chart provides an overview of customer preferences for different 

content categories, offering useful insights into behaviours that could 

influence service abandonment. The "Other" category shows a 

significantly higher number of views compared to the others, suggesting 

that a large number of customers may primarily use the service for content 

that is not easily categorized or is niche. The Series and Junior categories 

exhibit high activity, indicating more engaged customers who are less likely 

to churn and could benefit from targeted retention strategies. In contrast, 

the TV Shows and Music categories show fewer views, which may indicate 

a higher churn risk among these users, highlighting the need to expand the 

content offering. 

The last interesting distribution to watch is the different number of app 

launch. 



46 
  

 
Figure 3.14:  App Login Distribution 

As seen in Figure 3.12, the two main services used are Netflix and DAZN. 

This high engagement is a positive sign for retention, translating to a lower 

risk of churn. The OTT Games app shows minimal engagement. This 

indicates a high risk of churn for this application, as the low engagement 

may reflect limited interest. 



47 
  

 

 

 

Chapter 4 

Preprocessing and Model Overview  

 

Summary 

Choosing the right machine learning algorithms is essential for developing 

accurate predictive models. In this chapter, different commonly used 

algorithms are evaluated for their effectiveness in forecasting customer 

churn.  

In the following paragraphs, before analysing each model used, a summary 

will be provided on how the training data was conceived.  

Finally, all the algorithms used will be described in detail, and the results 

of each algorithm will be presented to determine which one performs best. 

Four models will be described in order: Two-Class Logistic Regression, 

Two-Class Neural Network, Two-Class Decision Forest, and Two-Class 

Boosted Decision Tree. 

 

4.1 Data Processing Steps for Churn Analysis 

As mentioned in the previous chapter, the data preparation for training the 

model follows this procedure:  



48 
  

• Temporal Section: User data from the last 9 months prior to the 

analysis date (April 2023 – December 2023) is selected. 

• Churner Definition:  

1. Users who have terminated their OTT subscription at any point 

during the observation period are considered churners. 

2. Users who have shown no activity during the last 3 months of the 9-

month observation period are also considered churners. 

The machine learning models are trained to detect two main indicators of 

user behaviour: 

• Subscription Cancellation: Identifies users who cancelled their 

subscription during the observation period by learning the behavioural 

patterns leading up to this event. 

• Inactivity: Recognizes users who have shown no activity for a 

significant period at the end of the observation period, interpreting this 

as a potential implicit abandonment of the service. 

This process allows the model to adapt and predict two types of churn 

behaviour: Long-term users who may cancel their subscription after an 

extended period; and more recent users who subscribe and cancel within 

a short time frame. The goal is to create a flexible, business-oriented model 

capable of predicting churn behaviour with sufficient advance notice. This 

long-term approach ensures that the client company has enough time to 

develop effective and targeted campaigns aimed at retaining customers 

 

4.2 Data Preprocessing: Correlation Matrix 

Considerations 

As mentioned in section 3.5.1, after calculating the Correlation Matrix 

(visible in Figure 4.3), the presence of several highly correlated variables 

was observed. This observation leads us to consider the issue of 

multicollinearity, a statistical concept that occurs when two or more 

independent variables in a regression model are strongly correlated with 



49 
  

each other. This can cause various problems for the model, making it 

difficult to determine the individual effect of each independent variable on 

the target variable. High multicollinearity can lead to unstable regression 

coefficients, wide confidence intervals, and can reduce the precision of 

the estimates [27]. 

Variable names have not been entered for privacy reasons. 

 
Figure 4.1: Correlation Matrix 

Several techniques were tried to address the high correlation between 

some variables in the CAR. The first approach taken was PCA (Principal 

Component Analysis). 

PCA is a mathematical method that converts a set of potentially correlated 

variables into a smaller set of uncorrelated variables, known as principal 

components. The first principal component captures the maximum 

possible variance in the data, while each subsequent component captures 

the maximum variance remaining [28]. 

The general idea was to apply PCA (Principal Component Analysis) to only 

two algorithms (Logistic Regression and Neural Network) and to keep the 

original variables for the other two (Decision Forest and Boosted Decision 

Tree). This approach was designed to leverage the specific strengths of 

each model. 



50 
  

As stated in [29], in the case of Logistic Regression and Neural Networks, 

PCA is useful because it reduces the dimensionality of the dataset, 

eliminating multicollinearity, which can negatively affect linear models like 

logistic regression. Moreover, in neural networks, dimensionality reduction 

can decrease the number of parameters to optimize, reducing training time 

and mitigating the risk of overfitting, especially in smaller networks or with 

limited datasets. 

On the other hand, nonlinear models such as Decision Forest and Boosted 

Decision Tree are designed to handle correlated variables without 

necessarily requiring dimensionality reduction. These algorithms can 

leverage the full range of available features, including correlated ones, to 

enhance the robustness and stability of the model. Additionally, PCA might 

remove useful information that these models could exploit due to their 

ability to capture nonlinear interactions between variables [30]. 

On Azure, after creating a subset containing only the independent 

variables, the PCA (Principal Component Analysis) block was applied, 

setting the “Number of dimensions to reduce to” parameter initially to 10. 

This parameter specifies the number of principal components you want to 

retain after applying PCA. As a result, the PCA transforms the original 

dataset into a new set composed of ten variables, called principal 

components. 

The next step was to check the variance explained by the 10 principal 

components using the following filter: 

 

 
Figure 4.2:  Code to calculate PCA variance 

 

To calculate the variance explained by each principal component, I 

conducted an analysis using a local development environment, as Azure 



51 
  

does not offer the capability to perform this specific analysis. The results 

of this analysis indicated that the first principal component captures most 

of the information contained in the original data, while the last few 

components explain little variance. 

So, I tried increasing the number of principal components first to 15 and 

then to 30 to test if any changes occurred with the increase in variables. 

The result was consistent with the initial attempts, with the total variance 

being explained almost exclusively by the first principal component, PC1. 

Specifically, PC1 explained 98.51% of the total variance, while the 

remaining components contributed only marginally, cumulatively 

explaining less than 1.5%. This result suggests that nearly all the 

information in the original dataset is captured by a single direction of 

variation, making PCA ineffective for distributing information across 

multiple principal components. Consequently, I decided to abandon the 

PCA approach, as dimensionality reduction to multiple components could 

overly simplify the model, potentially compromising its ability to capture 

meaningful relationships present in the original data. Instead, I opted for a 

feature selection approach, which allows retaining only the most relevant 

variables for the predictive model. This method not only preserves crucial 

information but also enhances model interpretability, as the selected 

features can be analysed individually to understand their contribution to 

the decision-making process. Feature selection proved to be a more 

suitable strategy for improving model effectiveness, reducing noise, and 

focusing on variables that provide real predictive value. 

 



52 
  

4.2.1 Data Preprocessing: Filter-Based Feature 

Selection Module Settings  

Before to apply the Feature Selection in this paragraph will be analyse the 

correlation between the dependent variable ‘TARGET_BINARY’ and the 

other 57 variables that make up the CAR. The goal is to identify the 

variables most correlated with the dependent variable and thus the most 

significant for our prediction. As shown in Figure 4.1, this operation is 

performed in the Azure environment using a specific filter 

 
Figure 4.3:  Filter Based Feature Selection 

 

The "Filter Based Feature Selection" is a pre-model technique that is 

applied before model training. It uses statistical criteria to independently 

evaluate the importance of each variable, without considering the model 

construction process. This technique employs methods like mutual 

information, Chi-square, correlation, and others to assess the relevance of 

features concerning the target variable. Importantly, it does not depend on 

the type of model that will be trained later, as it is solely based on statistical 

relationships between the features and the target variable. Because of its 

independence from the model, it is generally faster and less 

computationally intensive compared to methods that require model 

training. 



53 
  

Azure Machine Learning Studio provides the ability to set different 

parameters for the configuration of the "Filter Based Feature Selection" 

module. Here there are the details of the configured parameters: 

• Feature scoring method: This parameter specifies the method used to 

evaluate the importance of each feature concerning the target variable. 

The parameter is set to Mutual Information. Mutual information is a 

statistical measure that quantifies the amount of information a feature 

provides about the target variable. In other words, it measures the 

dependency between a feature and the target variable. Features with 

higher mutual information scores are considered more relevant for the 

model. 

• Target column: Specifies the column in the dataset that represents the 

target variable, the one you want to predict. The target column used to 

calculate mutual information is TARGET_BINARY. This is the dependent 

variable or the variable you want to predict in the model. Feature 

selection will thus be based on how well the features explain or 

correlate with this target variable. 

• Number of desired features:  This parameter allows you to specify the 

number of features to select based on their scores.  By setting this 

value, you can limit the number of features retained for the model. For 

example, if you set this parameter to 5, the module will select the top 5 

most relevant features. This is useful for reducing the dataset's 

dimensionality and simplifying the model. This parameter is set to 1, 

meaning the module will select only the most relevant feature (the one 

with the highest mutual information score). This can be useful if you 

want a very simple model or are conducting a preliminary analysis.  

So, this configuration allows you to identify the single most informative 

feature concerning the target variable. 

In Figure 4.2, you can see the 15 most significant variables in terms of 

correlation with the target variable. The following figure is a spider chart 

that visualizes the correlations of all variables around a common centre. 



54 
  

Each axis represents a variable, and the distance from the centre 

represents the correlation value. 

 

 
Figure 4.4: 15 Most Correlated Variables with Target Variable 

 

As we can see from the chart the most significant variable, based on the 

correlation with the target variable, is "count_months_login" with a 

correlation index of 0.1214. However, it's important to note that the 

significance of a variable depends on the context and the type of model 

you're using. Even though this variable has the highest correlation, it might 

not be the most influential in a complex predictive model, where other 

variables or interactions between variables could play a crucial role.  

The average correlation of the 15 variables most correlated with the target 

variable is approximately 0.0449. This value represents a rather low 



55 
  

correlation, suggesting that, on average, the variables have a moderate 

influence on the target variable. However, as mentioned earlier, there are 

some important considerations to keep in mind: Even if the individual 

correlations are low, this does not necessarily mean that the variables are 

irrelevant to the model. They could contribute significantly when combined 

in a complex model like logistic regression, decision trees, or neural 

networks. If non-linear models (such as Decision Forest, Gradient 

Boosting, etc.) are used, the relationships between the variables and the 

target may not be well represented by simple linear correlation. In these 

cases, even variables with low correlation can prove to be very important. 

Moreover, the success of the churn prediction model does not depend 

solely on correlations but on how the model performs on evaluation 

metrics such as ROC-AUC, Accuracy, Recall, Precision, and F1 score. 

 

4.2.2 Data Preprocessing: Feature Selection 

In this paragraph, the operations performed to remove certain variables to 

prepare the final dataset for use in algorithms will be discussed. 

It was decided to analyse and process only the variables with a high 

correlation above 0.9, as the aim was to avoid losing too much information. 

Therefore, a filter was applied that considered only a correlation threshold 

of 0.9. 

 

 
Figure 4.5: Filter Code High Correlation Variables  

 



56 
  

In the Network graph below, it is possible to see the most relevant 

correlation: 

 

Figure 4.6: Variables Correlation above 0.9 

 

The chart shows all the high correlations, both positive and negative. 

Tangled nodes can be observed. This is due to the presence of some 

variables that are correlated multiple times: sum_num_login, 

avg_num_login, sum_login_no_Weekend, sum_login_Weekend, 

avg_login_no_Weekend, avg_login_Weekend. The methodology for 

applying Feature Selection was based on combining the removal of highly 

correlated variables with the Filter-Based Feature Selection explained in 

the previous paragraph. Using this filter, based on the influence that the 

variables have on the dependent variable (TARGET_BINARY), allows you to 

retain only the features that have a significant impact on the prediction. 



57 
  

This is particularly useful for improving model performance and reducing 

the risk of overfitting. By retaining only the most influential variables, the 

resulting model will be easier to interpret, which can be especially 

important if you need to justify the model's decisions in a business context. 

Therefore, for pairs of highly correlated variables, the general approach will 

be to keep only the variable with greater importance relative to the target. 

Additionally, if a variable has very low importance, it will be analysed and 

considered for removal, even if it is not correlated with other variables. 

It is important to specify, however, that it was decided not to remove the 

15 most important variables in predicting the target variable (as shown in 

Figure 4.4), regardless of whether they exhibited high correlations, 

because they have a significant influence and should be retained in the 

model.  

After reviewing the combination of the two metrics described earlier, ten 

variables were removed, either because they were highly correlated, less 

influential with respect to the target variable, or for both reasons. Table 4.1 

shows which variables were removed and the reason for their removal. 

VARIABLE NAME REASON FOR REMOVAL 

avg_rapporto_fruition_login High correlation 

avf_flag_fruition Little influence 

avg_login_Weekend High correlation/ Little influence 

avg_login_no_Weekend High correlation/ Little influence 

avg_NUM_APP_EXECUTIONS High correlation 

avg_app_Disney Little influence 

avg_app_Dazn Little influence 

avg_app_Netflix Little influence 

avg_app_Other_Partner Little influence 

flag_offer_type_olo High correlation 

Table 4.1:  Variables Name Dropped and Reason 



58 
  

 4.2.3 Final CAR Dataset 

In the previous paragraphs, all the preprocessing techniques applied to the 

original dataset have been discussed. 

The original CAR contained 63 features. After analysing and cleaning the 

dataset of any duplicates, missing values, and other values that would 

have hindered proper analysis, and after creating a new target variable, the 

final CAR that will be used to train the four models for our churn prediction 

consists of 48 variables. 

Thus, 16 variables were removed, namely: 

 

VARIABLE NAME 

‘ID_USER’ 

‘min_year_month’ 

‘max_year_month’ 

‘sum_sum_purchase_price’ 

‘sum_login_dev_OTHER’ 

‘Target’ 

‘avg_ratio_fruition _login’ 

‘avf_flag_fruition’ 

‘avg_login_Weekend’ 

‘avg_login_no_Weekend’ 

‘avg_NUM_APP_EXECUTIONS’ 

‘avg_app_Disney’ 

‘avg_app_Dazn’ 

‘avg_app_Netflix’ 

‘avg_app_Other_Partner’ 

‘flag_offer_type_olo’ 

Table 4.2:  Variables Name Dropped from Original Dataset  

In Figure 4.7, all the variables are shown in relation to their impact on 

predicting the dependent variable "TARGET_BINARY." Naturally, the 

dependent variable will have a maximum value in the chart. 



59 
  

 
Figure 4.7: Final CAR Dataset 

flag_Other_type_Residential 

sum_Series 

sum_TV_Programmes 

sum_Music 

sum_Documentaries 

flag_Partnership_Other_Partner  

sum_app_Other_Partner  



60 
  

4.3 Split and SMOTE Operations 

Once the final CAR is obtained, the Split Data function in Azure is applied 

to divide the dataset into Training Data and Test Data. The parameters set 

for splitting the data are as follows: 

• Splitting mode: Set to "Split Rows". It means that the division is done 

at the row level. This is the most common approach, where a certain 

number of rows are separated to create two distinct data sets. 

• Fraction of rows in the first output dataset: Assigned the value 0.7. 

This indicates that 70% of the rows from the original dataset will be 

included in the first output (which corresponds to the training set). The 

remaining 30% will be allocated to the second output (test set). 

• Stratified split: It is a parameter that, when set, ensures that the split 

will maintain the same proportion of the target variable in both the 

training set and the test set. This is particularly important in 

classification problems with imbalanced classes. This parameter is set 

to True. When the stratified split is enabled, a column must be selected 

for stratification. This column should be the target variable 

(TARGET_BINARY) to ensure that the proportion of classes remains 

consistent between the training and test sets. Thus, with this 

parameter, both sets (training and test) will maintain an accurate 

representation of the original class distribution.  

This parameter is important because the SMOTE technique will now be 

applied, and the stratified split ensures that the test set retains the original 

class distribution, providing a fair comparison between the model trained 

on balanced data and a test set that represents reality. SMOTE is applied 

after the dataset has been split using Split Data. The training set (which 

contains 70% of the data) is passed to SMOTE to generate synthetic 

examples of the minority class. The stratification in the Split Data module 

ensures that the training set is also representative of the class distribution, 

and SMOTE operates on this set to further balance the classes. It is 

important to apply SMOTE only to the training set. This is because the 



61 
  

purpose of SMOTE is to improve the model's training on balanced data, not 

to alter the final evaluation of the model. Here are the parameters of the 

SMOTE operation: 

• Label column: Selected on the target column TARGET_BINARY, which 

contains the classes the model is trying to predict. SMOTE will generate 

new synthetic examples for the minority class based on this column. 

• SMOTE percentage: Set to 100. This value indicates the percentage of 

oversampling for the minority class. A value of 100% means that 

SMOTE will add as many synthetic examples as there are existing ones 

in the minority class, effectively doubling the number of examples for 

that class. 

• Number of nearest neighbours: Set to 1. This parameter indicates 

how many nearest neighbours are considered when creating new 

synthetic examples. A value of 1 means that each new synthetic 

example will be created by referencing only one nearest neighbour, 

resulting in new points that are very similar to the existing samples. 

Below, you can see the operations performed in the Azure environment.  

 
Figure 4.8: Split and SMOTE Operation in Azure 

 



62 
  

4.4 Algorithms Explanation  

In the following paragraphs, the four algorithms used will be analysed. 

After trying different algorithms and different parameter configurations for 

each model, only the four best performing algorithms will be presented. 

First the parameters used for each algorithm will be described, then the 

results of the pre-tuning models will be shown, and finally after tuning.  

All the models have been tested on Azure environment. On Azure, all the 

blocks related to the model were connected to the SMOTE block. 

 

4.4.1 Two-Class Logistic Regression 

The first machine learning algorithm is the Two-Class Logistic Regression. 

The algorithm has several parameters: 

• Create trainer mode: it is set to Single Parameter. This setting means 

that the algorithm will be trained with a single set of parameters.  

• Optimization tolerance: this parameter is set to 1E-07: This is the 

tolerance level for the optimization process. It indicates the precision 

required for the algorithm to consider the optimization complete. A 

lower value (like 1E-07) means higher precision but may require more 

computational time. 

• L1 regularization weight: it is set to 0.01. L1 regularization adds a 

penalty equal to the absolute value of the magnitude of coefficients. 

This parameter helps in feature selection by forcing some of the 

coefficient values to be exactly zero. The value 0.01 indicates the 

weight of this regularization. 

• L2 regularization weight: it is set to 0.01.  L2 regularization adds a 

penalty equal to the square of the magnitude of coefficients. This helps 

in reducing the model complexity and preventing overfitting. A weight 

of 0.01 is being applied to the L2 regularization in this case.  



63 
  

• Memory size for L-BFGS: the parameter is set to 50. L-BFGS is a 

limited-memory version of the Broyden–Fletcher–Goldfarb–Shanno 

(BFGS) algorithm, which is used for solving optimization problems. The 

memory size here refers to the number of past updates that the 

algorithm will store to approximate the Hessian matrix. A size of 50 is a 

common choice. 

• Random number seed: it is set to 1234. This seed value is used to 

ensure the reproducibility of results. By setting a specific seed, you 

ensure that the random processes within the algorithm (like 

initialization of weights) are consistent across different runs. 

 

4.4.2 Two-Class Neural Network 

The second algorithm is the Two-Class Neural Network. The algorithm has 

several parameters: 

• Create trainer mode: it is set to Single Parameter. This setting means 

that the algorithm will be trained with a single predefined set of 

parameters.  

• Hidden layer specification: set to fully connected case. This 

parameter indicates that all nodes in the hidden layer are fully 

connected to the nodes in the next layer, which is typical for traditional 

neural networks. 

• Number of hidden nodes: parameter set to 100. This is the number of 

neurons in the hidden layer of the neural network. A higher number can 

capture more complexity in the data, but it can also increase the risk of 

overfitting and computational requirements. 

• Learning rate: it is set to 0.1. The learning rate controls how quickly the 

algorithm updates the weights in response to the error it makes on a 

given batch. A value of 0.1 is relatively high, which can lead to faster 

convergence but with the risk to skipping over local minima in the cost 

function. 



64 
  

• Number of learning iterations: parameter set to 100. This parameter 

indicates how many times the algorithm will pass over the entire 

dataset during training. A higher number can improve learning. 

• The initial learning weight: it is set to 0.1. This is the initial value 

assigned to the weights of the neural network before training begins. 

This parameter can affect the speed and success of the model’s 

convergence. 

• The type of normalizer: it is set to Min-Max normalizer. This type of 

normalization scales the data so that the values are within a specified 

minimum and maximum range, typically between 0 and 1. It is useful 

for ensuring that all features carry the same weight during training. 

• Shuffle examples: set on, meaning that the training examples will be 

shuffled at each iteration to prevent learning a specific order, which can 

improve the model’s generalization. 

 

4.4.3 Two-Class Decision Forest 

Then the next algorithm is the Two-Class Decision Forest. The parameters 

of the algorithm will be explained here: 

• Resampling method: set to Bagging. Bagging is a resampling method 

that creates different subsets of the original dataset by sampling with 

replacement. Each tree in the forest is trained on one of these subsets. 

This approach reduces the variance of the model and improves its 

generalization ability. 

• Create trainer mode: Single Parameter: This setting indicates that the 

algorithm will be trained with a single set of parameters. 

• Number of decision trees: set to 8. This parameter indicates the 

number of decision trees included in the forest. A higher number of 

trees can improve the model's accuracy but also increases 

computational cost. In this case, 8 trees are used. 



65 
  

• Maximum depth of the trees: set to 32. This parameter limits the 

maximum depth that each decision tree can reach. Greater depth 

allows the tree to capture more details in the dataset, but it also 

increases the risk of overfitting.  

• Number of random splits per node: set to128. When constructing a 

decision tree, for each node, the algorithm considers a certain number 

of random splits of the data to determine the best split. This parameter, 

set to 128, indicates that 128 possible splits are considered for each 

node. 

• Minimum number of samples per leaf node: set to 1. This parameter 

defines the minimum number of samples that must be present in a leaf 

node (a terminal node of the tree). A value of 1 means that a leaf node 

can contain even a single sample, which can lead to greater granularity 

in the results. 

 

4.4.4 Two-Class Boosted Decision Tree 

Then the last algorithm is the Two-Class Boosted Decision Tree. The 

parameters of the algorithm will be explained here: 

• Create trainer mode: set to Parameter Range. This setting indicates 

that the algorithm will be trained across a range of parameter values, 

allowing for hyperparameter tuning. The best-performing model is 

selected based on this range. 

• Maximum number of leaves per tree: set to 2, 8, 32, 128: This 

parameter specifies the maximum number of leaves (terminal nodes) a 

tree can have. Multiple values are provided, meaning the algorithm will 

explore different tree complexities during training. More leaves can 

capture more detail but can also lead to overfitting. 

• Minimum number of samples per leaf node: set to 1, 10, 50: This 

defines the minimum number of samples that must be present in a leaf 



66 
  

node. Lower values allow more granular decisions, while higher values 

prevent overfitting by requiring more data in each terminal node. 

• Learning rate: set to 0.025, 0.05, 0.1, 0.2, 0.4: The learning rate 

controls how much the model adjusts in response to each error it finds. 

Lower values make smaller adjustments, which can lead to more 

stable training but may require more iterations. The algorithm will test 

several different learning rates. 

• Number of trees constructed: set to 20, 100, 500: This parameter 

specifies how many trees the boosting algorithm will create. More trees 

can improve accuracy but also increase training time. The algorithm 

will evaluate the impact of using different numbers of trees. 

• Random number seed: set to 1234: This value is used to ensure the 

reproducibility of results by controlling the random processes within 

the algorithm, such as sampling and initialization. 

• Allow unknown categories: This option is checked, meaning the 

algorithm will handle unknown categories in categorical features 

instead of failing or ignoring them. It increases the model's robustness 

when encountering unseen categories in new data.  

 

4.5 Result 

In this section, the results of the models explained in the previous 

paragraphs will be analysed. The table 4.3 shows the performance of all 

four models in terms of Accuracy, Precision, Recall, F1-Score, and AUC. 

Before to show the result a brief explanation of these performance 

measures: 

• Accuracy: The proportion of correctly predicted instances (both true 

positives and true negatives) out of the total number of instances. It 

measures overall correctness: 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 



67 
  

 

• Precision: The proportion of true positive predictions out of all positive 

predictions. It indicates how many of the predicted positives are 

actually correct: 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

• Recall: The proportion of true positives out of all actual positives. It 

measures the model’s ability to find all relevant instances. 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

• F1-Score: The harmonic mean of precision and recall, balancing both 

metrics. It’s useful when there’s an uneven class distribution. 

2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
 

• AUC (Area Under the ROC Curve): Measures the model’s ability to 

distinguish between classes. A higher AUC indicates a better model. It 

represents the probability that the model ranks a random positive 

instance higher than a random negative one. It has a range from 0 to 1, 

where 1 is ideal. 

 

Here the result of the models: 

 

 

Table 4.3: Models Performance 

 



68 
  

In Figure 4.9, you can better observe the metrics to make a comparison and 

determine which model is the most performant. 

 
Figure 4.9: Models Performance Comparison 

 

Before commenting on the model results, it is important to note that 

initially, the models were tested on the original unbalanced version of the 

dataset, but the results were inferior to those obtained later with the 

application of SMOTE. Machine learning models, when trained on 

unbalanced datasets, tend to favour the majority class at the expense of 

the minority class. This often leads to seemingly good metrics (such as 

accuracy) but hides the real issue: a poor ability to correctly predict the 

minority class, as evidenced by low recall or F1-score values for the 

minority class. In the case of my model, it was expected that the 

unbalanced dataset would lead to unsatisfactory results, as the model 

would not be able to effectively learn the patterns of the minority class. This 

behaviour is consistent with the literature on the subject, which 

emphasizes the importance of balancing the dataset. It is not possible to 

show the results as in Table 4.3 due to technical limitations related to the 

Azure platform, but the results followed the trend described above. 



69 
  

Analysing the results of the pre-tuning models, we can observe different 

performances depending on the metrics considered. Before tuning, the 

Decision Forest seems to be the most balanced and reliable model. 

It stands out as the model with the best overall performance, with high 

accuracy (0.84) and the best AUC (0.868), indicating a strong ability to 

distinguish between classes. Its F1 score (0.595) is also the highest among 

the models, suggesting a good balance between precision and recall. This 

model seems to be robust even before any tuning, likely due to its ability to 

combine many decision trees and mitigate the risks of overfitting. 

Logistic Regression offers solid overall performance, with an accuracy of 

0.813 and an AUC of 0.851. However, its F1 score of 0.555 indicates that 

while it has decent precision, it may not capture all positives as effectively 

as the Decision Forest.  

Boosted Decision Tree shows an interesting performance with very high 

recall (0.835) but rather low precision (0.387), indicating that while it is 

good at identifying positive cases, it also makes many false positives. This 

leads to a relatively low F1 score (0.529). However, its accuracy (0.728) and 

AUC (0.814) suggest that the model has good potential, which could be 

realized through careful tuning. 

Finally, Neural Network is the outlier among the pre-tuning models. While 

it has perfect recall (1.0), its precision (0.183) and accuracy (0.183) are 

extremely low, implying that the model predicts almost everything as 

positive, leading to unsatisfactory performance across most metrics. This 

is common in neural network models when they are not adequately 

optimized. 

 

4.6 Tuning 

Tuning in machine learning refers to the process of optimizing a model's 

parameters to improve its performance.  

According to [31] there are two main types of parameters in tuning: 



70 
  

• Model parameters: These are the internal parameters of the model 

that are learned from the data during the training process. 

• Hyperparameters: These are external parameters that are not learned 

from the data but need to be set before the model is trained. Examples 

of hyperparameters include the learning rate in a neural network model 

or the number of trees in a random forest. 

Tuning primarily focuses on optimizing hyperparameters, and there are 

several techniques to do this: 

• Grid Search: A brute-force method where a grid of possible values is 

defined for each hyperparameter, and the model is trained on every 

possible combination. This method is exhaustive but can be 

computationally expensive. 

• Random Search: Instead of trying all possible combinations, random 

combinations are selected for testing. This method is less 

computationally expensive than grid search and can be effective in 

finding good hyperparameters. 

• Bayesian Optimization: A more sophisticated approach that builds a 

probabilistic model of the model's performance as a function of the 

hyperparameters and uses this model to choose which 

hyperparameter values to test. 

The goal of tuning is to find the combination of hyperparameters that 

optimizes a performance metric, such as accuracy, precision, recall, or 

another measure relevant to the specific problem being solved. In this 

thesis, it was decided to optimize based on the AUC.  This choice is guided 

by the fact that the application of SMOTE generally tends to improve the 

AUC since by balancing the classes, the model has more information to 

distinguish between positives and negatives. Although SMOTE might lower 

Precision due to an increase in false positives, the AUC often remains high 

or improves because it considers the model's performance across all 

possible classification thresholds, not just a fixed threshold. A good AUC 

indicates that the model, even after the application of SMOTE, is still 



71 
  

effective in discriminating between classes despite potential issues with 

Precision. The AUC is a metric that measures a model's ability to 

distinguish between positive and negative classes, regardless of the 

chosen threshold. In a churn prediction model, a high AUC is particularly 

useful because it indicates that the model effectively differentiates 

between customers at risk of churn and those who are likely to remain 

loyal. Since the AUC is independent of the decision threshold, it allows for 

greater flexibility in business strategy without compromising the model's 

performance. In summary, a high AUC makes the model robust and 

adaptable, ensuring accurate identification of churners and effectively 

supporting the company's retention efforts. Two techniques available on 

Azure ML were performed: 

• Random sweep: the chosen tuning method is Random Search. 

• Random Grid: a combination of Grid Search and Random Search. With 

Random Grid, a random selection of hyperparameter combinations is 

chosen from a predefined grid of values, instead of systematically 

exploring all combinations. 

 

4.7 Tuning Result 

It is important to highlight before showing the tuning results that cross-

validation was performed for all models both before and after tuning. 

Cross-validation is a widely used statistical technique in machine learning 

to assess a model's ability to generalize to independent data beyond the 

training set.  This process provides an average estimate of the model's 

performance. Cross-validation minimizes the risk of overfitting, ensuring 

the model is not overly optimized for a single dataset, and efficiently 

utilizes the entire dataset since each data point is used for both training 

and testing [32]. The table below shows the results of the models after 

tuning.  

 



72 
  

 
Table 4.4: Models Performance After Tuning 

 

In Figure 4.10, you can better observe the metrics to make a comparison 

and determine which model is the most performant. 

 

 

Figure 4.10: Models Performance Comparison After Tuning 

First, it is evident that both in the pre-tuning and post-tuning models, the 

Precision of all models is relatively low. The use of SMOTE can significantly 

influence a model's Precision. SMOTE generates new synthetic instances 

for the minority class, thereby increasing the number of positive examples 

in the dataset. This improves the model's ability to correctly recognize 

positives, leading to an increase in Recall. However, it can also result in a 

higher number of false positives, particularly if the model struggles to 

distinguish between the synthetic instances and those that belong to the 



73 
  

majority class. For this reason, as explained in the previous paragraph, it 

was decided to consider AUC as the reference metric. 

After tuning, we can see that the performance of the models has changed, 

the Neural Network saw the most significant improvements after tuning. 

Its accuracy, precision, and F1 Score all improved considerably, and the 

AUC showed a massive increase, indicating a much better balance 

between the true positive and false positive rates. However, the recall 

stayed at 1.0, indicating the model is still biased toward positive 

predictions, which might explain why precision remains relatively low 

compared to other models. For Logistic Regression the tuning has led to 

small but positive improvements in most metrics, with a slight gain in 

accuracy, recall, F1 Score, and AUC. Precision saw a very small decrease, 

but it is negligible. These small changes indicate that the model has 

become marginally more effective after tuning, but the improvements are 

subtle and may not be significant enough for practical changes in 

performance. The Decision Forest saw minor improvements across all 

metrics after tuning. Precision, recall, F1 Score, and AUC all increased 

slightly, making it a more balanced model overall. While the improvements 

are not dramatic, they suggest that the tuning process helped the model 

achieve a slightly better performance. Finally, The Boosted Decision Tree 

saw significant improvements in accuracy, precision, F1 score, and AUC. 

However, its recall dropped quite a bit (−0.153), suggesting the model may 

have become more conservative in predicting positive cases, improving 

precision at the expense of recall. Overall, this trade-off seems to have 

paid off, as the F1 Score and AUC both improved, and it now stands as the 

best model overall. 

The Boosted Decision Tree benefited from tuning due to its iterative nature 

and its ability to better optimize hyperparameters to correct errors, 

resulting in a more robust and high-performing model compared to the 

other models post-tuning. This explains why it became the best model after 

tuning, surpassing even the Decision Forest, which was initially the top 

performer before tuning. 



74 
  

After identifying the Boosted Decision Tree as the model with the best 

overall performance, it is useful to further explore the behaviour of each 

model through two fundamental tools: ROC Curves and Confusion 

Matrices. The ROC Curves provide an overview of the models' 

performance, highlighting their ability to balance true positive and false 

positive rates. 

 

Figure 4.11: Roc Curves Comparison 

 

As we can see from 4.11 the Boosted Decision Tree has the best overall 

performance, followed closely by the Decision Forest. Logistic Regression 

and Neural Network models show relatively weaker performance. When 

selecting a model based on its ability to balance the true positive rate 

against the false positive rate (discriminating between classes), the 

Boosted Decision Tree is the top choice, with a very high AUC. 

Instead, the Confusion Matrices allow us to examine the balance between 

correct and incorrect predictions, giving us a clear view of false positives 

and false negatives. 



75 
  

 
Figure 4.12: Confusion Matrix Comparison 

As seen from the confusion matrices above, the Boosted Decision Tree has 

a good balance between true positives and true negatives. The number of 

false positives and false negatives is relatively low, which contributes to its 

high AUC and F1 score. The Decision Forest has slightly more false 

negatives and fewer true positives compared to the Boosted Decision Tree, 

but overall, its performance is very similar. It also has slightly fewer false 

positives. The Neural Network has an extremely high recall, meaning it 

captures almost all the true positives (only four false negatives). However, 

it struggles with precision due to an extremely high rate of false positives. 

This is reflected in its low precision and overall AUC, as it is heavily biased 

toward predicting positives. Logistic Regression has a higher number of 

false positives and false negatives compared to the tree-based models, 

which leads to its lower AUC and overall weaker performance. It captures 

fewer true positives and has more false positives compared to the better-

performing models. 



76 
  

 

 

 

Chapter 5 

Model Implementation 

Summary 

In the previous chapter, the models used, and their respective results were 

described. Throughout this thesis, almost all the steps outlined in figure 

3.1 have been covered. In this final chapter, the last missing step, Target 

Identification for Campaigns, will be discussed. In this step, the "best 

performing" model is applied to customers with unknown behaviour, 

generating a score (churn/loyalty probability) for everyone. Customers at 

high risk of churn are identified and can be targeted with specific 

campaigns or other personalized actions. 

 

5.1 Model Inference: Application for 

Predictions on New Data 

As highlighted in Chapter 4, the "best performer" model is the Two-Class 

Boosted Decision Tree. Therefore, this is the model to be deployed into 

production, meaning that the algorithm will be transferred from Azure ML 

to a new environment agreed upon with the client. In this environment, 

whenever new data is received, the model is retrained and used to make 

inferences. 



77 
  

Inference is the process through which a trained model is applied to make 

predictions or estimates on new data. In other words, once the model has 

been trained, it is used to predict or estimate outcomes on data it hasn't 

seen during training. For example, in the case of a churn classification 

model, after being trained on a historical dataset, the model is used to 

make inferences on new customers. It takes the features of a new 

customer as input and estimates the probability that this customer will 

churn. Inference thus allows the model to be applied beyond the training 

context, providing useful predictions for future decision-making. 

 

5.2 Churn Probability and Targeted Retention 

Strategies Based on Risk Levels 

The machine learning model created returns a numerical value between 0 

and 1. This number represents the probability that a customer will churn. 

Essentially, a value close to 0 indicates a low likelihood of churn, while a 

value close to 1 suggests a high probability that the customer will leave the 

service. The threshold used to decide whether to classify a customer as 

being at risk of churn is set at 0.5. If the probability returned by the model 

exceeds this threshold, the customer is classified as a potential churner. 

This approach allows for more targeted decision-making, such as adopting 

marketing or retention strategies for customers with a high probability of 

churn. However, it is important to adopt different strategies based on the 

levels of churn risk. Not all at-risk customers have the same value, so a 

good strategy should also consider Customer Lifetime Value (CLV). 

For example, for customers with a low probability of churn, below 30%, 

there is no need to adopt intensive measures; instead, it is better to focus 

on loyalty campaigns, such as reward programs or promotions for 

complementary products, to strengthen the relationship. For customers 

with a churn probability between 30% and 60%, proactive engagement 

strategies are advisable, such as moderate discounts or personalized 



78 
  

offers, to maintain attention and prevent churn. When the churn 

probability exceeds 60%, customers are at risk and require more 

aggressive actions, such as significant discounts or personalized plans, to 

retain them. For customers with a churn probability above 80%, a more 

aggressive retention strategy may be useful, but only for high-value 

customers; for others, it may be better not to intervene to save resources. 

The ideal approach involves segmenting customers based on their risk 

level and tailoring marketing actions, accordingly, focusing efforts on the 

most at-risk and high-value customers while avoiding overburdening those 

with a low probability of churn. 

To further illustrate how churn probability influences retention strategies, 

the following chart provides a breakdown of the different risk levels, and 

the corresponding actions recommended for each customer segment. 

The orange line represents the churn probability predicted by the model, 

ranging from 0 (low churn risk) to 1 (high churn risk). This line visualizes how 

the model assigns churn likelihoods. Retention strategies and thresholds, 

shown by purple dashed lines, are applied to different probability 

segments. 

 
Figure 5.1: Churn Strategies 



79 
  

 

 

 

Chapter 6 

Conclusion 

This thesis successfully explored various machine learning techniques for 

predicting customer churn in a digital media industry context, specifically 

focusing on a leading OTT platform. 

The findings of this research provide valuable insights into customer 

behaviour patterns and offer actionable strategies for retention. Moreover, 

the methodologies developed in this study can be further applied to other 

sectors, paving the way for more personalized and efficient customer 

engagement strategies.  

The models tested, including Logistic Regression, Decision Forest, Neural 

Networks, and Boosted Decision Trees, were evaluated for their 

performance in predicting churn behavior using various metrics such as 

Accuracy, Precision, Recall, F1-score, and AUC. 

One of the key challenges addressed in this study was the issue of class 

imbalance, where the number of churners was significantly smaller 

compared to non-churners. The use of SMOTE (Synthetic Minority Over-

sampling Technique) proved to be a successful approach to balance the 

dataset, improving the models' ability to identify churners without 

compromising performance on the non-churners. 

The results demonstrated that ensemble methods, particularly Decision 

Forest and Boosted Decision Trees, outperformed simpler models such as 



80 
  

Logistic Regression. These models benefited from their ability to handle 

complex patterns in the data and leverage non-linear relationships 

between features. Furthermore, the analysis underscored the importance 

of feature selection and engineering, as certain features related to user 

behavior, such as login frequency and content consumption, played a 

critical role in churn prediction. 

In conclusion, this thesis not only highlights the effectiveness of machine 

learning in predicting customer churn but also emphasizes the importance 

of addressing class imbalance and selecting relevant features. The 

insights gained can guide future improvements in customer retention 

strategies, ultimately contributing to business sustainability in the highly 

competitive digital media industry. For future work, expanding the dataset 

to include more user interactions and testing additional algorithms, such 

as deep learning models, could further enhance predictive performance. 

 



81 
  

References 

[1] Verbeke, W., Dejaeger, K., Martens, D., Hur, J., & Baesens, B. (2012). 

New insights into churn prediction in the telecommunication sector: A 

profit driven data mining approach. European Journal of Operational 

Research, 218(1), 211-229.  

https://doi.org/10.1016/j.ejor.2011.09.031 

[2] Amin A, Anwar S, Adnan A, Nawaz M, Alawfi K, Hussain A, Huang K. 

(2017) Customer churn prediction in the telecommunication sector using 

a rough set approach. Neurocomputing; 237:242–54. 

[3] Lazarov, V., & Capota, M. (2007). Churn Prediction. Technische 

Universität München. 

[4] Barsotti, A., Gianini, G., Mio, C., Lin, J., Babbar, H., Singh, A., Taher, F., 

& Damiani, E.        (2024). A decade of churn prediction techniques in the 

TelCo domain: A survey. SN Computer Science, 5(404). 

https://doi.org/10.1007/s42979-024-02722-7 

[5] Scherer, M. (2023). Predicting Churn Rate in Companies. In: Rutkowski, 

L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, 

J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2023. Lecture 

Notes in Computer Science(), vol 14126. Springer, Cham.   

https://doi.org/10.1007/978-3-031-42508-0_16 

[6] Ekawati, A. D. (2019). Predictive analytics in employee churn: A 

systematic literature review. Journal of Management Information and 

Decision Sciences, 22(4), 387-397. 

https://www.abacademies.org/articles/predictive-analytics-in-employee-

churn-a-systematic-literature-review.pdf. 

[7] Vafeiadis, T., Diamantaras, K. I., Sarigiannidis, G., & Chatzisavvas, K. C. 

(2015). A comparison of machine learning techniques for customer churn 

prediction. Simulation Modelling Practice and Theory, 55, 1-9. 

https://doi.org/10.1016/j.simpat.2015.03.003 

https://doi.org/10.1016/j.ejor.2011.09.031
https://doi.org/10.1007/s42979-024-02722-7
https://doi.org/10.1007/978-3-031-42508-0_16
https://www.abacademies.org/articles/predictive-analytics-in-employee-churn-a-systematic-literature-review.pdf
https://www.abacademies.org/articles/predictive-analytics-in-employee-churn-a-systematic-literature-review.pdf
https://doi.org/10.1016/j.simpat.2015.03.003


82 
  

[8] Schmidhuber, J. (2015). Deep learning in neural networks: An overview. 

Neural Networks, 61, 85-117.  

https://doi.org/10.1016/j.neunet.2014.09.003  

[9] Rumelhart, D., Hinton, G. & Williams, R. Learning representations by 

back-propagating errors. Nature 323, 533–536 (1986). 

https://doi.org/10.1038/323533a0 

[10] Starbuck, C. (2023). Logistic Regression. In: The Fundamentals of 

People Analytics. Springer, Cham. https://doi.org/10.1007/978-3-031-

28674-2_12 

[11] Biau, G., Scornet, E. (2022). A Random Forest Guided Tour. 

International Journal of Data Science and Analytics, 15(1), 65-90. 

https://doi.org/10.1007/s41060-022-00280-3 

[12] Breiman, L. Random Forests. Machine Learning 45, 5–32 (2001). 

https://doi.org/10.1023/A:1010933404324  

[13] Friedman, J. H. (2001). Greedy function approximation: A gradient 

boosting machine. Annals of Statistics, 29(5), 1189–1232. 

https://doi.org/10.1214/aos/1013203451 

[14] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, 

T.-Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. 

Advances in Neural Information Processing Systems, 30. 

https://doi.org/10.5555/3294996.3295074 

[15] Zhu, B., Baesens, B., & vanden Broucke, S. K. L. M. (2017). An empirical 

comparison of techniques for the class imbalance problem in churn 

prediction. Information Sciences, 408, 84–99. 

https://doi.org/10.1016/j.ins.2017.04.015 

[16] Ali, A., Shamsuddin, S. M., & Ralescu, A. L. (2015). Classification with 

class imbalance problem: A review. International Journal of Advance Soft 

Computing and Applications, 5(3), 1-19. 

[17] Elreedy, D., & Atiya, A. F. (2019). A Comprehensive Analysis of 

Synthetic Minority Oversampling Technique (SMOTE) for Handling Class 

Imbalance. Information Sciences, 505, 32-64. 

https://doi.org/10.1016/j.ins.2019.07.070 

https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/978-3-031-28674-2_12
https://doi.org/10.1007/978-3-031-28674-2_12
https://doi.org/10.1007/s41060-022-00280-3
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.5555/3294996.3295074
https://doi.org/10.1016/j.ins.2017.04.015
https://doi.org/10.1016/j.ins.2019.07.070


83 
  

[18] Pradipta, G. A., Sanjaya, I. N. H., Wardoyo, R., Musdholifah, A., & 

Ismail, M. (2021). SMOTE for handling imbalanced data problem: A review. 

Sixth International Conference on Informatics and Computing (ICIC), 20-

29.  

https://doi.org/10.1109/ICIC54025.2021.9632912 

[19] Islam, R., Patamsetti, V. , Gadhi, A. , Gondu, R. , Bandaru, C. , Kesani, 

S. and Abiona, O. (2023) The Future of Cloud Computing: Benefits and 

Challenges. International Journal of Communications, Network and 

System Sciences, 16, 53-65.  

10.4236/ijcns.2023.164004. 

[20] Khan, T., Tian, W., Zhou, G., Ilager, S., Gong, M., & Buyya, R. (2022). 

Machine learning (ML)-centric resource management in cloud computing: 

A review and future directions. Journal of Network and Computer 

Applications, 204, 103405. https://doi.org/10.1016/j.jnca.2022.103405 

[21] Butt, U. A., Mehmood, M., Shah, S. B. H., Amin, R., Shaukat, M. W., 

Raza, S. M., Suh, D. Y., & Piran, M. J. (2020). A review of machine learning 

algorithms for cloud computing security. Electronics, 9(9), 1379. 

https://doi.org/10.3390/electronics9091379 

[22] Qayyum A, Ijaz A, Usama M, Iqbal W, Qadir J, Elkhatib Y and Al-Fuqaha 

A (2020) Securing Machine Learning in the Cloud: A Systematic Review of 

Cloud Machine Learning Security. Front. Big 

Data 3:587139.  https://doi.org/10.3389/fdata.2020.587139 

[23] Wankhede, P., Talati, M., & Chinchamalatpure, R. (2020). Comparative 

study of cloud platforms - Microsoft Azure, Google Cloud Platform and 

Amazon EC2. International Journal of Research in Engineering and Applied 

Sciences, 05(02), 60-64. 

[24] Tilly Kenyon (2021, June 15). The advantages and disadvantages of AI 

in cloud computing. AI Magazine. Retrieved August 2, 2024, from 

https://aimagazine.com (AI News). 

[25] Okeke, F. (n.d.). Disadvantages of Cloud Computing. TechRepublic. 

Retrieved August 2, 2024, from https://www.techrepublic.com 

(TechRepublic). 

https://doi.org/10.1109/ICIC54025.2021.9632912
https://doi.org/10.4236/ijcns.2023.164004
https://doi.org/10.1016/j.jnca.2022.103405
https://doi.org/10.3390/electronics9091379
https://doi.org/10.3389/fdata.2020.587139
https://aimagazine.com/author/tilly-kenyon
https://aimagazine.com/
https://aimagazine.com/ai-strategy/advantages-and-disadvantages-ai-cloud-computing
https://www.techrepublic.com/
https://www.techrepublic.com/article/disadvantages-cloud-computing/


84 
  

[26] Wawira, M. (2024, August 2). 13 Disadvantages of Cloud Computing: 

Solve Cloud Challenges. Cloudwards. Retrieved August 2, 2024, from 

https://www.cloudwards.net 

[27] Murel, J., & Kavlakoglu, E. (2023, November 21). What is 

multicollinearity? IBM from https://www.ibm.com/topics/multicollinearity 

[28] Jolliffe, I. T. (2002). Principal component analysis (2nd ed.). Springer 

New York, NY. https://doi.org/10.1007/b98835  

[29] Chan, J.Y.-L.; Leow, S.M.H.; Bea, K.T.; Cheng, W.K.; Phoong, S.W.; 

Hong, Z.-W.; Chen, Y.-L. Mitigating the Multicollinearity Problem and Its 

Machine Learning Approach: A Review. Mathematics 2022, 10, 1283.  

https://doi.org/10.3390/math10081283 

[30] Lindner, T., Puck, J. & Verbeke, A. (2022) Beyond addressing 

multicollinearity: Robust quantitative analysis and machine learning in 

international business research. J Int Bus Stud 53, 1307–1314. 

https://doi.org/10.1057/s41267-022-00549-z 

[31] Bergstra, J., & Bengio, Y. (2012). Random Search for Hyper-Parameter 

Optimization. Journal of Machine Learning Research, 13(Feb): 281-305 

DOI: 10.5555/2188385.2188395 

[32] Kohavi, R. (1995).  A Study of Cross-Validation and Bootstrap for 

Accuracy Estimation and Model Selection. Proceedings of the 14th 

International Joint Conference on Artificial Intelligence (IJCAI). Vol. 2, pp. 

1137-1143. 10.5555/1643031.1643047 

 

https://www.cloudwards.net/
https://www.ibm.com/topics/multicollinearity
https://doi.org/10.1007/b98835
https://doi.org/10.3390/math10081283
https://doi.org/10.1057/s41267-022-00549-z

