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Abstract 

This thesis explores the application of machine learning techniques for 

anomaly detection in agricultural supply chains, with a focus on identifying 

discrepancies in production data and geographical inconsistencies. The 

research is motivated by the increasing need for sustainable agricultural 

practices and the enforcement of environmental regulations aimed at 

preventing deforestation and promoting fair trade practices. 

Utilizing a dataset comprising sales and farm size information from 

Colombian cocoa producers, this study implements machine learning 

models to detect anomalies in production quantities that are inconsistent 

with farm capacities and normal production size of each region. 

Geospatial data analysis is also employed to identify farming activities 

occurring in non-arable areas or protected regions, which are indicative of 

potential regulatory non-compliance or environmental harm. 

The methodology encompasses data cleaning, integration, and analysis 

using statistical and machine learning approaches, including clustering 

algorithms and anomaly detection techniques. The models were trained 

and validated on historical data, providing a system capable of anomaly 

detection. 
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1. Introduction 

In today's globalized economy, the production of commodities such as 

cocoa, coffee, and oil palm in Africa and South America carries significant 

economic, social, and environmental implications. These commodities are 

vital to the economies of several nations, particularly in Africa, where 

cocoa farming plays a pivotal role in providing livelihoods for millions of 

smallholder farmers. Africa contributes approximately 77% of the world’s 

cocoa, with West Africa, particularly Ghana and Côte d'Ivoire, being 

central to this production. The Americas, though smaller in output, account 

for around 17% of global cocoa production, while Asia and Oceania 

contribute the remaining 6% (Statista, 2023). 

However, the expansion of cocoa cultivation has often come at the cost 

of rich tropical forests in both Africa and South America, with significant 

environmental repercussions. This deforestation is linked to biodiversity loss, 

increased greenhouse gas emissions, and disruptions to local hydrological 

and soil systems, posing a severe threat to environmental sustainability. In 

Ghana, for example, the cocoa-chocolate value chain remains central to 

the economy, yet smallholder farmers, who constitute the backbone of the 

sector, face numerous challenges, including low incomes and land tenure 

issues. Despite contributing substantially to national GDP, farmers often live 

below the poverty line, earning far less than a decent living income 

(Kwarteng & Emefa, 2023). This economic imbalance perpetuates 

environmental harm, as farmers are often forced to expand cultivation into 

forests to increase their yields, leading to further deforestation and land 

degradation (Kwarteng & Emefa, 2023; Wainaina et al., 2022). 

The European Union Deforestation Regulation (EUDR) seeks to address 

these challenges by mandating sustainable practices within commodity 

supply chains, including cocoa. By enforcing stricter guidelines for cocoa 

imports linked to deforestation, the EUDR aims to mitigate the 

environmental impacts of cocoa production. However, as farmers 

continue to face economic pressures and limited access to sustainable 

farming techniques, there is an urgent need for systems that balance 

environmental conservation with the livelihoods of smallholder farmers 

(Avadi, 2023). 

Smallholder cocoa farmers in Ghana and other key cocoa-producing 

countries struggle to capture value from the global cocoa-chocolate value 

chain. Power imbalances and the complex dynamics of the global supply 

chain make it difficult for these farmers to secure fair prices for their cocoa. 



Additionally, factors such as declining soil fertility and shifting rainfall 

patterns compound these challenges, threatening not only farmers’ 

incomes but also the sustainability of cocoa production itself. Without 

interventions that provide fair market access and promote sustainable 

agricultural practices, the livelihoods of these farmers and the ecosystems 

they depend on remain at risk (Bymolt et al., 2018; Wainaina et al., 2022). 

In light of these challenges, it is critical to develop policies and interventions 

that not only ensure compliance with regulations like the EUDR but also 

address the underlying economic inequities in the cocoa supply chain. This 

includes strengthening certification systems and the role of certification 

bodies in verifying sustainable practices, as well as implementing targeted 

support for smallholder farmers to enhance their productivity without 

exacerbating deforestation. 

 

1.1 European Union Deforestation Regulation 

 

The growing concern about the environmental impact of global 

commodity production has prompted significant legislative measures from 

entities such as the European Union. The European Union imports millions of 

tonnes of raw materials annually, a substantial portion of which contributes 

to deforestation in regions like South America and Africa. The Food and 

Agriculture Organization (FAO) notes that 90% of global deforestation is 

linked to agricultural expansion, much of it driven by the supply chains for 

bulk commodities like soya, cocoa, and palm oil. 

The European Union Deforestation Regulation (EUDR) aims to address these 

challenges by ensuring that the EU's consumption does not promote 

deforestation or forest degradation. The EUDR sets a cut-off date of 

December 31, 2024, meaning that commodities produced on lands 

deforested after this date are not permitted within EU supply chains. This 

regulation not only applies to areas illegally deforested but also includes 

those legally cleared in their country of origin after the cut-off date, 

indicating a stringent approach that surpasses local legal 

frameworks(European Commission, 2023). 

 

To ensure strict compliance, the EUDR includes substantial penalties for 

companies that fail to adhere to its mandates. Companies found 

contributing to deforestation face fines up to 4% of their annual EU turnover, 

a significant deterrent aimed at ensuring corporate responsibility. 



Moreover, non-compliant companies may also face exclusion from public 

tenders or bans from marketing their products within the EU. These measures 

are intended to prevent products linked to deforestation from entering the 

European market, thereby promoting more sustainable production 

practices globally. 

 

1.2 Key Obligations and Mechanisms of the EUDR 

 

Due Diligence and Transparency: Companies must undertake 

comprehensive due diligence to verify that their products do not originate 

from recently deforested or degraded lands. This involves meticulous supply 

chain mapping to the plot level, with mandatory geolocation data for 

precise tracing. Businesses are required to maintain records of sourcing 

locations and production methods for a minimum of five years, enhancing 

the transparency and accountability of their operations. 

Traceability and Risk Assessment: The EUDR mandates traceability of all 

commodities to ensure they do not contribute to deforestation. This 

includes keeping accurate records linking products to their origin and 

producers. Companies must assess and manage the risks of deforestation 

in their supply chains, implementing measures to reduce these risks to 

negligible levels. 

Legal and Sustainability Compliance: In addition to ensuring no 

deforestation, companies must demonstrate compliance with the broader 

legal and sustainability standards of the EUDR. This includes regular 

environmental impact assessments and supporting farmers to meet these 

regulations through training and resource provision. 

Reporting and Remediation: Businesses are obliged to report any non-

compliance discovered within their supply chains to the relevant authorities 

promptly, ensuring swift corrective measures. This promotes a proactive 

approach to maintaining deforestation-free supply chains. 

Consumer and Authority Information Provision: The EUDR compels 

businesses to disclose information about their supply chains, including 

environmental impacts, to both consumers and regulatory authorities. This 

requirement not only aids consumers in making informed choices but also 

facilitates regulatory oversight and compliance enforcement. 

 

 

 



1.3 Aims and Approach of the Study 

 

With the growing demand for commodities like cocoa, ensuring sustainable 

supply chains has become increasingly complex. Companies like Trusty, in 

collaboration with certification bodies, work to verify compliance with 

environmental regulations such as the European Union Deforestation 

Regulation (EUDR). 

The Trusty platform operates as a blockchain-driven marketplace designed 

to ensure compliance with new European regulations such as the European 

Union Deforestation Regulation (EUDR) and the Corporate Sustainability 

Due Diligence (CSDD). Trusty plays a crucial role in creating a transparent 

and ethical cocoa supply chain by directly connecting responsible 

producers with buyers while offering tools for micro-financing and 

sustainability certification. 

Trusty's approach centers on verifying producers' compliance with 

environmental and social standards through rigorous traceability and 

certification methods. These efforts help ensure that cocoa products meet 

EUDR standards, which require geolocalization of cocoa plots, ongoing 

satellite monitoring to prevent deforestation, and detailed supply chain 

traceability from farm to market. Trusty supports cocoa producers in 

maintaining compliance with EUDR by offering data collection tools. 

Furthermore, Trusty empowers farmers with access to financing and 

markets, helping them adapt to sustainability requirements without 

compromising their livelihoods. Their platform is designed to help 

smallholder farmers ensure that their products meet the stringent 

requirements of European markets while fostering a more equitable and 

sustainable cocoa industry. 

Trusty’s integration of blockchain technology guarantees that all data 

related to the supply chain, including product origin and compliance, 

remains secure and transparent for buyers, certification bodies, and 

regulators. 

However, the vast amount of data and the large number of farmers make 

it difficult to manually check every operation. This leads to inefficiencies 

and the potential for misreporting or oversight. 

To address this challenge, a system could help by identifying irregularities in 

agricultural data, such as discrepancies in reported yields or farming 

activities in non-agricultural areas. By flagging potential issues, anomaly 

detection provides targeted insights, helping certification bodies and 



companies focus their resources on high-risk areas, making the verification 

process more efficient and reliable. 

 

Given this backdrop, this thesis aims to develop and implement a 

framework tailored for detecting anomalies within agricultural data. By 

focusing on geospatial inconsistencies and production anomalies, the 

research will contribute to enhancing transparency and compliance in 

agricultural supply chains, particularly in alignment with the EUDR. This 

initiative is not only timely but essential, considering the pressing need to 

address the environmental externalities, including deforestation and its 

cascading effects on climate and ecosystem. In the following chapters, this 

thesis will delve into the methodologies employed in crafting machine 

learning and geospatial models capable of identifying anomalous patterns 

in agricultural data, thereby supporting the enforcement of the EUDR and 

contributing to the discourse on sustainable agricultural practices within 

cocoa-producing regions of Africa and South America. 

 

1.4 Focus Areas of Anomaly Detection 

 

In addressing the challenges of sustainability and regulatory compliance 

within agricultural supply chains, this thesis identifies and analyzes specific 

anomalies that compromise environmental standards and economic 

viability. The focus will be structured into two main categories: Geospatial 

Inconsistencies and Production Anomalies. 

 

Production Anomalies 

 

This category focuses on the viability and legality of the reported 

agricultural output, which is crucial for ensuring that production practices 

are sustainable and aligned with environmental goals. 

 

1. Excessive Yield Reporting: Analyzing cases where the reported 

production from a given land area exceeds plausible limits based on 

the country-specific agricultural yield data. Such anomalies can 

suggest potential inaccuracies or exaggerations in reporting. 

 

 

 



 

Geospatial Inconsistencies 

 

Geospatial data anomalies are critical as they directly impact the integrity 

of land use and agricultural reporting. The areas of focus include: 

 

1. Cross-Border Anomalies: Identification of farming activities reported 

in coordinates that fall outside the national boundaries, which may 

indicate errors in data recording or intentional misreporting. 

 

2. Land Cover Classification: Detection of agricultural activities 

reported in locations that are typically non-arable, such as forests, 

bare lands, water bodies or urban areas. This involves analyzing GPS 

data to identify discrepancies where farming is claimed but likely 

infeasible. 

 

3. Land Change Detection: Utilizing historical land-use data to 

determine if deforestation has occurred in areas associated with the 

farmers in the dataset. This is aligned with the EUDR's requirements to 

prevent commodity sourcing from recently deforested lands. 

 

1.5 Objectives of Anomaly Detection 

 

The detection of these anomalies aims to: 

• Enhance Supply Chain Integrity: By ensuring the accuracy and 

feasibility of the reported data, the research helps in building a more 

transparent supply chain that stakeholders can trust. 

• Support Regulatory Compliance: Effective anomaly detection assists 

in enforcing compliance with environmental regulations such as the 

EUDR, which is critical for preventing deforestation and promoting 

sustainable agricultural practices. 

 

By identifying these specific areas of anomalies, this research will contribute 

significantly to the discourse on sustainable agricultural practices in cocoa-

producing regions of Africa and South America. The methodologies to be 

used for detecting these anomalies will be detailed in the subsequent 

chapters, providing a robust framework for data analysis and decision-

making. 



2. Literature Review 

 

2.1 Machine Learning Applications in Supply Chain Management 

 

Machine learning techniques have been increasingly applied to supply 

chain management to enhance efficiency, predict risks, and detect 

anomalies across various industries, including agriculture. These techniques 

can analyze large volumes of data to predict patterns, detect irregularities, 

and enhance decision-making processes. In agriculture, where 

sustainability and traceability are key, ML can be applied to monitor crop 

yields, optimize resource use, and detect potential risks such as 

environmental impacts or fraud within supply chains. 

various ML approaches can be employed in supply chain management, 

such as predictive analytics, anomaly detection, and optimization models 

that significantly improve forecasting and planning processes. 

Incorporating ML enables supply chains to dynamically adapt to changing 

environmental or economic conditions by accurately predicting future 

trends and detecting risks early(Tirkolaee & Sadeghi, 2021). 

Additionally, by leveraging ML models, agricultural supply chains can 

dynamically adapt to changes in environmental conditions, such as 

weather fluctuations or market demands. These models can help mitigate 

risks by forecasting supply shortages or price volatility, making the entire 

supply chain more resilient to shocks. In the context of cocoa production, 

the ability to predict supply disruptions or identify unsustainable practices 

early can lead to better regulatory compliance and sustainable land use. 

Data mining complements machine learning by extracting useful patterns 

and relationships from large datasets, which is critical for maintaining 

sustainability across the supply chain. One practical application in this 

context is the development of pre-warning systems that monitor potential 

risks related to food safety and sustainability. Rule mining and Internet of 

Things (IoT) technology can provide real-time tracking of food products, 

flagging potential risks before they become critical issues. For agricultural 

products like cocoa, such systems could help monitor various aspects of 

sustainability, including deforestation risks, water usage, and pesticide 

levels, ensuring that any deviation from sustainable practices is quickly 

identified and addressed (Wang & Yue, 2017). 

In cocoa supply chains, data mining can be employed to track production 



data across multiple regions, analyzing trends such as sudden spikes in 

yields that may not correspond to the actual land size or capacity. This 

data-driven approach enables certification bodies and regulators to 

efficiently identify suspicious patterns in large datasets, providing a 

targeted method for field inspections and audits. 

 

2.2 Blockchain Technology for Traceability and Compliance 

 

Blockchain technology further enhances the transparency and traceability 

of agricultural supply chains by providing a secure, immutable ledger of 

transactions. This technology is especially relevant for commodities like 

cocoa, where traceability is key to ensuring compliance with 

environmental standards and regulatory frameworks such as the EUDR. 

Blockchain records each transaction from farm to consumer, ensuring that 

every step of the supply chain is verifiable and transparent. 

Trusty, illustrates how these technologies are being applied to enhance 

compliance with the EUDR. By leveraging blockchain, Trusty ensures that 

every cocoa bean can be traced back to its origin, including details about 

farming practices, land use, and environmental certifications (Trusty, 

n.d.).This system allows stakeholders, from regulators to end consumers, to 

verify that the cocoa they purchase complies with sustainability standards, 

thus preventing deforestation and land misreporting. Additionally, the 

integration of blockchain with IoT devices enables real-time monitoring of 

land use, allowing for immediate detection of activities that may breach 

regulatory compliance. 

 

2.3 Integration with Geospatial Data and Remote Sensing 

 

In addition to machine learning and blockchain, the use of geospatial data 

and remote sensing technologies provides another layer of transparency 

and control in agricultural supply chains. Satellite imagery and geospatial 

analysis tools can monitor land use changes, detect deforestation in near 

real-time, and validate that farming practices align with sustainability 

certifications. By integrating geospatial data with blockchain, supply chains 

can offer end-to-end visibility, ensuring that commodities like cocoa are 

produced in compliance with deforestation regulations. 

This integration is critical for ensuring that the objectives of the EUDR are 

met. Platforms like Trusty can combine geospatial data with blockchain to 



track deforestation risks, allowing regulators and certification bodies to 

intervene quickly if anomalies are detected. This technology-driven 

approach ensures that sustainability in agricultural supply chains is not only 

a regulatory goal but also a reality, with real-time monitoring and 

automated compliance checks making it easier to detect and prevent 

unsustainable practices. 

 

2.4 Anomaly Detection in Supply Chains 

 

The use of machine learning-based anomaly detection systems in 

collaborative food supply chains has grown significantly in recent years. 

Study outlines a hybrid anomaly detection framework that combines 

statistical learning techniques with blockchain technology (Chen et al., 

2023). This integration is aimed at improving both the detection of 

irregularities and enhancing data security across supply chains. The 

blockchain mechanism ensures that once data is recorded, it is immutable 

and transparent, reducing the chances of tampering with reported data. 

Furthermore, the anomaly detection system operates on the principle of 

identifying data that deviates significantly from expected patterns, 

whether due to natural fluctuations in supply chain operations or potentially 

fraudulent activities.  

A sophisticated anomaly detection system elaborates on a kernel-based 

regression model that tracks system performance using sensor data. This 

model builds on historical observations to predict failures or inefficiencies in 

real-time operations by identifying abnormal process signals. The 

framework is designed for continuous monitoring, making it ideal for 

conditions that evolve dynamically, such as changing agricultural outputs 

based on weather, soil, or irrigation variations. By creating anomaly bands 

around the process variables, the system can signal when operations 

deviate from optimal conditions, thus preventing substantial losses in 

productivity (An et al., 2011). 

 

Another innovative approach is the pre-warning analysis system, which 

focuses on early detection and notification of potential risks in the food 

production supply chain. "As Zhan states, 'the traceability framework 

monitors various aspects of the production process, including food safety, 

quality, and environmental impacts' (Ke Zhang et al., 2011). The system uses 

machine learning to predict potential hazards or deviations."  from 



standard operations before they occur, offering a safeguard against issues 

like contamination or unsustainable farming practices. The model analyzes 

real-time data inputs and historical performance trends to generate alerts, 

giving supply chain managers ample time to address anomalies. 

 

2.5 Blockchain Integration with Machine Learning 

 

The combination of machine learning and blockchain technology offers a 

robust solution for anomaly detection, particularly in ensuring data 

authenticity and transparency in supply chains. Machine learning models 

can flag irregular transactions or data points, while blockchain acts as an 

immutable ledger to prevent tampering. This combination is particularly 

relevant in agricultural supply chains where ensuring the accuracy and 

transparency of data related to land use, farming practices, and product 

quality is critical for regulatory compliance and sustainability efforts. Such 

systems can also enhance the traceability of products, ensuring that 

environmental regulations like the EUDR (European Union Deforestation 

Regulation) are met consistently (Manh et al., 2024) 

 

2.6 Certification's Role in Sustainable Supply Chains 

 

Certification can foster better relationships between stakeholders along the 

supply chain, including producers, processors, and end consumers. 

Certification enhances traceability and transparency, thus ensuring that 

the products marketed to consumers have a verifiable environmental 

impact. Studies indicate that certification schemes can create market 

incentives for responsible forest and land use by improving market access 

and premium pricing for certified products. However, as discussed by Bass 

et al. (2001), one of the key challenges for certification programs is ensuring 

equitable access for smallholder farmers, who may find it difficult to meet 

the financial and administrative burdens of certification (Bass et al., 2001). 

 

2.7 Regulatory Frameworks and Compliance 

 

Regulatory frameworks like the European Union Deforestation Regulation 

(EUDR) aim to control the importation of commodities linked to 

deforestation. EUDR requires companies importing products such as cocoa 

to ensure that their supply chains are free from recent deforestation, 



mandating compliance with sustainability requirements. This regulation 

directly addresses the deforestation problem in cocoa-producing regions 

by setting cut-off dates for when deforestation must have ceased in areas 

where commodities are sourced. Companies failing to comply with such 

frameworks face heavy penalties, as well as potential exclusion from the 

European market. Such regulations add pressure on certification schemes 

and companies to verify their compliance with strict sustainability criteria. 

Moreover, regulatory frameworks often work hand in hand with certification 

bodies. For instance, certified farms are better positioned to meet the 

regulatory requirements of markets like the EU, thus benefitting from 

smoother trade processes (Bass et al., 2001). 

 

2.8 Challenges in the Cocoa Supply Chain 

 

The cocoa supply chain is fraught with numerous environmental, 

economic, and socio-political challenges that undermine its sustainability 

and transparency. While the industry remains a critical source of income for 

millions of smallholder farmers, primarily in West Africa, Latin America, and 

Southeast Asia, these regions face persistent obstacles that complicate 

efforts to enforce responsible agricultural practices and economic equity. 

One of the core issues is deforestation, driven by the expansion of cocoa 

farms into previously forested areas. Deforestation not only leads to the loss 

of biodiversity but also exacerbates climate change through the release of 

stored carbon into the atmosphere. Despite the introduction of frameworks 

like the European Union Deforestation Regulation (EUDR), many regions still 

struggle to enforce these policies effectively. In particular, smallholders 

face difficulties in complying with the stringent requirements for 

sustainability certification, largely due to limited financial and technical 

resources. Moreover, as noted in the literature, a significant portion of 

cocoa farms is situated in areas prone to environmental degradation due 

to weak regulatory oversight (Chunguang et al., 2022). 

Another significant challenge revolves around economic instability and 

income inequality among cocoa farmers. While the global demand for 

cocoa continues to rise, the economic benefits often do not trickle down 

to the farmers, who are typically paid low wages for their products. 

Fluctuating cocoa prices on the world market create further instability, 

leaving farmers in precarious financial situations. Even when certified as 

sustainable, the premiums earned from programs such as Fairtrade or 



Rainforest Alliance do not always compensate for the cost of compliance, 

leading to economic stress and the continued reliance on unsustainable 

practices (Chunguang et al., 2022). 

Labor practices are another pressing concern, with widespread reports of 

child labor and poor working conditions, particularly in West Africa. 

Regulatory measures have been introduced to combat these abuses, but 

they are often difficult to enforce in remote farming communities. The 

reliance on cheap labor exacerbates these issues, and certification 

schemes, while attempting to address this problem, still have gaps in 

ensuring full compliance. 

From a technological perspective, the lack of traceability and 

transparency in the cocoa supply chain remains a significant hurdle. 

Although blockchain and other digital technologies have been proposed 

as solutions to improve transparency and accountability, their adoption has 

been slow. Many smallholder farmers lack access to the technology and 

infrastructure necessary to implement such systems. Consequently, the 

data provided on the origin of cocoa is often incomplete or unreliable, 

limiting the ability of stakeholders to verify compliance with environmental 

and social standards. Anomaly detection, as discussed in the thesis, can 

play a critical role here, providing companies and certification bodies with 

insights into irregularities in production data or geographic inconsistencies, 

offering a potential solution to the traceability problem. 

The combination of weak enforcement, economic disparity, labor abuses, 

and limited technological integration poses significant challenges to 

achieving a truly sustainable and transparent cocoa supply chain. 

Certification bodies and regulatory frameworks provide some oversight, but 

without substantial improvements in governance, technological adoption, 

and farmer support, these issues are likely to persist. 

In conclusion, while regulatory and certification efforts play an important 

role, there remains an urgent need for innovations in anomaly detection 

and digital traceability to address the persistent challenges in cocoa 

production. Certification bodies, together with technological platforms like 

blockchain, could collaborate more closely to provide better insights into 

where issues arise, enabling targeted interventions that benefit both 

environmental sustainability and farmers' livelihoods. 

While there has been some research into the applications of machine 

learning and digital technology in agriculture and supply chain 

management, particularly with respect to enhancing transparency and 



sustainability, there is a noticeable gap when it comes to their specific 

application in the cocoa supply chain. Studies on supply chain 

technologies tend to focus on general agricultural systems or large-scale 

commodities but seldom address the complexities of cocoa production, 

especially in the context of anomaly detection related to environmental 

and geographic inconsistencies. 

This gap makes this thesis particularly novel. By applying machine learning 

models such as Isolation Forest for anomaly detection in cocoa production 

data, and integrating geospatial analysis to track land use and 

deforestation risks, this work brings a new dimension to supply chain 

transparency. It introduces methodologies specifically tailored to address 

the unique challenges of the cocoa industry, such as smallholder farm 

dynamics, geographic discrepancies, and compliance with regulations like 

the European Union Deforestation Regulation (EUDR). 

Thus, the contribution of this thesis is not only in expanding the body of 

research on supply chain transparency but also in pioneering a targeted 

approach that blends machine learning and geospatial analysis to tackle 

the specific environmental and economic challenges faced by cocoa-

producing regions. This creates a foundation for future research that can 

build upon these methods, making the work both novel and impactful in 

the broader field of sustainable agriculture. 

  



3.Methodology 

 

3.1 Introduction to Datasets 

 

1.The "Parcels.csv" dataset provided by the Trusty platform encompasses 

12,480 records and is an essential resource for analyzing agricultural 

practices across four diverse countries: Uganda, Togo, Peru, and Ecuador. 

Each record in the dataset represents an individual agricultural parcel, 

offering a detailed snapshot of land and farming operations within these 

geographic and economic contexts. 

Geospatial data is provided in the geoJSON format, which includes 

detailed coordinates and, for some parcels, polygonal boundaries. This 

data is fundamental for conducting spatial analysis, such as mapping farm 

locations, analyzing land use patterns, and validating reported information 

against actual geographical data. 

 

2. The second dataset provided is centered around Colombian farmers 

and contains detailed information about the farmers themselves. It includes 

1,678 records. This dataset is enriched with personal and operational data 

for each farmer. It includes unique identifiers, which is a personal 

identification number. Fields like end capture the timestamp of the data 

entry. with fields such as Map position,’ _Map position_latitude’, and ‘_Map 

position_longitude’ and details about the farm size ‘areas in cocoa 

(hectares)’. providing exact coordinates of each farmer's location. This 

precision is essential for spatial analysis and for correlating agricultural 

activities with geographical factors. 

 

3. The third dataset in this study focuses on the sales data of Colombian 

cocoa farmers, comprising a vast array of 89,986 records. This dataset is 

crucial for evaluating the economic aspects of cocoa production and 

understanding the market dynamics within Colombia. The dataset provides 

comprehensive sales data for each transaction, including ‘id_association’, 

‘Association Number’, which link each sale to specific farmer associations 

or cooperatives. It encompasses detailed transactional data including the 

date of sale, quantity of cocoa sold, and financial details like value per kilo 

and total value of transactions. 



3.2 Production anomalies 

 

This study utilizes two latter datasets that provide comprehensive 

information about Colombian cocoa farmers: 'Farmer_general.csv' and 

'Farmer_sales.csv'. Each dataset is pivotal for understanding different 

aspects of agricultural operations from geographical locations to 

economic transactions forming the backbone of this anomaly detection. 

It is instrumental in correlating financial data with agricultural practices to 

detect anomalies such as over-reporting of production or sales figures that 

do not align with the farm size and capacity. Both datasets together offer 

a holistic view of the farming operations, making them integral to detecting 

discrepancies that might indicate fraudulent activities or data recording 

errors. 

 

Libraries Used 

 

Python, being the primary programming language chosen for its robustness 

and extensive library support, facilitated comprehensive data 

manipulation and analysis. For data preparation and manipulation, Pandas 

was extensively used, providing powerful data structures and functions for 

efficient data cleaning, manipulation, and aggregation. NumPy supported 

numerical operations, especially where complex array operations were 

required. 

For the visualization of geospatial data, the Matplotlib library alongside 

Basemap, a toolkit extension for Matplotlib, was employed to plot the 

distribution of farmers and their respective clusters. These visualizations were 

crucial for providing a geographical context to the anomaly detection 

results. 

The Scikit-learn library played a pivotal role, particularly its Isolation Forest 

module, which was used to identify anomalies within the sales and 

production data. This unsupervised learning algorithm is well-suited for 

detecting outliers in large datasets, making it an ideal choice for this study. 

Scikit-learn was also used for its implementation of the K-Means clustering 

algorithm and the silhouette score, which helped determine the optimal 

number of clusters for segmenting the farmer data. 

To facilitate the clustering and anomaly detection processes, the silhouette 

scores were calculated to assess the cohesion and separation of clusters, 

ensuring the optimal grouping of data for subsequent analysis. The 



integration of these libraries provided a robust framework for preparing the 

dataset, executing the clustering, and conducting anomaly detection, 

with the results being substantiated through comprehensive visual and 

statistical outputs. 

The upcoming sections will delve deeper into the specifics of dataset 

preprocessing, the application of clustering and anomaly detection 

techniques, and the fine-tuning of parameters to optimize the models 

based on the identified patterns and anomalies in the data. 

 

Data Preparation 

 

Preliminary analysis indicated the presence of various data integrity issues 

common in large-scale agricultural datasets. Several records were missing 

critical information such as farm coordinates or transaction details, which 

are essential for any meaningful analysis. 

There were instances of misaligned data entries, especially in geographical 

coordinates and transaction values, likely due to manual data entry errors. 

These preliminary findings underscored the need for a robust data cleaning 

and preprocessing strategy to ensure the accuracy and reliability of the 

subsequent analyses. All column names were translated from Spanish to 

English to facilitate easier analysis and understanding. 

The first step involved identifying records with missing critical information 

such as identification numbers, latitude, longitude, and key transaction 

details. Missing data compromises the ability to perform accurate 

geospatial and economic analyses. 

Rows missing essential geographical information (latitude and longitude) or 

those lacking crucial sales data (like kilos sold or value per kilo) were 

removed from the dataset. 

For transactions where the total value was not explicitly recorded, it was 

computed by multiplying kilos sold by value per kilo. This ensured that all 

records had complete sales data, which was crucial for accurate 

economic analysis and anomaly detection. 

To visually assess and understand the distribution of farmers and identify 

potential clusters or outliers, the cleaned data set was used to plot the 

locations of farms across Colombia. This step was essential for recognizing 

geographical patterns and potential anomalies related to the spatial 

distribution of cocoa farming operations. 



The Basemap toolkit within the Matplotlib library was employed to create 

geographical scatter plots. This visualization depicted each farmer's 

location based on their latitude and longitude coordinates. The map 

provided a visual representation of how farmers are concentrated in 

Colombia, highlighting areas with dense farming activities and isolated 

regions which may warrant closer investigation for anomalies or unique 

agricultural practices. 
 

                                                     Figure 1: Farmers concentration in area 

                                                                     

Clustering was performed to segment the geographical data into 

manageable groups, facilitating more focused and efficient anomaly 

detection within localized regions. 

Before deciding on the number of clusters, the silhouette score method was 

applied to determine the optimal clustering arrangement. The silhouette 

score measures how similar an object is to its own cluster compared to other 

clusters, providing a clear metric to assess the effectiveness of the 

clustering. The K-Means algorithm, known for its efficiency in clustering large 

data sets, was chosen. The algorithm was applied to the latitude and 

longitude data, and based on the silhouette scores, six clusters were found 

to be optimal.  Each cluster was plotted using a unique color to visually 

differentiate the groups on the map. This helped in assessing the 

geographical spread and density of the clusters. 



 

                                                             Figure2: Optimal number of clusters 

                                                      Figure 3: Farmer clusters based on location   

 

 

3.2.1 Anomaly Detection Approaches 

 

To effectively identify anomalies within the Colombian cocoa farmers' 

data, two distinct approaches were employed, each utilizing the Isolation 

Forest algorithm. This algorithm is a type of unsupervised machine learning 

that is specifically designed to identify anomalies or outliers in data. It works 

by isolating observations by randomly selecting a feature and then 

randomly selecting a split value between the maximum and minimum 

values of the selected feature. This isolation mechanism is particularly 

effective in datasets with a high dimensionality where anomalies are few 



and different. Unlike supervised learning models that require labeled data 

to learn, the Isolation Forest algorithm operates under unsupervised 

learning principles. It does not require a training set with labeled outcomes; 

instead, it identifies anomalies based on the structural properties of the 

data itself. 

In the analysis of sales data from Colombian cocoa farmers, the presence 

of multiple transaction records for individual farmers presented a unique 

challenge that necessitated a dual approach to anomaly detection. This 

dual-method strategy was essential to comprehensively assess both the 

aggregate behavior of sales over a period and the specific details of each 

transaction. 

Many farmers reported multiple sales transactions. This variability in the 

number of transactions per farmer allowed for two distinct types of analysis. 

For farmers with numerous sales records, aggregating these transactions 

provided a macroscopic view of their total sales activities, which helps in 

identifying anomalies that could indicate over or under-reporting at a 

larger scale. Each sales record was also analyzed individually to detect 

anomalies in specific transactions which might not be apparent when data 

is aggregated. This approach is particularly important for identifying outliers 

in transactional data where a single anomalous sale could be obscured by 

aggregate analysis. 

 

Approach 1: Aggregate Anomaly Detection 

 

For farmers with multiple transactions, the total sales across all transactions 

were calculated. The Isolation Forest algorithm was then applied to these 

aggregate figures in relation to the reported hectares of cocoa cultivation 

to identify outliers. Identifying farmers whose total sales are 

disproportionately high or low compared to their reported farm sizes and 

expected production capacities. 

Using the Isolation Forest algorithm, anomalies were detected based on the 

consolidated sales and farm size data. This method helped pinpoint farmers 

whose total sales metrics significantly deviated from what would be 

expected given their agricultural capacity. 

For this analysis, features such as 'total sales' and 'hectares' were extracted 

for each farmer. These features were crucial for identifying discrepancies 

between reported sales and the actual size of the farm. The algorithm was 

configured with a contamination factor of 0.05, indicating an expectation 



that approximately 5% of the data points were outliers. The model was fitted 

to the data comprising total sales and hectares, allowing it to isolate 

anomalies based on the statistical properties of the dataset. Farmers 

flagged by the model as anomalies were marked in the dataset. This 

marking facilitated further investigation to confirm whether these 

anomalies were due to data entry errors, misreporting, or possible 

fraudulent activities. 

 

Approach 2: Individual Transaction Analysis 

 

Each transaction was assessed independently using the Isolation Forest 

algorithm, considering variables such as kilos sold and value per kilo against 

the hectares of land farmed. This method helps identify any single 

transaction that deviates significantly from expected sales patterns based 

on farm capacity. Evaluate each sales transaction to determine whether 

the reported sales figures are reasonable based on the hectare of cocoa 

farmed. 

The second approach involved a more granular analysis, where each 

transaction was evaluated to assess its plausibility based on the 

corresponding farm size. Transactions for each farmer were individually 

analyzed. This approach allowed for a detailed assessment of each sale, 

ensuring that the reported sales volumes were in line with what could 

realistically be produced based on the farm's size. 

Similar to the aggregate analysis, the Isolation Forest was used, focusing on 

individual transactions' 'total value' and 'hectares'. Each transaction was 

assessed, with the model identifying those that were statistically unlikely, 

given the farm size and typical production yields. 

 

3.3 Geospatial Analysis 

 

The initial step in analyzing geospatial anomalies, involved consolidating 

and cleaning the data collected from various countries. The geographical 

data extraction targeted retrieving precise locations from the geoJSON 

structure. For parcels represented by polygons, centroids were calculated 

to establish a singular, representative coordinate. Direct coordinates were 

utilized for parcels explicitly defined by points. 

Simultaneously, additional relevant attributes such as the parcel's country, 



the associated person's ID, and coordination of each farm were extracted. 

Once coordinates and necessary attributes were extracted, they were 

integrated back into a main CSV file, aligning all relevant data into a 

structured format. This file was specifically structured to include essential 

identifiers, geographical coordinates and country information key 

elements for subsequent analytical phases. 

 

3.3.1 Cross-Border Anomalies 

 

This section of the methodology focuses on identifying agricultural activities 

reported in coordinates that fall outside the designated national 

boundaries. To achieve this, highly accurate geographic boundary data 

was sourced from Natural Earth, which provides vector data at a 1:10 

million scale. This data includes detailed country boundaries necessary for 

precise geospatial analysis. This dataset is renowned for its accuracy and is 

widely used in geographic analyses that require precise country boundary 

delineations. This data has 100% of accuracy as claimed by the data 

providers. 

 

Libraries Used 

 

GeoPandas library extends the functionalities of pandas to allow spatial 

operations on geometric types. GeoPandas was crucial for operations such 

as reading, manipulating, and analyzing geospatial data, which are 

foundational in processing the shapefiles of country boundaries. 

Pandas Used for its robust data structures and tools for data manipulation 

and analysis. It was especially useful in handling tabular data, merging 

datasets, and transforming coordinate data into structured formats that 

could be easily analyzed. 

Shapely library was employed for the manipulation and analysis of planar 

geometric objects. It facilitated the conversion of latitude and longitude 

coordinates into point objects, which were then used to determine spatial 

relationships, such as containment within country polygons. 

 

Anomaly Detection Setup 

 

A GeoDataFrame was set up to manage the country boundaries data 

efficiently. This framework was implemented to load the country 



boundaries only once throughout the session, which enhances the 

performance by avoiding repetitive loading of the same dataset. This 

method is especially effective in handling large datasets where operations 

need to be optimized for speed and memory usage. 

For the analysis, a reverse geocoding technique was applied. This 

technique involves converting geographic coordinates (latitude and 

longitude) into a two-letter ISO country code. This process checks whether 

the provided geographic coordinates fall within the recognized 

boundaries of a country according to the shapefile data. This step 

determines whether the location data accurately corresponds to the 

reported country, which identifies any discrepancies that might indicate 

data recording errors or possible intentional misreporting. 

Using the reverse geocoding functionality, the study analyzed a dataset 

containing latitude and longitude of farms from five different countries. 

Each coordinate was checked against the Natural Earth country 

boundaries to determine if the location fell outside the reported country's 

boundaries. 

The analysis revealed approximately 59 anomalies, primarily occurring in 

Uganda and Ecuador. These anomalies are likely due to errors in data 

recording or intentional misreporting and were flagged for further 

investigation. 

 

Observations from the Distribution Maps 

 

A small number of anomalies were observed along the borders, suggesting 

a potential misalignment in the geospatial data entry or a misinterpretation 

of border definitions. Some of these coordinates lie close enough to the 

border that they might be explained by the natural imprecision inherent in 

GPS technology or discrepancies in the mapped boundary data. With 

coordinates spread significantly inside Uganda, there's an indication of 

either widespread misreporting or a systematic issue with how coordinates 

are logged in this region. This could have broader implications for any 

agricultural policies or economic decisions based on this geospatial data. 
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Figure 4: Cross-Border Anomalies in Colombia 

 

Figure 5: Cross-Border Anomalies in Ecuador 

 

Figure 6: Cross-Border Anomalies in Uganda 

 



3.3.2 Land Cover Classification 

 

For this part, I established specific criteria based on the types of land cover 

misclassifications that would indicate anomalies. The criteria included 

checking if reported farm coordinates fell into non-agricultural land cover 

classes such as urban areas, water bodies, forests, bare areas, or snow-

covered regions. 

For each farm location, the surrounding land cover type was verified 

against the expected agricultural designation. Locations categorized 

under inappropriate land cover types, according to these criteria, were 

flagged as anomalies. This method allowed for identification of 

geographical areas where the land use did not align with the reported 

agricultural activities. 

 

Data Source and Acquisition 

 

1. Copernicus 

 

For the land cover classification component of the anomaly detection in 

agricultural data, high-quality satellite imagery is essential. To this end, 

datasets were sourced from the Copernicus program, specifically the land 

cover data derived from the Sentinel-3 satellite observations for the years 

2020, 2021, and 2022(Lamarche & Defourny, 2024). Here are the specifics 

of each dataset: 

 

2020 Land Cover Data: Approximate accuracy of 70%. This dataset serves 

as the baseline for observing changes and establishing a normative pattern 

of land cover that will assist in identifying deviations in subsequent years. 

2021 Land Cover Data: Slightly higher accuracy of 70.48%. The slight 

increase in accuracy helps in refining the analysis and providing more 

confidence in the anomaly detection process for this year. 

2022 Land Cover Data: Accuracy maintained at 70.30%. This consistency in 

dataset accuracy over the years allows for a reliable comparative analysis 

across the timeframe. 

The datasets are available for public access through the Copernicus 

Climate Data Store (CDS), providing a resource for researchers and analysts 

to download and use the data for various environmental monitoring 

purposes. 



The Sentinel-3 series data, categorizes land cover using a hierarchy based 

on the Land Cover Classification System (LCCS) developed by the UN Food 

and Agriculture Organization (FAO). This system enables a detailed 

classification of land cover types that are essential for environmental 

monitoring and management. 

The Copernicus Land Cover (LC) data is a key resource for environmental 

and land monitoring applications, crafted using comprehensive 

methodologies to ensure high levels of accuracy and reliability. Here’s an 

overview of the methodologies and accuracy measures employed in the 

production of the Copernicus LC maps. 

Copernicus utilizes satellite imagery primarily from the Sentinel series of 

satellites, which offer wide coverage and frequent revisits. The data 

includes both optical and radar images, providing a diverse range of 

information for land cover classification. The satellite data undergoes 

several preprocessing steps to correct for atmospheric, angular, and other 

sensor-specific distortions. This step is crucial to ensure that the data 

accurately represents the Earth's surface conditions. The program uses 

advanced machine learning techniques, including deep learning and 

ensemble classifiers, to categorize the land surface into different land cover 

types. These classifiers are trained with a large and diverse set of ground-

truth data collected from various sources. 

Each LC map is subjected to a systematic quality control process. This 

involves checking the classification results on a regular grid to identify any 

potential errors such as misclassifications or boundary issues. Detected 

errors are then corrected in a post-classification refinement step. 

Depending on the heterogeneity of the landscape, a variable-sized grid is 

used to manually inspect and validate the land cover data. This manual 

validation is crucial for ensuring the accuracy of land cover classifications 

in diverse environments. 

 

A brief overview of the land cover categories included in the Copernicus 

data: 

1. Cropland: Includes both rainfed and irrigated areas. Specific 

subclasses distinguish between herbaceous cover and tree or shrub 

cover. 

2. Mosaic Land: Combines cropland with natural vegetation, either with 

cropland or natural vegetation being more dominant. 



3. Forest Areas: Differentiated by leaf type (broadleaved or 

needleleaved) and the deciduous or evergreen nature of the trees. 

It also includes mixed leaf type forests. 

4. Shrubland and Grassland: Includes pure shrubland areas, grasslands, 

and mosaics of trees, shrubs, and herbaceous cover. 

5. Wetlands: Classified by tree cover in flooded regions, both in fresh or 

saline water. 

6. Urban Areas: Distinguished from natural landscapes, indicating 

regions of human habitation and infrastructure. 

7. Bare Areas: Includes areas with little to no vegetation cover, such as 

deserts and rocky areas. 

8. Water Bodies and Snow: Covers areas of water, including seas, lakes, 

and rivers, as well as regions permanently covered by snow and ice. 

 

Libraries used 

 

Xarray is employed to manage the multi-dimensional arrays of land cover 

data derived from satellite images. It handles the slicing of data by 

geographical coordinates and supports operations across different 

dimensions of the data. 

Shapely is crucial for creating and manipulating geometric shapes like 

points, lines, and polygons. It is used to convert latitude and longitude into 

point objects and perform spatial operations such as calculating distances 

and checking if a point lies within a polygon. 

Spatial Indexing (Part of GeoPandas) is implemented through GeoPandas' 

sindex property on GeoDataFrames. It is used to quickly locate the nearest 

land cover classification point to any given agricultural coordinate. 

 

Methodological Framework 

 

The global dataset was quite large, encompassing land cover information 

for the entire planet. To make the analysis manageable and relevant, I 

extracted data for specific countries using bounding boxes. 

Bounding boxes define the geographical limits (latitude and longitude) of 

each country. These are used to slice the global dataset to obtain a subset 

of data that only includes the area within a country’s boundaries. 

Once the country-specific dataset was sliced from the global data, it was 



converted into a GeoDataFrame a data structure optimized for spatial 

data. A spatial index is created on this GeoDataFrame using GeoPandas, 

which significantly speeds up spatial queries such as finding the nearest 

point. 

The method involves identifying the nearest land cover data point for each 

reported agricultural coordinate, rather than using the exact point. This 

approach is chosen due to the resolution of the satellite data. 

Copernicus land cover data is typically provided at a 300-meter resolution. 

This means each data point represents the predominant land cover 

classification within a 300-meter square area. As such, exact match queries 

(looking for the exact latitude and longitude in the dataset) would often 

fail because the coordinates reported by farmers are unlikely to match the 

discrete grid points exactly. 

Instead, a nearest neighbor search is conducted. This search finds the 

closest data point within the dataset to the reported coordinate, ensuring 

that the analysis accurately reflects the land cover type that most closely 

corresponds to the reported location. 

 

2. ESA World Cover 

 

The other data source that was acquired for the land cover classification 

part was ESA World Cover data. I did this to ensure higher precision and 

reliability on the results of the classification. 

The ESA WorldCover project offers high-resolution global land cover maps, 

utilizing the advanced observation capabilities of the Sentinel satellites 

operated by the European Space Agency (ESA). These datasets are 

particularly beneficial for studies that require precise and up-to-date 

information on land use and land cover across different environmental 

contexts, including agricultural monitoring and environmental impact 

assessments. 

The ESA WorldCover datasets provide land cover maps at a 10-meter 

resolution. This high level of detail is crucial for accurate land cover 

classification, especially in diverse and fragmented landscapes where 

changes in land use might occur in small patches that are not detectable 

at coarser resolutions. 

The ESA WorldCover datasets undergo extensive validation procedures to 

ensure accuracy. These include comparisons with ground-truth data and 

independent validation by third-party organizations, ensuring that the 



classifications are reliable and can be confidently used. 

The ESA WorldCover project employs advanced methodologies to 

generate land cover maps with significant accuracy. These methods 

leverage state-of-the-art satellite imaging technology and sophisticated 

data processing techniques to ensure that the land cover classifications 

meet the needs of various applications, from climate modeling to 

biodiversity conservation. 

The dataset primarily utilizes multispectral imagery from the Sentinel-2 

satellites. This data is characterized by high spatial resolution and multiple 

spectral bands that are ideal for distinguishing different types of land cover. 

The raw satellite data undergoes rigorous preprocessing, which includes 

atmospheric correction to remove the effects of aerosols and other 

atmospheric conditions. This step ensures that the spectral signatures are as 

accurate as possible, reflecting the true colors and characteristics of the 

land surface. 

ESA WorldCover uses machine learning algorithms, particularly random 

forests and support vector machines, to classify the preprocessed imagery 

into various land cover types. These algorithms are trained on a globally 

distributed set of training data, which includes ground-truth observations 

and other satellite data. After classification, the datasets are validated 

using independent validation datasets not used during the training of the 

classification models. This process involves statistical methods such as the 

confusion matrix, which provides detailed insights into the accuracy of the 

classification. 

 

2020 Dataset: The overall accuracy reported for the 2020 version of the ESA 

WorldCover dataset was approximately 74.4%. This reflects a high level of 

reliability but also highlights the challenges in certain complex landscapes 

or land cover types (Van De Kerchove, 2020). 

2021 Dataset: The subsequent year saw a slight improvement in accuracy, 

reaching approximately 76.7%. This enhancement can be attributed to 

refinements in the classification algorithms and better training data (Van 

De Kerchove, 2022). 

 

A brief overview of the land cover categories included in the Copernicus 

data: 

 



1. Tree cover: Areas predominantly covered by trees, often used to 

describe regions where tree canopy covers a significant portion of 

the ground. 

2. Shrubland: Regions covered by woody vegetation shorter than trees, 

often found in semi-arid areas and used for grazing. 

3. Grassland: Areas where grasses predominate, typically used for 

pasture and haylands; these regions may also include herbaceous 

types of vegetation. 

4. Cropland: Land primarily used for the cultivation of crops. This 

includes areas under annual and perennial crops and orchards. 

5. Built-up: Areas substantially covered by buildings and other man-

made structures. This includes cities, towns, villages, and 

transportation infrastructure. 

6. Bare / sparse vegetation: Lands with limited or no vegetation, 

including desert areas, rock, and sand surfaces, and areas of 

extensive urbanization where little to no vegetation is present. 

7. Snow and Ice: Regions permanently covered by snow or ice, not 

subject to significant seasonal variation. 

8. Permanent water bodies: Bodies of water that do not significantly 

fluctuate in volume throughout the year, such as lakes, reservoirs, and 

large rivers. 

9. Herbaceous wetland: Areas where the soil is saturated with moisture 

either permanently or seasonally, covered predominantly by 

herbaceous vegetation. 

10. Mangroves: Coastal wetlands found in tropical and subtropical 

regions, characterized by salt-tolerant trees and other plant species 

adapted to life in saline water conditions. 

11. Moss and lichen: Areas primarily covered by mosses and lichens, 

often found in arctic or mountainous environments where conditions 

do not favor the growth of higher plants. 

 

Libraries Used 

 

Rasterio is a library that allows for the reading and writing of geospatial 

raster data. Rasterio is employed to open and process raster images from 

the ESA dataset, specifically for accessing specific land cover class 

information encoded within GeoTIFF files that represent different regions 

and years. 



Math Library which Provides access to mathematical functions defined by 

the C standard. In this analysis, it is used primarily for rounding operations, 

ensuring that coordinates are processed correctly according to the raster 

grid specifications. 

 

Methodological Framework 

 

The methodology consists of extracting and analyzing land cover 

classifications for given geographic coordinates, focusing on validating the 

land type and detecting any potential anomalies. 

Coordinates were first rounded and formatted to match the naming 

conventions of the stored raster files (GeoTIFFs). This ensures the correct 

raster file corresponding to the geographic location is accessed. Using 

Rasterio, the GeoTIFF files are opened, and a window of data around the 

specified coordinates is extracted. This windowed approach allows for 

analyzing the immediate area around the given point, enhancing the 

accuracy of the land cover classification check. 

The extracted raster data, representing land cover classes in a matrix 

format, is processed using NumPy to count occurrences of each land cover 

class within the window. This step is crucial for determining the predominant 

land type at the location. 

Each land cover class is identified by a unique code, which is mapped to 

a descriptive label using a predefined dictionary (lccs_class_labels). This 

mapping facilitates understanding and reporting of the land cover types. 

Spatial queries are performed to ensure that the data point lies within the 

correct geographic boundaries as per the ESA dataset. This involves 

checking if the point falls within the bounds of the raster data and if 

necessary, adjusting the query to fit the data's spatial resolution. 

 

3.3.3 Selective validation 

 

When evaluating the accuracy and reliability of the land cover 

classifications obtained from the Copernicus satellite and ESA World Cover 

data, a practical approach was implemented by manually verifying 

specific cases through an additional, widely trusted source Google Maps. 

To optimize the verification process, coordinates were selectively chosen 

based on specific criteria such as anomaly flags or areas of particular 

interest, aiming to scrutinize the most impactful or suspicious data points. 



This targeted approach helps in efficiently using resources while enhancing 

the validity of the data assessment. 

Despite these efforts, it is important to acknowledge that only a subset of 

the data points was verified, leaving the possibility of undetected errors or 

anomalies within the unverified segments of the dataset. The vast size of the 

dataset and the labor-intensive nature of manual verification impose 

practical limits on the scope of validation efforts. To mitigate this limitation 

and enhance data integrity, it is recommended that regular ground checks 

be conducted by certification bodies. These checks should be systematic 

and periodic, focusing on randomly selected coordinates or areas 

previously identified as problematic, to ensure ongoing accuracy and 

reliability of the land cover data. 

 

3.3.4 Comparison between Copernicus Data and ESA World Cover 

 

While both ESA WorldCover and Copernicus satellite programs are 

European initiatives that provide environmental data, there are notable 

differences in their focus and applications: 

Resolution and Detail: While Copernicus also offers high-resolution data, ESA 

WorldCover's specific focus on 10-meter resolution for land cover provides 

finer details that are crucial for certain types of environmental and 

agricultural analysis. 

Frequency of Updates: ESA WorldCover’s annual updates offer more 

frequent data refreshes compared to some Copernicus products, which 

may update less regularly depending on the specific service and dataset. 

Methodological Differences: ESA WorldCover uses a unique set of 

algorithms and validation techniques tailored specifically for land cover 

classification. These methodologies differ from those used in Copernicus 

datasets, which can cover a broader range of environmental monitoring 

applications beyond just land cover. 

 

By combining Copernicus to ESA data, this research benefits from the 

enhanced resolution and updated methodologies, providing a more 

detailed and current snapshot of land cover dynamics. This transition is 

critical in identifying subtle yet significant changes that might be 

overlooked by coarser, less frequently updated datasets. 

 



3.3.5 Geospatial Anomaly Detection Setup 

 

To ensure the accuracy and reliability of land cover classifications in 

agricultural datasets, I integrated and compared data from both the 

Copernicus and ESA datasets. By cross-referencing these sources, the 

research aims to identify discrepancies that may signal anomalies such as 

misreported or misclassified land use. 

The datasets from Copernicus and ESA for the years (2022 from Copernicus) 

2021 and 2020 were meticulously prepared for analysis. This involved 

mapping the raw classification data to a unified set of categories to 

facilitate comparison. The classifications include various land types such as 

'Agriculture', 'Forest', 'Settlement', and 'Water'. Each land cover 

classification was translated into these broader categories to standardize 

the data across different sources. 

The anomaly detection was structured around three primary criteria: 

• Cross-Dataset Discrepancies: Any significant variation in land cover 

classifications for the same geographic coordinates across the 

Copernicus and ESA datasets was flagged. These discrepancies may 

indicate potential errors or falsifications in the reported data. 

• Non-harvestable Land Cover: Areas classified as non-agricultural 

such as urban regions, water bodies, and barren lands were flagged 

as 'non-harvestable'. This category highlights regions wrongly 

reported as agricultural, pointing towards possible misreporting. 

• Cross-Border Anomalies: Coordinates that do not match their 

reported national boundaries were identified and flagged, 

suggesting inaccuracies in geolocation data. 

 

3.3.6 Implementation of Detection Algorithms 

 

The detection algorithms were implemented using Python, with libraries 

such as Pandas for data manipulation and Rasterio for handling 

geographical data. Specific functions were developed to map land cover 

classifications and flag anomalies. Each land cover category from the 

datasets was mapped to predefined broad categories then custom 

functions were written to systematically check each row in the dataset 

against the anomaly detection criteria. Rows meeting any criteria were 

marked as potential anomalies. 

To visually analyze the distribution of anomalies, geographical maps were 



generated using Matplotlib and Basemap. These maps provide a visual 

representation of where anomalies are concentrated, particularly 

highlighting: 

Anomaly Distribution by Country: Maps illustrating the spatial distribution of 

anomalies across different countries, aiding in the identification of regions 

with frequent discrepancies. 

Comparison of Anomalies Across Classifications: Separate maps for each 

type of anomaly (cross-dataset discrepancies, non-harvestable land cover, 

and geographical inconsistencies) to visually assess the patterns and extent 

of the issues detected. 

Figure 7: Gesopatial Anomalies in Ecuador 

 

Figure 9: Gesopatial Anomalies in Peru 

 

Figure 8: Gesopatial Anomalies in Togo 

Figure 10: Gesopatial Anomalies in Colombia 



 

 

 

3.3.7 Land Cover Changes 

 

This segment of the research focuses on the detection of land cover 

changes over time at specific geographic locations, utilizing a robust 

analysis of sequential land cover classifications. This method identifies shifts 

in land use by comparing the land cover data from one year to subsequent 

years, providing insights into agricultural dynamics and potential 

misreporting or misclassification that leads to deforestation. 

The analysis of land cover changes relies on a systematic approach to 

processing spatial and temporal data derived from NetCDF files spanning 

the years 2018 to 2022. This section delineates the methodology employed 

to handle the data, especially addressing the challenges posed by the 

temporal mismatch between the land cover data availability and the 

extended timeline of farmer data up to 2024. 

 

Data Sources and Preparation 

 

The data for this analysis was sourced from comprehensive land cover 

datasets, specifically formatted NetCDF files that contain yearly snapshots 

of land classifications across multiple geographic regions.  Initial data from 

various sources, was cleaned and standardized. Columns were renamed 

for consistency, and essential attributes such as latitude, longitude, and 

area were extracted. Coordinates were derived from the GeoJSON fields, 

ensuring that each land parcel’s centroid was accurately calculated for 

Figure 11: Gesopatial Anomalies in Uganda 



point data or appropriately estimated for polygons. 

The primary function, is designed to extract land cover data corresponding 

to specific geographic coordinates (latitude and longitude) of each 

farmer's parcel. This extraction is constrained by the temporal coverage of 

the available NetCDF files, which document land cover from 2018 to 2022. 

For each farmer's data entry, the function identifies the closest available 

land cover data point, typically defaulting to the latest available year, 

2022, when encountering data entries for 2023 or 2024. 

Given that the land cover datasets extend only up to 2022, any farmer data 

from 2023 or 2024 inherently lacks corresponding land cover information. 

The script manages this by applying the land cover data from the latest 

available year (2022) to these future entries then utilizing the temporal 

marker from the last available dataset to annotate these data points, 

thereby indicating that these are extrapolations rather than observations 

from those specific years. 

 

Land Cover Categorization 

 

A custom function (categorize_land_cover) was employed to map raw 

classification codes to recognizable land cover types such as Agriculture, 

Forest and Settlement. This categorization aids in the comparative analysis 

across different datasets and over multiple years. 

The script incorporates a robust mechanism for detecting changes in land 

cover over the available time span through the following steps: 

1. Extraction per Time Point: For each time point available in the NetCDF 

files, the script fetches land cover data for the relevant grid cells that 

align with the farmer's parcel coordinates. 

2. Sequential Comparison: The check_land_cover_changes function 

orchestrates a year-by-year comparison of land cover classifications. 

It sorts the data chronologically for each unique parcel defined by 

farmer ID and coordinates and checks for any alterations in the land 

cover type from one year to the next. 

3. Change Flagging: Any transition in land cover type, such as a shift 

from 'forest' to 'agriculture', is flagged as a significant change. This 

flagging is critical for identifying substantial modifications in land use 

which might impact agricultural practices and environmental 

assessments. 

 



Change Detection Process 

 

The core of this analysis is the ‘process_farmers_land_cover’ function, 

which: 

 

Intersects Farmer Data with Grid Cells: Each farmer's land parcel is aligned 

with the corresponding grid cell within the NetCDF dataset. This step 

considers the area of the parcel in relation to the standard grid size (9 

hectares per grid cell) to ensure comprehensive coverage. 

Sequential Comparison: The land cover classification for each grid cell is 

tracked over consecutive years. Any shift in classification from one year to 

the next is flagged as a change. 

Spatial and Temporal Granularity: The process accounts for spatial 

granularity by examining multiple grid cells covered by larger parcels and 

temporal granularity by analyzing changes over each available year. 

Data Recording: All detected changes are recorded, noting the previous 

and subsequent land cover classifications. 

Using the Basemap toolkit, geographical maps are generated to visually 

represent the location and extent of land cover changes. These maps 

display the ‘before’ and ‘after’ states of land changes, providing a clear 

visual representation of transitions over time. 

For illustrative purposes, consider a farmer's parcel that is geographically 

constant over five years with the following land cover transitions: 

• 2018: Forest 

• 2019: Forest 

• 2020: Agriculture 

• 2021: Agriculture 

• 2022: Agriculture 

 

The methodology will identify a significant change in land cover between 

2019 and 2020, marking the transition from forest to agriculture. This change, 

once detected, is documented and analyzed for its implications on land 

use and agricultural sustainability. 

 The methodology will identify a significant change in land cover between 

2019 and 2020, marking the transition from forest to agriculture. This change, 

once detected, is documented and analyzed for its implications on land 

use and agricultural sustainability. 



  

Figure 13: Example of Reforestation in Colombia 

Figure 12: Example of Reforestation in Uganda 

 

Figure 14: Example of deforestation in Uganda 

 



Observations of Land Cover Changes 

 

The analysis revealed an unexpected trend of widespread reforestation 

across several regions, contrasting with the global narrative of rampant 

deforestation for agricultural expansion. Notably, countries like Peru and 

Uganda, which are significant cocoa producers, showed minimal 

transitions from agriculture to forest, suggesting that reforestation efforts or 

natural regrowth are occurring more extensively than previously 

recognized. 

 

This methodology enables a precise and temporal-specific analysis of land 

cover changes, which is pivotal for assessing environmental changes and 

aiding policy decisions. The constraints posed by the dataset timelines 

necessitate careful handling of data beyond 2022, underscoring the need 

for updated land cover datasets for future analyses. This approach not only 

ensures the accuracy of the temporal analysis but also enhances the 

reliability of the environmental assessments derived from this study. 

The observed reforestation across cocoa-producing regions presents both 

challenges and opportunities. While it may pose short-term economic 

challenges by reducing land available for cocoa cultivation, it also offers 

long-term ecological and economic benefits by enhancing ecosystem 

health and sustainability. This complex interplay of ecological and 

economic factors should be the focus of continued research to develop 

strategies that balance environmental sustainability with economic needs. 

 

  



4.Results and Key Findings 

 

4.1 Production Anomalies 

 

The clustering of Colombian cocoa farmer data was conducted based on 

geographic coordinates (latitude and longitude), facilitating the 

identification of spatial patterns and regional differences in farming 

operations. This geo-based clustering aimed to segment the farmers into 

groups with similar geographic locations, thereby isolating operational 

variations that could impact agricultural outputs and sales behaviors. The 

optimal number of clusters was determined through the silhouette score 

method, which indicated seven clusters. 

The merged dataset, which incorporated both farmer details and sales 

data with 17841 records, was enhanced with two new columns: 'anomaly' 

and 'row-anomaly.' These columns flag anomalies at the aggregate level 

(total sales per farmer) and at the individual transaction level, respectively. 

The flags (-1 indicating an anomaly) provide a straightforward method for 

identifying and investigating outlier data points that deviate from expected 

patterns based on the dataset's historical norms. 

 

Cluster 0 

The scatter plot for Cluster 0 illustrates anomalies against the backdrop of 

total sales and hectares. It is evident that anomalies are scattered across a 

wide range of hectares, but notably, they appear at the upper extreme 

values of sales, regardless of the hectare size. 

                                                                

Figure15: Cluster 0 anomalies 

 



Cluster 1 

In Cluster 1, anomalies are similarly detected across various hectare sizes 

but are particularly concentrated at higher sales values. This cluster has 

anomalies distributed over a range of hectares, indicating that the model 

picks out both small and large landholdings where sales values do not 

conform to the typical patterns observed within the cluster. 

 

 

Cluster 2 

 

This cluster's plot shows a dense concentration of normal data points at 

lower hectares and sales, with anomalies appearing isolated and primarily 

at higher hectares with significant sales values. The presence of anomalies 

at these points may indicate exceptional cases where the yield per hectare 

is exceptionally high or possibly miscategorized sales data.                                                            

Figure 16: Cluster 1 anomalies 

 

Figure 17: Cluster 2 anomalies 



Cluster 3 

 

Anomalies in Cluster 3 are few but are positioned at higher sales values 

across a broad range of hectares. This indicates a sensitivity of the model 

to higher revenue figures, which could be due to extraordinary sales 

achievements or potential discrepancies in sales reporting. 

 

 

Cluster 4 

Cluster 4 reveals anomalies that are very sparse, suggesting that most of 

the sales data within this cluster falls within expected norms. The few 

anomalies present span a range of smaller hectare sizes but do not cluster 

around any particular sales figure, suggesting individual cases of 

discrepancies. 

                                                                          

Figure 19: Cluster 4 anomalies 

 

Figure 18: Cluster 3 anomalies 

 



Cluster 5 

The anomalies in Cluster 5 are minimal and occur at both ends of the 

hectare spectrum. This might indicate special cases where sales per 

hectare are not aligning with the general trends, potentially flagging 

unique agricultural practices or data entry errors. 

 

 

 

Cluster 6 

 

Finally, Cluster 6 shows a pattern where anomalies are again noted at 

higher sales figures, spanning a wide range of hectares. Similar to other 

clusters, these outliers could be indicative of extraordinary cases or 

discrepancies that merit further qualitative review. 

                                                           Figure 21: Cluster 6 anomalies 

Figure 20: Cluster 5 anomalies 

 



Analyzing the plots from both aggregate and individual transaction levels 

reveals a consistency in anomaly detection across clusters, as identified by 

the Isolation Forest algorithm. One notable observation across these plots is 

the repeated identification of anomalies in large-scale farms, particularly 

those with extensive hectares under cultivation. For example, in Cluster 0, 

the farm with 350 hectares is flagged as anomalous in both the aggregated 

and individual transaction analyses. This consistent flagging suggests 

potential issues such as data entry errors or misclassification, which might 

indicate the farmer's declared area being larger than what might be 

realistically cultivable or managed effectively for cocoa production. 

The presence of such anomalies at both levels of analysis underscores the 

utility of the Isolation Forest algorithm in detecting outliers that may signify 

underlying data issues or real-world phenomena such as unreported 

expansion of farmland which can have significant implications for 

sustainability assessments and compliance checks in agricultural supply 

chains. 

Moreover, the plots also show a range of anomalies across different sizes of 

land holdings, with smaller land parcels sometimes recording unusually high 

sales figures, which could indicate high productivity or discrepancies in 

data reporting. These findings can be crucial for further investigation, 

potentially leading to on-ground verification of farm sizes and production 

capacities. 

In conclusion, integrating both aggregated and individual transaction-

level anomaly detections allows for a more robust understanding of the 

data, highlighting discrepancies that warrant further investigation to ensure 

accuracy in reporting and compliance with sustainable farming practices. 

This dual-level approach enhances the research's contribution to 

developing methodologies for transparent and reliable data assessment in 

the cocoa production industry. 

The spread and concentration of anomalies in smaller farms across multiple 

clusters suggest a trend where smaller operations might struggle with 

accurate reporting or face specific challenges that lead to anomalies in 

sales data. This could be due to a lack of resources to maintain precise 

records or complexities in managing smaller-scale productions. 

The presence of high-value anomalies in clusters like Cluster 2 could 

indicate areas where economic incentives to over-report might be higher. 

Clusters like Cluster 2, showing high-value anomalies, might require deeper 

investigation to determine the root causes of such discrepancies and to 



implement measures that prevent economic exploitation or fraud. 

Regions showing frequent anomalies, especially in small farm sizes, might 

benefit from targeted audits to ensure compliance and accuracy in 

reporting. Additionally, training programs on record-keeping and data 

management could help farmers accurately report their production and 

sales. 

 

4.2 Geospatial Analysis 

 

The land cover classification analysis was conducted by cross-referencing 

the Copernicus and ESA WorldCover datasets, specifically for the years 

2020 and 2021. This allowed for a detailed examination of agricultural land 

use, deforestation patterns, and possible discrepancies in land 

classification data for cocoa farming areas across different countries. 

The initial classification showed that the majority of the areas reported for 

cocoa production were correctly categorized as agricultural land. 

However, the datasets revealed a significant proportion of land classified 

under other non-agricultural categories, including forest, settlement, bare 

lands and water bodies. These findings highlight discrepancies between 

reported farm areas and their corresponding land cover classifications, 

suggesting possible issues with land use or misreporting. 

 

A total of 1,357 farms were detected in non-harvestable areas (Forest, 

urban regions, water bodies, or barren land) out of 13,399 data points. 

These anomalies represent about 10.1% of the data, suggesting possible 

misreporting or incorrect land-use classification. The identification of these 

farms highlights a significant area of concern for cocoa production, 

particularly as non-harvestable lands should not be classified as agricultural 

under environmental regulations. This could point to data entry issues, 

misclassification, or even intentional misreporting. 

 

Additionally, the analysis revealed 59 farms operating outside designated 

country boundaries, further complicating compliance with international 

regulations. These cross-border anomalies could result from administrative 

errors, improper land registration, or intentional misreporting. With the 

European Union Deforestation Regulation (EUDR) and similar policies 

requiring strict origin and land-use verification, such discrepancies highlight 

the need for enhanced geospatial monitoring in the cocoa supply chain. 



A significant finding was the presence of 10,710 farms showing cross-

dataset discrepancies between the Copernicus and ESA datasets. This 

means over 80% of the total data points had conflicting land cover 

classifications between the two data sources. These discrepancies could 

stem from various factors, including differences in satellite imagery 

resolution, data processing techniques, or classification methodologies 

used by the two programs. For instance, one dataset may classify a region 

as forest while the other might label it as grassland, depending on the 

resolution or the classification criteria applied. It is important to note that 

these discrepancies are not solely due to mismatches in classifying non-

harvestable areas. The high percentage of discrepancies highlights the 

need for harmonizing datasets to improve the accuracy of land 

classification, especially when this data is used for regulatory compliance 

and sustainability reporting. 

 

The analysis of land cover changes from 2018 to 2022 indicated an 

unexpected trend toward reforestation rather than deforestation in some 

regions. This finding diverges from the global narrative that cocoa 

production often drives deforestation. However, the reforestation observed 

might be due to several factors, including the effect of regulations such as 

the EUDR, which may have prompted more sustainable practices or even 

led to reduced agricultural activity in some areas. 

Another potential factor influencing this trend could be the COVID-19 

pandemic, which disrupted global supply chains and might have led to a 

temporary reduction in cocoa production and land use. Farmers may have 

abandoned or reduced their farming activities due to decreased demand 

or logistical challenges during the pandemic. Consequently, land classified 

as agricultural in previous years might have been reclaimed by natural 

vegetation during this period. 

 

4.3 Economic and Business Perspective 

 

The analysis of cocoa export data from key producer countries Colombia, 

Uganda, Togo, Ecuador, and Peru reveals notable fluctuations in export 

volumes between 2018 and 2022. This period saw significant reductions in 

exports from certain countries, particularly in 2022, which coincided with an 

observable trend of reforestation in the same regions. The data allows to 

explore potential links between economic shifts, regulatory pressures such 



as the European Union Deforestation Regulation (EUDR), and changes in 

land use practices. 

 

1.Colombia: Dramatic Decline in 2022 

Between 2018 and 2021, Colombia's cocoa exports saw consistent growth, 

with a total increase of approximately 77%. However, a sharp decline of 

47.75% was observed in 2022, marking a dramatic reversal in export trends. 

Key importers like Estonia (-74.03%), Germany (-38.43%), and    Netherlands  

(-30.77%) significantly reduced their imports. This sudden drop raises 

questions about the possible impact of stricter regulations such as the EUDR, 

which could have led to decreased demand for non-compliant cocoa. 

From a business perspective, the decline in export volumes poses 

challenges for the Colombian cocoa industry. Large export markets, 

particularly in Europe and North America, have reduced their imports, 

potentially due to more stringent sustainability requirements. This reduction 

could also lead to economic hardship for farmers who may be pressured 

to adopt costly sustainability measures or face market exclusion(The 

Observatory of Economic Complexity, 2024). 

 

 

2. Uganda: Steady Growth Followed by a Major Decline 

Uganda experienced strong growth in its cocoa exports between 2018 and 

2021, with a 123.7% increase between 2018 and 2019, followed by a steady 

rise until 2021. However, a significant decline of 44.18% in 2022 mirrored the 

trend seen in Colombia. Countries like Switzerland (-99.40%), and the United 

Kingdom (-93.19%) saw drastic reductions in imports. 

Uganda's cocoa sector is integral to the livelihoods of many smallholder 

farmers, and this dramatic fall in exports could have severe economic 

implications. The decreased demand from major European markets, likely 

tied to sustainability criteria and compliance with the EUDR, could further 

exacerbate economic inequalities, especially in rural areas reliant on 

cocoa farming. There’s a need for investment in capacity-building for 

Ugandan farmers to meet the evolving international standards. 

 

3. Togo: Moderate Decline in 2022 

Togo’s cocoa exports followed a similar pattern, with steady growth 

between 2018 and 2021 but an 18.02% decline in 2022. France (-95.34%) 

and the Estonia (-92.39%) significantly reduced their imports. Unlike the 



more dramatic decreases seen in Colombia and Uganda, Togo's decline, 

while notable, reflects a more moderate shift. It is worth investigating 

whether Togo’s relatively lower decline is due to a less stringent 

enforcement of sustainable cocoa farming practices or higher compliance 

levels. 

Economically, Togo’s cocoa sector remains vulnerable to shifts in 

international trade policies. The dependence on key markets such as 

Belgium and the U.S. exposes the country’s cocoa farmers to significant risks 

if these markets continue to adopt more stringent deforestation-related 

regulations. 

 

4. Ecuador: Resilience Amid Growth 

Unlike the previous countries, Ecuador saw a continued increase in cocoa 

exports, with an 11.67% rise between 2021 and 2022. This growth was 

achieved despite reductions in imports from major buyers like France (-

62.69%) and the Austria (-55.72%). Ecuador’s ability to maintain and even 

grow its export volumes, despite global pressures for sustainability, may 

point to its relative success in meeting compliance standards, or a shift in 

trade toward less-regulated markets. 

From a business perspective, Ecuador’s resilience is notable. It suggests that 

the country has been able to navigate the challenges posed by 

sustainability regulations and may have diversified its export markets. 

However, further analysis is needed to determine whether this growth is 

sustainable in the long term, particularly as global demand increasingly 

shifts toward sustainably sourced products. 

 

5. Peru: Gradual Growth with Modest Declines 

Peru experienced gradual growth in cocoa exports between 2018 and 

2022, with a 3.98% increase in 2022. While countries like Germany (-30.45%) 

and Spain (-24.56%) reduced imports, the impact was offset by increases 

from markets such as South Korea (+48.56%) and Canada (+33.78%). 

Peru’s relatively stable export performance suggests that it has managed 

to maintain market access despite increasing regulatory pressures. This 

stability could be attributed to more established sustainability practices or 

less reliance on European markets. However, the modest decline in 

European imports indicates that the country, too, will need to continue 

investing in sustainable farming practices to maintain market share in 

regions with strict environmental regulations. 



The reforestation trends observed across several of these countries, 

particularly Uganda and Colombia, indicate a potential shift in land use 

practices. This may be influenced by international pressure to curb 

deforestation and comply with sustainability standards such as the EUDR. 

However, the reforestation trend also coincides with significant drops in 

export volumes, raising concerns about the economic impacts on 

smallholder farmers. 

It is plausible that the declining export figures reflect both a market 

response to new regulations and a reduction in the availability of 

agricultural land for cocoa production, as reforestation efforts potentially 

reduce arable land. Additionally, the data may reflect the aftershocks of 

the COVID-19 pandemic, which disrupted global trade and could have 

accelerated these shifts. 

5.Limitations and Future work 

 

5.1 Limitations 

 

While the production anomaly detection process has successfully identified 

outliers and potential discrepancies across various clusters, certain 

limitations must be considered to contextualize these results. 

 

1. Isolation Forest Sensitivity: The use of the Isolation Forest algorithm 

effectively detects outliers but is sensitive to parameter settings such as 

contamination levels and the number of estimators. Adjusting these 

parameters could lead to variations in the flagged anomalies, potentially 

affecting the consistency and accuracy of the results. A more detailed 

hyperparameter tuning process might be required for finer results. 

 

2. Lack of Ground Truth Data for Validation: Without field validation, the 

flagged anomalies remain theoretical. A significant limitation of the current 

analysis is the absence of ground truth data on the ground verification that 

could confirm whether the detected anomalies truly represent 

discrepancies in production reporting or sales data. Collaboration with 

certification bodies or field audits would be crucial for verifying the 

anomalies. 

 



3. External Factors Affecting Production: The detection process doesn't 

account for external environmental or economic factors that could 

influence production or sales figures. For instance, unusual weather 

conditions or sudden market demand could explain high sales figures from 

small farms, yet these factors are not integrated into the anomaly detection 

model. 

 

 

The geospatial analysis in this study, particularly in land cover classification 

and anomaly detection, presents some challenges and limitations that 

affect the interpretation of results and the broader applicability of the 

findings. Below are the key limitations encountered during the study: 

 

1.  Data Accuracy and Resolution: The accuracy of land cover data varies 

between datasets, and the spatial resolution of grid cells (300m for 

Copernicus and 10m for ESA) influences the ability to detect fine-scale 

changes. The discrepancies between the Copernicus and ESA datasets, 

where over 80% of data points showed conflicting classifications, illustrate 

the impact that differences in resolution and classification techniques can 

have on the results. These discrepancies may lead to misinterpretation of 

land cover changes, especially in areas where transitions between 

categories (e.g., forest to agriculture) occur within small, fragmented 

landscapes. As a result, subtle yet important changes might be overlooked, 

or false anomalies may be flagged, affecting the reliability of anomaly 

detection. 

2.  Temporal Availability of Data: The temporal aspect of the data is another 

limitation. The land cover datasets used in the study cover the years 2018–

2022, meaning that any changes occurring after this period remain 

undocumented. Given the evolving nature of land use, especially in 

regions undergoing rapid agricultural expansion or reforestation, this lack of 

recent data limits the ability to draw firm conclusions about ongoing trends. 

Furthermore, the absence of data from 2023 and 2024 makes it difficult to 

assess whether observed reforestation trends are continuing or if 

deforestation has re-emerged as a threat in these regions. 

3.  Complex Landscape Dynamics: Ecological and agricultural landscapes 

are inherently complex, and standard land cover categories may not 

adequately capture this complexity. In regions where multiple land use 

types coexist or where seasonal variations lead to temporary changes in 

land cover, the classification systems may fail to reflect the full range of 



landscape dynamics. For example, a region classified as “forest” in one 

dataset may be classified as “grassland” in another due to subtle 

differences in interpretation of vegetative cover. These complexities 

complicate the anomaly detection process, as not all discrepancies 

between datasets indicate environmental or regulatory violations. 

4. Reforestation Trends and External Factors: While the land cover analysis 

identified reforestation trends in several regions, it is essential to consider 

external factors such as the impact of the COVID-19 pandemic, which may 

have contributed to reduced agricultural activity or the abandonment of 

farms. These factors may have temporarily affected land use patterns, 

skewing the data towards reforestation without reflecting long-term trends. 

Further, the impact of economic shifts and regulatory pressure, such as 

compliance with the EUDR, may have influenced land use decisions, but 

these influences are not fully captured due to the temporal limitations of 

the data. 

5.  Geospatial Precision and Cross-Border Anomalies: In the detection of 

cross-border anomalies, geospatial precision plays a critical role. The use 

of a 1:10 million scale for country boundaries (sourced from Natural Earth) 

is highly accurate but may still allow for minor discrepancies in the 

alignment of coordinates, especially along border regions. The detection 

of 59 cross-border anomalies could be influenced by these small-scale 

errors in geospatial precision, particularly where borders are contested or 

imprecisely defined. This limitation needs to be considered when 

interpreting the implications of cross-border farming activities. 

6.  Lack of Ground-Truth Verification: The findings from satellite data and 

cross-dataset comparisons are inherently based on remote sensing 

techniques. Without ground-truth verification, it is challenging to confirm 

whether the detected anomalies accurately reflect changes on the 

ground. For example, areas flagged as non-harvestable or as showing 

discrepancies between datasets may not necessarily correspond to real-

world misreporting or environmental violations. Ground-level data, such as 

farmer reports or governmental land audits, would provide additional 

validation but were unavailable for this study. 

 

 

 



5.2 Future work 

 

Production Anomalies: 

Several avenues for future research could enhance the understanding of 

anomalies in agricultural data and improve the robustness of anomaly 

detection methodologies. To deepen the analysis, future studies should 

consider incorporating more comprehensive datasets, such as weather 

patterns, market prices, and crop yield data from comparable regions. 

Cross-referencing detected anomalies with external data can help confirm 

their validity and reveal underlying causes, such as environmental impacts 

or market fluctuations. 

Additionally, longitudinal studies that track the same data over multiple 

growing seasons would provide valuable insights into the temporal 

dynamics of these anomalies. Such studies could help determine whether 

anomalies are recurring over time, indicating systemic issues, or if they are 

isolated incidents, potentially due to data entry errors. Future research 

could also investigate the economic and operational impacts of these 

anomalies, assessing how they affect farm profitability, sustainability, and 

efficiency. 

 

Cross-Border Anomalies: 

The detection of geospatial anomalies, particularly cross-border farming 

activities, presents several opportunities for future research. Advanced 

anomaly detection algorithms, which can operate in real-time, could be 

developed to automatically detect and flag inconsistencies with 

geospatial and administrative boundaries. Cross-validation techniques that 

use multiple data sources, such as satellite imagery, can help validate 

reported coordinates and reduce the likelihood of erroneous data entries. 

Future research should also examine the socio-economic impacts of 

misreported data, especially regarding its effects on agricultural statistics, 

policy-making, and resource allocation. Research into the development of 

policy and regulatory frameworks for standardizing data collection 

protocols could improve data integrity across countries and regions. 

Additionally, educational programs for farmers and data collectors can 

help improve the accuracy of data collection, especially when using GPS 

devices. Technological improvements in GPS accuracy would further 

support the goal of precise and reliable data reporting in agricultural 



settings. 

 

Land Cover Classification: 

Future work in land cover classification can focus on enhancing verification 

methods and ensuring data accuracy. Stratified random sampling could 

be implemented to provide a comprehensive understanding of the 

dataset’s accuracy by ensuring all land cover categories are represented 

in the validation process. Automated tools that cross-reference satellite 

data with high-resolution imagery from other reliable GIS sources could 

streamline the verification process, improving efficiency without increasing 

manual labor. 

Continuous validation frameworks should also be established, 

incorporating regular updates and user feedback to catch new errors and 

discrepancies. A system that allows users to report inconsistencies in the 

data would provide an additional layer of accuracy assurance, creating a 

dynamic and responsive validation process that evolves with the dataset. 

 

Land Cover Changes: 

Several hypotheses for future research could be explored to better 

understand the implications of land cover changes, particularly 

reforestation, on cocoa production. For instance, future studies could 

investigate whether reforestation in major cocoa-producing regions 

correlates with measurable decreases in cocoa exports, impacting local 

economies. Alternatively, the ecological benefits of reforestation such as 

improved biodiversity, pollination, and soil health could be quantified to 

assess how they support long-term agricultural sustainability. 

Future studies should also consider the socio-economic adaptations of 

communities in reforested or deforested areas. Research into how these 

communities diversify economically or adapt their agricultural practices to 

maintain or increase output would provide valuable insights into the 

intersection of environmental conservation and economic viability. A 

multifaceted research approach, combining economic data analysis, 

ecological surveys, and socio-economic studies, would provide a holistic 

understanding of the impacts of land cover changes on cocoa farming 

regions. 

  



6.Conclusion 

This research aimed to develop and implement methodologies for 

detecting anomalies in agricultural data, particularly focusing on cocoa 

production in regions like Colombia, Togo, Ecuador, Uganda, and Peru. The 

primary objective was to enhance transparency, ensure compliance with 

regulations such as the European Union Deforestation Regulation (EUDR), 

and support sustainable farming practices. Through the integration of 

machine learning techniques and geospatial analysis, this thesis provides 

novel insights into the challenges and opportunities in monitoring and 

regulating agricultural supply chains. 

One of the key contributions of this research is the application of the 

Isolation Forest algorithm for detecting production anomalies. This 

methodology allowed for both aggregate-level and individual transaction-

level analysis, providing a more comprehensive understanding of 

discrepancies in sales data relative to land size. The study identified various 

anomalies in both large- and small-scale farms, suggesting potential issues 

like data misreporting, unreported farmland expansion, or operational 

inefficiencies. These findings underscore the importance of anomaly 

detection in ensuring accuracy in reporting and maintaining the integrity 

of agricultural supply chains. By flagging outliers, this methodology aids 

stakeholders in conducting more targeted investigations, which are 

essential for improving sustainability and transparency in cocoa 

production. 

Geospatial analysis played a critical role in this research, especially in 

identifying cross-border anomalies and land use discrepancies. By 

comparing satellite data from the Copernicus and ESA datasets, this study 

revealed a significant proportion of farms with cross-dataset discrepancies 

in land cover classification. These discrepancies, which could be attributed 

to different resolutions and classification methods, highlight the need for 

harmonizing satellite data to improve the accuracy of land cover 

assessments. The detection of non-harvestable land classified as 

agricultural further emphasized the importance of accurate geospatial 

data in regulatory compliance. Additionally, the identification of cross-

border anomalies where farms were reported outside of designated 

national boundaries points to possible misreporting or errors in data 

collection, necessitating the implementation of stricter data validation 

protocols. 



Another significant finding was the trend of reforestation observed in the 

land cover change analysis. While global narratives often emphasize 

deforestation in cocoa-producing regions, this study found instances of 

reforestation in countries like Uganda and Colombia. These findings raise 

important questions about the socio-economic drivers behind these 

changes, including the potential impact of regulations on farmer 

livelihoods. The correlation between reforestation and declining cocoa 

exports, particularly during the COVID-19 pandemic, suggests that factors 

such as reduced economic activity or changes in land use practices could 

be influencing these patterns. However, the lack of more recent data for 

2023 and 2024 presents a limitation, as a more up-to-date analysis would 

be necessary to fully understand the long-term effects of these land cover 

changes on local economies and global cocoa supply chains. 

The study also highlights the need for continuous improvement in data 

collection, validation, and analysis methodologies. The discrepancies in the 

land cover datasets and the challenges posed by cross-border anomalies 

underline the importance of developing more sophisticated detection 

systems that can operate in real-time. Such advancements would allow for 

quicker identification of data inaccuracies, improving decision-making 

processes related to agricultural policy, sustainability, and supply chain 

management. Moreover, integrating more advanced satellite data and 

enhancing GPS accuracy in agricultural settings would further reduce the 

occurrence of geospatial discrepancies and improve the overall reliability 

of the data. 

In conclusion, this research contributes to the growing field of agricultural 

anomaly detection by providing a framework that integrates machine 

learning, geospatial analysis, and land cover classification. By addressing 

both production and geospatial anomalies, this study offers a 

comprehensive approach to improving data transparency and regulatory 

compliance in agricultural supply chains. The insights gained from this 

research are particularly relevant for certification bodies, policymakers, 

and stakeholders aiming to ensure the sustainability of cocoa production 

while safeguarding the livelihoods of smallholder farmers. Future work in this 

area should continue to explore the economic and ecological impacts of 

land use changes, refine anomaly detection algorithms, and leverage 

technological advancements to create more robust systems for monitoring 

agricultural activities. 
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