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Introduction 
 

 

Black and Scholes published their work in 1973, followed by Merton in 1974, 

introducing the basic approach for valuing companies’ stock and debt as derivatives on the 

companies’ asset value. Since then, a vast number of different models addressing corporate 

default has been published, trying to relax the strict assumptions of the Merton model to 

better suit real-world scenarios. 

In the meanwhile, the advances in technology and research, and the increasing 

availability of data, have created a fertile environment for the growth and rapid spread of 

Machine Learning across various disciplines, including finance and credit risk. 

This work positions itself at the intersection of these developments, aiming to 

incorporate Machine Learning techniques in the Merton Model, to see if it is possible to 

enhance the model’s performance, without losing its economic meaning. In particular, this 

work studies the sensitivity of the Merton Model to how the volatility of the stocks is 

computed, checking if the performance of the model, measured through the area under the 

Receiver Operating Characteristic (ROC) curve, can be improved by using ML algorithms 

to compute the volatility of the stocks. 

Furthermore, a LSTM model, that uses the same information of the Merton Model, 

is built to challenge the latter and explore if the Machine Learning model can better 

understand the relationship between the variables and the riskiness of the companies, 

compared to the Merton Model. 

The thesis is organized as follows. The first chapter focuses on reviewing past 

literature about corporate default models. Three different approaches are taken into 
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consideration. First, the structural approach, divided into classic models, first-passage 

models and excursion models. Those models are based on the work of Merton (1974) and 

Black and Scholes (1973) and consider the companies’ stock and debt as derivatives on the 

companies’ asset value. Second, the reduced-form approach. This approach considers that 

default has an exogenous component and that it is distributed as a Poisson random variable. 

Following this approach, default cannot be predicted from the market information. Third, 

the incomplete information approach. It is a hybrid model and has the best features of both 

structural approach and reduced-form approach. The incomplete information approach 

shares with the structural approach the definition of default, while shares with reduced-

form approach the exogenous component and the fact that default cannot be predicted by 

market data. 

The second chapter aims at describing the methodology and the data used in this 

work. First, a deeper description of the Merton Model and its equations is conducted, and 

it is explained how the probability of default is computed. The second section of chapter 2 

focuses on the data, how they are gathered and how they are cleaned. Section 3 describes 

how the Merton Model is applied in practice, the different ways in which the variables 

(Debt, Market capitalization, Assetvalue, asset returns, volatility of the asset returns, and 

maturity) are estimated by practitioners, and the way those variables are estimated in this 

work, with a focus on how volatility of equity is computed (Historical volatility, 

Exponentially Weighted Moving Average volatility, Deep Learning volatility and Random 

Features volatility) and used to estimate the volatility of the asset returns. The last section 

of chapter 2 is dedicated to the LSTM model. First a brief introduction on Artificial Neural 

Networks is made, and then the architecture of the model used in the thesis follows. 

The third and last chapter shows the results. 

Follows the conclusion. 

 



 

 



 

 

 

 
Chapter 1 

Literature Review 
 

 

Starting from the last century, a vast amount of literature regarding corporate 

default prediction models has been published. Academics individuate three different 

quantitative approaches1 to analyze credit: the structural approach focuses on the cause of 

default. It interprets corporate liability as an option on the assets of the company. Some 

assumptions regarding the dynamics of the company’s assets, its capital structure and its 

debt and shareholders are made, and the company defaults if its assets are considered not 

sufficient according to some measures. The reduced-form approach instead, focuses on 

modelling the default rate. The default of a company is not restricted just to the possibility 

of the firm’s assets falling below a certain threshold, but it occurs at an exogenous rate. 

The incomplete – information approach describes a hybrid model, and it is based on the 

fact that investors have limited information. In this approach the firm defaults if its value 

falls below a determined measure (as in the structural approach), however the information 

that the investors have are lagged or noisy, meaning that they do not know the real value 

of the company assets, or they do not know the default barrier, or both. 

 

 

 

 

 

 
1 Frank J. Fabozzi: “The handbook of fixed income securities”, 7th edition. 
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1. Structural Approach 
 

Kay Giesecke2 divides the models of the structural approach in three different 

subsets:  classical approach, first-passage approach and excursion approach. 

 

 

1.1. Classic Models 
 

The bases of the structural approach are rooted in the Black and Scholes (1973)3 

model to price European call and put options. In fact, it considers the corporate liabilities 

as contingent claims on the assets of the company, while the market value of the latter is 

considered the main source of uncertainty shaping credit risk. 

The classical approach is based on the Merton model (1974)4. In his paper Merton 

considers a company which issues just two classes of claims: equity and debt. Furthermore, 

Merton assumes i) that the debt is a zero-cupon bond with maturity date T; ii) that the 

equity is a residual claim; iii) if the payment is not met at maturity, then the bondholders 

take over the company; iv) the firm cannot issue new senior claims, pay dividends or 

repurchase its own shares prior to the maturity date. 

As a consequence, the value of the company in any point in time t can be written 

as: 

 

𝑉𝑡 = 𝑆𝑡 + 𝐵𝑡 (1) 

 

Where: 

 

• St is the value of the equity at time t; 

 
2 Kay Gieseke: “Credit risk modeling and valuation: an introduction”, 2004. 
3 Fisher Black and Miron Scholes: “The pricing of Options and Corporate Liabilities”, Journal of political economy, 

1973 
4 Robert C. Merton: “On the pricing of Corporate Debt: The Risk Structure of Interest rate”, Journal of Finance, 1974 
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• Bt is the value of the bond D discounted at time t. 

 

The classical approach assesses the default of the company only at maturity, the particular 

path taken by the value V during the time span t to T, where T is the maturity, is not 

important. What matters in the Merton model is the value of the company at maturity: if at 

maturity date T, the value of the firm VT is below D, then the corporation is bankrupt, the 

bondholders have taken over and the value of the equity is equal to zero.  On the other 

hand, if VT > D, the bondholders are paid, and the value of the equity is equal to VT – D.  

Consequently, the value of the debt and equity at maturity can be summarized by the 

following equations: 

 

𝑆(𝑇) = ma x{𝑉𝑇 − 𝐷, 0} (2) 

𝐵(𝑇) = min{𝐷, 𝑉𝑇} = 𝐷 − ma x{ 𝐷 − 𝑉𝑇 , 0} (3) 

 

As it is clear from the above equations, the value of the equity is equivalent to the value of 

a long European call option with strike price D and maturity T. On the other hand, the value 

of the bond is equivalent to a portfolio composed of a loan and a short position on a 

European put with strike price D and maturity T. 

 Determining the value of equity and credit-risky debt therefore involves pricing 

European options. 
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Figure 1: Default in classical approach. 

 

 

1.2. First-passage Models 
 

The first – passage approach is indeed derived from the work of Black and Cox 

(1976)5. 

As said above, in the classical approach the path of the value of the company does 

not matter from time t to maturity T, and it can contract to almost zero without triggering 

default. However, this is not realistic, since the bondholders usually include safety 

covenants, contractual provisions which give the debtholders the right to force the 

reorganization of the company or bankruptcy if its value falls below a certain barrier. 

The first-passage approach is a generalization of the classical approach since it 

allows the firm to default at times different than the debt maturity, that is whenever V falls 

below the barrier level.  

 
5 Fisher Black and John C. Cox: “Valuing corporate securities: some effects of bond indenture provisions”, The Journal 

of finance, 1976. 
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If we take in consideration 𝑀𝑡 = min 𝑉𝑠 for s ≤ t as the historical low of the firm 

values, and consider the default barrier to be equal to H, with H constant and equal to D, 

then if the value of the company over the time span T – t never falls below the barrier, that 

is if MT > H, the bondholders receive D and the equity holders will receive VT – D . On the 

other hand, if over the time span taken into account the value of the firm falls below the 

barrier, with MT < H, then the bondholders will take over the company, while the 

shareholders will receive nothing.  

The behaviors of both equity and debt, therefore, is similar to that of a European 

barrier option6. More in particular, the equity position is equivalent to a long position in a 

down-and-out call on firm assets, with a strike price equal to D and barrier value equal to 

H. The value of the debt is equal to the difference between the value of the firm and the 

value of the equity. 

If, conversely, H, the default barrier, is lower than the face value of the debt D,  

H < D, then we have to take in consideration three different scenarios:  

 

• when MT > H and V(T) > D, then the firm does not default, the debtholders receive 

D, while the shareholders get the remaining value VT – D; 

• when MT > H and VT < D, then the company defaults at maturity T; 

• when MT < H, then the company defaults at time t, before maturity. 

 

It is indeed easy to see how, in the case of the first-passage approach, the probability of 

default is higher than in the case of the classical approach, since a firm can both default 

before and at maturity. 

 

 
6 John C. Hull and Sankarshan Basu: “Option, Futures and other derivatives”, 9th edition. 
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 Figure 2: Default in First-passage approach. 

 

 

1.3. Excursion Models 
 

Differently from the first passage approach, where the debtholders take over the 

company as soon as the value of the firm falls below the value of the barrier, the excursion 

approach takes in consideration the time given to the company to reorganize the operations. 

If the restructuring is successful, then the company does not default and continues to 

operate. On the other hand, if the restructuring is not successful, then the firm is taken over 

by the debtholders who liquidate it. 

 

 

2. Reduced – form Approach 
 

In the reduced – form models, also known as the intensity models, the default of 

the company happens without warning. Contrary to structural models, default cannot be 
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monitored using market or fundamental observables, indeed, it has an exogenous 

component that is independent from all the default free market information.  

The reduced – form models start from the idea of describing the default time τ as a 

first jump time in the Poisson stochastic process. A Poisson process is a type of stochastic 

process that models the occurrence of events in a finite interval of time. It has two main 

characteristics that are: 

 

• Memorylessness7: it is a characteristic of exponential distribution. Since the times 

between jumps in a Poisson process are exponential random variables, the time of 

the next event has the memorylessness property, meaning that it does not depend 

on any past event. 

• Stationary increments: the distribution of the increments depends only on the length 

of the time interval and not on the position in time. 

 

 

Figure 3: Path of a Poisson process, with S1, S2 ... St the arrival times 

 
7 Steven E. Shreve: “Stochastic Calculus for Finance II: Continuous – Time model”. 
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To calibrate the intensity rate, different types of Poisson processes can be used, 

from the time homogeneous Poisson processes to the more complex stochastic intensity 

Poisson processes. Usually,8 the default intensity rate is described using three different 

Poisson processes. The simplest one is the time homogeneous Poisson process, that is a 

{Mt, t>0} unit – jump increasing, right continuous process with stationary independent 

increments and null first condition that is M0=0. Since the times between jumps are 

independent and identically distributed as an exponential random variable, and in particular 

γ τ1 is a standard exponential random variable, we have that: 

 

Q{τ1  >  t}  =  𝑒−𝛾𝑡 (4) 

 

with Q the neutral probability measure.  

On the other hand, the probability that the company defaults in the arbitrary small 

fraction of time dt, given that it has not defaulted yet, is equal to γdt. 

The second type of Poisson process used in the intensity models is the 

inhomogeneous Poisson process, and it is particularly useful to extract implied default 

probabilities from CDS (Credit Default Swaps). An inhomogeneous Poisson Process is a 

stochastic process with deterministic time – varying intensity rate γ(t). Thus, unlike in the 

homogeneous Poisson process, where the intensity rate was constant, here the intensity rate 

changes with time. 

If we consider Nt the time inhomogeneous Poisson process, and Mt as the standard 

Poisson process with intensity rate equal to one, then we have that: 

 

𝑁𝑡 = 𝑀Γ(𝑡) 

with 

(5) 

Γ(𝑡) = ∫ γ𝑢𝑑𝑢
𝑡

0

 
(6) 

 
8 Damiano Brigo and Fabio Mercurio: “Interest rate Models – Theory and Practice”, and Kay  

Gieseke: “Credit Risk modeling and valuation: an introduction”. 
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This basically means that a time inhomogeneous Poisson process can be viewed as 

a standard Poisson process with changed timeline. For a time – inhomogeneous Poisson 

process the probability of survival is given by the following formula: 

 

𝑄(τ > 𝑡) = 𝑒𝑥𝑝( −Γ(𝑡)) = 𝑒− ∫ γ(𝑢)𝑑𝑢
𝑡

0  (7) 

 

The last type of Poisson process usually used to in reduced – form models, or 

intensity models, is the Cox process, also called the doubly stochastic Poisson process, so 

called due to the fact that there two different sources of randomness since the intensity is 

both time – varying and stochastic. 

In a doubly stochastic Poisson process the probability of survival is given by the 

formula: 

As can be seen from the formulas 1, 4, 5, survival probabilities and discount factors 

have the same proprieties, with the intensity rate substituted to the risk – free interest rate. 

The analogy survival probabilities/discount factor is due to the exponential distribution of 

jump times, and it is particularly useful since it allows to use much of the interest rates 

theory in credit default modeling. 

 

 

3. Incomplete – information Approach 
 

The incomplete-information models are hybrid models that take the best features 

of the two approaches described above, the structural approach and the reduced-form 

approach. Incomplete-information models share with structural models the definition of 

default. The classical definition of default is expressed in Black and Scholes (1973), and 

Merton (1974), and states that a firm defaults if at debt maturity the value of the company 

VT is below the face value of the debt D. Following the definition of default given by the 

first passage approach, Black and Cox (1976), a company defaults if its value Vt falls below 

a certain threshold H. 
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On the other hand, incomplete – information models share with the reduced – form 

models the inaccessibility of τ, the default time. Indeed, in structural – models, if the assets 

cannot jump, the default time is predictable. Consequently, model credit spreads go to zero 

as the debt approaches maturity, meaning that there is no short – term credit risk, and the 

short term spread between corporate bonds and Treasuries is zero. This result conflicts with 

reality, where, instead, credit spreads are significantly positive. In the intensity models’ 

default is exogenous and τ is not predictable. This uncertainty causes the investors to ask a 

premium over the Treasuries yields, since they are facing short – term credit risk. 

Incomplete – information models were introduced by Duffie & Lando (2001)9, and 

Giesecke (2001)10.  

In Giesecke 2001 the role of the time – dependent revelation of information to 

investors has been studied. The author models the evolution of the information available 

to investors through a filtration. A default model is infact described by two elements that 

are: the default definition and the model filtration 𝐹 ⊆ 𝐺 that describes the information that 

are available to investors at any time. The basic idea behind the incomplete information 

model developed by Giesecke is that, taking in consideration the default definition given 

in the first passage approach, the model inputs obtained from corporate Financial 

Statements, such as company assets and liabilities, may be noisy or lagged.  

In a similar vein to Giesecke (2001), Duffie & Lando (2001) also deal with the 

problem of incomplete information. However, the two authors, in a reduced – form models 

fashion, give the conditions for the existence of an intensity and compute it, taking into 

consideration that the incompleteness of the information comes from the assets side. 

However, as pointed out by Giesecke, there are models with inaccessible time to default 

but with no intensity, for example first passage models with barrier that is not observable. 

Thus, in Giesecke (2001) the author provides a generalized reduced – form representation 

that solves all the incomplete – information models using the trend of a default model. 

 

 
9 Darrell Duffie and David Lando: “Term structures of credit spreads with incomplete accounting  

Information”, 2001. 
10 Kay Giesecke: “Default and Information”, 2001. 





 

 

 

 

 
Chapter 2 

Methodology and Data 
 

 

The aim of this thesis is to study if it is possible to increase the performance of the 

Merton Model using Machine Learning techniques, in particular Deep Neural Network. 

The thesis first studies the sensitivity of the model to how the volatility of the stocks is 

computed, checking if the performance of the model, measured through the area under the 

Receiver Operating Characteristic (ROC) curve, can be improved by using ML algorithms 

to compute the volatility of the stocks. Secondly the thesis checks if a LSTM (Long – Short 

Term Memory) algorithm can better classify the riskiest companies given the same 

variables used in the Merton Model. 

 

 

1. Application of the Merton Model 
 

In this thesis the simplest of the structural models has been used, that is the Merton 

Model. As explained in chapter 1, section 1.1, the MM implies that the firm has issued just 

equity and a zero cupon bond, and that it defaults only at maturity if the value of its assets 

is lower than the value of its debt. Furthermore, the model assumes that the asset value of 

the firm follows a Geometric Brownian Motion (GBM): 
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𝑑𝑉𝑎 = μ𝑎𝑉𝑎𝑑𝑡 + σ𝑎𝑉𝑎𝑑𝑊 (8) 

 

The model then applies the Black and Scholes formula to compute the value of the 

firm’s equity as a call option on the company’s asset value. 

 

𝐸 = 𝑉𝑎𝑁(𝑑1) − 𝐾𝑒−𝑟𝑇𝑁(𝑑2) (9) 

 

The probability of default is given by the equation: 

 

𝑃𝐷 =  𝑁(−𝐷𝐷) (10) 

 

With DD, the distance to default, given by the formula: 

 

𝐷𝐷 =
ln (

𝑉𝑎

𝐷 ) + [μ𝑎 − 0.5σ𝑎
2]𝑇

σ𝑎√𝑇
 

(11) 

 

Neither the assets value of the company, its volatility nor the expected return of the 

assets can be observed, thus the three variables need to be estimated. 

In literature, different methods have been used to compute them. The first method, 

and also the approach used in this thesis, is the one proposed by Jones et all. (1984)11, 

where the company’s assets value and its volatility are computed solving a system of two 

equations. From (6) we know that the value of the equity is equal to the value of a call 

option with underlying Va, strike price D, volatility σ𝑎, interest rate µa and maturity T, thus 

we can write: 

 

E = c(𝑉𝑎, 𝐷, 𝜎𝑎 , 𝑇, µa) (12) 

 

 
11 Philip E. Jones, Scott P. Manson and Eric Rosenfeld: “Contingent Claims Analysis of Corporate 

Capital Structures: an empirical Analysis”, 1984. 
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Using Ito’s lemma for equation (9) then we have:  

 

𝑑𝐸 =
𝜕𝑐

𝜕𝑡
𝑑𝑡 +

𝜕𝑐

𝜕𝑉𝑎
𝑑𝑉𝑎 +

1

2

𝜕2𝑐

𝜕𝑉𝑎
2

𝑑𝑉𝑎
2 

(13) 

 

Substituting equation (8) in equation (13) we have the following: 

 

𝑑𝐸 =
𝜕𝑐

𝜕𝑡
𝑑𝑡 +

𝜕𝑐

𝜕𝑉𝑎
μ𝑎𝑉𝑎𝑑𝑡 +

𝜕𝑐

𝜕𝑉𝑎
σ𝑎𝑉𝑎𝑑𝑊 +

1

2

𝜕2𝑐

𝜕𝑉𝑎
2 σ𝑎

2 𝑉𝑎
2𝑑𝑡 

 (14) 

 

Since the only non-deterministic term of equation (14) is 
𝜕𝑐

𝜕𝑉𝑎
σ𝑎𝑉𝑎𝑑𝑊, we can write: 

 

𝐸σ𝑒 =
𝜕𝑐

𝜕𝑉𝑎
σ𝑎𝑉𝑎 

(15) 

 

Thus, solving simultaneously equation (15) and equation (9) we get the company’s assets 

value and its volatility, while the expected return of assets needs to be estimated separately. 

 In Crosbie and Bohn (2003)12, the authors point out that the relationship described 

in equation (15) holds only instantaneously, and that the leverage moves too much for the 

equation to give a reasonable result. Thus, they implement an iterative process to compute 

the three unobservable variables. As explained in Bharath and Shumway (2008)13, the 

iterative process consists in giving an initial guess for the value of the assets’ volatility and 

substituting it in equation (9) to compute the assets value of the company for every time 

step. From Va is then computed the implied log returns of the assets (µa), and from them a 

new estimate of σa is derived. The process is carried out until the estimates for σa converge, 

that is until the difference between σa
x and σa

x-1 is negligible. 

 
12 Peter Crosbie and Jeff Bohn: “Modeling Default Risk”, 2003. 
13 Sreedhar Bharath and Tyler Shumway: “Forecasting Default with the Merton Distance to Default 

Model”, 2008. 
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 A third approach for estimating the assets value, volatility of the assets and 

expected returns of the assets is the one proposed by Duan (1994)14, who suggested to use 

a Maximum Likelihood approach to compute simultaneously the three variables. 

 

 

2. Data 
 

To evaluate the performance of the models, information about default events of 

non-financial companies between 2000 and 2023 is collected from the Compustat database.  

Financial companies (from sic 6000 to 6799) are excluded from the computations due to 

their particular Financial Statements, characterized by high leverage and different 

regulations. Using a methodology similar to the one used by Forssbæck and Vilhelmsson 

(2017)15, companies are considered defaulted if they were delisted (DLRSN in Compustat 

database) due to Chapter 11 (code 02 in Compustat), and Chapter 7 (code 03 in Compustat).  

Regarding the variables needed in the Merton Model, current liabilities (DLC) is 

considered as short – term debt, while, for long – term debt the variable DLTT is taken into 

consideration. Similarly, the total number of shares outstanding is given by the variable 

CSHO. For the daily prices, the adjusted close price is computed using the following 

formulas: 

 

𝑎𝑑𝑗 𝑐𝑙𝑜𝑠𝑒 =
𝑝𝑟𝑖𝑐𝑒

𝑎𝑑𝑗 𝑓𝑎𝑐𝑡𝑜𝑟
 

(16) 

 

 Finally, for the risk-free rate, the DGS1 series from the Federal Reserve is used, 

that is the 1-year treasury bill rate. 

 
14 Jin – Chuan Duan: “Maximum Likelihood estimation using price data of the derivative contract”, 

1994. 

 
15 J. Forssbæck and A. Vilhelmsson: “Predicting Default – Merton vs Leland”, 2017. 
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For all the companies, 5 years of data prior to the defaulting event, considered as 

the day of delisting, are taken into account. Companies with missing accounting or equity 

data are discarded.  

In this way, the database of defaulting companies is composed of sixty-nine firms. 

This group of defaulting companies is then compared to a controlled group of sixty-nine 

non-defaulting companies that operated in the same period16. 

 The short-term debt, long term-debt and shares outstanding data are annual 

information, while the prices are daily. In order to overcome this problem a cubic spline 

interpolation was used, so to have a function that smoothly incorporates the changes that 

yearly data face between one year and the other.  

Weekly returns are computed as the sum of the daily log returns using the following 

formula: 

 

𝑟𝑡 =  ∑ 𝑟𝑖,𝑡

𝑛

𝑖

 
 

(17) 

 

With ri,t the i-th daily return of week t, computed as the log difference of the daily prices, 

and n the number of trading days during week t. Similarly, the annualized realized volatility 

at week t is computed as: 

 

𝑟𝑣𝑡 =  √
252

𝑛
 ∑ 𝑟𝑖,𝑡

2

𝑛

𝑖

 

 

(18) 

  

 Similarly to Merxe Tuleda and Garry Young (2003)17, for each company, and for 

each estimate of volatility used, the PDs (probabilities of default) are computed on a weekly 

 
16 For a company defaulted in 2001 a non-defaulting firm which operated in the year 1995 – 2000 

in the same industry was selected. 
17 Merxe Tuled and Garry Young: “A Merton-model approach to assessing the default risk of UK 

public companies”, 2003. 
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basis using a look back window of four years. Thus equations (9) and (15) are 

simultaneously solved to get the assets value and the volatility of assets, that are then used 

to compute the distance to default and the PD using respectively equation (11) and (10). 

For each firm, the PDs are computed the 52 weeks preceding the 1 – year to default date18   

with every estimate of volatility (historical, EWMA, Deep Neural Networks and random 

features) and then the average of this PDs is used as measure of 1 – year ahead default 

probability. 

Variables count mean std min max

H vol Historical volatility 69 77.51% 39.23% 27.41% 212.95%

EWMA vol EWMA volatility 69 107.78% 58.03% 15.29% 246.12%

DNN vol Deep Neural Network volatility 69 87.55% 42.86% 20.94% 235.21%

RF vol Random Features volatility 69 85.70% 43.80% 26.99% 219.21%

MKT cap Market capitalization 69 62.118      96.645      0.484    468.602    

D Debt 69 167.100   322.803   -          1,681          

rf risk - free rate 69 1.86% 1.62% 0.10% 6.11%  

Table 1: defaulting companies' descriptive statistics 

The descriptive statistics of defaulting companies are shown in the table above, 

while for non – defaulting companies are presented in the table below. 

Variables count mean std min max

H vol Historical volatility 69 63.66% 66.91% 14.29% 321.98%

EWMA vol EWMA volatility 69 50.21% 35.48% 18.13% 201.74%

DNN vol Deep Neural Network volatility 69 62.26% 62.85% 15.01% 320.28%

RF vol Random Features volatility 69 61.44% 61.27% 14.33% 304.40%

MKT cap Market capitalization 69 20,275   43,804   0.19       262,825    

D Debt 69 1,363      2,001      -          7,742          

rf risk - free rate 69 1.87% 1.62% 0.10% 6.11%  

Table 2: non - defaulting companies' descriptive statistics 

 

 

 

 

 
18 If a company defaulted May 2001, the 1 – year to default date is considered 31 December 2000. 
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3. Variables Estimation 
 

This section contains the refinements that are needed to apply the Merton Model in 

practice.  

 

 

3.1. Debt, Expected Returns and Maturity 
 

One of the biggest issues when dealing with the Merton Model in practice is the 

amount of debt that is relevant to trigger a potential default and its maturity. One of the 

assumptions of the MM is that the company issues a zero cupon bond with a specified 

maturity T. However, in practice usually companies have different types of debt with 

different maturities. Following the literature (Afik et all.19,  Bharath and Shumway, Crosbie 

and Bohn) the maturity is assumed to be one year. On the other hand, the amount of debt 

that could trigger default during a one-year time step is a not trivial question. As pointed 

out by Afik et all., taking total liabilities of the company would be inappropriate when not 

all of them are due in one year, since the firm could still be solvent even if its assets value 

falls below the total debt. At the same time considering just short-term liabilities would not 

be sufficient, since often debtholders put up covenants that force the company to serve 

them first if the firm’s value deteriorates. Crosbie and Bohn highlighted the fact that the 

value of the assets at which usually companies default lies somewhere between the short – 

term liabilities and the long – term liabilities. The value of D is therefore given by: 

 

𝐷 =  𝑆𝑇 +  𝑘 ∙ 𝐿𝑇 (19) 

 

Where k is a constant between zero and one. In this thesis k is chosen to be equal to 0.5. 

 
19 Zvika Afik, Ohad Arad, Koresh Galil: “Using Merton model for default prediction: An empirical 

assessment of selected alternatives”, 2015. 
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 Since the two equations system has been chosen to derive the assets value and 

volatility of the assets, the expected returns of the assets needs to be estimated separately. 

In Campbell et all., to limit the noise, a constant market premium has been chosen, and the 

expected return of firm’s assets is given by: 

 

μ𝑎 = 𝑟𝑓 + 6% (20) 

 

In their work Afik et all. take into consideration several alternatives. The first two 

alternatives use a CAPM approach, the first one with a constant market premium, while 

the second one with a variable market premium, estimated for the historical excess returns 

of the index for the previous year. The return of the assets is therefore given by: 

 

μ𝑎 = 𝑟𝑓 + β𝑎(𝑟𝑀 − 𝑟𝑓) (21) 

 

where βa is the asset beta. Other alternatives assume simply that the expected assets return 

is given by the historical equity returns of the previous year, or that it is equal to the 

maximum between the historical equity returns of the previous year and the risk – free rate, 

since taking into consideration just the former may bring up some problems due to the fact 

that they can result negative. In this work, the expected assets return is assumed to be equal 

to the risk free – rate, thus: 

 

𝜇𝑎 = 𝑟𝑓 (22) 

 

 

3.2. Equity Volatility 
 

The estimation of equity volatility and the sensitivity of the model to changes in 

how it is computed is the core of this thesis. 
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In most past literature, to estimate equity volatility is used the historical volatility. 

However, as pointed out by Afik et all., the use of historical volatility has some drawbacks, 

the primary one being the fact that it is backward looking estimate, while a forward looking 

would be preferable.  

For this reason, different models to compute future equity volatility for the 52 

weeks preceding the 1 – year to default date have been implemented here and their 

performances in the MM is compared with that of simple historical volatility. In particular, 

in addition to historical volatility, three different models to compute σe have been 

implemented here: the Exponential Weighted Moving Average (EWMA) model, the 

random features model and the Deep Neural Network model. 

The EWMA model was first suggested by the RiskMetrics – Technical Document 

(1996)20. The simple recursive formula is given by the following: 

 

σ𝑡+1
2 = (1 − λ)𝑟𝑡

2 + λσ𝑡
2 (23) 

 

Where 1 – λ is the decay parameter, indicating the speed at which the weights decrease, 

while λ is the persistence parameter, that is how sticky the variance is. Given those 

definitions, it is easy to understand which characteristics of volatility the EWMA tries to 

replicate. In general, market volatility has four different properties that a correct volatility 

measure should replicate. These properties are:  

 

• heteroscedasticity, meaning that volatility changes over time;  

• time clustering, meaning that high volatility periods tend to cluster together; 

• long – run mean reversion, meaning that volatility tends to come back to its long – 

run mean;  

• asymmetry, that means that market volatility tends to surge more when returns 

decrease than when they increase.  

 

 
20 J. Longerstaey, M. Spencer: “RiskMetricsTM—Technical Document”, 1996. 
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The EWMA model, through its parameters, can replicate two characteristics that are time 

varying and time clustering. 

 There are several ways to choose lambda for the EWMA model. In RiskMetrics 

(1996) the authors suggest using a persistence parameter of 0.94 for daily data and 0.97 for 

monthly data. Other than that, it is possible to compute λ by using Maximum Likelihood, 

Minimum Root of the mean squares of forecast errors, matching the desired “half-life” or 

choosing the desired “effective history”.  

In this thesis the latter method has been chosen to pick the right lambda. The 

“effective history” determines how much historical data the model considers relevant to 

compute future volatility, thus the lower the “effective history” the higher are the weights 

on recent observations. In particular, in this thesis, the “effective history” (N) is chosen to 

be equal to seven weeks. The formula to compute λ from the “effective history” is given 

by the following: 

 

λ =
𝑁 − 1

𝑁 + 1
 

(24) 

 

 Random Features is a Machine Learning technique usually used to approximate a 

kernel method. Often, the relation between a selected variable and its features is a non – 

linear relationship, and the value of the selected variable cannot be forecasted using 

common linear techniques, such as linear regression, ridge regression or lasso regression. 

Therefore, the main idea behind kernel methods is to map the features of the data into a 

new feature space where the aforementioned non – linear relationships can be represented 

in a linear form, and thus detected by simple linear regressions. 

 

𝜙: ℝ𝑑 ⟶ ℱ (25) 

 

The problem with the kernel method is that it can be computationally expensive, since the 

dimension of ℱ, the new feature space, can be much higher, or even infinitive, than the 

original input space.  
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 In their work Rahimi and Recht (2007)21, in fact explain that methods that use the 

Kernel matrix, despite quite attractive since they can approximate any function, perform 

poorly in terms of efficiency if compared to linear models, such as regularized regressions 

(Ridge regression and Lasso regression). Thus, the authors propose a way to exploit the 

advantages of both methods by mapping the data into relatively low – dimensional 

randomized features space, and then use regularized regressions. 

In this thesis, to predict volatility, one hundred thousand random features are 

generated. These features are created by first projecting the data into a lower – dimensional 

space using random projections drawn from a normal distribution. Then non – linear 

transformations are applied to the projections. In this case sinusoidal functions are used for 

non – linear transformations. In particular, fifty thousand random projections are mapped 

using the sin function, and the remaining fifty thousand are mapped using the cosin 

function. Finally, these random features are used as inputs to a ridge regression model to 

predict the target variable. 

The third method used in this work to forecast volatility is a Deep Leaning model22. 

Deep Learning is a branch of Machine Learning that puts the emphasis on learning relations 

from data. Usually, these relations are learned through artificial neural networks, that are 

mathematical models inspired by biological neurons and by how animal brains work to 

perform complex tasks. The first ANNs (Artificial Nural Networks) model was introduced 

in 1943 by Warren McCulloch and Walter Pits23. During the recent years, due to the 

availability of large dataset to train the models, much larger computational power for the 

CPUs, and also improvement of training algorithms (introduction of back propagation 

algorithms), there has been a renewed enthusiasm toward ANNs. Deep learning algorithm 

can perform many complex tasks by mapping the inputs to the targets thanks to what it 

learned by observing many examples of inputs and targets. The learning process is carried 

 
21 Ali Rahimi and Ben Recht: “Random Features for large – scale Kernel Machine”, 2007. 
22 More on Machine Learning can be found in T. Hastie, R. Tibshirani and J. Fridman: “Element of 

Statistical Learning” and in A. Géron: “Hands on Machine Learning with Scikit – Learn, Keras and 

TensorFlow”. More focused on Deep Learning is instead F. Chollet: “Deep Learning with Python”. 
23 W. McCulloch and W. Pits: “A Logical Calculus of Ideas Immanent in Nervous Activity”, 1943. 
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out thanks to a sequence of data transformations each happening in different layers of the 

model. A Deep Learning model is infact composed of many layers:  

 

• the first layer is called the input layer, and its dimension depends on the dimension 

of the data; 

• the hidden layers are where the transformations occur through the activation 

functions. Nonlinear activation functions are used so that complex relationships 

between the data can be found, and the model adjust the weights so to minimize the 

objective function (such as MSE for regression or Cross Entropy for classification 

problems). The number of hidden layers determines the depth of the model, and it 

can range from a few layers to hundreds or thousands of them. The width of each 

layer depends on the number of neurons on each layer. 

• Finally, the last layer is called the output layer, and it contains the forecasted values. 

Its size and whether an activation function is applied depend on the type of task the 

model is performing. For regression tasks, activation functions are typically not 

used (or a linear activation is applied) to produce continuous values. For 

classification tasks, the sigmoid function is often applied for binary classification 

to constrain the output between 0 and 1, while the softmax function is used for 

multi-class classification to produce probabilities for each class. 
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Figure 4: Vanilla ANNs structure 

The figure above summarizes the structure of a vanilla (just one hidden layer) Neural 

Networks. The hidden layer neurons represent a linear combination of the input features, 

and followed by an activation function that introduces nonlinearity: 

 

𝑍𝑚 = 𝜎(𝛼0 +  𝛼𝑚
𝑇 𝑋𝑚) (26) 

 

with σ the activation function. Similarly, the neurons in the output layer are a linear 

combination of the Zm from the hidden layer, processed by the output function, 𝑔: 

 

𝑌𝑘(𝑋) = 𝑔(𝛽0𝑘 +  𝛽𝑘
𝑇𝑍) (27) 

 

As already mentioned before, in case of regression the output function is usually chosen as 

the identity function, so that nonfinal transformation is applied. 

The figure below shows the output of three among the most common activation 

functions (Sigmoid, ReLu, and Tanh). 
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Figure 5: plot of the output of Sigmoid, ReLu and Tanh functions 

 For this work, past returns and past volatilities are chosen as input features to 

forecast future weekly volatility for each company. The model is composed of 2 hidden 

layers and each layer has a width of 64 neurons. The ReLu function (max{x, 0}) is chosen 

as activation function, and the model is trained over 200 epochs with and early stopping  

rule to limit overfitting, and a learning rate of 0.001, that is the default learning rate in the 

Adam optimizer. Fine tuning of the model hyperparameters is not carried out in this work 

for two main reasons:  

 

• simplicity and computational constraints, infact, fine tuning each hyperparameter 

of the model for the 138 companies used in this work would increase the running 

time and computational cost exponentially;  

• risk of overfitting: fine tuning each hyperparameter for each company might cause 

the model to adapt to specific company data, increasing overfitting and limiting 

generalization across different companies. 
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4. Long Short – Term Memory Model 
 

Traditional models, such as the Merton Model in this work, may not detect 

complicated patterns and relationships between the variables, dependencies that instead 

can be captured by Machine Learning models. For this reason, in addition to a Merton 

Model, is also built a LSTM (Long Short – Term Memory) model, fed with the same 

variables of the MM.  

LSTM algorithms are types of Recurrent Neural Networks (RNNs). One of the 

characteristics of the Deep Learning model described above is that it does not have 

memory, each input is processed independently, and eventually, the sequential order of the 

features is ignored. This is in contrast to what happens with biological intelligence, where 

information is processed incrementally, meaning that past information is updated with new 

information and inputs. RNNs are built on the same logic. The activations do not flow only 

in one direction, from input layer to out layers, but the output from the previous examples 

is also taken into consideration, and in this way RNNs manage to have memory of what 

happened in the past. This feature makes them particularly suitable for time series analysis. 

However, the simple Recurrent Neural Networks face one problem: it suffers from 

unstable gradient, meaning that it can either explode or vanishing. Hochreiter and 

Schmidhuber studied the theoretical reasons behind this problem, and they came up with a 

solution in 199724, introducing the Long Short Memory cell. The difference between a 

LSTM cell and a cell of a simple RNNs is that the state of the former, that is a function of 

some inputs and the state at the previous time step, is split into two vectors: h(t), that is the 

short-term state, and c(t), that is the long-term state. In a LSTM cell, the long-term state 

goes through 2 different gates: the forget gate, where it drops some information (some 

memories), and the input gate, where instead other information is added into the vector, 

that is the starting point for the long – term state at the next step. In addition, after the input 

gate, a copy of the long – term state is processed by a tanh function and passed through 

another gate, called the output gate that produces the short – term state. 

 
24 S. Hochreiter and J. Schmidhuber: “Long short-term memory”, 1997. 
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Figure 6: LSTM cell diagram25 

The figure above shows the typical structure of an LSTM cell. The input vector (xt) 

and the short-term state vector (ht-1) are processed by four different layers. The main layer 

is the one that outputs ͠ct, because it is where the current input and the short-term state are 

analyzed. The other three layers are used for the gates. Since they are sigmoid functions, 

their output ranges between 0 and 1, thus they decide, respectively, which information 

should be forgotten (ft function), which information coming from the main layer should be 

added to the long-term state c (it function), and which information should be sent to the 

short-term state (ot function). 

In this work a LSTM model is compared to the MM to see if, using the same 

variables, it can better understand which are the riskiest companies, using a look back 

window of 52 weeks. Since the number of defaulting and non-defaulting companies is low 

(138 firms in total), bootstrapping is used to increase the size of the sample to 1000 

companies. The model is composed of an input layer with size six (equal to the number of 

features used), two hidden layers with width equal to four, and one output layer. Differently 

 
25 The figure was taken from Aurélien Géron: “Hands-On Machine Learning with Scikit-Learn, 

Keras, and TensorFlow”. 
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from the models used to forecast volatility, the LSTM model will not perform a regression 

problem, but instead a classification problem. For this reason, a Binary Cross – Entropy 

(BCE) is used as a objective function, instead of a Mean Squared Error. Similarly to the 

DNNs model used to predict volatility, the LSTM model is trained over 200 epochs, with 

a learning rate of 0.001. Furthermore, to limit the impact of randomness and obtain more 

reliable and stable predictions, the final results are given by the average of the output of 

ten different seeds. A seed is in fact a fixed starting point of a pseudorandom number 

generator, and it ensures the reproducibility of an experiment. In the context of LSTM 

model, a seed is responsible for some random processes, such as weight initialization and 

data shuffling. Thus, averaging over 10 different seeds limits the sensitivity of the output 

of the model to outlier (too good or too bad) initializations or data shuffling. 

 





 

 

 

 
Chapter 3 

Results 
 

 

The aim of this chapter is to show the results of the analysis done in this work. First 

was evaluated the sensitivity of the Merton Model to changes in how equity volatility is 

computed. As explained by Afik et all., valuation of the model can be carried out by two 

different methods. The first one being the Model’s Power, that is how good is the model at 

ranking the observations, the second method being the Model’s Calibration, that is the 

goodness of the predictions made and how they fit reality. This thesis focuses on the first 

method; thus, model A would be better than model B if it can better rank the companies 

based on their riskiness. For this purpose, the ROC curve and AUC are used, since they 

can evaluate a model without the need for default thresholds. The idea is to do a horse race 

between the four models, if the curve of one model is always above the curves of the other 

models, then the former is a superior model. If the curves cross, then the Area Under the 

Curve can be used to evaluate them. Furthermore, the non-parametric test of DeLong26 is 

used to check if the AUCs are significantly different. 

Secondly, using the same method, is evaluated the performance of the LSTM model 

against the performance of the Merton Model. 

 

 

 

 
26 E. R. DeLong, D. M. DeLong and D. L. Clarke-Pearson: “Comparing the Areas Under Two or 

More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach”, 1988. 



38   Results 
 

1. Data Visualization 
 

In chapter 2 (Methodology and Data), section 2 (Data), a quick analysis of the 

variables used was already conducted, and it was possible to gain a first understanding of 

the dataset and of the major differences between defaulting and non-defaulting companies.  

The aim of the section is to go a bit further in the analysis and gain some other 

insights into the data. 

 First, since Market capitalization and Debt value plausibly have an important role 

in whether a company defaults or not, it seems reasonable to plot their relation and how 

the two variables behave in the two circumstances (defaulting or not defaulting). In the 

figure below the scatter plot between the average Market capitalization and the average 

Debt value for the two groups is plotted. 

 

Figure 7: Market Capitalization vs Debt Value - Defaulting vs non-Defaulting    companies 

From the chart is clear the different behaviors of the two groups: for defaulting 

companies, as they approach the 1-year to default date, the market capitalization shrinks, 

while the debt increases; for non-defaulting companies, instead, both market capitalization 

and debt follow an upward trend as time passes. 
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Figure 8: Debt/Mkt cap ratio, 52 weeks before "1-year to default date" - Default vs non-defaulting 

Figure 8 shows the behavior of the Debt over Market capitalization ratio of the two 

different groups. It can be noted that for non-defaulting companies the ratio remains stable 

during the 52 weeks preceding the 1-year to default date, while the ratio for defaulting 

companies shows a threefold increase during the same period. This confirms that both Debt 

and Market capitalization have an important role for predicting company’s default, and 

thus their ratio can reasonably be used as a benchmark (simple model) for both MMs and 

LSTM model to see if they bring new information and improve on the simple model. 

 

 

2. Merton Models Evaluation 
 

Once that the four different volatilities have been computed, as well as the implied 

probabilities of default for each estimate of volatility, using the system of two equations, 

equation (6) and equation (12), and the Distance to Default, equation (7), the work proceeds 
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by comparing the ROC curves and AUCs of the models against each other and against the 

simple model. 

 

Figure 9: ROC and AUC for MMs against the simple model 

Figure 9 shows the ROCs of the Merton Model for different estimates of volatility, 

historical (Hvol), EWMA (Evol), Deep learning (Dvol) and Random Features (Rvol), plus 

the ROC of the simple model.  

There are few aspects that can be noted from the chart above: first, as expected, 

Debt value and Market capitalization have an important role in predicting whether a 

company will default or not in the next year, infact, the AUC of the simple model is 

different from 0.5 (the AUC of the 45 degrees line, that is the random model). The simple 

model has good predictive power for low threshold of default, meaning that it can rank the 

riskiest companies quite well. However, its performance deteriorates when the threshold 

increases. Second, the MM seems to bring additional information compared to the simple 

model, since their AUCs are greater than the AUC of the simple model. Third, forward 

looking volatilities (Evol, Dvol and Rvol) seem to deliver a greater predictive power than 

backward looking volatility (Hvol). Furth, the MM that uses Exponentially Weighted 

Moving Average volatility is the one that has the highest performance. 
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Variables Log pvalues Pvalues Corr

Hvol vs Evol Historical vs EWMA vol. -4.12 0.00008 0.76

Hvol vs Dvol Historical vs Deep Learning vol. -1.43 0.037381 0.92

Hvol vs Rvol Historical vs Random features vol. -1.89 0.01274 0.92

Hvol vs Simple Model Historical vol. vs Debt/Mkt cap -0.55 0.28206 0.71

Evol vs Dvol EWMA vs Deep Learning vol. -3.07 0.000843 0.84

Evol vs Rvol EWMA vs Random features vol. -2.65 0.00226 0.83

Evol vs Simple Model EWMA vol. vs Debt/Mkt cap. -4.11 0.00008 0.62

Dvol vs Rvol Deep Learning vs Random features vol. -0.18 0.666419 0.93

Dvol vs Simple Model Deep Learning vol. vs Debt/Mkt cap. -1.42 0.037628 0.69

Rvol vs Simple Model Random features vol. vs Debt/Mkt cap. -1.55 0.02792 0.67  

Table 3: DeLong non-parametric test - results 

The significance of the AUCs can be observed from the table above, that shows the 

p-values from the non-parametric test of DeLong. The test checks if the AUCs are 

significantly different; generally, if the p-value is lower than 5%, the areas are considered 

different.  

 The table below shows the results of the test of DeLong against an AUC of 0.5, to 

check if the AUCs are significantly different from the area of the 45 degrees curve. 

Variables PValues Z scores

Hvol Historical volatility 0.00003 4.178

Evol EWMA volatility 0.00000 8.151

Dvol Deep learning volatility 0.00000 5.252

Rvol Random features volatility 0.00000 5.424

Simple Model Devt/Mkt cap 0.00236 3.041  

Table 4: DeLong non-parametric test vs 45 degrees line - results 

To better understand why forward-looking volatilities, have a greater predictive power than 

historical volatility, and why EWMA volatility is the one with the best performance, further 

analyses are carried out.  

The table below shows the volatilities’ descriptive statistics. From the table some 

features can be detected. First, EWMA volatility is the one that better differentiates 

between Defaulting companies and non-defaulting companies, infact, the 1-year PD 

average for defaulting group is the highest, while 1-year PD average for non-defaulting 

group is the lowest. 
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PDs 

Def.

PDs            

Non Def.

Vol of Vol  

Def.

Vol of Vol  

Non-Def.

Mean of Vol  

Def.

Mean of Vol 

Non-Def.

Model 

perf.

Hvol 19.43% 8.57% 0.00% 0.00% 77.51% 63.66% 18

Evol 25.78% 5.23% 68.18% 18.96% 107.78% 50.21% 42

Dvol 21.92% 7.96% 24.30% 13.52% 87.55% 62.26% 37

Rvol 21.56% 7.93% 25.66% 13.64% 85.70% 61.44% 41  

Table 5: Volatilities descriptive statistics 

This characteristic of EWMA volatility can be observed in other columns of the 

table, clearly showing that it is the model that best differentiates between the groups. The 

last column of the table displays the model's performance, measured by the number of 

times each model achieved the highest R² out-of-sample, compared to the other models. 

Following this definition, the Historical volatility model has the worst performance, 

followed by the Deep Learning model and Random Features model. 

 

Figure 10: PDs defaulting vs PDs non-defaulting - 52 weeks 
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Figure 11: Spread PDs Defaulting vs non-Defaulting - 52 weeks 

The two figures above summarize the features described before. 

 

 

3. LSTM Model Evaluation 
 

This subsection of chapter three is dedicated to the evaluation of the performance 

of the LSTM model. Even in this case ROC curves and AUCs are used to compare the 

different models, and the non-parametric test of DeLong is carried out to check if the AUCs 

are significantly different. 

The figure below displays the ROC curves and AUCs of the LSTM model fed with 

the same variables of the MM and the four estimates of volatility. As explained in chapter 

2, subsection 4, for LSTM model bootstrapping is used to increase the size of the sample 

from 138 to 1000 companies. The model is then trained on 800 companies and tested on 

the remaining 200. 

 



44   Results 
 

 

Figure 12: ROC curves and AUCs for LSTM model with different volatility estimates 

The table below shows the results of the non-parametric test of DeLong. Despite 

the LSTM model that uses as feature the EWMA volatility has the highest AUC, it is not 

significantly different from the others. 

Variables Log pvalues Pvalues Corr

LSTM Hvol vs LSTM Evol LSTM model Hist. vs EWMA vol. -0.50 0.31572 -0.03

LSTM Hvol vs LSTM Dvol LSTM model Hist. vs Deep Learning vol. -0.32 0.48329 0.51

LSTM Hvol vs LSTM Rvol LSTM model Hist. vs Random features vol. -0.28 0.52748 0.73

LSTM Evol vs LSTM Dvol LSTM model EWMA. vs Deep Learning vol. -0.27 0.54311 0.18

LSTM Evol vs LSTM Rvol LSTM model EWMA. vs Random features vol. -0.88 0.13260 0.18

LSTM Dvol vs LSTM Rvol LSTM model Deep Learning. vs Random features vol. -1.08 0.08317 0.77  

Table 6: DeLong non-parametric test LSTM models – results 

The figure below displays the ROC curves and the AUCs of the LSTM models 

where different estimates of volatility are used, and of the MMs, where the PDs are 

computed on the same test sample as the LSTM models.  

The non-parametric test of DeLong on table 7 shows that, except for the MM with 

EWMA volatility and LSTM model with Random features volatility, the LSTM models 

deliver a significantly higher AUC than the MMs. 
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This means that the LSTM models generally can better rank companies based on 

their riskiness compared to a simple Merton Model fed with the same information. 

 

Figure 13: ROC curves and AUCs for MMs and LSTM models 

Variables Log pvalues Pvalues Corr

MM Hvol vs LSTM Hvol MM Hist. Vs LSTM Hist. vol -4.86 0.00001 -0.04

MM Hvol vs LSTM Evol MM Hist. Vs LSTM EWMA. vol -11.71 0.00000 0.60

MM Hvol vs LSTM Dvol MM Hist. Vs LSTM DL. vol -6.51 0.00000 0.12

MM Hvol vs LSTM Rvol MM Hist. Vs LSTM RF. vol -4.78 0.00002 0.07

MM Evol vs LSTM Hvol MM EWMA. Vs LSTM Hist. vol -1.33 0.04666 -0.04

MM Evol vs LSTM Evol MM EWMA. Vs LSTM EWMA. vol -5.05 0.00001 0.69

MM Evol vs LSTM Dvol MM EWMA. Vs LSTM DL. vol -1.88 0.01323 -0.01

MM Evol vs LSTM Rvol MM EWMA. Vs LSTM RF. vol. -1.14 0.07308 0.05

MM Dvol vs LSTM Hvol MM DL. Vs LSTM Hist. Vol -3.62 0.00024 0.02

MM Dvol vs LSTM Evol MM DL. Vs LSTM EWMA. Vol -9.55 0.00000 0.63

MM Dvol vs LSTM Dvol MM DL. Vs LSTM DL. Vol -4.68 0.00002 0.08

MM Dvol vs LSTM Rvol MM DL. Vs LSTM RF. Vol -3.36 0.00044 0.09

MM Rvol vs LSTM Hvol MM RF. Vs LSTM Hist. Vol -4.47 0.00003 0.00

MM Rvol vs LSTM Evol MM RF. Vs LSTM Hist. Vol -10.95 0.00000 0.61

MM Rvol vs LSTM Dvol MM RF. Vs LSTM Hist. Vol -5.81 0.00000 0.10

MM Rvol vs LSTM Rvol MM RF. Vs LSTM Hist. Vol -4.25 0.00006 0.08  

Table 7: DeLong non-parametric test MM vs LSTM – results



 

 



 

 

 

 

Conclusion 
 

 

This thesis mainly focuses on the integration of Machine Learning techniques 

within the Merton Model, with a particular attention on the sensitivity of the MM to how 

equity volatility is computed and then used in the two-equations system to compute the 

volatility of the asset returns. 

The analyses conducted in this thesis show some interesting features. The first 

characteristic that seems emerging from this work is that the way in which equity volatility 

is computed plays an important role in the capacity of the Merton Model to rank companies 

on their riskiness. Furthermore, the analyses show that a forward-looking volatility seems 

to be a better choice than a backward-looking volatility, since it tends to deliver a better 

performance and a higher Area under the ROC curve. 

From the analyses, there seems to be a correlation between how well the equity 

volatility model can predict future volatility and the performance of the Merton Model, 

infact, the EWMA model, that is the one that better predict future volatility, is also the one 

that delivers the highest performance when used to compute the volatility of the assets 

returns. This finding seems to be in line with Occam’s Razor and the principle of parsimony 

(simpler models are usually more effective). However, some aspects that can explain the 

underperformance of both Random Features model and Deep Learning model, must be 

taken into consideration. First, ML models are very sensible to the number of observations 

used in the train set. In this thesis five years of data are taken into account, with the last 

year is used as test set. Thus, the train set is composed of four years of weekly data, that is 
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approximately 200 observations, when a number greater than 1000 would have been 

preferable. Second, in this work hyperparameters tuning is not conducted. 

Finally, the LSTM model seems to deliver a better performance compared to the 

traditional Merton Model, and it can significantly increase the Area under the ROC curve. 

However, also in this case, the size of the data plays an important role. Infact, bootstrapping 

was conducted to increase the size of the sample, otherwise would have been impossible 

to train the LSTM model just with 138 observations. Thus, the traditional Merton Model 

seems to be a better choice whenever the size of the sample is small.
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Appendix A 

LSTM Python Code 
 

 

import numpy as np 

import pandas as pd 

from sklearn.metrics import roc_curve, auc 

import matplotlib.pyplot as plt 

import seaborn as sns 

import math 

import random 

import torch 

from torch.utils.data import Dataset, DataLoader, TensorDataset 

import torch.optim as optim 

import torch.nn as nn 

import warnings 

from tqdm import tqdm 

warnings.filterwarnings("ignore") 

 

class LSTMModel(nn.Module): 

    def __init__(self, input_size, hidden_size, num_layers, output_size): 

        super(LSTMModel, self).__init__() 

        self.lstm = nn.LSTM(input_size, hidden_size, num_layers, 

batch_first=True) 

        self.fc = nn.Linear(hidden_size, output_size) 

        self.sigmoid = nn.Sigmoid() 

 

    def forward(self, x): 

        h0 = torch.zeros(num_layers, x.size(0), hidden_size).to(x.device) 

        c0 = torch.zeros(num_layers, x.size(0), hidden_size).to(x.device) 

        out, _ = self.lstm(x, (h0, c0)) 

        out = self.fc(out[:, -1, :])  # Get the last time step's output 

        out = self.sigmoid(out) 
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        return out 

     

    def set_seed(seed_value = 42): 

        np.random.seed(seed_value) 

        torch.manual_seed(seed_value) 

        random.seed(seed_value) 

 

def train_model(num_epochs: int, 

                train_loader: DataLoader, 

                criterion, 

                optimizer, 

                model): 

  # Training loop 

  for epoch in range(num_epochs): 

         

        for inputs, targets in train_loader: 

            # Forward pass 

            outputs = model(inputs) 

            loss = criterion(outputs, targets) 

 

            # Backward and optimize 

            optimizer.zero_grad() # kill old gradients 

            loss.backward() # compute new gradients 

            optimizer.step() # perform the step of gradient descent 

 

        if (epoch+1) % 20 == 0: 

            print(f'Epoch [{epoch+1}/{num_epochs}], Loss: 

{loss.item():.4f}') 

             

def get_predictions(loader, model): 

    model.eval() 

    targets = [] 

    predictions = [] 

 

    with torch.no_grad(): 

        for inputs, labels in loader: 

            outputs = model(inputs) 

            targets.extend(labels.numpy()) 

            predictions.extend(outputs.numpy()) 

 

    return np.array(targets).flatten(), np.array(predictions).flatten() 
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#function to normalize the signals 

def normalization_3d(data: np.array, norm_params: dict = None): 

    if norm_params is None: 

        data_max = np.max(data, axis = (0, 1)) 

        data_min = np.min(data, axis = (0, 1)) 

    else: 

        data_max = norm_params['max'] 

        data_min = norm_params['min'] 

    data_norm = (data - data_min)/(data_max - data_min) -0.5 

    params_used = { 

        'max':data_max, 

        'min':data_min 

    } 

    return data_norm, params_used 

 

def run_LSTM(split: int, # train set vs test set split 

             data: np.array, # array with the MM variables for the past 52 

weeks 

             input_size: int, # number of features 

             width: int, # number of neurons 

             depth: int, # number of hidden layers 

             output_size: int, # output layer size 

             seed: int = 42, 

             seeds: int = 10 

            ): 

     

    signals,_ = normalization_3d(data) # normalization of the features 

with min max 

    labels = np.array([1]*500 + [0]*500).reshape(-1, 1) # 1 for def and 0 

for non def 

    #shuffling the companies so not to have alla def companies together 

    indices = np.arange(signals.shape[0]) 

    np.random.seed(42) 

    np.random.shuffle(indices) 

    signals = signals[indices] 

    labels = labels[indices] 

    # splitting train set and test set 

    train_x, train_y = signals[:split], labels[:split] 

    test_x, test_y = signals[split:], labels[split:] 

    x_train_tensor, y_train_tensor = torch.tensor(train_x, dtype = 

torch.float32), torch.tensor(train_y, dtype = torch.float32) 
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    x_test_tensor, y_test_tensor = torch.tensor(test_x, dtype = 

torch.float32), torch.tensor(test_y, dtype = torch.float32) 

    # Create TensorDatasets and DataLoaders for training and test sets 

    train_dataset = TensorDataset(x_train_tensor, y_train_tensor) 

    test_dataset = TensorDataset(x_test_tensor, y_test_tensor) 

    # Creating the loaders 

    train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True) 

    test_loader = DataLoader(test_dataset, batch_size=8, shuffle=False) 

     

    # creating the model with the give architecture for each seed from 

seeds 

    models = [LSTMModel(input_size, width, depth, output_size) for seed in 

range(seeds)] 

    #Training the model for each seed in seeds 

    for seed in range(seeds): 

        print(seed) 

        LSTMModel.set_seed(seed) 

        # Define the loss function and optimizer 

        criterion = nn.BCELoss() #Binary Cross Entrpy is used since it is 

a classification problem 

        optimizer = optim.Adam(models[seed].parameters(), lr=0.001) 

        # Train the LSTM model 

        train_model(num_epochs=200,  

                    train_loader=train_loader,  

                    criterion=criterion,  

                    optimizer=optimizer,  

                    model=models[seed]) 

 

    # Get predictions 

    train_sample = [get_predictions(train_loader, models[seed]) for seed 

in range(seeds)] 

    test_sample = [get_predictions(test_loader, models[seed]) for seed in 

range(seeds)] 

 

    train_targets = train_sample[0][0] 

    test_targets = test_sample[0][0] 

    # averaging the predictions from the 10 different seeds to get the 

final result 

    train_predictions = np.concatenate([train_sample[seed][1].reshape(-1, 

1) for seed in range(seeds)], axis=1).mean(1) 

    test_predictions = np.concatenate([test_sample[seed][1].reshape(-1, 1) 

for seed in range(seeds)], axis=1).mean(1) 
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    return test_predictions, test_targets 

 

indexes = [[0,4,8,12,13,14], [1,5,9,12,13,14], [2,6,10,12,13,14], 

[3,6,11,12,13,14]] # indexes to take the MM variables  

volatilities = ['Hvol', 'Evol', 'Dvol', 'Rvol'] # volatilities types 

data_features = np.concatenate([features_def, features_active], axis = 0) 

# array where are stored the MM variables for the past 52 weeks 

split = int(data_features.shape[0]*0.8) 

predictions_array = np.zeros((200, len(volatilities))) # array where to 

store the predictions for further analysis 

 

for i in range(len(indexes)): 

    idx = indexes[i] 

    features_touse = data_features[:,:,idx] 

    predictions_array[:, i], test_targets = run_LSTM(split = split,  

                                                     data=features_touse,  

                                                     input_size=len(idx),  

                                                     width = 4, depth = 2,  

                                                     output_size = 1) 

 

# plotting the LSTM results 

 

colors = ['dimgray', 'darkgray', 'silver', 'slategrey'] 

markers = ['*', 'D', 's', '^'] 

# iterating for all the columns of the predictions array 

for i in range(predictions_array.shape[1]): 

    test_predictions = predictions_array[:, i] 

    fpr, tpr, _ = roc_curve(test_targets, test_predictions) 

    roc_auc = auc(fpr, tpr) 

    plt.plot(fpr, tpr, marker = markers[i], color = colors[i],label=f'ROC 

curve {volatilities[i]} (AUC = {roc_auc:.3f})') 

     

plt.plot([0, 1], [0, 1], color='black', lw=1, linestyle='--')  # Diagonal 

line 

plt.xlim([-0.01, 1.01]) 

plt.ylim([-0.1, 1.05]) 

plt.xlabel('False Positive Rate', fontsize = 15) 

plt.ylabel('True Positive Rate', fontsize = 15) 

plt.legend(loc='lower right') 

plt.show() 


