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Abstract

This thesis presents a forecasting model for the Italian

Industrial Production Index (IPI), one of the key

macroeconomic variables tracked by policymakers to

steer monetary policy. In recent years, there has been an

increasing interest in exploring alternative sources of data

to obtain real-time insights into economic activity. The

presented forecasting model uses a novel index based on

Italian electronic invoicing data as a key predictor to forecast

the one-month-ahead IPI. The results indicate that the use

of time series techniques (ARMAX models) with invoicing

data enables accurate forecasting of industrial production

activity and outperforms benchmark models during periods

of economic stability.

Keywords: Industrial Production, Business Cycle, Time Series, Forecasting, Nowcasting,

Turnover, ARMA, ARMAX
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1 Introduction

In the last 20 years, the global economy has experienced unprecedented disruptions and

uncertainty. The Great Recession and the Sovereign Debt Crisis have highlighted the

limitations of conventional econometric approaches and the need for more robust forecasting

tools (Rodano et al., 2013), which were further consolidated by the COVID-19 outbreak and

the energy crisis. The pandemic brought the biggest shock to the global economy ever

recorded, putting standard econometric models to the test (Locarno and Zizza, 2020).

Traditionally, these models have relied on historical data and statistical relationships that

now struggle to capture the complexities of rapidly evolving global economies, especially after

extreme disruptions. This is especially relevant to policymakers and economists, who

carefully examine the state of the economy by analyzing macroeconomic variables. However,

this task has become especially challenging when the horizon is the current and very near

future. Official indicators, such as GDP or IPI, are published by national statistics institutes

with months of delay, generating interest in explaining economic activity through alternative

methods. For example, Altissimo et al. (2010) and Delle Monache et al. (2019) use a

combination of unconventional, high-frequency variables to create new indicators for the

economy, the EUROCOIN and the Italian Weekly Economic Index (ITWEI).

Many economists are also focusing on the explanatory power of unconventional data to

obtain short-term forecasts of traditional macroeconomic variables. The seminal paper by

Giannone et al. (2008) already highlighted the strong interest in nowcasting macroeconomic

variables in advance to assess current and future economic conditions. Since then, the field of

nowcasting has seen substantial progress, with the development of techniques such as

Dynamic Factor Models (Chernis and Sekkel, 2017), Mixed Data Sampling Models (Galdi

et al., 2023), Neural Networks (Fornaro, 2020), and Bayesian Vector Autoregressive Models

(Aprigliano, 2020). While some of these models use standard variables, many recent works

have highlighted the importance of incorporating alternative data as a way to obtain early

forecasts. Internet-based data sources, such as Google data for economic forecasting

(D’Amuri and Marcucci, 2017), internet search queries (Götz and Knetsch, 2019), real estate

market analyses using housing advertisement datasets (Loberto et al., 2018), and inflation

expectations measured through Twitter (Angelico et al., 2022) were able to provide reliable
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insights. Additionally, traditional media sources like newspapers have been used to construct

sentiment and uncertainty indicators using text-mining techniques (Thorsrud, 2020;

Aprigliano et al., 2021). Other examples of high-frequency data are payments information

(Aprigliano et al., 2017; Ardizzi et al., 2019; Aastveit et al., 2020; Aprigliano et al., 2021),

transport data (Fornaro, 2020), GPS data (Delle Monache et al., 2019; Furukawa et al., 2022;

Matsumura et al., 2024), and lubricant oils (Fruzzetti and Ropele, 2024).

The contribution of this thesis to the literature is the use of a novel real-time indicator

extracted from electronic invoices in a model to forecast the one-month-ahead value of industrial

production. The Industrial Production Index (IPI) measures price-adjusted monthly variation

in the output of the industrial sector. It is considered one of the key monthly macroeconomic

variables, as it constitutes a big share of GDP in many countries: in Italy, it accounts for 18.8%

of the value added, as of 2023.1 It is an essential indicator for assessing business cycle phases,

as it is closely linked to other variables such as stock market prices (Choi et al., 1999; Chiang

and Chen, 2017), inflation, oil prices (Ewing & Thompson, 2007), and unemployment (Neftçi,

1984). Indeed, it is used to steer and monitor economic and monetary policies in Europe, as it

is able to capture the movements of the business cycle and quickly assess production activity in

the face of major economic shocks. According to Martínez-García et al. (2015) and Schreiber

and Soldatenkova (2016), industrial production is one of the main indicators in predicting

turning points of the economy and anticipating recessions. The ability of central banks and

governments to respond promptly to large disruptions is crucial to preventing further damages

to the economy, as highlighted by the aftermath of the COVID-19 outbreak (Mosser, 2020;

Ramos-Francia and García-Verdú, 2022). Indeed, a nowcasting model that delivers data one

month in advance of official statistics would allow policymakers’ ability to manage and mitigate

economic shocks more effectively. The relevance of IPI is further underlined by its ability to

nowcast GDP in the short term (Golinelli and Parigi, 2007; Hahn and Skudelny, 2008; Banbura

et al., 2011; Baumeister and Guérin, 2021).

Many governments across the world nowadays require electronic invoicing. Italy was the

first European country to introduce this system: the regulations were gradually implemented

starting in 2014, initially making electronic invoicing mandatory for business-to-government

transactions, and later for all public administration. By 2019, it also became mandatory for
1Source: ISTAT
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all business-to-business and business-to-consumer transactions. The legislation requires all

firms to produce electronic invoices up to 12 days after the payment (15 days for deferred

invoices).2 Team System, one of the main electronic invoicing platforms in Italy, and Centro

Studi Confindustria elaborate a monthly index, known as Real Time Turnover Index,3 that

includes the sum of all electronic invoices produced in a given area for the month. We will

use this dataset to assess whether transaction data can be utilized to forecast IPI, following

Galbraith and Tkacz (2018) and Aprigliano et al. (2021).

This thesis proposes an analysis of the predictive power of such industrial turnover index, by

assessing the performance of a benchmark ARMA model against two ARMAX models, which

include, as exogenous regressors, business survey indexes, production prices, and the industrial

turnover index. The empirical results indicate that the ARMAX model, which includes the

industrial turnover index as a regressor, performs best in the in-sample analysis. However,

in the out-of-sample analysis, this model does not consistently outperform the others overall,

but it does show better performance when the COVID-19 period is excluded from the RMSE

evaluation. The overall results would suggest that when the economy is not undergoing a

serious shock, industrial turnover improves the short-term forecasts of IPI.

The remainder of this thesis is organized as follows. Section 2 introduces the existing

literature on forecasting industrial production and describes the methodology; Section 3

presents the data; lastly, Section 4 shows the empirical analysis and the results of this study.

2For further details on current legislation, refer to https://ec.europa.eu/digital-building-blocks/sites/displa

y/DIGITAL/eInvoicing+in+Italy
3More information available at https://www.confindustria.it/wcm/connect/2b62ba5f-2a64-4813-a42b-523

6c32eb4df/Nota_CSC_RTT_Nota_metodologica_290124_Confindustria.pdf?MOD=AJPERES&CACHEI

D=ROOTWORKSPACE-2b62ba5f-2a64-4813-a42b-5236c32eb4df-oS4k-73
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2 Forecasting industrial production

One of the many tasks of forecasters is to find what information can give valuable insight for

the variable of interest. For a long time, electricity consumption has been used to forecast IPI.

Bodo and Signorini (1987) was the first work to introduce the use of energy consumption data

in the models, showing that real-time, high-frequency data provides good forecasts. Similar

results have then been confirmed by other studies later on (Bodo et al., 1991; Marchetti and

Parigi, 2000; Galdi et al., 2023). In particular, Marchetti and Parigi (2000) accounts for the

use of electricity for non-industrial purposes by including meteorological data in the forecasting

models. However, Alpino et al. (2023) discusses that due to the 2021-22 energy crisis, the

increase in prices of gas and electricity fundamentally disrupted the relationship between energy

consumption and industrial production, highlighting the rise of renewable energies. This work

suggests, indeed, that energy consumption may not be a suitable explanatory variable for IPI

anymore.

Similarly to electricity consumption, another kind of real-time data that can be used as a

proxy of production is the transportation of goods. Bruno and Lupi (2001) shows that the

number of goods transported by railways can be used to obtain good forecasts of industrial

production, while Fornaro (2020) obtains similar results with truck traffic volume. Recent

works also include GPS data of factory workers to track production volume (Suimon and

Yanai, 2021; Furukawa et al., 2022). According to Matsumura et al. (2024), mobility data

recorded on mobile cell phones can be used to quantify the level of production, especially in

labor-intensive industries.

Another way to obtain information ahead of time is by using qualitative data. For example,

qualitative information related to business conditions can be obtained by surveying households

and firms. The recent work by Lehmann (2023) highlights the informational content of metrics

extracted by national business surveys. In the context of forecasting IPI, Bodo and Signorini

(1987) was one of the earliest studies showing that qualitative indicators from business surveys

can be used to explain production; this result has then been confirmed by other works (Bodo

et al., 2000; O’Brien and Ladiray, 2003). More recently, Girardi et al. (2016) highlighted the

importance of business survey information, particularly in capturing in advance a downturn of

the business cycle.
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The existing literature proposes several kinds of models to forecast IPI. Many works use

single or multivariate linear regressions (Parigi and Schlitzer, 1995; Bodo et al., 2000; Marchetti

and Parigi, 2000; O’Brien and Ladiray, 2003; Franses and Van Dijk, 2005), others add square

or cubic terms (Bodo and Signorini, 1987; Bodo et al., 1991; Marchetti and Parigi, 2000);

the simplicity of these models helps understand the true relationship between explanatory and

response variables. Vector Autoregressive (VAR) models are also a popular choice (Bodo et al.,

2000; Bruno and Lupi, 2001; Bruno and Lupi, 2003; Schreiber and Soldatenkova, 2016; Chiu

et al., 2017).

The models presented so far rely on few exogenous regressors to predict IPI, thus the choice

of the covariates is crucial. Another possible approach in econometrics is to supply the models

with large datasets, as addressed by Stock and Watson (2002) and Forni et al. (2005). They

propose techniques that automatically select and summarize the information of the dataset into

a few variables. In the context of industrial production, Bulligan et al. (2009) and Bulligan et al.

(2010) question whether it is better to construct models with a few selected indicators (bridge

models) or use a factor-based approach (factor model). They conclude that there is a strong

trade-off between the two methodologies: the former allows for a better understanding of the

relationship between the explanatory variables and industrial production, however, the latter

often leads to better forecasts from a statistical point of view. For this reason, Brunhes-Lesage

and Darné (2012) and Girardi et al. (2016) combine the two approaches into a single model, the

Factor Augmented Bridge Model (FABM). Girardi et al. (2016) concludes that in computing

this kind of exercise, partial least squares outperforms principal component analysis. Other

examples of factor models include the use of static principal component analysis in Günay

(2018) and Costantini (2013), and dynamic principal component analysis to build state-space

models in Costantini (2013).

Other studies use more complex environments to forecast IPI, such as Mixed Data

Sampling (MIDAS) models (Clements & Galvão, 2008) and Markov-Switching (MS) models

(Billio et al., 2012). Galdi et al. (2023) tests MIDAS, MS, and MS-MIDAS models, showing

that MS models outperform the other two in forecasting industrial production. Hassani et al.

(2009) uses Singular Spectrum Analysis (SSA). Heravi et al. (2004) and Fornaro (2020) test

Neural Networks. Aprigliano (2020) employs Bayesian vector autoregression (BVAR) models.

In light of all the options available, our exercise in this thesis only test models with a limited
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set of variables, in order to evaluate the impact of incorporating electronic invoicing data on

short-term forecasts of industrial production.

2.1 Introduction to time series

A time series is a set of observations of a given variable collected over time, formally

{yt}T
t=1, that often exhibits patterns such as trends, seasonal fluctuations, and repeated cycles.

The goal of time series analysis is to capture the underlying pattern in the stochastic process

in order to predict future values. Time series are modeled through a number of methods;

in this section, we introduce the autoregressive moving average (ARMA) model, which was

popularized by Box and Jenkins (1970) and has been widely adopted every since. The Box-

Jenkins approach refers to the application of three steps to fit an ARMA model. The first step

requires checking and adjusting the time series to ensure stationarity (identification). Then we

select the optimal lag order and the estimate of the parameters through maximum likelihood

(estimation). Lastly, the residual of the models must be analyzed (diagnostic checking). We

also introduce an extension to the ARMA model, the autoregressive moving average model

with exogenous regressors (ARMAX).

2.1.1 Stationarity

A stochastic process {yt} is said to be strictly stationary if the joint distribution of

(yt1 , yt2 , . . . , ytT
) is the same as that of (yt1+k, yt2+k, . . . , ytT +k) for all k and all sets of time

points t1, t2, . . . , tT . This definition implies that the entire probability distribution of the

process does not change over time. A weaker definition of stationarity requires that a time

series has a constant mean, constant variance, and an autocovariance function that depends

only on the lag between two time points and not on time itself. Formally, a time series {yt} is

weakly stationary if

• E[yt] = µ

• Var(yt) = σ2

• Cov(yt, yt−k) = E[(yt − µ)(yt−k − µ)] = γ(k).

There is no unique way to determine whether an observed time series is stationary. One

method is to look at the plots of the autocorrelation function (ACF) and partial autocorrelation
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function (PACF). Introduced by Yule (1927), the ACF, defined as

ρk = Cov(yt, yt−k)
Var(yt)

, (1)

evaluates the correlation between an observation in a time series and its previous observations.

It shows how much an observation at a given lag is correlated with the current observation.

A value close to 1 suggests a strong positive correlation, a value near -1 indicates a strong

negative correlation, while a value close to 0 suggests little to no correlation.

The partial autocorrelation function,

ϕkk = Corr(yt, yt−k | yt−1, yt−2, . . . , yt−(k−1)),

measures how much an observation is autocorrelated with its lagged values, ignoring any

indirect correlations through intermediate time lags. If the ACF and PACF coefficients decay

to zero as lags increase, this would imply that the time series is stationary. When assessing

the plots, values that lay outside the confidence interval (typically 95%) are to be considered

statistically significant, indicating that there is evidence of autocorrelation or partial

autocorrelation at that lag.

Alternatively, unit root tests such as the Dickey-Fuller test (Dickey and Fuller, 1979), the

Augmented Dickey-Fuller test (Said and Dickey, 1984), and the Phillips-Perron test (Phillips

and Perron, 1988), can be used to assess stationarity. The null hypothesis of the Dickey-Fuller

(DF) test posits that an autoregressive time series model contains a unit root, indicating that

the series is non-stationary. The alternative hypothesis generally suggests stationarity or trend

stationarity, though this can vary depending on the specific version of the test. To understand

the DF test, consider a simple first-order autoregressive process, AR(1), given by

yt = ϕyt−1 + εt,

where ϕ is the parameter that determines the presence of a unit root. If ϕ < 1, the series is

stationary, as shocks to yt will dissipate over time, and the series will revert to its unconditional

mean. If ϕ = 1, the series is nonstationary, with shocks having a permanent effect. If ϕ > 1,

the series will explode.

To perform the DF test, we subtract yt−1 from both sides of the equation,

yt − yt−1 = (ϕ− 1)yt−1 + εt,
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which can be expressed as

∆yt = δyt−1 + εt,

where δ = 1 − ϕ. The null hypothesis is then

H0 : δ = 0

indicating the presence of a unit root, while the alternative hypothesis is

H1 : δ < 0,

indicating stationarity. The model can also be extended to account for drift,

∆yt = c+ δyt−1 + εt,

and trend,

∆yt = c+ αt+ δyt−1 + εt.

The DF test, however, is considered one of the weaker methods for detecting unit roots,

as it relies on AR(1) processes. To address this, the Augmented Dickey-Fuller (ADF) test

incorporates higher lag orders. We start from an AR(p) with drift and trend

yt = c+ ϕ1yt−1 + ϕ2yt−2 + · · · + ϕpyt−p + εt.

and subtracting yt−1 from both sides we get

∆yt = c+ αt+ δyt−1 + β1∆yt−1 + β2∆yt−2 + . . .+ βp∆yt−p + εt.

Again, we are testing the null hypothesis H0 : δ = 0.

Including several lags in the ADF aims to eliminate residual autocorrelation. However, the

ADF test does not account for structural shifts in the data. To address both autocorrelation

and heteroskedasticity in the disturbance process, the Phillips-Perron (PP) test provides a

nonparametric correction. The PP test adjusts the t-statistic from the DF equation to correct

for these issues in order to obtain robust results.

When a time series is identified as non-stationary, it must often be transformed to achieve

stationarity. Taking the difference between consecutive observations can often help stabilize

the mean of a time series. Indeed, first-order differencing,

∆yt = yt − yt−1,
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can remove linear trends, while second-order differencing,

∆2yt = ∆(∆yt) = ∆(yt − yt−1) = ∆yt − ∆yt−1 = yt − 2yt−1 − yt−2,

may be used for quadratic trends. Logarithmic transformations, Box-Cox transformations, and

other non-linear transformations can stabilize variance in time series with exponential growth

patterns. Seasonal differencing or seasonal decomposition methods such as STL (Seasonal-

Trend Decomposition using LOESS) can help in dealing with seasonality, making a series

stationary by removing periodic components. All of these adjustments can be used in order to

ensure that the time series are stationary.

2.1.2 Maximum likelihood estimation

Maximum likelihood estimation (MLE) is a method used to estimate the parameters of a

model. The main idea of MLE is to find the parameter values that maximize the likelihood of

observing the given data. Given a model defined by a probability density function f(y | θ),

where y represents the observed data and θ denotes the parameters, the likelihood function is

defined as

L(θ | y) =
T∏

t=1
f(yt | θ),

where T is the number of observations. To simplify calculations, we typically work with the

log-likelihood function, which is obtained by taking the natural logarithm of the likelihood

function, ℓ(θ | y) := logL(θ | y). Then, the log-likelihood function is

ℓ(θ | y) =
T∑

t=1
log f(yt | θ).

Since the logarithm is a monotonic transformation, the MLE of the parameters θ is then defined

as

θ̂MLE = arg max
θ

ℓ(θ | y).

2.1.3 Residual diagnostics

To ensure that the model adequately describes the data, it is important to conduct goodness-

of-fit checks through residual diagnostics. This process involves visualizing the residuals to

verify whether they are normally distributed and serially uncorrelated. Useful plots for this

purpose include quantile-quantile (Q-Q) plots, histograms of the residuals, and autocorrelation
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function (ACF) plots. Making residual diagnostic plots is an informal, but useful, way to assess

the violation of model assumptions: it is necessary to test the residuals for autocorrelation using

statistical tests such as the Ljung-Box Q-test. These checks help confirm the validity of the

model assumptions and their suitability for the data.

One assumption of many time series models, including ARMA and ARMAX, is that the

residuals, i.e. the difference between the observed values and the predicted values, are normally

distributed,

ε̂t = yt − ŷt∼N(0, σ2)

Normality of residuals can be assessed by looking at the histogram of the residuals and the

quantile-quantile (Q-Q) plot. The Q-Q plot compares the quantiles of the sample data to

the quantiles of a theoretical normal distribution. If the residuals are normally distributed,

it indicates that the ARMA model has captured the majority of the systematic patterns in

the data, and the remaining differences are random noise that can be well approximated by a

normal distribution. In other words, if the residuals of an ARMA model are well approximated

by a normal distribution, it suggests that the model is a good fit for the data.

The Q-tests proposed by Box and Pierce (1970) and Ljung and Box (1978) verifiy the null

hypothesis that there is no autocorrelation in the residuals up to a certain number of lags L,

H0 : ρj = 0 for j = 1, 2, . . . , L

where ρj is the autocorrelation at lag j, as defined in Equaiton 1. The results of the test are

sensitive to the choice of L. If the test rejects the null hypothesis, it suggests that the residuals

exhibit significant autocorrelation. The Ljung-Box-Q-test statistic is computed as follows,

Q = T (T + 2)
L∑

j=1

ρ̂2
j

T − j

where ρ̂j =
∑T

t=j+1 ε̂tε̂t−j∑T

t=1 ε̂2
t

is the sample autocorrelation. Under the null hypothesis of no

autocorrelation, Q follows a chi-squared distribution with L degrees of freedom,

Q ∼ χ2(L).

2.1.4 Forecasting

The reliability of a time series model’s forecast should be evaluated based on its out-of-

sample performance. Having observed a time series {y1, . . . , yt}, we are interested in forecasting

16



a future value yt+h, where h > 0 is the forecasting horizon. The forecasted value will be denoted

as ŷt+h. The purpose of the forecasting exercise presented in this thesis is to compare different

models based on how well the forecasted values, ŷt, align with the observed values, yt. The

h-step-ahead forecast of yt+h is given by

ŷt+h = Et[yt+h].

Suppose we are only interested in predicting the next value of the time series. Forecasting

the one-step-ahead value of yt can be achieved through an expanding window or a rolling

window of data points. A rolling window of size w is simply a subset of w consecutive

observations from a time series yt, {yt−w+1, yt−w+2, . . . , yt}. At each time step t, we first fit

the model through the values {yt−w+1, yt−w+2, . . . , yt}, thus obtaining the estimated

parameters, and then we predict the value of yt+1. Suppose in our data sample there are T

observations, {1, 2, . . . , w, . . . , T}. We can repeat these steps T − w + 1 times to obtain a set

of forecasted values, {ŷw+1, ŷw+2, . . . , ŷT }, which we can compare to the observed values,

{yw+1, yw+2, . . . , yT }. We would like predictions to be as close as possible to actual values.

The choice of the size of the rolling window, w, is crucial and depends on several aspects.

First of all, the size should be chosen according to the sample size available and the number

of regressors. In general, a smaller window size allows the model to quickly adapt to changes,

making the forecast exercise more suitable when we want to capture short-term fluctuations.

On the other hand, a larger window size smooths out short-term volatility. When we deal with

extraordinary events and shocks to the target variable, it might be best to choose a larger size

to smooth out the effects of the shock.

To evaluate and compare our forecasting models, we use the Root Mean Squared Error

(RMSE) to measure how close the predictions are to the true data. The RMSE is defined as

RMSE =

√√√√ 1
T

T∑
t=1

(et)2,

where et = yt − ŷt is the forecast error. The advantage of using RMSE is that squaring the

individual errors before averaging them gives more weight to larger errors. Indeed, RMSE is

more sensitive to outliers or cases where the model significantly deviates from the observed

values. The lower the RMSE, the better the model’s ability to predict the data. Conversely, a

higher RMSE indicates a greater discrepancy between the predicted and actual values of yt.
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2.2 ARMA model

ARMA models are a class of models that describe the evolution of a variable as a linear

combination of its own past values (autoregressive component) and a linear combination of

past errors (moving average component). A moving average (MA) process of order q in which

the variable of interest, yt, can be modeled as a function of past and current error terms, εt−i

for i = 0, . . . , q, and a constant term, c. It can be expressed as

yt = c+ εt + θ1εt−1 + θ2εt−2 + · · · + θqεt−q

= c+
q∑

i=1
θiεt−i + εt,

where the errors are a Gaussian white noise, εt
i.i.d.∼ N(0, σ2). Using the lag operator B (Bxt =

xt−1), we can rewrite MA(q) as

yt = c+ Θ(B)εt, (2)

where Θ(B) = 1 + θ1B + θ2B
2 + · · · + θqB

q is the characteristic polynomial.

The autoregressive (AR) process of order p explains yt as a function of its own past values,

yt−i for i = 1, . . . , p, a constant term c, and a random shock εt. It can be written as

yt = c+ ϕ1yt−1 + ϕ2yt−2 + · · · + ϕpyt−p + εt

= c+
p∑

i=1
ϕiyt−i + εt

Using the lag operator B, we can rewrite AR(p) as

Φ(B)yt = c+ εt, (3)

where Φ(B) = 1 − ϕ1B − ϕ2B
2 − · · · − ϕpB

p is the characteristic polynomial.

Combining Equations 2 and 3 together, we obtain an ARMA(p,q) process for which yt is a

function of both its past values (up to lag p) and its present and past shock values (up to lag

q). We can write it as

Φ(B)yt = c+ Θ(B)εt, (4)

or

yt = c+ ϕ1yt−1 + ϕ2yt−2 + · · · + ϕpyt−p + εt + θ1εt−1 + θ2εt−2 + · · · + θqεt−q

= c+
p∑

i=1
ϕiyt−i +

q∑
j=1

θjεt−j + εt. (5)
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2.2.1 Stationarity of ARMA processes

One of the key assumptions of ARMA models is that the time series is stationary, i.e. its

statistical properties do not change over time. Let us first analyze the stationarity of MA(q)

and AR(p) processes.

Assume an MA(q) process with c = 0; it is stationary by definition since,

E[yt] = E[εt + θ1εt−1 + θ2εt−2 + · · · + θqεt−q]

= E[εt] + θ1E[εt−1] + · · · + θqE[εt−q]

= 0, (6)

Var(yt) = E[(yt)2] + E[yt]2

= E[(εt + θ1εt−1 + · · · + θqεt−q)2]

= (1 + θ2
1 + · · · + θ2

q)σ2, (7)

and

(8)

Cov(yt, yt−k) = E[(yt) · (yt−k)]

= E[(εt + θ1εt−1 + · · · + θqεt−q) · (εt−k + θ1εt−k−1 + · · · + θqεt−k−q)]

= E[θkε
2
t−k + θ1θk+1ε

2
t−k−1 + · · · + θqθq−kε

2
t−k−q]

= (θk + θ1θk+1 + · · · + θqθq−k)σ2. (9)

An MA(∞) process,

yt =
∞∑

j=0
θjεt−j,

is stationary if ∑∞
j=0 θ

2
j < ∞.

On the other hand, an AR(p) process is stationary only under some condition. Consider

the AR(p) process as defined in Equation 3,

(1 − ϕ1B − ϕ2B
2 − · · · − ϕpB

p)yt = εt.

The stationarity condition requires the roots of the characteristic polynomial (1−ϕ1B−ϕ2B
2 −

· · · − ϕpB
p) = Φ(B) = 0 to lie outside the unit circle. That is, |ϕi| < 1.

Remember that an ARMA process is the combination of a MA process and an AR process.

Hence, for the ARMA(p,q) process given by Φ(B)yt = Θ(B)εt, yt is stationary if only if the

roots of Φ(B) = 0 have all modulus greater than 1.
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2.2.2 Estimation

One way to estimate the parameters of the ARMA model, θ = (ϕ1, · · · , ϕp, θ1, · · · , θq, c, σ
2),

is through maximum likelihood. The maximum likelihood estimator of the parameters of the

ARMA model, θ = (ϕ1, · · · , ϕp, θ1, · · · , θq, c, σ
2), is

θ̂MLE,T = arg max
θ∈Θ

ℓT (θ)

where Θ is the parameter space, and ℓT (θ) is the log-likelihood function. Under the assumption

of Gaussian errors the likelihood function is equal to

LT (θ) =
T∏

t=1

1√
2πσ2

exp
(

−εt(θ)2

2σ2

)
,

and ℓT (θ) is

ℓT (θ) = −T

2 log(2π) − T

2 log(σ2) − 1
2σ2

T∑
t=1

(εt(θ))2.

2.2.3 Information criteria

Before an ARMA(p,q) model can be estimated, we need to select the optimal choice of p and

q. The two most well-known methods to select the optimal p and q are based on information

criteria. These criteria balance how well the model predicts the data with the model complexity,

i.e. they maximize the likelihood function while penalizing the number of parameters included.

The Akaike Information Criterion (Akaike, 1974) and the Bayesian Information Criterion

(Schwarz, 1978) are equal to

AIC = −2 log(L) + 2(p+ q)

and

BIC = −2 log(L) + (p+ q) log(T ),

where L is the likelihood function. The idea is to calculate AIC and BIC for a set of pairs of

p and q and then choose the model with the lowest value.

The AIC and BIC test often provide different results. The AIC favors models that fit

the data well, even if they are more complex, because the penalty for adding parameters

is relatively lower. On the other hand, the BIC imposes a stricter penalty on additional

parameters, especially when the sample size is large. This difference can lead to selecting

simpler models using BIC as opposed to AIC, particularly when the number of observations

(T ) is large.

20



2.2.4 Forecasting

Let us start by clarifying the following concepts. First, the observation yt+l is known at

time t if l is negative (indicating the past), and it is unknown and must be forecasted at time

t if l is positive (indicating the future). Formally,

Et[yt+l] =


yt+l if l ≤ 0

ŷt+l if l > 0
.

Second, the error term is known in the past and assumed to be 0 in the future, under the

assumption of normality of the errors, that is

Et[εt+l] =


εt+l if l ≤ 0

0 if l > 0
.

Consider the ARMA(p,q) process given by Equation 5. The one-step-ahead forecast is the

value yt+1 computed with information available at time t,

ŷt+1 = Et[yt+1] = Et

c+
p∑

i=1
ϕiyt+1−i +

q∑
j=1

θjϵt+1−j + εt+1


= Et[c] + Et

[ p∑
i=1

ϕiyt+1−i

]
+ Et

 q∑
j=1

θjεt+1−j

+ Et[εt+1]

= ĉt +
p∑

i=1
ϕ̂i,tyt+1−i +

q∑
j=1

θ̂j,tεt+1−j, (10)

where

θ̂MLE,t = (ϕ̂1,t, · · · , ϕ̂p,t, θ̂1,t, · · · , θ̂q,t, ĉt, σ̂
2
t )

is the maximum likelihood estimator computed at time t. The two-step-ahead forecast is

ŷt+2 = Et[yt+2] = Et

c+
p∑

i=1
ϕiyt+2−i +

q∑
j=1

θjϵt+2−j + εt+2


= Et[c] + Et

[ p∑
i=1

ϕiyt+2−i

]
+ Et

 q∑
j=0

θjεt+2−j


= ĉt +

(
ϕ̂1,tŷt+1 +

p∑
i=2

ϕ̂i,tyt+2−i

)
+

q∑
j=2

θ̂j,tεt+2−j, (11)

where ŷt+1 is the value computed at Equation 10. Repeating this step forward, we can achieve
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the h-step-ahead forecast,

ŷt+h = Et[yt+h] = Et

c+
p∑

i=1
ϕiyt+h−i +

q∑
j=1

θjϵt+h−j + εt+h


= Et[c] + Et

[ p∑
i=1

ϕiyt+h−i

]
+ Et

 q∑
j=0

θjεt+h−j


= ĉt +

(
h−1∑
i=1

ϕ̂i,tŷt+h−i +
p∑

i=h

ϕ̂i,tyt+h−i

)
+

q∑
j=h

θ̂j,tεt+h−j, (12)

where ∑h−1
i=1 ŷt+h−i are the forecasts obtained at the previous steps.

Under the assumption that forecast errors εt are normally distributed, the 100(1 − α)%

confidence interval is given by

ŷt+h ± zα/2 · SE(ŷt+h),

where zα/2 is the critical value from the standard normal distribution corresponding to the

desired confidence level (e.g., z0.025 ≈ 1.96 for a 95% confidence interval), and SE(ŷt+h) is the

standard error of the forecast. The standard error is computed as

SE(ŷt+h) =
√

Var(ŷt+h) = σ̂

√√√√√h−1∑
j=0

ψ̂2
j , (13)

where ψj are the coefficients from the MA(∞) representation of the ARMA process (see

Appendix A.1). The proof of Equation 13 can be found in Brockwell and Davis (2016). Note

that, as the forecast horizon h increases, the confidence interval widens, i.e. uncertainty

increases. Consider a larger forecast horizon H > h, then

σ̂

√√√√√h−1∑
j=0

ψ̂2
j < σ̂

√√√√√H−1∑
j=0

ψ̂2
j .

2.3 ARMAX model

ARMAX (Autoregressive Moving Average with Exogenous Inputs) models extend the

ARMA framework to include external variables. These models are particularly useful when

the time series of interest is influenced by external factors that are not captured by the

autoregressive and moving average components alone.
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An ARMAX(p,q,r) model can be specified as

yt = c+ ϕ1yt−1 + · · · + ϕpyt−p + εt + θ1εt−1 + · · · + θqεt−q + γ1Xt−1 + · · · + γrXt−r

= c+
p∑

i=1
ϕiyt−i +

q∑
j=1

θjεt−j +
r∑

k=1
γkXt−k + εt, (14)

where Xt represents the vector of exogenous variables, and γi are the coefficients associated

with those exogenous variables.

2.3.1 Stationarity of ARMAX processes

Consider Equation 14. For the process to be stationary, we need all components to be

stationary. First, the MA part is stationary by definition (see Equation 6). Second, the AR

part is stationary if the roots of the characteristic polynomial (1 −ϕ1B−ϕ2B
2 − · · · −ϕpB

p) =

Φ(B) = 0 to lie outside the unit circle. Third, we require the stationarity of each of the

exogenous variables in Xt, which can be assessed with the methods proposed in Section 2.1.1.

2.3.2 Estimation

For an ARMAX model we follow the same steps explained in Section 2.2.2, considering that

we have to estimate θ = (ϕ1, . . . , ϕp, θ1, . . . , θq,γ1, . . . ,γr, c, σ
2).

2.3.3 Forecasting

Consider the ARMAX(p,q,r) process expressed Equation 14. The one-step-ahead forecast,

ŷt+1, is computed with information available at time t,

ŷt+1 = Et[yt+1] = Et

c+
p∑

i=1
ϕiyt+1−i +

q∑
j=1

θjεt+1−j +
r∑

k=1
γkXt+1−k + εt+1


= Et[c] + Et

[ p∑
i=1

ϕiyt+1−i

]
+ Et

 q∑
j=1

θjεt+1−j

+ Et

[
r∑

k=1
γkXt+1−k

]
+ Et[εt+1]

= ĉt +
p∑

i=1
ϕ̂i,tyt+1−i +

q∑
j=1

θ̂j,tεt+1−j +
r∑

k=1
γ̂k,tXt+1−k, (15)

where

θ̂MLE,t = (ϕ̂1,t, · · · , ϕ̂p,t, θ̂1,t, · · · , θ̂q,t, γ̂1,t, · · · , γ̂r,t, ĉt, σ̂
2
t )
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is the maximum likelihood estimator at time t. The two-step-ahead forecast is

ŷt+2 = Et[yt+2] = Et

c+
p∑

i=1
ϕiyt+2−i +

q∑
j=1

θjϵt+2−j +
r∑

k=1
γkXt+2−k + εt+2


= Et[c] + Et

[ p∑
i=1

ϕiyt+2−i

]
+ Et

 q∑
j=0

θjεt+2−j

+ Et

[
r∑

k=1
γkXt+2−k

]

= ĉt +
(
ϕ̂1,tŷt+1 +

p∑
i=2

ϕ̂i,tyt+2−i

)
+

q∑
j=2

θ̂j,tεt+2−j +
(

γ̂1,tX̂t+2−k +
r∑

k=2
γ̂k,tXt+2−k

)
. (16)

The h-step-ahead forecast is

ŷt+h = Et[yt+h] = Et

c+
p∑

i=1
ϕiyt+h−i +

q∑
j=1

θjϵt+h−j +
r∑

k=1
γkXt+h−k + εt+h


= Et[c] + Et

[ p∑
i=1

ϕiyt+h−i

]
+ Et

 q∑
j=0

θjεt+h−j

+ Et

[
r∑

k=1
γkXt+h−k

]

= ĉt +
(

h−1∑
i=1

ϕ̂i,tŷt+i +
p∑

i=h

ϕ̂i,tyt+h−i

)
+

q∑
j=h

θ̂j,tεt+h−j +
(

h−1∑
k=1

γ̂k,tX̂t+h−k +
p∑

k=h

γ̂k,tXt+h−k

)
.

(17)

Note that the values of the exogenous variables in the future are unknown, hence we have

called them X̂t+h−k. There are several options to deal with this issue. For instance, one could

assume that it behaves like a random walk, i.e. Xt = Xt−1 + εt. Alternatively, the value could

be set as constant, Et[Xt+h] = · · · = Et[Xt] = Xt−1. Another option would be to forecast Xt

using an AR, MA, or ARMA process.

Under the assumption that forecast errors εt are normally distributed, the 100(1 − α)%

confidence interval is given by

ŷt+h ± zα/2 · SE(ŷt+h),

where zα/2 is the critical value from the standard normal distribution and SE(ŷt+h) is the

standard error of the forecast.
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3 Data

The target variable of our analysis is the Industrial Production Index. The exogenous

regressors that are included in the ARMAX models consist of indexes based on the sentiment

reported by manufacturing firms on ISTAT surveys, the Producer Price Index (PPI), and a

novel index of industrial turnover computed from electronic invoices.

3.1 Industrial Production Index

The index of industrial production helps identify the different phases of the business cycle

by tracking the increases and decreases of the value added of sectors B through E of NACE, the

four-digit classification of economic activity: (B) mining and quarrying, (C) manufacturing,

(D) electricity, gas, steam, and air conditioning supply, and (E) water supply, sewerage, waste

management, and remediation activities.4 In the simplest form, an index is set to be 100 in

the base year, 0, and all the other observations are computed as indext = valuet

value0
· 100.

Total industrial production cannot be directly observed, hence it is computed using different

proxies: the actual quantity of goods produced (72.7% of the total index, as of 2023), number

of hours worked (12.2%), and the value of production (15.1%). Each month, a panel of 5700

Italian firms provides ISTAT with the level of production (quantity, hours worked, or value,

depending on the type of good) related to specific goods, which belong to a basket that is built

to be representative of the Italian industry.

The index is compiled at different stages. The first stage requires aggregating products into

a product group index,

Pj,t =
∑

i pi,j,tqi,j,t∑
i pi,j,tqi,j,0

· 100,

where pi,j,t and qi,j,t are the prices and quantity produced of good i (belonging to the product

group j) at time t; qi,j,0 is the quantity of good i in the base period 0. For those goods that

are computed according to the number of hours worked the formula is

Pj,t =
∑

i hi,j,t∑
i hi,j,0

· 100,

where hi,j,t and hi,j,0 are the number of hours worked to produce good i, belonging to sector j.
4For further details, read European Commission, Eurostat, NACE Rev. 2 - Statistical classification of

economic activities in the European Community, Publications Office, 2008
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For the value of production, we compute

Pj,t =
∑

i vi,j,t∑
i vi,j,0

· 100,

where vi,j,t and vi,j,0 are the values of production at time t and 0.

After the indexes for all product groups have been calculated, the IPI can be computed at

the 4-digit level of NACE. At this stage, the weights for the product groups in the base year

are derived from the share of the gross production value,

wj = PVj,0∑
j∈k PVj,0

,

where PV stands for "gross production value" and ∑
j∈k wj = 1. The index is then computed

as

Ik,t =
∑
j∈k

wj · Pj,t.

To obtain a representative IPI of the entire industry, it is important to measure the

distribution of value added between the sectors. Using Laspeyres formula, the weights of the

individual sectors (k) for the base year (0) are calculated as

wk = V Ak,0∑K
k=1 V Ak,0

,

where VA represents the value added and ∑K
k=1 wk = 1. The IPI can now be computed as

IPIt =
K∑

k=1
wk · Ik,t,

where wk is the weight associated to each economic sector.

The index is then adjusted for calendar days and seasonality. Calendar effects are corrected

using regression methods (TRAMO procedure), accounting for factors such as working days,

leap years, and national holidays by introducing specific variables into the statistical model.

The TRAMO-SEATS+ procedure is used to obtain seasonally adjusted indices. This model-

based method assumes that each time series consists of unobservable components: cycle-trend

(medium and long-term trend), seasonal (annual periodic movements), and irregular (erratic

factors). The methodology involves additive and multiplicative decomposition of raw data.

Indices of industrial production are seasonally adjusted separately for each economic sector

and overall index.

Adjusting for calendar days and seasonality is essential to accurately interpret IPI because

these factors can introduce regular and predictable fluctuations that do not reflect the
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Index of Industrial Production for Italy

Min Max Mean SD

No adjustment 56.0 117.8 98.0 13.2

Calendar adjusted 54.9 119.0 98.5 13.1

Seasonally adjusted* 55.6 107.4 98.0 5.3

* Seasonally adjusted data also accounts for calendar adjustments

Table 1: Descriptive statistics for IPI, showing the effects of calendar and

seasonal adjustments on the observed minimum, maximum, mean, and

standard deviation. Sample: January 2010 - April 2024 (172 observations)

underlying economic trend. Many economic variables exhibit regular patterns that occur at

the same time each year due to factors like weather, holidays, and production cycles. By

removing these seasonal effects, it is easier to identify true changes in the industry’s output

rather than variations caused by predictable factors. The same idea applies to calendar days:

production will be lower in shorter months, but this is an expected pattern that we wish to

ignore as it is repeated every year and does not provide any interesting insight. Figure 1

shows the three specifications for Italy from January 2010 to April 2024: the cyclical patterns

are clearly visible when the data is not adjusted and when it is adjusted only for the number

of calendar days. As shown in Table 1, the seasonally adjusted data–corrected for both

seasonal patterns and calendar days–exhibits the lowest level of volatility. Specifically, its

standard deviation is 5.3, compared to 13.2 and 13.1 for the unadjusted and

calendar-adjusted data, respectively. Whether it is beneficial to use the adjusted value to

forecast industrial production is unclear. According to Mir and Osborn (2004), economists

should be aware that the seasonal adjustment of IPI could potentially distort the analysis of

the business cycle, however, Menezes et al. (2006) argues that even though the adjustment

leads to a slower identification of the business cycle phase, it minimizes the false detections of

turning points.
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(a) No adjustment (b) Calendar adjusted

(c) Seasonally adjusted

Fig. 1: Plots of IPI for Italy from January 2010 to April 2024.

3.2 Explanatory variables

3.2.1 Business survey

European national statistics institutes conduct monthly surveys to investigate the

sentiments of consumers and business owners on current and future economic conditions. The

information collected, mainly qualitative, is considered significant because it can detect

changes in individual behaviors and current or future shifts in the surveyed economic sectors

(Lehmann, 2023). The business surveys usually cover four economic sectors: manufacturing,

construction, services, and retail. The survey aims to gather opinions (judgments and

expectations) from all economic agents regarding specific variables related to their future
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behavior and the economic environment in which they operate. The opinions expressed by

the interviewed units on key variables, once quantified and processed, also provide an

indication of the level of confidence in the surveyed sectors.

In Europe, business surveys are harmonized and follow the same principles: they contain

mostly qualitative questions, to which the firms can respond positively, neutrally, or negatively.

From these questions, information about firms’ perceptions of current and future business

conditions are turned into indexes ranging from -100 to 100. A question may have three options,

e.g. "up", "unchanged", and "down". The percentages of respondents are hence divided into P

(positive), E (neutral), and N (negative), such that P + E + N = 100. The net balance is then

computed as

Net balance = P − N.

Alternatively, a question may have three possible answers, e.g. "increased sharply",

"increased", "unchanged", "decreased", and "decreased sharply". In this case, the answers are

divided as PP (very positive), P (positive), E (neutral), N (negative), NN (very negative),

such that PP + P + M + N + NN = 100. The net balance is then computed as

Net balance = (PP + 1
2P) − (1

2N + NN).

Business surveys contain several questions related to the assessment or expectations of

orders, production, prices, liquidity, investments, employment, and the general state of the

economy. In our dataset, we will only use the indicators derived from the survey conducted by

ISTAT on Italian manufacturing firms. The sample comprises 4000 firms of different sizes (5-9

employees; 10-49 employees; 50-249 employees; 250-999 employees; at least 1,000 employees),

geographical distribution (Northwest; Northeast; Center; South), and main activity. The first

variable, PROEX, is related to production expectations, and it is extracted from the following

question,

In the next three months, production will:

(a) Increase (b) Stay unchanged (c) Decrease

It is calculated as

PROEXt = (% of firms that responded (c))t − (% of firms that responded (a))t.
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Using the same formula, the indicator related to the assessment of orders, ORDAS, is obtained

with the question

How is the current level of orders?

(a) High (b) Normal (c) Low

Hence,

ORDASt = (% of firms that responded (c))t − (% of firms that responded (a))t.

The indicator related to the assessment of production, PROAS, is derived from

How is the current level of production?

(a) High (b) Normal (c) Low.

and thus it is calculated as

PROASt = (% of firms that responded (c))t − (% of firms that responded (a))t.

3.2.2 Producer Price Index

The Producer Price Index (PPI) tracks the monthly changes in output prices for industrial

goods produced in Italy and sold both domestically and internationally. ISTAT publishes a

system of monthly indicators broken down into five categories: (1) the domestic market, (2)

the Euro area foreign market, (3) the non-Euro area foreign market, and two summary indices

for (4) the foreign market (Euro area plus non-Euro area) and for (5) the total (domestic

market plus foreign market). Here we will use the total producer price index, as the prices of

both domestic and foreign goods impact the cost and level of production of Italian firms. The

products included in the calculation are from the extractive, manufacturing, and electricity,

gas, and water sectors for the domestic market, and from the extractive and manufacturing

sectors for the foreign market (excluding in both markets the sectors related to shipbuilding,

aerospace, railways, armaments, and industrial services). The prices are net of VAT.

PPI is computed at different stages of aggregation. First, data is aggregated for each

observation unit h,5

Ih,t =
∑

i(vi,0 · pi,t

pi,0
)∑

i vi,0
,

5The definition of "observation unit" can be found at https://ec.europa.eu/eurostat/statistics-explained/i

ndex.php?title=Glossary:Observation_unit

30

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Observation_unit
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Observation_unit


where vi,0 is value of sales of product/service i in the base period, while pi,t and pi,0 are the

prices of good i at time t and 0. The second step is to compute an index for each NACE sector

by summing the observation units,

Ik,t =
∑

i(vh,0 · Ih,t)∑
i vh,0

.

Then, the index for the domestic market (m = D) and for the foreign market (m = F ) can be

computed as

PPIm,t =
∑K

k=1(vk,0 · Ik,t)∑
i vk,0

.

The overall Producer Price Index then is the weighted average of the index for the domestic

market and the foreign market,

PPIt = b · PPID,t + (1 − b) · PPIF,t,

where b is the weight associated with the domestic market.

3.2.3 Industrial Turnover

Turnover can be defined as the sum of invoices of a company. A turnover index is simply

an indicator developed to track the sales of a given economic sector as a whole (industry,

services, etc.). In this context, it is important to note the difference between industrial

turnover and industrial production: turnover can be used to track the volume of actual sales,

while production measures the amount of goods manufactured, whether they are sold in that

same month or not. In this sense, we do not expect them to match perfectly; as Figure 2

shows, there is a close relationship between the two variables, as they often move up and

down together. However, following the beginning of 2021, industrial production has been

stagnant, while turnover increased above its pre-pandemic levels, indicating that the

correlation between them has changed.

As already mentioned, the main novelty of this dataset is the Real Time Turnover Index

(RTT). This monthly index of industrial turnover is a real-time economic activity indicator

for Italy, developed by TeamSystem and Centro Studi Confindustria, based on electronic

invoicing data from businesses. The RTT Index uses data from electronic invoices issued by

around 200,000 corporations ("societá di capitali") that are clients of TeamSystem. These

companies, varying in size and sector, represent about 20% of all corporations in Italy.
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Fig. 2: Monthly Italian Industrial Production vs. Italian Industrial Turnover

(2000–2024; 2021=100).

Source: ISTAT

Monthly turnover data are collected, starting from January 2020, and updated regularly. The

index is calculated as the average amount of electronic invoices produced to other businesses,

public administrations, and consumers (when invoices are issued) over a month. Corrections

are made for credit notes and debit notes to ensure accuracy. The RTT Index is then

processed by removing anomalies and adjusting for the number of working days, seasonal

variations, and inflation.

Apart from the aggregate turnover index for the Italian economy, there are also three

types of disaggregation available for this data, resulting in a total of 11 detailed indexes: (1)

geographical location (North-West, North-East, Center, South-Islands), (2) sector of activity

(agriculture, industry, construction, services), and (3) company size (small, medium, large). In

this thesis, we will use the disaggregated index for the Italian industry, computed as

TURt = 1
N

N∑
i=1

Ti,t

where Ti,t is the total amount of electronic invoices (in terms of Euros) emitted by industrial

firm i in the month t, and N is the number of firms in the sample.

The RTT Index aligns closely with official ISTAT industrial turnover index and services

turnover index, showing a strong correlation (98% for industry, 49% for services from 2021-
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2023). It also aligns well with data on construction production. Unlike ISTAT, which provides

turnover data with significant delays and only for specific sectors, the RTT Index offers timely

and comprehensive monthly data for the entire economy, across regions, sectors, and company

sizes. It fills a gap in official data availability.

All the variables are summarized in Table 2.

Variable Name Type Source Adjustment Frequency Sample

period

IPI Industrial

Production

Index ISTAT Seasonal

adjustment

Monthly 01-2010:

04-2024

PROEX Production

Expectations

Net

balance

Business

Survey

(ISTAT)

Seasonal

adjustment

Monthly 01-2010:

04-2024*

ORDAS Assessment

of Orders

Net

balance

Business

Survey

(ISTAT)

Seasonal

adjustment

Monthly 01-2010:

04-2024*

PROAS Assessment

of

Production

Net

balance

Business

Survey

(ISTAT)

Seasonal

adjustment

Monthly 01-2010:

04-2024*

PPI Producer

Price Index

Index ISTAT No

adjustment

Monthly 01-2010:

04-2024

TUR Industrial

Turnover

Average

value

Centro Studi

Confindustria

Seasonal

adjustment

Monthly 03-2020:

04-2024

* Data for April 2020 not available

Table 2: Overview and description of variables used in the empirical analysis.

3.3 Stationarity and unit root tests

Figure 3 depicts the plots of the raw time series, while Figure 4 shows their first

differences, covering the period from February 2010 to April 2024 (except for TUR, which is

available from March 2020). The level plots of the variables show clear trends and

fluctuations, suggesting potential non-stationarity in the raw data. For instance, industrial

turnover (TUR) appears to follow a growing trend over time, while ORDAS, PROEX, and
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PROAS exhibit more cyclical movements. PPI seems to be sable for most of the sample but

with a growing trend starting from 2021. This is coherent with the energy crisis: the sudden

spike in overall producer prices can be explained by the increase in gas prices, arguably one of

the most relevant factors determining the costs of production. On the other hand, when

examining the first-differenced series (∆ variables), the plots exhibit more stable behavior

around zero, confirming that differencing these variables induces stationarity. The plots of

the ACF and PACF seem to confirm the absence of trends and seasonal patterns (see

Appendix A.2), hence there is no need to make other transformations such as taking natural

logarithms of the variables. This result aligns with the results of the ADF and PP tests

(Table 3), which indicate that most of these variables are non-stationary in levels but become

stationary when differences.

ADF test* PP test

Variable p-value stat p-value stat

IPI 0.446 -0.559 0.530 -0.328

PROEX 0.024 -2.250 0.014 -2.470

ORDAS 0.139 -1.444 0.045 -1.990

PROAS 0.136 -1.455 0.024 -2.243

PPI 0.875 0.751 0.943 1.221

TUR 0.924 1.084 0.976 1.679

∆IPI 0.001 -4.430 0.001 -13.732

∆PROEX 0.001 -4.550 0.001 -16.921

∆ORDAS 0.001 -3.475 0.001 -12.305

∆PROAS 0.006 -2.773 0.001 -10.356

∆PPI 0.001 -3.932 0.001 -4.170

∆TUR 0.030 -1.272 0.001 -9.192

0.05 significance level

* 12 lags

Table 3: Augmented Dickey-Fuller and Phillips-Perron Test results: a variable

is stationary if its p-value is below the significance level (0.05).
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(a) IPI (b) PROEX (c) ORDAS

(d) PROAS (e) PPI (f) TUR

Fig. 3: Plots of raw series for Italy. Sample period: February 2010–April 2024.
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(a) ∆IPI (b) ∆PROEX (c) ∆ORDAS

(d) ∆PROAS (e) ∆PPI (f) ∆TUR

Fig. 4: Plots of differenced series for Italy. Sample period: February 2010–April 2024.
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4 Empirical analysis

This Section focuses on whether including electronic invoicing data, i.e. the industrial

turnover index, in the model leads to a higher forecast accuracy. We first introduce the three

models over the entire sample to compare the in-sample goodness of fit. Then we forecast

the one-step-ahead value of industrial production using a rolling window and compare the

out-of-sample performance of these models.

4.1 In-sample performance

We propose an analysis of IPI over the entire sample, from February 2010 to April 2024,

using the first difference variables to ensure stationarity. Let us define ∆yt = yt − yt−1 =

IPIt − IPIt−1 as the independent variable. The first model proposed is an ARMA(p,q) model

used as a benchmark, where the choice of p and q is determined by the information criteria.

The second model is an ARMAX(p,q,r),

yt = c+
p∑

i=1
ϕiyt−i +

q∑
j=1

θjεt−j +
r∑

k=1
γkXt−k + εt for t = 1, . . . , T,

where the exogenous variables are

Xt =



∆PROEXt

∆ORDASt

∆PROASt

∆PPIt


. (18)

The third model is an ARMAX(p,r,q) where we introduce the index of industrial turnover,

starting from February 2020 (t∗),

yt =


c+∑p

i=1 ϕiyt−i +∑q
j=1 θjεt−j +∑r

k=1 γkXt−k + εt for t ∈ [1, t∗],

c+∑p
i=1 ϕiyt−i +∑q

j=1 θjεt−j +∑r
k=1 γkXt−k +∑r

k=1 δk∆TURt−k + εt for t ∈ (t∗, T ].
(19)

where Xt is defined in Equation 18 and dt is a dummy variable such that
dt = 0 for t ∈ [1, t∗]

dt = 1 for t ∈ (t∗, T ]
.
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Combining the two equations in 19 we obtain the following formulation,

yt =c+
p∑

i=1
ϕiyt−i +

q∑
j=1

θjεt−j +
r∑

k=1
γkXt−k + εt

+ dt · (c+
p∑

i=1
ϕiyt−i +

q∑
j=1

θjεt−j +
r∑

k=1
γkXt−k +

r∑
k=1

δk∆TURt−k + εt) for t = 1, . . . , T.

To account for the sharp decline in industrial production between February and March 2020

(refer to Figure 3) due to the outbreak of COVID-19, we include as an additional regressor in

the models listed above a dummy variable that takes value 1 in March 2020 and 0 in all the

other observations, 
dt(COVID) = 1 if t = March 2020

dt(COVID) = 0 if t ̸= March 2020
.

4.1.1 ARMA

We estimate several ARMA models using both the Akaike Information Criterion (AIC) and

Bayesian Information Criterion (BIC) to identify the optimal combination of autoregressive and

moving average terms, (p, q). The results suggest that the two criteria point to the same choice.

As Table 4 suggests, the lowest value of AIC is obtained when p = 1 and q = 3 (886.0026).

BIC criterion confirms the same result: according to Table 5, (1, 3) minimize BIC, with a value

equal to 899.0284.

q

0 1 2 3 4

p

0 919.0559 917.5483 892.7251 890.7298 891.8482

1 919.8435 910.1257 889.5794 886.0026 887.7954

2 900.7721 897.2238 887.4172 887.9971 888.4043

3 902.6846 903.4105 888.1997 888.2113 889.1603

4 894.8661 894.6636 890.1908 890.2013 889.4243

Table 4: Akaike information criterion (AIC) for ARMA models of order p, q,

where p = 0, . . . , 4, and q = 0, . . . , 4.

Table 6 presents the results of the estimated maximum likelihood coefficients for the

ARMA(1,3) model. The AR(1) coefficient is positive (0.792) and its associated p-value is
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q

0 1 2 3 4

p

0 921.6611 922.7586 900.5406 901.1505 904.8741

1 925.0538 917.9412 900.0001 899.0284 903.4264

2 908.5876 907.6445 900.4431 903.6281 906.6405

3 913.1053 916.4363 903.8307 906.4475 910.0016

4 907.8919 910.2946 908.4270 911.0427 912.8708

Table 5: Bayesian information criterion (BIC) for ARMA models of order p, q,

where p = 0, . . . , 4, and q = 0, . . . , 4.

very close to zero. This indicates a strong autoregressive relationship: industrial production

at time t depends strongly on its own past value at t− 1. The MA coefficients are all strongly

significant: the first two lags are negative (-0.775 and -0.489) and significant, while the third

is positive (0.264).

Estimate SE t-stat p-value

AR(1) 0.792 0.044 18.149 0.000

MA(1) -0.775 0.066 -11.702 0.000

MA(2) -0.489 0.071 -6.934 0.000

MA(3) 0.264 0.055 4.814 0.000

AIC 886.003

BIC 899.028

Table 6: Summary of the estimated parameters of ARMA(1,3) through

maximum likelihood, standard errors, t-statistic, and p-value.

Table 7 presents the results of the Ljung-Box Q-test for the ARMA model with lags 6, 12,

and 24. The results suggest that the p-values are all very close to 1, suggesting that there is

no significant autocorrelation remaining in the residuals. Hence the model is well specified.

4.1.2 ARMAX(1,1,1)-A

Let us define the following model as ARMAX(1,1,1)-A. The model includes one lag of the

moving average component (q = 1), one lag of the autoregressive component (p = 1), and one
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Ljung-Box Q-Test

L = 6 L = 12 L = 24

stat 1.502 4.730 11.796

p-value 0.959 0.966 0.982

c-value 12.592 21.026 36.415

α = 0.05

Table 7: Results of the Ljung-Box Q-test for ARMA(1,3).

lag for the exogenous variables (r = 1).The ARMAX(1,1,1)-A model is estimated with and

without the inclusion of the COVID-19 dummy variable. When COVID-19 is not accounted

for (left side of Table 8), the results show that besides the Producer Price Index and the

constant term, all variables are statistically significant at the 95% confidence level. Once we

add the dummy for March 2020 (right side of Table 8), the significance of the expectations on

production (PROEX) drops. The COVID-19 dummy itself is highly significant, which suggests

that it is indeed necessary to include it in the model. In terms of goodness of fit, including the

COVID-19 dummy reduces both the AIC and BIC values: from 611.406 to 600.189 for AIC,

and from 636.398 to 628.305 for BIC.

Not accounting for COVID Accounting for COVID

Estimate SE t-stat p-value Estimate SE t-stat p-value

Constant -0.001 0.053 -0.017 0.986 -0.020 0.039 -0.507 0.612

AR(1) 0.231 0.105 2.191 0.028 0.316 0.084 3.762 0.000

MA(1) -0.632 0.102 -6.224 0.000 -0.727 0.075 -9.653 0.000

ORDAS -0.118 0.045 -2.603 0.009 -0.089 0.052 -1.729 0.084

PROEX -0.098 0.031 -3.136 0.002 -0.006 0.044 -0.142 0.887

PROAS 0.454 0.066 6.839 0.000 0.294 0.082 3.604 0.000

PPI -0.096 0.068 -1.415 0.157 -0.016 0.055 -0.298 0.766

d(COVID) 5.683 1.333 4.264 0.000

AIC 611.406 600.189

BIC 636.398 628.305

Table 8: Summary of the estimated parameters of ARMAX(1,1,1) through

maximum likelihood, standard errors, t-statistic, and p-value.
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According to Ljung-Box Q-test (Table 9), there is evidence of autocorrelation in the

residuals when we do not account for COVID. For all lag lengths (L=6, 12, and 24) the Q

statistics exceed the critical values; for L=24, the p-value is somewhat higher, but still below

0.05. Hence we reject the null hypothesis of no autocorrelation at the 5% significance level.

On the other hand, the results indicate that once the dummy for March 2020 is introduced,

the model exhibits lower test statistics and higher p-values. For L=6 and 12, the test still

suggests the rejection of the null hypothesis, while for L=24, the p-value increases to 0.103,

suggesting that the null hypothesis of no autocorrelation cannot be rejected at this longer lag.

This implies that accounting for COVID reduces autocorrelation in the residuals, especially

at longer lags.

Ljung-Box Q-Test

Not accounting for COVID Accounting for COVID

L = 6 L = 12 L = 24 L = 6 L = 12 L = 24

stat 32.470 33.501 37.015 28.107 29.254 33.044

p-value 0.000 0.001 0.044 0.000 0.004 0.103

c-value 12.592 21.026 36.415 12.592 21.026 36.415

α = 0.05

Table 9: Results of the Ljung-Box Q-test for ARMAX(1,1,1)-A.

The overall results suggest that this model is better at estimating the in-sample values of IPI

than the benchmark ARMA(1,3) model, especially if we account for the COVID-19 outbreak.

4.1.3 ARMAX(1,1,1)-B

Model ARMAX(1,1,1)-B extends ARMAX(1,1,1)-A by introducing the index of industrial

turnover, starting from time t*. We present the results in Table 10. The AIC and BIC

values are lower than the other models presented so far, indicating a superior goodness of

fit for this model. Again, accounting for the COVID shock of March 2020 seems to increase

the fit. However, Table 10 suggests that the dummy variable has a large p-value, thus it is

not statistically significant. The introduction of such a dummy also alters the estimates and

significance of the other variables. If we look at the left side of Table 10, we see that industrial

turnover is highly significant, while on the right side it is not.
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Not accounting for COVID Accounting for COVID

Estimate SE t-stat p-value Estimate SE t-stat p-value

Constant -0.064 0.040 -1.604 0.109 -0.044 0.042 -1.051 0.293

AR(1) 0.086 0.096 0.894 0.371 0.029 0.119 0.245 0.807

MA(1) -0.648 0.083 -7.801 0.000 -0.576 0.101 -5.695 0.000

ORDAS 0.068 0.064 1.056 0.291 0.052 0.054 0.962 0.336

PROEX -0.027 0.068 -0.393 0.694 -0.007 0.057 -0.119 0.905

PROAS 0.124 0.088 1.401 0.161 0.136 0.079 1.731 0.084

PPI 0.471 0.209 2.251 0.024 0.462 0.205 2.253 0.024

d(COVID) 29.477 75.410 0.391 0.696

dt·IPI 0.481 0.095 5.083 0.000 0.985 1.600 0.616 0.538

dt·ORDAS -0.182 0.110 -1.658 0.097 -0.053 0.884 -0.060 0.952

dt·PPI -0.511 0.237 -2.157 0.031 -0.442 0.875 -0.505 0.614

dt·PROAS 0.184 0.145 1.271 0.204 -0.144 1.504 -0.096 0.924

dt·PROEX -0.078 0.086 -0.904 0.366 0.010 0.544 0.018 0.985

dt·TUR 0.000 0.000 6.130 0.000 0.000 0.000 0.012 0.991

AIC 550.499 521.700

BIC 594.235 568.560

Table 10: Summary of the estimated parameters of ARMAX(1,1,1) through

maximum likelihood, standard errors, t-statistic, and p-value.

The Ljung-Box Q-test presented in Table 11 suggests there is evidence of autocorrelation

in the residuals for both models at all lags. The Q statistics are well above the critical values

for all tests. Unlike the ARMAX(1,1,1)-A model, which showed some improvement when

accounting for COVID-19, particularly at longer lags, the ARMAX(1,1,1)-B model exhibits

residual autocorrelation both with and without the COVID adjustment.

4.2 Out-of-sample performance

As explained in Section 2, ARMA and ARMAX models are widely recognized as key tools

to obtain macroeconomic forecasts. We conduct a dynamic out-of-sample forecast analysis to

predict the future behavior of IPI. The analysis is based on monthly data from February 2010

to April 2024, with the forecast period set from June 2018 to April 2024. We present three
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Ljung-Box Q-Test

Not accounting for COVID Accounting for COVID

L = 6 L = 12 L = 24 L = 6 L = 12 L = 24

stat 45.956 46.912 50.150 47.910 48.725 51.943

p-value 0.000 0.000 0.001 0.000 0.000 0.001

c-value 12.592 21.026 36.415 12.592 21.026 36.415

α = 0.05

Table 11: Results of the Ljung-Box Q-test for ARMAX(1,1,1)-B.

models, an ARMA(1,3) model, an ARMAX(1,0,1)-A model with

Xt =



∆PROEXt

∆ORDASt

∆PROASt

∆PPIt


, (20)

and an ARMAX(1,0,1)-B model with the same exogenous regressors proposed in 20 up to

February 2020, and afterwards

Xt =



∆PROEXt

∆ORDASt

∆PROASt

∆PPIt

∆TURt


.

Unlike the previous analysis, there is no need to use a temporal dummy to account for the

structural change at t∗. Indeed, the rolling window analysis should already account for the

time varying parameters by itself. The rolling window size chosen is 100, in order to smooth

out the effect of the disruption of COVID-19.

The results of the out-of-sample dynamic forecast analysis presented in Table 12 provide a

comparison of the forecasting performance for three different models. The evaluation metrics

compare the results for the entire sample and a subset of the data excluding April-May 2020,

which represents a period of extreme volatility and abnormal economic activity due to the

COVID-19 outbreak. Over the entire sample, the ARMAX(1,0,1)-A model shows the lowest

RMSE of 4.639, outperforming both ARMA(1,3) and ARMAX(1,0,1)-B, with RMSE values of
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6.140 and 6.070, respectively. Hence we deduce that ARMAX(1,0,1)-A explains the patterns

of industrial production better than the other models, producing fewer large forecasting errors.

RMSE

ARMA(1,3) ARMAX(1,0,1)-A ARMAX(1,0,1)-B

Entire sample 6.140 4.639 6.070

Excluding Apr-May 2020 5.345 4.556 4.478

Table 12: Measuring forecast error for the models, w = 100

The second part of the analysis excludes April and May 2020. The first thing to notice

is that the reduction in RMSE values, particularly for ARMA(1,3) and ARMAX(1,0,1)-B,

confirms that the large errors observed earlier were influenced by those volatile months. The

second result is that ARMAX(1,0,1)-B improves significantly and even outperforms the other

two models. This result suggests that, aside from periods of extreme disruption, incorporating

electronic invoices as an exogenous regressor could improve forecast accuracy.

Fig. 5: One-step-ahead forecasts of ARMA(1,3) model vs. observed values of

IPI. 95% confidence interval.

These trends are also reflected visually in Figures 5, 6, and 7. In Figure 5, the ARMA(1,3)
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forecast exhibits larger deviations from actual data, especially during the first half of 2020, as

evidenced by the larger errors observed around April-May 2020. Indeed, the ARMA(1,3) was

not able to capture the large disruption of March 2020 at all. In contrast, Figure 6 shows that

ARMAX(1,0,1)-A was able to produce the most accurate forecasts during the beginning of

the COVID-19 pandemic. This would suggest that the sentiment of the manufacturing sector

was able to predict with accuracy the shock to production. On the contrary, Figure 7 shows

that model ARMAX(1,0,1)-B did not predict well the values of industrial production during

the first part of 2020; indeed, it looks like there was some delay in the signal. This can be

explained by the fact that, as we discussed in the previous Section, industrial turnover and

industrial production do not move exactly together. Indeed, a plausible explanation is that

turnover decreased significantly with some lag, due to the fact that invoices may be related to

goods that were produced previously.

Fig. 6: One-step-ahead forecasts of ARMAX(1,0,1)-A model (industrial

turnover is not included) vs. observed values of IPI. 95% confidence interval.

In general, it is clear that none of the models could predict the large shock associated to

the beginning of the COVID-19 outbreak in Italy. The widening of the 95% confidence

intervals observed in all three Figures following the beginning of the pandemic reflect the

increased uncertainty in forecasts during this time of economic volatility, and hence the
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models’ difficulty to adapt new dynamics emerging post-pandemic. Despite the ARMAX

models generally performing better than ARMA(1,3), all models exhibit an expansion in

confidence intervals. Overall, ARMAX(1,0,1)-A generally outperforms the other models in

terms of both magnitude and directional accuracy, despite the challenges posed by the

COVID-19 pandemic. Compared to the ARMA benchmark, the ARMAX models, which

incorporate external data, appear more resilient in the face of economic shocks, and their

improved performance suggests the value of incorporating additional information in

forecasting. Lastly, the exclusion of April-May 2020 highlights the potential explanatory

power of electronic invoices.

Fig. 7: One-step-ahead forecasts of ARMAX(1,0,1)-B model (industrial

turnover is included) vs. observed values of IPI. 95% confidence interval.
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5 Conclusion

Producing timely and reliable estimates of the current and future level of industrial

production is essential to have a clear picture of the state of the economy for policymakers.

Industrial production data reflects the output of manufacturing, mining, and electricity firms,

which is a significant component of the gross domestic product, especially in Italy. This thesis

investigates a method to forecast the one-step-ahead values of industrial production using

data from electronic invoices of Italian firms.

The analysis consists of comparing a benchmark autoregressive moving average (ARMA)

model with two autoregressive moving average models with exogenous inputs (ARMAX): one

incorporating business survey indexes and production prices, and another that includes the

industrial turnover index as an additional explanatory variable. The results indicate two main

findings. First, the industrial turnover index increases the in-sample fit. Second, the forecasting

exercise conducted using a rolling window to predict the one-step-ahead value shows that the

model incorporating industrial turnover is able to predict out-of-sample values of IPI with

some accuracy. In particular, this thesis finds that the ARMAX model with industrial turnover

outperforms the other models only if we exclude March to April 2020 to our analysis. Indeed,

this suggests that industrial turnover is a good predictor of IPI during stable conditions, while

the information provided by business surveys and producer prices alone is better for turbulent

conditions.

These findings align with the growing interest in forecasting economic activity using high-

frequency, real-time data, such as electronic invoice data. Given the timeliness and granularity

of this data, its integration into economic models could provide more accurate results. However,

this exercise cannot be considered exhaustive: our analysis was possible due to the availability of

electronic invoicing data in Italy. In the future, further research could explore the applicability

of this methodology in different countries.
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Appendix

A.1 MA(∞) representation of ARMA(p, q) process

Consider an ARMA(p, q) process:

yt − ϕ1yt−1 − · · · − ϕpyt−p = εt + θ1εt−1 + · · · + θqεt−q,

where yt represents the observed time series, ϕ1, . . . , ϕp are the autoregressive (AR) coefficients,

εt is a white noise error term, and θ1, . . . , θq are the moving average (MA) coefficients.

To express this process we can use use the backshift operator B, defined as Bkyt = yt−k, to

rewrite the ARMA(p, q) model as:

Φ(B)yt = Θ(B)εt,

where Φ(B) and Θ(B) are polynomials of degrees p and q, respectively. These polynomials are

given by:

Φ(B) = 1 − ϕ1B − · · · − ϕpB
p,

and

Θ(B) = 1 + θ1B + · · · + θqB
q.

To derive the moving average representation of yt, we divide both sides of the equation by

Φ(B), obtaining,

yt = Θ(B)
Φ(B)εt = Ψ(B)εt.

Here, Ψ(B) is an infinite-degree polynomial representing the moving average coefficients of the

error terms, where

Ψ(B) =
∞∑

j=0
ψjB

j.

Thus, the ARMA(p, q) process can be expressed as an infinite sum of past errors:

yt =
∞∑

j=0
ψjεt−j.

The coefficients ψj are determined by the recursive relationship between the AR and MA
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coefficients. Specifically, the recursion is given by

1 = ψ0

θ1 = ψ1 − ψ0ϕ1

θ2 = ψ2 − ψ1ϕ1 − ψ0

...

θj = ψj −
p∑

k=1
ϕkψj−k.
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A.2 Stationarity

(a) IPI ACF

(b) IPI PACF

(c) PROEX ACF

(d) PROEX PACF

(e) ORDAS ACF

(f) ORDAS PACF
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(a) PROAS ACF

(b) PROAS PACF

(c) PPI ACF

(d) PPI PACF

(e) TUR ACF

(f) TUR PACF
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(a) ∆IPI ACF

(b) ∆IPI PACF

(c) ∆PROEX ACF

(d) ∆PROEX PACF

(e) ∆ORDAS ACF

(f) ∆ORDAS PACF
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(a) ∆PROAS ACF

(b) ∆PROAS PACF

(c) ∆PPI ACF

(d) ∆PPI PACF

(e) ∆TUR ACF

(f) ∆TUR PACF
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A.3 Diagnostics checking

(a) ARMA(1,3) Histogram

(b) ARMA(1,3) Q-Q Plot

(c) ARMAX(1,0,1)-A Histogram

(d) ARMAX(1,0,1)-A Histogram

(e) ARMAX(1,0,1)-A* Histogram

(f) ARMAX(1,0,1)-A* Histogram

*Accounting for COVID-19
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(g) ARMAX(1,0,1)-B Histogram

(h) ARMAX(1,0,1)-B Histogram

(i) ARMAX(1,0,1)-B* Histogram

(j) ARMAX(1,0,1)-B* Histogram

*Accounting for COVID-19
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