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1. INTRODUCTION 

 

1.1.  General Introduction 

Machine learning is one of the most discussed topics of our days thanks to his 

capability to reshape industries and revolutionize how data is utilized. Since Alan Turing 

and John McCarthy first discussed the topics, the subject has had an incredible journey 

of advancement; machine learning (ML) and artificial intelligence (AI), from their 

beginnings to their current broad deployment across a wide range of industries, have 

fundamentally changed our understanding of technology and its potential (Eswaran & 

Khang, 2024). Every year, advances in algorithms, processing power, and data 

accessibility push the envelope of what is conceivable, pointing to a day, closer than 

someone might imagine, when intelligent systems will be seamlessly incorporated into 

our daily lives, transforming everything from entertainment and transportation to 

healthcare and finance.  

While John McCarthy was the one proposing for the first time the term “artificial 

intelligence” at a Dartmouth conference, Alan Turing have been a pioneer on the applied 

machine learning working and developing during World War II the ‘Enigma Machine’, 

capable of breaking the German ciphers (Eswaran & Khang, 2024). 

Turing’s Machine was able to perform mathematical calculations automatically and 

thanks to this, he laid the groundwork for the development of artificial intelligence (AI) 

as we know it today. AI and ML based tools are designed to carry out intelligent tasks 

that are typically completed by people, evaluating and learning from data using specially 

created algorithms.  

 

1.2. State of Art: ML in the Healthcare Sector  

Since artificial intelligence (AI) was established as a field of study in the 1950s, a 

great deal of research has been done in areas such natural language processing, learning, 

reasoning, and knowledge representation. As a result, artificial intelligence has been used 

in many fields, including marketing, games, robotics, e-commerce, healthcare, 

agriculture, and education and more specifically, search engines like Google, 

recommender systems like Netflix, self-driving cars like Tesla, and voice recognition 
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software like Siri and Alexa are examples of commonly used AI applications (O. Ali et 

al., 2023). 

Beside all the possible fields where ML could be flourishingly applied one of the most 

promising is the healthcare sector, offering new ways to enhance diagnostic accuracy, 

improving patient outcomes and reducing costs, providing ongoing support to operators 

based on previous analyses in order to reduce the % of wrong diagnosis. In this context, 

machine learning is not merely a technological innovation but a revolutionary force that 

is reshaping the way healthcare services are delivered, managed, and optimized (Siddique 

and Chow, 2021). 

Its application in healthcare addresses various challenges from early diagnosis and 

predictive analytics to personalized medicine and advanced imaging techniques. At its 

core, machine learning enhances the ability of healthcare providers to diagnose diseases 

early and accurately, predict patient outcomes, and customize treatment plans based on 

individual patient data. This level of precision and personalization represents a significant 

departure from the traditional, one-size-fits-all approach to healthcare, where treatments 

are typically based on broad population averages rather than tailored to the specific 

genetic, environmental, and lifestyle factors that influence each patient's health (Javaid et 

al., 2022). 

Early diagnosis and predictive analytics are among the most profitable applications 

of how machine learning is used in healthcare today. Early disease detection, particularly 

for conditions with fast progression or those that are difficult to diagnose through 

conventional means, can significantly improve patient outcomes. Machine learning 

models trained on large datasets can analyze complex patterns in patient data, such as 

demographic information, clinical history, lab test results, and imaging data, to predict 

the onset of diseases before symptoms even appear with greater accuracy. This predictive 

capability is especially critical in managing chronic diseases like cancer, cardiovascular 

diseases, and neurological disorders, where early intervention can drastically alter the 

course of the disease and improve survival rates (Siddique and Chow, 2021). 

As mentioned before, a stunning benefit of using ML in the medical area is 

personalized medicine. This approach, unlike conventional ones that apply standard 

treatment protocols to all patients, personalized medicine aims to tailor treatments to the 

unique genetic, environmental, and lifestyle factors of each patient. Machine learning 
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algorithms play a crucial role in this approach by analyzing large datasets of patient 

information, including genetic sequences, biomarker profiles, and electronic health 

records (EHRs), to identify the most effective treatment strategies for individual patients 

(Panesar, 2019). In oncology, for example, starting from a patient’s genetic profile, 

Machine Learning models have been used to predict a patient’s response to chemotherapy 

enhancing treatment outcomes and reducing the incidence of adverse reactions. Similarly, 

in psychiatry, Machine Learning algorithms have been employed to predict responses to 

antidepressants, allowing clinicians to select the most effective medication from the 

outset, thereby improving patient outcomes and reducing the trial-and-error approach that 

currently dominates psychiatric treatment (Shailaja et al., 2018). 

The use of AI in the healthcare sector is particularly effective in those country that 

are commonly known as low- and middle-income countries (LMICs), strengthening the 

whole system and increasing quantity and quality of medical care providing better 

evaluation and treatments to people who live there (Ciecierski-Holmes et al., 2022). These 

countries are encountering different types of problems when talking about medical care 

from qualified Human Resources to availability of field-relevant diagnostics and ML 

could help in three different areas: (a) clinical decision support at both health center and 

community levels, (b) population health, and (c) direct patient support. One solution to 

the shortage of personnel that has already been in place for years is task-shifting, where 

non-specialists perform the tasks of specialists through protocolized medicine (Williams 

et al., 2021). Task-shifting has been employed from surgery to dermatology and recently 

it has started to be backed by AI-enabled tools that have the potential to allow the quality 

and safety of task-shifting to be made better supported giving another point of view to 

physicians that are not specialized in that precise field.  

The real strength of adopting ML based tools is that they can be installed on 

smartphones or other medical devices. For the past decade smartphones have played an 

important role in LMIC healthcare delivery hosting important decision-support tools for 

family planning, prenatal and antenatal care, intrapartum progression of labor, diagnosis 

of pediatric pneumonia and many others. The combination of user interface, 

communications capabilities, audio and video sensors, and local computational 

capabilities makes modern smartphones able to capture high quality images, video or 
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audio that can provide an immediate feedback about skin lesions or other disease 

detectable with these tools (Williams et al., 2021); moreover equipping portable X-Ray 

scans with ML models can instantly tell you whether you have a broken bone or whether 

you are suffering from pneumonia.  

 

 

1.2.1. ML in Radiology 

The most significant impacts of machine learning in healthcare is in the field of 

medical imaging and radiology and as a proof of this, in 2022, 391 tools on 521 authorized 

by the food and drugs administration concerned exactly radiology (Gaire, 2023). 

Traditional diagnostic methods, while effective, rely heavily on the expertise of 

radiologists, who are required to interpret complex medical images such as X-rays, CT 

scans, and MRIs. Although skilled, especially under conditions of high workload or 

fatigue, radiologists can miss subtle signs of disease (Tsai and Tao, 2019). As a result, 

this technology gives doctors comprehensive insights into the medical needs of their 

patients in addition to gathering and processing patient data. Amisha et al. (2019) points 

out a 2016 study where it has been found that physicians spend 51% of their workday at 

their desks and getting electronic health information, with only 27% of their office hours 

spent in direct patient interaction, they worked on EHR-related chores for more than half 

of their time in the examination room.  

Artificial intelligence (AI) in medicine increases accuracy, productivity, and 

efficiency while freeing up more time for primary care physicians by reducing the need 

for manual work. As of now Machine learning-enabled automated systems are adopted 

as a support to radiologists delivering fast and unbiased evaluations, which is vital 

considering the millions of annual deaths attributable to pneumonia (Szepesi & Szilágyi, 

2022) providing amazing benefits in situations where time is crucial prioritizing cases 

that require immediate attention (Kareem et al., 2022). They are particularly effective in 

cases of emergency-urgency, those situations where the emergency room of the first aid 

area of an hospital is overcrowded and there are no radiologist available because they are 
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all work loaded; using ML tools to interpret X-Ray scans or any electronical record could 

speed up the whole diagnostic process (Rajpurkar & Lungren, 2023). 

 

1.3. The Models Used  

For managing and processing these images, particularly deep learning models like 

Convolutional Neural Networks (CNNs), have been shown to enhance the accuracy of 

medical image interpretation, often outperforming human experts in detecting early signs 

of diseases like cancer and pneumonia. These models are trained on millions of labeled 

images, learning to identify disease markers that may be invisible to the human eye, thus 

improving diagnostic accuracy and enabling earlier interventions. (Reshan et al., 2023). 

Convolutional Neural networks are a type of deep learning algorithms that are 

strongly similar to ANN that try to emulate the human vision system. They have the 

power to transform images into number and process them identifying what are the critical 

features that classify an image as belonging to a class or to another.  The topic of 

understanding how to deal with visual input in machine learning has been discussed since 

1950s and a milestone has been put in 2012 by the university of Toronto with the 

development of AlexNet; this model won the ImageNet competition with an 85% 

accuracy, it was the first time a CNN was developed (Mandal, 2024). 

From that moment onward, CNN became pivotal in processing and segmenting 

images, detecting objects, and reducing the images to a more workable format that will 

give reliable predictions.  

Although CNNs are based along the lines of ANN, their structure is quite different: 

• The input of CNN is the image as such, depending on its color scale, Black and 

white or colored, it is translated, respectively, into one or three matrices (one for 

each RGB color) 

• Convolutional Layer: The matrices are then passed to the first layer of CNN, the 

convolutional layer. The scope of this layer is the one of identifying the most 



 10 

relevant features of the image such as lines, edges, angles and different shapes. A 

variables number of small matrices called filters or kernel are passed over the 

input matrices giving as output another matrix whose dimension is usually smaller 

than the input one.  To be noted that the number of output matrices is equal to the 

number of filters applied to the input image. On the feature map resulting from 

this layer are then applied some activation functions. An activation function 

defines whether to activate a neuron by using the weighted sum of inputs together 

with a bias term, its main purpose is to put non-linearity into the neural network, 

enabling it to learn and represent any complicated, arbitrary kind of functions that 

linear models can't. Non-linear activation functions allow a network to model 

complex interactions within data and therefore to make better decisions. They also 

play a very significant role in backpropagation, as it is through the application of 

such functions that gradient-based learning could effectively update weights. 

Without them, the network would only learn linear relationships. 

The most common functions are:  

o Sigmoid (Logistic) Function:  σ(x)=     !
!"#!"

  

 
Image 1.4.1 (Jadon, 2022) 

 

o Hyperbolic Tangent (Tanh) Function: tanh(x)= $
!"#!#"

− 1 

 
Image 1.4.2 (Jadon, 2022) 
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o Rectified Linear Unit (ReLU): max(0,x) 

 
Image 1.4.3(Jadon, 2022) 

• Pooling layer: this layer, as the convolutional one, has the role to reduce the 

dimension of the matrices it takes as input. There exist two different types of 

pooling layer, a max pooling and average pooling; they both take a fixed-shape 

subset of the input matrix and take respectively the max value and the average 

value in the subset and populate with this the resulting feature map.  

• Flattening and fully connected layer: the last architectural component of CNN are 

the flattening layer and the fully connected layer. As of now we have been 

working with matrices but the input the fully connected layer is expecting to 

receive has not 2 dimensions but just one. The flattening layer has the role to 

reshape the last pooled feature map from a 2-dimensional array to a 1-dimensional 

array. The fully connected layer is the last block of the CNN structure and it 

resembles a traditional artificial neural network (ANN), where multiple neuron 

layers are connected until the final layer performs classification based on the 

probability of each record to belong to one class or another. What makes this block 

unique is that every neuron in each layer is connected to all neurons in both the 

preceding and subsequent layers. 

• Overfitting avoidance layers: One of the biggest risks when training a broadly 

designed CNN is the one of falling into overfitting; to avoid this there are some 

special layers whose role is the one of applying regularization techniques to 

decrease this type of risk. The two most known are the dropout layer and the 

normalization layer. 

o The dropout layer: with the terms 'dropout' we refer to the process of 

deactivating nodes in a neural network, temporarily. When a node is 

dropped, all forward and backward connections that are associated with 

the node are removed for the time being. That will result in a modified 

network architecture derived from the original network. Dropping is done 
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in a predetermined manner dictated by a dropout probability, generally 

denoted by p (Yadav, 2023). 

 

Image 1.4.4 (Yadav, 2023) 

o The batch normalization layer: the batch normalization is a layer as all the 

other and it is particularly useful when dealing with features having very 

different scales, it normalizes the values of features to avoid that large 

feature will drown out the small feature. It is called batch normalization 

because the normalization activity is performed batch by batch when data 

are passed through the network (Doshi, 2022). 

 

1.4. The Aim of the Research 

VGG-16, VGG-19, ResNet50, they are all models applied in radiology, to help 

physicians in the evaluation process; every developer has his own idea about which one 

of them is the best one in fulfilling medical tasks. The aim of this project is to build, train 

and evaluate some of the in order to understand which of them is actually the best one in 

a well-defined case. The final task that the models must solve in this project is pneumonia 

detection: understanding, starting from X-Ray images, which patients are suffering from 

pneumonia and which one are not. Pneumonia is an infection that affects one or both 

lungs causing the air sacs, or alveoli, of the lungs to fill up with fluid or pus. 

Symptoms can range from mild to serious and may include a cough fever, chills, and 

trouble breathing. Age, your overall health, and what caused the infection are all factors 

that could determine the severity of the illness (What Is Pneumonia? | NHLBI, NIH, 

2022). 

https://www.nhlbi.nih.gov/health/pneumonia/symptoms
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 The models that are going to be compared are ResNet50, VGG16 and an Optimized 

CNN; the first two are models commonly used for this type of task (Reshan et al., 2023), 

while the optimized CN has been chosen because CNN is the base of the previously 

mentioned two and it is the ML architecture used when dealing with images. 

ResNet50 and VGG16 are pretrained models, this means that the training process has 

been already undertaken (the well-known dataset “ImageNet” in this case) allowing each 

of them to put in place transfer learning. In transfer learning, instead of training a model 

from scratch, it is leveraged the knowledge already learnt from a general task to improve 

performance and reduce training time for a related scope. This fine-tunes the model by 

changing the architecture of the final layer and keeping the other layers of the pre-trained 

model fixed. In computer vision, this method has proved outstanding performances 

increasing accuracy and speed. Despite the benefits, this time a usual application of 

transfer learning was not enough since the ImageNet dataset contains images belonging 

to several categories but not to the class of chest X-Ray; some other techniques needed 

to be undertaken like freezing and unfreezing the last layers of the pretrained models in 

order to have better result, this will be explained more in detail at a later time during the 

project (Vishal, 2024). 

ResNet is short for Residual Networks, is quite famous for the use of skip connections 

(residual connections), a technique that guarantee the free flow of information and 

challenge the problem of vanishing gradients in a very deep network. The model sued for 

solving the set task, is ResNet-50 which consists of 50 layers. The skip connections are 

known to allow networks to learn residual mappings, which helps a deep network to be 

trained without the risk of vanishing gradients (Rehman, 2024). VGG16, instead, is a 

simpler architecture with respect to ResNet50 but it is still very effective. It consists of 

16 weighted layers, out of which 13 are convolutional and 3 fully connected. The core of 

VGG16 is to consistently use small 3x3 size filters of convolutional layers followed by 

another layer of max pooling where fine image details can be exploited and complex 

patterns learned (Great Learning, 2022b) (Vepuri, 2022). Both models will be explained 

more in depth in the next paragraphs. 
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From this introduction, it could have been probably grasped how can ML be used in 

the healthcare sector and which are its benefit. Along this project we will firstly go 

through a literature review highlighting the state of art of this topic pausing even more on 

its applications, benefits and especially possible drawback; later on a technical 

explanation of CNN will be undertaken illustrating how they are usually structured and 

which are their layer and their features. The following sections will be dedicated to a 

deeper description of the three models mentioned above (ResNet50, VGG16 and the 

optimized CNN) and their evaluation with the choice of the best model. 
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2. LITERATURE REVIEW 

2.1. Overview 

A literature review is defined as an account of the existing literature related to a 

specific topic or area of interest. The LR investigates how this new auditing tool increases 

the efficiency of detecting pneumonia using better imaging scans for early diagnosis. It 

also provides insight into the moral dilemmas when using machine learning in healthcare 

and some of the issues, like data privacy, bias, and the black box dilemma. This review 

also highlights the advantages and challenges of integrating machine learning 

technologies in healthcare. 

 

2.2. Machine Learning in The Healthcare Sector 

Machine learning can be described as a set of algorithms and statistical techniques 

that allows applications to improve their performance and decision-making about some 

input data based on what has been learnt from other similar data sets without having to 

be specifically programmed (Habehh and Gohel, 2021). These models are on the level of 

easy algorithms including linear regression and decision trees up to the complex 

architectural solutions like deep neural network which is based on many layers of 

interconnected nodes that imitate the work of the human brain. A major benefit of using 

the machine learning approach to text classification is the potential to analyze vast 

datasets and find patterns that a human analyst may not be able to identify (Alanazi, 

2022). 

In the context of healthcare, machine learning models are usually trained on very 

large data sets that contain many different types of medical data, including demographic 

information about the patient such as age, sex, and ethnicity, clinical history of the patient 

including symptoms and past illnesses, laboratory test results, imaging test results 

including x-rays and MRI scans and genomic data of the patient (Alanazi, 2022). These 

models are trained using data to understand the patterns and the dependency between the 

variables to be able to make predictions about patient status, disease progression, or 

propensity of certain diseases. Nevertheless, the idea here is that these predictions can be 

made with reasonable stability and accuracy in comparison with other methods; therefore, 
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machine learning seems a valuable addition to the variety of approaches applied in the 

healthcare industry (Callahan and Shah, 2017). 

Callahan and Shah (2017) noted that machine learning models can be classified 

based on the learning methodology. These are supervised learning, unsupervised learning, 

and reinforcement learning. In Supervised learning the model is trained with the identified 

set of data which means each data point has its correct output. This kind of training makes 

the model capable of foreseeing the outcome of a data input that the model has not seen 

before (Nayyar et al., 2021). 

Conversely, the unsupervised learning process is one in which the model is trained 

on a dataset and there are no labels, in this process, the model is free to find some of the 

patterns or groupings in the data set by itself (Nayyar et al., 2021).  

The third strategy is referred to as the reinforcing learning technique whereby a 

model is trained to generate a sequence of decisions that should be accompanied by 

feedback in the form of rewards or penalties based on the outcome. These are learning 

approaches that possess characteristics of learning that are applicable depending on the 

nature of the problem under consideration in a system of healthcare (Javaid et al., 2022). 

 

2.2.1. Early Diagnosis and Predictive Analytics 

One of the most significant ways through which machine learning has perhaps 

made the most amount of positive impact in this area is its ability to enhance time to 

diagnosis and time to prognosis (Javaid et al., 2022). The concept of early disease 

detection is one of the fundamental tenets of therapeutic activity, as the effectiveness of 

treatment depends on the stage at which the disease is identified. This is especially the 

case with diseases with fast-moving or even invisible stages that are not easy to detect 

through conventional medical means (Siddique and Chow, 2021). 

Big data analysis is one of the most significant advantages of machine learning 

for the identification of disease patterns that could be indicative of a disease’s presence 

even if its symptoms have not emerged yet (Siddique and Chow, 2021). This capability 

is very helpful in diagnosing cancer, cardiovascular disease, and neurological disorders, 

where early detection can greatly help the patient’s condition (Ahmad et al., 2018). 

For example, in the field of oncology, deep-learning models are used to analyze 

medical images such as mammograms or skin photographs for signs of cancer at an early 
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stage (Ahmad et al., 2018). These models have been trained using a dataset that may 

contain hundreds or even thousands of samples with images and labels that enable the 

model to distinguish between malignant and benign lesions with very high accuracy. At 

times, such models can perform as effectively as or even better than professional experts 

in the field, the discovery of which serves as a practical instrument for the early diagnosis 

of cancer (Shailaja et al., 2018). 

For instance deep learning, which is a branch of machine learning, has been used 

in dermatology as a tool to help diagnose early stages of skin cancer based on images of 

skin lesions (Shailaja et al., 2018). Such models can diagnose benign and malignant 

lesions with the highest accuracy, comparable to dermatologists. These models are trained 

on information images and in this process, learn to differentiate between almost similar 

features such as color, texture, and shape that might not be easily discernable. This 

capability not only plays the role of early diagnosis of skin cancer but also increases the 

minimally invasive biopsies thus increasing the comfort of the patient and decreasing the 

cost of health care (Saleem and Chishti, 2020). 

In addition to cancer detection, early diagnosis uses machine learning ways. It 

also provides information for the prediction of the occurrence of chronic diseases and 

other severe health conditions (Saleem and Chishti, 2020). Computer algorithms that can 

learn from experience can analyze the data on patient’s demographics, medical history, 

genetics, and even the environment to provide predictions about possible upcoming acute 

health issues (Bhardwaj et al., 2017).  

For instance, machine learning has been used in the prediction of chronic diseases 

such as diabetes, hypertension, and heart diseases among others (Toh and Brody, 2021). 

It can arrange these people according to the patterns from the EHRs, which the healthcare 

providers can then use in taking preventive measures for these diseases. This preventive 

measure does not only reduce the incidence of chronic diseases but also the overall health 

of the people is improved through early diagnosis and altering behavior (Bhardwaj et al., 

2017). 

ML help healthcare providers develop subsequent care management strategies for 

individual users depending on the identified threats to minimize the likelihood of 

readmissions (Qayyum et al., 2020). For instance, the prediction of a reassessment of a 

patient with heart failure and other associated diseases may be considered high risk by a 
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machine learning model. Instead, the healthcare team can offer closer monitoring 

services, either as regular appointments, changes in medicines, or home healthcare 

services to avoid being readmitted (Toh and Brody, 2021). 

Healthcare operations are also advanced by using predictive analytics based on 

machine learning to effectively and efficiently allocate resources (Toh and Brody, 2021). 

For instance, hospitals can employ auto-regression models to forecast the number of 

admissions depending on history data, seasonality, and local outbreaks. These predictions 

help healthcare facilities to have a good staff who can help in operations, efficient 

utilization of resources, and also less exploiting time for the patients. For instance, in flu 

season, a hospital can hypothesize on the likelihood of a higher number of patient 

admissions and hence pre-empt by hiring more staff, purchasing more stocks, and 

arranging for more beds. As a result of achieving operational efficiencies, there is 

improved patient satisfaction, overall health system capacity is enhanced, and pressures 

during a surge in patient demand are kept to a minimum (Panesar, 2019). 

 

2.2.2. Personalized Medicine 

Precision medicine or, as it is also called, personalized medicine is an innovative 

model of healthcare delivery that aims to provide a patient-specific treatment (Panesar, 

2019). It is also different from the conventional approach of developing a standard 

treatment plan depending on the disease’s type but uses genetic, environmental, and other 

aspects of a patient as well as biochemical markers in creating an intervention plan that 

is either more effective, safe, or faster. Machine learning plays a crucial role in the 

implementation of individualized medicine as it provides high potential for the analysis 

of large datasets, outcome prediction, and the identification of the most suitable treatment 

approaches (Zhang et al., 2022). 

Another successful use case incorporating machine learning into the concept of 

personalized medicine is pharmacogenomics, the branch of medicine that aims to identify 

the connection between the patient’s genes and the effectiveness of medication (Zhang et 

al., 2022). It is possible to extract features from genetic data and use machine learning to 

forecast the mode of reaction individuals will show to certain drugs, which helps in the 

development of personalized treatment plans. Apart from enhancing the effectiveness of 

treatment regimens, this approach minimizes the possibility of adverse drug reactions 
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whose effects are fathomless in the sphere of health care. For instance, the way a patient 

metabolizes drugs including warfarin, a popular anticoagulant, depends on inherited 

genes (Kasula, 2021).  

In oncology, for instance, it has been applied in creating an individualized 

treatment plan for cancer patients (Kasula, 2021). The work done involved the use of gene 

expression data from the patients to train a SVM, support vector machine, which is a type 

of machine learning algorithm to predict response to chemotherapy. All the 175 trial 

participants had cancer and their gene expressions were used to determine whether they 

would metabolize the chemotherapies commonly administered to cancer patients. The 

analysis offered quite positive outcomes with the variation in the percentage of 

predictions higher than 80% for various types of drugs. That is why machine learning can 

be viewed as one of the key tools for improving the effectiveness of cancer treatment and 

the determination of the most suitable therapy for patients based on their genetic 

characteristics (Sabry et al., 2022). 

Another area where machine learning is important is in predicting outcomes of 

psychiatric treatments (Sabry et al., 2022). In a study focused on the identification of the 

patient’s response to various classes of antidepressants, the authors utilized the EHRs of 

17,556 individuals and machine learning techniques. From the AI models, features that 

are predictive of treatment selection have been used to reduce confounding factors and 

the models gave good predictions. This research showed that, based on real-world EHRs, 

AI modeling could identify patients who would respond well to antidepressants, which 

implies that such techniques might be useful for implementing integrated clinical decision 

support systems to enhance treatment efficiency. It could also mean the development of 

better-targeted treatments for conditions that are known to require testing many drugs and 

dosages before finding one that works well (Pattnayak and Panda, 2021). 

Although AI techniques and the inclusion of genomics to predict treatment 

efficacy have seen a lot of advancement, there is a need for more prospective and 

retrospective clinical studies (Pattnayak and Panda, 2021). These efforts are critical for 

collecting the massive and diverse data sets that are necessary to successfully train 

machine learning algorithms, for validating their usefulness and effectiveness within the 

healthcare setting, and for continuing the advancement of AI-based clinical decision 

support systems. The further application of these tools for the development of 
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personalized medicine in healthcare maintains hope for enhancing good results in every 

stream of medical care for patients (Swain et al., 2022). 

 

2.2.3. Imaging and Radiology 

There has been the advancement of machine learning in medical imaging and 

radiology, which plays an important role in assessing and diagnosing several diseases 

(Swain et al., 2022). The capabilities of the ML algorithms to classify medical images 

with high accuracy have dramatically impacted these sectors to deliver accurate diagnoses 

earlier. Imaging has become a significant part of today’s healthcare systems and it entails 

capturing visual images of the human body which can be used to diagnose a myriad of 

diseases, for instance, a broken bone, and cancerous tumors among others (Mohanty et 

al., 2021). 

In radiology, machine learning models are employed to make interpretations of 

images acquired from different modalities such as X-ray, MRI (magnetic resonance 

imaging), CT (computed tomography), and ultrasound scans (Mohanty et al., 2021). 

These models are trained with massive data from the medical image database and they 

are capable of learning the patterns that are linked to a given condition. For instance, 

breast cancer screening machines were designed to analyze mammograms and identify 

tumors in earlier stages than any other method. This is important because early-stage 

cancers are easier to treat than the later stages. Thus, using data on calcifications and other 

features that may suggest the existence of a tumor, the machine learning algorithm helps 

radiologists identify carcinomas that can remain unnoticed during ordinary scans 

(Sanchez et al., 2022).  

Likewise, deep learning has demonstrated tremendous potential in the diagnosis 

of lung cancer from chest X-rays and CT scans (Sanchez et al., 2022). Pulmonary cancer 

is intrinsically aggressive to diagnose in its early stages since its symptoms resemble those 

of other common and less severe respiratory diseases, while small-sized carcinomas are 

disregarded. However, recent studies in the field of machine learning have shown the 

potential for detecting small and often overlooked symptoms of the disease like nodules 

in lung tissue. A recent real-world lung cancer screening example identifies early-stage 

lung cancer using a deep learning model on a large database of chest CT scans with 



 21 

accuracy that is comparable to that of expert radiologists (Mustafa and Rahimi Azghadi, 

2021). 

ML is also being applied in the clinical diagnosis of skin disorders through the 

use of machine learning (Mustafa and Rahimi Azghadi, 2021). For instance, 

convolutional neural networks which is a subcategory of deep learning have been utilized 

in the assessment of images of skin lesions and differentiation between skin cancers, 

specifically melanoma. Such models have shown great effectiveness that is even 

comparable with the effectiveness of dermatologists, and this means that early diagnostics 

are possible (Ahmad et al., 2020). 

In ophthalmology, machine learning models are being applied in the diagnosis 

and progress tracking of eye pathologies like DR (diabetic retinopathy) and AMD, age-

related macular degeneration (Ahmad et al., 2020). Diabetic retinopathy is one of the 

most common complications of diabetes that can lead to blindness if left untreated, and 

timely screening is crucial. Deriving from the earlier point, patients with DR be screened 

for microaneurysms or hemorrhages using retinal images analyzed by machine learning 

models hence allowing early corrective action to be taken to prevent the worsening of the 

DR (Chua et al., 2023).  

Likewise, machine learning models assist ophthalmologists in supervising AMD, 

a leading cause of vision impairment in seniors, by scanning patients’ retinal images for 

indicators of disease development (Chua et al., 2023). These models can assist the 

ophthalmologist in the decision-making process regarding diagnoses and interventions 

including anti-VEGF injections that may arrest or reverse the AMD progression (Gupta 

and Sedamkar, 2020).  

In addition, machine learning has been used to improve the quality and 

effectiveness of medical imaging (Gupta and Sedamkar, 2020). For instance, in scanning 

and imaging, ML algorithms can fine-tune image reconstruction; this capability is highly 

useful in MRI and CT imaging because faster and more accurate scans result in faster 

diagnosing and therefore improved patient care. However, it is also possible for machine 

learning models to contribute to the interpretation of images that are ambiguous and hard 

to dissect for a diagnosis, and come up with useful information that would benefit the 

radiologists (An et al., 2023). 
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Machine learning has also been used to monitor and bring prognosis for 

neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, and 

severe mental illnesses like psychosis depression, and PTSD (An et al., 2023). 

Alzheimer’s disease has no known cure but if diagnosed early, one can start planning and 

trying to keep the symptoms from appearing or from worsening (Usmani and Jaafar, 

2022). For example, machine learning models can review imagery like MRI or CT scans 

and consider biomarkers that signify initial potential indicators of neurodegenerative 

diseases, like cortical thinning or hippocampal atrophy, which can then assist with 

treatment planning (Arvindhan et al., 2021). 

Likewise, the prediction of diagnosis and treatment outcomes of depression has 

been done through machine learning techniques (Arvindhan et al., 2021). In one study, 

they employed decision tree models and feature-richer datasets including fMRI, CB 

(cognitive behavior) scores, and age to build a predictive model of depression. On 

diagnosis, the model had an accuracy of 87.27% while on treatment response it was 

89.47%. This predictive capability is particularly useful in mental health where, wherein 

conditions such as depression, diagnosis, and treatment are greatly hampered by issues 

such as subjective reporting of symptoms and high variability in responsiveness to 

treatment (Gichoya et al., 2021). 

The present uses of machine learning in medical imaging and radiology are the 

perfect example of the benefits of technology in the further development of the medical 

industry (Gichoya et al., 2021). The effectiveness of machine learning in terms of 

accuracy, classification, sensitivity, and specificity underlines their importance in 

healthcare systems. Over time and with advancing technology, the application of machine 

learning in medical imaging will only grow, and its capabilities for enhancing the 

diagnosis process and improving the health of patients will increase (Chen et al., 2021). 

 

2.2.4. Genetic Engineering and Genomics 

Genetic engineering and genomics are some of the areas that have been 

revolutionized by machine learning (Chen et al., 2021). CRISPR-Cas9 gene has provided 

a new tool for making modifications within the human genome, where a researcher can 

effectively alter the DNA sequence of target genes. Nonetheless, the effectiveness of 

these methods relies on the accuracy of the genetic alterations as random changes can 
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pose negative repercussions. Machine learning has also emerged as a central way of 

increasing genetic and other genomic tasks’ precision and speed, to guarantee that edits 

are done correctly and without consequences on other genes (MacKay et al., 2023). 

Another important issue regarding manipulations at the DNA level is dealing with 

the issue of off-target effects, that is, secondary effects that are realized at a site other than 

the intended one (MacKay et al., 2023). The effects that are produced by the mutation can 

be random and in some cases can be risky since they introduce abnormality within the 

protein. To overcome this challenge, new machine learning modes have been designed to 

forecast where one of these off-target effects might happen allowing enhanced accuracy 

of the CRISPR-Cas9 gene editing. For instance, in deep learning models, the genome can 

be categorized to look for possible off-target sites due to high sequence homology to the 

target site. Thus, such identification will help researchers to create more suitable guide 

RNAs, which would minimize the likelihood of off-target effects, thus enhancing the 

safety of the gene editing process (Feng et al., 2022). 

Machine learning is also being used for the rational design of enhanced high-

fidelity Cas9 variants thereof Cas9 protein that are superior in gene editing (Feng et al., 

2022). The high-fidelity variants moreover contain fewer off-target effects, suggesting 

that they are safer to be utilized in clinical practice. With big data on genomics accessible, 

machine learning approaches can determine how different Cas9 variants should be 

utilized for various applications. For instance, by applying machine learning, one could 

obtain data from several experiments in gene editing outcomes to identify which Cas9 

variant is most effective in achieving the required edit frequency with minimal off-target 

impact. Such information can be used in modifying newer Cas9 variants hence extending 

the knowledge in genetic engineering (Rasheed et al., 2022). 

Besides, Gene editing has also revolutionized the field of genomics through the 

application of machine learning in genetic big data analysis (Rasheed et al., 2022). 

Genomic data is highly detailed, containing millions of different data points, which may 

reflect various characteristics of an individual’s genome. Conventional techniques for 

processing this type of information may take a long time, in addition, a web of 

interconnection between the various genetic factors may not be fully revealed by 

traditional approaches. Nevertheless, with the help of machine learning techniques, such 

data can be processed at a higher speed and can reveal characteristics or dependencies 
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that can be imperceptible to experts. This capability is the most important for undertaking 

research, where diseases with multiple genes and environmental effects play a role 

(Rastogi et al., 2022). 

A major use of machine learning in genomics is in the identification of certain 

diseases that are likely to affect an individual given his or her genotype (Rastogi et al., 

2022). Machine learning algorithms can employ algorithms on large population genetic 

databases and thus predict key genes that are associated with the kinds of diseases 

including cancer, heart diseases, and diabetes among others. For instance, a machine 

learning algorithm can employ genotyping data from thousands of people to determine 

which genetic markers are significantly associated with a particular disease.  

Such knowledge can then be utilized in the creation of questionnaires which can 

help in identifying those individuals who are at a high risk of developing these diseases; 

this may help in disease prevention. For example, those people with a genetic 

predisposition to an illness like breast cancer may agree to be subjected to more tests, 

have prophylactic surgery, or go for chemoprevention as a preventive measure (McCoy 

et al., 2020). 

Machine learning is also valuable in the establishment of the concept of 

personalized medicine with a specific focus on pharmacogenomics (McCoy et al., 2020). 

Pharmacogenomics is analyzed as the relationship between genetic factors and the use of 

drugs. Machine learning models can then appropriately make predictions regarding 

patients’ reactions to certain drugs and adjust therapies to conform to patients’ genetic 

information. It also helps enhance the effectiveness of treatment and minimizes the 

incidences of adverse drug reactions, which may be serious or fatal. For instance, an ML 

model might take a patient’s genes and predict if the patient will metabolize a specific 

drug quickly or slowly. Such information can be used to further fine-tune the dosage or 

even select another product that will be better for a particular patient, thus providing the 

most effective and safe therapy (Rani et al., 2023). 

Machine learning has also contributed to genetic engineering in combating 

COVID-19 (Rani et al., 2023). Scientists have recently employed software developed 

through machine learning approaches to identify which antigens possess the 

characteristics of HLA-binding, processing, presentation to the cell surface, and T-cell 

recognition—attributes necessary for successful immunotherapy targets (Jia et al., 2022).  
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With the help of the machine learning algorithm performing the sequence analysis 

of the SARS-CoV-2 virus, the epitope hotspots were discovered, which means that the 

regions of the virus modeled by the immune system as dangerous are identified (Jia et al., 

2022). This information helped in deciding on the advancements in vaccines and 

immunotherapies, in the conceptual construct of a universal vaccine, useful for the entire 

population of the world. Such an approach can be effective and demonstrate the ability to 

deploy contemporary machine learning techniques for determining the development of 

new treatments and measures for the prevention of emergent viral diseases (Allgaier et 

al., 2023). 

 

2.2.5. Electronic Health Records (EHRs) 

Electronic Health Records (EHRs), originally termed clinical information 

systems, emerged in the market through Lockheed in the 1960s (Allgaier et al., 2023). 

Since then the systems have undergone many reconstructing to build a standard system 

for the industry. To enhance the quality of work, improve efficiency, and promote EHR 

adoption, in 2009, the US federal government regarding billions of dollars to support 

EHR adoption across all practices; in turn, more than 87% of office-based practices in the 

US had adopted EHR systems by 2015 (Char et al., 2018).  

Large data from EHR systems with structured feature data are helpful for deep 

learning, such as medication refills and diagnoses indications for patient history (Char et 

al., 2018). This has led to the enhancement of data management, data retrieval, and overall 

quality of care and assisted physicians in diagnosis and management. It has also led to 

increased availability of health records for research, through features being made 

consistent across several datasets (Jadhav et al., 2019). 

Another EHR benefit lies in its capacity to contain structured and unstructured 

data, comprising patient identifiers, medical history, examination results, and clinical 

notes (Jadhav et al., 2019). This data can then be processed by machine learning models 

to make decisions on patients’ outcomes and patterns. For instance, it is possible to 

estimate the probability of post-surgery complications using Machine Learning 

algorithms, which will enable healthcare workers to prevent such occurrences and 

enhance patient experiences (Mustafa and Rahimi Azghadi, 2021). 
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Another application of ML is its use in estimating readmission rates for patients 

using data collected from EHRs (Ahmad et al., 2020). Using patient data including 

history, treatment details, as well as socioeconomic factors predictive ML models can 

assess potential readmission risk and suggest how this risk might be mitigated. This not 

only has the advantage of improving patient health outcomes but also in lowering costs 

by decreasing readmissions. Another use of machine learning in EHRs is the ability to 

forecast disease prognosis. For instance, ML models can also be used to discover patterns 

in EHRs in the development of chronic diseases such as diabetes and heart disease (Gupta 

and Sedamkar, 2020). 

Machine learning is also valuable in developing patterns that could be the same 

as those of patients with certain diseases or complicated diseases that can be hard to 

diagnose with traditional methods (An et al., 2023). Due to its ability to evaluate big data, 

the ML models can capture patterns and complexities not easily noticed by clinicians. It 

is especially useful in the identification of rare diseases which if detected in their early 

stages can be controlled. However, on a positive note, machine learning is improving the 

flow of operations in the healthcare industry through the elimination of mundane jobs like 

data input and invoicing. This ability to reduce the administrative burden makes the work 

of healthcare providers more focused allowing for the delivery of high-quality service in 

the hospitals and healthcare centers (Arvindhan et al., 2021). 

 

2.3. Machine Learning in Pneumonia Detection 

Pneumonia has been found to cause a raised mortality rate in children as young as 

five (Toğaçar et al., 2020). The best way to diagnose a patient for pneumonia is by the X-

ray picture, which is more affordable and comprehensive as compared to other 

conventional diagnostic techniques. Projection within X-ray images for pneumonia takes 

a lot of time, and several radiologists might disagree on the disease prognosis. Therefore, 

this issue leads to the designing of pneumonia detection techniques that should be safe to 

employ in the health care department for real-time and accurate diagnosis of pneumonia 

(Chandra and Verma, 2020). 

In disease diagnostic systems, ML, DL, and statistical methods are very efficient 

tools to be used (Chandra and Verma, 2020). They could be employed to tackle 

increasingly complex vision problems in the healthcare imaging segment, including but 
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not limited to lung disease categorization, lung segmentation, etc. The recent progression 

in the field of DL has been able to provide and possibly enhance human capability in 

many endeavors. DL can also be used to find out the impacts of treatments such as 

chevalier studies and cancer treatment. Labeled data and DL-based algorithms are related 

to challenging outcomes of thoracic disease classification with an X-ray image modality. 

In the past, deep neural network (DNN) models have been designed, implemented, and 

evaluated through a conventional method, which involves the use of a time-consuming 

trial-and-error technique by professionals in the field (Kareem et al., 2022).  

 

2.3.1. The Role of Machine Learning in Medical Imaging for Pneumonia 

Detection 

Chest X-rays have been a significant part of pneumonia diagnosis for decades as 

they help to evaluate the condition of the lung (Kareem et al., 2022). Chest X-rays and 

computer tomography (CT) are the most frequently employed imaging techniques for this 

purpose. However, these images are challenging to interpret, and even experienced 

radiologists sometimes find it hard to differentiate pneumonia from other related 

conditions, including bronchitis, pulmonary edema, or COPD (chronic obstructive 

pulmonary disease). This is even more difficult in patients who present mild radiological 

features of pneumonia or those who have underlying lung diseases that may alter the 

radiographic appearance of pneumonia (Al Mamlook et al., 2020).  

ML, specifically the use of DL such as CNNs (Convolutional Neural Networks) 

has enhanced more of the field of medical imaging through the automatic analysis of these 

images (Al Mamlook et al., 2020). CNNs, developed to extract and analyze the features 

of images, can be trained on millions of labeled medical images and therefore detect 

aspects associated with pneumonia that might be inconceivable to the human eye. The 

efficiency of CNNs in handling a large number of images and in applying standard 

parameters to each case adds to its most important application where fatigue and cognitive 

errors can be expected in radiologists, especially in busy clinical facilities (Tsai and Tao, 

2019). 

For instance, in a seminal paper, the authors designed a CNN-based model backed 

by more than 100,000 chest X-ray images, which included pneumonia cases, normal, and 

other diseases like affected lungs (Tsai and Tao, 2019). Testing of the model yielded a 
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diagnostic accuracy of over 90% thus making it better than the conventional techniques. 

This is important, especially in clinical practice where accurate diagnosis is likely to 

determine the early intervention that shall have a major impact on the patient’s condition. 

However, this machine learning model was not only identifying the presence of 

pneumonia but also separating it from other respiratory diseases, thus minimizing the 

likelihood of false positives and false negatives. This is quite crucial to eliminate wrong 

diagnoses and the subsequent unnecessary treatments that a patient may undergo 

(Yaseliani et al., 2022). 

Besides improving diagnostic performance, machine learning models can also 

help in determining the severity of pneumonia based on the degree of lung involvement 

(Yaseliani et al., 2022). This entails assessing lobes that are affected and evaluating other 

factors including density in a lung, or consolidation which is characteristic of pneumonia 

in imaging setups. Using machine learning models, clinicians can determine the level of 

care patients need based on an accurate appreciation of disease severity. For example, if 

a patient requires a lot of lung regions to be flooded, that patient must be admitted or even 

put in the Intensive Care Unit, whereas a patient with mild disease can be treated as an 

outpatient. The convenience of the rapid and accurate identification of the degree of 

illness is most important in a condition where time is critical such as in severe pneumonia 

where the disease may progress to a critical state (Pankratz et al., 2017). 

Additionally, in the case of machine learning, one can feed the model more data 

through training and in this way, the model evolves along with new data (Pankratz et al., 

2017). This flexibility is quite useful in the ever-changing medical field through diseases 

and even the symptoms they manifest. For instance, during the COVID-19 outbreak, the 

models were quickly repurposed for the differentiation of COVID-19 pneumonia from 

other types of pneumonia. These models were, therefore, capable of adapting as they 

continue to learn from new data thereby remaining useful even as the pandemic advanced, 

and new mutations/variations of the virus were identified (Varshni et al., 2019). 

 

2.3.2. Enhancing Diagnostic Accuracy with Machine Learning 

The primary advantage of applying machine learning to pneumonia detection is a 

direct increase in diagnostic performance (Varshni et al., 2019). Timely and accurate 

diagnosis is highly valuable in medicine, as inaccurate diagnosis may lead to inadequate 
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treatment, slow healing, or even fatal consequences. Although traditional methods used 

in the diagnosis of pneumonia are efficient, they present a few challenges. These methods 

greatly depend on the proficiency and expertise of the radiologists, who are expected to 

assess intricate images and diagnostic information. Human interpretation is subjective 

and may differ from one clinician to another hence varying in diagnosis. However, human 

interpretation can be influenced by several factors like fatigue, biased thinking, and high 

workloads, which reduce accuracy even more (Das et al., 2022). 

These challenges are eliminated for more objective, consistent, and scalable 

machine learning models in diagnosing pneumonia (Das et al., 2022). These models are 

useful in finding minute patterns that may not be visible in the images, especially in 

medical images. For instance, in patients presenting with early or mild pneumonia, there 

may be relatively insignificant changes on computed tomography images of the lung 

tissue and thus may not be observed even by prominent radiologists. Even the slight 

changes in tissues that cannot be easily seen and diagnosed by the human eye, machine 

learning algorithms especially those trained on large and diverse data sets can identify 

them and this can lead to early diagnosis (Račić et al., 2021). 

Apart from enhancing diagnostic performance, machine learning models can 

process multiple forms of data at the same time, something that can be scarcely done by 

human clinicians (Račić et al., 2021). The diagnosis of pneumonia often involves the use 

of clinical data, imaging tests, and/or laboratory findings. For instance, a man with 

coughing, fever, and difficulty breathing will be advised to take a chest X-ray and a blood 

test to check whether the white blood cell count is high, which shows infection is present 

(Yee and Raymond, 2020).  

In the past, the clinician would have to integrate this information qualitatively and 

quantitatively, a process that is both time-consuming and error-prone (Yee and Raymond, 

2020). The machine learning models however can quickly assimilate and combine all 

these different types of data to give us a nearer real picture of the patient’s condition. This 

not only brings a positive contribution to the diagnostic evaluation but also contributes to 

the existing diagnostic arsenal, optimizing the diagnostic and therapeutic algorithm, and 

bringing it to a higher level (Tilve et al., 2020). 

An analysis of how machine learning has been applied in the identification of 

pneumonia demonstrates that these methods can enhance the diagnosis of respiratory 
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diseases (Tilve et al., 2020). In a work, scientists designed an image-overlaid model that 

incorporated chest X-rays and patient information, like symptoms and lab results, to 

estimate the risk of pneumonia. The model also performed far superior to traditional 

diagnostic methods giving a better and more precise diagnosis. Furthermore, the model 

proved to help identify the factors that contributed to the diagnosis which also involved 

concrete characteristics in imaging data or certain clinical signs. This is especially handy 

in multiple-factor cases where the nature of the disease or the injury needs to be 

determined after taking into account several factors (Barakat et al., 2023). 

In addition, machine learning models are capable of learning new things over and 

over again, thus embracing what is known as ‘continuous learning’, and especially in the 

medical field where the occurrence of new diseases, new treatments, and diagnosis tools 

are always being invented (Barakat et al., 2023). They are more effective in diagnosing 

since they update their algorithms from time to time when new information is obtained. 

For instance, if there are novel subtypes of respiratory viruses as they occur, the models 

can be retrained based on data from the latest cases so that they remain relevant due to 

ever-evolving respiratory viruses (Muhammad et al., 2021). 

The potential to improve the diagnostic performance of machine learning models 

is not only hypothetical but has been evidenced in numerous cases (Muhammad et al., 

2021). For example, the diagnosis of pneumonia due to SARS-CoV-2 has been quickly 

diagnosed using machine learning models during the COVID-19 outbreak. These models 

were capable of distinguishing COVID-19 pneumonia from other lung pathologies 

despite having the same appearance on a chest radiograph or CT scan. Such precision 

helped deal with the pandemic because identifying the development of new symptoms 

and equipping the healthcare system to adapt to the same was never an easy task 

(Yahyaoui and Yumuşak, 2021). 

 

2.3.3. Machine Learning in Predicting Outcomes and Guiding Treatment 

In addition to diagnosis, machine learning models are also being applied for the 

prognosis of patient status and monitoring treatment decisions in cases of pneumonia 

(Yahyaoui and Yumuşak, 2021). It is essential to be able to predict pneumonia 

progression as well as to recognize patients who are most likely to develop complications, 
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to be able to provide the most effective treatment and appropriately distribute all the 

available healthcare resources (Swetha et al., 2021). 

Machine learning models can use data obtained from imaging studies, EHRs 

(electronic health records), and/or patient demographics to assess outcomes like the need 

for mechanical ventilation, ICU (Intensive Care Unit) admission, or death (Swetha et al., 

2021). Such predictions can assist healthcare providers in sorting patients according to 

their risk level so that the high-risk patients are well cared for (Liu et al., 2020). 

For example, a machine learning model for predicting outcomes in patients with 

pneumonia used images and details of 30,000 over cases, radiographic, clinical factors, 

and non-urgent parameters (Liu et al., 2020). It also affords the chances of early 

interventions in those identified to be at higher risk of developing severe complications 

like respiratory failure or death. It also poses considerable consequences on 

prognosticating these outcomes with a high level of performance when it comes to 

resource allocation in care delivery structures, more so during a pandemic or outbreaks 

when resources are likely to be rationed (Barhoom and Abu-Naser, 2022). 

Machine learning also provides an option for developing an individualized 

approach to the treatment of patients with pneumonia (Barhoom and Abu-Naser, 2022). 

Using individual patient data, such as genetics, other diseases, and previous responses to 

treatments, machine learning algorithms can point to the quintessential treatment for 

every patient. Such an approach is likely to benefit treatment by increasing its chances of 

success as well as minimizing the likelihood of side effects or other complications (Stokes 

et al., 2021).  

Furthermore, the accuracy of machine learning models can be improved with 

increased robustness over data and time (Stokes et al., 2021). This ability to “learn” from 

new cases makes the diagnostic model especially useful for infected diseases where the 

diagnostic models are still being developed for new variants or new strains. As the disease 

dynamics change and new data becomes available, ML algorithms can therefore continue 

to provide accurate results (Gabruseva et al., 2020). 

 

2.3.4. The Integration of Machine Learning with AI and Computer Vision 

Machine learning has been further enhanced with artificial intelligence (AI) and 

computer vision in improving the detection of pneumonia (Gabruseva et al., 2020). 



 32 

Computer vision, which is part of AI that underlines machines in interpreting visual info 

in the world, has been helpful in advanced imaging analysis tools’ creation. Used with 

machine learning, computer vision can improve the sensitivity and specificity of 

pneumonia diagnosis, especially, when dealing with medical images like chest X-rays 

and CT scans (Cheekuri et al., 2024). 

Pneumonia is one of the many areas that concern computer vision and its practical 

implementation, for instance, by creating image segmentation technologies (Cheekuri et 

al., 2024). Image segmentation is a division of one image into parts or segments and is 

useful when it is necessary to separate some areas of the image in particular. When aiming 

at pneumonia detection, segmentation tools help allow for distinguishing as well as 

outlining the lung consolidations that are signs of pneumonia in radiology. Pneumonia 

detection is accomplished by using these tools as they operate on machine learning to 

categorize the image and subsequently mark the lung tissue that may be potential 

pneumonia regions (Rahman et al., 2020). 

There are several advantages of automated segmentation compared to the manual 

method employed by radiologists (Rahman et al., 2020). Primarily, it decreases the time 

needed for image analysis, and thus, the needed time for providing a necessary diagnosis 

and treatment. This is especially so where the patient is suffering from severe pneumonia 

for which early treatment has a significant impact on the patient’s condition. Second, 

automated segmentation is completely different from human interpretation because it 

offers a more reliable and reproducible result, which minimizes inter-observer variability. 

This regularity assists in standardizing what each case is being judged against, therefore, 

creating higher levels of reliability and reproducible outcomes (Qu et al., 2022). 

Apart from the segmentation, computer vision has also been employed to build 

machine learning models that would be used to differentiate cases of pneumonia that 

could be of different types based on the images taken (Qu et al., 2022). Community-

acquired pneumonia can result from bacteria, viruses, and fungi infections and some types 

of pneumonia may have different radiographic imaging appearances. Pneumonia can be 

classified into different categories hence it is vital to determine the right type upon 

admission so that the right treatment plan can be administered. For instance, bacterial 

pneumonia may be managed by antibiotics while viral pneumonia may need antiviral 

medications or be supported with other means (Pap and Hrnčić, 2019). 
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Computer models or algorithms that use artificial intelligence may help in the 

diagnosis of bacterial, viral, and other forms of pneumonia by analyzing imaging data or 

scan results (Pap and Hrnčić, 2019). For instance, a model might interpret a chest X-ray 

image and infer typical features of bacterial pneumonia, including lobar consolidation or 

pleural effusion. It can then predict whether the pneumonia is bacterial and advise on the 

right treatment to be taken. The reason for such specificity is crucial in the proper 

identification of the disease and therefore the right treatment to avoid further 

complications (Absar et al., 2022). 

In addition, the application of machine learning and computer vision has given 

rise to risk index models that can predict the likelihood of serious conditions associated 

with pneumonia (Absar et al., 2022). The aftermath of pneumonia includes pleural 

friction, lung abscess, and septic-driven acute respiratory distress syndrome (ARDS). 

Those are some of the complications of the illness and can be detected early so that the 

appropriate measures are taken to avoid the worsening of the patient’s condition (Erdem 

and Aydin, 2021). 

Imaging data integrated into the patient’s electronic health record can feed into 

predictive models, such as computer vision, for the identification of possible 

complications like effusion in the pleural space, or lung necrosis (Erdem and Aydin, 

2021). Such models can then generate a risk profile for clinicians, thereby showing which 

of the patients is at a higher risk of complications (Jain et al., 2022). 

AI and computer vision when integrated with machine learning have also led to 

the creation of telemedicine applications for pneumonia diagnosis (Jain et al., 2022). 

Telemedicine is a concept that has received much attention recently, especially due to the 

occurrence of the COVID-19 pandemic. In areas where access to trained radiologists for 

interpreting chest X-rays is lacking, telemedicine platforms that employ machine learning 

algorithms can accurately interpret images (Kundu et al., 2021). 

This capability is especially important in a rural or developing country setting to 

provide specialized medical services that may not be readily available in the area (Kundu 

et al., 2021). For instance, a telemedicine system may enable a healthcare provider from 

a distant rural area to take a chest X-ray image with a portable X-ray device or a 

smartphone. The picture can be transferred to a cloud-based server for analysis using a 

machine-learning algorithm for pneumonia indicators. Within minutes, the doctor or the 
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healthcare worker gets a diagnosis and can be able to decide on the next course of action 

for the patient. Implementing this approach enhances the general availability of diagnostic 

facilities while also guaranteeing that patients are promptly and correctly diagnosed 

irrespective of their geographical location (Goyal and Singh, 2023). 

 

2.3.5. Machine Learning and Public Health: Addressing Pneumonia in Low-

Resource Settings 

Pneumonia continues to be a major and life-threatening disease, which is more or 

less prevalent in developing countries due to a lack of healthcare facilities and diagnostic 

equipment (Goyal and Singh, 2023). Thus, in such contexts, machine learning can be 

considered an effective solution in strengthening the diagnosis of pneumonia and 

decreasing mortality rates (GM et al., 2021). 

Another way in which machine learning can be advantageous in low-resource 

environments is that it can work with little support structures in place (GM et al., 2021). 

In remote areas, machine learning models can be made available using portable devices 

such as mobile phones or tablets. Such models can even detect the conditions from 

portable X-ray or smartphone captures, making fast and correct pneumonia diagnoses in 

the field (Nimbolkar et al., 2022). 

Another aspect of machine learning is that the use of such an approach will enable 

the diagnosis of pneumonia to be cheaper (Nimbolkar et al., 2022). The conventional 

procedures of diagnosis include laboratory diagnostic tests and diagnostic imaging and 

these are costly in terms of money, equipment, and personnel. After development, the 

utilization of machine learning algorithms for diagnosing patients would not require the 

additional utilization of the training data and can therefore be considered to be cost-

effective for healthcare facilities that are constrained by financial resources (Naz et al., 

2020). 

Besides, it is possible to train machine learning models on population samples and 

enhance their performance on various groups of patients with pneumonia (Naz et al., 

2020). It is accentuated particularly in low-income countries where the manifestation of 

pneumonia might not be akin to those observed in the developed world. Thus, there is a 

possibility of training models with locally appropriate data that allow healthcare providers 
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to think through the machine learning algorithms that would benefit their populations 

(Erdem and Aydin, 2021). 

Machine learning also has the capacity for enhancing surveillance as well as 

response to disease outbreaks in low-income communities (Kundu et al., 2021). Machine 

learning is capable of capturing images, clinical records, and environmental data to 

discover pneumonia’s outbreak and its potential trajectory. This information can support 

activities aimed at vaccinating the population or spreading knowledge about the disease, 

as well as the distribution of resources to address pneumonia outbreaks (Goyal and Singh, 

2023). 

 

2.4. Drawbacks and Ethical Problems in Using Machine Learning in The 

Healthcare Sector 

2.4.1. Privacy and Data Protection 

GDPR (General Data Protection Regulation) was first implemented by the EU and 

as other countries changed their privacy laws the amendments in those countries were 

made by GDPR (Khan et al., 2023). Based on these regulations, the controller or the 

union-based data processor also processes all personal data and the activities of foreign 

communities and companies to safeguard the information of natural persons with 

adequate protection. In the USA, the exists of organization known as the Genetic 

Information Non-discrimination Act (GINA) which discourages employers from making 

discriminative decisions based on the genetic health of anyone. Machine learning is used 

in the health care sector to process consumer health information, enhance diagnosis, and 

track the images of the medical devices that are used in patient treatment and care, and a 

supportive role in boosting the rate or pace of the related health research and development 

operations (Rasheed et al., 2022).  

 

2.4.2. Bias and Discrimination 

The performance of any machine learning model greatly depends on the input data 

used for training (Ballamudi, 2016). This implies that if the training data is biased or not 

generalized enough, the proposed models can contribute to the further enhancement of 

bias in the field of healthcare. For instance, machine learning models that a company uses 
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to make decisions may contain training data from a certain group of patients; thus, if a 

patient belongs to a different group, then they may be denied equal treatment and test 

results. These issues are especially poignant in a medicinal environment, as they could 

lead to misdiagnoses, improper treatment advice, and differentiated treatment. Bias can 

be mitigated in machine learning by ensuring the datasets used to train the model are 

carefully chosen and curated and by checking the model against data from multiple 

populations continually (Ngiam and Khor, 2019). 

 

2.4.3. Informed Consent and Autonomy 

Informed consent is one of the ways through which a patient and a health care 

provider communicate and encompass elements such as decision capacity and 

competency, documentation of informed consent, and ethical disclosure (Leimanis and 

Palkova, 2021). In this context, patients must have the right to be informed of their 

diagnosis and health condition, the treatment plan, the success of therapy, test results, 

costs, healthcare insurance share or other information related to medical activities, and 

any consent must be given for an exclusively specific purpose, freely and unambiguously. 

Fears for this problem emerged even with the advancement of machine learning in the 

applicative context of health (Prakash et al., 2022). 

 

2.4.4. Impact on Healthcare Jobs 

The tendency of automating jobs that were previously assigned to healthcare 

workers gives rise to the issue of job losses and downgrading of some abilities (Naik et 

al., 2022). However, it also suggests that machine learning can decrease the workload for 

healthcare providers and, at the same time, be a potential threat to some professionals as 

it may replace some of them and become an efficient tool for analyzing images or data, 

for example. This can result in the loss of jobs or a change in what is considered a 

desirable qualification in the field of healthcare. Their use also offers the prospect of 

depersonalization of care, where compassionate touch, language, and patient relations 

may be eradicated in a bid to make way for new efficient, and optimized technologies 

(Wan, 2022). 
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2.4.5. Medical Consultation, Empathy, and Sympathy 

The idea of applying machine learning to all realms of health care appears 

challenging and unachievable (Naresh and Thamarai, 2023). Since human and medical 

robots may experience uniquely human feelings, they cannot develop together shortly. 

Doctors and other caregivers should consult or be consulted by another doctor or another 

caregiver, which is impossible with smart or robotic machines. On the other hand, patients 

will not accept ‘machine-human’ medical relations than the ‘human-human’ (Siddiq, 

2021).  

Doctors and nurses are supposed to treat patients with the touch of empathy and 

compassion needed to treat the patients, which is likely to mar the healing process of the 

patients (Kelly et al., 2019). This will not, however, be possible through robotic doctors 

and caretakers. Empathy, kindness, and compliance with appropriate behavior are 

qualities that patients will lack when interacting with robotic physicians and nurses since 

robots lack humane characteristics. These are considered some of the most tragic impacts 

of artificial intelligence and machine learning in medical science (Gabriel, 2023).  
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3. THE DATASET 

Before diving into the model itself, it is Worth to pause on the dataset that have been 

used as data source. 

To effectively train our model to predict whether a patient is suffering from 

pneumonia, we are utilizing a comprehensive dataset of chest X-ray images sourced from 

Kaggle (Chest X-Ray Images (Pneumonia), 2018). It consists of anonymized patient chest 

X-ray pictures that have been classified as either "Normal" or "Pneumonia" according to 

the patients' health conditions. There are 2,615 images in the 'Normal' category and 4,811 

images in the 'Pneumonia' category for the training set. There are 234 pictures of healthy 

patients and 390 pictures of pneumonia sufferers in the test set. 

Despite the large number of elements in the dataset, data augmentation is required to 

improve the model performance. By using data augmentation approaches, the resilience 

and generalization abilities of the model will be enhanced by diversifying the training set 

without having to gather additional data. The details of data augmentation will be covered 

in detail in the upcoming sections. 

 

       

               Image 3.1 Pneumonia    Image 3.2  Normal 

Our pneumonia detection model's accuracy and reliability can be greatly increased 

by making sure the dataset is well-prepared and enhanced. 
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For both Training and test set images, the pixel dimensions are not consistent because the 

pictures are real, legitimate X-rays. The following tables provide a summary of the 

dimensions' average and standard deviation (SD) for the training and test images: 

Training Set 

 Pneumonia Normal 

Average Width: 1202.03 1666.17 

Average Height 827.58 1378.28 

Width Standard Deviation 284.23 297.19 

Height Standard Deviation 272.43 335.04 

 

Test Set 

 Pneumonia Normal 

Average Width: 1140.82 1800.30 

Average Height 765.29 1369.09 

Width Standard Deviation 208.59 365.15 

Height Standard Deviation 192.85 428.26 

(you can find the code used in appendix I) 

 

As detailed in the previous tables, the dimensions of the images exhibit 

considerable variability. However, this variability is not a substantial issue because the 

models to be utilized, specifically ResNet and VGG16, necessitate fixed dimensions for 

input images. Consequently, the images will be resized prior to training each model. It is 

fundamental to assess any possible issue before proceeding with the resizing process, as 

altering the dimensions of images can sometimes lead to distortions, thereby impairing 

the model's ability to generate accurate predictions. Fortunately, in this context, resizing 

the images does not induce to much distortion, thereby almost totally preserving the 

quality and informational content of the images as shown by the examples below. 
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Image 3.3 Original Image 

 

Image 3.4 Resized image 
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4. PREPROCESSING 

 

4.1. Data Augmentation 

Training a reliable machine learning model relies significantly on the size and quality 

of the training dataset. While there isn't a precise number that defines what is "enough," 

it is universally acknowledged that more data generally leads to better model 

performance. However, merely increasing the quantity of data is not sufficient; the 

diversity and quality of the data, so that the model is always fed with a different image 

each time, are equally important to ensure the model captures a wide range of variability 

and avoids overfitting. 

Augmenting data in this case doesn’t mean creating images from scratch (even though 

it is also a suitable, but more costly, approach) but applying some transformations to 

images that are already part of the initial dataset. In most of the cases these 

transformations are rotation, flipping, scaling, change the brightness level and so on. 

In order to perform data augmentation it has been used a function that is part of the 

keras library: ImageDataGenerator. As described by Chollet, B. F. (n.d.) using Keras 

ImageDataGenerator the following transformations can be applied to the images: 

• rotation_range: it is a value in degrees (0-180), a range within which to 

randomly rotate pictures 

• width_shift and height_shift: they are ranges (as a fraction of total width or 

height) within which to randomly translate pictures vertically or horizontally 

• rescale: it is a value by which we will multiply the data before any other 

processing. Our original images consist in RGB coefficients in the 0-255, but 

such range of values would be too high for our models to process (given a 

typical learning rate), so we target values between 0 and 1 instead by scaling 

with a 1/255. factor. 

• shear_range: it is for randomly applying shearing transformations 

• zoom_range: it is for randomly zooming inside pictures 

https://en.wikipedia.org/wiki/Shear_mapping
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• horizontal_flip: it is for randomly flipping half of the images horizontally, 

relevant when there are no assumptions of horizontal assymetry (e.g. real-

world pictures). 

• fill_mode is the strategy used for filling in newly created pixels, which can 

appear after a rotation or a width/height shift. 

And in particular the model used for answering the thesis question has used this set of 

values for the above mentioned parameters:  rescale=1./255, 

    rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2,  

zoom_range=0.2, horizontal_flip=True, vertical_flip=True, 

    brightness_range=[0.8, 1.2], fill_mode='nearest'. 

As can be noticed the transformations are applied but they are not heavy so that input 

images are not too skewed. 

 

    

                Image 4.1.1 Original Image          Image 4.1.2 Different brightness 

          
Image 4.1.3 Height shift range                    Image 4.1.4 Rotation 
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Image 4.1.5 Flipped  

 

However, before applying data augmentation, it is worth to pause on a possible 

problem that might arise from this practice. In classification problems, either binary or 

multiclass, having an imbalanced dataset is very risky and can result in some issues; as 

explained by Jason Brownlee  in his article about imbalanced classification (2022), 

“Imbalanced classification is the problem of classification when there is an unequal 

distribution of classes in the training dataset.“  In the analyzed scenario the risk is to have 

more images of Pneumonia cases then Normal cases or vice versa. 

Several risks can arise from this situation like: 

• Poor generalization: the model could not generalize well on unseen data especially 

if these data belong to the least represented class; 

• Bias towards majority class: the model could perform very well in the predicting 

the majority class while being very poor in predicting the minority class; 

• Skewed predictions: the model would more easily predict a test sample to belong 

to the majority class rather than to the minority class. 

In order to avoid one of the just mentioned problems, a multiplier has been set to each 

category. Since the images belonging to the Pneumonia class were much more than the 

images belonging to the Normal class, for each pneumonia image 2 transformed images 

were created while for each normal image, 4 transformed images were created. 

These 2 ratios were selected since only integer numbers were accepted by the functions, 

but since this approach results in having more normal images than pneumonia ones, a 

random sample of normal images has been selected and erased to balance the two classes. 

 

The code used is available at Appendix II 

 

https://machinelearningmastery.com/author/jasonb/
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4.2. Validation set 

When training a ML model, principally CNNs, splitting datasets into training and 

validation sets is an essential practice, typically allocating around 30% of data for 

validation, allows for the assessment of model performance on unseen data, detection of 

overfitting, and fine-tuning of hyperparameters. Hyperparameters, such as learning rate 

and batch size, are optimized using the validation set (Academy 2023). 

Because of this, 30% of the images belonging to both the Pneumonia and Normal category 

have been copied and allocated to the validation set. 

Take a look to appendix III to see the code  

 

 

4.3. Modifying test set 

 

Before proceeding with more technical steps, one last task was to modify the naming 

convention of the test images. Originally, these images included labels indicating the 

cause of Pneumonia (virus, bacteria) or the term ‘normal.’ Such labels could inadvertently 

introduce bias, allowing the model to use this information to aid itself in making 

predictions, thereby skewing the results. To ensure the predictions were based solely on 

the image data and to maintain the integrity of the evaluation process, it was crucial to 

remove any identifying information from the test image filenames. This modification 

helped preventing the model from leveraging non-visual clues, resulting in a more 

accurate and unbiased assessment of its performance. 
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5. DATA LOADERS 

Because of what have been said previously about the size of the input dataset for a 

machine learning model, making a PC handle that big amount of images can be risky: the 

risk is that the dimension of the whole set of images exceeds the available RAM of a 

single computer and this could result in two possible scenarios, the constant 

reading/writing operations between RAM and disk could severely slow down the whole 

process or ,even worst, the computer is not able to keep that amount of images in its RAM 

all at the same time and the process will fail, making it impossible to go forward. 

Luckly, during past years, several tools have been implemented to overcome this issue; 

in this case the choice fell on PyTorch Data Loaders. 

PyThorch, together with Keras, is one the most used and known python library for deep 

learning, created in 2016 by the Facebook's artificial intelligence research team and it is 

an open-source machine learning platform. It is built on the Lua-written Torch library, 

which is a framework for scientific computing (Educative, n.d.). 

In PyTorch, DataLoader is a built-in class that provides an efficient and flexible way to 

load data into a model for training or inference and it is particularly convenient because 

not only it helps in dealing with data that cannot fit into local RAM but it also allows to 

perform some data preprocessing and shuffling inside itself (Educative, n.d.). 

The PyTorch DataLoader class is a utility class, that exactly do what is needed in our 

scenario, it loads training data in batches of fixed size and feed them to the model. 

DataLoader is a class part of the PyTorch data loading library, which includes other 

classes such as Dataset, Sampler, and BatchSampler; these classes work together to create 

efficient and flexible data loading pipelines for deep learning models (PyTorch 

DataLoader: Features, Benefits, and How to Use It | Saturn Cloud Blog, 2023).  

As it could have been possible to grasp, there are some advantages in using PyTorch 

DataLoader, let’s summarize them: 

 

• Efficient data loading: The DataLoader class provides efficient data loading by 

allowing the user to load data in parallel using multiple CPU cores. This can 

significantly reduce the data loading time, especially for large datasets. 
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• Flexibility: The DataLoader class is highly flexible and can handle a wide variety 

of data formats and sources. It supports loading data from files, databases, and 

other external sources, as well as pre-processing data using custom functions. 

• Shuffling: The DataLoader class provides shuffling capabilities, allowing the user 

to shuffle the data for each epoch. This can help prevent the model 

from overfitting to the training data and improve its generalization. 

(PyTorch DataLoader: Features, Benefits, and How to Use It | Saturn Cloud Blog, 2023). 

PyTorch DataLoaders are architecturally complex, it can be useful to go through some of 

their components. 

A “dataset” in PyTorch is an abstract class representing a collection of data. It is 

responsible for loading and preprocessing data from a source and returning it as a PyTorch 

tensor. The Dataset class provides two main methods: __len__, which returns the length 

of the dataset, and __getitem__, which returns a single data point from the dataset at a 

given index. The __getitem__ method is crucial as it handles the actual data loading and 

preprocessing. This method is used by DataLoaders to load and preprocess the data 

efficiently. 

The “DataLoader “is a utility class in PyTorch that facilitates iterating over a 

Dataset object in batches. It is designed to handle large datasets efficiently and can be 

configured to load data in parallel, preprocess data on the fly, and shuffle data for each 

epoch. By taking a Dataset object, the DataLoader offers various configuration options, 

including batch size, shuffling, and the number of worker processes for parallel data 

loading. It is responsible for batching the data and returning it in a format that can be 

readily consumed by the model. 

A “Sampler” in PyTorch determines which samples should be included in each 

batch by using an indexing strategy. The most common types of samplers are 

SequentialSampler, which samples data in sequential order, and RandomSampler, which 

samples data randomly.  

https://saturncloud.io/glossary/overfitting
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“Transformations” are an integral part of the PyTorch DataLoader architecture, 

applied to the data during loading to preprocess it for use by the model. The built-in 

transformations that PyTorch offers are several like resizing, cropping, normalization, 

and data augmentation. These transformations can be applied either during loading by the 

Dataset class for fine-grained control or during batching by the DataLoader class to 

improve performance by reducing the preprocessing load. 

Going on, the “batch” is the basic unit of data, typically a tensor of shape 

(batch_size, input_shape), where batch_size is the number of data points in the batch 

(number of images that are loaded in the RAM at each step) and input_shape is the shape 

of the input data. The DataLoader is responsible for batching the data from the Dataset 

object and returning it in a format suitable for model consumption. The batch size can be 

specified creating a DataLoader object. 

To conclude, “Shuffling” is the process of randomly reordering the data in a 

dataset to prevent the model from overfitting to the data order. The PyTorch DataLoader 

class allows for data shuffling for each epoch by setting the shuffle parameter to True. 

When enabled, the DataLoader randomly shuffles the indices of data points, returning the 

data in a random order for each epoch. 

In this case study, for each of the implemented model, the DataLoader architecture 

was quite similar the only difference was the input size of the images since each model 

was requiring an exact value; this said the other parameter were set to: shuffle = True, 

batch_size = 64 and inside the transformation parameter the images were set to the correct 

input shape, kept with 3 color channels and their pixels values normalized.  

The full code used can be assessed in appendix IV. 
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6. MODELS 

 

The main focus of this work is the one understanding how much reliable ML models 

are to predict whether a patient is suffering from Pneumonia or not and which model 

performs the best. Three different models will be tested and discussed: ResNet,VGG-16 

and Optimized CNN.  

There will be a dedicated chapter for all of them where we will be going through their 

structure and they training process, but it Is worth to spend some words on CNN more in 

general. 

 

6.1. CNN 

 

Researchers in AI have been working to create systems that can comprehend visual 

input since the 1950s. This work led to the development of the field of computer vision. 

When University of Toronto researchers created AlexNet, an AI model that greatly 

surpassed earlier picture recognition systems, in 2012, a major breakthrough took place. 

Alex Krizhevsky's AlexNet won the 2012 ImageNet competition with an accuracy of 

85%, easily outperforming the 74% of the runner-up. CNNs, a particular kind of neural 

network that imitates human vision, were the key to this achievement. 

CNNs are becoming essential for computer vision tasks including segmentation, object 

identification, and picture classification (Mandal, 2024). 

Differently from classical ANN, CNNs architecture uses a special technique called 

Convolution that doesn’t rely solely on matrix multiplications but combines two functions 

to show how one changes the shape of the other. The final target of CNNs is the one of 

reducing images into a form that is easier to process, without losing features that are 

critical for getting a good prediction (Mandal, 2024). 

Since CNNs are a ML model, they are not able to read images as such, but they need to 

look at them as a set of numbers.  
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Image 6.1.1 (Chatterjee, 2021) 

 

That considered in a matricial form it would result in something like that: 

 

Image 6.1.2 (Mandal, 2024). 

 

The different layers of which a CNN can be composed are Convolution layer, Pooling 

layer, flattening layer. 

 

Image 6.1.3 (Mishra, 2021) 
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6.1.1. Convolution layer 

The convolution layer is the core building block of the CNN. It carries the main 

portion of the network’s computational load, applying systematically learned filters to 

input images in order to create feature maps that summarize the presence of those features 

in the input (A Gentle Introduction to Pooling Layers for Convolutional Neural Networks, 

2019). This layer performs a dot product between two matrices, where one is called kernel 

(also called filter) and the second one is a matrix, of the same shape of the kernel, taken 

from the raw image. If the image is composed of three (RGB) channels, the kernel height 

and width will be spatially small, but the depth extends up to all three channels (Mishra, 

2021). The output of this dot product is called feature map. The role of the kernel is the 

one of trying to catch some features, lines, edges or anything that could be useful to 

perform the desired classification. At each epoch, after the back propagation, the values 

in the kernel matrix are changed accordingly to catch features are more relevant.  

Two parameters related to the convolution layer, are stride and padding, from which 

depends on the size of the feature map.  The stride represents how much the filter will 

move, horizontally and vertically, at each step, over the input image, the bigger the stride, 

the smaller the size of the feature map. The padding parameter gives the possibility to 

surround the input image, on the vertical and horizontal side, with a column or row of 

zeros; padding the image, as changing the value of the stride, can modify the size of the 

feature map. 
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Image 6.1.1.1 (NeuralNet, n.d.)                                    Image 6.1.1.2 

(Chaudhary, 2023) 

 

6.1.2. Pooling Layer  

 

A limitation of the feature map output of convolutional layers is that they record the 

precise position of features in the input. This means that small movements in the position 

of the feature in the input image will result in a different feature map. This can happen 

with re-cropping, rotation, shifting, and other minor changes to the input image. One 

approach to address this sensitivity is to down sample the feature maps. This has the effect 

of making the resulting down sampled feature maps more robust to changes in the position 

of the feature in the image, referred to by the technical phrase “local translation 

invariance.” Down sampling can be achieved with convolutional layers by changing 

the stride of the convolution across the image. A more robust and common approach is to 

use a pooling layer. Pooling layers provide down sampling feature maps by summarizing 

the presence of features in patches of the feature map (A Gentle Introduction to Pooling 

Layers for Convolutional Neural Networks, 2019).  

There are two types of pooling average pooling and max pooling. What it is done in 

Max Pooling is finding the maximum value of a pixel from a portion of the image covered 

by the kernel. Max Pooling also performs as a Noise Suppressant, it discards the noisy 

activations altogether and also performs de-noising along with dimensionality reduction. 

On the other hand, Average Pooling returns the average of all the values from the portion 

of the image covered by the Kernel. Average Pooling simply performs dimensionality 

reduction as a noise-suppressing mechanism. Hence, we can say that Max Pooling 

performs a lot better than Average Pooling  

https://machinelearningmastery.com/padding-and-stride-for-convolutional-neural-networks/
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Image 6.1.2.1(Mandal, 2024b). 

 

 

Beside choosing between max and average pooling another parameter to choose 

is the size of the dimension of the polling mask, that usually is set to 2x2 od 3x3. This 

consistently reduces the size of each feature map by half, halving each dimension and 

reducing the number of pixels or values in each feature map to one-quarter of its original 

size. For instance, a pooling layer applied to a feature map of 6×6 pixels (36 pixels) results 

in an output pooled feature map of 3×3 pixels (9 pixels). The pooled feature maps are a 

summarized version of the detected features, making the model invariant to minor 

positional changes in the input. This enhances the model's robustness to small positional 

shifts in the features detected by the convolutional layer. 

 

6.1.3. Activation functions 

Before deep-dive into the last two layers of the CNN it is important to pause on the 

activation functions that have been cited in the last paragraph. An activation function is a 

mathematical function applied to a neuron's output in a neural network. It decides whether 

a neuron should be activated by calculating the weighted sum of inputs plus a bias term 

and then applying the function to this sum. The primary purpose of an activation function 

is to introduce non-linearity into the network, enabling it to learn and represent more 

complex patterns than a linear model. Non-linearity allows the neural network to 

approximate complex functions and make decisions based on a combination of features. 
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If we only used linear transformations, the model would not be able to capture the 

underlying patterns in data that involve multiple interacting factors. Non-linear activation 

functions allow the network to learn these interactions and capture more intricate details 

of the data. In backpropagation, the backward pass uses the gradients of the activation 

functions to update the weights; without non-linear activation functions, the gradients 

would simply be linear transformations, preventing the network from learning anything 

other than linear relationships. (GeeksforGeeks, 2024).  

 

 

Some of the most popular activation functions are: 

• Sigmoid (Logistic) Function:  σ(x)=     !
!"#!"

  

   
Image 6.1.3.1 (Jadon, 2022) 

 

• Hyperbolic Tangent (Tanh) Function : tanh(x)= $
!"#!#"

− 1 

 
Image 6.1.3.2 (Jadon, 2022) 

• Rectified Linear Unit (ReLU): max(0,x) 

 
Image 6.1.3.3 (Jadon, 2022) 

 



 54 

6.1.4. Flattening and Fully connected Layer 

The next layer is the flattening layer, a preparation phase to the last layer, the fully 

connected one. Since the fully connected layer requires a precise shape of its input, what 

it is done in this layer is transforming the pooled feature map into a 1-dimensional array. 

 

Image 6.1.4.1 (Ali, 2022) 

The flattened array is the input for the very last layer of the CNN, the fully 

connected layer. This layer can be said to have the same shape of a classical ANN, where 

there are layers of neurons until reaching the last layer where the classification, based on 

the probability to belong either to a class or to another one, is performed. The peculiarity 

of this layer is that all the neurons of each layer are connected to all the neurons of 

preceding and succeeding layer. 

 

Image 6.1.4.1 (Convolutional Neural Networks (CNN - SuperDataScience.) 
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6.2. MODELS STRUCTURE 

 

In this project, three different models, ResNet50, VGG16, and a tuned CNN were 

compared and analyzed. The following paragraphs will explain the functionality of each 

model and evaluate their performance to determine which one proved to be the best and 

the most effective in this particular case. 

6.2.1. Transfer Learning 

 

Before deep diving into the architecture of the model, it is worth to pause for a second 

how the concept behind ResNet and VGG16, two of the most used models for this type 

of problems: transfer learning. 

Transfer learning is a machine learning and deep learning method in which a model that 

has been already trained on one task can be adopted for training another one. In transfer 

learning, the model is not initiated from scratch, instead, the knowledge learned by some 

other pre-existing situation is transferred to the target case to achieve better output. 

Typically, this pre-trained model has been trained on a large-scale dataset like ImageNet 

to solve a general problem in computer vision; the learned features are then applied to the 

new task. 

In transfer learning, one typically replaces the pre-trained model's final layer with 

a new layer made specifically for a given task. This new layer is then trained on the task-

specific dataset, whereas the rest of the pre-trained model remains unmodified with fixed 

weights. This fine-tunes the model for the new task in a way that does not overfit and 

reduces training time (the benefits of this method will be explained more in depth in the 

following section). Transfer learning has become an important method for deep learning, 

which significantly increases accuracy and speed in many computer vision applications 

Vishal. (2024, January 29). 
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6.2.2. ResNet50 

 

In the previous paragraph the structure of CNNs has been explained and it is precisely 

on CNN that the first model we are going through is based: ResNet50. 

ResNet-50, developed by Microsoft Research in 2015, is a deep convolutional neural 

network renowned for its depth and the implementation of skip connections, or residual 

connections, which effectively tackle the vanishing gradient issue common in very deep 

networks. These skip connections enable the network to learn residual mappings by 

incorporating shortcut paths that bypass one or more layers, allowing it to concentrate on 

learning the difference (residual) between the input and output rather than the direct 

underlying mapping. This methodology facilitates efficient training of very deep 

networks by simplifying the learning process and mitigating the vanishing gradient 

problem (Rehman, 2024). 

ResNet-50's architecture consists of 50 layers, making it a highly potent and 

efficient tool for image classification tasks. It is pretrained on the extensive ImageNet 

database, which includes over a million images across 1,000 categories, and contains 

more than 23 million trainable parameters. This substantial depth makes it particularly 

adapt to image recognition tasks. Leveraging a pretrained model like ResNet-50 offers 

significant advantages over building a model from scratch, as it reduces the need for 

extensive data collection and training. While other pretrained models such as AlexNet, 

GoogleNet, and VGG19 are available, ResNet-50 distinguishes itself through superior 

generalization performance and lower error rates in recognition tasks, making it an 

invaluable asset for image classification. (Danielsen, 2021) 

In recent studies focused on pneumonia detection, deep learning models like 

ResNet-50 have been utilized to differentiate between normal and severe pneumonia 

cases. Pneumonia, a lung inflammation disease, often shares visual characteristics with 

other respiratory illnesses, posing challenges for traditional diagnostic methods. Other 

models have already been trained in order to predict whether someone was suffering from 

this type of inflammation or not; in one of these cases, a deep learning model was 

developed and evaluated on two datasets containing 5,856 and 112,120 chest X-ray 

images, respectively. The study assessed the performance of eight pretrained models, 

ResNet50, ResNet152V2, DenseNet121, DenseNet201, Xception, VGG16, EfficientNet, 
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and MobileNet, using metrics such as accuracy, precision, recall, and F1-score. Among 

these, the ResNet50 model achieved a very high accuracy, proving to be one of the most 

effective model for pneumonia detection in this research (Reshan MSA et al 2023). 

Skip connections are features commonly found in many convolutional 

architectures. They provide alternative paths for the gradient during backpropagation, 

which can improve model convergence. 

The update rule for gradient descent without momentum is given by the following 

equation: 

𝑤%& =	𝑤% + ∆𝑤% 

Where 

∆𝑤% =	−𝜆
𝜃𝐿

𝜃∆𝑤 %
⬚

 

 

Updated parameters = Current parameters − λ ⋅ 𝜃𝐿 

Where 𝜃𝐿 is the gradient of the loss function L with respect to the parameters, and λ is 

the learning rate. Basically, the update rule slightly adjusts the parameters based on ∆𝑤%, 

which is derived from the gradient of the loss function. The loss function quantitatively 

measures how far the model's predictions are from the actual target values. The goal is to 

minimize this loss function until it cannot decrease further or until a predefined stopping 

criterion is reached. To achieve this minimization, backpropagation iteratively updates 

the network's parameters. 

A skip connection allows the output of one layer to bypass intermediate layers and 

feed directly into a deeper layer, rather than passing through each layer sequentially. 

In deep networks, as gradients are backpropagated to earlier layers, they can become very 

small (vanish), which makes learning stagnant. Skip connections help by allowing the 

gradient to be directly backpropagated to earlier layers, maintaining a healthier gradient 

flow through the network. 

That is exactly the most important advantage that skip connections provide in training. 

Deep neural network.  (Kien, 2022) 
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On the left an example of the plan usual path of backpropagation, on the right an example 

of  the path when using skip connections. 

Image 6.2.2.1  (Cannata, 2021) 

 

The core component of ResNet architectures is the residual block, comprising 

multiple convolutional layers that are interconnected through skip connections. The 

innovative aspect lies in the fact that skip connection combines the original input of a 

block with its output before the activation function is applied. This design allows for 

identity mapping when the input and output dimensions match, giving the network the 

flexibility to either learn the residuals or pass the input unchanged. This mechanism 

streamlines optimization and enhances the network's ability to effectively train deeper 

models. 

In developing the ResNet50 model for our pneumonia detection purpose some 

points of attentions have been observed. Because the model to be trained efficiently has 

to receive images in a well-defined input shape, before feeding the deep neural network 

all the images imported by the DataLoader had been converted in a 250x250x3 shape and 

its pixels values normalized. The second point of attention that have been considered in 

the training process is about a structural feature of ResNet50: freezing and unfreezing 

final layers of the pretrained model. 

 It has been said previously that the model is pretrained on the ImageNet dataset, 

a dataset containing a large number of diverse images belonging to a considerable amount 

of categories. This comprehensive pretraining enables the model to learn a wide range of 

visual features applicable to various types of images. Using a pretrained model is more 

efficient, saving time and computational resources compared to building a new model 

from the ground up. However, the ImageNet dataset lacks of X-ray images, which have 
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distinct characteristics compared to natural images. To tailor the model to our specific 

task, segmenting patient suffering from pneumonia and patients that are healthy, a fine-

tuning approach has been adopted. This method allows us to retain the general feature 

extraction capabilities of the pretrained ResNet50 while also modifying the model to 

better recognize the unique features of X-ray images. To pursue this scope, the model has 

been previously trained keeping its last layer frozen, maintaining the weights of the 

pretrained model leveraging its existing knowledge, and subsequently the last 10 layer 

were unfrozen and the model trained again to finetune the value of the weights. This step 

helps the model to better align with the specific features found in X-ray images and to 

learn more specialized patterns relevant to the new dataset, enhancing its performance on 

the task at hand. Keeping in mind what have been said in the previous point, another ruse 

to make the model adapt to X-Ray images is to build some more custom layers on top of 

the pretrained ResNet model. In this case two sets of layers have been constructed where 

each set was composed by a Convolution Layer (with kernel_size=3 and padding =1), a 

batch normalization layer (to make the training process faster and more stable), a layer 

with the ReLU activation function, a max pooling layer, a dropout layer (to reduce the 

risk of overfitting) and a fully connected layer at the end. 

 

The code used to train the ResNet50 model can be analyzed in appendix V.  

 

 

6.2.3. VGG16 

 

VGG16 is a notable Convolutional Neural Network (CNN) architecture, which gained 

recognition after winning the ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) in 2014. It is considered one of the most effective vision model architectures 

available today (Great Learning, 2022) (Thakur, 2024). The uniqueness of VGG16 lies in 

its simple and consistent design. Instead of using numerous hyperparameters, VGG16 

employs a straightforward approach: it utilizes convolutional layers with small 3x3 filters 

and a stride of 1, consistently applying the same padding. Additionally, it incorporates 

max pooling layers with 2x2 filters and a stride of 2. This uniform pattern of convolution 

and max pooling layers throughout the architecture significantly enhances its 
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effectiveness (Great Learning, 2022b) (Vepuri, 2022) .The VGG16 architecture consists 

of 16 layers with trainable parameters, including 13 convolutional layers and 3 fully 

connected (dense) layers. While the network has a total of 21 layers, only 16 of them are 

weight layers. With approximately 138 million trainable parameters, VGG16 is a large 

network capable of learning complex patterns from data, making it highly effective for 

image recognition tasks. (Great Learning, 2022b) (Vepuri, 2022) 

 

 
Image 6.2.3.1 VGG 16 architecture (Great Learning, 2022b) 

 

The design of VGG16 emphasizes simplicity by consistently using small 3x3 

convolution filters with a stride of 1. This strategy allows the network to capture fine 

details in images, enhancing its ability to learn and recognize complex features. All 

convolutional layers use the same padding to maintain the spatial dimensions of the input, 

ensuring that essential image information is preserved. Max pooling layers, which follow 

certain convolutional layers, reduce the spatial dimensions of feature maps while keeping 
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the most critical features, using a 2x2 filter with a stride of 2. The "16" in VGG16 refers 

to its 16 weight layers, which include both convolutional and fully connected layers. The 

depth of the network enables it to learn hierarchical representations of images, enhancing 

its performance on complex visual tasks. Compared to earlier models, the increased depth 

of VGG16 allows it to learn more intricate patterns and features from input data (Great 

Learning, 2022b) (Vepuri, 2022). As explained before for the ResNet50 model, also in 

building the VGG16 some diligences have been put on some points. The points of 

attention are the same as for ResNet50, indeed also in this case the last layer of the 

pretrained model have been kept frozen in first instance and unfrozen successively and 

images have been fed to the model in the proper shape 224x224x3. 

If you are interested to the code used to train the VGG16 model go to appendix VI. 

 

 

6.2.4. OPTIMIZED CNN 

 

The third model built and compared with the other two is an optimized CNN. 

Despite choosing a priori the number of layers, kernel size, filters, strides and all the other 

possible hyperparameters that could be set when training a CNN, using the keras tuner 

library the best combination of them could be chosen automatically. The method used to 

find the best hyperparameters is Bayesian Optimization, a strategy that creates a 

probabilistic model of the objective function and then exploits this model to select the 

most promising hyperparameters for evaluation. This works quite efficiently as it uses 

past trials to make better decisions about future ones. (Medium, n.d.) 

Despite the initial input layer, the structure of the CNN resulting from the 

hyperparameters optimization is : 

 

• Convolution Layer #1: 

o Kernel size: (3,3) 

o Strides: (1,1) 

o Number of output filters: 64 

o Padding: None 
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o Activation function: ReLU 

o Regularization L2 

• Pooling Layer #1: 

o Pooling type: max 

o Pool Size: (2,2) 

o Strides: (2,2) 

o Padding: None 

• Dropout Layer #1: 

o Dropout rate: 20% 

• Convolutional Layer #2: 

o Kernel Size: (3, 3) 

o Strides: (1, 1) 

o Filters number of output filters: 96 

o Padding: None 

o Activation: Relu 

o Regularization L2  

• Pooling Layer #2: 

o Pooling type: max 

o Pool Size: (2, 2) 

o Strides: (2, 2) 

o Padding: None 

• Dropout Layer #2: 

o Dropout rate: 20% 

• Flattening Layer 

• Fully connected dense layer: 

o Number of Neurons: 512 

o Activation layer: ReLU 

• Fully connected output layer: 

o Number of neurons: 1 

o Activation function: Sigmoid 

The code used is available at appendix VII. 
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7. EVALUATION 

After building and training the three models as described in the previous paragraphs, 

the next step was to evaluate them. During the evaluation phase, the models, with both 

frozen layers and the last 10 layers unfrozen, were assessed based on their loss value, 

accuracy, F1 score, precision, and recall. 

 

7.1. Metrics 

Before showing the results obtained for each model, let’s explore how do these 

metrics are calculated: 

• Loss value: it is the value assumed by the chosen loss function after an epoch is 

performed. In this case the function used was Binary Cross-Entropy with Logits 

Loss, a combination of the sigmoid function and the binary cross entropy loss 

BCEWithLogits(x,y) = !
(
∑ (max(𝑥% , 0) − 𝑥% 	𝑦% + log(1 + 𝑒)|+$|))(
%,!  

• Accuracy: 
-./#	123%4%5#3	(-1)"-./#	(#894%5#3	(-()

-./#	123%4%5#3(-1)"-./#	(#89425#3(-()":9;3#	123%4%5#3(:1)":9;3#	(#894%5#3(:()
 

• Precision:  -1
-1":1

 

• Recall:   -1
-1":(

 

• F1:   $∗1.#=%3%2>∗?#=9;;
1.#=%3%2>"?#=9;;
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7.2. Results 

 

The results obtained after the training phase are the following: 

 

7.2.1. ResNet50 

 

 

 
 

Image 7.2.1.1 

 

The image 7.2.1.1 above shows the evolution of the loss and the accuracy score 

of the training and validation set over the epochs. The gait of the loss score is quite similar 

between the two, and it can also be seen how the value of the loss score starts to drop 

from a certain point onwards, meaning that the model starts to generalize well and it learns 

effectively. On the other side, while the training set scores consistently more than the 

validation set over the epochs, they both increase steadily. 
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ResNet 50 Confusion Matrix 

 Training Set Validation Set Test Set 

 PN PP PN PP PN PP 

AN 6711 120 1134 53 205 29 

AP 72 6792 70 1743 10 380 

 

Table 7.2.1.1 

 

ResNet 50 

 Training Set Validation Set Test Set 

Loss Score 0.038 0.0796 0.09 

Accuracy 0.986 0.959 0.938 

Precision 0.982 0.992 0.929 

Recall 0.989 0.983 0.974 

F1 0.985 0.988 0.951 

 

Table 7.2.1.2 

 

These two tables (table 7.2.1.1 and table 7.2.1.2) show the metrics of the ResNet50 

model. In the first table it can be seen the confusion matrix of the model in each set of 

data; a shared pattern is the propensity of the model to predict more false positives (the 

upper right cell) than false negative (bottom left cell). The second table shows loss score, 

accuracy, precision, recall and F1 score. The results on the training are very good while 

they start to decrease as long as we move to the test set. All the metrics of the test set are 

very solid  from the accuracy to the F1 but the one that seems to behave more similarly 

to the other datasets is the recall; in the test set it scores 97%, a very satisfying result 

making the model reliable for the task we need to fulfill.  
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7.2.2. VGG16 

 

 

 
 

Image 7.2.2.1 

 

What have been previously said for the ResNet50 can be considered valid also in 

this case; the metrics in the training set are slightly better than the ones in the validation 

set but also in this case, in both graphs can be noticed a similar trend of the metrics. What 

changes with respect to the previous case is the fact that looking at the accuracy graphs it 

can be see how the training set and the validation set performs likewise along the epochs. 

 

VGG16 Confusion Matrix 

 Training Set Validation Set Test Set 

 PN PP PN PP PN PP 

AN 6635 238 1178 9 188 46 

AP 257 6599 113 1700 2 388 

 

Table 7.2.2.1 
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VGG16 

 Training Set Validation Set Test Set 

Loss Score 0.07 0.0796 0.15 

Accuracy 0.964 0.959 0.923 

Precision 0.965 0.995 0.89 

Recall 0.961 0.937 0.994 

F1 0.96 0.97 0.94 

 

Table 7.2.2.2 

 

Table 7.2.2.1 shows the confusion matrix of the VGG16 model; in this case the 

model seems to be more prone to predict false negatives, a disadvantage for our task, 

decreasing dramatically this number in the test set.  

As for the ResNet model, also for VGG16 the performances generally decline as we move 

to the test set. The VGG16 model achieves a strong recall and accuracy on the test set 

while precision is less satisfying at 89. This indicates that out of all the patients predicted 

to be ill, 89% are actually ill, while demonstrating strong performances in identifying 

pneumonia cases, the model successfully identifies nearly all of the people suffering from 

pneumonia. 
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7.2.3. Optimized CNN 

 

 

 
Image 7.2.3.1 

 

 

As highlighted from image 7.2.3.1 also  for the optimized CNN the Loss score 

behavior over the epochs is quite similar between training and validation set, with 

validation set scoring a bit better than the training set at the end of the 10th training epoch; 

on the right side of the image, differently from the other two cases, it is clear how the 

accuracy of the training phase is overperformed by the accuracy of the validation set.  

 

 

Optimized CNN Confusion Matrix 

 Training Set Validation Set Test Set 

 PN PP PN PP PN PP 

AN 5748 264 1177 117 134 100 

AP 444 6382 95 1611 27 363 

 

Table 7.2.3. 
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Optimized CNN 

 Training Set Validation Set Test Set 

Loss Score 0.118 0.11 0.544 

Accuracy 0.91 0.929 0.796 

Precision 0.96 0.93 0.794 

Recall 0.935 0.94 0.93 

F1 0.947 0.939 0.85 

Table 7.2.3.2 

 

The table 7.2.3.1 shows a model that in the training set is more inclined to false 

negatives than on false positives, but this trend changes in the other two sets of data where 

the false positives are more than the false negatives. Despite the latter feature, that can be 

considered as a good feature of the model, it doesn’t have good enough results; the 

accuracy and the precision in the test set are even less than 80% while the recall is quite 

good, as shown in table 7.2.3.2.  

Despite the positive score on the recall the other results are too poor to challenge the other 

two models in the final comparison. 

 

 

 

 

All three models were comprehensively evaluated over the datasets, and it was 

found that the performances for all of them, ResNet50, VGG16, and the optimized CNN, 

were highly satisfactory over the tested scores. Each model reported above 90% in almost 

all the metrics, with a few only falling slightly short of the 90% mark (other than some 

metrics of the optimized CNN that fell below 80%). These would therefore suggest that 

all the trained models performed very well in addressing the research questions put forth 

in the study. 

Despite all models demonstrated to be reliable, only one of them will be chosen as the 

best one, to do so we will be focusing on how much each model scored on the test set.  

This is because the test set represents realistic conditions under which the model would 

actually be deployed, a situation where the model does not know the real classification of 
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an X-ray scan in advance, this shows that the model will perform realistically and 

practically. 

As it has been explained for the three datasets, also for the metrics it will be needed 

to choose one of them. Despite Accuracy and F1 usually describe how generally a model 

performs, in this case they are not the most suited metrics. 

It is important for our model to minimize the number of FN (False Negatives), the patients 

that are suffering from pneumonia but are not caught by the model and are labeled as 

healthy. Labeling a healthy patient as ill will result in him undergoing unnecessary 

additional examinations, which will eventually confirm he is healthy; in contrast, labeling 

a sick patient as healthy will result in a lack of timely medical intervention, potentially 

worsening their condition and leading to severe health complications or even death. The 

metric we should be focused on is then the recall score that tells us how many actual ill 

patients are caught by the model. 

Keeping in mind these considerations, ResNet scores 97% recall, VGG16 scores 99% 

recall and the optimized CNN scores 93%. 

Choosing the most suited model depends on the task that needed to be performed. Of 

course if Optimized CNN had scored more than the other two in Recall it would have not  

been  chosen as the best one because the accuracy gap to the other two is too big; 

minimizing FN is the primary goal of this project but it would be not efficient neither to 

have too many FP (false positive) because it could result in making patient spending more 

money and being unnecessarily scared about their condition and especially, it would 

result in hospital overcrowding making more difficult to those who really need to have 

access to medical care. VGG16 could sound as the best choice but looking at the 

confusion matrices of the model, the VGG16 model in the training and validation set was 

more prone to have more false negatives that false positives and only in the test set the 

trend changes; this is a ringing bell of the reliability of the model. Differently the 

ResNet50 model is more coherent all along the sets scoring a solid 97% on the test set in 

the recall metric together with a very high accuracy, F1 score and precision. 

That why the ResNet50 is the best model to accomplish the task. 
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7.3. Grad-Cam 

All along this research we have been talking about machine learning models, their 

structure and their ability to distinguish those people that are suffering from pneumonia 

from those one that are not, but despite telling which parameters each model was set to, 

it has been never discussed in real detail how the each model assigns an X-Ray image to 

a category or to the other. 

CNN models are often seen as black boxes since the process that they follow in 

segmenting images is not very clear, people just take the output of the model as reliable; 

in describing the structure of a common CNN we have debated about filters or kernel 

whose role is the one of catching the features that are fundamental in performing the 

classification task like shapes, edges, corners and so on. This operation is performed each 

time a convolution layer is put in the structure of the CNN and depending on the depth of 

the network at which each layer is positioned, the filters will have to detect different 

features. To make all this process clearer to people exploiting ML tools it has been 

developed an ad -hoc library called Gradient Weighted Class Activation Mapping, more 

commonly known as Grad-Cam. It uses the gradients of any target class flowing into the 

final convolutional layer to produce a coarse localization map highlighting the important 

regions in the image for predicting the concept (Reiff, 2022). 

The output of Grad-Cam is a image that highlights in red the zones of the input image 

that are considered the most in preforming the classification task and in blue the zones 

that are considered the least. 

Considering convolutional layers at different depths of the network will result in 

different Grad-Cam output images, the more we go toward the final layer, the more the 

red highlights will be actual zones the more we go toward the initial convolutional layers 

the more the highlights will be low level features (Reiff, 2022).  
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Image 7.3.1 

 

 

This is an example of a Grad-Cam image generated by the ResNet50 model. How 

it could have been imagined, it is clear how the red zones corresponds to the position 

where human lungs are since pneumonia affects that part of the body, while all the other 

parts of the X-Ray have lower level of importance in the classification. 
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8. CONCLUSIONS 

 

       In this work, it has been explored the change that Machine Learning is bringing 

in the healthcare field, particularly in diagnostics, predictive analytics, and radiology. 

This huge volume of data can help health providers make more informed decisions 

exploiting the strength of nowadays robust algorithms. Specifically, in the subject that 

has been analyzed, CNN-based models have been demonstrated to have very high 

performance, mostly over 90% accuracy, including ResNet50 and VGG16. Such models 

could be included in routine diagnostics; meanwhile, provide consistent, objective, and 

scalable assessments which are not normally possible with traditional methods that are 

based on human interpretation. This will include increased sensitivity in performing 

pattern analysis at the earliest steps of diseases and thus the possibility of earlier 

interventions with an increased ability to improve prognosis and decrease worsening. 

Besides diagnosis, machine learning has been noted to push forward the frontiers of 

personalized medicine. The result is more accurate in individualized treatments framed 

through the analysis of data such as genomic and other patient-specific details. This 

technique ensures improved performance with fewer side effects, especially in cases like 

pharmacogenomics that aid in predicting patients' response to drugs. 

 

The final aim of this research, however, was to determine the best model amongst 

the ones trained. When ResNet50, VGG16, and an optimized CNN models were 

measured, they scored pretty well in all the metrics analyzed, ensuring their reliability in 

pneumonia detection. However, ResNet50 managed to achieve a higher reliability in the 

metrics scored along the analyzed sets compared with all other architectures and hence 

was better suited for the specific application studied. 

In general, while this is a field with tremendous potential for improving health, 

the dominant current issues are the ethical concerns like especially data privacy, 

algorithmic bias, job loss, and the erosion of the human touch in patient care. However, 

it is a very optimistic field, particularly with models that keep getting better and adjusting 

to new data. As shown in the case of the COVID-19 pandemic, machine learning can 

serve as one of the pivotal players in responding to outbreaks of emergent health issues.  
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To conclude, clinical decision-making is improved through AI-enabled tools that also aid 

in population health management to benefit patients by overcoming critical challenges 

such as shortages of specialized personnel and limited diagnostic resources. More 

importantly, practices like task shifting, now facilitated by AI, are proving effective 

enough to help maintain quality care. It has also been stated that the ability of portable 

devices to host ML-based diagnostic tools will further help in empowering health systems 

with appropriate, accurate medical evaluation, linked to positive general patient outcomes 

in such regions. 

The integration of AI and ML technologies in the healthcare sector, bears a lot of 

promise for improving medical care both in developed countries and in LMICs countries. 

In LMICs countries, it has the potential to innovate the way in which healthcare services 

can be provided within low-resource areas by making advanced diagnostic tools 

accessible and affordable, resulting in the worthiest possible usage of AI; in developed 

countries, the benefits may not be centered around improving diagnostic quality or 

accessibility but rather on gaining deeper insights into diseases and their progression. This 

knowledge enables physicians to prescribe more targeted tests, ultimately reducing 

healthcare costs bearing on the state coffers providing economic benefits to the countries 

as a whole. 
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APPENDIX 

 
• Appendix I,  code for obtaining average size of images 

 
import os 
from PIL import Image 
import numpy as np 
 
def get_image_dimensions(image_path): 
    with Image.open(image_path) as img: 
        return img.size  # returns (width, height) 
 
def calculate_average_and_sd_dimensions(folder_path): 
    widths = [] 
    heights = [] 
 
    for filename in os.listdir(folder_path): 
        if filename.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp')): 
            image_path = os.path.join(folder_path, filename) 
            try: 
                width, height = get_image_dimensions(image_path) 
                widths.append(width) 
                heights.append(height) 
            except Exception as e: 
                print(f"Error processing {filename}: {e}") 
 
    if not widths or not heights: 
        print("No images found in the folder.") 
        return 
 
    avg_width = np.mean(widths) 
    avg_height = np.mean(heights) 
    sd_width = np.std(widths) 
    sd_height = np.std(heights) 
 
    print(f"Average Width: {avg_width:.2f}") 
    print(f"Average Height: {avg_height:.2f}") 
    print(f"Width Standard Deviation: {sd_width:.2f}") 
    print(f"Height Standard Deviation: {sd_height:.2f}") 
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--------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------- 

 
 
 
• Appendix II Data augmentation Code 
 
 
logging.basicConfig(level=logging.INFO, format='%(asctime)s 
%(levelname)s:%(message)s') 
logger = logging.getLogger() 
handler = logging.StreamHandler() 
formatter = logging.Formatter('%(asctime)s %(levelname)s:%(message)s') 
handler.setFormatter(formatter) 
logger.handlers = [handler]  # Replace default handlers with the stream handler 
 
# Set the categories we want to augment 
categories = ['NORMAL', 'PNEUMONIA'] 
categories_dict = {'NORMAL': 6, 'PNEUMONIA': 2} 
 
datagen = ImageDataGenerator( 
    rescale=1./255, 
    rotation_range=40, 
    width_shift_range=0.2, 
    height_shift_range=0.2, 
    shear_range=0.2, 
    zoom_range=0.2, 
    horizontal_flip=True, 
    vertical_flip=True, 
    brightness_range=[0.8, 1.2], 
    fill_mode='nearest' 
) 
 
def process_image(filename, source_directory, final_directory, category): 
    img_path = os.path.join(source_directory, filename) 
    try: 
        img = load_img(img_path) 
        x = img_to_array(img) 
        x = x.reshape((1,) + x.shape) 
        shutil.copy2(img_path, final_directory) 
        logger.info(f"Copied original image {filename} to {final_directory}") 
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        augment_factor = categories_dict[category] 
        for i, batch in enumerate(datagen.flow(x, batch_size=1, 
save_to_dir=final_directory, save_prefix='aug', save_format='jpg')): 
            if i >= (augment_factor - 1): 
                break 
        logger.info(f"Generated augmented images for {filename}") 
    except Exception as e: 
        logger.error(f"Error processing file {filename}: {e}") 
 
for category in categories: 
    source_directory = 
os.path.join(r"C:\Users\vince\OneDrive\Desktop\Tesi\train", category) 
    final_directory = 
os.path.join(r"C:\Users\vince\OneDrive\Desktop\Tesi\train\Augmented Images", 
category) 
    os.makedirs(final_directory, exist_ok=True) 
     
    for filename in os.listdir(source_directory): 
        if filename.endswith((".jpg", ".jpeg")): 
            thread = Thread(target=process_image, args=(filename, source_directory, 
final_directory, category)) 
            thread.start() 
            thread.join(timeout=10)  # 10 seconds timeout for each file 
             
            if thread.is_alive(): 
                logger.error(f"Timeout error processing file {filename}") 
 
 

--------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------- 

 
 
 
• Appendinx III Validation set Creation 

 
import os 
import shutil 
 
# Define paths 
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source_dir = r"C:\Users\vince\OneDrive\Desktop\Tesi\train\Augmented 
Images" 
target_dir = r"C:\Users\vince\OneDrive\Desktop\Tesi\train\Validation Set" 
 
normal_dir = os.path.join(source_dir, "NORMAL") 
pneumonia_dir = os.path.join(source_dir, "PNEUMONIA") 
 
# Create target directories if they don't exist 
os.makedirs(os.path.join(target_dir, "normal"), exist_ok=True) 
os.makedirs(os.path.join(target_dir, "pneumonia"), exist_ok=True) 
 
# Get list of files in each source directory 
normal_files = os.listdir(normal_dir) 
pneumonia_files = os.listdir(pneumonia_dir) 
 
# Calculate proportions 
total_files = len(normal_files) + len(pneumonia_files) 
normal_proportion = len(normal_files) / total_files 
pneumonia_proportion = len(pneumonia_files) / total_files 
 
# Determine number of files to pick from each directory 
num_normal = int(3000 * normal_proportion) 
num_pneumonia = 3000 - num_normal 
 
# Randomly select files 
selected_normal_files = random.sample(normal_files, num_normal) 
selected_pneumonia_files = random.sample(pneumonia_files, 
num_pneumonia) 
 
# Copy selected files to target directory 
for file in selected_normal_files: 
    shutil.copy(os.path.join(normal_dir, file), os.path.join(target_dir, 
"normal", file)) 
 
for file in selected_pneumonia_files: 
    shutil.copy(os.path.join(pneumonia_dir, file), os.path.join(target_dir, 
"pneumonia", file)) 
 
print(f"Copied {num_normal} normal files and {num_pneumonia} 
pneumonia files to {target_dir}") 
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# Counting the images in each folder 
folder_path = r"C:\Users\vince\OneDrive\Desktop\Tesi\train\Augmented 
Images\NORMAL" 
 
# List all files in the directory 
all_files = os.listdir(folder_path) 
 
# Filter out only image files (e.g., jpg, jpeg, png) 
image_extensions = ('.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff') 
image_files = [file for file in all_files if 
file.lower().endswith(image_extensions)] 
 
# Count the number of image files 
num_images = len(image_files) 
 
print(f'Total number of images: {num_images}') 
 
 
--------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------- 
 
 

• Appendix IV Data Loaders 
 
# Load paths 
def load_paths(directory, label): 
    path_list = [] 
    for path in os.listdir(directory): 
        if path.endswith(".jpeg") or path.endswith(".jpg") or 
path.endswith(".png"): 
            path_list.append((os.path.join(directory, path), label)) 
    return path_list 
 
train_path_list = load_paths(normal_dir, 0) + load_paths(pneumonia_dir, 1) 
val_path_list = load_paths(val_normal_dir, 0) + 
load_paths(val_pneumonia_dir, 1) 
test_path_list = load_paths(test_normal_dir, 0) + 
load_paths(test_pneumonia_dir, 1) 
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# Create DataFrames 
train_dataset = pd.DataFrame(train_path_list, columns=['image_path', 
'label']) 
val_dataset = pd.DataFrame(val_path_list, columns=['image_path', 'label']) 
test_dataset = pd.DataFrame(test_path_list, columns=['image_path', 'label']) 
 
# PyTorch Dataset class 
class XRayDataset(Dataset): 
    def __init__(self, dataframe, transform=None): 
        self.dataframe = dataframe 
        self.transform = transform 
 
    def __len__(self): 
        return len(self.dataframe) 
 
    def __getitem__(self, idx): 
        img_path = self.dataframe.iloc[idx, 0] 
        label = self.dataframe.iloc[idx, 1] 
        try: 
            image = Image.open(img_path).convert('L')  # Convert to grayscale 
            image = image.convert('RGB')  # Convert grayscale to RGB 
        except Exception as e: 
            print(f"Error loading image {img_path}: {e}") 
            return None, None 
 
        if self.transform: 
            image = self.transform(image) 
 
        return image, label 
 
# Create DataLoaders 
def collate_fn(batch): 
    batch = list(filter(lambda x: x[0] is not None, batch))  # Filter out None 
images 
    return torch.utils.data.dataloader.default_collate(batch) 
 
train_dataset = XRayDataset(train_dataset, transform=transform) 
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, 
collate_fn=collate_fn) 
 
val_dataset = XRayDataset(val_dataset, transform=transform) 
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val_loader = DataLoader(val_dataset, batch_size=64, shuffle=True, 
collate_fn=collate_fn) 
 
test_dataset = XRayDataset(test_dataset, transform=transform) 
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False, 
collate_fn=collate_fn) 
 
 
 
--------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------- 

 
• Appendix 5 ResNet50 

 
 
# Load the pre-trained ResNet50 model 
base_model = 
models.resnet50(weights=models.ResNet50_Weights.IMAGENET1K_V1) 
 
# Freeze the base model layers 
for param in base_model.parameters(): 
    param.requires_grad = False 
 
# Modify the ResNet50 model 
class ModifiedResNet50(nn.Module): 
    def __init__(self, base_model): 
        super(ModifiedResNet50, self).__init__() 
        self.base_model = nn.Sequential(*list(base_model.children())[:-2]) 
        self.custom_layers = nn.Sequential( 
            nn.Conv2d(2048, 512, kernel_size=3, padding=1), 
            nn.BatchNorm2d(512), 
            nn.ReLU(), 
            nn.MaxPool2d(2, 2), 
            nn.Dropout(0.5), 
            nn.Conv2d(512, 256, kernel_size=3, padding=1), 
            nn.BatchNorm2d(256), 
            nn.ReLU(), 
            nn.MaxPool2d(2, 2), 
            nn.Dropout(0.5), 
            nn.AdaptiveAvgPool2d((1, 1)),  # Adaptive average pooling to handle 
variable sizes 
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            nn.Flatten() 
        ) 
        self.fc = nn.Sequential( 
            nn.Linear(256, 1024),  # Adjusted to match the flattened size 
            nn.ReLU(), 
            nn.Dropout(0.2), 
            nn.Linear(1024, 1) 
        ) 
 
    def forward(self, x): 
        x = self.base_model(x) 
        x = self.custom_layers(x) 
        x = self.fc(x) 
        return x 
 
# Create the modified model 
model = ModifiedResNet50(base_model) 
 
# Define loss function and optimizer 
criterion = nn.BCEWithLogitsLoss() 
optimizer = optim.Adam(model.parameters(), lr=0.0001) 
 
# L1 and L2 regularization parameters 
l1_lambda = 1e-5 
l2_lambda = 1e-4 
 
# Move model to GPU if available 
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 
model = model.to(device) 
 
# Lists to store metrics for initial training phase 
train_losses_initial = [] 
val_losses_initial = [] 
train_accuracies_initial = [] 
val_accuracies_initial = [] 
 
# Lists to store metrics for fine-tuning phase 
train_losses_finetune = [] 
val_losses_finetune = [] 
train_accuracies_finetune = [] 
val_accuracies_finetune = [] 
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def evaluate(model, data_loader, criterion, device): 
    model.eval() 
    running_loss = 0.0 
    correct = 0 
    total = 0 
    all_labels = [] 
    all_predictions = [] 
    with torch.no_grad(): 
        for images, labels in data_loader: 
            images = images.to(device) 
            labels = labels.to(device).float().view(-1, 1) 
            outputs = model(images) 
            loss = criterion(outputs, labels) 
            # L1 and L2 penalties 
            l1_penalty = sum(p.abs().sum() for p in model.parameters()) 
            l2_penalty = sum((p ** 2).sum() for p in model.parameters()) 
            loss += l1_lambda * l1_penalty + l2_lambda * l2_penalty 
            running_loss += loss.item() 
            predicted = (torch.sigmoid(outputs) > 0.5).float() 
            total += labels.size(0) 
            correct += (predicted == labels).sum().item() 
            all_labels.extend(labels.cpu().numpy()) 
            all_predictions.extend(predicted.cpu().numpy()) 
    cm = confusion_matrix(all_labels, all_predictions) 
    f1 = f1_score(all_labels, all_predictions) 
    precision = precision_score(all_labels, all_predictions) 
    recall = recall_score(all_labels, all_predictions) 
    return running_loss / len(data_loader), correct / total, cm, f1, precision, 
recall 
 
# Training loop with all layers frozen 
num_epochs = 10 
for epoch in range(num_epochs): 
    model.train() 
    running_loss = 0.0 
    correct = 0 
    total = 0 
 
    for images, labels in train_loader: 
        images = images.to(device) 
        labels = labels.to(device).float().view(-1, 1) 
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        # Zero the parameter gradients 
        optimizer.zero_grad() 
 
        # Forward pass 
        outputs = model(images) 
        loss = criterion(outputs, labels) 
        # L1 and L2 penalties 
        l1_penalty = sum(p.abs().sum() for p in model.parameters()) 
        l2_penalty = sum((p ** 2).sum() for p in model.parameters()) 
        loss += l1_lambda * l1_penalty + l2_lambda * l2_penalty 
 
        # Backward pass and optimize 
        loss.backward() 
        optimizer.step() 
 
        # Print statistics 
        running_loss += loss.item() 
        predicted = (torch.sigmoid(outputs) > 0.5).float() 
        total += labels.size(0) 
        correct += (predicted == labels).sum().item() 
     
    train_losses_initial.append(running_loss / len(train_loader)) 
    train_accuracies_initial.append(correct / total) 
     
    val_loss, val_accuracy, _, _, _, _ = evaluate(model, val_loader, criterion, 
device) 
    val_losses_initial.append(val_loss) 
    val_accuracies_initial.append(val_accuracy) 
     
    print(f'Epoch {epoch+1}, Train Loss: {train_losses_initial[-1]}, Train 
Accuracy: {train_accuracies_initial[-1]}, Val Loss: {val_losses_initial[-1]}, 
Val Accuracy: {val_accuracies_initial[-1]}') 
 
# Unfreeze the last 10 layers 
for param in list(model.parameters())[-10:]: 
    param.requires_grad = True 
 
# Fine-tuning loop 
num_finetune_epochs = 5 
for epoch in range(num_finetune_epochs): 
    model.train() 
    running_loss = 0.0 
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    correct = 0 
    total = 0 
 
    for images, labels in train_loader: 
        images = images.to(device) 
        labels = labels.to(device).float().view(-1, 1) 
 
        # Zero the parameter gradients 
        optimizer.zero_grad() 
 
        # Forward pass 
        outputs = model(images) 
        loss = criterion(outputs, labels) 
        # L1 and L2 penalties 
        l1_penalty = sum(p.abs().sum() for p in model.parameters()) 
        l2_penalty = sum((p ** 2).sum() for p in model.parameters()) 
        loss += l1_lambda * l1_penalty + l2_lambda * l2_penalty 
 
        # Backward pass and optimize 
        loss.backward() 
        optimizer.step() 
 
        # Print statistics 
        running_loss += loss.item() 
        predicted = (torch.sigmoid(outputs) > 0.5).float() 
        total += labels.size(0) 
        correct += (predicted == labels).sum().item() 
     
    train_losses_finetune.append(running_loss / len(train_loader)) 
    train_accuracies_finetune.append(correct / total) 
     
    val_loss, val_accuracy, _, _, _, _ = evaluate(model, val_loader, criterion, 
device) 
    val_losses_finetune.append(val_loss) 
    val_accuracies_finetune.append(val_accuracy) 
    print(f'Epoch {epoch+1}, Train Loss: {train_losses_finetune[-1]}, Train 
Accuracy: {train_accuracies_finetune[-1]}, Val Loss: {val_losses_finetune[-
1]}, Val Accuracy: {val_accuracies_finetune[-1]}') 
 
# Save the model 
torch.save(model.state_dict(), 'modified_model_resnet50_finetuned.pth') 
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--------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------- 

 
 
 
 
 

• Appendix VI VGG16 
 
 
# Load the pre-trained VGG16 model 
base_model = 
models.vgg16(weights=models.VGG16_Weights.IMAGENET1K_V1) 
 
# Freeze the base model layers 
for param in base_model.parameters(): 
    param.requires_grad = False 
 
# Modify the VGG16 model 
class ModifiedVGG16(nn.Module): 
    def __init__(self, base_model): 
        super(ModifiedVGG16, self).__init__() 
        self.base_model = base_model.features 
        self.custom_layers = nn.Sequential( 
            nn.Conv2d(512, 256, kernel_size=3, padding=1), 
            nn.BatchNorm2d(256), 
            nn.ReLU(), 
            nn.MaxPool2d(2, 2), 
            nn.Dropout(0.5),  
            nn.Conv2d(256, 128, kernel_size=3, padding=1), 
            nn.BatchNorm2d(128), 
            nn.ReLU(), 
            nn.MaxPool2d(2, 2), 
            nn.Dropout(0.5),  
            nn.AdaptiveAvgPool2d((1, 1)),  # Adaptive average pooling to handle 
variable sizes 
            nn.Flatten() 
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        ) 
        self.fc = nn.Sequential( 
            nn.Linear(128, 1024),  # Adjusted to match the flattened size 
            nn.ReLU(), 
            nn.Dropout(0.2), 
            nn.Linear(1024, 1) 
        ) 
 
    def forward(self, x): 
        x = self.base_model(x) 
        x = self.custom_layers(x) 
        x = self.fc(x) 
        return x 
 
# Create the modified model 
model = ModifiedVGG16(base_model) 
 
# Define loss function and optimizer 
criterion = nn.BCEWithLogitsLoss() 
optimizer = optim.Adam(model.parameters(), lr=0.0001) 
 
# L1 and L2 regularization parameters 
l1_lambda = 1e-5 
l2_lambda = 1e-4 
 
# Move model to GPU if available 
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 
model = model.to(device) 
 
# Lists to store metrics for initial training phase 
train_losses_initial = [] 
val_losses_initial = [] 
train_accuracies_initial = [] 
val_accuracies_initial = [] 
 
# Lists to store metrics for fine-tuning phase 
train_losses_finetune = [] 
val_losses_finetune = [] 
train_accuracies_finetune = [] 
val_accuracies_finetune = [] 
 
def evaluate(model, data_loader, criterion, device): 
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    model.eval() 
    running_loss = 0.0 
    correct = 0 
    total = 0 
    all_labels = [] 
    all_predictions = [] 
    with torch.no_grad(): 
        for images, labels in data_loader: 
            images = images.to(device) 
            labels = labels.to(device).float().view(-1, 1) 
            outputs = model(images) 
            loss = criterion(outputs, labels) 
            # L1 and L2 penalties 
            l1_penalty = sum(p.abs().sum() for p in model.parameters()) 
            l2_penalty = sum((p ** 2).sum() for p in model.parameters()) 
            loss += l1_lambda * l1_penalty + l2_lambda * l2_penalty 
            running_loss += loss.item() 
            predicted = (torch.sigmoid(outputs) > 0.5).float() 
            total += labels.size(0) 
            correct += (predicted == labels).sum().item() 
            all_labels.extend(labels.cpu().numpy()) 
            all_predictions.extend(predicted.cpu().numpy()) 
    cm = confusion_matrix(all_labels, all_predictions) 
    f1 = f1_score(all_labels, all_predictions) 
    precision = precision_score(all_labels, all_predictions) 
    recall = recall_score(all_labels, all_predictions) 
    return running_loss / len(data_loader), correct / total, cm, f1, precision, 
recall 
 
# Training loop with all layers frozen 
num_epochs = 10 
for epoch in range(num_epochs): 
    model.train() 
    running_loss = 0.0 
    correct = 0 
    total = 0 
 
    for images, labels in train_loader: 
        images = images.to(device) 
        labels = labels.to(device).float().view(-1, 1) 
 
        # Zero the parameter gradients 
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        optimizer.zero_grad() 
 
        # Forward pass 
        outputs = model(images) 
        loss = criterion(outputs, labels) 
        # L1 and L2 penalties 
        l1_penalty = sum(p.abs().sum() for p in model.parameters()) 
        l2_penalty = sum((p ** 2).sum() for p in model.parameters()) 
        loss += l1_lambda * l1_penalty + l2_lambda * l2_penalty 
 
        # Backward pass and optimize 
        loss.backward() 
        optimizer.step() 
 
        # Print statistics 
        running_loss += loss.item() 
        predicted = (torch.sigmoid(outputs) > 0.5).float() 
        total += labels.size(0) 
        correct += (predicted == labels).sum().item() 
     
    train_losses_initial.append(running_loss / len(train_loader)) 
    train_accuracies_initial.append(correct / total) 
     
    val_loss, val_accuracy, _, _, _, _ = evaluate(model, val_loader, criterion, 
device) 
    val_losses_initial.append(val_loss) 
    val_accuracies_initial.append(val_accuracy) 
     
    print(f'Epoch {epoch+1}, Train Loss: {train_losses_initial[-1]}, Train 
Accuracy: {train_accuracies_initial[-1]}, Val Loss: {val_losses_initial[-1]}, 
Val Accuracy: {val_accuracies_initial[-1]}') 
 
# Unfreeze the last 10 layers 
for param in list(model.parameters())[-10:]: 
    param.requires_grad = True 
 
# Fine-tuning loop 
num_finetune_epochs = 5 
for epoch in range(num_finetune_epochs): 
    model.train() 
    running_loss = 0.0 
    correct = 0 
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    total = 0 
 
    for images, labels in train_loader: 
        images = images.to(device) 
        labels = labels.to(device).float().view(-1, 1) 
 
        # Zero the parameter gradients 
        optimizer.zero_grad() 
 
        # Forward pass 
        outputs = model(images) 
        loss = criterion(outputs, labels) 
        # L1 and L2 penalties 
        l1_penalty = sum(p.abs().sum() for p in model.parameters()) 
        l2_penalty = sum((p ** 2).sum() for p in model.parameters()) 
        loss += l1_lambda * l1_penalty + l2_lambda * l2_penalty 
 
        # Backward pass and optimize 
        loss.backward() 
        optimizer.step() 
 
        # Print statistics 
        running_loss += loss.item() 
        predicted = (torch.sigmoid(outputs) > 0.5).float() 
        total += labels.size(0) 
        correct += (predicted == labels).sum().item() 
     
    train_losses_finetune.append(running_loss / len(train_loader)) 
    train_accuracies_finetune.append(correct / total) 
     
    val_loss, val_accuracy, _, _, _, _ = evaluate(model, val_loader, criterion, 
device) 
    val_losses_finetune.append(val_loss) 
    val_accuracies_finetune.append(val_accuracy) 
    print(f'Epoch {epoch+1}, Train Loss: {train_losses_finetune[-1]}, Train 
Accuracy: {train_accuracies_finetune[-1]}, Val Loss: {val_losses_finetune[-
1]}, Val Accuracy: {val_accuracies_finetune[-1]}') 
 
# Save the model 
torch.save(model.state_dict(), 'modified_model_vgg16_finetuned.pth') 
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• Appendix VII Optimized CNN 
 
 
def build_model(hp): 
    model = Sequential() 
     
    # Regularization parameter 
    l2_reg = 0.001  # L2 regularization parameter, can be tuned 
     
    # Tune the number of convolutional layers 
    num_conv_layers = hp.Int('num_conv_layers', min_value=1, 
max_value=5, step=1) 
     
    # Add the input layer with L2 regularization 
    model.add(layers.Conv2D(filters=hp.Int('filters_0', min_value=32, 
max_value=128, step=32), 
                            kernel_size=hp.Choice('kernel_size_0', values=[3, 5]), 
                            activation='relu', 
                            kernel_regularizer=regularizers.l2(l2_reg), 
                            input_shape=(250, 250, 3)))  # Assuming input images are 
150x150 with 3 channels (RGB) 
    model.add(layers.MaxPooling2D(pool_size=(2, 2))) 
    model.add(layers.Dropout(rate=hp.Choice('dropout_0', values=[0.2, 0.3, 
0.4])))  # Add dropout layer after pooling 
 
    # Add intermediate convolutional layers with L2 regularization and dropout 
    for i in range(num_conv_layers): 
        model.add(layers.Conv2D(filters=hp.Int(f'filters_{i+1}', min_value=32, 
max_value=128, step=32), 
                                kernel_size=hp.Choice(f'kernel_size_{i+1}', values=[3, 
5]), 
                                activation='relu', 
                                kernel_regularizer=regularizers.l2(l2_reg))) 
        model.add(layers.MaxPooling2D(pool_size=(2, 2))) 
        model.add(layers.Dropout(rate=hp.Choice(f'dropout_{i+1}', 
values=[0.2, 0.3, 0.4])))  # Add dropout layer 
 
    model.add(layers.Flatten()) 
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    # Add a fully connected layer with L2 regularization and dropout 
    model.add(layers.Dense(units=hp.Int('units_dense', min_value=128, 
max_value=512, step=128), 
                           activation='relu', 
                           kernel_regularizer=regularizers.l2(l2_reg))) 
    model.add(layers.Dropout(rate=hp.Choice('dropout_dense', values=[0.2, 
0.3, 0.4])))  # Add dropout layer 
 
    # Add the output layer 
    model.add(layers.Dense(units=1, activation='sigmoid')) 
     
    # Tune the learning rate 
    hp_learning_rate = hp.Choice('learning_rate', values=[1e-2, 1e-3, 1e-4]) 
     
    # Compile the model 
    
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=hp_learni
ng_rate),  
                  loss='binary_crossentropy',  
                  metrics=['accuracy']) 
     
    return model 
 
 
# Define the search space and tuner (unchanged) 
tuner = RandomSearch(build_model, 
                     objective='val_accuracy',  
                     max_trials=18, 
                     directory='CNN_training', 
                     project_name='training_cnn') 
 
# Start the search for the best model 
tuner.search(train_loader, epochs=10, validation_data=val_loader) 
 
best_hps = tuner.get_best_hyperparameters(num_trials=1)[0] 
print(best_hps.values) 
 
model_CNN = tuner.hypermodel.build(best_hps) 
 
# Define the EarlyStopping callback (unchanged) 
early_stopping = EarlyStopping(monitor='val_loss', patience=5, 
restore_best_weights=True) 
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# Retrain the model 
history = model_CNN.fit(train_loader, epochs=15, 
validation_data=val_loader, callbacks=[early_stopping]) 
 
# Save the model and the training history 
model_CNN.save("model_CNN_optimized_2.h5") 
 

 

 


