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Abstract

This thesis examines decumulation strategies for early retirees, proposing an alternative

approach. The study first evaluates the safety of spending strategies based on constant

withdrawals in real terms, such as the ‘4% rule’. Secondly, it explores the potential of

structuring a Natural Tontine Fund as an effective solution for wealth decumulation.

The findings suggest that the ‘4% rule’ overestimates the safe withdrawal rate by ap-

proximately 75 basis points. Additionally, extending the retirement period beyond 30

years requires reducing success rates for all withdrawal rates, especially with a high

bond allocation. Moreover, a Natural Tontine Fund emerges as an efficient decumu-

lation tool, offering retirees a lifetime income stream with lower risk of failure, higher

median payments, and more effective wealth decumulation compared to a constant-

amount spending plan.
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Introduction

"Retirement Income: The nastiest, hardest problem in finance"

— William Sharpe

Many countries are encountering a significant demographic shift. As mortality rates

decline and the elderly population expands, birth rates decrease, leading to a reduced

younger population. In many European countries, public pension systems are struc-

tured as pay-as-you-go plans, where current pensions are financed through taxes on the

working population. This increasing ratio of retirees to workers increases the instabil-

ity of these pension systems, with the potential risk that governments may be unable

to guarantee stable income for retirees in the future. Considering these trends, there

is a growing necessity for individuals to assume greater responsibility for their future

retirement income.

Even though planning and saving for retirement may prove to be a daunting task,

putting money aside for the future is a challenge that pales in comparison to the dif-

ficulties that arise when it comes time to decumulate those savings. Nobel Laureate

William Sharpe described the decumulation of wealth during retirement as one of the

toughest challenges in finance and declared that there is no ‘retirement number’ that

guarantees financial security1.

However, a simple approach to retirement spending is often suggested. In a review

of the 50 most popular personal finance books, Choi (2022) found that, of the 12

books providing explicit retirement spending advice, seven recommend a 4% spending

rule, while four recommend an even higher rate. The ‘4% rule’, which suggests that

retirees can safely spend 4% of their investment portfolio in the first year and then
1Source: William Sharpe: There Is No Retirement ‘Number’
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INTRODUCTION

adjust withdrawals according to the inflation rate for the rest of their lives, was initially

proposed by William Bengen. In a pivotal study of the field of retirement planning (see

Bengen 1994), the author attempted to determine how much retirees can safely spend

in retirement and concluded that a 4% initial withdrawal rate, followed by inflation-

adjusted withdrawals, could ensure that a retiree’s portfolio would last for a 30-year

retirement period. This spending rule gained significant popularity due to its simplicity

and ease of application; however, distilling a complex problem into a simple rule of

thumb has serious flaws, especially when dealing with early retirement.

A 2020 survey published by Vanguard2 highlighted that 22% of millennials aim

to retire before age 60, and the growing interest in early retirement is also reflected

in the countless books, blogs, and social media accounts dedicated to promoting the

values of the F.I.R.E. movement. The concept of Financial Independence, Retire Early

(F.I.R.E.) was introduced by the book ‘Your Money or Your Life’, published in 1992

by Vicki Robin and Joe Dominguez. Adherents of the F.I.R.E. movement aim to live

a frugal life in order to save and invest a large portion of their salary, with the goal of

building an investment portfolio large enough to allow them to retire much earlier than

the conventional retirement age.

Early retirees need to establish a spending strategy for a retirement period that will

last much longer than the 30 years considered in Bengen’s study, and the 4% rule may

prove inadequate. Extrapolating the withdrawal rate estimated to be safe over 30 years

and simply applying it to a 50- or 60-year retirement period can be flawed and could

potentially increase the probability of outliving one’s wealth. Furthermore, the 4% rule

is based on assumptions that may overestimate success rates, such as neglecting taxes

and transaction costs. This study aims to consider factors that are relevant for early

retirees to assess their impact on safe withdrawal rates.

Retirees face the risk of living much longer than initially expected and, hence, not

having enough resources to cover their most basic needs. Life expectancies exhibit con-

siderable variability, and relying on the simple average is not a wise strategy. Therefore,

retirees must either plan for the worst-case scenario—e.g., living up to 110 years—or

pool their mortality risk with other retirees. By considering a sufficiently large group

of people, some individuals will live longer than others, but it can be expected that
2Source: Fuel for the F.I.R.E.: Updating the 4% rule for early retirees
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INTRODUCTION

the average will converge to the mean life expectancy. Pooling mortality risk allows

for planning based on the average life expectancy of the group rather than for the

worst-case scenario.

Many insurance products, such as annuities, are based on the concept of mortality

pooling. Research shows that full annuitization of a retiree’s wealth can address the risk

of outliving their assets (see Davidoff, Brown, and Diamond 2003); however, annuities

have lost popularity, and few retirees purchase these products today (see Poterba, Venti,

and Wise 2011). The idea of this thesis is to use a financial instrument from the 17th

century, the tontine, to solve the modern problem of decumulation during retirement.

In a tontine, a group of investors decides to pool their funds, and the sponsor of the

tontine guarantees a periodic payment that must be divided among the remaining

survivors in the fund. Unlike an annuity, where the coupon received by each individual

is constant but the total payment made by the sponsor each year depends on the

number of survivors, in a tontine, the sponsor makes a fixed payment, and the coupon

received by each individual depends on the remaining number of participants in the

fund. Therefore, the tontine guarantees a lifetime stream of income, but as the number

of participants decreases over time due to deaths, the coupon received by each survivor

increases and can vary widely. The Natural Tontine structure proposed by Milevsky

and Salisbury (2015) aims to overcome the issue of increasing coupons by paying a non-

constant Tontine Dividend Rate (the percentage of the fund value paid by the sponsor

in each period) to allow survivors to obtain a constant stream of income. The Natural

Tontine is a promising investment product, and this thesis investigates possible ways

to structure a fund based on this product that could be a viable investment option for

early retirees.

The ‘4% rule’ exemplifies the divergence between finance theory and practical ad-

vice. While evidence shows that retirees should annuitize their wealth to eliminate the

risk of outliving their assets, the most common advice is to follow a simple constant

withdrawal strategy. This thesis aims to contribute to the discussion in the early re-

tirement literature, highlighting the flaws of distilling a complex problem into a simple

rule and showcasing how early retirees could benefit from advancements in the asset

management and insurance industries.

The remainder of the thesis is organized as follows. Chapter 1 is devoted to the anal-
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INTRODUCTION

ysis of safe withdrawal rates. The chapter begins with an introduction to withdrawal

rate strategies and their associated risks. Subsequently, it examines the impact of the

assumptions underlying key studies in the field on success rates and identifies sources of

inefficiency in these strategies. Chapter 2 focuses on tontines. It starts with an overview

of the concept and history of tontines. The chapter then examines the Natural Tontine

structure, exploring how a fund based on this product can be constructed. In Chapter

3, the feasibility of structuring a Natural Tontine Fund as a desirable investment tool

for early retirees is assessed.

5



Chapter 1

Safe Withdrawal Rates, An Empirical

Analysis

1.1 What are Safe Withdrawal Rates?

The analysis of safe withdrawal rates aims to estimate how much retirees can withdraw

from their investment portfolio each year of retirement to cover their needs without

worrying about prematurely running out of money. The primary concern for retirees is

outliving their own wealth, making it essential to determine a spending plan that can

sustain their lifestyle while managing two main sources of risk: longevity risk (the risk

that the retiree’s lifespan exceeds initial or actuarial expectations) and return risk (the

risk of receiving poor real investment returns during retirement).

The approach employed by financial economists to determine the optimal withdrawal

rate for a retiree, such as the ones proposed by Hakansson (1970), Merton (1969), or

Samuelson (1969), involves specifying a utility function and finding the rate of with-

drawals that maximizes it. Although this approach is theoretically sound, it is not

the standard practice among retirement planning professionals due to two main draw-

backs. First, this strategy requires accurately specifying an explicit utility function for

each retiree. Secondly, to simplify the solution, these models often assume that each

withdrawal is independent of previous ones, leading to extreme volatility in the with-

drawals. Outside the academic environment, practitioners estimate withdrawal rates

for their clients under the assumption that they wish to maintain constant withdrawals

6



CHAPTER 1. SAFE WITHDRAWAL RATES, AN EMPIRICAL ANALYSIS

in real terms throughout the entire retirement period to ensure a stable standard of

living.

Retirees generally aim to set an initial amount of money to withdraw in the first

year of retirement and then continue withdrawing the same amount in real terms from

their investment portfolio each subsequent year. For example, a fictional retiree may

determine that they need to spend $40,000 in the first year. If the retiree wishes to

maintain this purchasing power in real terms, they would adjust the withdrawal amount

annually by the observed rate of inflation. For instance, if the rate of inflation during

the first year is 2.5%, the retiree would withdraw $41,000 in the second year. The cen-

tral question for retirees is: How much wealth must be accumulated in the investment

portfolio to sustain this spending plan without depleting resources prematurely? Alter-

natively, given a certain amount of wealth in the investment portfolio, how much can

be withdrawn initially while maintaining a constant real spending amount throughout

retirement?

The safe withdrawal rate is the percentage of the initial wealth that a retiree can

withdraw in the first year and that allows to adjust this amount by the rate of inflation

in all subsequent years without depleting the entire investment portfolio prematurely.

The safe withdrawal rate is estimated by testing different withdrawal rates on an initial

investment portfolio and on different return and inflation paths and then counting how

often the portfolio would have run out of money over the entire retirement period. For

instance, analysis might conclude that a 4% initial withdrawal rate can be considered

safe, as it historically failed only 5% of the time. In this scenario, if an initial expenditure

of $40,000 is to be maintained in real terms, the required wealth to be accumulated in

the portfolio is calculated as follows:

$40, 000× 1

4%
= $1, 000, 000

An initial approach to the topic of retirement withdrawals may rely on average

returns and inflation rates. For example, during the 20th century, the average return of

the U.S. stock market was approximately 10% annually, with an average inflation rate

of 3%, resulting in an average real return of 7%. Initially withdrawing the real return

(7%) and then simply adjusting this amount by the rate of inflation may seem like a

7
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reasonable plan.
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Figure 1.1: Evolution of the portfolio value when initially withdrawing the real return
and adjusting for inflation in all the other years. The data are generated assuming a
constant 10% nominal return and 3% inflation every year.

Figure 1.1 shows the evolution of the portfolio value when using this withdrawal

strategy. This withdrawal strategy functions effectively in the initial years, with the

portfolio value remaining relatively stable. In the first year, the portfolio returns 10%

and despite withdrawing 7% of the initial value, the portfolio grows by 2.3%. However,

as withdrawals continue to grow rapidly due to the compounding effect of inflation,

they begin to constitute a significant portion of the portfolio, the growth of the wealth

starts to slow down and the portfolio value after reaching a maximum in year 19, starts

declining. In year 23, the retiree is withdrawing 10.37% of the portfolio while the

investment returns are ‘just’ 10% each year. At this point, the portfolio value begins

to decline rapidly, and by year 37, the portfolio is entirely depleted.

These numbers were generated under the assumption that the realized return and

inflation rate are constant each year, at 10% and 3%, respectively. In practice, returns

and inflation rates fluctuate, and retirees are financing a constant real cash outflow with

a volatile asset. This volatility introduces the so-called sequence of return risk, which

is the risk that a series of low or negative returns early in the retirement period can

8
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Year Initial Wealth Withdrawal Final Wealth Withdrawal as %
of Initial Wealth Portfolio % Growth

1 1000.00 70.00 1023.00 7.00% 2.30%
2 1023.00 72.10 1045.99 7.05% 2.25%
3 1045.99 74.26 1068.90 7.10% 2.19%
4 1068.90 76.49 1091.65 7.16% 2.13%

...
18 1312.69 115.70 1316.68 8.81% 0.30%
19 1316.68 119.17 1317.27 9.05% 0.04%
20 1317.27 122.75 1313.97 9.32% -0.25%

...
36 285.01 196.97 96.84 69.11% -66.02%
37 96.84 202.88 -116.65 209.50% -220.45%

significantly impact the long-term sustainability of the withdrawal plan.

Buy-and-hold investors are indifferent to the order in which they receive their returns

and hence are not impacted by the sequence of returns. The commutative property of

multiplication states that:

(1 + x)(1 + y) = (1 + y)(1 + x)

This property governs how returns are computed, and over multiple periods, the

return of an investment is simply the geometric average. Thus:

(1 + 0.15)(1− 0.08) = (1− 0.08)(1 + 0.15)

However, this relationship does not hold when there are intermediary cash flows

between each period, as in the case of a retiree who withdraws from their portfolio to

finance their needs.

Let’s consider three scenarios that have the same geometric average:

1. A steady 10% return at the end of year 1 and year 2;

2. A -15% return at the end of year 1 and a 42.35% return at the end of year 2;

3. A 42.35% return at the end of year 1 and a -15% return at the end of year 2.

Buy and Hold Withdraw $10 each year
Year Steady 10% -15% / 42% 42% / -15% Steady 10% -15% / 42% 42% / -15%

0 100.00 100.00 100.00 100.00 100.00 100.00
1 110.00 85.00 142.35 99.00 76.50 128.12
2 121.00 121.00 121.00 97.90 94.66 100.40

9
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For a buy-and-hold investor who starts with $100 in their portfolio, all three scenar-

ios result in the same final value of $121 at the end of year 2. However, for a potential

retiree who starts with $100 and withdraws $10 at the end of each period, the final

results differ. The second scenario, with a negative return early on, leads to a much

lower final value compared to the third scenario, where the negative return occurs at

the end of year 2. The rationale is that, in scenario 2, the retiree withdraws from a

portfolio significantly diminished by the initial downturn, and the subsequent 42.35%

return is therefore calculated on a reduced base. In contrast, experiencing a high return

early in the period allows the retiree to outperform the steady +10%/+10% scenario.

This exemplifies why, when examining withdrawal rates, reliance on simple averages

should be avoided and historical data or simulated return paths should be used, as

market volatility can significantly impact the probability of success for a portfolio.

The use of average values to estimate a retiree’s annual spending budget has long

been employed by financial planners. However, Bengen (1994) was the first employ

a historical approach to determine how much retirees can safely spend in retirement.

Bengen used U.S. stock and bond returns from the 1920s up to the publication date to

estimate how long a retirement portfolio would have lasted, assuming an initial with-

drawal rate and successive inflation-adjusted withdrawals. Assuming a 50% stock and

50% bond allocation, Bengen concluded that an absolutely safe withdrawal rate—one

that would have allowed a portfolio to last at least 50 years for all starting dates—is

3%. Retirees with shorter horizons, such as 30 years, could even afford a 4% with-

drawal rate. Higher withdrawal rates, for instance 6%, are too risky as they would have

failed to last longer than 30 years. Additionally, retirees with bequest motives should

consider lowering their withdrawal rate. In the various scenarios analyzed, heavy stock

allocations, between 50% and 75%, consistently yielded better results, as they allowed

for faster recovery after market downturns and generally enabled the accumulation of

larger wealth for the estate.

Bengen also provided guidelines on how retirees should behave during the decumu-

lation phase. Retirees should never be tempted to increase their withdrawals at a rate

greater than inflation, as this would deplete the value of the portfolio rather quickly,

even during periods of very positive returns. Moreover, this approach could inflate the

retiree’s lifestyle, making it difficult to return to a more frugal lifestyle if necessary.

10
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Cooley, Hubbard, and Walz (1998) published one of the most influential papers in

the field of retirement planning. Their study, also known as the ‘Trinity Study’, em-

ployed a historical approach to determine a safe withdrawal rate. Their methodology

involved testing different combinations of withdrawal rates, stock allocations, and retire-

ment durations for all available starting dates, then counting the number of occurrences

in which the final portfolio value was greater than zero. The authors observed that the

safe withdrawal rate varied significantly across different periods. For example, over the

timeframe from 1926 to 1995, without adjusting for inflation (i.e., the retiree withdraws

the same nominal amount every year), they concluded that a 4% initial withdrawal rate

was very reasonable for a 30-years retirement. However, they noted that the financial

market conditions in the late 1990s were markedly different from those during the Wall

Street Crash of 1929 and before World War II. Therefore, they suggested focusing on

the subperiod starting from 1946. In this shorter timeframe, and without adjusting

for inflation, they found that a more aggressive 7% withdrawal rate would have been

reasonable with high stock allocations.

The authors explained their decision not to adjust for inflation by arguing that the

CPI inflation rate overstates the actual inflation of consumption by 1-1.5%, thus the loss

in purchasing power was not as significant. However, they also estimated that if retirees

wanted to adjust their withdrawals by the rate of inflation, a 4% to 5% withdrawal rate

would have been safe over the 1926-1995 period.

The main insight from the study is that the probability of failure drastically increases

with longer retirement periods and higher withdrawal rates. Additionally, the authors

suggested that including bonds in the portfolio increases success rates for mid to low

withdrawal rates, but for higher withdrawal rates, a large allocation to stocks is crucial

for increasing the chances of success due to their upside potential. They also observed

that, even though there were cases where the portfolio was exhausted, the terminal

values were often very large, with mean terminal values greater than median values,

indicating a positive skew in the distribution.

Success rates estimated from a small number of scenarios are prone to estimation

error. This is particularly true for estimates that rely on overlapping historical scenar-

ios, as in the case of the two studies mentioned. This issue has led some researchers to

develop market models—stochastic models of asset returns and inflation rate processes.

11
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Pye (2000) proposed a simulation approach to estimate withdrawal rates, assuming re-

turns are lognormally and independently distributed with a mean of 8% and a standard

deviation of 18%, to match the historical moments of U.S. stock returns. The method-

ology involved setting an initial withdrawal rate and continuing to withdraw the same

amount in real terms until that amount was no longer sustainable, at which point the

annual withdrawal would be reduced.

Pye found that, despite an expected return of 8%, initially withdrawing 8% leads

to serious sustainability risks, even in the first years, with a 35% probability of having

to reduce the withdrawal rate by 35% or more during the first 10 years. Reducing the

initial withdrawal rate by 25% increased the probability of sustaining it over the entire

period without further cuts from 15% to 45%. Further reducing the initial withdrawal

rate by 50% raised the probability of sustaining it over the entire period to 80%.

The studies discussed so far have attempted to develop a spending plan for retirees

by using the past century of U.S. stock market returns and macroeconomic data to

derive a safe withdrawal rate. The implicit assumption in these studies is that if a

withdrawal rate guaranteed high success rates in the past, it will likely work in the

future as well. However, it is crucial to assess the validity of this assumption and the

appropriateness of using the historical experience of the U.S. to model withdrawal rates

for future retirees.

Mehra and Prescott (1985) identified that U.S. stocks outperformed bonds by ap-

proximately 6% per year over the previous century. The authors could not find a

satisfactory explanation for this overperformance, as individuals would need to exhibit

extraordinarily high levels of risk aversion to justify this discrepancy—a phenomenon

that became known as the ‘Equity Risk Premium Puzzle’. Academics have since at-

tempted to explain this puzzle by exploring alternative preference structures or by

identifying limitations in the available data. A more recent stream of studies has sug-

gested an alternative explanation: ex-post returns may be biased by the survival of the

series, meaning that risk aversion cannot be accurately inferred from empirical analyses

of historical data that are conditional on survival.

Jorion and Goetzmann (1999) proposed expanding the data sample to include in-

formation from markets that experienced temporary or permanent interruptions. The

survival explanation could at least partially account for the Equity Risk Premium Puz-
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zle, as the U.S. experienced a real appreciation of 4.3% per year during the considered

period, while the median of all other countries lagged behind at just 0.8%. The conclu-

sion is that relying solely on U.S. historical data to estimate long-term market growth is

unjustified, as the U.S. experience does not accurately reflect that of investors in many

other developed countries.

Pfau (2017), estimated the success rates of the 4% rule across a wide sample of

countries. The author collected data from 1900 to 2015 for 20 developed countries and

discovered that only the U.S. and Canada would have sustained the 4% withdrawal

rule for a 30-year retirement period. Other countries exhibited failure rates ranging

from 8% to 62%, and the global stock market would have historically supported a 3.5%

withdrawal rate. However, this study suffers from a significant flaw: the countries

included in the dataset were those considered developed at the time of publication.

This methodology introduces survivorship bias, as it only considers successful countries

that survived and thrived over time, likely inflating the success rates.

Anarkulova et al. 2022 addresses these limitations by using a new dataset specifically

designed to overcome the issues of small sample size, survivor bias, and easy data bias.

This approach allows investors to form better ex-ante expectations for asset returns

using a broader sample of developed markets rather than relying on the small and

biased U.S. sample. The dataset spans from 1890 to 2019, and the inclusion of countries

in the sample is based on an approach that mitigates survivor bias by relying on ex-

ante measures of economic development to determine the initial sample inclusion date

for each country. Using this dataset, the authors generated various simulation paths

through a block bootstrap methodology, preserving the cross-sectional and time-series

properties of long-horizon asset returns. The authors estimated that a 4% withdrawal

rate had a 17.4% failure probability for a retired couple and the safe withdrawal rate

(with a success rate greater than 95%) was 2.26%, 200 basis points lower than that

estimated by considering only the U.S. sample.

1.2 Breaking down the assumptions of the studies

The studies discussed in 1.1 are academic attempts to estimate safe withdrawal rates.

However, these studies overlook a range of factors that are crucial for retirees and could
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significantly impact their chances of financial success. Moreover, these studies were

primarily designed for traditional retirement planning and not specifically tailored to

the needs of early retirees.

In this section, the study dissects the assumptions underlying these studies and

evaluates how they influence success rates, specifically considering a real-world scenario:

the case of a 45-year-old Italian who is about to retire.

First, the validity of extrapolating success rates over a 30-year period to plan for

much longer retirement horizons is examined, as is necessary for early retirees. The

potential impact of an extended retirement duration on success rates will be explored.

The effects of taxes and transaction costs will be considered next. Most studies do

not account for these factors; however, understanding the impact of taxes on wealth is

crucial for retirees planning their financial future, as will be discussed in the following

sections.

Traditional studies define success as any scenario where the final portfolio value

remains above zero, implicitly assuming that retirees are not concerned with leaving

a bequest and are content with depleting their capital. Therefore, the implications of

capital preservation versus capital depletion on success rates will be assessed.

Additionally, the assumption that retirees rely solely on withdrawals from their

investment portfolio, without other sources of income, will be explored. In practice,

many countries, such as Italy, provide retirees with social security benefits upon reaching

a certain age. The impact of including social security income on the safe withdrawal

rate will be examined.

This section will analyze the influence of these assumptions on success rates, based

on historical market and macroeconomic conditions, under the premise that a with-

drawal rate that has been successful in the past will continue to be effective in the

future. For our analysis, the dataset provided by Robert Shiller1 will be used. This

dataset spans a significant historical period, with monthly financial data from Jan-

uary 1871 to July 2024. Stock returns are represented by the S&P 500 index, and the

dataset also includes dividends paid by the constituent firms, allowing to compute the

total return of the index, including both capital gains and dividends. Bond returns are

captured through the GS10, which reflects the yield on U.S. Treasury securities with
1Data available at Shiller Data.
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10-year constant maturities. In addition to stock and bond returns, the dataset includes

the Consumer Price Index (CPI).

To estimate the safe withdrawal rate, an overlapping windows algorithm is employed

to test various combinations of withdrawal rates and stock-bond allocations across all

possible starting dates. The process begins by setting the initial withdrawal rate for the

first month and deducting this amount from the initial portfolio value. Each month,

the portfolio value is adjusted by that month’s nominal rate of return, establishing the

initial value for the following month. The subsequent month’s withdrawal is adjusted for

inflation based on the previous month’s observed rate and deducted from the portfolio’s

value. This procedure is repeated monthly until the end of the specified retirement

horizon. For instance, using market data starting from January 1871 for a 50-year

period, the first iteration spans January 1871 to January 1921, the second iteration

covers February 1871 to February 1921, and so on. The success rate is determined by

calculating the percentage of iterations in which the final portfolio value remains above

zero.

1.2.1 The implications of a longer retirement duration

As mentioned earlier, many studies on withdrawal rates, including the Trinity Study,

focus primarily on how much a retiree should save and subsequently spend during

retirement. However, these studies were not designed for early retirees who plan for

much longer retirement horizons than the typical 30-year period these studies often

consider.

Section 1.1 highlighted that Longevity Risk, the possibility that an individual lives

longer than initially anticipated requiring more resources to finance their needs during

retirement, is one of the main sources of risk for a retiree alongside Market Risk. Today,

extensive data on life expectancy are available. For instance, using the 2020 Italian

Mortality Table 2, it is possible to estimate the life expectancy of a hypothetical 45-

year-old retiree. The median life expectancy for a 45-year-old Italian in 2020 was 83

years for males and 87 years for females. However, when planning for retirement, relying

on the mean or median life expectancy can be risky. Retirees tend to be highly risk-
2Data available at Human Mortality Database.
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averse and prefer to plan for a longer life expectancy to avoid the risk of outliving their

savings. Optimizing for the (almost) worst-case scenario can reduce this risk, but it

may also result in over-saving and under-utilizing financial resources.
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Figure 1.2: Success rates based on US stock and bond returns over the period 1871-
2024.

Figure 1.2 allows to compare the success rates for different retirement horizons: 30

years (for comparison with other studies), 40 years, 50 years, and 60 years. Historically,

over a 30-year retirement period, a 4% withdrawal rate has provided high success rates

when at least 50% of the portfolio is allocated to stocks. However, for longer retirement

horizons, failure rates increase. For a 40-year retirement period, a 4% withdrawal rate

yields a 95% success rate only when at least 75% of the portfolio is in stocks; reducing

the stock allocation to 50% drops the success rate below the safety threshold of 95%

success rate. For a retiree planning to rely on their investments for 50 years, the 4%

withdrawal rate provided at best a 92.19% success rate with a 100% stock allocation.

For a 60-year retirement period, the success rate just meets the 96% threshold with the
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same asset allocation. Interestingly, longer retirement periods generally result in lower

success rates for a fixed withdrawal rate and asset allocation. However, with a 100%

stock allocation and a 4% withdrawal rate, the 60-year retirement horizon surprisingly

shows a higher success rate than the 40- and 50-year horizons. This might be due to

the longer investment period, which offers more time for the portfolio to recover from

market downturns.

From this analysis, it can be concluded that extrapolating the success chances of

withdrawal rates from a 30-year horizon and applying them to longer retirement peri-

ods is not advisable. Historically, a withdrawal rate between 3.5% and 3.75% can be

considered safe for all retirement horizons. These values are the ones that will be used

as a baseline in the next section to evaluate the impact of the different assumptions.

Furthermore, it is possible to observe that bonds are riskier than stocks for retirement

spending: allocating less than 50% of the portfolio to stocks has historically corre-

sponded to success rates below our safety threshold. Allocating between 75% and 100%

to stocks has historically yielded the best outcomes for retirees.

The assumption that a portfolio that survives for 30 years without depleting the

initial capital will likely survive for another 30 years is not entirely accurate. While it is

true that the risk of running out of money after 30 years is low for the safe withdrawal

rate, and the median final value is often much higher than the initial value (even after

adjusting for inflation), retirement planning should focus on the tails of the distribution

rather than the median. Indeed, after 30 years, a significant portion of retirees may

not be classified as failures, but they could have a portfolio value below the initial

amount adjusted for inflation. Therefore, these retirees that have a wealth below their

initial portfolio value after 30 years, may not have sufficient capital to support their

withdrawals for another 30 years.

1.2.2 The impact of capital preservation

Most studies in this field consider a retirement plan successful if it avoids running out

of money in the final month or year of the analyzed time window. Consequently, these

studies implicitly assume that retirees are content with completely depleting their entire

wealth by the end of the retirement period. However, some retirees may be interested
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in preserving their capital, perhaps because they wish to leave a portion of their accu-

mulated wealth as a bequest to their estate. In this context, capital preservation means

that retirees aim to maintain a minimum asset level—expressed as a percentage of their

initial wealth—at the end of their retirement horizon. Specifically, under full capital

preservation, retirees strive to keep the real, inflation-adjusted principal intact.

To assess the impact of capital preservation on safe withdrawal rates, success rates

are calculated by targeting a final portfolio value that is 50% and 100% of the initial

portfolio value in real terms. In this scenario, success is defined as ending with at least

50% or 100% of the initial value in real terms.

To simplify the interpretation, Figure 1.3 presents the results for an asset allocation

of 75% stocks and 25% bonds.
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Figure 1.3: The impact of capital preservation on success rates. Results based on US
stock and bond returns over the period 1871-2024.

As expected, targeting capital preservation negatively impacts success rates. In

the previous section it was demonstrated that, under capital depletion, a 3.75% with-
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drawal rate can be considered safe even for a 60-year retirement period. However, when

aiming for 50% and 100% capital preservation over 30 years, the success rate drops

significantly—from 100% to 96.02% and 85.22%, respectively.

For longer retirement durations, the decrease in success rates remains relatively

consistent. For example, over a 60-year period, with a 3.75% withdrawal rate, success

rates decline from 97.06% to 92.96% and 85.03% when targeting 50% and 100% capital

preservation, respectively. This is encouraging news for retirees: if they aim to preserve

some of their initial capital, longer retirement horizons do not drastically reduce their

chances of success. The reason is that, over longer periods, the high growth potential of

stocks can allow the portfolio to expand and eventually recover from market downturns.

The key takeaway for retirees is that if they want to achieve capital preservation,

they will need to lower their withdrawal rates. Specifically, when targeting 50% capital

preservation in real terms, a safe withdrawal rate appears to be 3.50%, and when

targeting full capital preservation, a rate of 3.25% is advisable.

1.2.3 The impact of taxes and transaction costs

Most studies in the field of withdrawal rates, don’t adjust their results for taxes or

transaction costs. The reason for omitting these factors is that they can vary widely

depending on a variety of characteristics specific to each retiree. For example, access to

tax-deferred investment accounts varies among individuals, and taxation regimes differ

significantly between countries. However, this chapter will try to estimate the impact

of taxes and transaction costs on success rates, focusing on a practical case study of an

Italian soon-to-be retiree.

The analysis assumes that the retiree has optimized their investment strategy to

minimize costs. Recently, there has been a surge in low-cost investment platforms that

allow investors to buy and sell securities with minimal fees. Therefore, is assumed that

the retiree in consideration will be able to invest through one of these platforms, which

charge such trivial fees that they can be neglected in our calculations.

The past decade has seen growing interest from investors in index funds and low-cost

ETFs. Exchange-Traded Funds (ETFs) are pooled investment securities that, unlike

mutual funds, can be bought and sold on an exchange, similar to stocks. Specifically,
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passive ETFs are designed to track underlying assets such as an index. In this case, the

ETF manager replicates the index’s performance by trading its components, eliminating

the need for active security selection as in a mutual fund. This approach significantly

reduces the intervention of the fund manager, allowing ETFs to charge much lower

costs.

Until now, it was assumed that the fictional retiree was investing in a combination

of stocks and bonds. Therefore, it is possible to imagine that the retiree is investing in

a multi-asset ETF, such as the Vanguard LifeStrategy ETFs 3, which provide exposure

to both bonds and stocks with a single investment product and a Total Expense Ratio

(TER) of 0.25% per year. Thus, in the calculations, to include the cost of the investment

product the TER is subtracted from the performance of stocks and bonds. Specifically,

the return of the portfolio will be computed as:

RPortfolio = RStock ×WStock +RBond × (1−WStock)−
TER
12

where:

• RPortfolio is the net return of the portfolio,

• RStock is the return of the stock, in our case, the S&P 500 Total Return,

• RBond is the return of the bond, in our case, GS10, which is the yield on U.S.

Treasury securities with 10-year constant maturities,

• WStock is the weight of stocks in the portfolio,

• TER is the Total Expense Ratio, in our case, 0.25% per year.

Note that the TER is divided by 12 as monthly data are considered and hence it is

assumed that this cost is charged monthly.

In the Italian tax system, one of the primary taxes on investment portfolios is the

‘Imposta di Bollo’, a fixed annual charge of 0.2% of the portfolio’s value. This tax

is typically levied once per year, but for simplicity in the calculations, it is assumed

that this tax is paid monthly, similar to the Total Expense Ratio (TER). Thus, the net

return of our portfolio can be computed as:
3Product details available at Vanguard LifeStrategy ETF

20

https://www.it.vanguard/professional/le-nostre-soluzioni/gamma-di-investimento/lifestrategy


CHAPTER 1. SAFE WITHDRAWAL RATES, AN EMPIRICAL ANALYSIS

RPortfolio = RStock ×WStock +RBond × (1−WStock)−
TER
12

− 0.20%

12

In the Italian fiscal system, taxation on investment products is governed by Decreto

Legge 66/2014 4. Under the current tax regime, capital gains (or losses) from selling

an ETFs are classified as ‘redditi da capitale’ and are subject to a 26% tax. When an

ETF is sold, a 26% tax is applied to the capital gain, which is the difference between

the selling price and the weighted purchase cost (WPC)—the weighted average of all

the prices at which the ETF was previously purchased. However, if the ETF is sold

at a loss, meaning the selling price is lower than the weighted purchase price, no tax

is applied. ETFs that include government bonds are an exception, with capital gains

taxed at a lower rate of 12.5%. Capital gains from multiasset ETFs have a taxation of

26% on the stock part and of the 12.5% on the bonds. For instance the capital gain

tax on 80% stocks and 20% bonds Multiasset ETF is given by

CG Tax = 26%×WStock + 12.5%× (1−WStock) = 26%× 80%+ 12.5%× 20% = 23.3%

Using an ETF instead of individual stocks and bonds simplifies the tax calculation

by eliminating the need to account for the so-called ‘zainetto fiscale’, which allows

investors to offset future tax liabilities when selling stocks or bonds at a loss.

In the calculations, taxes require tracking the current price of the security and the

weighted purchase price. The algorithm computes taxes as follows:

• If Pricet > WPC × Price0, where Pricet is the price at time t of the hypothetical

ETF, WPC is the weighted purchase price, and Price0 is the ETF’s price at the

retirement date. Retirees build their investment portfolio over a long time, by

frequently purchasing new shares. Hence, it is possible to say that the WPC in

most cases would differ from Price0. For instance, WPC may be 80% of Price0

and in this case, the capital gain on which the tax is paid will be higher than in

the case in which WPC = Price0. The tax payable on each share sold at time t

4Details available at Decreto Legge 66/2014
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is:

Taxt = (0.26×WStock + 0.125× (1−WStock))× (Pricet − WPC × Price0)

• If Pricet < WPC × Price0, no tax is payable at time t for each share sold.
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Figure 1.4: The impact of taxes and transaction costs on success rates. Results based
on US stock and bond returns over the period 1871-2024.

Figure 1.4 illustrates the success rates relative to the withdrawal rate when account-

ing for taxes and transaction costs. The drop in success rates compared to the base case

is significant, particularly for longer horizons. This greater impact on success rates over

extended periods can be attributed to the substantial capital gains accumulated over

60 years. As retirees withdraw larger amounts to cover taxes on these capital gains,

their wealth depletes more rapidly.

While a 3.75% withdrawal rate seemed safe in our baseline scenario, accounting

for taxes and transaction costs reveals that the probability of failure is now far from
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acceptable. For high stock allocations (75% or 100%), the safe withdrawal rate should

be reduced by 50 basis points, to 3%, to achieve a reasonable success rate. For more

conservative allocations, such as 50% stocks and 50% bonds, the success rates fall below

the 95% threshold even with a 3% withdrawal rate. Therefore, in these cases, the safe

withdrawal rate must be further reduced to 2.75%, particularly for longer retirement

horizons.

1.2.4 The impact of additional cashflows

Studies in the field of safe withdrawal rates often assume that retirees will not have any

additional sources of income during their retirement period. However, it is plausible to

consider that an early retiree might receive positive cash flows, such as salaries from

casual jobs, inheritances from relatives, or income from pensions. While modelling the

impact of salaries or inheritances is not feasible due to their dependence on individual

choices and circumstances, it is possible to estimate the impact of pensions, as they are

determined by predefined rules.

To account for the impact of social security pensions, the case study of a fictitious

45-year-old Italian soon-to-be retiree is still considered. In the Italian pension system,

an individual has the right to receive the ‘pensione di anzianità’ upon reaching the

age of 67, provided they have worked and contributed regularly for at least 20 years.

If this condition is met, once an individual turns 67, they are entitled to receive a

monthly allowance of at least 1.5 times the ‘Assegno Sociale’, which in 2024 amounts to

e6,947.33 per year 5. Therefore, the monthly allowance of the ‘pensione di anzianità’

is e868.26 per month once they reach 67.

The calculation assumes that the requirements to receive social security pensions

will not change in the future. Furthermore, it is assumed that the cost of living and the

income from pension will grow at the rate of inflation, and therefore, the pension will

cover a fixed proportion of monthly spending. Hence, in the calculation it is assumed

that once the retiree reaches the age of eligibility for the social security pension, the

withdrawal amount will be reduced by the proportion of monthly expenses covered by

the pension. For instance, it is possible to consider a retiree who withdraws $40,000
5For further details: ‘L’assegno Sociale INPS 2024’
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annually in real terms until age 67. If the pension covers, say, 40% of their financial

needs, the retiree will then withdraw only $40, 000 × (1 − 0.40) = $24, 000 from their

investment portfolio moving forward. Assuming that the pension is indexed to the cost

of living, it can be further assumed that the pension will continue to cover a constant

proportion of the retiree’s living expenses.

According to the most recent data from ISTAT, the median cost of living for a single

person in Italy is e1,773.12 per month. Consequently, social security will help cover

approximately 48.96% of monthly needs. Therefore, the calculation assumes that when

a retiree turns 67, only the remaining portion not covered by social security will be

withdrawn from the portfolio, amounting to 51.04% of the monthly needs.
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Figure 1.5: The impact of income from pension on success rates. Results based on US
stock and bond returns over the period 1871-2024.

Figure 1.5 illustrates the impact of accounting for social security pensions on success

rates. It is possible to observe that longer retirement periods experience the greatest

improvement in success rates. Specifically, assuming that the fictional retiree is 45
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years old and will only begin receiving a pension at age 67, a 30-year retirement would

provide pension benefits for just 8 years, whereas a 60-year retirement would provide

income from the pension for 38 years. Consequently, in the case of a longer retirement

duration, the retiree benefits from a reduction in the monthly withdrawal amount for

a more extended period, thereby significantly improving the success rate.

Indeed, when factoring in the income from the pension, the 4% rule is safe for all

retirement durations. For a 30-year retirement, it would even be possible to increase

the withdrawal rate above 4.5%, while for a 40-year retirement, a 4.25% withdrawal

rate is still feasible.

1.3 Is the ‘4% rule’ really desirable?

In the previous section, the impact of each of these assumptions on success rates was

analyzed. The next logical step is to put everything together and estimate what could

be a safe withdrawal rate.
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Figure 1.6: Distribution of Terminal Values of the portfolio as multiplier of the inflation
adjusted principal. Results based on US stock and bond returns over the period 1871-
2024.
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Figure 1.6 shows the success rates against different withdrawal rates for 30 and 60

years, targeting different final values, and considering the impact of taxes, transac-

tion costs, and income from pensions based on the criteria described in the previous

sections. As discussed in the dedicated section, capital preservation impacts shorter

retirement durations more heavily than longer ones. Indeed, over 30 years, 50% capital

preservation requires retirees to sacrifice 75 basis points on their initial withdrawal rate,

from 4% to 3.25%. If they aim for full capital preservation, they will need to accept a

withdrawal rate below 3%. However, over 60 years of retirement, targeting 50% capital

preservation requires retirees to give up just 25 basis points and 50 if they aim for

full capital preservation. Furthermore, the chart highlights the importance of a high

stock allocation: investing less than 75% of the portfolio in stocks causes sharp drops

in success rates, especially for longer retirement periods and higher capital preservation

targets.

The conclusion of this analysis is that academic studies have overlooked various

factors crucial for early retirees, and the 4% rule seems far from safe. Early retirees

should consider withdrawal rates of 3.50% over 60 years if they plan to deplete their

capital or closer to 3.25% if they aim for capital preservation.

It is also insightful to analyze withdrawal rates not only through the lens of success

rates but by inspecting the distribution of terminal wealth values.

Figure 1.7 depicts the distribution of the final portfolio value as a multiple of the

real principal, i.e., the principal adjusted for observed inflation each year, assuming

an asset allocation of 75% stocks and 25% bonds. Specifically, the range between the

5th and 95th percentiles and the median value is represented. The observation that

the 90% confidence interval (represented by the sky-blue area) falls below 0 indicates

that, in more than 5% of the cases, the specific withdrawal rate failed. However, for

all analyzed retirement durations and withdrawal rates, the median terminal value has

consistently remained above the initial inflation-adjusted wealth. This insight under-

scores the importance of focusing on the left tail of the distribution rather than on the

median values.

Retirees understand that even though there is a chance of failure in their withdrawal

strategy, there is substantial upside potential for their wealth, which they could even-

tually pass on to their estate. For example, in the case of a 60-year retirement period
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Figure 1.7: Terminal values when accounting for taxes, transaction costs, income from
pension and different capital preservation targets. Results based on US stock and bond
returns over the period 1871-2024.

with a withdrawal rate of 3.5%, deemed safe, the median terminal wealth is exactly 6

times the initial inflation-adjusted wealth, and in the 95th percentile, it could be 16.30

times.

On the one hand, there is always the rare but extremely impactful risk of running

out of resources, while on the other hand, there are very good chances to end up with

a very large investment portfolio. This very wide range of possible outcomes does not

seem to be desirable for retirees.

Scott, Sharpe, and Watson (2008) argued that supporting a constant spending plan

using a volatile investment policy is fundamentally flawed. A retiree using a 4% rule

faces spending shortfalls when risky investments underperform and may accumulate

wasted surpluses when they outperform, and in any case, could likely purchase exactly

the same spending distributions more cheaply. In essence, retirees implementing a de-
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cumulation plan based on withdrawal rates are overpaying for the potential investment

gains that they do not need to meet their retirement income goals, resulting in an

inferior spending plan.

Figure 1.7 illustrates this issue: retirees choose a withdrawal rate that minimizes the

failure rate in the worst-case scenario, leading to the accumulation of large wealth that

will likely remain untouched. This inefficiency is one of the most significant drawbacks

of strategies based on an initial withdrawal rate and inflation-adjusted withdrawals in all

subsequent years, raising the need to structure a more efficient decumulation strategy.
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Chapter 2

Natural Tontine

2.1 Why tontines?

Tontines, introduced in the 17th century, were unique investment structures where a

group of investors pooled their funds, paid a lump sum, and received annual payments

until their death. Unlike annuities, when a member died, their share was redistributed

among the surviving members. For example, consider 1,000 investors each contributing

$1,000 to purchase a $1 million bond with a 3% annual coupon. The bond would pay

$30,000 yearly, to be shared among the participants. If all members were alive at the

first payment, each would receive $30. However, after 10 years, with supposedly only

750 survivors, each would receive $40. After 20 years, with only 100 survivors, each

would receive $300. This process continued until at least one person remained in the

fund, making investors speculate on their life expectancy for potentially large payments

if they outlived other members.

The concept of the tontine was first proposed by Lorenzo De Tonti, a Neapolitan

banker, that in the 1650s was serving as a financial consultant to the French crown

(McKeever 2010). At that time, France was engaged in the Thirty Years’ War, and

King Louis XIV sought new financing methods to support the military efforts. In

1653, De Tonti suggested the tontine structure to raise funds, highlighting its potential

benefits for both investors and the kingdom. However, the idea was initially rejected

due to concerns about the lack of reliable life expectancy estimates.

The first successful tontine was established in Kampen, in the Netherlands, in 1670,
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and other Dutch cities soon followed. France issued its first tontine shortly after, and

in 1693, the English government organized its first state tontine under King William III

(Milevsky and Salisbury 2015). This tontine aimed to raise £1 million to finance the

war against France, allowing British citizens to subscribe with a £100 premium. The

tontine guaranteed a 10% dividend for the first seven years and 7% thereafter, as long

as the nominee (who could differ from the investor) was alive.

Over time, tontines became a popular tool for project financing. By the 1850s, U.S.

insurance companies also began offering these products, which soon became common

in Europe. However, a series of scandals, such as manipulation of tontine member

registers, excessive fees, and conflicts of interest regarding investments, led the New

York State Insurance Commission to ban tontines in 1910. Many other countries soon

followed suit.

Today, tontines in Europe are regulated by Directive 2002/83/EC, which allows new

pension products to be structured around the tontine principle. A growing number of

insurance companies, pension funds like QSuper in Australia 1 and Le Conservateur in

France 2, and fintech firms such as Tontine Trust 3, have begun offering products based

on tontines. Recent academic literature has proposed new tontine designs, arguing that

they could be effective tools for financing retirement.

Modern tontines are often categorized as explicit or implicit. Explicit tontines use

predefined rules to redistribute assets upon a member’s death, providing an explicit

‘longevity credit’ each year. Notable works in this field include the Fair Tontine Annuity

(Sabin 2010), the Annuity Overlay Fund (Donnelly, Guillén, and Nielsen 2014), and the

Pooled Annuity Fund (Stamos 2008). In implicit tontines, individuals receive income

based on the number of survivors in the pool. Key publications in this area include

The Group Self-Annuitization (Piggott, Valdez, and Detzel 2005) and the Optimal

Retirement Tontine (Milevsky and Salisbury 2015).
1Details available at QSuper.
2Details available at La Tontine Par le Conservateur.
3Details available at Tontine Trust.
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2.2 The design of a Natural Tontine

In a historical tontine, the dividend rate offered to investors remains constant, leading to

increasing payments for the survivors as the number of individuals in the fund decreases

exponentially over time. The initial example illustrates this: 1000 individuals invest

$1000 each and the fund pays a 3% coupon in perpetuity and distributes this amount

among the survivors. At the first payment date, if all the individuals are still alive,

each one of them receives 1000×$1000
1000

× 3% = $30. If at future date t there are only 800

survivors in the fund, the tontine dividend is 1000×$1000
800

× 3% = $37.5, where $30 are

the coupon payment and $7.50 are the mortality credits. The coupon payment made to

each survivor is constant over time, but as the number of remaining investors decreases,

each survivor’s payment increases due to the mortality credits. This payment profile

may not be attractive to pensioners who prefer stable cash flows over time.

To address this, Milevsky and Salisbury (2015) designed a new tontine structure

called the ‘Natural Tontine’. This structure aims to determine a payment rate that

guarantees a constant stream of income over time, thereby maximizing the discounted

expected utility of consumption for retirees.

The authors of the Natural Tontine proposed a product that is expected to cost 1$

and that continuously pays out the amount d(t) rather than at a monthly or annual

frequency. Furthermore, the authors also assume a constant risk-free interest rate r

and an objective survival function tpx, that identifies the probability of individual x to

survive t years. The obvious comparator for this sort of product is an annuity in which

the annuitant pays 1$ at t = 0 and then receives a lifetime income stream of c(t), the

payout rate per survivor. For this annuity to be fairly priced, with a sufficiently large

client base, all the payments made in perpetuity must be funded by the initial premium

invested at the risk-free rate, implying the following constrain on the annuity payout

function c(t):

∫ ∞

0

e−rt
tpx c(t) dt = 1 (2.1)

Letting u(c) denote the instantaneous utility of consumption, an annuitant with

lifetime ζ and without intention to leave any bequest to its heirs will choose a life

annuity payout function for which c(t) maximizes the discounted lifetime utility:
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max
c(t)

E
[∫ ζ

0

e−rtu(c(t)) dt

]
= max

c(t)

[∫ ∞

0

e−rt
tpx u(c(t)) dt

]
By the Euler-Lagrange Theorem, it is possible to prove the existence of a constant

λ such that:

e−rt
tpxu

′(c(t)) = λe−rt
tpx for every t

Simplifying the equation on both sides shows that u′(c(t)) = λ which is constant

and if the utility function u(c) is strictly convex, the optimal annuity function c(t) is

also constant. This stable level of income can be determined by solving the fair pricing

constraint of the annuity in equation 2.1, showing that the optimized life annuity payout

function is:

ct ≡ c0 =

[∫ ∞

0

e−rt
tpx dt

]−1

(2.2)

Moving to the tontine structure proposed by Milevsky and Salisbury, the main

purpose is to maximize the expected utility by determining the optimal level of payout

d(t), i.e. the percentage of the fund value paid to the annuitants. Indeed, differently

from the fair annuity or the the historical tontine, there is no point in the dividend

payout of the tontine to be fixed at a constant level, in which every payment is always

the same fixed percentage of the current value of the fund. At the inception of the

tontine, n soon-to-be retirees will each pay 1$ to buy the annuity, and in every point

in the future, the number of individuals still alive and hence in the fund is a random

variable N(t). Assuming an homogeneous cohort and that an individual is alive, at the

future time t, the number of survival is given by a binomial distribution with parameter

tpx, hence, stating it more precisely, N(t) − 1 ∼ Bin(n − 1, tpx). The individual’s

discounted lifetime utility is given by:

max
d(t)

E
[∫ ζ

0

e−rtu

(
nd(t)

N(t)

)
dt

]
= max

d(t)

∫ ∞

0

e−rt tp E
[
u

(
nd(t)

N(t)

)
| ζ > t

]
dt

= max
d(t)

∫ ∞

0

e−rt tp

n−1∑
k=0

(
n− 1

k

)
(tpx)

k(1− tpx)
n−1−k

× u

(
nd(t)

k + 1

)
dt
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where nd(t) is the total fund payment at time t, which must be divided by the

number of people that are still alive, given by the random variable N(t). As in the

previous case, the maximization problem is subject to a constraint. The sponsor of the

tontine should be able to sustain the withdrawals in perpetuity with the n premiums

initially collected. This constraint is expressed by the following equation:

∫ ∞

0

e−rtd(t) dt = 1 (2.3)

At this point it would be possible to set d(t) = d(0) and force it to remain constant

at the value r, but as it will be showed the optimal value will be far from constant. By

the Euler-Lagrange Theorem it follows that there is a constant λ such that the optimal

d(t) satisfies for every t:

e−rt
tpx

n−1∑
k=0

(
n− 1

k

)
tp

k
x(1− tpx)

n−1−k n

k + 1
u′
(
nd(t)

k + 1

)
= λe−rt

Assuming Constant Relative Risk Aversion (CRRA), the solution is greatly simpli-

fied. Letting:

• u(c) = c1−γ/(1− γ) if γ ̸= 1

• u(c) = log(c) when γ = 1

and defining

θn,γ(p) = E

[(
n

N(p)

)1−γ
]
=

n−1∑
k=0

(
n− 1

k

)
pk(1− p)n−1−k

(
n

k + 1

)1−γ

where N(p) − 1 ∼ Bin(n − 1, p). By setting βn,γ = pθn,γ(p) is obtained that under

the initial constraint in equation 2.3 and CRRA utility, the optimal tontine withdrawal

rate is DOT
n,γ (p) = DOT

n,γ (1)βn,γ(p)
1/γ, where

DOT
n,γ (1) =

[∫ ∞

0

e−rtβn,γ(tpx)
1/γdt

]−1

For a sufficiently large n, the Natural Tontine is quite optimal for all given risk

aversion coefficients γ. Indeed, when an individual has γ ̸= 1 the welfare loss they

experience is very small compared to the tontine structure that is optimal only with

33



CHAPTER 2. NATURAL TONTINE

γ = 1, leading the authors to conclude that the Natural Tontine can be the basis

for future products of this kind as it is quite optimal for all longevity risk aversion

coefficients and precisely optimal when considering a logarithmic utility function.

But how does the payment profile of this product compare to a traditional tontine?

Figure 2.1: Range of Flat 4% Tontine Payout purchased at 65: Gompertz Mortality
assuming n=400, m=88.721, b=10. Source: Milevsky and Salisbury 2015

In a traditional tontine scheme such as the one represented in Figure 2.1, individuals

can expect low payments early on that will get very large, but also variable, in the

last couple of years thanks to the mortality credits. However this payments are only

experienced if one is fortunate enough to be still alive at the time. Individuals are more

interested in maximising their utility (and standard of living) over the entire lifetime,

hence this payment profile is not very appealing.

In contrast, in the Natural Tontine proposed by the authors, the expected tontine

payout per survivor is relatively constant over time, and therefore also the discounted

expected utility is much higher than in the traditional structure. Figure 2.2 represents

the payout profile of a Natural Tontine. The chart is obtained by solving for the value

of DOT
n,γ (1) and then reconstructing DOT

n,γ (tpx) for n = 400, r = 0.04 and γ = 1.

It is important to distinguish once more between the actual interest rate paid to the

entire pool (i.e. the percentage of the fund value that is distributed) and the expected
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Figure 2.2: Range of Optimal Tontine Payout at 4%: Gompertz Mortality assuming
n=400, m=88.721, b=10. Source: Milevsky and Salisbury 2015

dividend of the Natural Tontine which will be relatively stable over time.

The bottom line of the Natural Tontine is that the present value of the interest

paid to the entire pool over time is exactly equal to the original contribution made by

the pool itself. There is simply rearrangement and parsing of the cash flows over time.

The historical tontine in which dividends to the entire pool are a constant percentage

(e.g. 4%) of the value of the fund are suboptimal because they create an increasing

consumption profile that is undesirable due to its variability. However, a tontine scheme

in which interest payments made to the entire pool early on are higher (e.g. 8%) and

then decline over time to lower interest rate (e.g. to 1%), is in fact the optimal design,

because the dividend amount (in dollar terms) is more constant as the total payment

made by the fund is to be divided among a shrinking number of individuals.

2.3 Building a simulation of a Natural Tontine

In the previous section, it was discussed how the Natural Tontine design proposed

by Milevsky and Salisbury can be considered optimal, meaning that it maximize the

discounted expected utility of consumption and allows for stable cash flows over time.
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In this section, a simulation for a Natural Tontine Fund is created. The simula-

tion integrates two main sources of randomness: one for the investment returns and

one for the mortality model to project the number of survivors. These projections are

then combined deterministically using a specific sharing rule to determine the tontine

dividend. Initially, the structure of the fund is introduced using a ‘toy example’ to

demonstrate the properties of this type of product. For this example, simplifying as-

sumptions are made: LogNormally Distributed returns and a Gompertz Mortality Law

are assumed.

Later, in subsection 2.3.5, the quality of these assumptions is assessed, and real data

is used to evaluate how this fund would have performed.

2.3.1 Modelling mortality: Gompertz Mortality Law

In a tontine, each dividend payment is distributed among the remaining participants.

Therefore, the simulation first requires a method to estimate the number of survivors at

each future payment date. This necessitates the introduction of a survival probability

curve, which represents the likelihood that an investor alive at age x will still be alive

at age x+ t, and thus be eligible for payments at time t.

In the 19th century, the British actuary Benjamin Gompertz proposed a mortality

law, now known as Gompertz’s law, which posits that the natural logarithm of adult

mortality rates increases linearly with age, implying exponential growth in mortality

rates over time. Gompertz observed that not only do mortality rates increase with age,

but they do so at approximately the same percentage each year. Specifically, if the

mortality rate at age y is q%, then at age y+ 1, the mortality rate becomes q(1 + z%),

and at age y + 2, it becomes q(1 + z%)2, and so forth. Consequently, mortality rates

are an exponentially increasing function of age, meaning that when the logarithm of

annual mortality rates is computed, it approximates a straight line determined by a

slope parameter and an intercept parameter.

The instantaneous hazard rate, representing the death rate at a given age, is denoted

by λx, where x is the individual’s age. According to Gompertz’s law, this rate is

expressed as:
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λx = h0e
gx

Here, h0 and g are constants, leading to the equivalent logarithmic form:

ln[λx] = ln[h0] + gx

In this equation, h0 represents the initial mortality hazard rate at time zero (the

intercept), and g denotes the mortality growth rate (the slope coefficient). To simplify

the subsequent mortality modelling, the hazard rate can be parameterized as follows

(see Milevsky 2022):

λx =
1

b
e(x−m)/b

Taking the natural logarithm, this becomes:

ln[λx] = − ln[b]− m

b︸ ︷︷ ︸
ln[h0]

+
1

b︸︷︷︸
g

x

Taking the natural logarithm, this becomes: Furthermore, the survival probability

can be formulated as:

Pr[Tx ≥ t] = exp
{
e(x−m)/b

(
1− et/b

)}
where Pr[Tx ≥ t] represents the probability that the remaining lifetime random variable

Tx is at least t.

The parameters in this model have specific interpretations: m is the modal value

of life expectancy, which is different from the average value, and b is the dispersion

parameter, which is not the same as the standard deviation.

1 def TPXG(x, t, m, b):

2

3 survival_prob = np.exp(np.exp((x - m) / b) * (1 - np.exp(t / b)))

4

5 return survival_prob

Listing 2.1: Python function to compute the survival probability according to a
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Gompertz Mortality Law

The Python function represented in Listing 2.1 will be utilized in the remainder of

this example to compute survival probabilities based on the Gompertz Mortality Law.

This function requires four main inputs:

• x is the current age of the individual,

• t is the time horizon for which the survival probabilities are computed,

• m and b are the parameters of the Gompertz Mortality Law introduced earlier.

This function calculates the probability that an individual aged x will survive for

another t years according to the Gompertz Mortality Law. For example, the probability

that a 60-year-old will live another 40 years (and thus reach 100 years old) is 6.94%,

assuming m = 90 and b = 10. However, if the individual is already 80 years old, the

probability of reaching 100 increases to 17.94%, because the probability is conditional on

the individual surviving until age 80, thus discounting the probability of dying between

ages 60 and 80. The older the individual, the greater the probability of reaching any

given age.

To understand the impact of the Gompertz parameters on survival probabilities,

consider the following examples: if the parameter m is set to 100 instead of 90, the

probability that a 60-year-old will live for another 40 years increases to 37.47%. Con-

versely, if the parameter b is changed from 10 to 5 (while resetting m to 90), the

probability of a 60-year-old reaching the age of 100 drops to a mere 0.06%. Indeed, a

smaller dispersion parameter b translates to less variation in the age of death, making

it increasingly difficult to outlive the modal age.

In section 2.2, it was argued that, assuming a homogeneous cohort of individuals,

the number of survivors at the future time t, represented by the random variable N(t),

is given by a binomial distribution with parameter tpx, hence, N(t) ∼ Bin(n, tpx). The

Gompertz Mortality Law can be used as the parameter of the binomial distribution to

model the number of individuals alive at time t.

1 def deaths_simulation(N, TH, GL0 , x, m, b):

2

3 # Placeholders
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4 GLIVE = np.zeros ((N, TH), dtype=int) # Matrix for survivors

5 GDEAD = np.zeros ((N, TH), dtype=int) # Matrix for deaths

6

7 # Simulate the deaths and survivors

8 for i in range(N):

9 # Simulate deaths in year 1

10 prob_death_year_1 = 1 - TPXG(x, 1, m, b)

11 GDEAD[i, 0] = binom.rvs(GL0 , prob_death_year_1)

12 # Subtract deaths from GL0 to get survivors

13 GLIVE[i, 0] = GL0 - GDEAD[i, 0]

14 # Loop through remaining years

15 for j in range(1, TH):

16 prob_death_year_j = 1 - TPXG(x + j, 1, m, b)

17 GDEAD[i, j] = binom.rvs(GLIVE[i, j - 1], prob_death_year_j

)

18 # Count survivors

19 GLIVE[i, j] = GLIVE[i, j - 1] - GDEAD[i, j]

20

21 # Now GLIVE and GDEAD matrices contain the simulated paths

22 return GDEAD , GLIVE

Listing 2.2: Python function to create N simulated paths of the number of survivors

according to the Gompertz Mortality Law

The Python script reported in Listing 2.2 generates N=10000 simulation paths for

the evolution of the number of participants in the fund. It assumes an initial number

of GL0=1000 participants and a fund time horizon of TH=30 years, after which the fund

will be shut down. Each year, the number of deaths and the number of people still alive

are recorded in the arrays GDEAD and GLIVE, respectively.

In the script, the Gompertz Mortality Law was used to compute the survival prob-

ability for an individual between ages x and x + 1. (1 - TPXG(x, 1, m, b)) was

then used as the parameter for a binomial distribution to generate the actual number

of individuals in the pool who died each year in each simulation.

Figure 2.3 presents the 98% confidence interval for the number of deaths and the

number of people alive for each year considered. There is a notable difference between

the 99th percentile and the 1st percentile, illustrating the substantial variability of
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Figure 2.3: 98% confidence intervals for simulated lifespan and deaths. Original Pool
Size = 1000. Fixed m = 90 and b = 10 with Gompertz Mortality Law.

the simulated paths, even with a relatively large initial pool of 1000 individuals. The

variability can be explained by the fact that the Gompertz Mortality Law computed

the expected number of survivors each year, while the actual number of survivors is

given by a binomial distribution with a parameter equal to expected number of deaths.

2.3.2 Modelling Returns: LogNormal distribution

This initial ‘toy example’ will assume that returns are LogNormally distributed and

time-independent. Using the notation R̃[i, j] to denote the effective periodic return in

simulation i and year j, the assumption of LogNormality implies that ln[1 + R̃[i, j]]

is normally distributed. The quantity ln[1 + R̃[i, j]] is also known as the continuously

compounded investment return, represented by r̃[i, j], where R̃[i, j] = er̃[i,j] − 1. In the

following paragraphs, the expected value of the continuously compounded returns will

be denoted by ν and the standard deviation by σ. It is important to note that under

the assumption of continuously compounded returns r̃, the theoretical skewness and

kurtosis are 0 and 3, respectively.

In simulating portfolio returns, the most important variable is the continuously

compounded long-term assumed rate of return (ARR) earned by the Natural Tontine,

denoted as r. In this initial ‘toy example’, it was assumed r to be 4%. This figure is
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crucial for determining the initial tontine dividend payout and for forecasting dividend

payouts to surviving investors in the coming years.

This assumed rate of return will differ from the realized investment return (RIR),

which is denoted by r[i, j], where i represents the simulation number and j represents

the year in which the return is obtained. Although the RIR will vary from the ARR,

the average RIR across a large number of simulations will converge to the ARR.

1 # Set base parameters

2 EXR = 0.04 # Mean

3 SDR = 0.02 # Standard Deviation

4 TH = 30 # number of years to simulate

5 N = 10000 # number of simulation

6

7 # Define placeholders

8 PORET = np.zeros ((N, TH)) # matrix for portfolio returns

9 STPRV = np.zeros ((N, TH)) # matrix for sthocastic present values

10

11 # Simulate N paths of TH returns

12 for i in range(N):

13 PORET[i, :] = np.exp(np.random.normal(EXR , SDR , TH)) - 1

Listing 2.3: Python script to simulate the portfolio return assuming a LogNormal

distribution

Script 2.3 generates the matrix PORET, which contains the portfolio returns for each

year. As previously mentioned, to generate these returns a LogNormal distribution

with a mean value (ν) of EXR = 0.04 and a standard deviation (σ) of SDR = 0.03

was assumed. It is important to note that EXR represents the expected continuously

compounded investment return, also described as the geometric mean of the investment

returns, and is equivalent to r.

Figure 2.4 depicts the 98% confidence interval for the investment return in each

year. The parameters that generated the returns remained constant across all years,

resulting in no significant differences between the returns from year to year, given the

large number (10,000) of simulations.
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Figure 2.4: 98% confidence intervals for simulated returns. LogNormally distributed
returns with ν = 0.04, σ = 0.03

2.3.3 The Tontine Dividend Rate

The Gompertz Mortality Model deaths and the LogNormally distributed returns are

the two sources of randomness in this initial example of the Natural Tontine Fund.

However, to derive the tontine dividend, a deterministic rule is needed.

The Tontine Dividend Rate, denoted by κi, is the percentage of the fund value

distributed to surviving members at the end of period i. For instance, if F10 denotes

the fund value at the end of year 10, the tontine dividend shared by all survivors is

κ10 × F10, and the tontine dividend per survivor is κ10×F10

GL10
, where GL10 is the number

of survivors at the beginning of year 10.

If the sponsor of the tontine fund wishes to maintain a stable dividend for survivors

over time, κi is determined endogenously rather than being set exogenously by the

sponsor.

The value of κi is the reciprocal of the price of a Temporary Life Income Annuity

that pays an annual cash flow to an individual aged x until death or a specified date,

whichever comes first.

In the previous chapter, it was discussed how the authors of the Natural Tontine
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structure proved that for a fairly priced Life Only Immediate Annuity, which allows an

individual to pay a certain premium upfront and receive a lifetime income, the payout

that maximizes the utility for the annuitant is constant.

This property of the Life Only Income Annuity shown in equation 2.2 can rewritten

as:

c0 =
1∫∞

0
e−rt

tpx dt

The denominator of the above expression is the discounted actuarial present value

of an annuity, often represented as a(x, r). In general, the discounted actuarial present

value of a life annuity is given by (see Promislow 2014):

a(x, r) =

∫ ∞

0

e−rt Pr[Tx ≥ t]dt =

∫ ∞

0

e−rt(tpx)dt

Assuming Gompertz Mortality, there is an analytical solution for a(x, r) (see Milevsky

2006), expressed as:

a(x, r) =
bΓ(−rb, e(x−m)/b)

exp{(m− x)r − e(x−m)/b}
,

where Γ(A,B) is the incomplete Gamma function.

The Python function reported in Listings 2.4 shows how, in discrete time, the value

of a Temporary Life Income Annuity is the sum from age x to age y of the discounted

actuarial present values, which are the product of the Gompertz Survival Rates and

constant interest discount rates (see Milevsky 2022).

1 def TLIA(x, y, r, m, b):

2 # Actuarial Present Value (APV) function

3 def APV(t):

4 return np.exp(-r * t) * TPXG(x, t, m, b) # product of the

Gompertz mortality and the constant interest dicount rates

5

6 # Summation of APV from 1 to (y - x)

7 apv_sum = sum(APV(t) for t in range(1, y - x + 1))

8 return apv_sum1

Listing 2.4: Python function to value a Temporary Life Income Annuity

For example, if a 65-year-old buys a Temporary Life Income Annuity that pays a

$1 dividend until age 95, assuming r = 4%, m = 90, and b = 10, the annuity value
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is $13.04. However, if the annuity pays dividends until age 100, the value increases

slightly to $13.20 due to the longer payment period.

As mentioned at the beginning of this section, the reciprocal of the value of a

Temporary Life Income Annuity is κi, the Tontine Dividend Rate. For instance, the

dividend received by a 65-year-old would be 7.67% if the annuity paid dividends until

age 95, or 7.55% if dividends were paid until age 100. Extending the payment horizon

further will not significantly reduce the yield, as the present value of payments and

survival probabilities diminish.

2.3.4 The Natural Tontine Fund

This section explains how the Natural Tontine Fund values are simulated using the ran-

dom returns and lifetimes generated in previous sections, along with the deterministic

rule for determining the Tontine Dividend Rate.

Although the core of this chapter aims to bridge the theoretical advancements of

the Natural Tontine with practical applications, this is not intended as a step-by-step

guide for building a Natural Tontine fund business in real life. Therefore, two main

assumptions are made to simplify the computations without affecting the interpretation

of the fund’s mechanism.

First, it is assumed that all fund members are homogeneous and belong to the same

cohort, sharing the same age, birthday, and a fund launch date that coincides with their

birthday. Additionally, each participant is considered to have the same life expectancy.

Secondly, it is assumed that all participants invest the same dollar amount in the fund.

While incorporating a mix of ages, genders, and varying investment amounts does

not alter the fundamental mechanics of the fund, it does add complexity to the com-

putations, making the underlying fund mechanism harder to understand.

For the remainder of the chapter, the following values will be used for the inputs:

• The starting age x is 65 years.

• The horizon of the fund TH is 30 years.

• GL0, the initial number of participants in the fund, is 1,000.

• The initial investment f0 is $100,000 each.
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• 10,000 simulations (N).

• Returns are generated assuming an expected return EXR=4% (equivalent to the

discount rate r) and a standard deviation SDR=3%.

• The number of survivors is generated using a Gompertz Mortality Law with pa-

rameters m=90 and b=10.

1 def tontine_fund_nominal(N, TH, x, r, m, b, f0, GL0 , PORET , GLIVE):

2

3 # Define placeholders

4 DETFV_nominal = np.zeros((N, TH))

5 TONDV_nominal = np.zeros((N, TH))

6

7 # Calculate vector of kappa values

8 kappa = np.array ([1 / TLIA(x + i - 1, x + TH , r, m, b) for i in

range(1, TH + 1)])

9

10 # Simulate Natural Tontine Fund with stochastic returns and deaths

11 for i in range(N):

12 # Dividend and fund value at end of year 1

13 TONDV_nominal[i, 0] = kappa [0] * f0

14 DETFV_nominal[i, 0] = f0 * GL0 * (1 + PORET[i, 0]) -

TONDV_nominal[i, 0] * GLIVE[i,0]

15

16 # Dividend and fund value for remaining years

17 for j in range(1, TH):

18 TONDV_nominal[i, j] = kappa[j] * DETFV_nominal[i, j - 1] /

GLIVE[i,j-1]

19 DETFV_nominal[i, j] = max(DETFV_nominal[i, j - 1] * (1 +

PORET[i, j]) - TONDV_nominal[i, j] * GLIVE[i,j], 0)

20

21 return DETFV_nominal , TONDV_nominal

Listing 2.5: Python function to simulate a Natural Tontine Fund

Script 2.5 computes the evolution of fund values, by implementing a recursive

methodology involving the following steps:
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1. The algorithm starts by setting the initial Natural Tontine Fund value to the

initial investment of each individual multiplied by the initial number of members.

2. The fund value increases by the investment return in the first year and is then

reduced by the total tontine dividend payout made to survivors at the end of the

year.

3. The fund value at the end of the first year becomes the fund value at the beginning

of the second year, and the second step of the algorithm is repeated until the final

year.

The Tontine Dividend Rate κi, represented in the code by the variable KAPPA, is

central to the Natural Tontine Fund. It is built to maximize participants’ utility. As

mentioned in section 2.3.3, κi is computed as the reciprocal of the value of an annuity

bought by an x-year-old that pays dividends until age x + TH. For example, at the

fund’s inception, all annuitants are 65 years old, and κ0 is the reciprocal of the value

of an annuity bought by a 65 year old investor that pays dividends for the next 30

years, until age 95. In the second year, κ1 is the reciprocal of the value of an annuity

bought by a 66 year old investor that pays dividends for the next 29 years, still until

age 95. Therefore, the Tontine Dividend Rate is determined at the fund’s inception and

increases over time as the annuitants age.

The fund adjusts the yearly payout such that, in times of loss, the sponsor reduces

the tontine dividend in dollar terms. When the fund performs better than expected,

the dividends increase in dollar terms. This is achieved using the factor κ, which is

not constant from year to year as in a classical tontine, but is designed to be equitable

for all participants and safe for the sponsors. It allows modulating payouts to keep the

fund solvent.

Even though κ is determined at time zero, the dollar value of tontine dividends

is not set in advance, as it depends on actual investment returns and the number

of survivors. For example, if in year 7 κ7 = 8% and the fund value is $50 million

with 840 survivors, each participant would receive a tontine dividend of 50,000,000×0.08
840

=

$4, 761.90. If there are more survivors, such as 910, the structure of the Natural Tontine

adjusts the dividend to keep the fund solvent. Assuming the fund value is still $50

million and κ7 = 8%, the tontine dividend is reduced to 50,000,000×0.08
910

= $4, 395.60.
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Similarly, if the fund value is lower, the κ mechanism reduces the tontine dividend to

maintain solvency. Conversely, if there are fewer survivors or a higher fund value, κ

modulates the payments accordingly, allowing for larger dividend payments.
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Figure 2.5: 98% confidence intervals for Natural Tontine dividend, assuming sthocastic
returns and Gompertz Mortality

Figure 2.5 displays the 98% confidence interval of the Natural Tontine Dividend paid

to each survivor each year. The tontine dividend is set at the beginning of each year

and paid to survivors at the end of the year. Therefore, in the first year, the dividend

is fixed across all scenarios at KAPPA[0]×f0, which in the example is $7,670.86. As the

years progress and returns and survivor numbers vary across simulations, uncertainty

increases, as seen in the widening gap between the 99th and 1st percentiles.

Despite the increased variability in the dollar amount of tontine dividends, the me-

dian value remains constant over time. The median dividend over 30 years is $7,670.86,

matching the initial dividend, while the mean is slightly higher at $7,697.86, show-

ing slight upward asymmetry. This demonstrates that the Natural Tontine structure

maintains a flat payment profile over time, resulting in a larger discounted expected

utility compared to a classical tontine where payments increase over time. To prove this
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feature, it is possible to fit a linear regression of the median tontine dividend amount

against a constant and a time trend. The regression slope is statistically indistinguish-

able from zero, confirming the stability of tontine dividends over time as shown in

2.6.

1 mtd = []

2 t = np.arange(1, TH + 1)

3 for j in range(TH):

4 mtd.append(np.quantile(TONDV[:, j], 0.50))

5 mtd = np.array(mtd)

6

7

8 t = np.arange(1, TH + 1)

9 t_with_const = sm.add_constant(t) # Add a constant term for the

intercept

10 model = sm.OLS(mtd , t_with_const).fit()

11

12 #model.summary ()

13

14 # Extract the coefficients

15 intercept = model.params [0]

16 slope = model.params [1]

17

18 print(f"Intercept: {intercept :.04f}")

19 > Intercept: 7.6745

20

21 print(f"Slope: {slope :.04f}")

22 > Slope: -0.0007

Listing 2.6: OLS regression to prove the stability of the median tontine dividend

Figure 2.6 shows the 98% confidence interval of the Natural Tontine Fund value

each year. Here, the band between the upper and lower percentiles remains constant

over time and narrows as the fund’s horizon approaches. The scarce variability in the

fund value across simulation is guaranteed by the role of κ. If the fund experiences

very good returns in one year, κ will result in a larger dividend payout to survivors the

next year, reducing the fund value and preventing excessive growth. This mechanism

ensures perfect decumulation of the fund value over time, with the entire value paid
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Figure 2.6: 98% confidence intervals for Natural Tontine Fund value, assuming stho-
castic returns and Gompertz Mortality

out to the remaining individuals in the final year.

2.3.5 From fictionary data to a real world example

The previous section of this chapter outlined the main features of a fund based on the

Natural Tontine structure developed by Milevsky and Salisbury (2015). To keep the

example simple and focus on the insights of the tontine structure rather than on the

inputs of the model, simplifying assumptions about the two sources of randomness, the

number of survivors and the investment returns, were made. The purpose of this section

is to transition from the simplified example to a model that incorporates real-world data

instead of fictional inputs.

Fitting a real Mortality Table

In recent years, the Gompertz Mortality Model has faced increasing criticism in aca-

demic literature (for example see Li et al. 2021), as the law appears to be inaccurate

at advanced ages, where the mortality curve tends to plateau. Since the focus of this
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study is on retirees, this issue is particularly relevant. Most insurance actuaries nowa-

days work with discrete mortality tables while academic researchers in actuarial finance

prefer to operate with continuous mortality rates such as the Gompertz Law. In this

subsection will be laid down a methodology to fit a discrete mortality table to the

Gompertz Mortality Law parameters m and b to overcome the shortcomings of the

Law.

However, before explaining how a discrete mortality table can be approximated by

the Gompertz Mortality Law, it is important to highlight the significance of setting the

correct parameters. In the ‘toy example’, it was assumed a Gompertz Mortality Law

with parameters m = 90 and b = 10 to generate the number of survivors and derive

the value of the Temporary Life Income Annuities. As a result, individuals died and

survived at the exact rate assumed in the annuity valuation. Setting accurate param-

eters for annuity valuation is essential to maintain a constant dividend. If annuitants

live longer than assumed, the tontine mechanism would have to reduce the dividend in

dollar terms to remain solvent.
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Figure 2.7: 98% confidence intervals for the Natural Tontine dividend, assuming that
the number of survivors is generated with m = 93 and the annuities are priced with
m = 90
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Figure 2.7 illustrates what would happen if people lived longer than expected by the

fund’s sponsors, for example, if the survival function used m = 93 while the annuity

was valued with m = 90. It is possible to observe that the tontine dividend is not

stable over time and exhibits a downward trend. By running a regression of the median

tontine dividend against a constant and a time trend, the slope coefficient results to be

-0.0907, indicating a time dependence of the tontine dividend. This violates one of the

main insights of the Natural Tontine structure, which is the stability of the dividend.

However, the mechanism of κ ensures that the fund remains solvent and never runs out

of money as Figure 2.8 shows.
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Figure 2.8: 98% confidence intervals for Natural Tontine Fund value, assuming that the
number of survivors is generated with m = 93 and the annuities are priced with m = 90

This example demonstrates the importance of using correct values to price annu-

ities. The state-of-the-art technique in the actuarial field is to use discrete mortality

tables to price and value insurance products. This process involves selecting a suit-

able mortality table and adding improvement factors. Mortality tables contain various

information, but for this purpose, the value qx is relevant. This value represents the

one-year mortality rate, given by
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qx =
Number dying between age x and x+ 1

Number of alive at age x
,

the fraction of individuals alive on their birthday who are expected to die before their

next birthday. For this analysis, the 2020 Italian mortality table 4 will be used and it

will be assumed an equal split between genders.

Given the year by year mortality rates it is possible to derive long-term survival

rates under the assumption that the age-based mortality rates, qx, remain the same

over time. Survival probabilities are given by

p(x, i) =

j=i−1∏
j=0

(1− qx+j) ,

where p(x, i) represents the probability that an x-year-old, who is alive, will survive

to his (x + i) birthday and, as described before, qx+j denotes the probability that a

(x+ j)-year-old will die during the next year, before his or her next birthday.

For instance, p(65, 3), the probability that a 65-years-old individual will survive for

another 3 years, is the product of the quantities given by 1 minus the three individual

mortality rates q65, q66, and q67

By plotting the cumulative survival probabilities of both the Gompertz Mortality

Law and the Italian Mortality Table, in Figure 2.9 shows that individuals tend to die

younger than predicted by the Gompertz model with the arbitrary parameters m = 90

and b = 10. This suggests that the model parameters should be revisited to accurately

price the annuity, and that higher Tontine Dividend Rates could have been afforded by

the sponsor.

Indeed, it is possible to use the mortality table to determine the correct annuity

price and show the difference in the prices estimated with the Gompertz Mortality

Law. To do this, it must be computed the conditional survival probability from the

starting age to the last year of payment and discount these payments at the valuation

rate. Summing all the intermediate cash flows gives the annuity value, whose reciprocal

is the initial Tontine Dividend Rate. From the script 2.7, using the mortality table, the

Tontine Dividend Rate in the first year could have been 7.94% instead of 7.61% from

the Gompertz Mortality Law.
4Data available at Human Mortality Database.
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Figure 2.9: Cumulative survival probabilities, Gompertz Mortality model with m = 90
and b = 10 versus 2020 Italian mortality table

1 # Probability of survival

2 ps = np.cumprod(1-qx_u_2020)

3

4 # Discount rate

5 dr = np.array(np.cumprod(np.repeat (1/(1+r), len(ps))))

6

7 # value of the annuity

8 tdr_mortality_table = 1/np.sum(dr*ps)

9 tdr_gompertz = 1/TLIA(65,95, np.log (1+r), 90, 10)

10

11 print(f’Mortality table: {tdr_mortality_table *100:.04f}%’)

12 > Mortality table: 7.9425%

13

14 print(f’Gompertz Mortality Law: {tdr_gompertz *100:.04f}%’)

15 > Gompertz Mortality Law: 7.6101%

Listing 2.7: Python script that values an annuity based on the survival probabilities of

a mortality table
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So far, this example showed the importance of obtaining the correct parameters

to value an annuity. However, another crucial point needs addressing. In a mortality

table, q65 represents the fraction of 65-year-olds who will not survive through the year

based on data from a specific year, such as 2020. However, using the qx values from the

same table to price a product can introduce biases.

It is reasonable to expect that life expectancies will improve over time, leading to

higher survival probabilities in the future. For example, it would be incorrect to assume

that the survival probability of a 65-year-old retiree in 2020 will remain the same when

they turn 85 in 2040, as it is for an 85-year-old today. This improvement in survival

probabilities needs to be accounted for in pricing models to avoid underestimating

longevity risk, which is why improvement factors are included in mortality tables.

These improvement factors can be based on advanced techniques, but that is be-

yond the scope of this work. Instead, in this study some simple assumptions for the

improvement in survival probabilities are made:

• Mortality rates for ages 65 to 75 will improve (decline) by 3% each year.

• Mortality rates for ages 75 to 85 will improve by 2% each year.

• Mortality rates for ages 85 to 95 will improve by 1% each year.

Figure 2.10 shows survival probabilities before and after applying the improvement

factors.

After discussing the importance of selecting the correct parameters in the Gompertz

Mortality Model and incorporating improvement factors to the discrete mortality table,

the appropriate m and b parameters must be determined. The algorithm reported in

Listing 2.8 linearizes the mortality rate qx via a double log calculation and then regresses

that number on age (see Milevsky 2020). The Gompertz parameters that approximate

the 2020 Italian Mortality Table with the improvement factors are m = 89.43 and

b = 8.69. As shown in Figure 2.11, the survival curve with these parameters closely

resembles the actual mortality table.

1 # Define X (ages) and qx (probabilities)

2 X = np.arange (65, 95)

3

4 # Compute y
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Figure 2.10: Cumulative survival probabilities, actual values versus projected values

5 y = np.log(np.log(1 / (1 - qx_u_2020_proj)))

6

7 # Fit a linear model

8 slope , intercept , r_value , p_value , std_err = stats.linregress(X, y)

9

10 # Coefficients from the linear model

11 g = slope

12 h = intercept

13

14 # Calculate m and b

15 m = np.log(g) / g - h / g

16 b = 1 / g

Listing 2.8: Python algorithms that fits a mortality table to the Gompertz Mortality

Law parameters
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Figure 2.11: Cumulative survival probabilities, Fitted Gompertz Mortality Law versus
projected mortality table

Bootstraping the returns

In the ‘toy example’ of the Natural Tontine developed in the previous chapter, it was

assumed that returns were LogNormally distributed and time-independent, with a mean

(ν) of 4% and a standard deviation (σ) of 3%. In this chapter, these simplistic assump-

tions will be relaxed and instead simulations with monthly returns bootstrapped from

the S&P 500 data spanning from 1871 to 2023 will be used. Specifically, a block boot-

strap technique will be implemented to preserve the autocorrelation in the simulated

return paths by resampling with replacement from the original data.

The first step is to assess the time dependence in the S&P 500 monthly returns by

performing an autocorrelation analysis. The autocorrelation plot reported in Figure

2.12 reveals that the only statistically significant time lag is at ρ = 1, indicating that

returns are correlated from one month to the next. This suggests that the appropriate

block size for the resampling should be two months.

Next, a random date is selected from the dataset and the returns for that month and

the following month are extracted, as determined by the autocorrelation analysis. This
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Figure 2.12: Autocorrelation plot for the monthly returns of the S&P500 from 1871 to
2023

process is repeated until enough returns are collected to cover the entire simulation

period of interest. For instance, if the fund’s horizon is 30 years, as assumed, 360

monthly returns are needed.

Finally, since the Natural Tontine Fund pays dividends annually, the monthly re-

turns are converted to yearly returns, thus generating a single return path. This pro-

cedure is repeated N times to create all the necessary return simulations.

The 10,000 simulations resulted in yearly returns with a mean of 10.50% and a

standard deviation of 17.53%. The returns are positively skewed (0.69), indicating that

there are more extreme high values in the dataset than extreme lows. The kurtosis is

2.95, which is just below the value of a normal distribution. The Kolmogorov-Smirnov

test is performed to check if the generated returns approximate a normal distribution.

However, the test results in a p-value of 0, leading to the rejection of the null hypothesis

that these returns are normally distributed.
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Figure 2.13: Returns’ distribution of the Block Bootstrap simulation

The evolution of the Natural Tontine Fund with real data

As a final step, the improved mortality model with the simulated returns to understand

the evolution of the tontine dividend and the fund value using real data.

In the ‘toy example’, returns were generated using a data-generating process with

specific parameters. Specifically, it was assumed assumed that the returns were log-

normally distributed with a mean value of EXR = 4%, which was equivalent to the

Assumed Rate of Return (r). This equivalence between the mean value of the returns

and r allowed to maintain a constant tontine dividend over time, as shown in Figure

2.5.

However, in the real-world example, the underlying data-generating process of the

returns is not known. Consequently, it is not possible to determine the correct discount

rate to guarantee the stability of the dividends a priori. In this chapter, the mean

return of the simulated returns is used as the discount rate (r). While this approach is

convenient, its correctness is debatable due to its susceptibility to look-ahead bias.

The initial tontine dividend is set at $11,781.48, and although Figure 2.15 suggests

that the tontine dividend remains constant over time, running the regression described
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Figure 2.14: 98% confidence intervals for Tontine Dividend, with Gompertz Mortality
Law with fitted parameters, Block Bootstraped S&P500 returns

in 2.6 reveals a slight downward trend (slope: -0.0362).

Comparing Figure 2.15 (the Natural Tontine Fund with real data) with Figure 2.5

(the ‘toy example’ of the Natural Tontine Fund), some interesting differences can be

observed. In the real-data example, the tontine dividend is highly asymmetric, with

significant upward potential. The mean dividend is $2,796.96 higher than the median,

whereas, in the ‘toy example’, the difference was just $27. This disparity is likely due to

the positively skewed nature of the real data, where positive returns are more probable

than negative ones. In contrast, the returns in the ‘toy example’ were lognormally

distributed with zero skewness.

For the same reason, the confidence interval for the Fund Value in Figure 2.15 does

not remain within a tight and stable band, as it did in the ‘toy example’, but varies

greatly from simulation to simulation.

Despite these differences, when simulating the evolution of the Fund Value and the

tontine dividend with real data, the main features of the Natural Tontine Fund are still

verified: the tontine dividend remains (fairly) stable, and the fund allows for perfect
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Figure 2.15: 98% confidence intervals for Natural Tontine Fund Value, with Gompertz
Mortality Law with fitted parameters, Block Bootrstraped S&P500 returns

decumulation.
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Chapter 3

The Natural Tontine Fund for Early

Retirement

The purpose of this chapter is to evaluate whether a Natural Tontine Fund could be a

desirable investment product for early retirees. Indeed, there is a clear parallel between

withdrawal rates, introduced in 1.1 and Tontine Dividend Rates, discussed in 2.3.3, as

the tontine dividend can be seen as the amount that is withdrawn each year from the

investment portfolio.

The same data generated in the previous chapter for the investment returns and

the number of survivors will be used, but in this scenario, it will be assumed that all

retirees are 45 years old and the fund’s horizon is 50 years.

3.1 Imposing a floor to the tontine dividend

Early retirees want to maintain constant dollar spending in real terms over time. There-

fore, it is crucial for this purpose to move from the nominal dividends and fund values

to real terms, to maintain stable purchasing power over time. This can be achieved by

simply dividing the fund value at the end of the year by the observed rate of inflation

during the same year. Furthermore, it is necessary to assume that the discount rate r

is now equal to the difference between the nominal mean stock return and the mean

inflation rate.

By implementing this update to the algorithm, it is possible to see that the fund will

pay an initial dividend of $7,965.89. The mechanism of the Natural Tontine still allows
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the tontine dividend to remain fairly constant in real terms (slope coefficient 0.0058)

and to perfectly decumulate the wealth.

Even though the median dividend is projected to remain constant over the entire

horizon of the fund, in 50% of the cases, retirees will receive a tontine dividend lower

than the initial amount. This feature is undesirable for early retirees who need to receive

and spend a specific sum each year to cover their needs and sustain their lifestyle. The

issue lies in the structure of the Natural Tontine itself: it optimizes for the median case,

while early retirees are concerned with being secure even in the worst-case scenario.

To overcome this limitation of the Natural Tontine Fund, it is possible to set a

floor for the tontine dividend amount and assess the impact of this additional feature.

This would ensure that fund members receive at least the amount they need to cover

their needs. This can be achieved by adding a condition to the script: whenever the

computed tontine dividend falls below a certain floor in dollar terms, the sponsor will

pay the remaining members the minimum agreed amount.
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Figure 3.1: 98% confidence intervals for Tontine Fund value, imposing a floor to the
tontine dividend

Figure 3.1 shows the consequences of adding such a floor to the tontine dividend.
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With this feature, there is a chance that the fund will run out of money at some point.

Specifically, if the floor is set equal to the initial dividend payout in dollar terms, there

is a 72.8% chance that the fund will run out of money before the last year. The intuitive

explanation is that a higher payout is being enforced than what the Natural Tontine

structure calculated to maintain the fund’s solvency.

At this point, it is not premature to conclude that it is not possible to build a

Natural Tontine Fund where the sponsor also guarantees a specific dollar dividend each

year. There is a clear trade-off: either variability in the tontine dividend is accepted, or

there is a significant risk of running out of money before the last year. It is not possible

to have both with the Natural Tontine structure.

However, the Natural Tontine structure can still be used as the backbone of the

fund. To make it a desirable investment instrument for early retirees while adding a

floor, strategies must be experimented with to mitigate the risk of failure, although this

will modify the nature of the Natural Tontine itself.

3.2 Managing failures

Setting a Cap

The first strategy to limit the ruin probability when adding an artificial floor to the

natural tontine is to impose a cap. This implementation would limit the range of

payments that a retiree could receive in a year, thus creating a buffer for the lean years

when the tontine dividend might fall below the floor.

To assess the effectiveness of this strategy, it can be first tried the most extreme case:

imposing a cap equal to the floor and hence equal to the initial dividend, effectively

forcing a fixed tontine dividend over time. By imposing this tight constraint, the

risk of failure can be reduced to 50.76% in the simulation. However, this is still far

from acceptable for retirees. This strategy completely ignores the Natural Tontine

mechanism, which was designed to keep the fund solvent and decumulate wealth based

on experienced returns and the number of survivors. As a result, in cases where the

fund remained solvent, it was often shut down with a substantial amount of untouched

wealth.
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While setting a cap on the dividend seemed promising in theory, it did not signif-

icantly reduce the failure risk and introduced other dilemmas for the sponsor, such as

what to do with the leftovers.

Alternative Asset Allocation

Previously, it was explained that setting an artificial floor for the tontine dividend

introduces some risk of failure because it forces a higher payout than what the Natural

Tontine structure calculated to maintain the fund solvent. Another way to frame this

issue is that the fund is paying out too much during years of bad returns or when

there are more survivors than expected. This issue reminds of the sequence of return

risk introduced in Section 1.1, the risk that a series of low or negative returns can

significantly impact the long-term sustainability of a withdrawal plan

A possible solution could be to use an alternative asset allocation, for example by

increasing the exposure to bonds, to reduce the variability of returns and see if this

could mitigate the failure rate.

For this purpose the returns of the GS10 bond, which represents the yield on U.S.

Treasury securities with 10-year constant maturities from 1871-2024 1 will be used, and

different return paths using a block bootstrap resampling technique will be simulated.

In each year and in each simulation, the bond return associated with the previously

extracted stock return will be used to maintain the structural relationships between

stocks and bonds. The extracted bond returns appear to be less risky than stocks,

with a lower standard deviation of returns (5.34% versus 17.54% for stocks) and also

uncorrelated with S&P 500 returns, as demonstrated by a correlation coefficient of

-0.079.

By trying different combinations of stock and bond weights, the lowest failure rate

is achieved with 10% stocks and 90% bonds, but the failure rate is still 61.3%. Addi-

tionally, changing the asset allocation also modifies the mean return of the portfolio,

hence the discount rate r, and consequently, the Tontine Dividend Rate κ.
1Data available at Shiller Data.
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Reducing the Tontine Dividend Rate κ

Another strategy to reduce the failure rate is to hold back some of the tontine dividend

by subtracting a few basis points from κ. Intuitively, this would create a cushion for the

bad years and reduce the failure rate without affecting the decumulation process. For

example, reducing the Tontine Dividend Rate by 300 basis points results in an 18.71%

risk of failure, significantly reducing it from the initial case, but it still seems above

what retirees might consider acceptable.

Since the insolvency issue is closely related to the sequence of return risk, the Tontine

Dividend Rate could be reduced just in the first 20 years when the negative impacts

of the sequence of return risk are more pronounced, or only in the years of negative

returns.On paper, these strategies seem promising, and failure rates are not expected to

be significantly higher than in the case where there was a reduction each year. However,

testing a 300 basis point reduction according to these rules results in failure rates of

32.49% and 33.05%, respectively.

Combining different strategies

None of the proposed strategies alone seems to be the solution. However, it is possible to

experiment with different combinations of stock-bond allocation and Tontine Dividend

Rate reduction to assess if this could reduce the failure risk to an acceptable level.

Figure 3.2 plots the different combinations of asset allocation and Tontine Dividend

Rate reduction. On the x-axis, the ruin probability is plotted, and on the y-axis, the

initial Tontine Dividend Rate that is also used to determine the floor for the tontine

dividend. The solid blue line can be interpreted as an ‘efficient frontier’: all the points

below it are inferior. Hence, for the same ruin probability, it is possible to obtain

a higher initial Tontine Dividend Rate or conversely, for the same Tontine Dividend

Rate, a lower ruin probability can be obtained. Therefore, it is rational to consider

only the points on the frontier, and the decision between the different combinations

depends on how much risk the retiree is willing to bear. If an acceptable level of risk

can be considered a ruin probability of less than 5%, the optimal combination would be

a 200 basis points reduction in the Tontine Dividend Rate each year and a 40% stock

allocation.
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Figure 3.2: Different combinations of stock-bond weights and Tontine Dividend Rate
reduction

Figure 3.3 shows the behaviour of this optimized fund. This combination allows for

an initial Tontine Dividend Rate of 4.05%, therefore, assuming an initial investment

of $100,000, the retiree will receive exactly $4,051.39 in the first year and at least this

amount in all subsequent years, as this is the imposed floor. However, in the median

case, the retiree would receive $7,845.95 each year, with payments potentially grow-

ing larger in more positive scenarios. This is due to the Natural Tontine structure’s

ability to pay larger dividends in years with better returns or fewer survivors than ex-

pected, allowing for perfect decumulation of the fund. On the other hand, as previously

noted, the sponsor cannot guarantee payments to annuitants because imposing a floor

introduces the risk of insolvency, which in this simulations is 3.31%.

Early retirees set their desired annual spending and derive the necessary capital

by multiplying the initial withdrawal by a factor, which is the reciprocal of the initial

withdrawal rate. For a Natural Tontine Fund with an initial 4.05% Tontine Dividend

Rate, the multiplier is 1
4.05%

= 24.69. Therefore, a retiree wanting to receive at least

$40,000 annually would need to invest $40, 000 × 24.69 = $987, 600 in the Natural
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optimized parameters

Tontine Fund.
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3.3 Is this fund desirable for early retirees?

To evaluate whether the Natural Tontine Fund is an attractive investment product for

early retirees, this must be compared to what a single retiree could achieve by managing

and withdrawing funds independently. A single retiree aiming to withdraw an initial

4.05% and maintaining the same dollar amount in real terms for 50 years would face

a 14.88% risk of depleting their entire wealth (assuming a 60% stock and 40% bond

allocation), a risk that most retirees are unwilling to bear. Single retirees can reduce

this risk to 4.42% by lowering the withdrawal rate to 3%, but this requires an initial

investment 35% larger than the investment in the Natural Tontine Fund 2.

The Natural Tontine Fund ensures a minimum annual payment of $4,051.39 (as-

suming a $100,000 initial investment), with a median tontine dividend of $7,845.95.

Conversely, the single retiree consistently withdraws the same amount in real terms

each year. Thus, in the worst-case scenario, both groups receive the same amount an-

nually, but in the median case, fund participants receive 93.66% more thanks to the

Natural Tontine mechanism and pooled longevity risk.

In Section 1.3 it was argued that retirees using a constant withdrawal strategy in

real terms overpay for the potential of investment gains that they do not need to meet

their retirement income goals as they may accumulate wasted surpluses when their

investments outperform (Scott, Sharpe, and Watson 2008). Indeed, in the simulation

single retirees in the median case have $197,282.51 per $100,000 in their investment

portfolio after 50 years, almost twice as the principal in real terms. On the other hand,

the median final value of the Natural Tontine Fund is $83.80 per $100,000 initially

invested. Hence, while single retirees end up wasting a large part of their savings on

unnecessary surpluses, a Natural Tontine fund allows for perfect decumulation of the

wealth.

Considering the median tontine dividend is almost double the floor, low-risk-averse

investors could benefit from some flexibility. Allowing a floor that is 80% of the initial

tontine dividend and reducing the Tontine Dividend Rate by 120 basis points results

in an initial Tontine Dividend Rate of 4.85%, a median tontine dividend of $7,240.11
2Specifically, to finance $40,000 annual spending, single retirees would need $40, 000 × 1

3% =
$1, 333, 333.33, compared to $987,600 required for investors in the Natural Tontine Fund, a 35% in-
crease.
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(assuming a $100,000 initial investment), and a 3.61% risk of failure. Thus, by allowing

some flexibility, participants in a Natural Tontine Fund can achieve a similar risk of

failure with a lower initial investment3.

Sponsors of a Natural Tontine Fund cannot promise participants a minimum div-

idend payment every year, as adding this constraint introduces a risk of insolvency.

However, it is possible to implement strategies that allow for a small risk of failure

in the fund even when a floor on dividend payments is imposed. Consequently, the

payment profile is no longer flat, violating one of the main features of the Natural

Tontine. Despite this, the modified Natural Tontine Fund structure could be a desir-

able investment product for early retirees. Compared to an early retiree managing his

wealth independently, the fund, for comparable levels of risk, allows for a smaller initial

investment, larger median payouts, and perfect decumulation of the funds.

3Specifically, an investor wanting to receive at least $40,000 annually would need $40, 000× 1
4.85% =

$824, 742, a 16.49% reduction compared to the case where the floor equals the initial payment.
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The purpose of this thesis was twofold. First, to analyze the safety and optimality of

spending plans based on constant real withdrawals, such as the one proposed by the ‘4%

rule’. In particular, the analysis assessed the risks of extending the retirement period

beyond 30 years and whether the ‘4% rule’ overstates safe withdrawal rates. Secondly,

this thesis evaluated whether a Natural Tontine Fund can be structured as a suitable

investment tool for early retirees.

The research finds that extending the retirement horizon beyond 30 years reduces the

chances of success for all withdrawal rates, especially if a large portion of the portfolio

is allocated to bonds. Furthermore, it was found that the ‘4% rule’ overestimates the

safe withdrawal rate by about 75 basis points due to the modeling assumptions of the

most influential studies on safe withdrawal rates. However, it was also found that a

Natural Tontine Fund could be structured to provide retirees with a lifetime income

stream with less risk of failure, higher median payments, and perfect decumulation of

wealth compared to a constant-amount spending plan.

While this thesis provides a foundational exploration of the Natural Tontine Fund

concept, one particular assumption underlying the analysis warrants further investiga-

tion to fully understand its real-world applicability. In the ‘toy example’ in Section 2.3,

returns were generated assuming a lognormal distribution with a mean value of 4%,

which was equivalent to the Assumed Rate of Return (r). This equivalence between the

mean return and the discount rate allows to maintain a constant tontine dividend over

time. However, in the real world, the underlying data-generating process of returns

is not known, and consequently, it is not possible to determine the correct discount

rate to guarantee the stability of the dividends a priori. In Section 2.3.5, the mean

of the simulated returns was used as the discount rate (r), but this approach suffers

from look-ahead bias. Using the mean return of the last 150 years of financial history
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may prove to be a flawed approach to derive the Tontine Dividend Rate that will main-

tain a constant tontine dividend in future years. More advanced techniques to derive

forward-looking discount rates are necessary; however, this goes beyond the scope of

this thesis.

This thesis aimed to discuss how progress in the asset management and insurance

industries could help early retirees achieve their goals. However, to bridge the gap

between theory and practice, it is also important to reflect on some of the implications

and challenges of launching a Natural Tontine Fund on the market.

In Section 3.1, a floor on the tontine dividend was imposed so that fund members

receive an amount each year that is greater than or equal to the initial payment in real

terms. This floor forced the dividend to be higher than what was computed by the

Natural Tontine structure calculated to maintain the fund’s solvency. Therefore, when

introducing this floor, there is a non-trivial chance of the fund’s failure, and the sponsor

of the fund cannot guarantee payments to its participants. The risk of insolvency for

the fund will most likely impact its credit rating, and therefore, before launching this

venture on the market, it would be extremely important to consider how this would

influence participation in the fund.

Tontines are investment products that allow participants to speculate on their life

expectancy, introducing two issues: adverse selection and moral hazard. Tontines suffer

from adverse selection as they tend to be purchased by investors with longer life ex-

pectancies than the average person. Imagine a scenario in which a group of individuals

could choose between an annuity and a tontine—two products that guarantee a lifetime

stream of income. If an individual believes that they will live longer than the other

members of the group, they will likely choose to invest in the tontine as they expect to

receive larger mortality credits. On the other hand, a person who believes they have

a life expectancy lower than the other members of the group will probably pick the

annuity. This would lead to a situation in which people with above-average life ex-

pectancies buy the tontine, while others opt for the annuity. Regarding moral hazard,

in a scenario where only three participants remain in the fund, individuals might be

incentivized to engage in unethical behaviours, such as trying to eliminate the other

survivors to obtain larger coupons.

If individuals do not know the identities of the other potential investors, the issue of
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adverse selection is drastically reduced, as no one can make an investment decision based

on the health status of others. Moreover, if participants do not know who the other

members of the fund are, the problem of moral hazard is also eliminated. Anonymity

seems to be a solution to these issues, and institutions considering launching a Natural

Tontine Fund should explore potential methods to anonymize their participants.

The evidence provided in this thesis suggests that an ancient tool, the tontine,

could solve the modern problem of decumulation. The Natural Tontine Fund aims to

provide early retirees with an alternative investment approach to the simple constant

withdrawal spending strategies. However, significant efforts by institutions will likely

be necessary to motivate insurance companies to launch this product on the market

and to incentivize people to consider the Natural Tontine Fund as an efficient solution

to decumulating their wealth during retirement.
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