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Abstract

This thesis explores yield curve modeling and forecasting methods. The study builds
upon the framework established by Diebold et al. (2006), applying a state-space model
with latent factors (level, slope, and curvature) alongside observable macroeconomic and
market-related variables. The research evaluates the performance of yield curve models
on data spanning from 2000 to 2024, incorporating key macroeconomic and market indi-
cators. The findings highlight the importance of both macroeconomic and market factors
in shaping the yield curve, emphasizing the influence of macroeconomic and financial
market shocks on the term structure. The thesis further demonstrates that augmenting
traditional yield-only models with macroeconomic and market variables enhances fore-
casting accuracy, which is then leveraged to build technical trading strategies based on
the forecasted level, slope, and curvature.
Keywords: term structure, yield curve, interest rates, state-space model, fixed income

Abstract in lingua italiana
Questa tesi esplora i metodi di modellizzazione e previsione della curva dei rendi-
menti. Lo studio si basa sul framework stabilito da Diebold et al. (2006), applicando un
modello a spazio di stato con fattori latenti (livello, inclinazione e curvatura) insieme
a variabili macroeconomiche e di mercato osservabili. La ricerca valuta le performance
dei modelli della curva dei rendimenti su dati che vanno dal 2000 al 2024, incorporando
indicatori macroeconomici e di mercato. I risultati evidenziano l’importanza sia dei
fattori macroeconomici che di mercato nell’evoluzione della curva dei rendimenti,
sottolineando l’influenza degli shock macroeconomici e di mercato su di essa. La tesi
dimostra inoltre che l’integrazione dei modelli tradizionali basati solo sui rendimenti
con variabili macroeconomiche e di mercato migliora la precisione delle previsioni, che
vengono poi utilizzate per sviluppare strategie di trading basate sul livello, l’inclinazione,
e la curvatura previsti.
Parole chiave: struttura a termine, curva dei rendimenti, tassi di interesse, modello a
spazio di stato, reddito fisso
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1

Introduction

The term structure of interest rates, also called yield curve, describes the relation between
the interest rates on debt securities and their residual maturities. Being at the interception
of finance and macroeconomics, it provides valuable insights into how markets react to
monetary policy and broader macroeconomic developments: indeed, the yield curve plays
a crucial role in the transmission of monetary policy. Monetary policy decisions influence
the entire term structure, which in turn is a significant factor in determining the financing
conditions within the economy: corporate bond rates, mortgage rates, and bank loan rates
for businesses are, in fact, based on risk-free rates of various maturities. Since monetary
policy decisions respond to broader macroeconomic factors such as the level of inflation
and unemployment, market rates incorporate not only the dovish or hawkish view of the
central bank, but also the expectations on future economic conditions market participants
are able to formulate based on the available data and the guidance provided by central
banks.

Understanding the dynamics of the yield curve is crucial for the decision-making process
of several economic agents. Central banks employ the yield curve as a gauge of the ef-
fectiveness of monetary policy and to anticipate future economic conditions (as detailed,
for example, in works by the BIS (2005) and the ECB (2008)); investors and financial
institutions rely on the term structure of interest rates for making decisions about invest-
ments, interest rate risk management, and portfolio allocation (see Barrett et al. (1995)
and Hodges and Parekh (2006)); firms look at the yield curve to assess the cost of bor-
rowing and to optimize the timing of their financing strategies, as it provides information
on whether it is more profitable to issue short-term relative to long-term debt (see Berk
and DeMarzo (2019)).

The various purposes for which the above-mentioned economic agents use yield curve data,
along with the specific modeling needs of different researchers, led to the development of a
variety of models. Two common approaches to modeling the yield curve are no-arbitrage
models and equilibrium models. The former aim to accurately fit the term structure at a
specific point in time, ensuring that no opportunities for arbitrage exist, which is crucial
for pricing derivatives. On the other hand, equilibrium models focus on capturing the
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dynamics of the short-term interest rate, often using affine models, and then deriving
yields for other maturities based on different assumptions about the risk premium. The
arbitrage-free term structure models are primarily focused on accurately fitting the yield
curve at a specific point in time, offering little insight into its dynamics or forecasting.
Although the affine equilibrium models are more concerned with the dynamics driven by
short-term interest rates and thus could be relevant for forecasting, much of the literature,
including works by de Jong (2000) and Dai and Singleton (2000), concentrates on in-
sample fit rather than out-of-sample forecasting. Furthermore, studies that do address
out-of-sample forecasting, such as Duffee (2002), generally find that these models perform
poorly in this regard.

A third approach can be found in the seminal paper by Diebold and Li (2006), in which
the authors use neither the no-arbitrage approach nor the equilibrium approach. They
use the Nelson and Siegel (1987) exponential components framework to distill the entire
yield curve into a dynamic three-dimensional parameter. They demonstrate that these
three time-varying parameters can be interpreted as factors. Unlike traditional factor
analysis, where both the unobserved factors and the factor loadings are estimated, the
Nelson–Siegel framework imposes a specific structure on the factor loadings. This not
only allows for highly precise estimation of the factors but also enables the assignment
of an economic interpretation as level, slope, and curvature. Diebold and Li propose
and estimate autoregressive models for these factors and then forecast the yield curve
by predicting the factors: the resulting models yield one-year-ahead forecasts that are
significantly more accurate than standard benchmarks.

The purpose of this thesis is to build on a work by Diebold et al. (2006), in which the
authors estimate a model that summarizes the yield curve using latent factors (specifi-
cally, level, slope, and curvature) and also includes observable macroeconomic variables
(specifically, real activity, inflation, and the monetary policy instrument), with the goal
of providing a characterization of the dynamic interactions between the macroeconomy
and the yield curve. The aim is to first reapply such models to new data to assess the
extent to which they still perform with data coming from the last two decades. Then,
the yields-only model is expanded by including market-related variables (namely, the EU-
R/USD exchange rate, the National Financial Conditions Index, the average P/E ratio of
the S&P500 index, and the VIX). The goal is to assess how this new specification performs
when compared with the yields-only and yields-macro models provided by Diebold et al.
(2006) and whether market-related variables are more apt at modeling and forecasting the
yield curve with respect to pure macroeconomic variables. Through the use of impulse
response functions, the yields-market model also lends itself to an analysis of the dynamic
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interaction between the market and the yield curve. Lastly, the forecasts obtained by
the best performing model among the yields-only, yields-macro, and yields-market are
used to build three technical trading strategies which are shown to outperform the basic
buy-and-hold strategy.

Chapter 1 serves as an introduction to the framework used for modeling and forecast-
ing the term structure of interest rates. Here the fundamental mathematical notation
is established together with an introduction to the Nelson and Siegel (1987) functional
form, which is widely used in yield-curve modeling settings due to its flexibility to the
various shapes of the term structure and its parsimony. Furthermore, as per Diebold
and Li (2006), the Nelson-Siegel representation is interpreted in a dynamic fashion as a
latent factor model upon which a state-space system is built as in Diebold et al. (2006) by
assuming the dynamic movements of the three factors follow a first-order vector autore-
gressive process. The possibility to express the Nelson-Siegel model in state-space form is
patricularly advantageous because it allows the use of the Kalman filter, which provides
maximum-likelihood estimates and optimally filtered and smoothed estimates of the un-
derlying factors. Moreover, as shown by Diebold et al. (2006), the one-step Kalman filter
method is superior to the two-step Dieboldi-Li approach, as the simultaneous estimation
of all parameters ensures accurate inference through standard theory. In contrast, the
two-step procedure approach is flawed because it does not account for the uncertainty
in parameter estimation and signal extraction from the first step during the second step.
Other than allowing for the simultaneous fit of the yield curve and estimation of the un-
derlying factors dynamics, the state-space representation provides a unified framework to
explore the relation of the yield curve with both the macroeconomy and the market.

In Chapter 2 the models used by Diebold, Rudebusch and Aruoba are replicated, but
applied to a different time series: while the authors focused on the 1972-2000 period, this
thesis will focus on the 2000-2024 time span. In the same chapter, the model is augmented
to include observable variables from the financial markets (specifically, the EUR/USD
exchange rate, the National Financial Conditions Index, the average P/E ratio of the
S&P500 index, and the VIX). It is shown that, while outperforming the yields-only model,
the market-augmented model is not more accurate than its macro-augmented counterpart
in estimating the yield curve. Nonetheless, an out-of-sample forecasting exercise further
shows that the yields-market model outperforms the yields-macro model when it is asked
to forecast future movements in the yield curve.

In Chapter 3, the ability to generate profits from yield curve predictions is assessed by
converting them into technical trading strategies. Such strategies are based on the three
yield curve factors—level, slope, and curvature—and they are assessed against the stan-
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dard buy-and-hold benchmark, which is shown to be suboptimal when compared to the
proposed strategies.

Overall, the results obtained are in line with Diebold et al. (2006) and with extant litera-
ture to the extent that the dynamic Nelson-Siegel model provides a good fit for the yield
curve also for the last two decades. Such goodness of fit is improved when augmenting
the model with macroeconomic and market-related factors, with the yields-macro spec-
ification slightly outperforming its market-driven counterpart in fitting the yield curve,
while underperforming it in the forecasting exercise. Furthermore, as shown in Diebold
et al. (2006), there appears to be a two-way relation between the yield curve and the
macroeconomy, and the same is found for the yield curve’s relation with the market.
The strategies built on macro-based out-of-sample forecasts outperform the buy-and-hold
strategy; this is in line with Andrada-Félix et al. (2015), who show that their Nelson-Siegel
based strategies outperform their benchmark.
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1| Theoretical Framework

The three fundamental theoretical constructs for yield curve modeling and forecasting are
the discount curve, the forward curve, and the yield curve. Let Pt(τ) represent the price
of a τ -period discount bond. Let yt(τ) denote its continuously-compounded zero-coupon
nominal yield to maturity. The yield curve allows us to derive the discount curve, given
by:

Pt(τ) = e−τyt(τ),

and from the discount curve, we can then derive the instantaneous (nominal) forward rate
curve, expressed as:

ft(τ) = −P ′
t(τ)

Pt(τ)
,

where P ′
t(τ) is the first derivative of the discount curve.1 Thus, the relationship between

the yield to maturity and the forward rate can be expressed as:

yt(τ) =
1

τ

∫ τ

0

ft(u)du.

This indicates that the zero-coupon yield is the equally-weighted average of the forward
rates over time. With either the yield curve or the forward curve, one can price any
coupon bond by summing the present values of its future coupon and principal payments.

Given a set of yields, one can fit a parametric curve for modeling and forecasting purposes.
The model used by Diebold et al. (2006) is a modification of the Nelson-Siegel model (from
Nelson and Siegel (1987)). Nelson and Siegel, as extended in Siegel and Nelson (1988),
work with the forward rate curve,

ft(τ) = β1 + β2e
−λτ + β3λe

−λτ + εt(τ),

where τ is the residual maturity. Diebold and Li (2006) modify the Nelson-Siegel model
by observing that it can be interpreted in a dynamic fashion as a latent factor model in

1This is equivalent to the following formulation: ft(τ) = −d ln(Pt(τ))
dτ = − 1

Pt(τ)
· dPt(τ)

dτ , where dPt(τ)
dτ =

P ′
t (τ).



1| Theoretical Framework 6

which β1, β2, and β3 are time-varying level (Lt), slope (St), and curvature (Ct) factors and
the terms that multiply these factors are factor loadings.2 The corresponding, dynamic
yield curve is

yt(τ) = β1t + β2t

(
1− e−λtτ

λtτ

)
+ β3t

(
1− e−λtτ

λtτ
− e−λtτ

)
+ εt(τ). (1.1)

The Nelson–Siegel yield curve corresponds to a discount curve that starts at one for zero
maturity and gradually approaches zero as maturity extends to infinity. The parameter
λt controls the rate of exponential decay: smaller values of λt result in a slower decay,
allowing a better fit for longer maturities, while larger values cause faster decay, fitting
short maturities more effectively. Additionally, λt determines the point at which the
loading on β3t is maximized.

Figure 1.1: The plot shows the factor loadings in the three-factor model,

yt(τ) = β1t + β2t

(
1− e−λtτ

λtτ

)
+ β3t

(
1− e−λtτ

λtτ
− e−λtτ

)
+ εt(τ),

where the three factors are β1t, β2t, and β3t, the associated factors are 1, 1−e−λtτ

λtτ
, and 1−e−λtτ

λtτ
−

e−λtτ , and τ denotes maturity. As in Diebold and Li (2006), λt is fixed at 0.0609.

2More precisely, Diebold and Li (2006) show that β2 corresponds to the negative of slope as tradition-
ally defined.
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β1t, β2t, and β3t are interpreted as three latent dynamic factors. The loading on β1t is
constant at 1, not decaying to zero over time; thus, it may be thought of as a long-term
factor. The loading on β2t is given by 1−e−λtτ

λtτ
, which starts at 1 but quickly decays to zero,

characterizing it as a short-term factor. The loading on β3t is 1−e−λtτ

λtτ
−e−λtτ , which starts

at 0, increases, and then decays to zero, indicating it is a medium-term factor. These
three factor loadings, as illustrated in Figure 1.1, are similar to those identified by Bliss
(1997), who used statistical factor analysis.

An important insight is that the three factors, traditionally referred to as long-term, short-
term, and medium-term, can also be interpreted in terms of level, slope, and curvature.
For instance, the long-term factor β1t primarily influences the level of the yield curve.
Specifically, one can verify that yt(∞) = β1t. Additionally, an increase in β1t raises all
yields equally since the loading is constant across maturities, thereby affecting the level
of the yield curve.

The short-term factor β2t is closely linked to the slope of the yield curve, defined in this
thesis as the difference between the three-month and the ten-year yields. Some authors,
like Frankel and Lown (1994), define the yield curve slope as yt(∞) − yt(0), which is
exactly equal to −β2t. Moreover, an increase in β2t raises short-term yields more than
long-term yields because short rates are more heavily influenced by β2t, altering the slope
of the yield curve.

Interestingly, while β1t governs the level of the yield curve and β2t influences its slope,
the instantaneous yield depends on both the level and slope factors, as yt(0) = β1t + β2t.
This is a feature shared by several other models. For example, Dai and Singleton (2000)
show that the three-factor models by Balduzzi et al. (1996) and Chen (1996) impose the
restriction that the instantaneous yield is an affine function of only two of the three state
variables, a characteristic also found in the three-factor non-affine model by Andersen and
Lund (1997).

Lastly, the medium-term factor β3t is closely associated with the curvature of the yield
curve, defined here as twice the two-year yield minus the sum of the ten-year and three-
month yields. An increase in β3t will have minimal impact on very short or very long yields,
which load lightly on it, but will significantly raise medium-term yields, thus increasing
the yield curve’s curvature.
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1.1. Dynamic Factor Modeling of the Yield Curve: A

State-Space Approach to the Diebold-Li Model

If the dynamics of the three factors in the Diebold-Li model follow a first-order vector
autoregressive process (VAR(1)), then the model can be represented as a state-space
system. Diebold et al. (2006) construct the state vector using these three factors: level,
slope, and curvature, where Lt = β1t is the long-term factor (level), St = β2t is the short-
term factor (slope), Ct = β3t is the medium-term factor (curvature). The dynamics of
this state vector are governed by the resulting state transition equation:L∗

t

S∗
t

C∗
t

 =

a11 a12 a13

a21 a22 a23

a31 a32 a33


L∗

t−1

S∗
t−1

C∗
t−1

+

ηt(L)

ηt(S)

ηt(C)

 , (1.2)

where L∗
t = β1t − µL, S∗

t = β2t − µS, and C∗
t = β3t − µC are the three factors in deviation

from µi, i ∈ {L, S, C}, which is the mean of factor i. The corresponding observation
equation is

yt(τ1)

yt(τ2)
...

yt(τN)

 =


1 1−e−λτ1

λτ1
1−e−λτ1

λτ1
− e−λτ1

1 1−e−λτ2

λτ2
1−e−λτ2

λτ2
− e−λτ2

...
...

...
1 1−e−λτN

λτN

1−e−λτN

λτN
− e−λτN


Lt

St

Ct

+


εt(τ1)

εt(τ2)
...

εt(τN)

 . (1.3)

Thus, the Diebold-Li model can be represented in matrix form, where the three-
dimensional vector of mean-adjusted factors ft and the observed yields yt are expressed
as follows:

(ft − µ) = A(ft−1 − µ) + ηt,

yt = Λft + εt.

(1.4a)

(1.4b)

For linear least-squares optimality of the Kalman filter, the model put forth by Diebold
et al. (2006) imposes the following assumptions on the state-equation factor disturbances
ηt and the observation-equation innovations (deviations of observed yields at various
maturities) εt: (

ηt

ϵt

)
∼ WN

[(
0

0

)
,

(
Q 0

0 H

)]
,

E(f0η′
t) = 0,

E(f0ε′t) = 0.

(1.5a)

(1.5b)

(1.5c)
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The above assumptions imply that ηt and εt are orthogonal, gaussian, white noise pro-
cesses. Disturbances ηt are contemporaneously correlated, which implies that their co-
variance matrix Q is non-diagonal; this assumption allows the shocks to the three term
structure factors to be correlated. Innovations in εt are uncorrelated, which implies the
covariance matrix H is diagonal; this assumption is useful for computational tractability
given the large number of observed yields used.

Define the latent states xt as the mean-adjusted factors,

xt = ft − µ,

and define the intercept-adjusted (deflated) yields ỹt as

ỹt = yt −Λµ.

Substituting xt and ỹt into the earlier equations gives the Diebold-Li state-space system:

xt = Axt−1 + ηt,

ỹt = Λxt + εt.
(1.6)

State-space representations offer a robust framework for analyzing and estimating dynamic
models. The fact that the Nelson–Siegel model can be easily expressed in state-space form
is particularly advantageous, as it allows the Kalman filter to provide maximum-likelihood
estimates, along with optimal filtered and smoothed estimates of the underlying factors.
Moreover, the one-step Kalman filter approach used in Diebold et al. (2006) is superior to
the two-step Diebold–Li method, as the simultaneous estimation of all parameters ensures
correct inference according to standard theory. In contrast, the two-step method has the
drawback that the uncertainty in parameter estimation and signal extraction from the
first step is not accounted for in the second step. Thus, the two-step method results in
more problematic inference conditions and generates inefficient parameter estimates due
to the neglected uncertainty that arises in the first step.

1.1.1. Kalman Filtering and Smoothing

The Kalman filter is a two-step forward procedure used to compute the optimal estimator
of the unobserved state vector in a time series. Due to its ability to account for time-
varying coefficients and infer hidden factors that influence the changes in observed yields,
the Kalman filter is well-suited for estimating yield curve model parameters, and it is also
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appropriate for simulating and forecasting yields.3

Prediction Step

The first step is the prediction step, during which the Kalman filter makes predictions of
the state components x̂t|t−1, their covariance matrix Σt|t−1, and the prediction error νt|t−1

together with its variance Ωt|t−1 based on information up to time t− 1:

x̂t|t−1 = Ax̂t−1|t−1

Σt|t−1 = AΣt−1|t−1A
′ +Q

νt|t−1 = ỹt − ŷt|t−1

Ωt|t−1 = ΛΣt|t−1Λ
′ +H ,

where ŷt|t−1 = Λx̂t|t−1 is the observation prediction, Q is the transition disturbance
covariance matrix, and H is the measurement disturbance covariance matrix.

Updating Step

The second step is the updating step, where predictions are made based on all information
available up to time t, and it is composed of three equations. The first one regards the
prediction of the state components based on the full information set

x̂t|t = x̂t|t−1 +Ktνt|t−1,

where Kt is the Kalman gain, which determines the optimal weight to give new informa-
tion in making predictions about x̂t, and is specified in the second equation:

Kt = Σt|t−1Λ
′Ω−1

t|t−1.

The third and last equation involves the updating of the covariance matrix of the state
components:

Σt|t = Σt|t−1 −KtΛ
′Σt|t−1.

Kalman Smoothing

Once the Kalman filter is applied to the data, a smoothing procedure can be applied in
the backward direction to make a better inference of the state components based on all
available data from the entire time period T . Unlike the filter, the smoother peaks into

3See Durbin and Koopman (2001).
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the future to improve the filtered estimates by incorporating future observations. This
procedure consists of only two equations. The first equation updates the prediction of the
state components based on all the available information:

x̂t|T = x̂t|t +Σt|tA
′Σ−1

t|t (x̂t+1|T − x̂t+1|t).

The second equation updates the covariance matrix of the state components based on all
the available information:

Σt|T = Σt|t +Σt|tA
′Σ−1

t|t+1(Σt+1|T −Σt+1|t)Σ
−1′
t+1|tAΣ′

t|t.

Maximum Likelihood Estimation

The Kalman filter provides the necessary components to calculate the log-likelihood func-
tion, which is given by:

L(ϑ) = −1

2

T∑
t=1

(
ln |Ωt|t−1|+ ν ′

t|t−1Ω
−1
t|t−1νt|t−1

)
,

where ϑ is the vector of model parameters:

ϑ = (A,Q,H ,Λ,µ, λ) .

The log-likelihood function is then maximized to estimate the model parameters.
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2| Yield Curve Modeling

The last two decades have been characterized by a significant variation in interest rates.
Events such as the global financial crisis, the European sovereign debt crisis, the im-
plementation of unconventional monetary policies by central banks on an unprecedented
scale, and the COVID-19 recession have undoubtedly influenced investors’ economic out-
looks and risk appetites. Therefore, while the previously mentioned literature focused on
the 1972-2000 period, it is of interest to understand how these models perform during the
2000-2024 time span.

2.1. Data

This thesis uses beginning-of-month market yield data (bid-side market price quotations)
on U.S. Treasury securities, from January 2000 to March 2024, taken from the Federal
Reserve Economic Data (FRED) website. Ten maturities are selected, namely of 3, 6,
12, 24, 36, 60, 84, 120, 240, and 360 months. Yields on Treasury nominal securities at
“constant maturity” are interpolated by the U.S. Treasury from the daily yield curve for
non-inflation-indexed Treasury securities. This curve, which relates the yield on a security
to its time to maturity, is based on the closing market bid yields on actively traded
Treasury securities in the over-the-counter market. These market yields are calculated
from composites of quotations obtained by the Federal Reserve Bank of New York. The
constant maturity yield values are read from the yield curve at fixed maturities, currently
1, 3, and 6 months and 1, 2, 3, 5, 7, 10, 20, and 30 years.1

In Figure 2.1 a three-dimensional plot of the yield curve data is provided. The variation
in interest rates mentioned at the beginning of this chapter is evident, with large swings
especially in the level of short-term yields. Variation in slope is quite noticeable as well,
while that in curvature is less pronounced.

1See Federal Reserve Board, Selected interest rates (daily) - H.15, Board of Governors of the Federal
Reserve System.

https://www.federalreserve.gov/releases/h15/default.htm
https://www.federalreserve.gov/releases/h15/default.htm
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Figure 2.1: Yield curves, 01/2000–03/2024. The sample consists of monthly yield data from
January 2000 to March 2024 at maturities of 3, 6, 12, 24, 36, 60, 84, 120, 240, and 360 months.
Yield curve data was retrieved from the FRED website.
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From the descriptive statistics in Table 2.1 it is evident that the average yield curve tends
to slope upward, with long-term rates being less volatile and more stable than short-term
rates. The level—represented by the average of the 5-year, 10-year, and 30-year yield—is
highly persistent, even though not as persistent as the 240- and 360-month maturities,
but shows only moderate variation around its mean.2 The slope is less stable than any
single yield, yet it is quite variable relative to its mean. Curvature, on the other hand, is
the least stable factor and exhibits the greatest standard deviation.

2.2. Yields-Only Model Estimation

As previously discussed, the yields-only model is structured as a state-space system,
featuring a VAR(1) transition equation that captures the dynamics of the latent state
variables,

(ft − µ) = A(ft−1 − µ) + ηt,

and a linear measurement equation that links the observed yields to the state vector,

yt = Λft + εt.

Estimating this model requires determining many parameters. The 3×3 transition matrix
A includes nine free parameters, the 3 × 1 mean state vector µ has three free parame-
ters, and the measurement matrix Λ has one free parameter, λ. In particular, a diagonal
version of A could be estimated, in line with previous empirical findings and this the-
sis’ results—which show irrelevant cross-factor dynamics—and thus employing a more
parsimonious model; nonetheless, the transition matrix will be estimated as a general
non-diagonal matrix, in line with the work by Diebold et al. (2006). Additionally, the
transition and disturbance covariance matrix Q involves six free parameters (one distur-
bance variance for each of the three latent factors—level, slope, and curvature—and three
covariance terms), while the measurement disturbance covariance matrix H includes 10
free parameters (one disturbance variance for each of the 10 yields). In total, this requires
estimating 29 parameters through numerical optimization.

The ssm function in MATLAB is used to define state-space models. Once the state-space
model is defined using ssm, the Kalman filter can be applied via functions like filter,
smooth, or estimate to compute optimal state estimates and corresponding prediction
errors. These estimates are used to evaluate the Gaussian likelihood function of the

2The slope features a negative sign because it was defined as the difference between the 3-month and
10-year yields.
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model by leveraging the prediction-error decomposition. Given that maximum likelihood
estimation of a state space model using the Kalman filter is well-known for its sensitivity to
initial parameter values, this thesis replicates the Diebold-Li two-step estimation method
to utilize its results as startup parameter values;3 in the two-step method λ is initialized
at the value given in Diebold and Li (2006), i.e. λ = 0.0609, while it is estimated together
with the other parameters during the maximum likelihood estimation of the state-space
model.

As shown in Table 2.2, the estimates of the transition matrix A for the yields-only model
indicate strong persistence in the own dynamics of the level (Lt), slope (St), and curvature
(Ct) factors, with lag coefficients of 0.98, 0.95, and 0.93, respectively. This suggests
that these factors are highly stable over time, particularly the level factor. Cross-factor
dynamics are generally unimportant, as evidenced by the near-zero off-diagonal elements.
From Table 2.3, which reports the estimated Q matrix, it can also be seen that transition
shock volatility—as measured by the diagonal elements of Q—increases moving from Lt

to St to Ct. The mean estimates for the factors show a mean level of µL = 4.35, a mean
slope of µS = −1.67, and a slightly negative curvature (µC = −1.71).4 Overall, the model
captures the persistent nature of the yield curve components, with weak interactions
between them and sensible mean levels.

Lt−1 St−1 Ct−1 µ

Lt 0.98 0.01 0.01 4.35
(0.02) (0.01) (0.01) (0.64)

St -0.01 0.95 0.05 -1.67
(0.02) (0.02) (0.01) (1.37)

Ct -0.02 0.02 0.93 -1.71
(0.04) (0.02) (0.02) (0.91)

Table 2.2: Yields-only model parameter estimates. Each row presents coefficients from the tran-
sition equation for the respective state variable. Standard errors are presented in parentheses,
and bold items denote parameter estimates significant at the 5% level.

3See Harvey (1981) or Durbin and Koopman (2001).
4Since the slope was defined as the difference between the 3-month and 10-year yields, a negative

mean slope implies that the yields tend to increase with longer-term bonds.
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Lt St Ct

Lt 0.08 -0.07 -0.03
(0.01) (0.01) (0.01)

St 0.12 -0.02
(0.05) (0.05)

Ct 0.61
(0.01)

Table 2.3: Estimated Q matrix for the yields-only model. Standard errors are presented in
parentheses, and bold items denote parameter estimates significant at the 5% level.

The estimated decay rate parameter λ = 0.0448, associated with the curvature, is slightly
smaller than the value used in the two-step estimation method, which was set at 0.0609
(see Figure 2.2). The parameter λ determines the maturity at which the loading on
the curvature is maximized: the SSM-estimated decay rate implies that curvature is
maximized at 40 months (or 3.3 years), while the Diebold-Li parameter maximizes the
loading at exactly 30 months (or 2.5 years). The hump-shaped pattern of the curvature
loading as a function of maturity explains why the curvature is considered a medium-term
factor.

Figure 2.2: Loading on curvature (medium-term factor). The estimated decay rate parameter
λ = 0.0448, associated with the curvature, is slightly smaller than the value used by the two-step
estimation method, which was 0.0609. The SSM-estimated decay rate implies that curvature is
maximized at 40 months (or 3.3 years), while the Diebold-Li parameter maximizes the loading
at exactly 30 months (or 2.5 years).
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The yields-only model provides an accurate fit for the yield curve (see Table 2.4). Indeed,
the mean error is negligible at all ten maturities, except possibly at the 3 month and
20 year mark, and the mean standard deviation in the range of maturities from 6 to 84
months is only 6.270 basis points. As expected, standard deviations increase significantly
at the longest maturities. As shown in Figure 2.3, which plots the observed and the
reconstructed yield curves for a set of maturities (namely 3, 6, 24, 60, 130, and 360
months), the yields-only model accurately fits the actual data.

Maturity (Months) Mean (bps) Std. Dev. (bps)
3 -9.069 13.195
6 -0.074 6.542
12 2.112 7.662
24 2.389 5.107
36 -0.374 5.763
60 -0.403 6.431
84 1.641 6.117
120 -1.700 3.089
240 10.134 14.679
360 4.306 18.570

Table 2.4: Summary statistics for measurement error of yields. The measurement error is
computed as the difference between the observed yields and the yields predicted by the state-
space model:

εt = yt − ŷt = yt −Λx̂t,

where ŷt denotes the estimated yields based on the state estimates x̂t.
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Figure 2.4: Yields-only model level, slope, and curvature factors and the respective empirical
counterparts. The level factor is plotted together with its empirical and macroeconomic proxies
lt = yt(60)+yt(120)+yt(360)

3 and inflation; the slope factor is plotted together with st = yt(3) −
yt(120) and capacity utilization; the curvature factor is plotted together with ct = 2× yt(24)−
yt(120)− yt(3).

In Figure 2.4, the three estimated factors are plotted against their empirical proxies and
possibly related macroeconomic variables, the relevance of which will be investigated later.
The level factor is shown to agree very closely to its empirical counterpart (lt), which is
an average of medium-, medium-long-, and long-term yields:

lt =
yt(60) + yt(120) + yt(360)

3
.

The linkage between Lt and inflation is evident, consistently with the Fisher equation,5

which suggests a link between the level of the yield curve and inflationary expectations.
Inflation was computed as the change in the PCE price index, which is known for capturing
inflation (or deflation) across a wide range of consumer expenses and reflecting changes
in consumer behavior.6 Also the slope factor moves in concert with its empirical proxy

5The Fisher equation expresses the relation among nominal interest rates, real interest rates, and
inflation:

(1 + i) = (1 + r)(1 + π),

where i is the nominal interest rate, r is the real interest rate, and π is the inflation rate. Due to the
small values of i, r, and π, it is usally approximated to r = i− π.

6See U.S. Bureau of Economic Analysis, Personal Consumption Expenditures: Chain-type Price Index
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(st), which is computed as the difference between the 3-month and 10-year yields:

st = yt(3)− yt(120).

The slope moves together with capacity utilization as well, which is a measure of macroe-
conomic activity; therefore the slope of the term structure of interest rates is closely linked
to the seasonal movements of the economy. The curvature factor, which does not really
have a related macroeconomic variable, seems to agree reasonably well with its empirical
proxy in terms of the direction of oscillations, even though not with their magnitude. The
empirical curvature (ct) is computed as:

ct = 2× yt(24)− yt(120)− yt(3).

2.2.1. Yields-Only Model Forecasting

In their paper, Diebold and Li (2006) compare the out-of-sample forecasts obtained from
their model with those of several competitor models. This thesis employs a subset of the
competitors used by Diebold and Li (2006), namely a random walk, a univariate AR(1) on
yield levels, and a VAR(1) on yield levels. The dataset was divided into two parts: 80% of
the data was used in training the model to forecast the remaining 20%—corresponding to
approximately five years. This is done to ensure that it is possible to compare the forecasts
with the actual historical values. The metrics used for this comparison include a number
of descriptive statistics for the forecast errors—including mean, standard deviation, and
root mean squared error (RMSE).

Table 2.5 shows that the forecasts of the yields-only model outperform the competitors,
as suggested by lower RMSE values. This is in line with the findings of Diebold and Li
(2006), which show that their model outperforms the competitors especially when the
forecast horizon becomes larger.

For the yields-only model, the forecasts are obtained by propagating the state estimates
forward using the transition matrix. Indeed, as shown in detail in Appendix B.1, when
forecasting future states and observations, the Kalman filter’s update step—which involves
calculating the Kalman gain to update the state estimate and the error covariance—is
skipped because no new observations are available: the forecasts are based purely on the
model’s dynamics and previously estimated states. Thus, forecasting involves recursively

[PCEPI], FRED, Federal Reserve Bank of St. Louis.

https://fred.stlouisfed.org/series/PCEPI
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applying the prediction step forward:

x̂t+h|t = Ax̂t+h−1|t,

where x̂t+h|t is the forecasted state at time t + h based on information available at time
t. Then, the observation forecast at time t + h is obtained by applying the observation
matrix Λ to the forecasted state:

ŷt+h|t = Λx̂t+h|t.

For the competitors, the forecasts are generated recursively as follows and in line with
Diebold and Li (2006):

ŷt+h|t = yt (Random walk),

ŷt+h|t = ĉ+ φ̂yt (AR(1)),

ŷt+h|t = ĉ+ Φ̂yt (VAR(1)),

where ĉ is the vector of intercept terms, φ̂ s a diagonal matrix where the diagonal elements
represent the autoregressive coefficients for each maturity, and Φ̂ is the coefficient matrix
that captures the interactions between different yield maturities. In the random walk,
the forecast for each yield maturity assumes that the future value will be exactly the
same as the most recent observed value; in the AR(1) model, each yield maturity evolves
independently based on its own past value; in the VAR(1) model, yields at different
maturities are interconnected and can influence each other.
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Maturity (Months) Mean Std. Dev. RMSE
Yields-Only Model
3 1.0418 0.4881 2.3447
6 1.0389 0.4979 2.3846
12 1.0478 0.5118 2.2813
24 1.1021 0.5228 1.9918
36 1.1782 0.5211 1.8011
60 1.3333 0.5039 1.5533
84 1.4593 0.4844 1.4565
120 1.5895 0.4618 1.3362
240 1.7728 0.4280 1.4736
360 1.8363 0.4162 1.3122
Random Walk
3 0.14 0.0032 3.2482
6 0.18 0.0095 3.2841
12 0.17 0.0074 3.2141
24 0.16 0.0164 2.9913
36 0.19 0.0044 2.843
60 0.3 0.009 2.6376
84 0.5 0.0115 2.4851
120 0.65 0.0141 2.3408
240 1.18 0.0112 2.1849
360 1.41 0.0018 1.8758
AR(1)
3 0.1504 0.0053 3.2377
6 0.1759 0.0020 3.2883
12 0.2169 0.0237 3.1656
24 0.3559 0.0968 2.7868
36 0.5112 0.1564 2.5062
60 0.8105 0.2451 2.0967
84 1.0961 0.2850 1.8505
120 1.2822 0.3042 1.6644
240 1.6152 0.2183 1.7124
360 1.8896 0.2385 1.3633
VAR(1)
3 0.5952 0.2215 2.7993
6 0.5420 0.2323 2.8832
12 0.5029 0.2486 2.8197
24 0.5766 0.2664 2.5215
36 0.7266 0.2734 2.2767
60 1.0237 0.2755 1.9207
84 1.2371 0.2738 1.7516
120 1.4319 0.2712 1.5709
240 1.6765 0.2676 1.6371
360 1.7586 0.2664 1.4523

Table 2.5: Yields-only out-of-sample forecasting results. The models are estimated recursively
from 01/2000 to the time the forecast is made, beginning in 05/2019 and extending through
03/2024. The table reports the mean, standard deviation and root mean squared errors of the
forecast errors, defined at t+ 1 as

et+1 = yt+1 − ŷt+1|t.
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2.3. Yields-Macro Model Estimation

The state-space framework previously presented lends itself well to expansions. This sec-
tion aims at presenting the relationship among the level, slope, and curvature factors
with fundamental macroeconomic variables. Diebold et al. (2006) choose three measures
of the economy: manufacturing capacity utilization (CUt),7 the federal funds rate (FFRt),8

and annual price inflation (PIt);9 they correspond to the level of real economic activity
compared to its potential, the monetary policy tool, and the inflation rate. These macroe-
conomic variables are generally regarded as the essential elements necessary to describe
fundamental macroeconomic analysis; in the macro-augmented model, these variables
interact with the yield curve factors in a vector autoregression. The macroeconomic vari-
ables are added to the set of state variables so that the augmented state-space model
looks as follows:

(ft − µ) = A(ft−1 − µ) + ηt,(
yt

mt

)
=

(
Λ 0

0 I

)
ft +

(
εt

0

)
,

(2.1a)

(2.1b)

where ft = (Lt, St, Ct,CUt,FFRt,PIt)
′ and mt = (CUt,FFRt,PIt)

′. As a consequence,
the dimensions of A and µ increase accordingly, with A becoming a 6× 6 matrix and µ

a 6× 1 vector. Furthermore, I is a 3-by-3 matrix, and the zeros correspond to 3× 3 zero
matrices. The first row of the observation equation implies that level, slope, and curvature
are enough to explain the information in the yield curve; the second row, on the other
hand, simply implies that the macroeconomic variables are observed without measurement
error. The white noise processes ηt and εt are in continuity with the previous model, with
H diagonal and Q now being a 6-by-6 matrix:(

ηt

ϵt

)
∼ WN

[(
0

0

)
,

(
Q 0

0 H

)]
. (2.2)

The parameter estimates for the yields-macro model are shown in Table 2.6, which high-
lights the critical interactions between macroeconomic factors and the term structure.
Furthermore, Table 2.7 shows that several off-diagonal elements are significant.

7Board of Governors of the Federal Reserve System (US), Capacity Utilization: Manufacturing (SIC)
[CUMFNS], FRED, Federal Reserve Bank of St. Louis.

8Board of Governors of the Federal Reserve System (US), Federal Funds Effective Rate [FFR] FRED,
Federal Reserve Bank of St. Louis.

9U.S. Bureau of Economic Analysis, Personal Consumption Expenditures: Chain-type Price Index
[PCEPI], FRED, Federal Reserve Bank of St. Louis.

https://fred.stlouisfed.org/series/CUMFNS
https://fred.stlouisfed.org/series/FFR
https://fred.stlouisfed.org/series/FFR
https://fred.stlouisfed.org/series/PCEPI
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Lt−1 St−1 Ct−1 CUt−1 FFRt−1 PIt−1 µ

Lt 0.98 0.01 0.01 -0.01 0.02 0.03 4.00
(0.02) (0.02) (0.01) (0.01) (0.06) (0.15) (0.90)

St 0.33 0.96 0.07 0.02 -0.31 -0.31 -2.10
(0.02) (0.02) (0.02) (0.01) (0.05) (0.16) (1.51)

Ct -0.03 0.07 0.94 0.04 -0.10 -0.10 -2.89
(0.05) (0.03) (0.03) (0.02) (0.06) (0.37) (1.17)

CUt 0.57 0.49 0.05 0.96 -0.56 -0.00 75.63
(0.00) (0.00) (0.00) (0.06) (0.01) (0.07) (0.00)

FFRt 0.48 0.41 0.04 -0.01 0.95 -0.01 1.82
(0.01) (0.01) (0.02) (1.38) (0.07) (0.07) (0.02)

PIt -0.05 -0.06 0.01 0.01 0.03 0.97 2.18
(0.06) (0.05) (0.06) (0.04) (0.55) (0.06) (0.08)

Table 2.6: Yields-macro model parameter estimates. Each row presents coefficients from the
transition equation for the respective state variable. Standard errors are presented in parenthe-
ses, and bold items denote parameter estimates significant at the 5% level.

Lt St Ct CUt FFRt PIt
Lt 0.07 -0.07 -0.01 0.02 0.01 0.03

(0.01) (0.01) (0.01) (0.02) (0.00) (0.03)

St 0.09 -0.01 -0.02 0.01 -0.03
(0.05) (0.01) (0.01) (0.01) (0.03)

Ct 0.56 0.04 0.01 -0.03
(0.01) (0.04) (0.01) (0.03)

CUt 0.33 0.09 0.01
(0.02) (0.00) (0.00)

FFRt 0.02 0.00
(0.02) (0.00)

PIt 0.22
(0.22)

Table 2.7: Estimated Q matrix for the yields-macro model. Standard errors are presented in
parentheses, and bold items denote parameter estimates significant at the 5% level.

The time series estimates of the level, slope, and curvature factors within the yields-
macro model closely resemble those derived from the yields-only model. Consequently, as
depicted in the third and fourth columns of Table 2.8, the means and standard deviations



2| Yield Curve Modeling 26

of the measurement errors for the yields-macro model are almost identical to those of the
yields-only model. Actually, the yields-macro model shows lower mean standard errors
with respect to the yields-only.

Maturity (Months)
Yields-Only Model Yields-Macro Model

Mean (bps) Std. Dev. (bps) Mean (bps) Std. Dev. (bps)
3 -9.069 13.195 -9.129 13.682
6 0.000 0.000 -0.098 3.073
12 2.112 7.662 1.975 7.000
24 2.389 5.107 2.254 4.742
36 0.000 0.000 -0.097 0.323
60 -0.403 6.431 -0.447 6.161
84 1.641 6.117 1.595 5.921
120 -1.700 3.090 -1.799 3.310
240 10.134 14.679 9.886 14.558
360 4.306 18.570 3.996 18.226

Table 2.8: Summary statistics for measurement error of yields comparing the yields-only model
and the yields-macro model. The measurement error is computed as the difference between the
observed yields and the yields predicted by the state-space model:

εt = yt − ŷt = yt −Λx̂t,

where ŷt denotes the estimated yields based on the state estimates x̂t.

2.3.1. Impulse Response Functions of the Yields-Macro Model

The behavior of the entire yields-macro system is analyzed using impulse response func-
tions, presented along with 90 percent confidence intervals. The impulse response function
(IRF) of a state-space model measures contemporaneous and future changes in the state
and measurement variables when each state-disturbance variable is shocked by a unit im-
pulse at period 1. In other words, the IRF at time t is the derivative of each state and
measurement variable at time t with respect to a state-disturbance variable at time 1, for
each t ≥ 1.10 Consider a general time-invariant state-space model,

xt = Axt−1 +But

yt = Cxt +Dwt,
(2.3)

where the vectors ut and wt are uncorrelated, unit-variance, white noise processes and A,
B, C, and D are the state-transition, state-disturbance-loading, measurement-sensitivity,

10See MathWorks, irfplot.

https://it.mathworks.com/help/econ/ssm.irfplot.html##mw_5adcb4c0-097a-47f7-b9a6-af2b6c2d7e5f_sep_shared-definition_irf_ssm
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and observation-innovation coefficient matrices, respectively. For an unanticipated unit
shock at period 1 applied to the ith state-disturbance variable ui,t, the h-step ahead
response of the state variables xt to the shock is

Φxi(h) = Ahbi, (2.4)

where h > 0 and bi is column i of the state-disturbance-loading matrix B. The h-step
ahead response of the measurement variables yt to the shock is

Φyi(h) = CAhbi. (2.5)

Comparing the general state-space model (2.3) with the Diebold-Li state-space system
(1.6), the state-transition coefficient matrix A is the same in both formulations, while
the measurement-sensitivity coefficient matrix C is called Λ. Furthermore, we have that
ηt = But and εt = Dwt.

The analysis will focus on four distinct categories of impulse responses: the reaction of
the yield curve to its own shocks, the effects of macroeconomic shocks on macroeconomic
variables, the reaction of macroeconomic shocks on the yield curve, and the effects of yield
curve shocks on macroeconomic variables.

Figure 2.5: Yield curve responses to yield curve shocks. L, S, and C correspond to Level, Slope,
and Curvature. The plot shows the response of the variable on the right to a one-unit shock in
the variable on the left.
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Figure 2.5 shows how each yield-curve variable (L, S, C) responds over 30 periods to a
shock in each of the yield-curve variables (L, S, C). Starting from the diagonal elements,
which represent own-shock responses, it is clear that the term structure factors exhibit
significant persistence, with all responses rapidly decaying towards zero. The level factor
has an initial effect on the slope factor, with the latter dropping in the short-run before
such effect dissipates. An unexpected increase in the slope factor has a short-run effect on
curvature, with the latter dropping in the short run before settling at a slightly negative
level. Finally, a curvature shock is shown to increase the level factor in the long run and
the slope factor in the medium run, with the latter being more sensitive than the level
factor.

Figure 2.6 shows how each macroeconomic variable reacts to a shock in each of the macroe-
conomic variables. Starting again from the diagonal elements, it is evident that these
variables exhibit persistence as well. An unanticipated increase in capacity utilization
(CU) increases the federal funds rate (FFR) in the long run and inflation (PI) in the
medium run. A positive shock in the FFR positively affects capacity utilization (CU) in
the first period, but the quick reversion to zero reveals that this is more transitory of a
shock. Also, an unexpected increase in the inflation level (PI) raises the federal funds
rate (FFR) in the long run, as predicted by the Fisher equation.

Figure 2.6: Macro responses to macro shocks. CU, FFR, and PI correspond to Capacity Uti-
lization, Federal Funds Rate, and Inflation. The plot shows the response of the variable on the
right to a one-unit shock in the variable on the left.
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Figure 2.7: Macro responses to yield curve shocks. CU, FFR, and PI correspond to Capacity
Utilization, Federal Funds Rate, and Inflation. L, S, and C correspond to Level, Slope, and
Curvature. The plot shows the response of the variable on the right to a one-unit shock in the
variable on the left.

Figure 2.7 plots the interaction between term structure factor shocks and the response of
the macroeconomic variables. The slope factor (S) positively affects capacity utilization
(CU) in the short term, but the effect dissipates quickly. The same can be said for the
the effect of a shock in curvature (C) on the federal funds rate (FFR), with the effect
lasting in the long run as well. An unexpected increase in the slope increases the FFR in
the short run, with the effect dissipating quickly. The level factor (L), on the other hand,
has only a slightly positive effect on the federal funds rate.
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Figure 2.8: Yield curve responses to macro shocks. L, S, and C correspond to Level, Slope,
and Curvature. CU, FFR, and PI correspond to Capacity Utilization, Federal Funds Rate, and
Inflation. The plot shows the response of the variable on the right to a one-unit shock in the
variable on the left.

Lastly, Figure 2.8 shows how macroeconomic shocks affect the yield curve factors. The
level (L) is positively affected in the long run by shocks in inflation (PI), and negatively
in the medium run by a shock in capacity utilization (CU). The slope factor (S) decreases
in the short run after a shock in the federal funds rate (FFR), but this transitory effect is
inverted in the long run; furthermore, the slope responds positively to a shock in inflation
after the short run, with the effect starting to dissipate after approximately 20 periods,
and to a shock in CU, with the effect lasting in the long run. Lastly, the curvature factor
(C) is as well increased by shocks in CU and PI, while it exhibits a behavior similar to
the slope’s one subsequent to a shock in the FFR, even though of lesser magnitude.

2.3.2. Variance Decomposition of the Yields-Macro Model

Forecast error variance decomposition (FEVD) is a useful tool to further analyze the
relationship between the macroeconomy and the term structure.11 Each FEVD has been
normalized to sum to one for a more intuitive interpretation of the results.

11See Appendix A.2.
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Horizon L S C CU FFR PI
1 0.066 0.308 0.580 0.001 0.045 0.000
12 0.019 0.152 0.719 0.001 0.108 0.001
60 0.011 0.053 0.886 0.001 0.047 0.002

Table 2.9: Variance decomposition, 12-month yield.

As shown in Table 2.9, at the one month horizon almost all the variance in the 12-month
yield is explained by the slope and curvature factors. These two factors remain the most
important explanatory variables also at subsequent horizons, with curvature gaining more
and more power. It is also worth noting that the FFR explanatory power more than
doubles at the 12-month horizon when compared with the other two horizons: indeed, at
the 12-month mark the FFR explains 11% of the variation in the 12-month yield.

Horizon L S C CU FFR PI
1 0.015 0.044 0.004 0.911 0.027 0.000
12 0.015 0.055 0.006 0.878 0.045 0.000
60 0.016 0.056 0.032 0.850 0.046 0.001

Table 2.10: Variance decomposition, Capacity Utilization.

Table 2.10 indicates that the term structure factors account for a small portion of the
variation of capacity utilization at each horizon, almost never exceeding 10%. The same
pattern is even more pronounced in the variance decompositions of the other two macroe-
conomic variables, as shown in Table 2.11 and Table 2.12 below.

Horizon L S C CU FFR PI
1 0.001 0.356 0.059 0.002 0.582 0.000
12 0.002 0.299 0.221 0.002 0.475 0.001
60 0.005 0.297 0.236 0.002 0.458 0.001

Table 2.11: Variance decomposition, Federal Funds Rate.

Horizon L S C CU FFR PI
1 0.056 0.004 0.006 0.023 0.005 0.907
12 0.056 0.005 0.007 0.023 0.006 0.903
60 0.056 0.005 0.009 0.023 0.007 0.900

Table 2.12: Variance decomposition, Personal Consumption Expenditures Price Index.
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Taken together, the variance decompositions of the three macroeconomic variables suggest
that, while there is evidence of a two-way relation between the term structure factors
and the macroeconomy, the impact of the yield curve on the macroeconomic variables is
relatively limited compared to the effect of macroeconomic variables on the yield curve.
Indeed, from the Tables 2.10, 2.11, and 2.12 is evident that the level, slope, and curvature
account for a small portion of the variation of the macroeconomic variables with the
exception of the federal funds rate: clearly, market yields contain important predictive
information about the central bank’s policy rate. While the yield curve has less influence
on macroeconomic variables than the other way around, this does not mean that interest
rates do not influence the broader economy. As stated in Diebold et al. (2006), the
federal funds rate (which is included in the model) already captures much of the relevant
information about interest rate effects on the economy. In this sense, the results from
such FEVDs rather suggest that the yield curve does not add much additional information
beyond what is already captured by the federal funds rate, in line with findings from Ang
et al. (2006).

2.3.3. Yields-Macro Model Forecasting

As previously discussed, the yields-macro model is an accurate model of term-structure
dynamics. This section investigates the capabilities of such model not only to perform well
when fitting historical, in-sample data, but also to provide strong prediction for future,
out-of-sample data. To do so, the data is again split in two parts: 80% of the yields are
used to forecast the remaining 20%. This is done to ensure that it is possible to compare
the forecasts with the actual historical values. The results from the forecasting exercise
are reported in Table 2.13; from the reported RMSE values it emerges that the yields-
macro specification consistently outperforms the yields-only model, thus proving to be
strong not only in the estimation of the yield curve but also in the forecasting of future
yields.
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Maturity (Months) Mean Std. Dev. RMSE
Yields-Only Model
3 1.0418 0.4881 2.3447
6 1.0389 0.4979 2.3846
12 1.0478 0.5118 2.2813
24 1.1021 0.5228 1.9918
36 1.1782 0.5211 1.8011
60 1.3333 0.5039 1.5533
84 1.4593 0.4844 1.4565
120 1.5895 0.4618 1.3362
240 1.7728 0.4280 1.4736
360 1.8363 0.4162 1.3122
Yields-Macro Model
3 1.3960 0.3332 2.3123
6 1.4031 0.3338 2.3318
12 1.4301 0.3346 2.2143
24 1.5144 0.3344 1.9071
36 1.6137 0.3331 1.7009
60 1.8012 0.3296 1.4190
84 1.9476 0.3264 1.2777
120 1.0962 0.3229 1.1304
240 1.3031 0.3179 1.1564
360 1.3747 0.3161 0.9805

Table 2.13: Yields-macro out-of-sample forecasting results. The models are estimated recursively
from 01/2000 to the time the forecast is made, beginning in 05/2019 and extending through
03/2024. The table reports the mean, standard deviation and root mean squared errors of the
forecast errors, defined at t+ 1 as

et+1 = yt+1 − ŷt+1|t.

2.4. Yields-Market Model Estimation

Since financial markets played a central role in the crises happened in the last two decades,
it is of interest to expand the model not only using fundamental macroeconomic vari-
ables but also employing market-related variables that are able to summarize the main
forces that drive financial markets. Therefore, the yields-only model is augmented to
investigate the relationship between the term structure factors and four market-related
variables: the euro/dollar exchange rate (EURUSDt),12 the national financial conditions
index (NFCIt),13 the price-to-earnings ratio of the S&P500 (SP500PEt),14 and the CBOE

12Board of Governors of the Federal Reserve System (US), U.S. Dollars to Euro Spot Exchange Rate
[EXUSEU], FRED, Federal Reserve Bank of St. Louis.

13Federal Reserve Bank of Chicago, Chicago Fed National Financial Conditions Index [NFCI], FRED,
Federal Reserve Bank of St. Louis.

14Macrotrends, S&P 500 PE Ratio.

https://fred.stlouisfed.org/series/EXUSEU
https://fred.stlouisfed.org/series/NFCI
https://fred.stlouisfed.org/series/NFCI
https://www.macrotrends.net/2577/sp-500-pe-ratio-price-to-earnings-chart
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volatility index (VIXt).15 Together, these four variables provide a broad and represen-
tative view of market conditions. The EUR/USD exchange rate gives a sense of global
economic sentiment, while the NFCI provides a comprehensive snapshot on U.S. financial
conditions in money markets, debt and equity markets and the traditional and shadow
banking systems in the U.S. The VIX captures market anxiety and potential volatility,
and the S&P500 PE ratio offers a glimpse into how investors are valuing stocks. In this
section, it will be investigated the extent to which these four variables are related to
yield-curve dynamics and whether they help create a more accurate and insightful model
for predicting interest rate movements.

The market-related variables are added to the set of state variables analogously to the
yields-macro model (see 2.1). This time, we have

ft = (Lt, St, Ct,EURUSDt,NFCIt, SP500PEt,VIXt)
′ , and

mt = (EURUSDt,NFCIt, SP500PEt,VIXt)
′ .

The dimensions of A and µ increase to 7-by-7 and 7-by-1, respectively. Again, the white
noise processes ηt and εt are in continuity with the previous models, with H diagonal
and Q now being a 7-by-7 matrix (see 2.2).

The parameter estimates for the yields-market model transition and Q matrices are shown
in Table 2.14 and Table 2.15 below. Many of the off-diagonal appear insignificant. The
Table suggests that previous levels of every variable excluding VIX affect SP500PE, while
VIX is affected by previous levels of level, curvature, EURUSD, and NFCI.

15Chicago Board Options Exchange, CBOE Volatility Index: VIX [VIXCLS], FRED, Federal Reserve
Bank of St. Louis.

https://fred.stlouisfed.org/series/VIXCLS
https://fred.stlouisfed.org/series/VIXCLS
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Lt−1 St−1 Ct−1 EURUSDt−1 NFCIt−1 SP500PEt−1 VIXt−1 µ

Lt 0.98 0.01 0.01 0.08 -0.03 0.01 -0.00 4.02
(0.01) (0.01) (0.00) (0.04) (0.01) (0.00) (0.06) (0.36)

St -0.01 0.96 0.06 0.31 -0.08 -0.00 -0.00 -2.10
(0.01) (0.01) (0.01) (0.05) (0.02) (0.00) (0.03) (0.34)

Ct -0.01 0.01 0.95 0.11 -0.06 -0.00 -0.03 -2.90
(0.02) (0.02) (0.01) (0.17) (0.07) (0.01) (0.00) (0.17)

NFCIt 0.00 0.00 -0.00 0.97 -0.00 -0.00 -0.00 1.19
(0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.01) (0.02)

FFRt 0.01 0.01 0.00 0.12 0.97 0.00 0.02 -0.35
(0.00) (0.00) (0.00) (0.04) (0.01) (0.00) (0.00) (0.06)

SP500PEt -0.10 0.36 -0.17 -2.30 1.91 0.95 0.01 -0.00
(0.35) (0.15) (0.31) (2.49) (0.21) (0.05) (0.04) (0.30)

VIXt 0.20 0.01 0.29 4.48 -1.59 -0.14 0.98 -0.03
(0.18) (0.16) (0.13) (1.49) (0.38) (0.06) (0.03) (0.21)

Table 2.14: Yields-market model parameter estimates. Each row presents coefficients from the
transition equation for the respective state variable. Standard errors are presented in parenthe-
ses, and bold items denote parameter estimates significant at the 5% level.

Lt St Ct EURUSDt NFCIt SP500PEt VIXt

Lt 0.08 -0.07 -0.03 0.00 -0.01 -0.15 0.00
(0.01) (0.01) (0.04) (0.00) (0.01) (0.22) (0.01)

St 0.12 -0.02 -0.00 -0.00 0.07 -0.01
(0.00) (0.03) (0.00) (0.02) (0.53) (0.02)

Ct 0.59 -0.00 0.01 0.07 0.08
(0.01) (0.04) (0.01) (0.03) (0.01)

EURUSDt 0.07 -0.07 -0.01 -0.02
(0.02) (0.03) (0.02) (0.13)

NFCIt 0.02 0.15 0.05
(0.02) (0.00) (0.01)

SP500PEt 0.34 -0.28
(0.60) (0.02)

VIXt 0.23
(0.17)

Table 2.15: Estimated Q matrix for the yields-market model. Standard errors are presented in
parentheses, and bold items denote parameter estimates significant at the 5% level.
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The estimates of the three yield curve factors are close to the ones stemming from the
yields-macro model. As a consequence, the means and standard deviations of the measure-
ment errors for the two models are very close, as shown in Table 2.16. The yields-market
model never outperforms the yields-macro when looking at the error means, while it is
superior in standard deviations for certain periods (namely 3, 6, 36, and 120 months).
Still, the yields-market model outperforms its yields-only counterpart.

Maturity (Months)
Yields-Macro Model Yields-Market Model

Mean (bps) Std. Dev. (bps) Mean (bps) Std. Dev. (bps)
3 -9.129 13.682 -9.069 13.192
6 -0.098 3.073 0.000 0.000
12 1.975 7.000 2.110 7.662
24 2.254 4.742 2.384 5.105
36 -0.097 0.323 -0.006 0.021
60 -0.447 6.161 -0.404 6.431
84 1.595 5.921 1.651 6.145
120 -1.799 3.310 -1.675 3.044
240 9.886 14.558 10.188 14.700
360 3.996 18.226 4.370 18.531

Table 2.16: Summary statistics for measurement error of yields comparing the yields-macro
model and the yields-market model. The measurement error is computed as the difference
between the observed yields and the yields predicted by the state-space model:

εt = yt − ŷt = yt −Λx̂t,

where ŷt denotes the estimated yields based on the state estimates x̂t.

Since the NFCI is a weighted average of a large number of variables (105 measures of
financial activity), the current formulation of the yields-market model may be using over-
lapping variables—for example, among the 105 variables, the NFCI already includes the
VIX. Therefore, it is of interest to understand whether the original yields-market model
can better perform without using the NFCI, or using only this index without using the
other three market variables. As shown by Table 2.17 and Table 2.18, the effect of re-
moving the NFCI or removing the three other variables is negligible, as the values are
essentially identical to the original yields-market model. While this means that the NFCI
could be used alone as a gauge of the stability of the financial system, the full yields-
market model will be used in the following analyses as it will provide a more in-depth
view of the relationship between the yield curve and each variable, which would otherwise
be lost.
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Maturity (Months)
Yields-Macro Model Yields-Market Model (NFCI)

Mean (bps) Std. Dev. (bps) Mean (bps) Std. Dev. (bps)
3 -9.129 13.682 -9.072 13.191
6 -0.098 3.073 0.000 0.000
12 1.975 7.000 2.115 7.658
24 2.254 4.742 2.392 5.104
36 -0.097 0.323 -0.000 0.000
60 -0.447 6.161 -0.413 6.431
84 1.595 5.921 1.623 6.109
120 -1.799 3.310 -1.727 3.148
240 9.886 14.558 10.096 14.662
360 3.996 18.226 4.263 18.537

Table 2.17: Summary statistics for measurement error of yields comparing the yields-macro
model and the yields-market model (NFCI).

Maturity (Months)
Yields-Macro Model Yields-Market Model (w/o NFCI)

Mean (bps) Std. Dev. (bps) Mean (bps) Std. Dev. (bps)
3 -9.129 13.682 -9.063 13.197
6 -0.098 3.073 0.000 0.000
12 1.975 7.000 2.104 7.664
24 2.254 4.742 2.379 5.109
36 -0.097 0.323 -0.003 0.009
60 -0.447 6.161 -0.388 6.436
84 1.595 5.921 1.670 6.147
120 -1.799 3.310 -1.660 3.019
240 9.886 14.558 10.186 14.722
360 3.996 18.226 4.361 18.556

Table 2.18: Summary statistics for measurement error of yields comparing the yields-macro
model and the yields-market model (w/o NFCI).

2.4.1. Impulse Response Functions of the Yields-Market Model

Also the behavior of the entire yields-market system can be analyzed using impulse re-
sponse functions, as previously done with the yields-macro model.16 The analysis will
skip the yield curve-to-yield curve shocks, as they were already analyzed in the previous
section, and will focus on the reaction of the market to its own shocks, the effects of yield
curve shocks on the market variables, and the effects of market shocks on the yield curve.

16See Appendix A.1.
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Figure 2.9: Market responses to market shocks. EURUSD, NFCI, SP500PE, and VIX correspond
to the EUR/USD exchange rate, the National Financial Conditions Index, the S&P500 average
Price-to-Earnings Ratio, and the CBOE Volatility Index. The plot shows the response of the
variable on the right to a one-unit shock in the variable on the left.

Figure 2.9 shows how each market variable reacts to a shock in each of the market vari-
ables. Starting again from the diagonal elements, it is evident that market variables
exhibit significant persistence, as the effect of the own-shocks dissipates rapidly. The
effect of an unexpected rise in the EUR/USD exchange rate (EURUSD) has a minimal
effect on the NFCI as the magnitude is very close to zero, while it has a significant effect
on the S&P500 P/E ratio (SP500PE), which decreases more than proportionally in the
short run before correcting in the long run, probably due to an initial market overreaction.
A similar effect is found on the VIX. A shock in the NFCI seems to have no effect on the
EURUSD due to the very low magnitude, but it is shown to increase three times more
than proportionally the SP500PE in the short run, with the effect dissipating in the long
run; such a shock has an analogous effect on the VIX, which nonetheless displays a lesser
magnitude. Both responses are again probably attributable to an initial overreaction
by the market. A shock in the SP500PE, on the other hand, leaves the EURUSD and
NFCI basically unchanged, while having a mildly negative effect on the SP500PE in the
medium term. Lastly, an unexpected increase in the VIX results in a short-term drop in
the SP500PE, coherently with VIX being a proxy for the level of fear in the stock market.
The effect on the two remaining variables is negligible.
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Figure 2.10: Market responses to yield curve shocks. EURUSD, NFCI, SP500PE, and VIX cor-
respond to the EUR/USD exchange rate, the National Financial Conditions Index, the S&P500
average Price-to-Earnings Ratio, and the CBOE Volatility Index. L, S, and C correspond to
Level, Slope, and Curvature. The plot shows the response of the variable on the right to a
one-unit shock in the variable on the left.

Figure 2.10 plots the interaction between term structure factor shocks and the response
of the market-related variables. A shock in the yield curve level (L) has a negligible effect
on the EUR/USD exchange rate (EURUSD) and the NFCI; it has a positive effect on the
S&P500 P/E ratio (SP500PE) in the short run, with the effect quickly reverting to zero,
and it negatively affects the VIX, which drops in the short run before correcting. The
SP500PE has a negative and more-than-proportional reaction to a shock in the slope (S),
which also negatively affects the VIX in the short and medium term. The SP500PE is
also affected by curvature (C), an unanticipated increase in which lowers the ratio in the
short run; a curvature shock also affects the VIX, which proportionally drops in the short
run before quickly readjusting.
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Figure 2.11: Yield curve responses to market shocks. L, S, and C correspond to Level, Slope,
and Curvature. EURUSD, NFCI, SP500PE, and VIX correspond to the EUR/USD exchange
rate, the National Financial Conditions Index, the S&P500 average Price-to-Earnings Ratio,
and the CBOE Volatility Index. The plot shows the response of the variable on the right to a
one-unit shock in the variable on the left.

Lastly, Figure 2.11 shows how market shocks affect the yield curve factors. From the
IRF plot, the EUR/USD exchange rate (EURUSD) slightly increases the slope (S) in the
medium run, while it has a negligible effect on level (L) and curvature (C). A shock in
the NFCI lowers both the level and the slope, with the latter being more sensitive; it
also slightly decreases the curvature factor in the short run. An unexpected increase in
the price-to-earnings ratio of the S&P500 (SP500PE) seems to have a negligible effect
on the term structure factors, with the slope being again the more sensitive one. Lastly,
a positive shock in the VIX lowers all three market-related variables, even though the
magnitude is again negligible: the level lowers in the long run, the slope in the medium
and long run, while curvature is negatively affected only in the short term.

Therefore the IRF plots show that, while there is evidence of a two-way influence from
the yield curve to the market and vice versa, the effect of the yield curve on the market
seems to be more incisive, especially when looking at the magnitudes of the effect of the
term structure factors on the SP500PE and the VIX. This supports the hypothesis that
market reactions and expectations depend heavily on monetary policy decisions, which in
turn affect the shape of the yield curve.



2| Yield Curve Modeling 41

2.4.2. Variance Decomposition of the Yields-Market Model

Variance decomposition is now used to further characterize the relationship between the
market and the yield curve.17

Horizon L S C EURUSD NFCI SP500PE VIX
1 0.064 0.336 0.570 0.002 0.002 0.001 0.025
12 0.017 0.079 0.754 0.028 0.043 0.001 0.078
60 0.011 0.028 0.693 0.035 0.122 0.002 0.111

Table 2.19: Variance decomposition, 12-month yield.

As shown in Table 2.19, the market variables do not explain much of the variation in the
12-month at the short and medium horizons yield. At the 60-month mark, however, the
NFCI and VIX combined explain slightly more than 20% of the yield’s variance.

Horizon L S C EURUSD NFCI SP500PE VIX
1 0.002 0.001 0.044 0.934 0.001 0.007 0.010
12 0.008 0.033 0.264 0.680 0.002 0.007 0.006
60 0.027 0.080 0.445 0.435 0.007 0.004 0.003

Table 2.20: Variance decomposition, EUR/USD.

The variation in the EUR/USD exchange rate, as visible in Table 2.20, seems to be
partially explained in the medium and long run by the curvature factor, which accounts
for approximately 26% and 45% of the variation in the medium and long run, respectively.

Horizon L S C EURUSD NFCI SP500PE VIX
1 0.018 0.062 0.005 0.041 0.730 0.000 0.144
12 0.012 0.056 0.016 0.025 0.726 0.001 0.165
60 0.011 0.063 0.048 0.283 0.473 0.004 0.118

Table 2.21: Variance decomposition, National Financial Conditions Index.

The national financial conditions index (see Table 2.21) is partially explained by the VIX,
which accounts for 14%, 17%, and 12% of its variation in the short, medium, and long
horizons, respectively. A good portion of the index’s variation at the longer horizon is

17See Appendix A.2.
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explained by the EUR/USD exchange rate too, which accounts for 28% of the NFCI’s
variance.

Horizon L S C EURUSD NFCI SP500PE VIX
1 0.007 0.004 0.001 0.003 0.027 0.959 0.000
12 0.011 0.004 0.002 0.004 0.038 0.938 0.004
60 0.013 0.004 0.008 0.009 0.040 0.921 0.005

Table 2.22: Variance decomposition, S&P 500 Price/Earnings Ratio.

Horizon L S C EURUSD NFCI SP500PE VIX
1 0.000 0.000 0.002 0.001 0.008 0.010 0.979
12 0.001 0.000 0.005 0.004 0.014 0.011 0.965
60 0.001 0.000 0.006 0.005 0.016 0.012 0.960

Table 2.23: Variance decomposition, Volatility Index (VIX).

The variation in the S&P 500 price/earnings ratio is not explained by any of the other
variables. The same can be said for the VIX.

2.4.3. Yields-Market Model Forecasting

Since the yields-market model is an accurate model of yield curve dynamics, it is of
interest to investigate its forecasting capabilities as previously done with the yields-macro
model. The data is again split in two parts in order to perform out-of-sample forecasting.
Table 2.24 provides a comparison of the predictive performance of the yields-only, yields-
macro, and yields-market models. The yields-market model consistently outperforms the
yields-only and market-augmented models across all maturities, as indicated by lower
RMSE values. This suggests that the market-augmented model has better predictive
accuracy for bond yields or returns at the given forecast horizon, reducing the error in
predictions compared to the other two model specifications.
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Maturity (Months) Mean Std. Dev. RMSE
Yields-Only Model
3 1.0418 0.4881 2.3447
6 1.0389 0.4979 2.3846
12 1.0478 0.5118 2.2813
24 1.1021 0.5228 1.9918
36 1.1782 0.5211 1.8011
60 1.3333 0.5039 1.5533
84 1.4593 0.4844 1.4565
120 1.5895 0.4618 1.3362
240 1.7728 0.4280 1.4736
360 1.8363 0.4162 1.3122
Yields-Macro Model
3 1.3960 0.3332 2.3123
6 1.4031 0.3338 2.3318
12 1.4301 0.3346 2.2143
24 1.5144 0.3344 1.9071
36 1.6137 0.3331 1.7009
60 1.8012 0.3296 1.4190
84 1.9476 0.3264 1.2777
120 1.0962 0.3229 1.1304
240 1.3031 0.3179 1.1564
360 1.3747 0.3161 0.9805
Yields-Market Model
3 1.9103 0.4779 2.0048
6 1.9362 0.4746 2.0019
12 1.9759 0.4677 1.8851
24 2.0305 0.4549 1.6144
36 2.0735 0.4443 1.4464
60 2.1529 0.4294 1.2154
84 2.2237 0.4203 1.0940
120 2.3050 0.4126 0.9767
240 2.4291 0.4031 1.0204
360 2.4730 0.3999 0.8636

Table 2.24: Yields-market out-of-sample forecasting results. The models are estimated recur-
sively from 01/2000 to the time the forecast is made, beginning in 05/2019 and extending through
03/2024. The table reports the mean, standard deviation and root mean squared errors of the
forecast errors, defined at t+ 1 as

et+1 = yt+1 − ŷt+1|t.
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3| Strategy

This chapter explores the potential to generate profits by predicting yield curves using
the augmented models specified in the previous chapters and converting these predictions
into technical trading strategies.

The comparison presented in Table 2.24 suggests that the yields-market model is better
suited to be used to build a technical strategy when compared to its market-augmented
counterpart. In the following, therefore, the strategies will be based on predictions made
by such model.

The trading strategies include five assets: five ETFs that track the performance of U.S.
Dollar denominated government bonds issued by the U.S. Treasury. The first one is an
ETF for short-maturity bonds: the iShares USD Treasury Bond 0-1yr UCITS ETF,1

which aims to to track the IDC US Treasury Short Term index. The second focuses on
short-to-medium-term maturities: the iShares USD Treasury Bond 1-3yr UCITS ETF.2

It seeks to track the ICE US Treasury 1-3 Year index. The third looks at the middle of
the yield curve: the iShares USD Treasury Bond 3-7yr UCITS ETF3 seeks to track the
ICE US Treasury 3-7 Year index. The fourth, the iShares USD Treasury Bond 7-10yr
UCITS ETF,4 focuses on the medium-to-long run: it aims to track the ICE US Treasury
7-10 Year index. The last ETF looks at the long run: the iShares USD Treasury Bond
20+yr UCITS ETF.5 This ETF seeks to track the ICE US Treasury 20+ Year index.

This thesis explores three popular strategies for the yield curve, based on the forecasted
level, slope, and curvature. The strategies are based on the previously discussed out-of-
sample forecasts derived from the yields-macro model.

1See BlackRock, iShares $ Treasury Bond 0-1yr UCITS ETF.
2See BlackRock, iShares $ Treasury Bond 1-3yr UCITS ETF.
3See BlackRock, iShares $ Treasury Bond 3-7yr UCITS ETF.
4See BlackRock iShares $ Treasury Bond 7-10yr UCITS ETF.
5See BlackRock iShares $ Treasury Bond 20+yr UCITS ETF.

https://www.ishares.com/uk/individual/en/literature/fact-sheet/ib01-ishares-treasury-bond-0-1yr-ucits-etf-fund-fact-sheet-en-gb.pdf
https://www.ishares.com/uk/individual/en/literature/fact-sheet/ibta-ishares-treasury-bond-1-3yr-ucits-etf-fund-fact-sheet-en-gb.pdf
https://www.ishares.com/uk/individual/en/literature/fact-sheet/csbgu7-ishares-treasury-bond-3-7yr-ucits-etf-fund-fact-sheet-en-gb.pdf
https://www.ishares.com/uk/individual/en/literature/fact-sheet/ibtm-ishares-treasury-bond-7-10yr-ucits-etf-fund-fact-sheet-en-gb.pdf
https://www.ishares.com/uk/individual/en/literature/fact-sheet/dtla-ishares-treasury-bond-20yr-ucits-etf-fund-fact-sheet-en-gb.pdf


3| Strategy 45

3.1. Level-driven Strategy

The first strategy bets on the future evolution of the yield curve level. Level (lt) is defined
as the average yields of longer-term bonds, namely 5, 10, and 30 years:

lt =
yt(60) + yt(120) + yt(360)

3
.

The strategy compares out-of-sample forecasted yields to the 12-month moving average
of actual yields: if the forecast suggests the level term will be higher than the rolling
average, the strategy takes a long position in the ETF for the maturities between 7 and
10 years, and if they are expected to be lower, it goes short. To manage risk, this strategy
adjusts the size of the position based on how much the forecast deviates from the moving
average and uses stop-loss and take-profit rules to limit potential losses and lock in gains.

More in detail, trading signals are generated based on the relation between the forecasted
level and the moving average:

tradingSignal(t) =

1 if forecastedLevel(t+ 1) ≥ movingAvg(t) (Go long)

−1 if forecastedLevel(t+ 1) < movingAvg(t) (Go short)

where forecastedLevel(t+ 1) is the forecasted level term for the next period.

Position sizes are adjusted depending on the deviation from the moving average. Defining
such deviation as

deviation(t) = |forecastedLevel(t+ 1)− movingAvg(t)| ,

the position vector is computed as

positionVector(t) =

2× tradingSignal(t) if deviation(t) > threshold

tradingSignal(t) otherwise
.

In this strategy, the threshold is set at zero. Even though setting the threshold to zero is
essentially equivalent to building a trading signal composed of 2’s and -1’s instead of 1’s
and -1’s, this more general formulation is preferred as its flexibility allows for potentially
threshold values.

The position vector is then multiplied by the return vector so as to reflect the long or
short decision:

strategyReturn(t) = positionVector(t)× return(t)
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where return(t) is the return at time t of the above-mentioned ETF.

Cumulative returns are then adjusted according to stop-loss and take-profit rules. Let
potentialChange (pChange in short) be the change in returns that would occur from time
t − 1 to time t without stop-loss and take-profit rules, and let positionValue (pValue in
short) be the value of the position after such adjustments:

potentialChange(t) = positionValue(t− 1)× (1 + strategyReturn(t)),

positionValue(t) =


pValue(t− 1)× (1 + stopLoss) if pChange(t)−pValue(t−1)

pValue(t−1)
< stopLoss

pValue(t− 1)× (1 + takeProfit) if pChange(t)−pValue(t−1)
pValue(t−1)

> takeProfit

pChange(t) otherwise

,

where stopLoss = −0.02 (2% stop-loss), takeProfit = 0.05 (5% take-profit). This ensures
that, in case of loss, such loss is capped at 2%.

Lastly, the cumulative returns for both the strategy and the long-only approach are com-
puted as

cumulativeRetLevel(t) = positionValue(t),

cumulativeRetLongOnly(t) = cumulativeRetLongOnly(t− 1)× (1 + return(t)).
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Figure 3.1: The return of the level strategy is compared to the long-only strategy, which simply
buys and holds the asset.

The return of the level strategy is compared to the long-only strategy, which simply buys
and holds the ETF. As visible in Figure 3.1, the level-driven strategy outperforms its
long-only counterpart by a margin, effectively managing risks in periods in which the
ETF price was falling (namely after the COVID-19 recession).

3.2. Slope-driven Strategy

The second strategy focuses on the difference between short-term and long-term yields;
indeed, the slope is defined as

st = yt(3)− yt(120).

This second strategy compares the forecasted slope to the actual slope, and depending on
whether the former is steeper or flatter than the latter, the strategy takes a corresponding
position. This strategy uses all five ETFs, shorting the assets with lower maturities and
going long on the longer ones when the one-period-ahead forecasted slope is greater than
the actual slope, and doing the opposite when the forecasted slope is smaller than the
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actual one, as in this case the short-term yields are expected to rise (and therefore asset
prices to fall).

In particular, trading signals are generated as follows:

positionMatrix(t, :) =


V1 if |foreSlope(t+ 1)− actualSlope(t)| > threshold and foreSlope(t+ 1) > actualSlope(t)

V2 if |foreSlope(t+ 1)− actualSlope(t)| > threshold and foreSlope(t+ 1) < actualSlope(t)

V3 otherwise (neutral position)

,

where foreSlope(t + 1) is the forecasted slope term for the next period, actualSlope(t)
is the actual slope term at time t, the thrershold is set at 0.5, V1 = [1, 1, 0.5,−1,−1]

corresponds to a signal to go long on the first two maturities and short on the last two,
V2 = [−1,−1, 0.5, 1, 1] corresponds to a signal to go short on the first two maturities and
long on the last two, and V3 = [0.5, 0.5, 1, 0.5, 0.5] represents a neutral position vector
when the deviation is below the threshold.

The strategy-specific returns are then calculated by multiplying the position matrix by
the return matrix:

strategyRetMat(t, j) = positionMat(t, j)× returnMat(t, j),

where returnMat(t, j) is the return of the jth maturity at time t.

Cumulative returns are then adjusted according to stop-loss and take-profit rules:

potentialChange(t, j) = positionValue(t− 1, j)× (1 + strategyRetMat(t, j)),

positionValue(t, j) =


pValue(t− 1, j)× (1 + stopLoss) if pChange(t,j)−pValue(t−1,j)

pValue(t−1,j)
< stopLoss

pValue(t− 1, j)× (1 + takeProfit) if pChange(t,j)−pValue(t−1,j)
pValue(t−1,j)

> takeProfit

pChange(t, j) otherwise

,

where stopLoss = −0.02 represents a 2% stop-loss, takeProfit = 0.05 represents a 5% take-
profit, and positionValue(t, j) represents the value of the position for the j-th maturity
after adjustments. Again, this ensures that, in case of loss, the loss is capped at 2%.

Finally, the cumulative return matrices for both the strategy and the long-only approach
are computed as follows:

cumulativeRetSlope(t, j) = positionValue(t, j),

cumulativeRetLongOnly(t, j) = cumulativeRetLongOnly(t− 1, j)× (1+ returnMat(t, j)).
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To aggregate across all maturities, the mean of the cumulative returns is taken:

strategyRetVectorSlope(t) =
1

5

5∑
j=1

cumulativeRetSlope(t, j),

longOnlyRetVector(t) =
1

5

5∑
j=1

cumulativeRetLongOnly(t, j).

Figure 3.2: The return of the slope strategy is compared to the long-only strategy, which simply
buys and holds the asset.

Again, the return of the strategy is plotted with the long-only strategy, which simply
buys and holds the five ETFs. Figure 3.2 shows that the slope strategy underperforms
the long-only in the first third of the covered time span, not fully exploiting the upward
trend in asset prices. Nonetheless, the strategy considerably outperforms the long-only
strategy in the second half of the period, completely avoiding the downtrend and instead
gaining an edge.
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3.3. Curvature-driven Strategy

Lastly, the curvature strategy examines the shape of the yield curve by looking at the
prices of bonds with short, medium, and long maturities:

ct = 2× yt(24)− yt(120)− yt(3).

This strategy compares the forecasted curvature with its moving average, taking positions
based on whether the forecast suggests a more pronounced or flattened curve. Like the
other strategies, it adjusts position sizes based on basic risk management techniques to
protect against large losses.

More precisely, trading signals are generated as follows:

positionMat(t, :) =


V1 if |foreCurvature(t+ 1)− MACurvature(t)| > threshold and foreCurvature(t+ 1) > MACurvature(t)

V2 if |foreCurvature(t+ 1)− MACurvature(t)| > threshold and foreCurvature(t+ 1) < MACurvature(t)

V3 otherwise (Neutral position)

,

where forecastedCurvature(t + 1) is the forecasted curvature term for the next period,
movingAvgCurvature(t) is the moving average of the actual curvature at time t, threshold
is set to 0.5, V1 = [1, 1,−1, 1, 1] corresponds to a signal to go long on the wings of the
butterfly (i.e., on the first, second, fourth, and fifth maturities, and short on the third),
V2 = [−1,−1, 1,−1,−1] corresponds to a signal to go long on the body (i.e., on the first,
second, fourth, and fifth maturities, and long on the third), and V3 = [0.5, 0.5, 1, 0.5, 0.5]

represents a neutral position vector when the deviation is below the threshold.

The strategy-specific returns are calculated by multiplying the position matrix by the
return matrix:

strategyRetMat(t, j) = positionMat(t, j)× returnMat(t, j),

where returnMat(t, j) is the return of the j-th maturity at time t.

Cumulative returns are adjusted according to the same stop-loss and take-profit rules
explained in the previous strategy. The cumulative returns for both the strategy and the
long-only approach are then computed as before:

cumulativeStrategy(t, j) = positionValue(t, j),

cumulativeLongOnly(t, j) = cumulativeLongOnly(t− 1, j)× (1 + returnMatrix(t, j)) .
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To aggregate across all maturities, the mean of the cumulative returns is taken:

strategyReturnVectorCurvature(t) =
1

5

5∑
j=1

cumulativeStrategyReturnMatrix(t, j),

longOnlyReturnVector(t) =
1

5

5∑
j=1

cumulativeLongOnlyReturnMatrix(t, j).

Figure 3.3: The return of the curvature strategy is compared to the long-only strategy, which
simply buys and holds the asset.

This last strategy performs much like the previous one, missing out on the initial price
uptrend. Nonetheless, in the second half of the analyzed period, the strategy avoids a
steep price drop and exploits it to gain a margin compared to the long-only strategy.

3.4. Comparison

Table 3.1 compares the performance of the three trading strategies using various risk-
adjusted return metrics: the Sharpe Ratio (SR), the Adjusted Sharpe Ratio (ASR), and
the Modified Sharpe Ratio (MSR), which are computed as follows for each strategy i ∈
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{L, S, C}:

SRi =
mean(Ri − rf )

σRi

,

ASRi =
mean(Ri − rf )

VaR
,

MSRi =
mean(Ri − rf )

MVaR
,

(3.1)

where Ri is the cumulative return for strategy i, VaR is equal to N times σRi
and N = 2.33

is the number of standard deviations associated with a 1% level of probability—assuming
that returns are normally distributed. MVaR is the modified value-at-risk, measured as

MVaR =

(
N +

1

6
(N2 − 1)S +

1

24
(N3 − 3N)K − 1

36
(2N3 − 5N)S2

)
σRi

,

where S and K stand for the skewness and kurtosis of the returns, respectively, as in
Andrada-Félix et al. (2015).

The level strategy shows solid returns with a Sharpe ratio of 0.79, but when adjusted
for non-normal return distributions and tail risks, its performance drops, as seen in its
adjusted Sharpe ratio of 0.34 and modified Sharpe ratio of 0.36, leading to an average
score of 0.50.

The slope strategy stands out as the best performer, with a Sharpe ratio of 1.30, indi-
cating excellent risk-adjusted returns. It maintains strong performance also in the other
measures, as reflected in its adjusted Sharpe ratio of 0.56 and modified Sharpe ratio of
0.46, resulting in the highest overall average of 0.77.

On the other hand, the curvature strategy lags behind, with a Sharpe ratio of 0.13 and
lower adjusted metrics (0.05 for both the adjusted and modified Sharpe ratios). Its average
of 0.08 suggests it may not handle risk as effectively as the other two strategies.

Strategy Sharpe Ratio Adjusted Sharpe Ratio Modified Sharpe Ratio Average
Level 0.79 0.34 0.36 0.50
Slope 1.30 0.56 0.46 0.77
Curvature 0.13 0.06 0.05 0.08

Table 3.1: The three strategies are compared using three risk adjusted metrics: the Sharpe ratio,
the adjusted Sharpe ratio, and the modified Sharpe ratio.
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4| Conclusion

This thesis explored and estimated a latent factor model for the yield curve as in Diebold
et al. (2006): a three-factor model based on Diebold and Li’s modification (Diebold
and Li (2006)) of the classic Nelson-Siegel specification (Nelson and Siegel (1987)), thus
interpreting the latter in a dynamic fashion in which the three factors are regarded as
time-varying level, slope, and curvature. In particular, this thesis employed MATLAB to
estimate three variations of the yields-only model structured as state-space systems, first
incorporating macroeconomic variables in the yields-macro model and then market-related
variables in its yields-market counterpart.

The three models were then compared both in terms of fit and in terms of forecasting
capabilities. While both the augmented models were shown to outperform the yields-only,
the macro-augmented model slightly outperformed the yields-market model in terms of
fit, while the yields-market specification outperformed its macro-driven counterpart in
terms of forecasting capabilities. Evidence of bidirectional causality was found both when
analyzing the relation between the yield curve and the macroeconomic variables and
between the term structure and the market. As opposed to Diebold et al. (2006), it was
found that the influence of the macroeconomy and the market on the term structure is
weaker than that of the yield curve on the selected macroeconomic and market variables
in the 2000-2024 time span. The authors found evidence of the opposite in their study,
which focused on the 1972-2000 period.

Due to its better forecasting capabilities, the yields-market model was used to produce
forecasts of the yield curve. Such forecasts were then converted into technical trading
strategies leveraging on the movements in the level, slope, and curvature of U.S. yield
curve. The strategies were shown to outperform the basic buy-and-hold strategy, with
the slope strategy standing out as the best performer according to the metrics used (i.e.,
Sharpe ratio, adjusted Sharpe ratio, and modified Sharpe ratio).
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A| Impulse Response Functions

and Variance Decompositions

The calculation of impulse response functions and forecast error variance decompositions
in Chapter 2 is based on the following. A time-invariant state-space model, as the ones
used in this thesis, can be written as:

xt = Axt−1 +But

yt = Cxt +Dεt,
(A.1)

where the vectors ut and εt are uncorrelated, unit-variance, white noise processes. The
first equation is the state equation and the second is the observation equation. The
model parameters A, B, C, and D are the state-transition, state-disturbance-loading,
measurement-sensitivity, and observation-innovation coefficient matrices, respectively.

A.1. Impulse Response Function

An impulse response function (IRF) of a state-space model, computed via the irfplot

function in MATLAB, measures contemporaneous and future changes in the state and
measurement variables when each state-disturbance variable is shocked by a unit impulse
at period 1. In other words, the IRF at time t is the derivative of each state and measure-
ment variable at time t with respect to a state-disturbance variable at time 1, for each
t ≥ 1.1

Considering the time-invariant state-space model in Equation A.1 and an unanticipated
unit shock at period 1 applied to the ith state-disturbance variable ui,t, the h-step ahead
response of the state variables xt to the shock is

Φxi(h) = Ahbi, (A.2)

1See MathWorks, irfplot.

https://it.mathworks.com/help/econ/ssm.irfplot.html##mw_5adcb4c0-097a-47f7-b9a6-af2b6c2d7e5f_sep_shared-definition_irf_ssm
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where h > 0 and bi is column i of the state-disturbance-loading matrix B. The h-step
ahead response of the measurement variables yt to the shock is

Φyi(h) = CAhbi. (A.3)

A.2. Forecast Error Variance Decomposition

The forecast error variance decomposition (FEVD) of a state-space model, computed via
the fevd function in MATLAB, measures the volatility in each measurement variable yt

as a results of a unit impulse to each state disturbance ut at period 1. The FEVD tracks
the volatility as the impulses propagate the system for each period t ≥ 1. The FEVD
provides information about the relative importance of each state disturbance in affecting
the forecast error variance of all measurement variables in the system.2

Consider the time-invariant state-space model in Equation A.1 and unit shocks to all
state disturbances ut during period t− h, where h < t. The state equation, expressed as
a function of ut−h, is

xt = Ah+1xt−h−1 +
h∑

i=0

AiBut−i.

The corresponding measurement equation is

yt = CAh+1xt−h−1 +C
h∑

i=0

AiBut−1 +Dεt.

Therefore, the total volatility of yt attributed to shocks from periods t− h through t is

Vh = C

(
h∑

i=0

AiBB′(Ai)′

)
C ′ +DD′.

This results implies that noise in both the transition and measurement equations con-
tributes to the forecast error variance. The volatility attributed to the jth state distur-
bance uj,t is

Vhj = C

(
h∑

i=0

AiBI
(j)
k B′(Ai)′

)
C ′, (A.4)

where I
(j)
k is a k-byk selection matrix with value 1 in element (j, j), and Vh =

∑k
j=1 Vhj+

DD′.
2See MathWorks, fevd.

https://it.mathworks.com/help/econ/ssm.fevd.html##mw_a21e8985-d852-4fcc-8082-a212ff37d8f7
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As a result, the h-step ahead forecast error variance of yi,t attributable to a unit shock to
uj,t is

γh,ij =
Vjh(i, i)

Vh(i, i)
. (A.5)
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B| State-Space Model

Forecasting

B.1. State-Space Model Forecasting

Considering the time-invariant state-space model (A.1), the function forecast1 in MAT-
LAB leverages the Kalman filter to obtain forecasted observations and states. Since the
Kalman filter inherently minimizes the mean square error in its state estimatse, the re-
sulting forecasts are optimal in the MMSE sense, ensuring the most accurate possible
predictions given the model and data. Indeed, Wiener filters and Kalman filters are a
class of linear minimum mean square error (MMSE) estimators, the latter being the recur-
sive form of the former for linear discrete state-space (LDSS) dynamic models Chaumette
et al. (2021).

The Kalman filter predicts the state at time t+ 1 given the state estimate at time t:

x̂t+1|t = Ax̂t|t,

where x̂t|t is the state estimate at time t given observations up to time t. The prediction
of the state comes with an associated error covariance, which quantifies the uncertainty
in the predicted state:

Σt+1|t = AΣt|tA
′ +Q,

where Σt|t is the covariance of the state estimate at time t, and Q is the process noise
covariance. This equation updates the uncertainty in the state estimate as it propagates
forward.

When forecasting future states and observations, the Kalman filter’s update step—which
involves calculating the Kalman gain to update the state estimate and the error covari-
ance—is skipped because no new observations are available: the forecasts are based purely
on the model’s dynamics and previously estimated states. Indeed, forecasting involves re-

1See MathWorks, forecast.

https://it.mathworks.com/help/econ/ssm.forecast.html
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cursively applying the prediction step forward:

x̂t+h|t = Ax̂t+h−1|t,

where x̂t+h|t is the forecasted state at time t + h based on information available at time
t. Then, the observation forecast at time t + h is obtained by applying the observation
matrix C to the forecasted state:

ŷt+h|t = Cx̂t+h|t.

Again, the uncertainty in these forecasts is quantified by the forecast error covariance:

Σt+h|t = AΣt+h−1|tA
′ +Q

Ωt+h = CΣt+h|tC
′ +H ,

where Ωt+h is the covariance of the observation forecast at time t+h and H is the process
noise covariance.2

2See Durbin and Koopman (2001).
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