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ABSTRACT 

 

In recent years, the global investment landscape has undergone a profound transformation, 

driven in part by technological advancements and the emergence of novel financial 

instruments. Cryptocurrencies, for instance, captured widespread attention due to their 

dramatic surges in popularity and market capitalization, only for persistent volatility and 

regulatory ambiguities to prompt renewed interest in more traditional investment avenues such 

as corporate stocks, government bonds, and exchange-traded funds (ETFs). Despite the 

relatively mature frameworks for risk management and return assessment associated with these 

conventional assets, equity markets remain inherently uncertain, thus requiring careful 

portfolio construction strategies. 

 

In parallel, recent developments in machine learning, particularly deep learning, have led to 

sophisticated, data-driven methods that significantly enhance modern portfolio management. 

Predictive algorithms can now incorporate a multitude of market signals and historical data, 

forecasting both returns and underlying risk profiles with increasing levels of accuracy. A vital 

consideration in this process is the balance among volatility, correlations between assets, 

expected returns, and individual risk tolerance, factors that collectively form the cornerstone 

of portfolio optimization. 

 

Building on this evolving landscape, the present work introduces a novel framework for a web- 

based application designed to integrate advanced artificial intelligence (AI) models into a user- 

friendly investment platform. Specifically, the system applies state-of-the-art methods to 

optimize capital allocation across multiple stock tickers, with an objective of mitigating risk, 

maximizing returns, and adapting to dynamic market conditions. Notably, this platform 

leverages a Large Language Model (LLM) as a conversational interface, thereby allowing users 

to submit natural language queries and receive comprehensive, explanatory feedback, ranging 

from raw portfolio weight distributions to interpretative commentary on factors such as 

volatility and historical performance. By employing a 1 trading year in the future test 

procedure, the system’s performance is evaluated against standard financial metrics 

(annualized returns, Sharpe ratio, volatility, and maximum drawdown), ensuring a rigorous 

appraisal of both strengths and limitations. Ultimately, this thesis demonstrates how the 

convergence of AI-driven analytical techniques and intuitive, dialogue-based interfaces can 

empower both novice and experienced investors to make more informed decisions in a volatile 

and complex market environment. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 - Background and Motivation 

 

The global investment ecosystem has experienced significant transformations over the 

last decade, influenced by regulatory shifts, rapidly increasing computational power, and 

the widespread adoption of innovative financial technologies. Participants in contemporary 

markets, ranging from individual retail traders to large-scale institutional investors, now 

have an extensive selection of instruments at their disposal, spanning equity, debt, 

commodities, foreign exchange, and cryptocurrencies. While digital assets such as Bitcoin 

and Ethereum initially attracted intense enthusiasm and media attention, the volatility and 

evolving regulatory status of these assets prompted many portfolio managers to refocus on 

more traditional forms of investment. In these established markets, investors benefit from 

a robust body of research on asset pricing and risk management, supplemented by well- 

known metrics such as the Sharpe ratio, maximum drawdown, and portfolio volatility. 

Nonetheless, even traditional equity and bond markets face a multitude of challenges 

stemming from macroeconomic indicators, geopolitical events, and internal corporate 

dynamics. Against this backdrop, the effort to balance optimal returns with effective risk 

management has grown increasingly complex and remains a fundamental goal for modern 

investment practices. 

 

1.2 - Role of Artificial Intelligence in Modern Portfolio Management 

 

In light of these complexities, artificial intelligence (AI) has emerged as a 

transformative approach to financial analysis, offering sophisticated ways to interpret the 

large and intricate datasets that characterize contemporary markets. Machine learning (ML) 

and deep learning techniques are particularly adept at identifying non-linear relationships, 

seasonal trends, and subtle patterns in market data. These capabilities contrast with 

traditional econometric methods, which often rely on more rigid assumptions or linear 

modeling. Within the domain of portfolio management, AI-driven models deliver a range 

of benefits. They improve predictive accuracy by leveraging extensive historical data and 

diverse sources of information, including macroeconomic indicators, corporate 

fundamentals, and social media sentiment. They also facilitate the automatic extraction of 

relevant features by exploiting architectures such as recurrent neural networks (RNNs) and 

Long Short-Term Memory (LSTM) units, which uncover temporal dependencies in data, 
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as well as convolutional neural networks (CNNs), which can interpret information in ways 

analogous to image recognition. Furthermore, AI models are inherently adaptive and can 

be retrained or fine-tuned to accommodate new data, enabling them to respond to changing 

market conditions. This responsiveness is particularly valuable in periods of sudden price 

movements, regime shifts, or heightened volatility. 

 

1.3 - The Need for User-Centric Design 

 

Despite the considerable potential of AI-based solutions in finance, significant 

challenges persist in translating sophisticated technical analyses into tools that are 

accessible and meaningful to end-users. Financial markets include participants with a broad 

spectrum of experience, from novices seeking introductory investment guidance to 

professional fund managers who require advanced analytics. The manner in which AI- 

generated insights are presented and interpreted is therefore as crucial as the accuracy of 

the underlying models. Traditionally, financial technology platforms have expected users 

to navigate complex dashboards and specialized terminology, creating barriers for those 

without extensive financial or technical backgrounds. Incorporating a natural language 

interface can mitigate these challenges by simplifying the query process and offering 

explanations in everyday language. The present work addresses this need by integrating a 

Large Language Model (LLM) that not only provides users with optimized asset weight 

distributions but also supplies rationales and interpretive commentary. Through a 

conversational interface, the system aspires to broaden access to powerful computational 

tools, encouraging a higher level of financial literacy and more informed decision-making. 

 

1.4 - Proposed Framework 

 

The thesis centers on the design and evaluation of a web-based AI-driven system for 

portfolio optimization, composed of two principal components. The first component 

predicts asset returns and volatility by employing an LSTM-based neural network to 

estimate both the expected returns and variance over a specified time horizon. These 

forecasts constitute a critical input for any subsequent allocation strategy because they 

inform the anticipated performance and risk of each asset in the portfolio. The second 

component focuses on allocating capital through convex optimization, making use of 

frameworks such as CVXPY to identify weight distributions that reconcile desired returns 

with defined risk constraints. This approach incorporates standard portfolio theory 
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requirements, including non-negativity of weights, budget constraints, and maximum asset 

weight thresholds, while remaining adaptable to user directives, such as concentrating on a 

predefined subset of stocks, all under the umbrella of a unique end-to-end process that we 

will discover in chapter 4. The introduction of an LLM-based interface sets this project 

apart from many traditional portfolio optimization tools. By allowing users to pose 

questions in everyday language (for example, “How should I allocate my budget among 

these five stocks?”), the system generates a detailed response that outlines suggested asset 

weightings, explains the various financial output metrics of interest and suggest the user to 

change tickers if the results are not optimal. 

 

1.5 - Scope and Contributions 

 

The thesis contributes to the academic and practical discourse in several ways. It 

demonstrates the effective integration of predictive modeling with convex optimization in 

one cohesive workflow, thereby uniting the strengths of data-driven AI methods with the 

reliability of classical portfolio theory. It also showcases how explanations generated by a 

language model can enhance the interpretability of complex financial tools, addressing a 

persistent gap in platforms that often provide numerical outputs without actionable or 

understandable context. Moreover, the solution is rigorously tested on a test set of 1 trading 

year (252 days), using standard metrics such as annualized returns, Sharpe ratio, volatility, 

and maximum drawdown to evaluate its performance under realistic conditions. In addition, 

a modular software structure allows for straightforward enhancements or substitutions of 

the predictive elements, optimization routines, and user interface components, facilitating 

ongoing adaptation as new analytical methods or technologies emerge. By combining 

advanced forecasting capabilities with an accessible conversational interface, this work 

aims to broaden the appeal and utility of AI-driven portfolio optimization, ultimately 

enabling a wider range of investors to make strategically sound decisions in rapidly 

evolving financial markets. 

 

1.6 - Organization of the Thesis 

 

Following this introduction, Chapter 2 provides a literature review that synthesizes 

existing research on portfolio optimization, machine learning in financial forecasting, and user 

interface design in fintech applications. By examining established theoretical frameworks and 
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state-of-the-art approaches, it lays the groundwork for the subsequent methodological and 

practical contributions of this study. 

 

In Chapter 3, the focus shifts to the datasets and preparatory steps involved in developing the 

predictive models. Attention is given to the rationale behind certain design choices, particularly 

those driven by computational constraints and time considerations, as well as to the manner in 

which data were preprocessed to ensure reliable model inputs. 

 

Chapter 4 delves into the iterative process of trial and error that characterized the early 

experimentation phase. Various model architectures, optimizers, and objective formulations 

were tested before settling on the final LSTM-based forecasting framework and convex 

optimization approach. The chapter also discusses how these explorations led to refinements 

in both the algorithmic design and the overall methodology. 

 

Chapter 5 presents the core experimental results, along with a comprehensive performance 

evaluation of the integrated system. Emphasis is placed on the strengths of the proposed 

solution, as well as on potential areas for enhancement, with a view to guiding future research 

and development. Subsequently, Chapter 6 examines the development of the web-based 

application and its user interface, highlighting how usability and design considerations can 

facilitate broader adoption of AI-driven financial tools. 

 

In Chapter 7, the thesis addresses the role of Large Language Models in both the input and 

output stages of the application. This discussion centers on why an LLM was incorporated— 

chiefly to offer interpretable explanations and natural language support—and how it can 

enhance user engagement and clarity. Finally, Chapter 8 concludes the thesis by summarizing 

the key findings, outlining the practical implications of the proposed framework, and 

suggesting avenues for continued investigation. 

 

Bringing these chapters together, the thesis seeks to make a meaningful contribution to the field 

of AI-driven finance. By uniting sophisticated predictive modeling with user-centric design 

and natural language interaction, it aspires to present a robust, empirically validated solution 

capable of guiding a diverse array of investors through an increasingly dynamic and complex 

market environment. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter provides a comprehensive review of the theoretical and technological 

underpinnings that inform AI-based portfolio optimization and user-centric design in financial 

technology. The discussion begins with Traditional Portfolio Theory, highlighting how 

foundational frameworks established key risk–return concepts. We then trace the evolution of 

Machine Learning in Finance, focusing on the early adoption of non-linear computational 

methods and the subsequent challenges arising from market non-stationarities. Next, we move 

on to Deep Learning for Time Series Forecasting, where we examine the practical advantages 

of Long Short-Term Memory (LSTM) architectures in capturing intricate temporal patterns in 

financial data. Following this, we delve into End-to-End Portfolio Optimization, an emergent 

paradigm in which forecasts and allocations are trained jointly under a unifying loss function 

geared toward real-world performance metrics. Finally, we discuss the growing role of Large 

Language Models (LLMs) in finance, particularly in improving user engagement and 

interpretability for sophisticated investment tools. By weaving these themes together, the 

chapter sets a cohesive stage for the methodological contributions presented later in the thesis. 

 

2.1 - Traditional Portfolio Theory 

 

The foundational work of Markowitz (1952) established the modern framework for 

portfolio selection, explicitly modeling the balance between expected return and variance. 

According to Modern Portfolio Theory (MPT), rational investors aim to position themselves 

on the so-called “efficient frontier,” which characterizes the portfolios that achieve the highest 

possible return for a given level of risk, or equivalently, the lowest risk for a given level of 

return. A particularly influential insight of MPT is the notion of diversification, wherein 

combining assets with different correlation structures can reduce overall portfolio volatility 

without substantially diminishing returns (Elton & Gruber, 1997). 

 

Building upon these core ideas, Sharpe (1964) and Lintner (1965) introduced the Capital Asset 

Pricing Model (CAPM), which emphasizes systematic (market-wide) risk through a metric 

known as beta. CAPM posits a linear relationship between an asset’s expected return and its 

exposure to the broader market, thus offering an equilibrium-based view of risk–return trade- 

offs. While widely adopted, CAPM and similar factor models rely on fairly restrictive 
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assumptions about market efficiency, linearity, and stationarity. Merton (1980) further 

highlighted how real-world considerations, such as time-varying risk premia or difficulties in 

accurately estimating returns and covariances, can undermine the stability of these classical 

models. 

 

Despite these critiques, traditional portfolio theory remains a cornerstone of quantitative 

finance. It not only offers a structured way to conceptualize the interplay between returns, 

variance, and correlation, but also underscores the profound influence of risk considerations in 

investment choices. This foundational perspective, however, provides only part of the picture, 

as many real-world assets exhibit non-linear relationships or structural regime shifts that cannot 

be fully captured through static, linear models alone. These limitations helped pave the way for 

more adaptive, data-driven techniques. 

 

2.2 - Machine Learning in Finance 

 

Against the backdrop of mounting computational capabilities and the rise of large-scale 

financial databases, Machine Learning (ML) began to gain prominence as a tool for financial 

modeling. Initially, ML approaches were deployed to derive potentially non-linear 

relationships that conventional statistical models tended to overlook. Early work by Allen and 

Karjalainen (1999) showcased how genetic algorithms could discover technical trading rules, 

revealing complex patterns in market time series. These applications demonstrated the 

feasibility of ML in detecting nuanced signals beyond the scope of classical linear regressions 

also if results from this method showed that, after accounting for transaction costs, these rules 

did not generate returns superior to a simple “buy and hold” strategy during out-of-sample test 

periods, they demonstrated that models could “understand” where it would be convenient to 

stay or exit the market. 

 

Nevertheless, these early ML methods often relied on labor-intensive feature engineering and 

conducted forecasting and portfolio construction in separate stages. For instance, an ML model 

might predict asset returns, but the subsequent optimization step to determine weights in a 

portfolio would remain disconnected, frequently performed by a conventional solver that 

optimizes standard criteria (e.g., mean–variance). This disjointed “two-stage” approach can 

lead to a mismatch between the objective of the forecasting model (e.g., mean squared error 

minimization) and the ultimate performance goals of the investor (e.g., maximizing the Sharpe 
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ratio). Moreover, non-stationary markets accentuated the overfitting problem, necessitating 

regular retraining or recalibration of these models. 

 

Concurrently, risk management and capital allocation frameworks started embedding ML- 

derived forecasts into existing quantitative strategies. Although the synergy held promise, 

particularly in detecting hidden factors in large cross-sections of assets, practitioners realized 

that traditional metrics for forecast accuracy did not necessarily translate into superior portfolio 

performance. This realization intensified calls for more end-to-end solutions, wherein model 

training could incorporate downstream financial objectives rather than focusing on purely 

predictive performance. 

 

2.3 - Deep Learning for Time Series Forecasting 

 

Within the broader ML landscape, deep learning has proven especially adept at 

extracting features from complex, high-dimensional datasets, an attribute that naturally fits 

financial time series. Early deep learning architectures struggled with sequences, but Recurrent 

Neural Networks (RNNs) offered a first step toward modeling temporal structure. Still, these 

RNNs frequently suffered from vanishing and exploding gradients, hindering their ability to 

capture long-range dependencies. 

 

The Long Short-Term Memory (LSTM) architecture, proposed by Hochreiter and 

Schmidhuber (1997), addressed these issues through a gating mechanism that modulates the 

flow of information. LSTMs can effectively “remember” significant events over extended 

periods, rendering them especially suitable for forecasting financial indicators that may display 

subtle cyclical or lagged behaviors (Zhang et al., 2017). Researchers have demonstrated that 

LSTMs often outperform both simpler neural networks and certain traditional econometric 

models in predicting returns or volatility (Fischer & Krauss, 2018). 

 

Despite these successes, the bulk of deep learning studies in finance still center on predictive 

tasks, forecasting future prices, returns, or volatility, leaving the subsequent asset allocation 

choices to be determined separately. This scenario can yield robust error metrics at the model 

level, yet no guarantee exists that these forecasts will result in the optimal risk–return trade-off 

within the actual portfolio. In effect, there is a disconnect between forecast accuracy and 

practical portfolio performance, an issue that has spurred the exploration of end-to-end 
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portfolio optimization techniques that align the training process with ultimate investment 

outcomes. 

 

2.4 - End-to-End Portfolio Optimization 

 

End-to-end portfolio optimization aims to address the drawbacks of two-stage 

workflows by combining forecasting and allocation in a single, fully differentiable pipeline 

(Moody & Saffell, 1999; Deng et al., 2016). In this unified framework, the neural forecaster 

generates predictions, such as expected returns 𝜇 or volatility parameters 𝜎, that feed directly 

into a differentiable optimizer. The optimizer then computes portfolio weights under 

constraints (e.g., a budget constraint or leverage limits) to maximize a pre-defined performance 

metric such as the Sharpe ratio. By allowing gradients to pass through both the forecaster and 

the optimizer, the entire system calibrates itself toward actual portfolio performance, rather 

than surrogate metrics like mean squared error of the forecast. 

 

This approach has become more tractable thanks to advances in differentiable optimization 

libraries. Agrawal et al. (2019) showcased the feasibility of incorporating convex optimization 

problems into neural network pipelines through CvxpyLayers, which compile such problems 

into forms conducive to automatic differentiation. Building on these ideas, Zhang et al. (2020) 

demonstrated how a Markowitz-inspired layer (with constraints akin to budget and long-only 

conditions) could be trained end-to-end to improve out-of-sample Sharpe ratios. 

 

While promising, end-to-end approaches face unique challenges. Model interpretability 

becomes more complicated, given that both the forecasting and the optimization processes are 

learned simultaneously in a “black box” setting. Overfitting risks also intensify if the system 

tailors itself too closely to historical market peculiarities, thereby reducing robustness to 

unforeseen conditions. Nonetheless, the capacity to optimize directly for metrics that matter to 

investors marks a substantial improvement over conventional siloed methodologies and sets 

the stage for deeper integration of predictive analytics and allocation logic. 

 

2.5 - Large Language Models in Financial Applications 

 

Parallel to these developments, Large Language Models (LLMs) have begun reshaping 

how users interact with complex financial analytics. GPT-type models (Radford et al., 2019; 

Brown et al., 2020) train on vast text corpora and exhibit strong capabilities in language 
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comprehension and generation. Their transformer-based architectures enable them to handle 

tasks as diverse as summarization, translation, and interactive dialogue. 

 

In the financial realm, LLMs open the door to more user-friendly and interpretable systems. 

For instance, a platform might permit an investor to say, “Allocate half of my portfolio to tech 

stocks, and half to a broad index fund.” The LLM interprets this directive, checks it against the 

underlying optimization framework, and returns an allocation plan. Additionally, LLMs can 

generate plain-English explanations of why certain assets received specific weightings. 

However, these models can also produce “hallucinations,” meaning they may invent facts or 

propose solutions not grounded in real data. Consequently, robust validation mechanisms— 

such as function-calling approaches or carefully curated prompts, are essential to ensure 

reliability and accuracy in high-stakes domains like portfolio management. 

 

2.6 - Synthesis and Directions 

 

In surveying the trajectory from Traditional Portfolio Theory to contemporary methods 

that leverage deep learning and language models, a consistent theme emerges: financial 

markets demand increasingly adaptive, user-friendly solutions. Markowitz’s pioneering 

framework and its subsequent refinements revealed that diversification and risk–return balance 

are fundamental, yet they often underemphasize the market’s complex, non-linear patterns. 

Early machine learning efforts demonstrated the promise of algorithmic trading and predictive 

modeling, but a gap persisted between purely predictive accuracy and real-world portfolio 

performance. The rise of deep learning architectures, especially LSTMs, added crucial capacity 

for handling temporal dependencies in noisy financial series; however, siloed “two-stage” 

approaches, where forecasting and allocation are conducted separately, still risk suboptimal 

outcomes. By embedding convex optimization directly into a neural forecasting pipeline, the 

emerging paradigm of end-to-end portfolio optimization directly aligns predictive models with 

the metrics investors care about, such as Sharpe ratio and drawdown. 

 

Parallel advancements in Large Language Models enable more intuitive user interactions and 

improved interpretability, addressing the frequent criticism that high-performing machine 

learning systems are often opaque to practitioners. In this thesis, these insights converge in a 

holistic solution: an AI-driven portfolio optimizer that integrates LSTM-based time-series 

forecasting with differentiable allocation layers and an LLM-enhanced interface. This 

framework not only refines risk–return outcomes relative to conventional methods but also 
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redefines accessibility, allowing both novice and expert users to engage in natural-language 

dialogues about asset selection, performance rationale, and risk metrics. By bridging 

sophisticated analytics with user-centric design, the proposed system stands to broaden the 

adoption of advanced portfolio optimization in financial services, paving the way for more 

transparent, adaptive, and data-driven investment decisions. 
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CHAPTER 3 

EDA & DATA PREPARATION 

 

In this chapter, we present the exploratory data analysis (EDA) conducted on our dataset 

and outline the series of preprocessing steps that precede the development of our forecasting 

and portfolio allocation system. The end goal is to ensure that the raw data, for a comprehensive 

set of stock tickers spanning multiple sectors, is transformed into a high-quality, time-aligned, 

and properly scaled format, enabling robust model training and evaluation. We begin by 

discussing how these data are sourced and inspected, followed by a detailed description of how 

daily returns are computed and further refined for modeling. By the chapter’s conclusion, the 

reader will have a clear understanding of the data pipeline, including the reasoning behind 

particular design choices (e.g., scaling parameters, lookback windows, and train-test splits). 

 

3.1 - Data Collection And Overview 

 

The dataset for this project encompasses a broad array of publicly traded stocks, with a 

focus on a list of 20 high-capitalization tickers from various industries such as technology, 

finance, consumer staples, and energy, among others. These tickers were selected to capture a 

diverse cross-section of the market. On top of these primary assets, the ultimate system 

architecture also accommodates additional user-selected tickers (usually three or four). The 

overall idea is that the model, having learned from the entire set of 20 major stocks, will be 

capable of creating tailored weight allocations for whichever subset the user chooses. While 

this feature is not the focal point of the present chapter, it illustrates the broader flexibility of 

the system. 

 

Data were downloaded using the yfinance library, which automates the retrieval of historical 

market data from Yahoo Finance API. Specifically, we focused on the adjusted closing prices 

(Adj Close), which account for dividends, stock splits, and other corporate actions, ensuring 

that the price series more accurately reflects the underlying value to investors. Our data spanned 

a date range from 2015-01-01 through 2025-01-01, yielding a long enough historical period to 

capture different market regimes and, in turn, provide the model with a variety of scenarios for 

improved generalization. 

 

Once the price data was obtained, we performed an initial inspection to identify any missing 

records or potentially erroneous values. As is typical for large-cap stocks, missing rows were 
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primarily due to weekends, holidays, or occasional trading halts. These non-trading periods 

were dropped for simplicity and to not add any type of bias to the model. A final integrity check 

was then performed to confirm that the dataset did not exhibit irregularities or implausible price 

movements outside recognized market events. 

 

3.2 – Computing Daily Returns and Initial Exploration 

 

Raw stock prices present a convenient overview of performance over time, but they are 

not always the most effective inputs for predictive modeling. Instead, we computed daily 

returns for each ticker to represent the percentage change in value from one trading day to the 

next: 

 

𝑟𝑡 = 
𝑃𝑡 − 𝑃𝑡−1 

 

𝑃𝑡−1 

 
where 𝑃𝑡 is the adjusted closing price on day 𝑡. This transformation normalized the data and 

provided a consistent measure of relative price movements. Using daily returns rather than raw 

prices, in fact, helps the model focus on fluctuations that are more directly comparable across 

assets with different price levels. 

 

3.3 – Constructing Rolling Windows 

 

With cleaned and validated return data in hand, we constructed a rolling window dataset 

for model training. This step is essential for capturing temporal dependencies in financial time 

series, an area in which machine learning models, especially recurrent networks that we are 

indeed going to use, tend to excel. Our approach involved specifying three parameters: 

 

Lookback: The number of days of historical returns provided to the model as an input context. 

In our experimental setup, this was set to 90 days: 

 

Gap: A short buffer period of 2 days between the last day in the lookback window and the start 

of the forecast horizon, ensuring that the model has no inadvertent overlap between the training 

window and the future it is tasked to predict. 

 

Horizon: The length of the forecast period, configured to 30 days in our code, representing the 

range of future returns that the model must estimate. In our work the decision for the 30-days 

was chosen with the idea of evaluating the idea of changing weights every month. 
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For each valid index 𝑖 in the daily returns array, we define an input 𝑋𝑖 that contains 90 days of 

historical returns for all tickers, and a target 𝑦𝑖 containing 30 days of “future” returns offset by 

the 2-day gap. These (𝑋𝑖, 𝑦𝑖) samples form the core of our supervised learning dataset. We also 

stored  corresponding  timestamps  for  clarity  in  back  testing  and  evaluation. 

To manage the rolling windows and scaling steps, we utilized the DeepDow library, which 

provides InRAMDataset, RigidDataLoader, and Scale modules that simplify custom time- 

series transformations. 

 

The DeepDow library provides unified methods for slicing and transforming time-series data 

in a manner that simplifies the construction of rolling windows, particularly through its 

InRAMDataset, RigidDataLoader, and Scale modules. InRAMDataset efficiently stores and 

slices the entire time series in memory according to user-defined lookback and horizon 

parameters, automatically generating the overlapping windows needed for both training and 

validation. RigidDataLoader ensures these windows are batched with consistent shapes and 

preserves the sequential order when necessary, reducing the complexity of ensuring uniform 

mini-batches across the time dimension. 

 

Additionally, the Scale module and other transformations can be chained into the same 

pipeline, so that each window can be scaled or normalized on the fly, thereby eliminating the 

extra overhead of manually preprocessing slices and ensuring a clean and reproducible 

workflow. 

 

Next, we employed a chronological split for training and testing, allocating all of the available 

samples (starting from the earliest) to training and only 252 trading days to testing, resembling 

a traditional trading year. This chronological approach respects the time-ordered nature of 

financial data, helping mitigate the risk of look-ahead bias wherein future information might 

inadvertently influence earlier model training. 

 

3.4 – Scaling and Data Preparation Workflow 

 

Deep Neural Networks often benefit from standardized input features especially to 

speed up backpropagation, since the algorithms used to update the Neural Network weights 

often work better with scaled data. Consequently, we applied a scaling procedure to the daily 

returns for all tickers. Specifically, we computed means and standard deviations for the training 

partition and used these statistics to normalize both the training and test partitions to avoid data 
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leakage into the test set. This transformation ensures that the daily returns from each asset 

possess near-zero means and unit variances, preventing any single ticker, particularly those 

with higher nominal volatility, from dominating the model’s objective function. 

 

After scaling, the final data preparation included reshaping the inputs to the format required by 

our chosen neural networks. More concretely, each input tensor 𝑋 took the shape: 

(𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 , 1, 𝑙𝑜𝑜𝑘𝑏𝑎𝑐𝑘, 𝑛_𝑎𝑠𝑠𝑒𝑡𝑠), 

 

which aligns with the expected input structure for one-dimensional LSTM cells that process 

temporal sequences. This design also facilitates mini-batch training, wherein smaller subsets 

of the data help stabilize gradient estimates, leading to more reliable and often quicker 

convergence. 

 

Because the model ultimately focuses on allocating capital only to user-requested assets in 

addition to the core 20 major tickers, we needed to maintain flexibility in how we handle 

indexing. While the training process leverages the entire cross-sectional array of daily returns, 

constraints in the allocation layer selectively zero out weights for assets not requested by the 

user. This procedure is enforced through a simple mask in the convex optimization routine, 

ensuring that users can incorporate additional tickers they specify without disturbing the 

broader modeling logic that learns from the entire ticker universe. We will see more about this 

in the next chapter. 

 

3.5 – Concluding Remarks on EDA and Data Preparation 

 

The procedures outlined in this chapter represent the foundation upon which our 

subsequent modeling and optimization techniques depend. Data from multiple sources were 

integrated, cleaned, and shaped into coherent windows of historical returns ready for 

forecasting. 

 

By adhering to a transparent pipeline involving careful data splitting, rolling window 

construction, and feature scaling, we reduce the risk of data leakage and ensure that each step 

is properly documented and reproducible. These decisions also facilitate experimentation with 

various neural network architectures and optimization routines, as described in upcoming 

chapters. Ultimately, a rigorous approach to EDA and data preparation positions us to produce 
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meaningful, consistent results that reflect genuine market behaviors, thereby bolstering the 

reliability of the model’s subsequent predictions and allocations. 
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CHAPTER 4 

 

METHODOLOGICAL FRAMEWORK AND MODEL EXPLORATION 

 

In the chapters preceding this point, we conducted an extensive exploration of our 

dataset and established a clear procedure for data preprocessing. This chapter focuses on the 

methodological backbone of our work: designing, training, and evaluating a neural network 

architecture that interfaces directly with a portfolio allocation module. The key innovation here 

lies in our end-to-end approach, wherein model parameters, both in the neural forecaster and 

the subsequent allocation layer, are updated jointly by maximizing a differentiable 

approximation of portfolio performance metrics such as the Sharpe ratio treating it as a convex 

optimization problem. 

 

The chapter is structured as follows. First, we introduce our neural forecasting module, 

highlighting its architecture and motivation for using a recurrent structure like the Long Short- 

Term Memory (LSTM). Second, we detail the construction of two different allocation layers, 

one based on a mean-variance (Markowitz-style) objective and another that incorporates an 

entropy term, both embedded within the neural network via a differentiable convex 

optimization interface. Finally, we explain how these components are trained in tandem using 

a customized Sharpe ratio-based loss function, underscoring how this end-to-end formulation 

departs from traditional “two-stage” methods that separately optimize forecasts and allocations. 

 

4.1 – Conceptual Overview of the End-to-End Architecture 

 

Traditional quantitative investment workflows often separate the forecasting of returns 

or other relevant financial quantities from the subsequent portfolio construction. In such a two- 

stage approach, a machine learning model forecasts expected returns (and possibly variances 

or covariances), after which a portfolio optimization method (e.g., mean-variance, risk-parity, 

or others) is used to derive the allocation weights. While conceptually straightforward, this 

simple methodology does not account for potential misalignment between the loss function 

used to train the forecaster, often a mean squared error or likelihood-based objective, and the 

ultimate performance metric of interest such as portfolio returns, volatility, or the Sharpe ratio. 
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Our design explicitly merges the forecasting and allocation tasks into a single computational 

graph. The neural network (an LSTM in our work) processes historical input data, daily returns 

from a rolling window, and outputs parameters that feed directly into a differentiable convex 

optimization layer. This layer then produces portfolio weights. Crucially, the entire pipeline is 

trained by directly maximizing a metric related to risk-adjusted returns. 

 

 

The benefits of this integrated approach are manifold: 

 

Alignment of Objectives: The model learns forecasts in a manner that is directly pertinent to 

improving portfolio performance, rather than minimizing a generic error metric (such as MSE). 

Risk-Return Trade-off: By embedding the portfolio optimization step within the training loop, 

the system can dynamically learn how “correct” forecasts translate into improved risk-return 

profiles. 

Gradient Flow: Thanks to recent advances in differentiable optimization libraries, we can 

propagate gradients through the convex solver, enabling end-to-end parameter updates of both 

the forecaster and the allocation module. 

 

4.2 - Neural Forecaster: LSTM-Based Architecture 

 

Modern finance frequently relies on modeling time series data characterized by non- 

stationarities, sudden regime shifts, and high levels of noise. Traditional neural networks and 

basic Recurrent Neural Networks (RNNs) can struggle under these conditions, especially when 

the relevant temporal patterns extend hundreds of trading days. As a response to these issues, 

Long Short-Term Memory (LSTM) networks introduce carefully engineered gating 

mechanisms, permitting the model to retain pertinent information for longer horizons, and 

mitigating the well-documented “vanishing gradient” phenomenon. 
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In this section, we delve deeply into why LSTMs are appropriate for financial forecasting, how 

they structurally differ from simple RNNs, and how their outputs are ultimately shaped to 

provide the parameters needed in our downstream portfolio allocation layer. 

 

4.2.1 Motivation for Using LSTMs 

 

Standard RNNs attempt to process sequential data by maintaining a hidden state that is 

iteratively updated as new inputs arrive. While this architecture captures short-term patterns 

well, it frequently falters in identifying or remembering long-term dependencies, particularly 

important in financial contexts, where market sentiments, macroeconomic factors, or seasonal 

effects might exert influence weeks or months later. 

 

A primary reason for this limitation is the vanishing (or exploding) gradient problem: as 

gradients are back-propagated through many timesteps, they can progressively shrink (or blow 

up), impeding effective learning. LSTM networks address this issue by including a specialized 

memory cell (the “cell state”) and a collection of gates, namely the forget gate, input gate, and 

output gate, that regulate the flow of information. 

 

Hochreiter and Schmidhuber originally proposed LSTMs to counteract the vanishing gradient 

through these gating mechanisms, effectively allowing certain aspects of the time series to be 

“forgotten,” while retaining crucial signals for longer intervals. 

 

In the context of financial forecasting: 

 

Long-Term Dependencies: Asset prices can exhibit trends, momentum, or cyclical behaviors 

that span multiple months. LSTMs are designed to capture these extended temporal 

relationships through careful control of the memory cell. 

 

Noise Reduction: Financial time series are noisy. By learning to selectively keep or discard 

information, LSTMs can filter out short-lived spikes or jitters. 

 

Modular Design: Each LSTM cell processes inputs step-by-step, which aligns neatly with daily 

returns data. Such a design allows for robust mini-batch training strategies while preserving the 

notion of sequence. 
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As a result, LSTMs often outperform both simple feed-forward architectures and vanilla RNNs 

in tasks like stock return forecasting or volatility prediction, where the relevant patterns may 

span an unknown number of days. 

 

4.2.2 - Network Structure and Input-Output Format 

 

In our framework, the LSTM-based neural forecaster serves as the central component 

for modeling sequential patterns in financial data. This network ingests rolling windows of 

daily returns for multiple assets and transforms these inputs into predicted parameters essential 

for subsequent portfolio allocation. In our experiments we decided to use lookback windows 

of 90 days instead of 120 just for a computational power issue. The code is indeed very slow 

on a cpu-only machine so we had to constraint the model at the best of our ability. 

 

A crucial design choice when building deep learning models for time series is how best to 

represent historical information. Here, as we said before, each sample is shaped as a 4D tensor: 

 

(𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 1, 𝑙𝑜𝑜𝑘𝑏𝑎𝑐𝑘, 𝑛𝑎𝑠𝑠𝑒𝑡𝑠) 

 
Although the second dimension (size =1) might initially seem superfluous, it provides room 

for future extensions, such as including multiple channels of data or additional transformations 

since LSTM can work with quantitative data but also with other types of data, we will talk 

about this in the conclusions. Internally, we “squeeze” this dimension so that each mini-batch 

entry essentially becomes a sequence of length 𝑙𝑜𝑜𝑘𝑏𝑎𝑐𝑘 with 𝑛𝑎𝑠𝑠𝑒𝑡𝑠 features per timestep. 

 

From a financial perspective, each of those features corresponds to the daily return of an 

individual asset. Consequently, the model observes the cross-section of returns at each point in 

time, enabling it to learn how different assets may co-move or diverge over the lookback 

window. By the end of this sequence, the LSTM has traversed 90 days of historical returns, 

capturing both short- and potentially long-range dependencies. 

 

Long Short-Term Memory networks are particularly well-suited to financial time series due to 

different problematics of traditional Recurrent Neural Networks that they are able to tackle 

thanks to their composition. 

 

Traditional Recurrent Neural Networks (RNNs), in fact, often struggle with Vanishing 

Gradient / Exploding Gradient problem as well as, in which gradient magnitudes decay or grow 
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exponentially when attempting to learn long-range dependencies. LSTMs overcome this 

challenge by introducing a memory cell and three gating mechanisms, namely the forget gate, 

input gate, and output gate, that allow the network to regulate what information is retained or 

discarded over time. 

 

When the model processes each rolling window of returns, it does so one day (or one timestep) 

at a time. At each step, it begins by computing the forget gate, which determines how much of 

the previous cell state should be preserved. Formally, the forget gate is defined by: 

 

𝑓𝑡 = 𝜎(𝑈𝑓𝑋𝑡 + 𝑊𝑓𝐻𝑡−1 + 𝑏𝑓) 

 
where 𝑋𝑡 is the current input (the cross-sectional asset returns on day 𝑡), 𝑈𝑓 is the weight 

associated with the input, 𝐻𝑡−1 is the hidden state of the previous timestamp, 𝑊𝑓 is the weight 

matrix associated with the hidden state and 𝜎 is the sigmoid activation function that squashes 

values into the interval [0,1]. If 𝑓𝑡 is close to 1, the LSTM largely keeps the older information 

in its internal memory; if 𝑓𝑡 is close to 0, it “forgets” that information. This mechanism is 

invaluable in finance, where certain historical data points become irrelevant after, for instance, 

a major news event or a regime shift. The term 𝑏𝑓 represent biases for the respective gate. 

 

Next, the model decides how much new information to incorporate from the current input via 

the input gate which is used to quantify the importance of the new information carried by the 

input. This is defined by the formula: 

𝑖𝑡 = 𝜎(𝑈𝑖𝑋𝑡 + 𝑊𝑖𝐻𝑡−1 + 𝑏𝑖) 

 
This gate provides a learned measure of how relevant the present-day signals are. In parallel, a 

candidate update 𝐶𝑡 is computed using a tanh activation function: 

𝐶˜˜𝑡 = tanh (𝑈𝑐𝑋𝑡 + 𝑊𝑐𝐻𝑡−1 + 𝑏𝑐) 

 

The product 𝑖𝑡 ⊙ 𝐶˜˜𝑡 (where ⊙ is elementwise multiplication) represents the specific fraction 

of new information to be added to the memory cell. The cell state itself is updated by combining 

this addition with the fraction of old memory retained by the forget gate: 

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶˜˜𝑡 
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This updated cell state𝐶𝑡 thus carries forward both older, still-relevant information and newly 

introduced signals from the current timestep, providing a flexible and powerful means of 

encoding longer-term dependencies in the data. 

 

The output gate then controls what portion of the updated cell state is exposed as the hidden 

state HtH_tHt, which effectively functions as the immediate “summary” of everything the 

model has inferred thus far. Mathematically, 

𝑜𝑡 = 𝜎(𝑈𝑜𝑋𝑡 + 𝑊𝑜𝐻𝑡−1 + 𝑏𝑜), 𝐻𝑡 = 𝑜𝑡 ⊙ tanh (𝐶𝑡) 

 
This gating logic ensures that at each timestep, the model can filter the cell state through a 

nonlinearity, revealing only the information deemed most relevant for the next computational 

steps. 

 

 

An Intuitive Explanation of LSTM by Ottavio Calzone 

(https://medium.com/@ottaviocalzone/an-intuitive-explanation-of-lstm-a035eb6ab42c) 

 

After the LSTM processes the entire lookback window the network’s final hidden state ℎΤ 

encapsulates the salient signals gathered from that entire historical period. This final hidden 

state is then passed to a fully connected layer that outputs 2 𝑥 𝑛𝑎𝑠𝑠𝑒𝑡𝑠 parameters. We interpret 

the first 𝑛𝑎𝑠𝑠𝑒𝑡𝑠 of these parameters as the model’s estimates for the expected mean returns 𝜇 ,̂  

and the remaining 𝑛𝑎𝑠𝑠𝑒𝑡𝑠 as the log-variances log 𝜎 2̂ .  Exponentiating the latter produces 

strictly positive variance (or volatility) estimates, 

𝑖 
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𝜎 2̂  = exp (log 𝜎 2̂ ). 
𝑖 𝑖 

 
In a classical finance context, mean and variance (or volatility) are of direct interest when 

constructing portfolios. By predicting these quantities, the LSTM provides precisely the inputs 

needed for an allocation layer that aims to balance expected returns against associated risk 

factors. 

 

It should be emphasized that within the end-to-end training paradigm adopted here, the LSTM’s 

predicted means and variances need not achieve perfect accuracy when evaluated solely 

through conventional forecasting metrics (e.g., mean squared error or likelihood-based scores). 

Rather, their fundamental role is to serve as intermediate parameters that feed directly into the 

subsequent portfolio optimization procedure. By designing the pipeline so that the Sharpe ratio 

becomes the loss function to be maximized, the model’s parameters, from those governing the 

LSTM to those within the allocation layer, are jointly calibrated to maximize the ultimate 

investment objective. This coupling of forecast generation and portfolio construction contrasts 

sharply with traditional two-stage processes in which each module is optimized in isolation. 

 

Within a conventional, forecast-centric paradigm, one might strive to minimize a predictive 

error metric without explicit regard for the quality of final portfolio returns. Such a disparity 

can lead to suboptimal overall performance, as the model may overemphasize aspects of return 

prediction that do not necessarily translate into improved portfolio-level results. In contrast, 

aligning the learning process directly with a portfolio performance metric places the focus on 

the features and temporal signals that genuinely enhance out-of-sample risk-adjusted returns. 

Consequently, the LSTM learns a representation of the financial time series that is more attuned 

to tangible trading outcomes, rather than purely numerical or statistical forecasting metrics. 

 

In summary, the LSTM-based forecaster operates as an advanced mechanism for extracting 

temporal structure within cross-sectional daily returns. The gating architecture intrinsic to 

LSTMs ensures that historically pertinent information is preserved while ephemeral, 

potentially misleading signals are attenuated or discarded. Crucially, this mechanism yields 

data-driven forecasts of expected returns and volatilities that are specifically tailored to the 

downstream objective of building robust, risk-managed portfolios. By marrying the 

representational strengths of LSTMs with an end-to-end optimization criterion centered on 

portfolio performance, the system intrinsically calibrates its learned features and output 
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≥0 

≥0 

parameters to those market patterns most likely to contribute to consistent, risk-adjusted gains, 

thereby providing a unified framework that seamlessly integrates forecasting and allocation 

tasks. 

 

4.3 – Allocation Layer 

 

In the subsequent segments of this chapter, we continue our exposition of the end-to- 

end framework by describing how the portfolio allocation step integrates into the same 

computational graph as the previously discussed LSTM-based return forecasting module. In 

our case we are going to define two distinct allocation layers, a Markowitz-style layer that 

balances expected returns against variances, and an entropy-based layer that encourages weight 

diversification, and then we’re going to introduce the various utility functions, performance 

metrics, and training procedures that tie the architecture together. 

 

4.3.1 – Markowitz Allocation Layer 

 

Following the LSTM module, one immediate step in many financial applications is to 

convert predictive distributions of returns (and possibly risks) into actionable portfolio weights. 

In order to accomplish that within our end-to-end paradigm, we begin with a mean-variance, 

or so-called Markowitz-inspired, objective function. The rationale for including a Markowitz- 

style layer emerges from decades of Modern Portfolio Theory, whose central theme is that it is 

often insufficient to merely maximize returns: the investment process must also include a term 

that penalizes portfolio volatility or variance. 

Mathematically, let us denote the predicted mean of each asset’s returns by 

 

𝜇 ∈ ℝ𝑛𝑎𝑠𝑠𝑒𝑡𝑠 , 

 

and the predicted variance (or the diagonal of a variance–covariance matrix) by 

𝜎2 ∈ ℝ𝑛𝑎𝑠𝑠𝑒𝑡𝑠 , 

The layer then defines a portfolio weight vector 

𝓌 ∈ ℝ𝑛𝑎𝑠𝑠𝑒𝑡𝑠 , 
 

 

where each 𝓌𝑖 corresponds to the fraction of total capital allocated to asset 𝑖. We denote by 𝛼 

the hyperparameter that scales the magnitude of the variance penalty. The allocation layer 

solves a convex optimization problem of the form: 
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𝑖 𝑖 

𝑛𝑎𝑠𝑠𝑒𝑡𝑠 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (1 − 𝛼) ∗ (𝜇𝖳 𝓌) − 𝛼 ∗ ∑ 𝜎2 𝓌2, 

𝑖=1 

in which both returns and volatility are taken into account adjusted for a weight alpha that is 

personalized from 0 to 1. Near to 0 we give more weight to the returns and near to 1 we give 

more importance to volatility so having a more stable portfolio but at the expenses of less 

expected return. In our case alpha was set to 0.3 heuristically. 

This function is subjected to the normalization constraint 

 

𝑛𝑎𝑠𝑠𝑒𝑡𝑠 

∑ 𝓌𝑖 = 1, 

𝑖=1 

non-negativity constraints, 

 

𝓌𝑖 ≥ 0 for each asset 𝑖 
 

and personalized max_weight constraints to avoid over concentration that were chosen 

heuristically 

𝓌𝑖 ≤ 0.80. 
 

Furthermore, it is important to highlight that our model allows users full discretion in selecting 

the assets in which they wish to invest. This is achieved by leveraging the previously defined 

constraint to assign a weight of zero to all undesired assets, effectively excluding them from 

the feasible investment set. 

A key innovation of our approach lies in integrating the portfolio optimization process within 

the neural network itself, rather than solving it externally in a traditional two-stage framework. 

Specifically, instead of computing the portfolio weights (𝓌) outside the model, we employ a 

differentiable convex optimization layer to determine them endogenously. We will see how in 

the dedicated paragraph. This is implemented using the cvxpylayers library, which enables the 

construction of differentiable convex optimization layers in PyTorch that we will present in the 

next paragraphs. 

In the code 𝛼 can be tailored to encourage or discourage certain risk–return trade-offs: a higher 

𝛼 leads to portfolios with lower variance at the expense of potentially reduced expected returns, 

while a smaller 𝛼 tends to focus more on maximizing returns, sometimes resulting in more 

concentrated weights. This provides a flexible mechanism to incorporate modern portfolio- 
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theoretic intuition into an end-to-end training loop, leveraging the best of classical finance but 

coupling it tightly with deep neural forecasting. 

4.3.2 – Entropy-Based Allocation Layer 

 

While the Markowitz paradigm is celebrated for balancing returns and risks, it often 

fails to enforce broad diversification unless one adds further constraints or carefully tunes the 

risk penalty. For instance, mean-variance portfolios sometimes allocate heavily to one or two 

assets that present the most favorable risk–return forecasts. In contrast, many market 

practitioners and academic studies recommend a degree of intentional diversification, thus 

mitigating tail risks, model uncertainty, and abrupt regime shifts. 

To address this, the second differentiable allocation layer in our architecture embraces an 

entropy-regularized objective function, which promotes a more uniform spread of portfolio 

weights. The base formulation resembles a simple expected-return maximization, 

𝜇𝖳 𝓌, 
 

but incorporates an entropy term that encourages diversification. If we denote the entropy of 

the weight vector 𝓌 by 

𝑛𝑎𝑠𝑠𝑒𝑡𝑠 

𝐻(𝓌) = − ∑  𝑒𝑛𝑡𝑟(𝓌𝑖), 

𝑖=1 

then an entropy-augmented objective seeks to maximize 

 

𝑛𝑎𝑠𝑠𝑒𝑡𝑠 

(1 − 𝛽) ∗ (𝜇𝖳 𝓌) + 𝛽 ∗  ∑ 𝑒𝑛𝑡𝑟(𝓌𝑖), 

𝑖=1 

 

where 𝑒𝑛𝑡𝑟(𝓌𝑖) is the standard entropy expression −𝓌𝑖 ln(𝓌𝑖) in the solver’s internal 

notation, and 𝛽 is a scalar that sets the relative importance of diversification. Here the higher 

the 𝛽 (between 0 and 1) the higher the concentration on entropy. Heuristically we defined for 

our code a 𝛽 = 0.7. This objective remains a concave function in 𝓌, and under the previous 

constraints the problem is convex and solvable to global optimality. 

Similar to the Markowitz layer, one can impose the usual constraints 

 

𝑛𝑎𝑠𝑠𝑒𝑡𝑠 

∑ 𝓌𝑖 = 1, 

𝑖=1 
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𝓌𝑖 ≥ 0 , 
 

𝓌𝑖 = 0 (if asset i is not permitted) and 

 

𝓌𝑖 ≤ 0.35 to incentivize the distribution of assets 

 

 

 

In practice, the main difference between the Markowitz and entropy allocation layers lies in 

how they shape the resulting portfolio solutions. The Markowitz layer emphasizes a risk–return 

balance, which can be very sensitive to the forecasted variances σ2\sigma^2σ2. By contrast, 

the entropy-based approach de-emphasizes any explicit risk penalty and instead offers a strong 

incentive against over-concentration, thanks to the nature of the entropy function. This often 

leads to weight vectors that include more assets at smaller proportions, possibly reducing the 

portfolio’s sensitivity to inaccurate forecasts of returns or volatilities. 

From an end-to-end training perspective, this layer also feeds into the daily portfolio returns, 

enabling gradient signals to propagate backward. The difference is simply that the layer’s 

gradient computations reflect the entropy-based objective rather than a variance-based one. 

This design allows the neural forecaster to adaptively discover which signals in the return 

history are most valuable for a diversified, robust approach to maximizing the eventual Sharpe 

ratio. 

4.3.3 – Differentiable Convex Optimization with cvxpylayers.torch 

 

A crucial ingredient that makes both the Markowitz and entropy-based allocation layers 

truly differentiable is the cvxpylayers.torch library. Traditional convex optimization toolkits, 

while capable of solving Markowitz and entropy-regularized problems, generally do not 

provide mechanisms for the seamless backpropagation of gradients into the parameters that 

define the optimization problem (e.g., the forecasted means and variances). 

By contrast cvxpylayers combines the expressive power of the CVXPY domain-specific 

language for convex optimization with the computational graph capabilities of deep learning 

frameworks. Specifically, once we specify a convex optimization problem, such as the 

Markowitz or entropy objective with relevant constraints, cvxpylayers analyzes the problem 

structure and compiles it into an operator that can be placed directly into a PyTorch (or other 

supported) computational graph. 
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When we perform forward passes the predicted parameters 𝜇 and 𝜎2 become inputs to this 

operator that solves the convex problem, whether it be a mean-variance maximization or an 

entropy-augmented objective, and returns the optimal portfolio weights . 

Then, for backward passes cvxpylayers applies the implicit function theorem to compute the 

partial derivatives of the optimal solution 𝓌 ∗ with respect to each input parameter (i.e., 𝜇 and 

𝜎2). These derivatives are propagated back through the remainder of the neural network, 

allowing the LSTM’s internal parameters to update in ways that directly improve the final 

training objective (e.g., the Sharpe ratio). 

Hence, instead of a static two-stage pipeline, we obtain a dynamically trainable pipeline whose 

every step, namely forecasting through LSTM, portfolio weighting, and performance 

evaluation, coexists in the same auto-differentiation framework. This arrangement not only 

simplifies development but also leads to more coherent optimization: if the neural net learns 

that small errors in forecasting 𝜎2 have a large detrimental impact on final portfolio outcomes 

(e.g., by over-allocating to volatile assets), it will re-tune its parameters accordingly. 

Conversely, if certain aspects of 𝜇 predictions prove especially useful for the optimization 

layer, the backpropagated gradients will reinforce those aspects automatically. 

This synergy between modern deep learning architectures and classical convex optimization 

stands at the core of our end-to-end approach, bridging the gap between advanced statistical 

forecasting and the practical requirements of portfolio construction. 

4.4 - Utility Functions and Performance Metrics 

 

After either the Markowitz or the entropy allocation layer has provided an optimal 

weight vector www, we can measure the portfolio’s subsequent performance over a particular 

horizon of daily returns. To that end, our framework includes a collection of functions for 

evaluating how effectively a set of portfolio weights would have performed on historical data. 

These functions operate on mini-batches of data, computing essential quantities such as 

portfolio returns, means, variances, or advanced measures like maximum drawdown. 

A fundamental step, for instance, is to compute the daily portfolio returns once we have selected 

weights. If 𝑟𝑖,𝑡 denotes the return of asset 𝑖 on day 𝑡, and 𝓌𝑖 denotes the portfolio weight of 

asset 𝑖, the daily portfolio return on day 𝑡 is: 
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𝑡 

𝑡  

𝑡 

𝑡 

𝑛𝑎𝑠𝑠𝑒𝑡𝑠 

𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 = ∑  𝓌𝑖𝑟𝑖,𝑡 

𝑖=1 

 

Aggregating these daily returns over a specified horizon permits us to calculate standard 

performance metrics such as the annualized return, annualized volatility, maximum drawdown, 

and the Sharpe ratio which is a measure of risk-adjusted return computed as: 

 

𝑆ℎ𝑎𝑟𝑝𝑒 = 
 𝔼[𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜] 

𝜎(𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜) 

 
Where 𝔼[𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜] is the expected return from the portfolio and denominator is the standard 

deviation of the returns in the portfolio. The 𝑟𝑓member inside the formula was put to 0 because 

there is no risk free return when investing into stocks. 

Maximizing this ratio can be interpreted as a preference for consistently positive returns with 

minimal fluctuations. 

We will talk more about metrics in the dedicated chapter but we wanted to tackle the creation 

of the sharpe ratio to understand better the loss function explained in the next paragraph. 

4.5 – Negative Sharpe Ratio and End-to-End Training 

 

To seamlessly train the neural network and the allocation layer toward maximizing the 

Sharpe ratio, we introduce a differentiable loss function that corresponds to the negative of this 

metric. Most deep learning frameworks rely on gradient-based optimizers that proceed by 

minimizing an objective, so by negating the Sharpe ratio, we effectively implement “maximize 

Sharpe ratio” within the training pipeline: 

 

𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 

𝓁𝑆ℎ𝑎𝑟𝑝𝑒 = − 
𝜎(𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜) + 𝜀 

 

Where 𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 is the empirical mean of the daily returns within the mini-batch, 𝜎(𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜) is 

the square root of the variance, the standard deviation and 𝜀 is a small constant to avoid division 

by zero. 

Putting all together, during each training iteration a batch of input sequences is passed through 

the LSTM, yielding predicted means 𝜇 ̂ and log-variances log( 𝜎 2̂ )  for each asset. These 

predictions serve as inputs to the selected differentiable allocation layer (Markowitz or 

entropy), which then optimizes the portfolio allocation. The solver subsequently determines 
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the weight vector 𝓌 that maximizes the corresponding objective function for each batch of 

predictions. With those weights 𝓌, the daily portfolio returns are computed over the relevant 

horizon. We then calculate the negative Sharpe ratio as our scalar loss. Gradients of this scalar 

loss are backpropagated through the allocation layer and the LSTM, thereby updating all 

parameters (including the LSTM gating parameters, fully connected layers, and any trainable 

coefficients in the allocation layer) in a way that directly aims to increase the Sharpe ratio in 

future iterations. 

Such training proceeds for multiple epochs over the training set, where each epoch comprises 

multiple mini-batches of data and adjusting the batch size, learning rate, and number of epochs 

we ensure that the training converges to a suitable solution that generalizes well out-of-sample. 

At last, the main function of the code which is responsible for the generation of the outputs 

given to the user will return a set of weights, which will be the last one in the series of output 

from the model, namely the one near the date the user is using the tool, various performance 

metrics which will see in the next chapter talking about evaluation of the model and finally the 

name of the allocation layer that gave the best results. 

All these information will be fed to a generative AI (Gemini) which will make for the user a 

user-friendly explanation of the output explained in natural language. We will see this in the 

dedicated chapter. 

4.6 - Concluding Remarks on the Allocation Layers 

 

Through this unified structure, we manage to bring both classical finance concepts and 

modern machine learning techniques under one roof. The neural network focuses on discerning 

any exploitable patterns in daily returns and calibrates its forecasts to suit the precise needs of 

an allocation module that is itself learned in tandem. If, for example, the Markowitz penalty 𝛼 

reveals that certain forecast inaccuracies lead to large swings in allocated weights, the LSTM 

has an immediate incentive to refine its estimates of variance or expected returns in a way that 

mitigates this issue. Likewise, if the entropy-based module is employed, the LSTM is guided 

toward producing forecasts that allow for stable yet diversified allocations, thereby balancing 

the search for profitable assets with an inherent desire to avoid undue concentration. 

Meanwhile, the cvxpylayers.torch integration ensures that every step in this pipeline, ranging 

from raw market data input to final performance evaluation, is differentiable. Rather than the 

LSTM being judged by how well it predicts returns in isolation, it is judged by how much value 
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it adds when those predictions feed into an actual portfolio. By eliminating the historical 

disconnect between “forecasting accuracy” in one stage and “optimal allocation” in another, 

practitioners can achieve an improved synergy that can reduce the risk of overfitting or forecast 

misalignment. The direct gradient flow from the final portfolio returns back through the solver 

into the forecaster ensures that each forecast is evaluated not just by how well it predicts future 

returns in an abstract sense, but by how effectively it enhances the final risk-adjusted returns 

of the portfolio. 
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CHAPTER 5 

 

EVALUATION AND EXPERIMENTAL RESULTS 

 

Having laid out the end-to-end neural architecture, encompassing both the LSTM 

forecaster and the differentiable allocation layer(s), we now turn to the crucial task of 

evaluating the model’s out-of-sample performance. This chapter addresses how portfolio 

returns are calculated, which performance metrics are used to gauge effectiveness, and how 

these metrics allow us to compare our approach against a classic Markowitz benchmark. By 

the end, we will see how end-to-end learning, anchored in Sharpe ratio maximization, translates 

into tangible differences in portfolio outcomes. 

5.1 - Portfolio Evaluation Function 

 

A central element of our portfolio backtest is the evaluation function, which maps a 

given set of portfolio weights to the resulting time series of daily returns, and ultimately to 

higher-level metrics such as annual returns, volatility, Sharpe ratio, and maximum drawdown. 

In our framework, this evaluation function is invoked repeatedly for each mini-batch during 

training (to compute the negative Sharpe loss used as loss function by the LSTM model) and 

on the entire test set (to produce final performance statistics). 

The test set, covering the final 252 trading days in our dataset, serves as an independent 

validation window that enables an objective assessment of the learned portfolio allocation 

strategy. We didn’t approach the problem with a normal 80%-20% train-test split since we 

decided to evaluate our results on an entire trading year (252 days remaining excluding 

weekends and public holidays). 

This specific period is reserved to measure the out-of-sample performance of the investment 

strategy. Unlike the training phase, where weight updates occur iteratively based on the loss 

function, evaluation on the test set operates in a strictly forward manner: given past price 

movements, the model predicts asset-level return distributions and derives optimal portfolio 

weights, which are then applied to compute realized portfolio returns over the horizon. It’s 

important to emphasize that we are not using the final year’s data for training, thus avoiding 

look-ahead bias. 

To ensure consistency in performance evaluation, portfolio returns are computed using the 

weight allocations derived from the test set inference. The process follows a structured pipeline 

in which the trained LSTM-based forecaster that we presented in chapter 4 receives a rolling 



36  

window of past observed return (the 90 days of lookback), it processes this sequence and 

outputs a forecast, namely the expected mean return vector and log-variance vector of asset 

returns for the next period of 30 days (horizon), the log-variance is exponentiated to obtain the 

variance. The predicted mean and variance are passed to the allocation layer that solves the 

optimization problem under the constraints we imposed and outputs the resulting optimal 

portfolio weights for the first horizon of the test set that are stored for application. 

Once the first set of portfolio weights is obtained, it computed the first 30 days’ returns and the 

input is rolled forward, the model must iterate through the entire test set using a rolling window 

approach. 

The oldest chunk of 30 days in the input window is dropped and the newest observed returns 

(from the first horizon of the test set) is added. The entire sequence is again fed to the LSTM 

model and the process repeats. 

To improve stability and reduce transaction costs, instead of updating weights on a rolling daily 

basis, the optimization is performed at fixed 30-day intervals, ensuring that once weights are 

set for a given period, they remain unchanged until the next rebalance date. This approach gives 

back slightly worse results than a normal daily redistribution of budget but maintains 

adaptability while preventing excessive trading, aligning with practical investment constraints. 

While the forecasted weights are applied to the actual asset returns in the test set we are 

generating a time series of realized daily portfolio returns that we will use to compute key 

financial risk and reward metrics. 

5.2 - Performance Metrics Computation 

 

We decided to evaluate our portfolio selection through 5 main metrics that are extremely 

useful in finance: the Equity Curve, the Annual Return, the Annualized Volatility, the Sharpe 

Ratio (also used for training) and the maximum Drawdown 

 

Starting from the first one, an intuitive way to visualize the trajectory of the portfolio value 

through time is the equity curve. This cumulative representation tracks how an initial 

investment would evolve under compounding returns. Mathematically, if 𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜,𝑡 is the daily 

return at day 𝑡, then the equity curve up to day 𝑇 is computed by: 
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𝑡 

𝐸𝑡 = 𝖦(1 + 𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜,𝑖), 𝑡 = 1, . . . , 𝑇 

𝑖=1 

 
Here, 𝐸𝑡 can be interpreted as the growth factor: a value greater than 1 indicates net growth, 

while a value below 1 signals net decline. 

 

It is important also to mention that this equity curve will be our only graphic choice given by 

the model as output for the user. 

 

For the second metric, since the backtest period is exactly 252 trading days (approximately one 

trading year), the total return realized at the end of day 𝑇 closely approximates the annual return 

that is the metric of interest. By definition: 

 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑅𝑒𝑡𝑢𝑟𝑛 = 𝐸𝑡 − 1 

 
where 𝐸𝑡 is the final value of the equity curve after 𝑇 days. This measure answers a fundamental 

question: How much would the portfolio have gained or lost, in percentage terms, over the 

course of one year? 

 

While return quantifies the upside potential, volatility captures the risk or uncertainty. In 

financial contexts, volatility is often expressed in annualized form. Concretely, we calculate 

the standard deviation of daily returns and scale it to a yearly figure by multiplying by √252. 

Hence: 

 

𝜎𝑎𝑛𝑛𝑢𝑎𝑙 = 𝜎𝑑𝑎𝑖𝑙𝑦 × √252 

 
where 𝜎𝑑𝑎𝑖𝑙𝑦 is the standard deviation of the daily return series. Volatility serves as a key gauge 

of the variability of returns: higher volatility implies more pronounced swings in daily 

performance. 

Going forward, a direct way to quantify risk-adjusted performance is the Sharpe Ratio, which 

considers both the reward (annual return) and the risk (annualized volatility). Assuming a zero 

risk-free rate for simplicity, the Sharpe Ratio is given by: 

 

𝑆ℎ𝑎𝑟𝑝𝑒 = 
𝐴𝑛𝑛𝑢𝑎𝑙 𝑅𝑒𝑡𝑢𝑟𝑛 

 
 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 
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A higher Sharpe Ratio indicates that each unit of risk taken by the strategy generates a higher 

level of return, thus signaling more efficient use of risk capital. 

 

Finally we chose the Maximum Drawdown since portfolio management also requires 

understanding worst-case declines. The MDD measures the largest peak-to-trough drop in the 

equity curve throughout the evaluation window. Defining the equity curve at day 𝑡 as 𝐸𝑡 and 

the running maximum of the curve up to 𝑡 as 𝑚𝑎𝑥𝑠≤𝑡 𝐸𝑠, the daily drawdown at 𝑡 is: 

 

𝐷𝑡 = 
𝐸𝑡 − 𝑚𝑎𝑥𝑠≤𝑡 𝐸𝑠 

 
 

𝑚𝑎𝑥𝑠≤𝑡 𝐸𝑠 

 
The Maximum Drawdown is then: 

 
𝑀𝐷𝐷 = min 𝐷𝑡 

𝑡 

 
capturing the steepest percentage decline from a historical peak to a subsequent trough. This 

statistic highlights the depth of potential losses and is crucial for evaluating downside risk. 

 

5.3 – Comparison of our model performance with a standard Markowitz 

 

To rigorously evaluate the effectiveness of our end-to-end portfolio optimization model, 

we conducted a comprehensive comparative analysis against the traditional Markowitz mean-

variance framework. This evaluation was performed by selecting a universe of 30 widely 

recognized financial assets and systematically generating randomized four-asset portfolios in 

each iteration. These asset combinations were then fed into both models, which computed the 

same set of performance metrics, including annual return, annual volatility, Sharpe ratio, and 

maximum drawdown. The results of 20 iterations and 20 different combinations of assets were 

systematically recorded and organized into a comparative table (Fig. 1), facilitating a clear and 

objective assessment of the models' relative performance. This methodology ensures that our 

analysis captures a broad spectrum of market conditions and asset interactions, thereby 

providing robust insights into the advantages of our approach over conventional optimization 

techniques. 

The empirical results demonstrate a clear advantage of our approach, which consistently 

achieves superior risk-adjusted returns, lower volatility, and improved drawdown control. 

While classical Markowitz optimization (with mean and variance calculated naively using the 
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mean of the past 90 days) is widely recognized for its theoretical foundation, it suffers from 

critical limitations, including sensitivity to estimation errors in the covariance matrix, excessive 

concentration in a small number of assets, and an inability to dynamically adapt to changing 

market conditions. Our model overcomes these deficiencies by leveraging a more robust asset 

allocation strategy that enhances diversification while preserving return potential. 

A comparative analysis across different test cases highlights these advantages. For instance, in 

step 0, the classical Markowitz approach yields a Sharpe ratio of 1.637, whereas our model 

achieves 2.0278, signifying a substantial improvement in risk-adjusted performance. 

Furthermore, our model effectively mitigates concentration risk by distributing capital more 

efficiently across multiple assets. Unlike the classical approach, which allocates 90.31% of 

capital to AMZN and only 9.69% to GOOGL, our model balances allocations among AMZN 

(35%), GOOGL (35%), and the S&P 500 index (^GSPC, 29.24%), thereby reducing reliance 

on a single asset and increasing portfolio resilience. This improved allocation strategy also 

contributes to a lower maximum drawdown (-0.1501 vs. -0.1917 for the classical model), 

underscoring the risk management capabilities of our approach. 

Behind the greater stability brought by our model by the form of an higher Sharpe ratio, our 

model significantly reduces portfolio volatility, in fact in the same example we can see how the 

annual volatility is 0.26 in the classical Markowitz approach and 0.19 in our end to end 

approach. 

Perhaps the most significant shortcoming of the classical Markowitz approach, as revealed by 

our experiments, is its frequent tendency to over-allocate capital to a single asset. In steps 2, 4, 

9, 11, and 19, the classical optimizer assigns 100% of capital to a single stock, an allocation 

that, while mathematically optimal under historical conditions, introduces substantial 

concentration risk. Our model avoids such pitfalls by maintaining a more balanced portfolio 

structure, ensuring that risk is distributed across multiple assets rather than being concentrated 

in one or two securities. 

In conclusion, The empirical evidence strongly supports the superiority of our end-to-end AI- 

driven portfolio optimization model over classical mean-variance optimization. Unlike 

traditional Markowitz approaches that rely solely on historical return data and static covariance 

estimates, our model incorporates advanced AI techniques to predict future returns and 

dynamically adjust asset allocations based on evolving market conditions. This predictive 

capability allows our model to optimize portfolio construction in a more forward-looking 
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manner, mitigating the risks associated with estimation errors and market instability that often 

undermine classical optimization strategies. 

By leveraging AI-driven forecasting techniques, our model delivers higher risk-adjusted 

returns while maintaining lower volatility and enhanced drawdown management. The 

integration of intelligent allocation mechanisms ensures that portfolios remain well-diversified 

and resilient, avoiding the pitfalls of concentration risk that frequently arise in static 

optimization frameworks. Furthermore, the adaptability of our approach enables it to respond 

proactively to shifts in market dynamics, improving its ability to capture opportunities and 

hedge against downside risks more effectively than conventional models. 

 

5.4 – Comparison of our model performance with a two steps model 

 

To further test our end-to-end model performance we decided to create another model 

similar in structure with the only difference being the fact that the second will have a two- 

separate-stage training in which the forecaster (LSTM) will have as loss function a simple MSE 

(mean-square-error) and the output of the model (mean and variance) will be fed to the allocator 

that statistically distributes weights. 

 

The empirical results showed in the table in Fig.2 from our comparative analysis between our 

end-to-end portfolio optimization model and the two-stage forecast model demonstrate a clear 

and consistent advantage of our approach across multiple performance metrics performing 

better than the two steps model 26 times out of 35 different combinations of tickers (74.28%). 

 

The two-stage model, which combines an LSTM-based forecaster trained with mean squared 

error (MSE) and a classical Markowitz optimization layer, exhibits several limitations that our 

end-to-end model successfully addresses. Specifically, the two-stage approach relies on a 

decoupled process where the forecasting and optimization steps are performed independently, 

leading to suboptimal asset allocations due to the lack of feedback between the two stages. This 

often results in higher volatility, lower risk-adjusted returns, and less effective drawdown 

management compared to our integrated model. 

 

Our end-to-end model, which leverages a unified framework combining AI-driven forecasting 

and dynamic allocation, consistently outperforms the two-stage model in terms of Sharpe ratio, 

annual return, and maximum drawdown. For example, as we can see in step 1 of Fig.2, the two- 

stage model achieves a Sharpe ratio of 1.3703, while our end-to-end model attains a higher 
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Sharpe ratio of 3.5594 denoting a marked superiority of our model highlighted by the superior 

risk-adjusted performance of our approach. Furthermore, our model demonstrates better 

diversification and capital allocation, avoiding the over-concentration in single assets that often 

plagues the two-stage model. 

 

As we said in our work, the two steps model perform worse due to the fact that the forecasting 

and optimization steps are performed independently, so the forecaster predicts future returns 

and variances without considering how these predictions will be used in the optimization 

process. This decoupling can lead to a mismatch between the forecasted parameters and the 

actual portfolio construction process. For example, the forecaster might predict high returns for 

a particular asset, but the optimizer might allocate too much capital to that asset, leading to 

over-concentration and increased risk. This lack of feedback between the forecasting and 

allocation layer can result in suboptimal asset allocations since the first isn’t informed of the 

objective that needs to be reached. Instead our end-to-end model trains the forecaster with the 

sharpe ratio as loss function, resulting in more resilient portfolios. 

 

In conclusion, the empirical evidence underscores the superiority of our end-to-end portfolio 

optimization model also over the two-stage forecast model. By integrating AI-driven 

forecasting with dynamic allocation mechanisms, our model not only enhances risk-adjusted 

returns but also improves diversification, reduces volatility, and mitigates drawdowns. These 

findings highlight the transformative potential of end-to-end AI-driven approaches in modern 

portfolio management, offering a robust alternative to traditional decoupled optimization 

frameworks. As financial markets continue to evolve, the ability to leverage advanced AI 

techniques for forward-looking portfolio construction will remain a critical advantage for 

achieving long-term investment success. 



42  

CHAPTER 6 

 

WEB-APPLICATION DEVELOPMENT 

 

In addition to designing and testing the underlying machine learning models, a key 

objective of this work is to deliver a simple and intuitive way for users, whether novice 

investors or experienced fund managers, to interact with these sophisticated portfolio- 

optimization capabilities. As discussed throughout earlier chapters, even the most advanced 

AI-driven models lose much of their power if end-users find them difficult to interpret or 

cumbersome to operate. This chapter outlines how our web-based platform (fig.3) was built 

with the dual goals of ensuring technical robustness and offering a clean, user-friendly 

interface. We describe how the front-end is structured, highlight the importance of intuitive 

page layouts and interactive elements, and illustrate how user input seamlessly triggers the 

back-end logic to produce meaningful outputs. 

6.1 - Rationale for a Simple, Intuitive Interface 

 

Given the complexity of AI-based portfolio optimization, it is easy for developers to 

overload an interface with too many controls, technical terms, or data visualizations. Such 

approaches risk alienating users who have limited financial knowledge or who are new to 

machine learning. Our focus instead is on simplicity: by limiting the number of mandatory 

input fields and presenting outputs in clear, everyday language, thanks to Large Language 

Model (LLM), that we will describe in the next chapter, the platform lowers the barriers to 

entry. This aligns with our overarching mission to make advanced investment analytics 

accessible to all. 

In designing the front-end, we followed several principles common to effective user experience 

(UX) design: 

Using a minimalist design, we present only the most critical input fields and a concise display 

of model outputs. Unnecessary data or functionality can clutter the page and confuse the user. 

Through a clear Call-to-Action the user can easily identify how to interact with the system, for 

example, by typing a question or request in a chat-like interface following the instructions on 

the screen. This lowers the learning curve for navigating the tool. 
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Furthermore, while we aim to maintain a minimalist design, a concise chart (in our case an 

equity curve) can be more impactful than long tables of numerical data to support the results 

of our model. 

Thus, we use carefully chosen plots that highlight key performance metrics or historical 

performance. 

For users with limited financial or technical expertise, text-based explanations generated by 

Gemini are provided in natural language to help them understand why a model suggests specific 

allocations, or how the portfolio itself went on the test set and the generative AI will also give 

a comment on the main metrics and suggest, in case the portfolio didn’t perform well, to try 

again with other tickers. 

Finally for easy reset of the model to let the user write a new prompt and have a new output 

there will be a simple reset button that will delete the trained model and the train answer and 

give again the word to the user. 

6.2 – Technology Stack: Streamlit 

 

To achieve the above UX goals, we employed the Streamlit framework for Python, a 

tool that excels in building interactive web applications for data science and machine learning 

tasks. Its declarative style allows developers to concentrate on the logic and results rather than 

the details of front-end implementation. By automatically handling the rendering of widgets 

such as text inputs, buttons, and charts, Streamlit greatly accelerates prototyping. It also offers 

streamlined state management through st.session_state, which keeps track of user inputs and 

model outputs across multiple interactions, avoiding the need for complex backend solutions. 

Additionally, Streamlit integrates smoothly with libraries like Altair, Plotly, and Matplotlib, 

enabling easy embedding of charts and enhancing the overall data visualization experience. 

6.3 – Conversational Interaction 

 

One of the most novel features of this platform is its chat-driven interface, which 

addresses a critical gap in many fintech tools: interpretable and natural language feedback. 

Instead of forcing the user to navigate through complex forms, we use a text box at the bottom 

of the page where the user can submit questions, for example: 

“How should I allocate my portfolio among these five stocks?” 
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Internally, the application interprets these requests, triggers the relevant model logic, and 

returns answers in a conversational style. While some advanced generative AI components are 

used in the back-end, from the user’s perspective, it simply feels like chatting with an intelligent 

assistant with the only difference that the user will wait for 1-2 minutes to wait for the model 

to train. 

The answer, as said before will be in natural language, following the language of the user that 

wrote the prompt and will report the suggested weigths, the metrics of interest and a graph of 

the equity curve as shown in Fig.4. 

In the top-right we can find a “↻” button that let the user reset the entire application in a way 

to pose a new question with different tickers of interest. 

6.4 – Concluding Remarks on Web-Application Development 

 

This chapter has shown how an emphasis on user-centric design principles and a 

streamlined code structure can transform a technically complex system, encompassing LSTM 

forecasting, convex optimization, and sophisticated portfolio metrics, into a platform easily 

navigable by diverse users. The decision to incorporate conversational interaction via a chat- 

like interface exemplifies a broader shift in fintech applications, moving away from dense 

dashboards and specialized interfaces toward natural language–driven tools that build trust and 

expand accessibility. 

Overall, the result is a robust, flexible application that bridges advanced AI-driven portfolio 

optimization with clear, human-readable guidance. By keeping the user experience in the 

spotlight, we ensure that our solution addresses its central mission: enabling intelligent, data- 

driven investment decisions without sacrificing clarity or simplicity. 
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CHAPTER 7 

 

LLM INTEGRATION FOR INPUT AND OUTPUT 

 

In the previous chapter, we presented the web application’s front-end design and 

illustrated how a user-friendly interface can significantly improve the overall investment 

experience. We also mentioned that, behind this intuitive interface, the portfolio optimization 

model from Chapter 4 handles the core analytical tasks. An important question, however, arises: 

how does the model actually receive the specific inputs, namely the stock tickers in which a 

user wants to invest, when these inputs are stated in casual, everyday language? 

This is precisely where a Large Language Model (LLM)—in our case, Gemini—enters the 

picture. Instead of burdening the user with rigid data-entry forms or specialized financial 

jargon, the application allows people to interact through natural language prompts. A user might 

type, for instance, “I’d like to invest in Apple and Google” or “Allocate my funds between 

Tesla, Netflix, and Microsoft.” The LLM takes these free-form statements, parses them, and 

translates them into structured instructions, which the underlying computational framework 

(the LSTM model and allocation layers from Chapter 4) can then act upon. 

By doing so, Gemini functions as an intelligent intermediary. It processes queries in input for 

the correct tickers and generates a refined command that the back-end system can interpret 

seamlessly and generates comments in output so that the user will be able to understand the 

quantitative results of the model. This approach not only increases accessibility for users with 

limited financial or technical backgrounds, but also significantly reduces friction in data entry. 

Rather than juggling ticker symbols and learning how to operate a specialized interface, users 

can simply converse in natural language, leaving the behind-the-scenes translation to Gemini. 

In this chapter, we explore Gemini’s role in greater detail, discussing how its conversational 

capabilities integrate with the front-end interface to enable a fluid, chat-like exchange. We 

delve into how the generative AI model identifies the relevant assets from a prompt and how 

these extracted elements are channeled into the algorithms described in earlier chapters. 

7.1 – Introduction to Large Language Models (LLMs) 

 

In recent years, Large Language Models (LLMs) have emerged as a central technology 

for understanding and generating human-like text. Modern LLMs, often based on Transformer 

architectures, harness attention mechanisms that enable them to relate every token in a 

sequence to all other tokens. This design allows for more efficient parallelization in training 
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and a remarkable capacity to capture contextual nuances over extended input spans. Through 

exposure to vast corpora of text, these models learn to handle diverse topics, languages, and 

even specialized domains, ranging from everyday conversation to fields like law or finance. 

Their few-shot and zero-shot reasoning abilities mean they can often respond coherently to new 

or unexpected queries as long as the prompt is suitably structured. 

Such adaptability is particularly valuable in finance, where investors might phrase their 

objectives in many ways—some direct, others vague or partially defined. A strong LLM can 

process seemingly casual instructions (for instance, “I want to put my money into Apple and 

maybe a broad market ETF”) and extract the relevant financial elements (AAPL, SPY, or 

^GSPC). In turn, it can facilitate a conversational format that allows users to refine and iterate 

on their requests. By bridging specialized computational routines with plain language, the LLM 

helps overcome barriers to entry, ensuring that sophisticated financial analytics can be 

delivered to both new and experienced market participants in an accessible manner. 

7.2 - Gemini 

 

Among the various available LLMs, we adopt Google’s Gemini for its strong balance 

between linguistic fluency and developer-oriented functionality and also for its 300$ of free 

credit to start learning and experimenting with its functions. Gemini is grounded in a large- 

scale Transformer infrastructure and benefits from comprehensive pretraining, enabling it to 

parse both colloquial expressions and technical financial terms. It also incorporates 

mechanisms for function calling, where the model can return structured data aligned with 

specific developer-defined schemas. These features eliminate much of the ambiguity typically 

associated with natural language processing, allowing the system to interpret user text as a clear 

set of instructions for subsequent forecasting or allocation routines. Gemini further provides 

built-in safety filters to maintain focus on relevant content and support multilingual 

interactions, broadening its scope to users who may prefer communicating in languages other 

than English. 

7.3 - The Application of LLM on Our Web App 

 

The primary task of the LLM in our portfolio optimization tool is to link plain-language queries 

with the advanced analytics described in earlier chapters. Rather than forcing users to navigate 

a list of tickers or fill out complex forms, the web application presents a simple chat interface 

where they can type statements like, “I’d like to invest in Tesla and Microsoft.” Under the hood, 

Gemini interprets this free-form text and calls a function defined by the developer. This 
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function is configured to receive the user’s prompt and output a structured object containing 

the extracted tickers. The model accomplishes this through its function-calling interface, which 

ensures that whenever it detects references to companies, it packages them in a JSON-like 

format rather than leaving them embedded in a longer textual response. 

Once this function returns, the web application forwards the resulting ticker made into a list to 

our back-end model. At this stage, the system applies the AI-driven forecast (our end-to-end 

model) and then conducts the convex optimization step. The solver arrives at a set of weights 

that reflect the objective of the optimization problem we saw previously, together with the 

additional constraints we described before. These results, which include numeric allocations 

and performance indicators, are then handed back to Gemini in a second prompt for 

explanation. This second prompt instructs the model to generate a narrative summarizing the 

final weight distribution, clarifying its rationale, and commenting on how risk metrics (like 

Sharpe ratio, annualized volatility, or drawdowns) might inform the user’s decision. 

By leveraging function calls in both directions, first for extracting meaningful inputs and then 

for generating explanatory outputs, the system encloses its core logic within a dialogue cycle. 

On the input side, Gemini’s function calling helps standardize user requests. Even if a user 

writes slightly ambiguous statements or if the user doesn’t know the code of the tickers he 

wants to invest in, the model can often interpret them correctly and respond with a neat list of 

recognized symbols. On the output side, Gemini’s capability to produce structured narrative 

ensures that performance metrics and allocation strategies are distilled into a reader-friendly 

commentary that can highlight key points, identify potential risks, and recommend further 

diversifications. 

Behind the scenes, each function call defines its expected input and output schemas. During 

the first call, the model knows it must produce the ticker symbols in an array. During the second 

call, it transforms allocation weights and risk metrics into a coherent explanatory paragraph or 

two. Because these steps are executed under well-defined schemas, the system avoids the usual 

pitfalls of ad hoc text parsing. Developers can thus focus on the financial logic and user 

experience, rather than writing extensive rules for extracting data from plain text. Function 

calling effectively gives the model a blueprint for what is considered “valid” output in each 

stage of the conversation, reducing the chances of misunderstanding or hallucination in 

sensitive domains like finance. 
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7.4 – Concluding remarks 

 

Integrating an LLM into our application substantially lowers the user’s cognitive load 

when specifying assets or interpreting model outputs. Rather than searching for the right ticker 

or decoding cryptic allocation tables, users receive a guided, conversation-like experience. The 

use of Gemini, with its robust function-calling interface, provides a structured way to handle 

both the extraction of tickers from user text and the generation of narrative explanations around 

portfolio results. This yields a workflow that is not only more accessible but also more 

transparent, since every recommended allocation is accompanied by a natural language 

commentary that clarifies its purpose and associated risks. 

Nevertheless, a few limitations should be acknowledged. LLMs can occasionally produce off- 

topic or factually incorrect statements, so safeguarding features like function schemas, safety 

filters, and post-processing checks remain important for maintaining consistent quality. Model 

inference also comes with higher computational and economic costs than purely rule-based 

systems, so balancing real-time performance with prompt complexity is a crucial design 

consideration. Despite these caveats, the benefits of a language-driven interface—improved 

usability, greater interpretability, and more interactive investment dialogues—make a 

compelling case for further refining LLM-based approaches in portfolio management tools. 
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CHAPTER 8 

DISCUSSIONS AND CONCLUSIONS 

This thesis introduced a comprehensive framework for AI-enhanced portfolio 

management, with a particular focus on melding predictive modeling, optimization, and user 

accessibility. At the core of this framework is a Long Short-Term Memory (LSTM) network 

designed to generate forecasts of asset returns. These forecasts are then passed to a 

differentiable convex optimization layer that determines how capital should be distributed 

among the selected assets. The entire process is packaged in a web-based application, which 

draws on a Large Language Model (LLM) interface to make advanced financial tools more 

approachable to a broad range of users. By embedding portfolio construction into an end-to- 

end training process and relying on a conversational interface, the methodology aims to tap 

into deep learning’s predictive capabilities while demystifying complex financial analytics for 

both beginner and experienced investors. 

One of the primary achievements of this work lies in demonstrating how traditional, sequential 

approaches to forecasting and portfolio allocation can be improved when folded into a single 

computational pipeline. Typically, machine learning models generate return predictions in 

isolation, and a separate optimization procedure later decides the portfolio weights. In contrast, 

the present thesis integrates these steps so that the LSTM’s training objective is directly tied to 

a portfolio performance metric. Rather than simply minimizing a prediction error, the LSTM 

learns patterns in the data that ultimately enhance the final risk–return profile of the portfolio. 

In empirical tests, this unified approach not only delivered higher risk-adjusted returns 

compared to a classic mean-variance optimizer but also lowered overall volatility and reduced 

the problem of concentrating too heavily in a few assets. Still, in any practical investing 

context—where liquidity constraints, transaction costs, and regulatory issues loom large, it 

would be prudent to refine the framework further to handle these real-world complexities. 

The thesis also makes a case for broadening the data fed into the LSTM beyond mere returns 

and volatility. Although daily price fluctuations and risk indicators capture much of the 

market’s short-term movement, relevant information often resides outside of these 

conventional data streams. News reports, social media sentiment, macroeconomic indicators, 

and company announcements can all shape investor expectations. Because LSTMs excel at 

tracking temporal patterns and contextual signals, a natural direction for future research 

involves merging these diverse inputs into a single, richer dataset. Such an expansion might, 
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for example, allow the model to detect early warning signs of regime shifts, periods of 

excessive optimism, or impending volatility not yet fully mirrored in asset prices. However, 

effectively merging these parallel data streams would necessitate careful data alignment and 

more sophisticated preprocessing. Despite the potential hurdles, the benefits of a more holistic 

forecast, particularly in volatile or information-driven markets, could be profound. 

An additional contribution of this work is demonstrating how cutting-edge financial analytics 

can be delivered via a web application that uses natural language as the primary mode of 

interaction. Through the integration of Google’s Gemini LLM, the system allows users to 

express their allocation preferences in familiar, everyday language: for instance, “Allocate my 

budget among Tesla, Microsoft, and a broad market index.” In response, the application 

identifies the requested assets, processes them through the trained model, and returns a clear 

explanation of how the funds are apportioned and why. This focus on accessible language helps 

demystify quantitative strategies for individuals who may lack a formal background in finance 

or data science. It also reduces the friction often experienced when interacting with specialized 

software or complex user interfaces. 

Notwithstanding these successes, the research brought to light a number of considerations that 

will likely influence future iterations. First, a significant computational bottleneck arose during 

training when using solely CPU resources, especially with deeper lookback windows or an 

increasing number of assets. Switching to GPUs or even multi-GPU clusters would speed up 

both training and inference, making it more feasible to explore deeper models or larger cross- 

sections of the market. Second, although the Gemini-based chat interface is well suited to 

parsing simple sentences, a more advanced conversation flow could prove valuable for users 

with intricate requirements, such as limiting exposure to specific market sectors or imposing 

constraints on portfolio turnover. By defining more comprehensive function calls within the 

LLM integration, the system could respond to a wider array of requests and produce 

increasingly sophisticated, tailor-made outputs. 

Another area for refinement is the rebalancing schedule. In this study, a monthly rebalancing 

frequency was chosen to balance the goal of maintaining current market alignment against the 

desire to minimize excessive transaction costs. Yet certain market conditions might call for 

triggers based on factors like volatility, risk thresholds, or abrupt shifts in predicted returns. 

Implementing such adaptive mechanisms would improve the resilience of the strategy, albeit 

at the cost of a more elaborate workflow for monitoring and re-optimizing the portfolio. 
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Furthermore an important issue pertains to the transparency of deep learning systems. Although 

the LLM-generated explanations provide a user-friendly summary of the portfolio’s logic and 

performance, they do not fully reveal the underlying rationale of the LSTM itself. In highly 

regulated environments or when user trust is paramount, it is vital to complement these 

narrative summaries with additional diagnostics. Feature attribution and model interpretability 

techniques, such as gradient-based saliency maps, attention heatmaps, or local interpretation 

methods, could help stakeholders understand which factors most strongly influence an 

allocation decision. Such transparency could also foster greater trust in automated strategies 

and satisfy any regulatory demands for explainability in algorithmic trading. 

In conclusion, this thesis shows that advanced machine learning approaches can be effectively 

unified with user-centric design to produce an AI-driven portfolio optimization system that is 

both powerful and accessible. By training the LSTM forecaster and the optimization module 

jointly, the model evolves with a focus on genuinely meaningful signals, while the 

conversational interface offers broad accessibility to users of varying expertise. Looking ahead, 

scaling up the computational resources, integrating additional risk measures, and refining the 

LLM-driven conversation to accommodate intricate financial contexts all represent important 

next steps. If implemented, these enhancements could render the tool even more valuable, 

enabling it to adapt to a rapidly evolving marketplace while remaining both transparent and 

user-friendly. Through such developments, AI-driven portfolio optimizers have a strong chance 

of taking on a prominent role in navigating the complexities of modern finance, thus serving a 

diverse range of investors with minimal technical barriers. 
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CHAPTER 9 

APPENDIX 
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Fig.2 
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0.1770 
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1 

 

^VIX, IWM, ^RUT, QQQ 

 

0.4097 
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-0.0616 
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-0.0572 
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markowitz 
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14.042 

 

-0.0829 
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Two-step 
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GC=F, SI=F, ^GSPC, VTI 
 

0.2987 
 

0.1358 
 

21.999 
 

-0.0859 

VTI 0.297197, ^GSPC 

0.248659, SI=F 0.239009, 
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markowitz 
 

0.3241 
 

0.1146 
 

28.275 
 

-0.0701 
VTI 0.799998, ^GSPC 
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E2E 
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DIA, BRK-B, TSLA, GOOGL 
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-0.1160 
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0.252788, BRK-B 0.251702, 

GOOGL 0.236809 

 

entropy 
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22.631 

 

-0.1392 

TSLA 0.350001, GOOGL 

0.349999, BRK-B 
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E2E 

 

6 

 

MSFT, VTI, TSLA, ^RUT 

 

0.3673 

 

0.2132 

 

17.228 

 

-0.1315 

VTI 0.325714, TSLA 

0.245358, MSFT 0.237375, 

^RUT 0.191553 

 

entropy 

 

0.2984 

 

0.2291 

 

13.027 

 

-0.1266 

MSFT 0.35000, VTI 

0.31862, TSLA 0.17999, 

^RUT 0.15139 

 

Two-step 
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NVDA, ^RUT, META, SI=F 

 

0.7719 

 

0.2488 

 

31.022 

 

-0.1298 

NVDA 0.283722, META 

0.268065, SI=F 0.241863, 

^RUT 0.206350 

 

entropy 

 

0.8609 

 

0.2745 

 

31.358 

 

-0.1322 

NVDA 0.350001, META 

0.349994, SI=F 0.198356, 
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HD, GOOGL, GC=F, ̂ DJI 

 

0.2779 

 

0.1195 

 

23.251 

 

-0.0752 

GOOGL 0.257832, GC=F 

0.250268, ^DJI 0.246257, 

HD 0.245644 

 

entropy 

 

0.2384 

 

0.1287 

 

18.514 

 

-0.0807 

HD 0.349989, GC=F 

0.311997, GOOGL 
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Two-step 
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0.4747 
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30.064 
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NVDA 0.267000, ̂ RUT 

0.254665, PG 0.247831, 

USDJPY=X 0.230505 

 

markowitz 
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0.2935 

 

41.999 

 

-0.1589 
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0.233235, NVDA 0.214828 

 

E2E 
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PG, GOOG, CL=F, SPY 
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19.510 
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PG 0.270018, GOOG 
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entropy 

 

0.2599 

 

0.1169 

 

22.232 
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11 

 

UNH, MSFT, DIA, ̂ IXIC 
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0.1291 

 

14.909 

 

-0.0704 

^IXIC 0.294936, DIA 

0.238836, MSFT 0.233649, 

UNH 0.232578 

 

entropy 
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12.465 

 

-0.0601 

UNH 0.350000, MSFT 

0.350000, DIA 0.246088, 

^IXIC 0.053912 

 

Two-step 

 

12 

 

QQQ, AMZN, VTI, GOOG 

 

0.3696 

 

0.1796 

 

20.580 

 

-0.1400 

VTI 0.280581, AMZN 

0.254872, QQQ 0.233039, 

GOOG 0.231509 

 

markowitz 

 

0.4007 

 

0.2172 

 

18.445 

 

-0.1739 
AMZN 0.800012, QQQ 

0.157590, VTI 0.042391 

 

Two-step 

 

13 

 

SI=F, AMZN, ̂ RUT, NVDA 

 

0.6009 

 

0.2215 

 

27.129 

 

-0.1478 

^RUT 0.270364, SI=F 

0.269216, NVDA 0.232251, 

AMZN 0.228170 

 

entropy 

 

0.8171 

 

0.2721 

 

30.034 

 

-0.1755 

AMZN 0.349999, NVDA 

0.349998, SI=F 0.262244, 

^RUT 0.037759 

 

E2E 

 

14 

 

JNJ, SPY, CL=F, META 

 

0.2649 

 

0.1345 

 

19.697 

 

-0.0865 

META 0.278759, JNJ 

0.261553, SPY 0.234446, 

CL=F 0.225243 

 

entropy 

 

0.3252 

 

0.1485 

 

21.893 

 

-0.0924 

META 0.350002, SPY 

0.349998, JNJ 0.220668, 

CL=F 0.079332 

 

E2E 

 

15 

 

AAPL, JNJ, NVDA, GOOGL 

 

0.5633 

 

0.1896 

 

29.707 

 

-0.1207 

NVDA 0.258765, JNJ 

0.252212, AAPL 0.248838, 

GOOGL 0.240185 

 

markowitz 

 

0.9289 

 

0.2967 

 

31.304 

 

-0.1708 
AAPL 0.575966, NVDA 

0.297289, JNJ 0.126739 

 

E2E 

 

16 

 

CL=F, MSFT, GC=F, V 

 

0.1882 

 

0.1146 

 

16.420 

 

-0.0806 

V 0.270267, CL=F 

0.254953, GC=F 0.240416, 

MSFT 0.234364 

 

entropy 

 

0.2509 

 

0.1123 

 

22.342 

 

-0.0698 
MSFT 0.349999, GC=F 

0.349999, V 0.293588 

 

E2E 

 

17 

 

AAPL, JPM, AMZN, GC=F 

 

0.3806 

 

0.1337 

 

28.459 

 

-0.1004 

GC=F 0.353774, AAPL 

0.223197, AMZN 0.214525, 

JPM 0.208504 

 

markowitz 

 

0.5734 

 

0.1478 

 

38.799 

 

-0.0560 
JPM 0.502069, GC=F 

0.333230, AMZN 0.155364 

 

E2E 

 

18 

 

^GSPC, META, USDJPY=X, 

UNH 

 

0.2564 

 

0.1232 

 

20.824 

 

-0.0437 

UNH 0.275470, META 

0.250358, USDJPY=X 

0.245341, ^GSPC 0.228832 

 

entropy 

 

0.2651 

 

0.1334 

 

19.872 

 

-0.0477 

META 0.273917, 

USDJPY=X 0.252279, UNH 

0.251652, ̂ GSPC 

0.222152 

 

Two-step 

 

1G 
 

^IXIC, ̂ VIX, GC=F, VTI 
 

0.4914 
 

0.2859 
 

17.189 
 

-0.1654 

^VIX 0.272606, ̂ IXIC 

0.261541, GC=F 0.252780, 

VTI 0.213072 

 

markowitz 
 

0.4850 
 

0.1217 
 

39.863 
 

-0.0540 
VTI 0.578012, ^IXIC 

0.347634, ̂ VIX 0.074350 

 

E2E 

 

20 

 

USDJPY=X, AMZN, DIA, ̂ DJI 

 

0.2485 

 

0.1178 

 

21.090 

 

-0.0906 

AMZN 0.269602, DIA 

0.263916, USDJPY=X 

0.234137, ^DJI 0.232345 

 

markowitz 

 

0.3340 

 

0.1500 

 

22.271 

 

-0.0734 

AMZN 0.716811, 

USDJPY=X 0.141900, DIA 

0.141248 

 

E2E 

 

21 

 

IWM, VTI, EURUSD=X, BRK-B 

 

0.1614 

 

0.0976 

 

16.539 

 

-0.0571 

EURUSD=X 0.281609, BRK- 

B 0.269175, IWM 0.226992, 

VTI 0.222225 

 

markowitz 

 

0.3096 

 

0.0968 

 

31.975 

 

-0.0707 

VTI 0.800057, IWM 

0.086892, BRK-B 

0.064458, EURUSD=X 

0.048592 

 

E2E 

 

22 

 

^DJI, TSLA, PG, V 

 

0.3597 

 

0.1952 

 

18.423 

 

-0.0963 

TSLA 0.265727, ^DJI 

0.257593, V 0.241782, PG 

0.234898 

 

markowitz 

 

0.4796 

 

0.2502 

 

19.167 

 

-0.1236 
TSLA 0.522669, PG 

0.242933, V 0.234397 

 

E2E 

 

23 

 

SPY, META, ̂ GSPC, ̂ VIX 

 

0.6506 

 

0.2298 

 

28.309 

 

-0.1175 

META 0.407617, SPY 

0.277018, ^GSPC 0.195231, 

^VIX 0.120134 

 

entropy 

 

0.4247 

 

0.1057 

 

40.190 

 

-0.0534 

^GSPC 0.349999, SPY 

0.349999, META 0.207519, 

^VIX 0.092484 

 

E2E 

 

24 
^RUT, GC=F, USDJPY=X, 

^GSPC 

 

0.2026 

 

0.0978 

 

20.709 

 

-0.0759 

^RUT 0.274467, USDJPY=X 

0.249633, ^GSPC 0.245571, 

GC=F 0.230328 

 

markowitz 

 

0.2424 

 

0.0973 

 

24.908 

 

-0.0615 
GC=F 0.585164, ̂ GSPC 

0.414849 

 

E2E 

 

25 

 

AAPL, PG, IWM, TSLA 

 

0.3817 

 

0.2068 

 

18.453 

 

-0.1281 

AAPL 0.268700, IWM 

0.261300, TSLA 0.242031, 

PG 0.227969 

 

entropy 

 

0.5057 

 

0.2338 

 

21.633 

 

-0.1315 

TSLA 0.349999, AAPL 

0.313295, PG 0.176697, 

IWM 0.160009 

 

E2E 

 

26 

 

V, ^VIX, AAPL, QQQ 

 

0.4479 

 

0.2785 

 

16.083 

 

-0.1703 

V 0.258672, QQQ 

0.250144, ̂ VIX 0.249125, 

AAPL 0.242059 

 

entropy 

 

0.3617 

 

0.1342 

 

26.959 

 

-0.0719 

V 0.349970, QQQ 

0.284145, AAPL 0.193929, 

^VIX 0.171956 

 

E2E 

 

27 

 

V, SI=F, CL=F, AMZN 

 

0.2675 

 

0.1527 

 

17.520 

 

-0.1247 

V 0.275965, AMZN 

0.248810, SI=F 0.245698, 

CL=F 0.229527 

 

entropy 

 

0.3652 

 

0.1635 

 

22.335 

 

-0.1275 
V 0.349998, AMZN 

0.349998, SI=F 0.298043 

 

E2E 

 

28 

 

VTI, MSFT, QQQ, GC=F 

 

0.2804 

 

0.1265 

 

22.159 

 

-0.0882 

QQQ 0.266735, GC=F 

0.253993, VTI 0.251979, 

MSFT 0.227293 

 

entropy 

 

0.2569 

 

0.1424 

 

18.046 

 

-0.1163 

MSFT 0.350000, QQQ 

0.350000, VTI 0.263704, 

GC=F 0.036295 

 

Two-step 

 

2G 

 

IWM, ̂ IXIC, ̂ RUT, PG 

 

0.2172 

 

0.1392 

 

15.600 

 

-0.0785 

IWM 0.294994, ̂ RUT 

0.248539, PG 0.230933, 

^IXIC 0.225535 

 

entropy 

 

0.2578 

 

0.1285 

 

20.061 

 

-0.0840 

PG 0.350000, ̂ IXIC 

0.350000, IWM 0.233481, 

^RUT 0.066519 

 

E2E 

 

30 

 

PG, CL=F, NVDA, MSFT 

 

0.4182 

 

0.1675 

 

24.974 

 

-0.1191 

CL=F 0.286361, PG 

0.270158, MSFT 0.226992, 

NVDA 0.216489 

 

entropy 

 

0.6358 

 

0.2173 

 

29.267 

 

-0.1411 
MSFT 0.349996, NVDA 

0.343669, PG 0.302838 

 

E2E 

 

31 

 

USDJPY=X, ̂ VIX, EURUSD=X, 

PG 

 

0.2317 

 

0.3273 

 

0.7077 

 

-0.1900 

PG 0.297312, ̂ VIX 

0.249961, EURUSD=X 

0.245300, USDJPY=X 

0.207427 

 

markowitz 

 

0.1073 

 

0.0784 

 

13.685 

 

-0.0335 

USDJPY=X 0.465975, PG 

0.305686, EURUSD=X 

0.210656, ̂ VIX 0.017683 

 

E2E 

 

32 

 

GOOG, META, JNJ, JPM 

 

0.3827 

 

0.1471 

 

26.019 

 

-0.0636 

JPM 0.295765, GOOG 

0.255731, JNJ 0.250708, 

META 0.197795 

 

entropy 

 

0.3191 

 

0.1517 

 

21.041 

 

-0.0809 

GOOG 0.350009, JPM 

0.350007, JNJ 0.239820, 

META 0.060164 

 

Two-step 

 

33 

 

TSLA, V, NVDA, GOOGL 

 

0.7845 

 

0.2727 

 

28.768 

 

-0.1864 

GOOGL 0.272349, TSLA 

0.248572, NVDA 0.242068, 

V 0.237010 

 

entropy 

 

0.5410 

 

0.2504 

 

21.608 

 

-0.1523 

GOOGL 0.349989, V 

0.349987, NVDA 

0.219161, TSLA 0.080863 

 

Two-step 

 

34 

 

CL=F, ̂ IXIC, AAPL, DIA 

 

0.2165 

 

0.1315 

 

16.461 

 

-0.0983 

^IXIC 0.314976, AAPL 

0.234144, DIA 0.227128, 

CL=F 0.223751 

 

entropy 

 

0.2730 

 

0.1423 

 

19.181 

 

-0.0951 
AAPL 0.349996, DIA 

0.332659, ^IXIC 0.313313 

 

E2E 

 

Comparison between our end-to-end model and a two-step model with the forecaster and 

allocation separated 
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Fig.3 

 

 

Our web-application when opened with an example of input 

 

Fig.4 

 

 

Our web-application with the output of the model explained 



55  

CHAPTER 10 
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