

Corso di laurea in
Data Science & Management

Cattedra MACHINE LEARNING

End-to-End Portfolio Optimization: Integrating
LLMs and Deep Learning in a Web Application for

Smart and Personalized Investing

Prof. Giuseppe Francesco Italiano Prof.Antonio Simeone

RELATORE CORRELATORE

Matr. Leonardo Bosco - 758501

CANDIDATO

Anno Accademico 2024/2025

1

THESIS AKNOWLEDGMENTS

In this brief chapter I would like to express my thanks to all the people who supported me

during this 2-year trip and that made this journey a truly memorable experience.

First of all, I would like to thank my professor Giuseppe Francesco Italiano that was my

professor for 2 courses in my bachelor's degree and professor of one of my favorite courses in

the master’s degree: “Machine Learning”. He was also the one who introduced me into the

world of Data Science when I was in high school searching for a university course that I could

truly love. I am thankful for the support during these years and during the drafting process of

this thesis.

I would also like to express my gratitude to Davide Torre, teaching assistant of professor

Italiano in the Machine Learning course since he helped me a lot in the thought process of what

to choose as the thesis argument and supported me with continuous feedback on the code and

the process underlying the web-application I developed. I am truly thankful for the patience and

availability he had.

I am deeply thankful to my splendid family. My mom, who has been here for me throughout

these years, always believing in me and encouraging me to do better and become a better

person every day. And my dad, who won’t be here to see this thesis or the end of this journey,

but I am sure he would be proud of this achievement, as he was always and always will be my

first and greatest supporter in my heart, together with my mom.

Furthermore, I would like to dedicate a special thought to my precious girlfriend, Francesca,

who supported me and kept me company day and night while I was writing and coding, making

this last part of this journey not only more bearable but also incredibly beautiful. Without her

constant presence, sweetness, and love, reaching this milestone would not have felt as sweet.

Finally, my gratitude goes to all the friends I made along the way, as well as those who have

been with me since the very beginning and continue to stand by my side.

Thank you.

2

ABSTRACT

In recent years, the global investment landscape has undergone a profound transformation,

driven in part by technological advancements and the emergence of novel financial

instruments. Cryptocurrencies, for instance, captured widespread attention due to their

dramatic surges in popularity and market capitalization, only for persistent volatility and

regulatory ambiguities to prompt renewed interest in more traditional investment avenues such

as corporate stocks, government bonds, and exchange-traded funds (ETFs). Despite the

relatively mature frameworks for risk management and return assessment associated with these

conventional assets, equity markets remain inherently uncertain, thus requiring careful

portfolio construction strategies.

In parallel, recent developments in machine learning, particularly deep learning, have led to

sophisticated, data-driven methods that significantly enhance modern portfolio management.

Predictive algorithms can now incorporate a multitude of market signals and historical data,

forecasting both returns and underlying risk profiles with increasing levels of accuracy. A vital

consideration in this process is the balance among volatility, correlations between assets,

expected returns, and individual risk tolerance, factors that collectively form the cornerstone

of portfolio optimization.

Building on this evolving landscape, the present work introduces a novel framework for a web-

based application designed to integrate advanced artificial intelligence (AI) models into a user-

friendly investment platform. Specifically, the system applies state-of-the-art methods to

optimize capital allocation across multiple stock tickers, with an objective of mitigating risk,

maximizing returns, and adapting to dynamic market conditions. Notably, this platform

leverages a Large Language Model (LLM) as a conversational interface, thereby allowing users

to submit natural language queries and receive comprehensive, explanatory feedback, ranging

from raw portfolio weight distributions to interpretative commentary on factors such as

volatility and historical performance. By employing a 1 trading year in the future test

procedure, the system’s performance is evaluated against standard financial metrics

(annualized returns, Sharpe ratio, volatility, and maximum drawdown), ensuring a rigorous

appraisal of both strengths and limitations. Ultimately, this thesis demonstrates how the

convergence of AI-driven analytical techniques and intuitive, dialogue-based interfaces can

empower both novice and experienced investors to make more informed decisions in a volatile

and complex market environment.

3

INDEX

I. INTRODUCTION .. 5

1.1 Background and Motivation ... 5

1.2 Role of Artificial Intelligence in Modern Portfolio Management........... 5

1.3 The Need for User-Centric Design ... 6

1.4 Proposed Framework .. 6

1.5 Scope and Contributions ... 7

1.6 Organization of the Thesis ... 7

II. LITERATURE REVIEW .. 9

2.1 Traditional Portfolio Theory ... 9

2.2 Machine Learning in Finance ... 10

2.3 Deep Learning for Time Series Forecasting ... 11

2.4 End-to-End Portfolio Optimization ... 12

2.5 Large Language Models in Financial Applications 12

2.6 Synthesis and Directions ... 13

III. EDA & DATA PREPARATION... 15

3.1 Data Collection And Overview ... 15

3.2 Computing Daily Returns and Initial Exploration 16

3.3 Constructing Rolling Windows ... 16

3.4 Scaling and Data Preparation Workflow ... 17

3.5 Concluding Remarks on EDA and Data Preparation............................. 18

IV. METHODOLOGICAL FRAMEWORK AND MODEL EXPLORATION 20

4.1 Conceptual Overview of the End-to-End Architecture 20

4.2 Neural Forecaster: LSTM-Based Architecture...................................... 21

4.3 Allocation Layer ... 27

4.4 Utility Functions and Performance Metrics .. 31

4.5 Negative Sharpe Ratio and End-to-End Training 32

4.6 Concluding Remarks on the Allocation Layers 33

4

V. EVALUATION AND EXPERIMENTAL RESULTS .. 35

5.1 Portfolio Evaluation Function ... 35

5.2 Performance Metrics Computation ... 36

5.3 Comparison of our model performance with a simple Markowitz 38

5.4 Comparison of our model performance with a two steps model 40

VI. WEB-APPLICATION DEVELOPMENT ... 42

6.1 Rationale for a Simple, Intuitive Interface .. 42

6.2 Technology Stack: Streamlit ... 43

6.3 Conversational Interaction .. 43

6.4 Concluding Remarks on Web-Application Development 44

VII. LLM INTEGRATION FOR INPUT AND OUTPUT .. 45

7.1 Introduction to Large Language Models (LLMs) 45

7.2 Gemini .. 46

7.3 The Application of LLM on Our Web App ... 46

7.4 Concluding remarks .. 48

VIII. DISCUSSION AND CONCLUSION .. 49

IX. APPENDIX ... 52

X. BIBLIOGRAPHY .. 55

5

CHAPTER 1

INTRODUCTION

1.1 - Background and Motivation

The global investment ecosystem has experienced significant transformations over the

last decade, influenced by regulatory shifts, rapidly increasing computational power, and

the widespread adoption of innovative financial technologies. Participants in contemporary

markets, ranging from individual retail traders to large-scale institutional investors, now

have an extensive selection of instruments at their disposal, spanning equity, debt,

commodities, foreign exchange, and cryptocurrencies. While digital assets such as Bitcoin

and Ethereum initially attracted intense enthusiasm and media attention, the volatility and

evolving regulatory status of these assets prompted many portfolio managers to refocus on

more traditional forms of investment. In these established markets, investors benefit from

a robust body of research on asset pricing and risk management, supplemented by well-

known metrics such as the Sharpe ratio, maximum drawdown, and portfolio volatility.

Nonetheless, even traditional equity and bond markets face a multitude of challenges

stemming from macroeconomic indicators, geopolitical events, and internal corporate

dynamics. Against this backdrop, the effort to balance optimal returns with effective risk

management has grown increasingly complex and remains a fundamental goal for modern

investment practices.

1.2 - Role of Artificial Intelligence in Modern Portfolio Management

In light of these complexities, artificial intelligence (AI) has emerged as a

transformative approach to financial analysis, offering sophisticated ways to interpret the

large and intricate datasets that characterize contemporary markets. Machine learning (ML)

and deep learning techniques are particularly adept at identifying non-linear relationships,

seasonal trends, and subtle patterns in market data. These capabilities contrast with

traditional econometric methods, which often rely on more rigid assumptions or linear

modeling. Within the domain of portfolio management, AI-driven models deliver a range

of benefits. They improve predictive accuracy by leveraging extensive historical data and

diverse sources of information, including macroeconomic indicators, corporate

fundamentals, and social media sentiment. They also facilitate the automatic extraction of

relevant features by exploiting architectures such as recurrent neural networks (RNNs) and

Long Short-Term Memory (LSTM) units, which uncover temporal dependencies in data,

6

as well as convolutional neural networks (CNNs), which can interpret information in ways

analogous to image recognition. Furthermore, AI models are inherently adaptive and can

be retrained or fine-tuned to accommodate new data, enabling them to respond to changing

market conditions. This responsiveness is particularly valuable in periods of sudden price

movements, regime shifts, or heightened volatility.

1.3 - The Need for User-Centric Design

Despite the considerable potential of AI-based solutions in finance, significant

challenges persist in translating sophisticated technical analyses into tools that are

accessible and meaningful to end-users. Financial markets include participants with a broad

spectrum of experience, from novices seeking introductory investment guidance to

professional fund managers who require advanced analytics. The manner in which AI-

generated insights are presented and interpreted is therefore as crucial as the accuracy of

the underlying models. Traditionally, financial technology platforms have expected users

to navigate complex dashboards and specialized terminology, creating barriers for those

without extensive financial or technical backgrounds. Incorporating a natural language

interface can mitigate these challenges by simplifying the query process and offering

explanations in everyday language. The present work addresses this need by integrating a

Large Language Model (LLM) that not only provides users with optimized asset weight

distributions but also supplies rationales and interpretive commentary. Through a

conversational interface, the system aspires to broaden access to powerful computational

tools, encouraging a higher level of financial literacy and more informed decision-making.

1.4 - Proposed Framework

The thesis centers on the design and evaluation of a web-based AI-driven system for

portfolio optimization, composed of two principal components. The first component

predicts asset returns and volatility by employing an LSTM-based neural network to

estimate both the expected returns and variance over a specified time horizon. These

forecasts constitute a critical input for any subsequent allocation strategy because they

inform the anticipated performance and risk of each asset in the portfolio. The second

component focuses on allocating capital through convex optimization, making use of

frameworks such as CVXPY to identify weight distributions that reconcile desired returns

with defined risk constraints. This approach incorporates standard portfolio theory

7

requirements, including non-negativity of weights, budget constraints, and maximum asset

weight thresholds, while remaining adaptable to user directives, such as concentrating on a

predefined subset of stocks, all under the umbrella of a unique end-to-end process that we

will discover in chapter 4. The introduction of an LLM-based interface sets this project

apart from many traditional portfolio optimization tools. By allowing users to pose

questions in everyday language (for example, “How should I allocate my budget among

these five stocks?”), the system generates a detailed response that outlines suggested asset

weightings, explains the various financial output metrics of interest and suggest the user to

change tickers if the results are not optimal.

1.5 - Scope and Contributions

The thesis contributes to the academic and practical discourse in several ways. It

demonstrates the effective integration of predictive modeling with convex optimization in

one cohesive workflow, thereby uniting the strengths of data-driven AI methods with the

reliability of classical portfolio theory. It also showcases how explanations generated by a

language model can enhance the interpretability of complex financial tools, addressing a

persistent gap in platforms that often provide numerical outputs without actionable or

understandable context. Moreover, the solution is rigorously tested on a test set of 1 trading

year (252 days), using standard metrics such as annualized returns, Sharpe ratio, volatility,

and maximum drawdown to evaluate its performance under realistic conditions. In addition,

a modular software structure allows for straightforward enhancements or substitutions of

the predictive elements, optimization routines, and user interface components, facilitating

ongoing adaptation as new analytical methods or technologies emerge. By combining

advanced forecasting capabilities with an accessible conversational interface, this work

aims to broaden the appeal and utility of AI-driven portfolio optimization, ultimately

enabling a wider range of investors to make strategically sound decisions in rapidly

evolving financial markets.

1.6 - Organization of the Thesis

Following this introduction, Chapter 2 provides a literature review that synthesizes

existing research on portfolio optimization, machine learning in financial forecasting, and user

interface design in fintech applications. By examining established theoretical frameworks and

8

state-of-the-art approaches, it lays the groundwork for the subsequent methodological and

practical contributions of this study.

In Chapter 3, the focus shifts to the datasets and preparatory steps involved in developing the

predictive models. Attention is given to the rationale behind certain design choices, particularly

those driven by computational constraints and time considerations, as well as to the manner in

which data were preprocessed to ensure reliable model inputs.

Chapter 4 delves into the iterative process of trial and error that characterized the early

experimentation phase. Various model architectures, optimizers, and objective formulations

were tested before settling on the final LSTM-based forecasting framework and convex

optimization approach. The chapter also discusses how these explorations led to refinements

in both the algorithmic design and the overall methodology.

Chapter 5 presents the core experimental results, along with a comprehensive performance

evaluation of the integrated system. Emphasis is placed on the strengths of the proposed

solution, as well as on potential areas for enhancement, with a view to guiding future research

and development. Subsequently, Chapter 6 examines the development of the web-based

application and its user interface, highlighting how usability and design considerations can

facilitate broader adoption of AI-driven financial tools.

In Chapter 7, the thesis addresses the role of Large Language Models in both the input and

output stages of the application. This discussion centers on why an LLM was incorporated—

chiefly to offer interpretable explanations and natural language support—and how it can

enhance user engagement and clarity. Finally, Chapter 8 concludes the thesis by summarizing

the key findings, outlining the practical implications of the proposed framework, and

suggesting avenues for continued investigation.

Bringing these chapters together, the thesis seeks to make a meaningful contribution to the field

of AI-driven finance. By uniting sophisticated predictive modeling with user-centric design

and natural language interaction, it aspires to present a robust, empirically validated solution

capable of guiding a diverse array of investors through an increasingly dynamic and complex

market environment.

9

CHAPTER 2

LITERATURE REVIEW

This chapter provides a comprehensive review of the theoretical and technological

underpinnings that inform AI-based portfolio optimization and user-centric design in financial

technology. The discussion begins with Traditional Portfolio Theory, highlighting how

foundational frameworks established key risk–return concepts. We then trace the evolution of

Machine Learning in Finance, focusing on the early adoption of non-linear computational

methods and the subsequent challenges arising from market non-stationarities. Next, we move

on to Deep Learning for Time Series Forecasting, where we examine the practical advantages

of Long Short-Term Memory (LSTM) architectures in capturing intricate temporal patterns in

financial data. Following this, we delve into End-to-End Portfolio Optimization, an emergent

paradigm in which forecasts and allocations are trained jointly under a unifying loss function

geared toward real-world performance metrics. Finally, we discuss the growing role of Large

Language Models (LLMs) in finance, particularly in improving user engagement and

interpretability for sophisticated investment tools. By weaving these themes together, the

chapter sets a cohesive stage for the methodological contributions presented later in the thesis.

2.1 - Traditional Portfolio Theory

The foundational work of Markowitz (1952) established the modern framework for

portfolio selection, explicitly modeling the balance between expected return and variance.

According to Modern Portfolio Theory (MPT), rational investors aim to position themselves

on the so-called “efficient frontier,” which characterizes the portfolios that achieve the highest

possible return for a given level of risk, or equivalently, the lowest risk for a given level of

return. A particularly influential insight of MPT is the notion of diversification, wherein

combining assets with different correlation structures can reduce overall portfolio volatility

without substantially diminishing returns (Elton & Gruber, 1997).

Building upon these core ideas, Sharpe (1964) and Lintner (1965) introduced the Capital Asset

Pricing Model (CAPM), which emphasizes systematic (market-wide) risk through a metric

known as beta. CAPM posits a linear relationship between an asset’s expected return and its

exposure to the broader market, thus offering an equilibrium-based view of risk–return trade-

offs. While widely adopted, CAPM and similar factor models rely on fairly restrictive

10

assumptions about market efficiency, linearity, and stationarity. Merton (1980) further

highlighted how real-world considerations, such as time-varying risk premia or difficulties in

accurately estimating returns and covariances, can undermine the stability of these classical

models.

Despite these critiques, traditional portfolio theory remains a cornerstone of quantitative

finance. It not only offers a structured way to conceptualize the interplay between returns,

variance, and correlation, but also underscores the profound influence of risk considerations in

investment choices. This foundational perspective, however, provides only part of the picture,

as many real-world assets exhibit non-linear relationships or structural regime shifts that cannot

be fully captured through static, linear models alone. These limitations helped pave the way for

more adaptive, data-driven techniques.

2.2 - Machine Learning in Finance

Against the backdrop of mounting computational capabilities and the rise of large-scale

financial databases, Machine Learning (ML) began to gain prominence as a tool for financial

modeling. Initially, ML approaches were deployed to derive potentially non-linear

relationships that conventional statistical models tended to overlook. Early work by Allen and

Karjalainen (1999) showcased how genetic algorithms could discover technical trading rules,

revealing complex patterns in market time series. These applications demonstrated the

feasibility of ML in detecting nuanced signals beyond the scope of classical linear regressions

also if results from this method showed that, after accounting for transaction costs, these rules

did not generate returns superior to a simple “buy and hold” strategy during out-of-sample test

periods, they demonstrated that models could “understand” where it would be convenient to

stay or exit the market.

Nevertheless, these early ML methods often relied on labor-intensive feature engineering and

conducted forecasting and portfolio construction in separate stages. For instance, an ML model

might predict asset returns, but the subsequent optimization step to determine weights in a

portfolio would remain disconnected, frequently performed by a conventional solver that

optimizes standard criteria (e.g., mean–variance). This disjointed “two-stage” approach can

lead to a mismatch between the objective of the forecasting model (e.g., mean squared error

minimization) and the ultimate performance goals of the investor (e.g., maximizing the Sharpe

11

ratio). Moreover, non-stationary markets accentuated the overfitting problem, necessitating

regular retraining or recalibration of these models.

Concurrently, risk management and capital allocation frameworks started embedding ML-

derived forecasts into existing quantitative strategies. Although the synergy held promise,

particularly in detecting hidden factors in large cross-sections of assets, practitioners realized

that traditional metrics for forecast accuracy did not necessarily translate into superior portfolio

performance. This realization intensified calls for more end-to-end solutions, wherein model

training could incorporate downstream financial objectives rather than focusing on purely

predictive performance.

2.3 - Deep Learning for Time Series Forecasting

Within the broader ML landscape, deep learning has proven especially adept at

extracting features from complex, high-dimensional datasets, an attribute that naturally fits

financial time series. Early deep learning architectures struggled with sequences, but Recurrent

Neural Networks (RNNs) offered a first step toward modeling temporal structure. Still, these

RNNs frequently suffered from vanishing and exploding gradients, hindering their ability to

capture long-range dependencies.

The Long Short-Term Memory (LSTM) architecture, proposed by Hochreiter and

Schmidhuber (1997), addressed these issues through a gating mechanism that modulates the

flow of information. LSTMs can effectively “remember” significant events over extended

periods, rendering them especially suitable for forecasting financial indicators that may display

subtle cyclical or lagged behaviors (Zhang et al., 2017). Researchers have demonstrated that

LSTMs often outperform both simpler neural networks and certain traditional econometric

models in predicting returns or volatility (Fischer & Krauss, 2018).

Despite these successes, the bulk of deep learning studies in finance still center on predictive

tasks, forecasting future prices, returns, or volatility, leaving the subsequent asset allocation

choices to be determined separately. This scenario can yield robust error metrics at the model

level, yet no guarantee exists that these forecasts will result in the optimal risk–return trade-off

within the actual portfolio. In effect, there is a disconnect between forecast accuracy and

practical portfolio performance, an issue that has spurred the exploration of end-to-end

12

portfolio optimization techniques that align the training process with ultimate investment

outcomes.

2.4 - End-to-End Portfolio Optimization

End-to-end portfolio optimization aims to address the drawbacks of two-stage

workflows by combining forecasting and allocation in a single, fully differentiable pipeline

(Moody & Saffell, 1999; Deng et al., 2016). In this unified framework, the neural forecaster

generates predictions, such as expected returns 𝜇 or volatility parameters 𝜎, that feed directly

into a differentiable optimizer. The optimizer then computes portfolio weights under

constraints (e.g., a budget constraint or leverage limits) to maximize a pre-defined performance

metric such as the Sharpe ratio. By allowing gradients to pass through both the forecaster and

the optimizer, the entire system calibrates itself toward actual portfolio performance, rather

than surrogate metrics like mean squared error of the forecast.

This approach has become more tractable thanks to advances in differentiable optimization

libraries. Agrawal et al. (2019) showcased the feasibility of incorporating convex optimization

problems into neural network pipelines through CvxpyLayers, which compile such problems

into forms conducive to automatic differentiation. Building on these ideas, Zhang et al. (2020)

demonstrated how a Markowitz-inspired layer (with constraints akin to budget and long-only

conditions) could be trained end-to-end to improve out-of-sample Sharpe ratios.

While promising, end-to-end approaches face unique challenges. Model interpretability

becomes more complicated, given that both the forecasting and the optimization processes are

learned simultaneously in a “black box” setting. Overfitting risks also intensify if the system

tailors itself too closely to historical market peculiarities, thereby reducing robustness to

unforeseen conditions. Nonetheless, the capacity to optimize directly for metrics that matter to

investors marks a substantial improvement over conventional siloed methodologies and sets

the stage for deeper integration of predictive analytics and allocation logic.

2.5 - Large Language Models in Financial Applications

Parallel to these developments, Large Language Models (LLMs) have begun reshaping

how users interact with complex financial analytics. GPT-type models (Radford et al., 2019;

Brown et al., 2020) train on vast text corpora and exhibit strong capabilities in language

13

comprehension and generation. Their transformer-based architectures enable them to handle

tasks as diverse as summarization, translation, and interactive dialogue.

In the financial realm, LLMs open the door to more user-friendly and interpretable systems.

For instance, a platform might permit an investor to say, “Allocate half of my portfolio to tech

stocks, and half to a broad index fund.” The LLM interprets this directive, checks it against the

underlying optimization framework, and returns an allocation plan. Additionally, LLMs can

generate plain-English explanations of why certain assets received specific weightings.

However, these models can also produce “hallucinations,” meaning they may invent facts or

propose solutions not grounded in real data. Consequently, robust validation mechanisms—

such as function-calling approaches or carefully curated prompts, are essential to ensure

reliability and accuracy in high-stakes domains like portfolio management.

2.6 - Synthesis and Directions

In surveying the trajectory from Traditional Portfolio Theory to contemporary methods

that leverage deep learning and language models, a consistent theme emerges: financial

markets demand increasingly adaptive, user-friendly solutions. Markowitz’s pioneering

framework and its subsequent refinements revealed that diversification and risk–return balance

are fundamental, yet they often underemphasize the market’s complex, non-linear patterns.

Early machine learning efforts demonstrated the promise of algorithmic trading and predictive

modeling, but a gap persisted between purely predictive accuracy and real-world portfolio

performance. The rise of deep learning architectures, especially LSTMs, added crucial capacity

for handling temporal dependencies in noisy financial series; however, siloed “two-stage”

approaches, where forecasting and allocation are conducted separately, still risk suboptimal

outcomes. By embedding convex optimization directly into a neural forecasting pipeline, the

emerging paradigm of end-to-end portfolio optimization directly aligns predictive models with

the metrics investors care about, such as Sharpe ratio and drawdown.

Parallel advancements in Large Language Models enable more intuitive user interactions and

improved interpretability, addressing the frequent criticism that high-performing machine

learning systems are often opaque to practitioners. In this thesis, these insights converge in a

holistic solution: an AI-driven portfolio optimizer that integrates LSTM-based time-series

forecasting with differentiable allocation layers and an LLM-enhanced interface. This

framework not only refines risk–return outcomes relative to conventional methods but also

14

redefines accessibility, allowing both novice and expert users to engage in natural-language

dialogues about asset selection, performance rationale, and risk metrics. By bridging

sophisticated analytics with user-centric design, the proposed system stands to broaden the

adoption of advanced portfolio optimization in financial services, paving the way for more

transparent, adaptive, and data-driven investment decisions.

15

CHAPTER 3

EDA & DATA PREPARATION

In this chapter, we present the exploratory data analysis (EDA) conducted on our dataset

and outline the series of preprocessing steps that precede the development of our forecasting

and portfolio allocation system. The end goal is to ensure that the raw data, for a comprehensive

set of stock tickers spanning multiple sectors, is transformed into a high-quality, time-aligned,

and properly scaled format, enabling robust model training and evaluation. We begin by

discussing how these data are sourced and inspected, followed by a detailed description of how

daily returns are computed and further refined for modeling. By the chapter’s conclusion, the

reader will have a clear understanding of the data pipeline, including the reasoning behind

particular design choices (e.g., scaling parameters, lookback windows, and train-test splits).

3.1 - Data Collection And Overview

The dataset for this project encompasses a broad array of publicly traded stocks, with a

focus on a list of 20 high-capitalization tickers from various industries such as technology,

finance, consumer staples, and energy, among others. These tickers were selected to capture a

diverse cross-section of the market. On top of these primary assets, the ultimate system

architecture also accommodates additional user-selected tickers (usually three or four). The

overall idea is that the model, having learned from the entire set of 20 major stocks, will be

capable of creating tailored weight allocations for whichever subset the user chooses. While

this feature is not the focal point of the present chapter, it illustrates the broader flexibility of

the system.

Data were downloaded using the yfinance library, which automates the retrieval of historical

market data from Yahoo Finance API. Specifically, we focused on the adjusted closing prices

(Adj Close), which account for dividends, stock splits, and other corporate actions, ensuring

that the price series more accurately reflects the underlying value to investors. Our data spanned

a date range from 2015-01-01 through 2025-01-01, yielding a long enough historical period to

capture different market regimes and, in turn, provide the model with a variety of scenarios for

improved generalization.

Once the price data was obtained, we performed an initial inspection to identify any missing

records or potentially erroneous values. As is typical for large-cap stocks, missing rows were

16

primarily due to weekends, holidays, or occasional trading halts. These non-trading periods

were dropped for simplicity and to not add any type of bias to the model. A final integrity check

was then performed to confirm that the dataset did not exhibit irregularities or implausible price

movements outside recognized market events.

3.2 – Computing Daily Returns and Initial Exploration

Raw stock prices present a convenient overview of performance over time, but they are

not always the most effective inputs for predictive modeling. Instead, we computed daily

returns for each ticker to represent the percentage change in value from one trading day to the

next:

𝑟𝑡 =
𝑃𝑡 − 𝑃𝑡−1

𝑃𝑡−1

where 𝑃𝑡 is the adjusted closing price on day 𝑡. This transformation normalized the data and

provided a consistent measure of relative price movements. Using daily returns rather than raw

prices, in fact, helps the model focus on fluctuations that are more directly comparable across

assets with different price levels.

3.3 – Constructing Rolling Windows

With cleaned and validated return data in hand, we constructed a rolling window dataset

for model training. This step is essential for capturing temporal dependencies in financial time

series, an area in which machine learning models, especially recurrent networks that we are

indeed going to use, tend to excel. Our approach involved specifying three parameters:

Lookback: The number of days of historical returns provided to the model as an input context.

In our experimental setup, this was set to 90 days:

Gap: A short buffer period of 2 days between the last day in the lookback window and the start

of the forecast horizon, ensuring that the model has no inadvertent overlap between the training

window and the future it is tasked to predict.

Horizon: The length of the forecast period, configured to 30 days in our code, representing the

range of future returns that the model must estimate. In our work the decision for the 30-days

was chosen with the idea of evaluating the idea of changing weights every month.

17

For each valid index 𝑖 in the daily returns array, we define an input 𝑋𝑖 that contains 90 days of

historical returns for all tickers, and a target 𝑦𝑖 containing 30 days of “future” returns offset by

the 2-day gap. These (𝑋𝑖, 𝑦𝑖) samples form the core of our supervised learning dataset. We also

stored corresponding timestamps for clarity in back testing and evaluation.

To manage the rolling windows and scaling steps, we utilized the DeepDow library, which

provides InRAMDataset, RigidDataLoader, and Scale modules that simplify custom time-

series transformations.

The DeepDow library provides unified methods for slicing and transforming time-series data

in a manner that simplifies the construction of rolling windows, particularly through its

InRAMDataset, RigidDataLoader, and Scale modules. InRAMDataset efficiently stores and

slices the entire time series in memory according to user-defined lookback and horizon

parameters, automatically generating the overlapping windows needed for both training and

validation. RigidDataLoader ensures these windows are batched with consistent shapes and

preserves the sequential order when necessary, reducing the complexity of ensuring uniform

mini-batches across the time dimension.

Additionally, the Scale module and other transformations can be chained into the same

pipeline, so that each window can be scaled or normalized on the fly, thereby eliminating the

extra overhead of manually preprocessing slices and ensuring a clean and reproducible

workflow.

Next, we employed a chronological split for training and testing, allocating all of the available

samples (starting from the earliest) to training and only 252 trading days to testing, resembling

a traditional trading year. This chronological approach respects the time-ordered nature of

financial data, helping mitigate the risk of look-ahead bias wherein future information might

inadvertently influence earlier model training.

3.4 – Scaling and Data Preparation Workflow

Deep Neural Networks often benefit from standardized input features especially to

speed up backpropagation, since the algorithms used to update the Neural Network weights

often work better with scaled data. Consequently, we applied a scaling procedure to the daily

returns for all tickers. Specifically, we computed means and standard deviations for the training

partition and used these statistics to normalize both the training and test partitions to avoid data

18

leakage into the test set. This transformation ensures that the daily returns from each asset

possess near-zero means and unit variances, preventing any single ticker, particularly those

with higher nominal volatility, from dominating the model’s objective function.

After scaling, the final data preparation included reshaping the inputs to the format required by

our chosen neural networks. More concretely, each input tensor 𝑋 took the shape:

(𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 , 1, 𝑙𝑜𝑜𝑘𝑏𝑎𝑐𝑘, 𝑛_𝑎𝑠𝑠𝑒𝑡𝑠),

which aligns with the expected input structure for one-dimensional LSTM cells that process

temporal sequences. This design also facilitates mini-batch training, wherein smaller subsets

of the data help stabilize gradient estimates, leading to more reliable and often quicker

convergence.

Because the model ultimately focuses on allocating capital only to user-requested assets in

addition to the core 20 major tickers, we needed to maintain flexibility in how we handle

indexing. While the training process leverages the entire cross-sectional array of daily returns,

constraints in the allocation layer selectively zero out weights for assets not requested by the

user. This procedure is enforced through a simple mask in the convex optimization routine,

ensuring that users can incorporate additional tickers they specify without disturbing the

broader modeling logic that learns from the entire ticker universe. We will see more about this

in the next chapter.

3.5 – Concluding Remarks on EDA and Data Preparation

The procedures outlined in this chapter represent the foundation upon which our

subsequent modeling and optimization techniques depend. Data from multiple sources were

integrated, cleaned, and shaped into coherent windows of historical returns ready for

forecasting.

By adhering to a transparent pipeline involving careful data splitting, rolling window

construction, and feature scaling, we reduce the risk of data leakage and ensure that each step

is properly documented and reproducible. These decisions also facilitate experimentation with

various neural network architectures and optimization routines, as described in upcoming

chapters. Ultimately, a rigorous approach to EDA and data preparation positions us to produce

19

meaningful, consistent results that reflect genuine market behaviors, thereby bolstering the

reliability of the model’s subsequent predictions and allocations.

20

CHAPTER 4

METHODOLOGICAL FRAMEWORK AND MODEL EXPLORATION

In the chapters preceding this point, we conducted an extensive exploration of our

dataset and established a clear procedure for data preprocessing. This chapter focuses on the

methodological backbone of our work: designing, training, and evaluating a neural network

architecture that interfaces directly with a portfolio allocation module. The key innovation here

lies in our end-to-end approach, wherein model parameters, both in the neural forecaster and

the subsequent allocation layer, are updated jointly by maximizing a differentiable

approximation of portfolio performance metrics such as the Sharpe ratio treating it as a convex

optimization problem.

The chapter is structured as follows. First, we introduce our neural forecasting module,

highlighting its architecture and motivation for using a recurrent structure like the Long Short-

Term Memory (LSTM). Second, we detail the construction of two different allocation layers,

one based on a mean-variance (Markowitz-style) objective and another that incorporates an

entropy term, both embedded within the neural network via a differentiable convex

optimization interface. Finally, we explain how these components are trained in tandem using

a customized Sharpe ratio-based loss function, underscoring how this end-to-end formulation

departs from traditional “two-stage” methods that separately optimize forecasts and allocations.

4.1 – Conceptual Overview of the End-to-End Architecture

Traditional quantitative investment workflows often separate the forecasting of returns

or other relevant financial quantities from the subsequent portfolio construction. In such a two-

stage approach, a machine learning model forecasts expected returns (and possibly variances

or covariances), after which a portfolio optimization method (e.g., mean-variance, risk-parity,

or others) is used to derive the allocation weights. While conceptually straightforward, this

simple methodology does not account for potential misalignment between the loss function

used to train the forecaster, often a mean squared error or likelihood-based objective, and the

ultimate performance metric of interest such as portfolio returns, volatility, or the Sharpe ratio.

21

Our design explicitly merges the forecasting and allocation tasks into a single computational

graph. The neural network (an LSTM in our work) processes historical input data, daily returns

from a rolling window, and outputs parameters that feed directly into a differentiable convex

optimization layer. This layer then produces portfolio weights. Crucially, the entire pipeline is

trained by directly maximizing a metric related to risk-adjusted returns.

The benefits of this integrated approach are manifold:

Alignment of Objectives: The model learns forecasts in a manner that is directly pertinent to

improving portfolio performance, rather than minimizing a generic error metric (such as MSE).

Risk-Return Trade-off: By embedding the portfolio optimization step within the training loop,

the system can dynamically learn how “correct” forecasts translate into improved risk-return

profiles.

Gradient Flow: Thanks to recent advances in differentiable optimization libraries, we can

propagate gradients through the convex solver, enabling end-to-end parameter updates of both

the forecaster and the allocation module.

4.2 - Neural Forecaster: LSTM-Based Architecture

Modern finance frequently relies on modeling time series data characterized by non-

stationarities, sudden regime shifts, and high levels of noise. Traditional neural networks and

basic Recurrent Neural Networks (RNNs) can struggle under these conditions, especially when

the relevant temporal patterns extend hundreds of trading days. As a response to these issues,

Long Short-Term Memory (LSTM) networks introduce carefully engineered gating

mechanisms, permitting the model to retain pertinent information for longer horizons, and

mitigating the well-documented “vanishing gradient” phenomenon.

22

In this section, we delve deeply into why LSTMs are appropriate for financial forecasting, how

they structurally differ from simple RNNs, and how their outputs are ultimately shaped to

provide the parameters needed in our downstream portfolio allocation layer.

4.2.1 Motivation for Using LSTMs

Standard RNNs attempt to process sequential data by maintaining a hidden state that is

iteratively updated as new inputs arrive. While this architecture captures short-term patterns

well, it frequently falters in identifying or remembering long-term dependencies, particularly

important in financial contexts, where market sentiments, macroeconomic factors, or seasonal

effects might exert influence weeks or months later.

A primary reason for this limitation is the vanishing (or exploding) gradient problem: as

gradients are back-propagated through many timesteps, they can progressively shrink (or blow

up), impeding effective learning. LSTM networks address this issue by including a specialized

memory cell (the “cell state”) and a collection of gates, namely the forget gate, input gate, and

output gate, that regulate the flow of information.

Hochreiter and Schmidhuber originally proposed LSTMs to counteract the vanishing gradient

through these gating mechanisms, effectively allowing certain aspects of the time series to be

“forgotten,” while retaining crucial signals for longer intervals.

In the context of financial forecasting:

Long-Term Dependencies: Asset prices can exhibit trends, momentum, or cyclical behaviors

that span multiple months. LSTMs are designed to capture these extended temporal

relationships through careful control of the memory cell.

Noise Reduction: Financial time series are noisy. By learning to selectively keep or discard

information, LSTMs can filter out short-lived spikes or jitters.

Modular Design: Each LSTM cell processes inputs step-by-step, which aligns neatly with daily

returns data. Such a design allows for robust mini-batch training strategies while preserving the

notion of sequence.

23

As a result, LSTMs often outperform both simple feed-forward architectures and vanilla RNNs

in tasks like stock return forecasting or volatility prediction, where the relevant patterns may

span an unknown number of days.

4.2.2 - Network Structure and Input-Output Format

In our framework, the LSTM-based neural forecaster serves as the central component

for modeling sequential patterns in financial data. This network ingests rolling windows of

daily returns for multiple assets and transforms these inputs into predicted parameters essential

for subsequent portfolio allocation. In our experiments we decided to use lookback windows

of 90 days instead of 120 just for a computational power issue. The code is indeed very slow

on a cpu-only machine so we had to constraint the model at the best of our ability.

A crucial design choice when building deep learning models for time series is how best to

represent historical information. Here, as we said before, each sample is shaped as a 4D tensor:

(𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 1, 𝑙𝑜𝑜𝑘𝑏𝑎𝑐𝑘, 𝑛𝑎𝑠𝑠𝑒𝑡𝑠)

Although the second dimension (size =1) might initially seem superfluous, it provides room

for future extensions, such as including multiple channels of data or additional transformations

since LSTM can work with quantitative data but also with other types of data, we will talk

about this in the conclusions. Internally, we “squeeze” this dimension so that each mini-batch

entry essentially becomes a sequence of length 𝑙𝑜𝑜𝑘𝑏𝑎𝑐𝑘 with 𝑛𝑎𝑠𝑠𝑒𝑡𝑠 features per timestep.

From a financial perspective, each of those features corresponds to the daily return of an

individual asset. Consequently, the model observes the cross-section of returns at each point in

time, enabling it to learn how different assets may co-move or diverge over the lookback

window. By the end of this sequence, the LSTM has traversed 90 days of historical returns,

capturing both short- and potentially long-range dependencies.

Long Short-Term Memory networks are particularly well-suited to financial time series due to

different problematics of traditional Recurrent Neural Networks that they are able to tackle

thanks to their composition.

Traditional Recurrent Neural Networks (RNNs), in fact, often struggle with Vanishing

Gradient / Exploding Gradient problem as well as, in which gradient magnitudes decay or grow

24

exponentially when attempting to learn long-range dependencies. LSTMs overcome this

challenge by introducing a memory cell and three gating mechanisms, namely the forget gate,

input gate, and output gate, that allow the network to regulate what information is retained or

discarded over time.

When the model processes each rolling window of returns, it does so one day (or one timestep)

at a time. At each step, it begins by computing the forget gate, which determines how much of

the previous cell state should be preserved. Formally, the forget gate is defined by:

𝑓𝑡 = 𝜎(𝑈𝑓𝑋𝑡 + 𝑊𝑓𝐻𝑡−1 + 𝑏𝑓)

where 𝑋𝑡 is the current input (the cross-sectional asset returns on day 𝑡), 𝑈𝑓 is the weight

associated with the input, 𝐻𝑡−1 is the hidden state of the previous timestamp, 𝑊𝑓 is the weight

matrix associated with the hidden state and 𝜎 is the sigmoid activation function that squashes

values into the interval [0,1]. If 𝑓𝑡 is close to 1, the LSTM largely keeps the older information

in its internal memory; if 𝑓𝑡 is close to 0, it “forgets” that information. This mechanism is

invaluable in finance, where certain historical data points become irrelevant after, for instance,

a major news event or a regime shift. The term 𝑏𝑓 represent biases for the respective gate.

Next, the model decides how much new information to incorporate from the current input via

the input gate which is used to quantify the importance of the new information carried by the

input. This is defined by the formula:

𝑖𝑡 = 𝜎(𝑈𝑖𝑋𝑡 + 𝑊𝑖𝐻𝑡−1 + 𝑏𝑖)

This gate provides a learned measure of how relevant the present-day signals are. In parallel, a

candidate update 𝐶𝑡 is computed using a tanh activation function:

𝐶˜˜𝑡 = tanh (𝑈𝑐𝑋𝑡 + 𝑊𝑐𝐻𝑡−1 + 𝑏𝑐)

The product 𝑖𝑡 ⊙ 𝐶˜˜𝑡 (where ⊙ is elementwise multiplication) represents the specific fraction

of new information to be added to the memory cell. The cell state itself is updated by combining

this addition with the fraction of old memory retained by the forget gate:

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶˜˜𝑡

25

This updated cell state𝐶𝑡 thus carries forward both older, still-relevant information and newly

introduced signals from the current timestep, providing a flexible and powerful means of

encoding longer-term dependencies in the data.

The output gate then controls what portion of the updated cell state is exposed as the hidden

state HtH_tHt, which effectively functions as the immediate “summary” of everything the

model has inferred thus far. Mathematically,

𝑜𝑡 = 𝜎(𝑈𝑜𝑋𝑡 + 𝑊𝑜𝐻𝑡−1 + 𝑏𝑜), 𝐻𝑡 = 𝑜𝑡 ⊙ tanh (𝐶𝑡)

This gating logic ensures that at each timestep, the model can filter the cell state through a

nonlinearity, revealing only the information deemed most relevant for the next computational

steps.

An Intuitive Explanation of LSTM by Ottavio Calzone

(https://medium.com/@ottaviocalzone/an-intuitive-explanation-of-lstm-a035eb6ab42c)

After the LSTM processes the entire lookback window the network’s final hidden state ℎΤ

encapsulates the salient signals gathered from that entire historical period. This final hidden

state is then passed to a fully connected layer that outputs 2 𝑥 𝑛𝑎𝑠𝑠𝑒𝑡𝑠 parameters. We interpret

the first 𝑛𝑎𝑠𝑠𝑒𝑡𝑠 of these parameters as the model’s estimates for the expected mean returns 𝜇 ,̂

and the remaining 𝑛𝑎𝑠𝑠𝑒𝑡𝑠 as the log-variances log 𝜎 2̂ . Exponentiating the latter produces

strictly positive variance (or volatility) estimates,

𝑖

26

𝜎 2̂ = exp (log 𝜎 2̂).
𝑖 𝑖

In a classical finance context, mean and variance (or volatility) are of direct interest when

constructing portfolios. By predicting these quantities, the LSTM provides precisely the inputs

needed for an allocation layer that aims to balance expected returns against associated risk

factors.

It should be emphasized that within the end-to-end training paradigm adopted here, the LSTM’s

predicted means and variances need not achieve perfect accuracy when evaluated solely

through conventional forecasting metrics (e.g., mean squared error or likelihood-based scores).

Rather, their fundamental role is to serve as intermediate parameters that feed directly into the

subsequent portfolio optimization procedure. By designing the pipeline so that the Sharpe ratio

becomes the loss function to be maximized, the model’s parameters, from those governing the

LSTM to those within the allocation layer, are jointly calibrated to maximize the ultimate

investment objective. This coupling of forecast generation and portfolio construction contrasts

sharply with traditional two-stage processes in which each module is optimized in isolation.

Within a conventional, forecast-centric paradigm, one might strive to minimize a predictive

error metric without explicit regard for the quality of final portfolio returns. Such a disparity

can lead to suboptimal overall performance, as the model may overemphasize aspects of return

prediction that do not necessarily translate into improved portfolio-level results. In contrast,

aligning the learning process directly with a portfolio performance metric places the focus on

the features and temporal signals that genuinely enhance out-of-sample risk-adjusted returns.

Consequently, the LSTM learns a representation of the financial time series that is more attuned

to tangible trading outcomes, rather than purely numerical or statistical forecasting metrics.

In summary, the LSTM-based forecaster operates as an advanced mechanism for extracting

temporal structure within cross-sectional daily returns. The gating architecture intrinsic to

LSTMs ensures that historically pertinent information is preserved while ephemeral,

potentially misleading signals are attenuated or discarded. Crucially, this mechanism yields

data-driven forecasts of expected returns and volatilities that are specifically tailored to the

downstream objective of building robust, risk-managed portfolios. By marrying the

representational strengths of LSTMs with an end-to-end optimization criterion centered on

portfolio performance, the system intrinsically calibrates its learned features and output

27

≥0

≥0

parameters to those market patterns most likely to contribute to consistent, risk-adjusted gains,

thereby providing a unified framework that seamlessly integrates forecasting and allocation

tasks.

4.3 – Allocation Layer

In the subsequent segments of this chapter, we continue our exposition of the end-to-

end framework by describing how the portfolio allocation step integrates into the same

computational graph as the previously discussed LSTM-based return forecasting module. In

our case we are going to define two distinct allocation layers, a Markowitz-style layer that

balances expected returns against variances, and an entropy-based layer that encourages weight

diversification, and then we’re going to introduce the various utility functions, performance

metrics, and training procedures that tie the architecture together.

4.3.1 – Markowitz Allocation Layer

Following the LSTM module, one immediate step in many financial applications is to

convert predictive distributions of returns (and possibly risks) into actionable portfolio weights.

In order to accomplish that within our end-to-end paradigm, we begin with a mean-variance,

or so-called Markowitz-inspired, objective function. The rationale for including a Markowitz-

style layer emerges from decades of Modern Portfolio Theory, whose central theme is that it is

often insufficient to merely maximize returns: the investment process must also include a term

that penalizes portfolio volatility or variance.

Mathematically, let us denote the predicted mean of each asset’s returns by

𝜇 ∈ ℝ𝑛𝑎𝑠𝑠𝑒𝑡𝑠 ,

and the predicted variance (or the diagonal of a variance–covariance matrix) by

𝜎2 ∈ ℝ𝑛𝑎𝑠𝑠𝑒𝑡𝑠 ,

The layer then defines a portfolio weight vector

𝓌 ∈ ℝ𝑛𝑎𝑠𝑠𝑒𝑡𝑠 ,

where each 𝓌𝑖 corresponds to the fraction of total capital allocated to asset 𝑖. We denote by 𝛼

the hyperparameter that scales the magnitude of the variance penalty. The allocation layer

solves a convex optimization problem of the form:

28

𝑖 𝑖

𝑛𝑎𝑠𝑠𝑒𝑡𝑠

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (1 − 𝛼) ∗ (𝜇𝖳 𝓌) − 𝛼 ∗ ∑ 𝜎2 𝓌2,

𝑖=1

in which both returns and volatility are taken into account adjusted for a weight alpha that is

personalized from 0 to 1. Near to 0 we give more weight to the returns and near to 1 we give

more importance to volatility so having a more stable portfolio but at the expenses of less

expected return. In our case alpha was set to 0.3 heuristically.

This function is subjected to the normalization constraint

𝑛𝑎𝑠𝑠𝑒𝑡𝑠

∑ 𝓌𝑖 = 1,

𝑖=1

non-negativity constraints,

𝓌𝑖 ≥ 0 for each asset 𝑖

and personalized max_weight constraints to avoid over concentration that were chosen

heuristically

𝓌𝑖 ≤ 0.80.

Furthermore, it is important to highlight that our model allows users full discretion in selecting

the assets in which they wish to invest. This is achieved by leveraging the previously defined

constraint to assign a weight of zero to all undesired assets, effectively excluding them from

the feasible investment set.

A key innovation of our approach lies in integrating the portfolio optimization process within

the neural network itself, rather than solving it externally in a traditional two-stage framework.

Specifically, instead of computing the portfolio weights (𝓌) outside the model, we employ a

differentiable convex optimization layer to determine them endogenously. We will see how in

the dedicated paragraph. This is implemented using the cvxpylayers library, which enables the

construction of differentiable convex optimization layers in PyTorch that we will present in the

next paragraphs.

In the code 𝛼 can be tailored to encourage or discourage certain risk–return trade-offs: a higher

𝛼 leads to portfolios with lower variance at the expense of potentially reduced expected returns,

while a smaller 𝛼 tends to focus more on maximizing returns, sometimes resulting in more

concentrated weights. This provides a flexible mechanism to incorporate modern portfolio-

29

theoretic intuition into an end-to-end training loop, leveraging the best of classical finance but

coupling it tightly with deep neural forecasting.

4.3.2 – Entropy-Based Allocation Layer

While the Markowitz paradigm is celebrated for balancing returns and risks, it often

fails to enforce broad diversification unless one adds further constraints or carefully tunes the

risk penalty. For instance, mean-variance portfolios sometimes allocate heavily to one or two

assets that present the most favorable risk–return forecasts. In contrast, many market

practitioners and academic studies recommend a degree of intentional diversification, thus

mitigating tail risks, model uncertainty, and abrupt regime shifts.

To address this, the second differentiable allocation layer in our architecture embraces an

entropy-regularized objective function, which promotes a more uniform spread of portfolio

weights. The base formulation resembles a simple expected-return maximization,

𝜇𝖳 𝓌,

but incorporates an entropy term that encourages diversification. If we denote the entropy of

the weight vector 𝓌 by

𝑛𝑎𝑠𝑠𝑒𝑡𝑠

𝐻(𝓌) = − ∑ 𝑒𝑛𝑡𝑟(𝓌𝑖),

𝑖=1

then an entropy-augmented objective seeks to maximize

𝑛𝑎𝑠𝑠𝑒𝑡𝑠

(1 − 𝛽) ∗ (𝜇𝖳 𝓌) + 𝛽 ∗ ∑ 𝑒𝑛𝑡𝑟(𝓌𝑖),

𝑖=1

where 𝑒𝑛𝑡𝑟(𝓌𝑖) is the standard entropy expression −𝓌𝑖 ln(𝓌𝑖) in the solver’s internal

notation, and 𝛽 is a scalar that sets the relative importance of diversification. Here the higher

the 𝛽 (between 0 and 1) the higher the concentration on entropy. Heuristically we defined for

our code a 𝛽 = 0.7. This objective remains a concave function in 𝓌, and under the previous

constraints the problem is convex and solvable to global optimality.

Similar to the Markowitz layer, one can impose the usual constraints

𝑛𝑎𝑠𝑠𝑒𝑡𝑠

∑ 𝓌𝑖 = 1,

𝑖=1

30

𝓌𝑖 ≥ 0 ,

𝓌𝑖 = 0 (if asset i is not permitted) and

𝓌𝑖 ≤ 0.35 to incentivize the distribution of assets

In practice, the main difference between the Markowitz and entropy allocation layers lies in

how they shape the resulting portfolio solutions. The Markowitz layer emphasizes a risk–return

balance, which can be very sensitive to the forecasted variances σ2\sigma^2σ2. By contrast,

the entropy-based approach de-emphasizes any explicit risk penalty and instead offers a strong

incentive against over-concentration, thanks to the nature of the entropy function. This often

leads to weight vectors that include more assets at smaller proportions, possibly reducing the

portfolio’s sensitivity to inaccurate forecasts of returns or volatilities.

From an end-to-end training perspective, this layer also feeds into the daily portfolio returns,

enabling gradient signals to propagate backward. The difference is simply that the layer’s

gradient computations reflect the entropy-based objective rather than a variance-based one.

This design allows the neural forecaster to adaptively discover which signals in the return

history are most valuable for a diversified, robust approach to maximizing the eventual Sharpe

ratio.

4.3.3 – Differentiable Convex Optimization with cvxpylayers.torch

A crucial ingredient that makes both the Markowitz and entropy-based allocation layers

truly differentiable is the cvxpylayers.torch library. Traditional convex optimization toolkits,

while capable of solving Markowitz and entropy-regularized problems, generally do not

provide mechanisms for the seamless backpropagation of gradients into the parameters that

define the optimization problem (e.g., the forecasted means and variances).

By contrast cvxpylayers combines the expressive power of the CVXPY domain-specific

language for convex optimization with the computational graph capabilities of deep learning

frameworks. Specifically, once we specify a convex optimization problem, such as the

Markowitz or entropy objective with relevant constraints, cvxpylayers analyzes the problem

structure and compiles it into an operator that can be placed directly into a PyTorch (or other

supported) computational graph.

31

When we perform forward passes the predicted parameters 𝜇 and 𝜎2 become inputs to this

operator that solves the convex problem, whether it be a mean-variance maximization or an

entropy-augmented objective, and returns the optimal portfolio weights .

Then, for backward passes cvxpylayers applies the implicit function theorem to compute the

partial derivatives of the optimal solution 𝓌 ∗ with respect to each input parameter (i.e., 𝜇 and

𝜎2). These derivatives are propagated back through the remainder of the neural network,

allowing the LSTM’s internal parameters to update in ways that directly improve the final

training objective (e.g., the Sharpe ratio).

Hence, instead of a static two-stage pipeline, we obtain a dynamically trainable pipeline whose

every step, namely forecasting through LSTM, portfolio weighting, and performance

evaluation, coexists in the same auto-differentiation framework. This arrangement not only

simplifies development but also leads to more coherent optimization: if the neural net learns

that small errors in forecasting 𝜎2 have a large detrimental impact on final portfolio outcomes

(e.g., by over-allocating to volatile assets), it will re-tune its parameters accordingly.

Conversely, if certain aspects of 𝜇 predictions prove especially useful for the optimization

layer, the backpropagated gradients will reinforce those aspects automatically.

This synergy between modern deep learning architectures and classical convex optimization

stands at the core of our end-to-end approach, bridging the gap between advanced statistical

forecasting and the practical requirements of portfolio construction.

4.4 - Utility Functions and Performance Metrics

After either the Markowitz or the entropy allocation layer has provided an optimal

weight vector www, we can measure the portfolio’s subsequent performance over a particular

horizon of daily returns. To that end, our framework includes a collection of functions for

evaluating how effectively a set of portfolio weights would have performed on historical data.

These functions operate on mini-batches of data, computing essential quantities such as

portfolio returns, means, variances, or advanced measures like maximum drawdown.

A fundamental step, for instance, is to compute the daily portfolio returns once we have selected

weights. If 𝑟𝑖,𝑡 denotes the return of asset 𝑖 on day 𝑡, and 𝓌𝑖 denotes the portfolio weight of

asset 𝑖, the daily portfolio return on day 𝑡 is:

32

𝑡

𝑡

𝑡

𝑡

𝑛𝑎𝑠𝑠𝑒𝑡𝑠

𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 = ∑ 𝓌𝑖𝑟𝑖,𝑡

𝑖=1

Aggregating these daily returns over a specified horizon permits us to calculate standard

performance metrics such as the annualized return, annualized volatility, maximum drawdown,

and the Sharpe ratio which is a measure of risk-adjusted return computed as:

𝑆ℎ𝑎𝑟𝑝𝑒 =
 𝔼[𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜]

𝜎(𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜)

Where 𝔼[𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜] is the expected return from the portfolio and denominator is the standard

deviation of the returns in the portfolio. The 𝑟𝑓member inside the formula was put to 0 because

there is no risk free return when investing into stocks.

Maximizing this ratio can be interpreted as a preference for consistently positive returns with

minimal fluctuations.

We will talk more about metrics in the dedicated chapter but we wanted to tackle the creation

of the sharpe ratio to understand better the loss function explained in the next paragraph.

4.5 – Negative Sharpe Ratio and End-to-End Training

To seamlessly train the neural network and the allocation layer toward maximizing the

Sharpe ratio, we introduce a differentiable loss function that corresponds to the negative of this

metric. Most deep learning frameworks rely on gradient-based optimizers that proceed by

minimizing an objective, so by negating the Sharpe ratio, we effectively implement “maximize

Sharpe ratio” within the training pipeline:

𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜

𝓁𝑆ℎ𝑎𝑟𝑝𝑒 = −
𝜎(𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜) + 𝜀

Where 𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 is the empirical mean of the daily returns within the mini-batch, 𝜎(𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜) is

the square root of the variance, the standard deviation and 𝜀 is a small constant to avoid division

by zero.

Putting all together, during each training iteration a batch of input sequences is passed through

the LSTM, yielding predicted means 𝜇 ̂ and log-variances log(𝜎 2̂) for each asset. These

predictions serve as inputs to the selected differentiable allocation layer (Markowitz or

entropy), which then optimizes the portfolio allocation. The solver subsequently determines

33

the weight vector 𝓌 that maximizes the corresponding objective function for each batch of

predictions. With those weights 𝓌, the daily portfolio returns are computed over the relevant

horizon. We then calculate the negative Sharpe ratio as our scalar loss. Gradients of this scalar

loss are backpropagated through the allocation layer and the LSTM, thereby updating all

parameters (including the LSTM gating parameters, fully connected layers, and any trainable

coefficients in the allocation layer) in a way that directly aims to increase the Sharpe ratio in

future iterations.

Such training proceeds for multiple epochs over the training set, where each epoch comprises

multiple mini-batches of data and adjusting the batch size, learning rate, and number of epochs

we ensure that the training converges to a suitable solution that generalizes well out-of-sample.

At last, the main function of the code which is responsible for the generation of the outputs

given to the user will return a set of weights, which will be the last one in the series of output

from the model, namely the one near the date the user is using the tool, various performance

metrics which will see in the next chapter talking about evaluation of the model and finally the

name of the allocation layer that gave the best results.

All these information will be fed to a generative AI (Gemini) which will make for the user a

user-friendly explanation of the output explained in natural language. We will see this in the

dedicated chapter.

4.6 - Concluding Remarks on the Allocation Layers

Through this unified structure, we manage to bring both classical finance concepts and

modern machine learning techniques under one roof. The neural network focuses on discerning

any exploitable patterns in daily returns and calibrates its forecasts to suit the precise needs of

an allocation module that is itself learned in tandem. If, for example, the Markowitz penalty 𝛼

reveals that certain forecast inaccuracies lead to large swings in allocated weights, the LSTM

has an immediate incentive to refine its estimates of variance or expected returns in a way that

mitigates this issue. Likewise, if the entropy-based module is employed, the LSTM is guided

toward producing forecasts that allow for stable yet diversified allocations, thereby balancing

the search for profitable assets with an inherent desire to avoid undue concentration.

Meanwhile, the cvxpylayers.torch integration ensures that every step in this pipeline, ranging

from raw market data input to final performance evaluation, is differentiable. Rather than the

LSTM being judged by how well it predicts returns in isolation, it is judged by how much value

34

it adds when those predictions feed into an actual portfolio. By eliminating the historical

disconnect between “forecasting accuracy” in one stage and “optimal allocation” in another,

practitioners can achieve an improved synergy that can reduce the risk of overfitting or forecast

misalignment. The direct gradient flow from the final portfolio returns back through the solver

into the forecaster ensures that each forecast is evaluated not just by how well it predicts future

returns in an abstract sense, but by how effectively it enhances the final risk-adjusted returns

of the portfolio.

35

CHAPTER 5

EVALUATION AND EXPERIMENTAL RESULTS

Having laid out the end-to-end neural architecture, encompassing both the LSTM

forecaster and the differentiable allocation layer(s), we now turn to the crucial task of

evaluating the model’s out-of-sample performance. This chapter addresses how portfolio

returns are calculated, which performance metrics are used to gauge effectiveness, and how

these metrics allow us to compare our approach against a classic Markowitz benchmark. By

the end, we will see how end-to-end learning, anchored in Sharpe ratio maximization, translates

into tangible differences in portfolio outcomes.

5.1 - Portfolio Evaluation Function

A central element of our portfolio backtest is the evaluation function, which maps a

given set of portfolio weights to the resulting time series of daily returns, and ultimately to

higher-level metrics such as annual returns, volatility, Sharpe ratio, and maximum drawdown.

In our framework, this evaluation function is invoked repeatedly for each mini-batch during

training (to compute the negative Sharpe loss used as loss function by the LSTM model) and

on the entire test set (to produce final performance statistics).

The test set, covering the final 252 trading days in our dataset, serves as an independent

validation window that enables an objective assessment of the learned portfolio allocation

strategy. We didn’t approach the problem with a normal 80%-20% train-test split since we

decided to evaluate our results on an entire trading year (252 days remaining excluding

weekends and public holidays).

This specific period is reserved to measure the out-of-sample performance of the investment

strategy. Unlike the training phase, where weight updates occur iteratively based on the loss

function, evaluation on the test set operates in a strictly forward manner: given past price

movements, the model predicts asset-level return distributions and derives optimal portfolio

weights, which are then applied to compute realized portfolio returns over the horizon. It’s

important to emphasize that we are not using the final year’s data for training, thus avoiding

look-ahead bias.

To ensure consistency in performance evaluation, portfolio returns are computed using the

weight allocations derived from the test set inference. The process follows a structured pipeline

in which the trained LSTM-based forecaster that we presented in chapter 4 receives a rolling

36

window of past observed return (the 90 days of lookback), it processes this sequence and

outputs a forecast, namely the expected mean return vector and log-variance vector of asset

returns for the next period of 30 days (horizon), the log-variance is exponentiated to obtain the

variance. The predicted mean and variance are passed to the allocation layer that solves the

optimization problem under the constraints we imposed and outputs the resulting optimal

portfolio weights for the first horizon of the test set that are stored for application.

Once the first set of portfolio weights is obtained, it computed the first 30 days’ returns and the

input is rolled forward, the model must iterate through the entire test set using a rolling window

approach.

The oldest chunk of 30 days in the input window is dropped and the newest observed returns

(from the first horizon of the test set) is added. The entire sequence is again fed to the LSTM

model and the process repeats.

To improve stability and reduce transaction costs, instead of updating weights on a rolling daily

basis, the optimization is performed at fixed 30-day intervals, ensuring that once weights are

set for a given period, they remain unchanged until the next rebalance date. This approach gives

back slightly worse results than a normal daily redistribution of budget but maintains

adaptability while preventing excessive trading, aligning with practical investment constraints.

While the forecasted weights are applied to the actual asset returns in the test set we are

generating a time series of realized daily portfolio returns that we will use to compute key

financial risk and reward metrics.

5.2 - Performance Metrics Computation

We decided to evaluate our portfolio selection through 5 main metrics that are extremely

useful in finance: the Equity Curve, the Annual Return, the Annualized Volatility, the Sharpe

Ratio (also used for training) and the maximum Drawdown

Starting from the first one, an intuitive way to visualize the trajectory of the portfolio value

through time is the equity curve. This cumulative representation tracks how an initial

investment would evolve under compounding returns. Mathematically, if 𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜,𝑡 is the daily

return at day 𝑡, then the equity curve up to day 𝑇 is computed by:

37

𝑡

𝐸𝑡 = 𝖦(1 + 𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜,𝑖), 𝑡 = 1, . . . , 𝑇

𝑖=1

Here, 𝐸𝑡 can be interpreted as the growth factor: a value greater than 1 indicates net growth,

while a value below 1 signals net decline.

It is important also to mention that this equity curve will be our only graphic choice given by

the model as output for the user.

For the second metric, since the backtest period is exactly 252 trading days (approximately one

trading year), the total return realized at the end of day 𝑇 closely approximates the annual return

that is the metric of interest. By definition:

𝐴𝑛𝑛𝑢𝑎𝑙 𝑅𝑒𝑡𝑢𝑟𝑛 = 𝐸𝑡 − 1

where 𝐸𝑡 is the final value of the equity curve after 𝑇 days. This measure answers a fundamental

question: How much would the portfolio have gained or lost, in percentage terms, over the

course of one year?

While return quantifies the upside potential, volatility captures the risk or uncertainty. In

financial contexts, volatility is often expressed in annualized form. Concretely, we calculate

the standard deviation of daily returns and scale it to a yearly figure by multiplying by √252.

Hence:

𝜎𝑎𝑛𝑛𝑢𝑎𝑙 = 𝜎𝑑𝑎𝑖𝑙𝑦 × √252

where 𝜎𝑑𝑎𝑖𝑙𝑦 is the standard deviation of the daily return series. Volatility serves as a key gauge

of the variability of returns: higher volatility implies more pronounced swings in daily

performance.

Going forward, a direct way to quantify risk-adjusted performance is the Sharpe Ratio, which

considers both the reward (annual return) and the risk (annualized volatility). Assuming a zero

risk-free rate for simplicity, the Sharpe Ratio is given by:

𝑆ℎ𝑎𝑟𝑝𝑒 =
𝐴𝑛𝑛𝑢𝑎𝑙 𝑅𝑒𝑡𝑢𝑟𝑛

𝐴𝑛𝑛𝑢𝑎𝑙 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦

38

A higher Sharpe Ratio indicates that each unit of risk taken by the strategy generates a higher

level of return, thus signaling more efficient use of risk capital.

Finally we chose the Maximum Drawdown since portfolio management also requires

understanding worst-case declines. The MDD measures the largest peak-to-trough drop in the

equity curve throughout the evaluation window. Defining the equity curve at day 𝑡 as 𝐸𝑡 and

the running maximum of the curve up to 𝑡 as 𝑚𝑎𝑥𝑠≤𝑡 𝐸𝑠, the daily drawdown at 𝑡 is:

𝐷𝑡 =
𝐸𝑡 − 𝑚𝑎𝑥𝑠≤𝑡 𝐸𝑠

𝑚𝑎𝑥𝑠≤𝑡 𝐸𝑠

The Maximum Drawdown is then:

𝑀𝐷𝐷 = min 𝐷𝑡

𝑡

capturing the steepest percentage decline from a historical peak to a subsequent trough. This

statistic highlights the depth of potential losses and is crucial for evaluating downside risk.

5.3 – Comparison of our model performance with a standard Markowitz

To rigorously evaluate the effectiveness of our end-to-end portfolio optimization model,

we conducted a comprehensive comparative analysis against the traditional Markowitz mean-

variance framework. This evaluation was performed by selecting a universe of 30 widely

recognized financial assets and systematically generating randomized four-asset portfolios in

each iteration. These asset combinations were then fed into both models, which computed the

same set of performance metrics, including annual return, annual volatility, Sharpe ratio, and

maximum drawdown. The results of 20 iterations and 20 different combinations of assets were

systematically recorded and organized into a comparative table (Fig. 1), facilitating a clear and

objective assessment of the models' relative performance. This methodology ensures that our

analysis captures a broad spectrum of market conditions and asset interactions, thereby

providing robust insights into the advantages of our approach over conventional optimization

techniques.

The empirical results demonstrate a clear advantage of our approach, which consistently

achieves superior risk-adjusted returns, lower volatility, and improved drawdown control.

While classical Markowitz optimization (with mean and variance calculated naively using the

39

mean of the past 90 days) is widely recognized for its theoretical foundation, it suffers from

critical limitations, including sensitivity to estimation errors in the covariance matrix, excessive

concentration in a small number of assets, and an inability to dynamically adapt to changing

market conditions. Our model overcomes these deficiencies by leveraging a more robust asset

allocation strategy that enhances diversification while preserving return potential.

A comparative analysis across different test cases highlights these advantages. For instance, in

step 0, the classical Markowitz approach yields a Sharpe ratio of 1.637, whereas our model

achieves 2.0278, signifying a substantial improvement in risk-adjusted performance.

Furthermore, our model effectively mitigates concentration risk by distributing capital more

efficiently across multiple assets. Unlike the classical approach, which allocates 90.31% of

capital to AMZN and only 9.69% to GOOGL, our model balances allocations among AMZN

(35%), GOOGL (35%), and the S&P 500 index (^GSPC, 29.24%), thereby reducing reliance

on a single asset and increasing portfolio resilience. This improved allocation strategy also

contributes to a lower maximum drawdown (-0.1501 vs. -0.1917 for the classical model),

underscoring the risk management capabilities of our approach.

Behind the greater stability brought by our model by the form of an higher Sharpe ratio, our

model significantly reduces portfolio volatility, in fact in the same example we can see how the

annual volatility is 0.26 in the classical Markowitz approach and 0.19 in our end to end

approach.

Perhaps the most significant shortcoming of the classical Markowitz approach, as revealed by

our experiments, is its frequent tendency to over-allocate capital to a single asset. In steps 2, 4,

9, 11, and 19, the classical optimizer assigns 100% of capital to a single stock, an allocation

that, while mathematically optimal under historical conditions, introduces substantial

concentration risk. Our model avoids such pitfalls by maintaining a more balanced portfolio

structure, ensuring that risk is distributed across multiple assets rather than being concentrated

in one or two securities.

In conclusion, The empirical evidence strongly supports the superiority of our end-to-end AI-

driven portfolio optimization model over classical mean-variance optimization. Unlike

traditional Markowitz approaches that rely solely on historical return data and static covariance

estimates, our model incorporates advanced AI techniques to predict future returns and

dynamically adjust asset allocations based on evolving market conditions. This predictive

capability allows our model to optimize portfolio construction in a more forward-looking

40

manner, mitigating the risks associated with estimation errors and market instability that often

undermine classical optimization strategies.

By leveraging AI-driven forecasting techniques, our model delivers higher risk-adjusted

returns while maintaining lower volatility and enhanced drawdown management. The

integration of intelligent allocation mechanisms ensures that portfolios remain well-diversified

and resilient, avoiding the pitfalls of concentration risk that frequently arise in static

optimization frameworks. Furthermore, the adaptability of our approach enables it to respond

proactively to shifts in market dynamics, improving its ability to capture opportunities and

hedge against downside risks more effectively than conventional models.

5.4 – Comparison of our model performance with a two steps model

To further test our end-to-end model performance we decided to create another model

similar in structure with the only difference being the fact that the second will have a two-

separate-stage training in which the forecaster (LSTM) will have as loss function a simple MSE

(mean-square-error) and the output of the model (mean and variance) will be fed to the allocator

that statistically distributes weights.

The empirical results showed in the table in Fig.2 from our comparative analysis between our

end-to-end portfolio optimization model and the two-stage forecast model demonstrate a clear

and consistent advantage of our approach across multiple performance metrics performing

better than the two steps model 26 times out of 35 different combinations of tickers (74.28%).

The two-stage model, which combines an LSTM-based forecaster trained with mean squared

error (MSE) and a classical Markowitz optimization layer, exhibits several limitations that our

end-to-end model successfully addresses. Specifically, the two-stage approach relies on a

decoupled process where the forecasting and optimization steps are performed independently,

leading to suboptimal asset allocations due to the lack of feedback between the two stages. This

often results in higher volatility, lower risk-adjusted returns, and less effective drawdown

management compared to our integrated model.

Our end-to-end model, which leverages a unified framework combining AI-driven forecasting

and dynamic allocation, consistently outperforms the two-stage model in terms of Sharpe ratio,

annual return, and maximum drawdown. For example, as we can see in step 1 of Fig.2, the two-

stage model achieves a Sharpe ratio of 1.3703, while our end-to-end model attains a higher

41

Sharpe ratio of 3.5594 denoting a marked superiority of our model highlighted by the superior

risk-adjusted performance of our approach. Furthermore, our model demonstrates better

diversification and capital allocation, avoiding the over-concentration in single assets that often

plagues the two-stage model.

As we said in our work, the two steps model perform worse due to the fact that the forecasting

and optimization steps are performed independently, so the forecaster predicts future returns

and variances without considering how these predictions will be used in the optimization

process. This decoupling can lead to a mismatch between the forecasted parameters and the

actual portfolio construction process. For example, the forecaster might predict high returns for

a particular asset, but the optimizer might allocate too much capital to that asset, leading to

over-concentration and increased risk. This lack of feedback between the forecasting and

allocation layer can result in suboptimal asset allocations since the first isn’t informed of the

objective that needs to be reached. Instead our end-to-end model trains the forecaster with the

sharpe ratio as loss function, resulting in more resilient portfolios.

In conclusion, the empirical evidence underscores the superiority of our end-to-end portfolio

optimization model also over the two-stage forecast model. By integrating AI-driven

forecasting with dynamic allocation mechanisms, our model not only enhances risk-adjusted

returns but also improves diversification, reduces volatility, and mitigates drawdowns. These

findings highlight the transformative potential of end-to-end AI-driven approaches in modern

portfolio management, offering a robust alternative to traditional decoupled optimization

frameworks. As financial markets continue to evolve, the ability to leverage advanced AI

techniques for forward-looking portfolio construction will remain a critical advantage for

achieving long-term investment success.

42

CHAPTER 6

WEB-APPLICATION DEVELOPMENT

In addition to designing and testing the underlying machine learning models, a key

objective of this work is to deliver a simple and intuitive way for users, whether novice

investors or experienced fund managers, to interact with these sophisticated portfolio-

optimization capabilities. As discussed throughout earlier chapters, even the most advanced

AI-driven models lose much of their power if end-users find them difficult to interpret or

cumbersome to operate. This chapter outlines how our web-based platform (fig.3) was built

with the dual goals of ensuring technical robustness and offering a clean, user-friendly

interface. We describe how the front-end is structured, highlight the importance of intuitive

page layouts and interactive elements, and illustrate how user input seamlessly triggers the

back-end logic to produce meaningful outputs.

6.1 - Rationale for a Simple, Intuitive Interface

Given the complexity of AI-based portfolio optimization, it is easy for developers to

overload an interface with too many controls, technical terms, or data visualizations. Such

approaches risk alienating users who have limited financial knowledge or who are new to

machine learning. Our focus instead is on simplicity: by limiting the number of mandatory

input fields and presenting outputs in clear, everyday language, thanks to Large Language

Model (LLM), that we will describe in the next chapter, the platform lowers the barriers to

entry. This aligns with our overarching mission to make advanced investment analytics

accessible to all.

In designing the front-end, we followed several principles common to effective user experience

(UX) design:

Using a minimalist design, we present only the most critical input fields and a concise display

of model outputs. Unnecessary data or functionality can clutter the page and confuse the user.

Through a clear Call-to-Action the user can easily identify how to interact with the system, for

example, by typing a question or request in a chat-like interface following the instructions on

the screen. This lowers the learning curve for navigating the tool.

43

Furthermore, while we aim to maintain a minimalist design, a concise chart (in our case an

equity curve) can be more impactful than long tables of numerical data to support the results

of our model.

Thus, we use carefully chosen plots that highlight key performance metrics or historical

performance.

For users with limited financial or technical expertise, text-based explanations generated by

Gemini are provided in natural language to help them understand why a model suggests specific

allocations, or how the portfolio itself went on the test set and the generative AI will also give

a comment on the main metrics and suggest, in case the portfolio didn’t perform well, to try

again with other tickers.

Finally for easy reset of the model to let the user write a new prompt and have a new output

there will be a simple reset button that will delete the trained model and the train answer and

give again the word to the user.

6.2 – Technology Stack: Streamlit

To achieve the above UX goals, we employed the Streamlit framework for Python, a

tool that excels in building interactive web applications for data science and machine learning

tasks. Its declarative style allows developers to concentrate on the logic and results rather than

the details of front-end implementation. By automatically handling the rendering of widgets

such as text inputs, buttons, and charts, Streamlit greatly accelerates prototyping. It also offers

streamlined state management through st.session_state, which keeps track of user inputs and

model outputs across multiple interactions, avoiding the need for complex backend solutions.

Additionally, Streamlit integrates smoothly with libraries like Altair, Plotly, and Matplotlib,

enabling easy embedding of charts and enhancing the overall data visualization experience.

6.3 – Conversational Interaction

One of the most novel features of this platform is its chat-driven interface, which

addresses a critical gap in many fintech tools: interpretable and natural language feedback.

Instead of forcing the user to navigate through complex forms, we use a text box at the bottom

of the page where the user can submit questions, for example:

“How should I allocate my portfolio among these five stocks?”

44

Internally, the application interprets these requests, triggers the relevant model logic, and

returns answers in a conversational style. While some advanced generative AI components are

used in the back-end, from the user’s perspective, it simply feels like chatting with an intelligent

assistant with the only difference that the user will wait for 1-2 minutes to wait for the model

to train.

The answer, as said before will be in natural language, following the language of the user that

wrote the prompt and will report the suggested weigths, the metrics of interest and a graph of

the equity curve as shown in Fig.4.

In the top-right we can find a “↻” button that let the user reset the entire application in a way

to pose a new question with different tickers of interest.

6.4 – Concluding Remarks on Web-Application Development

This chapter has shown how an emphasis on user-centric design principles and a

streamlined code structure can transform a technically complex system, encompassing LSTM

forecasting, convex optimization, and sophisticated portfolio metrics, into a platform easily

navigable by diverse users. The decision to incorporate conversational interaction via a chat-

like interface exemplifies a broader shift in fintech applications, moving away from dense

dashboards and specialized interfaces toward natural language–driven tools that build trust and

expand accessibility.

Overall, the result is a robust, flexible application that bridges advanced AI-driven portfolio

optimization with clear, human-readable guidance. By keeping the user experience in the

spotlight, we ensure that our solution addresses its central mission: enabling intelligent, data-

driven investment decisions without sacrificing clarity or simplicity.

45

CHAPTER 7

LLM INTEGRATION FOR INPUT AND OUTPUT

In the previous chapter, we presented the web application’s front-end design and

illustrated how a user-friendly interface can significantly improve the overall investment

experience. We also mentioned that, behind this intuitive interface, the portfolio optimization

model from Chapter 4 handles the core analytical tasks. An important question, however, arises:

how does the model actually receive the specific inputs, namely the stock tickers in which a

user wants to invest, when these inputs are stated in casual, everyday language?

This is precisely where a Large Language Model (LLM)—in our case, Gemini—enters the

picture. Instead of burdening the user with rigid data-entry forms or specialized financial

jargon, the application allows people to interact through natural language prompts. A user might

type, for instance, “I’d like to invest in Apple and Google” or “Allocate my funds between

Tesla, Netflix, and Microsoft.” The LLM takes these free-form statements, parses them, and

translates them into structured instructions, which the underlying computational framework

(the LSTM model and allocation layers from Chapter 4) can then act upon.

By doing so, Gemini functions as an intelligent intermediary. It processes queries in input for

the correct tickers and generates a refined command that the back-end system can interpret

seamlessly and generates comments in output so that the user will be able to understand the

quantitative results of the model. This approach not only increases accessibility for users with

limited financial or technical backgrounds, but also significantly reduces friction in data entry.

Rather than juggling ticker symbols and learning how to operate a specialized interface, users

can simply converse in natural language, leaving the behind-the-scenes translation to Gemini.

In this chapter, we explore Gemini’s role in greater detail, discussing how its conversational

capabilities integrate with the front-end interface to enable a fluid, chat-like exchange. We

delve into how the generative AI model identifies the relevant assets from a prompt and how

these extracted elements are channeled into the algorithms described in earlier chapters.

7.1 – Introduction to Large Language Models (LLMs)

In recent years, Large Language Models (LLMs) have emerged as a central technology

for understanding and generating human-like text. Modern LLMs, often based on Transformer

architectures, harness attention mechanisms that enable them to relate every token in a

sequence to all other tokens. This design allows for more efficient parallelization in training

46

and a remarkable capacity to capture contextual nuances over extended input spans. Through

exposure to vast corpora of text, these models learn to handle diverse topics, languages, and

even specialized domains, ranging from everyday conversation to fields like law or finance.

Their few-shot and zero-shot reasoning abilities mean they can often respond coherently to new

or unexpected queries as long as the prompt is suitably structured.

Such adaptability is particularly valuable in finance, where investors might phrase their

objectives in many ways—some direct, others vague or partially defined. A strong LLM can

process seemingly casual instructions (for instance, “I want to put my money into Apple and

maybe a broad market ETF”) and extract the relevant financial elements (AAPL, SPY, or

^GSPC). In turn, it can facilitate a conversational format that allows users to refine and iterate

on their requests. By bridging specialized computational routines with plain language, the LLM

helps overcome barriers to entry, ensuring that sophisticated financial analytics can be

delivered to both new and experienced market participants in an accessible manner.

7.2 - Gemini

Among the various available LLMs, we adopt Google’s Gemini for its strong balance

between linguistic fluency and developer-oriented functionality and also for its 300$ of free

credit to start learning and experimenting with its functions. Gemini is grounded in a large-

scale Transformer infrastructure and benefits from comprehensive pretraining, enabling it to

parse both colloquial expressions and technical financial terms. It also incorporates

mechanisms for function calling, where the model can return structured data aligned with

specific developer-defined schemas. These features eliminate much of the ambiguity typically

associated with natural language processing, allowing the system to interpret user text as a clear

set of instructions for subsequent forecasting or allocation routines. Gemini further provides

built-in safety filters to maintain focus on relevant content and support multilingual

interactions, broadening its scope to users who may prefer communicating in languages other

than English.

7.3 - The Application of LLM on Our Web App

The primary task of the LLM in our portfolio optimization tool is to link plain-language queries

with the advanced analytics described in earlier chapters. Rather than forcing users to navigate

a list of tickers or fill out complex forms, the web application presents a simple chat interface

where they can type statements like, “I’d like to invest in Tesla and Microsoft.” Under the hood,

Gemini interprets this free-form text and calls a function defined by the developer. This

47

function is configured to receive the user’s prompt and output a structured object containing

the extracted tickers. The model accomplishes this through its function-calling interface, which

ensures that whenever it detects references to companies, it packages them in a JSON-like

format rather than leaving them embedded in a longer textual response.

Once this function returns, the web application forwards the resulting ticker made into a list to

our back-end model. At this stage, the system applies the AI-driven forecast (our end-to-end

model) and then conducts the convex optimization step. The solver arrives at a set of weights

that reflect the objective of the optimization problem we saw previously, together with the

additional constraints we described before. These results, which include numeric allocations

and performance indicators, are then handed back to Gemini in a second prompt for

explanation. This second prompt instructs the model to generate a narrative summarizing the

final weight distribution, clarifying its rationale, and commenting on how risk metrics (like

Sharpe ratio, annualized volatility, or drawdowns) might inform the user’s decision.

By leveraging function calls in both directions, first for extracting meaningful inputs and then

for generating explanatory outputs, the system encloses its core logic within a dialogue cycle.

On the input side, Gemini’s function calling helps standardize user requests. Even if a user

writes slightly ambiguous statements or if the user doesn’t know the code of the tickers he

wants to invest in, the model can often interpret them correctly and respond with a neat list of

recognized symbols. On the output side, Gemini’s capability to produce structured narrative

ensures that performance metrics and allocation strategies are distilled into a reader-friendly

commentary that can highlight key points, identify potential risks, and recommend further

diversifications.

Behind the scenes, each function call defines its expected input and output schemas. During

the first call, the model knows it must produce the ticker symbols in an array. During the second

call, it transforms allocation weights and risk metrics into a coherent explanatory paragraph or

two. Because these steps are executed under well-defined schemas, the system avoids the usual

pitfalls of ad hoc text parsing. Developers can thus focus on the financial logic and user

experience, rather than writing extensive rules for extracting data from plain text. Function

calling effectively gives the model a blueprint for what is considered “valid” output in each

stage of the conversation, reducing the chances of misunderstanding or hallucination in

sensitive domains like finance.

48

7.4 – Concluding remarks

Integrating an LLM into our application substantially lowers the user’s cognitive load

when specifying assets or interpreting model outputs. Rather than searching for the right ticker

or decoding cryptic allocation tables, users receive a guided, conversation-like experience. The

use of Gemini, with its robust function-calling interface, provides a structured way to handle

both the extraction of tickers from user text and the generation of narrative explanations around

portfolio results. This yields a workflow that is not only more accessible but also more

transparent, since every recommended allocation is accompanied by a natural language

commentary that clarifies its purpose and associated risks.

Nevertheless, a few limitations should be acknowledged. LLMs can occasionally produce off-

topic or factually incorrect statements, so safeguarding features like function schemas, safety

filters, and post-processing checks remain important for maintaining consistent quality. Model

inference also comes with higher computational and economic costs than purely rule-based

systems, so balancing real-time performance with prompt complexity is a crucial design

consideration. Despite these caveats, the benefits of a language-driven interface—improved

usability, greater interpretability, and more interactive investment dialogues—make a

compelling case for further refining LLM-based approaches in portfolio management tools.

49

CHAPTER 8

DISCUSSIONS AND CONCLUSIONS

This thesis introduced a comprehensive framework for AI-enhanced portfolio

management, with a particular focus on melding predictive modeling, optimization, and user

accessibility. At the core of this framework is a Long Short-Term Memory (LSTM) network

designed to generate forecasts of asset returns. These forecasts are then passed to a

differentiable convex optimization layer that determines how capital should be distributed

among the selected assets. The entire process is packaged in a web-based application, which

draws on a Large Language Model (LLM) interface to make advanced financial tools more

approachable to a broad range of users. By embedding portfolio construction into an end-to-

end training process and relying on a conversational interface, the methodology aims to tap

into deep learning’s predictive capabilities while demystifying complex financial analytics for

both beginner and experienced investors.

One of the primary achievements of this work lies in demonstrating how traditional, sequential

approaches to forecasting and portfolio allocation can be improved when folded into a single

computational pipeline. Typically, machine learning models generate return predictions in

isolation, and a separate optimization procedure later decides the portfolio weights. In contrast,

the present thesis integrates these steps so that the LSTM’s training objective is directly tied to

a portfolio performance metric. Rather than simply minimizing a prediction error, the LSTM

learns patterns in the data that ultimately enhance the final risk–return profile of the portfolio.

In empirical tests, this unified approach not only delivered higher risk-adjusted returns

compared to a classic mean-variance optimizer but also lowered overall volatility and reduced

the problem of concentrating too heavily in a few assets. Still, in any practical investing

context—where liquidity constraints, transaction costs, and regulatory issues loom large, it

would be prudent to refine the framework further to handle these real-world complexities.

The thesis also makes a case for broadening the data fed into the LSTM beyond mere returns

and volatility. Although daily price fluctuations and risk indicators capture much of the

market’s short-term movement, relevant information often resides outside of these

conventional data streams. News reports, social media sentiment, macroeconomic indicators,

and company announcements can all shape investor expectations. Because LSTMs excel at

tracking temporal patterns and contextual signals, a natural direction for future research

involves merging these diverse inputs into a single, richer dataset. Such an expansion might,

50

for example, allow the model to detect early warning signs of regime shifts, periods of

excessive optimism, or impending volatility not yet fully mirrored in asset prices. However,

effectively merging these parallel data streams would necessitate careful data alignment and

more sophisticated preprocessing. Despite the potential hurdles, the benefits of a more holistic

forecast, particularly in volatile or information-driven markets, could be profound.

An additional contribution of this work is demonstrating how cutting-edge financial analytics

can be delivered via a web application that uses natural language as the primary mode of

interaction. Through the integration of Google’s Gemini LLM, the system allows users to

express their allocation preferences in familiar, everyday language: for instance, “Allocate my

budget among Tesla, Microsoft, and a broad market index.” In response, the application

identifies the requested assets, processes them through the trained model, and returns a clear

explanation of how the funds are apportioned and why. This focus on accessible language helps

demystify quantitative strategies for individuals who may lack a formal background in finance

or data science. It also reduces the friction often experienced when interacting with specialized

software or complex user interfaces.

Notwithstanding these successes, the research brought to light a number of considerations that

will likely influence future iterations. First, a significant computational bottleneck arose during

training when using solely CPU resources, especially with deeper lookback windows or an

increasing number of assets. Switching to GPUs or even multi-GPU clusters would speed up

both training and inference, making it more feasible to explore deeper models or larger cross-

sections of the market. Second, although the Gemini-based chat interface is well suited to

parsing simple sentences, a more advanced conversation flow could prove valuable for users

with intricate requirements, such as limiting exposure to specific market sectors or imposing

constraints on portfolio turnover. By defining more comprehensive function calls within the

LLM integration, the system could respond to a wider array of requests and produce

increasingly sophisticated, tailor-made outputs.

Another area for refinement is the rebalancing schedule. In this study, a monthly rebalancing

frequency was chosen to balance the goal of maintaining current market alignment against the

desire to minimize excessive transaction costs. Yet certain market conditions might call for

triggers based on factors like volatility, risk thresholds, or abrupt shifts in predicted returns.

Implementing such adaptive mechanisms would improve the resilience of the strategy, albeit

at the cost of a more elaborate workflow for monitoring and re-optimizing the portfolio.

51

Furthermore an important issue pertains to the transparency of deep learning systems. Although

the LLM-generated explanations provide a user-friendly summary of the portfolio’s logic and

performance, they do not fully reveal the underlying rationale of the LSTM itself. In highly

regulated environments or when user trust is paramount, it is vital to complement these

narrative summaries with additional diagnostics. Feature attribution and model interpretability

techniques, such as gradient-based saliency maps, attention heatmaps, or local interpretation

methods, could help stakeholders understand which factors most strongly influence an

allocation decision. Such transparency could also foster greater trust in automated strategies

and satisfy any regulatory demands for explainability in algorithmic trading.

In conclusion, this thesis shows that advanced machine learning approaches can be effectively

unified with user-centric design to produce an AI-driven portfolio optimization system that is

both powerful and accessible. By training the LSTM forecaster and the optimization module

jointly, the model evolves with a focus on genuinely meaningful signals, while the

conversational interface offers broad accessibility to users of varying expertise. Looking ahead,

scaling up the computational resources, integrating additional risk measures, and refining the

LLM-driven conversation to accommodate intricate financial contexts all represent important

next steps. If implemented, these enhancements could render the tool even more valuable,

enabling it to adapt to a rapidly evolving marketplace while remaining both transparent and

user-friendly. Through such developments, AI-driven portfolio optimizers have a strong chance

of taking on a prominent role in navigating the complexities of modern finance, thus serving a

diverse range of investors with minimal technical barriers.

52

CHAPTER 9

APPENDIX

Fig.1

Step

Tickers

Classical MZ (Note)

MZ AR

MZ Vol

MZ Sharpe

MZ MDD

MZ Weights

Best (Entropy/Markowitz)

E2E AR

E2E Vol

E2E Sharpe

E2E MDD

E2E Weights

Best model

0
^GSPC, IWM,

GOOGL, AMZN

Classical MZ (My

model)

0,4401

0,2688

1,637

-0,1917
AMZN=0,9031,

GOOGL=0,0969

Best (Entropy)

0,4019

0,1982

2,0278

-0,1501

AMZN=0,3500,

GOOGL=0,3500,

^GSPC=0,2924

E2E

1

^VIX, IWM, ̂ RUT,

QQQ

Classical MZ (My

model)

0,583

0,2883

2,0222

-0,1364

QQQ=0,7575,

^VIX=0,2425

Best (Entropy)

0,3595

0,1285

2,7979

-0,0494

QQQ=0,3500,

^RUT=0,2791,

IWM=0,2318,

^VIX=0,1390

E2E

2

ÎXIC, UNH, BRK-

B, ̂ DJI

Classical MZ (My

model)

-0,0241

0,2725

-0,0885

-0,2205

UNH=1,0000

Best (Entropy)

0,2226

0,1332

1,6707

-0,067

UNH=0,3500,

^IXIC=0,3500,

^DJI=0,1761, BRK-

B=0,1239

E2E

3

ÎXIC, MSFT,

AMZN, JPM

Classical MZ (My

model)

0,2589

0,2144

1,2073

-0,1711

MSFT=0,5785,

AMZN=0,4215

Best (Entropy)

0,37

0,1733

2,1347

-0,133

MSFT=0,3500,

ÎXIC=0,2850,

JPM=0,2625,

AMZN=0,1024

E2E

4

PG, MSFT, DIA, SPY

Classical MZ (My

model)

0,1293

0,1992

0,6489

-0,1549

MSFT=1,0000

Best (Entropy)

0,2023

0,1135

1,7823

-0,0843

PG=0,3500,

SPY=0,2525,

MSFT=0,2223,

DIA=0,1752

E2E

5

BRK-B, AMZN, JNJ,

UNH

Classical MZ (My

model)

0,2757

0,1919

1,4365

-0,0933

AMZN=0,6321,

UNH=0,3679

Best (Markowitz)

0,3787

0,1677

2,2584

-0,0644

AMZN=0,8000,

UNH=0,0979,

JNJ=0,0551, BRK-

B=0,0470

E2E

6

GC=F, SI=F, ̂ GSPC,

VTI

Classical MZ (My

model)

0,2453

0,1168

2,1005

-0,0775

VTI=0,8648,

GC=F=0,1352

Best (Entropy)

0,2853

0,1048

2,7213

-0,0674

GC=F=0,3500,

^GSPC=0,3469,

VTI=0,2829,

SI=F=0,0202

E2E

7

DIA, BRK-B, TSLA,

GOOGL

Classical MZ (My

model)

0,564

0,3864

1,4595

-0,2211

TSLA=0,5209,

GOOGL=0,4791

Best (Entropy)

0,3355

0,1884

1,7811

-0,1373

GOOGL=0,3500,

BRK-B=0,3403,

DIA=0,1668,

TSLA=0,1429

E2E

8

MSFT, VTI, TSLA,

^RUT

Classical MZ (My

model)

0,3625

0,3109

1,166

-0,195

MSFT=0,6004,

TSLA=0,3996

Best (Markowitz)

0,2922

0,2076

1,4077

-0,1539

MSFT=0,6454,

VTI=0,2323,

^RUT=0,0671,

TSLA=0,0552

E2E

G

NVDA, ̂ RUT,

META, SI=F

Classical MZ (My

model)

1,7125

0,524

3,2682

-0,2705

NVDA=1,0000

Best (Entropy)

0,9482

0,2792

3,3955

-0,1451

NVDA=0,3500,

META=0,3353,

SI=F=0,1849,

^RUT=0,1298

E2E

10

HD, GOOGL, GC=F,

^DJI

Classical MZ (My

model)

0,2924

0,1928

1,5167

-0,1218

GOOGL=0,6154,

HD=0,3846

Best (Entropy)

0,2907

0,1288

2,2579

-0,0736

GOOGL=0,3500,

GC=F=0,2583,

HD=0,2404,

^DJI=0,1513

E2E

11

PG, ̂ RUT,

USDJPY=X, NVDA

Classical MZ (My

model)

1,7125

0,524

3,2682

-0,2705

NVDA=1,0000

Best (Entropy)

0,562

0,1665

3,3754

-0,1118

NVDA=0,3500,

PG=0,3500,

USDJPY=X=0,2747,

^RUT=0,0253

E2E

12

PG, GOOG, CL=F,

SPY

Classical MZ (My

model)

0,3562

0,2766

1,2874

-0,2228

GOOG=1,0000

Best (Entropy)

0,2376

0,127

1,8705

-0,1086

GOOG=0,2832,

CL=F=0,2618,

SPY=0,2459,

PG=0,2091

E2E

13

UNH, MSFT, DIA,

^IXIC

Classical MZ (My

model)

0,1064

0,1605

0,6626

-0,096

MSFT=0,7858,

UNH=0,2142

Best (Entropy)

0,2016

0,1297

1,5538

-0,0636

ÎXIC=0,3500,

MSFT=0,3500,

UNH=0,1583,

DIA=0,1417

E2E

14
QQQ, AMZN, VTI,

GOOG

Classical MZ (My

model)

0,439

0,2671

1,6438

-0,1911
AMZN=0,8906,

GOOG=0,1094

Best (Entropy)

0,3655

0,174

2,1009

-0,1239

GOOGL=0,3500,

VTI=0,3434,

QQQ=0,2990

E2E

15
SI=F, AMZN, ̂ RUT,

NVDA

Classical MZ (My

model)

1,7125

0,524

3,2682

-0,2705

NVDA=1,0000

Best (Markowitz)

1,649

0,4086

4,0352

-0,249

NVDA=0,8000,

AMZN=0,1876,

SI=F=0,0123

E2E

16

JNJ, SPY, CL=F,

META

Classical MZ (My

model)

0,4631

0,226

2,0489

-0,1123

META=0,5173,

SPY=0,4792

Best (Markowitz)

0,3474

0,1586

2,1903

-0,1016

SPY=0,3150,

JNJ=0,2765,

META=0,2400,

CL=F=0,1685

E2E

17

META, MSFT, QQQ,

GOOGL

Classical MZ (My

model)

0,1293

0,1992

0,6489

-0,1549

MSFT=1,0000

Best (Entropy)

0,3509

0,1955

1,7943

-0,1543

MSFT=0,3500,

GOOGL=0,3296,

QQQ=0,1969,

META=0,1234

E2E

18

HD, SPY, AAPL, PG

Classical MZ (My

model)

0,2981

0,2134

1,397

-0,1451

AAPL=0,9265,

HD=0,0735

Best (Entropy)

0,2841

0,1185

2,3965

-0,0597

HD=0,3500,

AAPL=0,3500,

SPY=0,2445,

PG=0,0555

E2E

1G

AAPL, JNJ, NVDA,

GOOGL

Classical MZ (Base

Markowitz)

1,7125

0,524

3,2682

-0,2705

NVDA=1,0000

Best (Entropy)

0,6706

0,2287

2,9321

-0,1666

JNJ=0,3237,

GOOGL=0,3039,

AAPL=0,2308,

NVDA=0,1416

Classical Markowitz

Comparison between our end-to-end model and a classical Markowitz approach

53

Fig.2

Step Tickers Two-step AR Two-step Vo l Two-step Sharpe Two-step MDD Two-step Weights E2E Best Approach E2E AR E2E Vol E2E Sharpe E2E MDD E2E Weights Winner

0

^GSPC, IWM, GOOGL, AMZN

0.3471

0.1770

19.616

-0.1213

AMZN 0.310226, IWM

0.254246, ^GSPC 0.243804,

GOOGL 0.191724

entropy

0.3872

0.1964

19.719

-0.1496

GOOGL 0.35, AMZN 0.35,

^GSPC 0.285052, IWM

0.014948

E2E

1

^VIX, IWM, ^RUT, QQQ

0.4097

0.2990

13.703

-0.1789

^VIX 0.296454, QQQ

0.273953, IWM 0.224874,

^RUT 0.204719

markowitz

0.5349

0.1503

35.594

-0.0543
QQQ 0.800003, IWM

0.175379, ̂ VIX 0.024618

E2E

2

PG, MSFT, DIA, SPY

0.2243

0.1008

22.254

-0.0589

PG 0.276514, SPY

0.269029, MSFT 0.240397,

DIA 0.214060

entropy

0.2538

0.1119

22.671

-0.0616

MSFT 0.350003, DIA

0.332020, SPY 0.301641,

PG 0.016336

E2E

3

BRK-B, AMZN, JNJ, UNH

0.1886

0.1195

15.784

-0.0572

BRK-B 0.283671, AMZN

0.248970, JNJ 0.237379,

UNH 0.229981

markowitz

0.2331

0.1660

14.042

-0.0829

UNH 0.317003, BRK-B

0.286266, JNJ 0.198635,

AMZN 0.198095

Two-step

4

GC=F, SI=F, ^GSPC, VTI

0.2987

0.1358

21.999

-0.0859

VTI 0.297197, ^GSPC

0.248659, SI=F 0.239009,

GC=F 0.215134

markowitz

0.3241

0.1146

28.275

-0.0701
VTI 0.799998, ^GSPC

0.200008

E2E

5

DIA, BRK-B, TSLA, GOOGL

0.4256

0.2071

20.551

-0.1160

DIA 0.258700, TSLA

0.252788, BRK-B 0.251702,

GOOGL 0.236809

entropy

0.5783

0.2555

22.631

-0.1392

TSLA 0.350001, GOOGL

0.349999, BRK-B

0.161812, DIA 0.138188

E2E

6

MSFT, VTI, TSLA, ^RUT

0.3673

0.2132

17.228

-0.1315

VTI 0.325714, TSLA

0.245358, MSFT 0.237375,

^RUT 0.191553

entropy

0.2984

0.2291

13.027

-0.1266

MSFT 0.35000, VTI

0.31862, TSLA 0.17999,

^RUT 0.15139

Two-step

7

NVDA, ^RUT, META, SI=F

0.7719

0.2488

31.022

-0.1298

NVDA 0.283722, META

0.268065, SI=F 0.241863,

^RUT 0.206350

entropy

0.8609

0.2745

31.358

-0.1322

NVDA 0.350001, META

0.349994, SI=F 0.198356,

^RUT 0.101650

E2E

8

HD, GOOGL, GC=F, ̂ DJI

0.2779

0.1195

23.251

-0.0752

GOOGL 0.257832, GC=F

0.250268, ^DJI 0.246257,

HD 0.245644

entropy

0.2384

0.1287

18.514

-0.0807

HD 0.349989, GC=F

0.311997, GOOGL

0.182701, ^DJI 0.155313

Two-step

G

PG, ^RUT, USDJPY=X, NVDA

0.4747

0.1579

30.064

-0.0953

NVDA 0.267000, ̂ RUT

0.254665, PG 0.247831,

USDJPY=X 0.230505

markowitz

12.327

0.2935

41.999

-0.1589
PG 0.551981, USDJPY=X

0.233235, NVDA 0.214828

E2E

10

PG, GOOG, CL=F, SPY

0.2267

0.1162

19.510

-0.0947

PG 0.270018, GOOG

0.257340, SPY 0.249877,

CL=F 0.222765

entropy

0.2599

0.1169

22.232

-0.0807
GOOG 0.349992, PG

0.349992, SPY 0.295637

E2E

11

UNH, MSFT, DIA, ̂ IXIC

0.1925

0.1291

14.909

-0.0704

^IXIC 0.294936, DIA

0.238836, MSFT 0.233649,

UNH 0.232578

entropy

0.1688

0.1354

12.465

-0.0601

UNH 0.350000, MSFT

0.350000, DIA 0.246088,

^IXIC 0.053912

Two-step

12

QQQ, AMZN, VTI, GOOG

0.3696

0.1796

20.580

-0.1400

VTI 0.280581, AMZN

0.254872, QQQ 0.233039,

GOOG 0.231509

markowitz

0.4007

0.2172

18.445

-0.1739
AMZN 0.800012, QQQ

0.157590, VTI 0.042391

Two-step

13

SI=F, AMZN, ̂ RUT, NVDA

0.6009

0.2215

27.129

-0.1478

^RUT 0.270364, SI=F

0.269216, NVDA 0.232251,

AMZN 0.228170

entropy

0.8171

0.2721

30.034

-0.1755

AMZN 0.349999, NVDA

0.349998, SI=F 0.262244,

^RUT 0.037759

E2E

14

JNJ, SPY, CL=F, META

0.2649

0.1345

19.697

-0.0865

META 0.278759, JNJ

0.261553, SPY 0.234446,

CL=F 0.225243

entropy

0.3252

0.1485

21.893

-0.0924

META 0.350002, SPY

0.349998, JNJ 0.220668,

CL=F 0.079332

E2E

15

AAPL, JNJ, NVDA, GOOGL

0.5633

0.1896

29.707

-0.1207

NVDA 0.258765, JNJ

0.252212, AAPL 0.248838,

GOOGL 0.240185

markowitz

0.9289

0.2967

31.304

-0.1708
AAPL 0.575966, NVDA

0.297289, JNJ 0.126739

E2E

16

CL=F, MSFT, GC=F, V

0.1882

0.1146

16.420

-0.0806

V 0.270267, CL=F

0.254953, GC=F 0.240416,

MSFT 0.234364

entropy

0.2509

0.1123

22.342

-0.0698
MSFT 0.349999, GC=F

0.349999, V 0.293588

E2E

17

AAPL, JPM, AMZN, GC=F

0.3806

0.1337

28.459

-0.1004

GC=F 0.353774, AAPL

0.223197, AMZN 0.214525,

JPM 0.208504

markowitz

0.5734

0.1478

38.799

-0.0560
JPM 0.502069, GC=F

0.333230, AMZN 0.155364

E2E

18

^GSPC, META, USDJPY=X,

UNH

0.2564

0.1232

20.824

-0.0437

UNH 0.275470, META

0.250358, USDJPY=X

0.245341, ^GSPC 0.228832

entropy

0.2651

0.1334

19.872

-0.0477

META 0.273917,

USDJPY=X 0.252279, UNH

0.251652, ̂ GSPC

0.222152

Two-step

1G

^IXIC, ̂ VIX, GC=F, VTI

0.4914

0.2859

17.189

-0.1654

^VIX 0.272606, ̂ IXIC

0.261541, GC=F 0.252780,

VTI 0.213072

markowitz

0.4850

0.1217

39.863

-0.0540
VTI 0.578012, ^IXIC

0.347634, ̂ VIX 0.074350

E2E

20

USDJPY=X, AMZN, DIA, ̂ DJI

0.2485

0.1178

21.090

-0.0906

AMZN 0.269602, DIA

0.263916, USDJPY=X

0.234137, ^DJI 0.232345

markowitz

0.3340

0.1500

22.271

-0.0734

AMZN 0.716811,

USDJPY=X 0.141900, DIA

0.141248

E2E

21

IWM, VTI, EURUSD=X, BRK-B

0.1614

0.0976

16.539

-0.0571

EURUSD=X 0.281609, BRK-

B 0.269175, IWM 0.226992,

VTI 0.222225

markowitz

0.3096

0.0968

31.975

-0.0707

VTI 0.800057, IWM

0.086892, BRK-B

0.064458, EURUSD=X

0.048592

E2E

22

^DJI, TSLA, PG, V

0.3597

0.1952

18.423

-0.0963

TSLA 0.265727, ^DJI

0.257593, V 0.241782, PG

0.234898

markowitz

0.4796

0.2502

19.167

-0.1236
TSLA 0.522669, PG

0.242933, V 0.234397

E2E

23

SPY, META, ̂ GSPC, ̂ VIX

0.6506

0.2298

28.309

-0.1175

META 0.407617, SPY

0.277018, ^GSPC 0.195231,

^VIX 0.120134

entropy

0.4247

0.1057

40.190

-0.0534

^GSPC 0.349999, SPY

0.349999, META 0.207519,

^VIX 0.092484

E2E

24
^RUT, GC=F, USDJPY=X,

^GSPC

0.2026

0.0978

20.709

-0.0759

^RUT 0.274467, USDJPY=X

0.249633, ^GSPC 0.245571,

GC=F 0.230328

markowitz

0.2424

0.0973

24.908

-0.0615
GC=F 0.585164, ̂ GSPC

0.414849

E2E

25

AAPL, PG, IWM, TSLA

0.3817

0.2068

18.453

-0.1281

AAPL 0.268700, IWM

0.261300, TSLA 0.242031,

PG 0.227969

entropy

0.5057

0.2338

21.633

-0.1315

TSLA 0.349999, AAPL

0.313295, PG 0.176697,

IWM 0.160009

E2E

26

V, ^VIX, AAPL, QQQ

0.4479

0.2785

16.083

-0.1703

V 0.258672, QQQ

0.250144, ̂ VIX 0.249125,

AAPL 0.242059

entropy

0.3617

0.1342

26.959

-0.0719

V 0.349970, QQQ

0.284145, AAPL 0.193929,

^VIX 0.171956

E2E

27

V, SI=F, CL=F, AMZN

0.2675

0.1527

17.520

-0.1247

V 0.275965, AMZN

0.248810, SI=F 0.245698,

CL=F 0.229527

entropy

0.3652

0.1635

22.335

-0.1275
V 0.349998, AMZN

0.349998, SI=F 0.298043

E2E

28

VTI, MSFT, QQQ, GC=F

0.2804

0.1265

22.159

-0.0882

QQQ 0.266735, GC=F

0.253993, VTI 0.251979,

MSFT 0.227293

entropy

0.2569

0.1424

18.046

-0.1163

MSFT 0.350000, QQQ

0.350000, VTI 0.263704,

GC=F 0.036295

Two-step

2G

IWM, ̂ IXIC, ̂ RUT, PG

0.2172

0.1392

15.600

-0.0785

IWM 0.294994, ̂ RUT

0.248539, PG 0.230933,

^IXIC 0.225535

entropy

0.2578

0.1285

20.061

-0.0840

PG 0.350000, ̂ IXIC

0.350000, IWM 0.233481,

^RUT 0.066519

E2E

30

PG, CL=F, NVDA, MSFT

0.4182

0.1675

24.974

-0.1191

CL=F 0.286361, PG

0.270158, MSFT 0.226992,

NVDA 0.216489

entropy

0.6358

0.2173

29.267

-0.1411
MSFT 0.349996, NVDA

0.343669, PG 0.302838

E2E

31

USDJPY=X, ̂ VIX, EURUSD=X,

PG

0.2317

0.3273

0.7077

-0.1900

PG 0.297312, ̂ VIX

0.249961, EURUSD=X

0.245300, USDJPY=X

0.207427

markowitz

0.1073

0.0784

13.685

-0.0335

USDJPY=X 0.465975, PG

0.305686, EURUSD=X

0.210656, ̂ VIX 0.017683

E2E

32

GOOG, META, JNJ, JPM

0.3827

0.1471

26.019

-0.0636

JPM 0.295765, GOOG

0.255731, JNJ 0.250708,

META 0.197795

entropy

0.3191

0.1517

21.041

-0.0809

GOOG 0.350009, JPM

0.350007, JNJ 0.239820,

META 0.060164

Two-step

33

TSLA, V, NVDA, GOOGL

0.7845

0.2727

28.768

-0.1864

GOOGL 0.272349, TSLA

0.248572, NVDA 0.242068,

V 0.237010

entropy

0.5410

0.2504

21.608

-0.1523

GOOGL 0.349989, V

0.349987, NVDA

0.219161, TSLA 0.080863

Two-step

34

CL=F, ̂ IXIC, AAPL, DIA

0.2165

0.1315

16.461

-0.0983

^IXIC 0.314976, AAPL

0.234144, DIA 0.227128,

CL=F 0.223751

entropy

0.2730

0.1423

19.181

-0.0951
AAPL 0.349996, DIA

0.332659, ^IXIC 0.313313

E2E

Comparison between our end-to-end model and a two-step model with the forecaster and

allocation separated

54

Fig.3

Our web-application when opened with an example of input

Fig.4

Our web-application with the output of the model explained

55

CHAPTER 10

BIBLIOGRAPHY

• Calzone, O. (2018, May 15). An intuitive explanation of LSTM. Medium.

https://medium.com/@ottaviocalzone/an-intuitive-explanation-of-lstm-a035eb6ab42c

• Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., & Kolter, J. Z. (2019).

Differentiable convex optimization layers. Advances in Neural Information Processing

Systems, 32.

• Allen, F., & Karjalainen, R. (1999). Using genetic algorithms to find technical trading

rules. Journal of Financial Economics, 51(2), 245–271.

• Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., … &

Amodei, D. (2020). Language models are few-shot learners. Advances in Neural

Information Processing Systems, 33, 1877–1901.

• Deng, Y., Bao, F., Kong, Y., Ren, Z., & Dai, Q. (2016). Deep direct reinforcement

learning for financial signal representation and trading. IEEE Transactions on Neural

Networks and Learning Systems, 28(3), 653–664.

• Elton, E. J., & Gruber, M. J. (1997). Modern portfolio theory, 1950 to date. Journal

of Banking & Finance, 21(11–12), 1743–1759.

• Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory

networks for financial market predictions. European Journal of Operational Research,

270(2), 654–669.

• Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural

Computation, 9(8), 1735–1780.

• Lintner, J. (1965). The valuation of risk assets and the selection of risky investments

in stock portfolios and capital budgets. The Review of Economics and Statistics, 47(1),

13–37.

• Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91.

• Merton, R. C. (1980). On estimating the expected return on the market. Journal of

Financial Economics, 8(4), 323–361.

• Moody, J., & Saffell, M. (1999). Reinforcement learning for trading. In Advances in

Neural Information Processing Systems (pp. 917–923).

• Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019).

Language models are unsupervised multitask learners. OpenAI Blog.

https://medium.com/%40ottaviocalzone/an-intuitive-explanation-of-lstm-a035eb6ab42c

56

• Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under

conditions of risk. The Journal of Finance, 19(3), 425–442.

• Zhang, X., Wu, Y., & Zhang, Y. (2017). Stock market prediction of S&P 500 via

combination of long-term and short-term trading signals. Neurocomputing, 213, 72–82.

• Zhang, Y., Li, Z., & Wang, X. (2020). End-to-end portfolio optimization using deep

neural networks: A Markowitz-based approach. The Journal of Finance and Data

Science, 6(4), 300–315.

