
Department of Economics and Finance

Degree Program in Economics and Finance major in Finance

ANALYZING THE VARIANCE RISK

PREMIUM: EMPIRICAL EVIDENCE

FROM FINANCIAL MARKETS

Course of Econometric Theory

Supervisor:

Prof. Paolo Santucci

de Magistris

Co - Supervisor:

Prof. Emilio Barone

Candidate:

Lorenzo Lanfrancotti

ID: 767631

Academic Year 2023/2024





Contents

Introduction 2

Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1 Variance Risk Premium Construction 6

1.1 Derivation of VRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Implied Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Realized Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Econometric Models 12

2.1 Autoregressive model of order p - AR(p) . . . . . . . . . . . . . . . . . . . 12

2.1.1 AR model estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 HAR-RV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Empirical Analysis 18

3.1 Time series analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 In Sample Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Out of sample Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Diebold-Mariano test . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Appendix 35

A.1 Augmented Dickey-Fuller Test . . . . . . . . . . . . . . . . . . . . . . . . . 35

A.2 Model Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A.3 Diebold-Mariano test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.4 Residual Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1



Introduction

Volatility influences all aspects of financial markets. The concept of ”Risk” has been

associated with the concept of Volatility as it quantifies the potential magnitude of price

movements within a given period. Larger price swings, whether upward or downward,

indicate higher risk, as the predictability of returns decreases. From an investor’s per-

spective, this uncertainty impacts portfolio performance and investment decisions, making

volatility a key driver of risk premiums. Consequently, investors require compensation, in

the form of higher expected returns, to face the uncertainty associated with high volatility.

When investing in financial markets, investors deal with at least two types of uncertainty,

the volatility of returns and fluctuations in the volatility of returns themselves. The com-

pensation for this second form of risk is captured by the variance risk premium (V RP ).

It is the difference between the market’s expectation of future variance, as implied by op-

tion prices, and the actual realized variance observed in financial markets. This premium

exists because investors want extra compensation for the uncertainty surrounding future

volatility, beyond the usual risks tied to price fluctuations. The behavior of the V RP is

linked to broader economic and financial conditions. During times of financial turmoil,

such as the Great Recession of 2007-2009 and the COVID-19 pandemic, a sharp increase

in market uncertainty leads to significant fluctuations in the V RP as investors rush to

hedge against extreme market movements. In contrast, during stable market conditions,

the V RP typically declines, reflecting a reduced need for volatility protection. These dy-

namics make V RP a critical variable in risk management, derivative pricing and portfolio

optimization.

The concept of V RP was formally introduced by Carr and Wu (2009), who defined it

as the difference between a risk neutral measure of variance, denoted by the Q measure,

and a realized measure of variance, denoted by the P measure. Using Et[·] to denote the

conditional expectation with respect to the information available at time t , the V RP is
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expressed as:

V RPt = EQ
t [σ

2
r,t+1]− EP

t [σ
2
r,t].

In practice, the Implied Variance (IV ) serves as a proxy for the variance under the risk-

neutral measure Q, while the Realized Variance (RV ) approximates the variance under

the physical measure P. Empirical studies indicates that V RP present sharp temporal

variations and is typically negative. This shows that investors are willing to accept lower

expected returns or even incur costs to hedge against upward movements in volatility,

which tend to be linked to market stress and declining asset prices.

This thesis is part of an increasing body of research focused on the role of the V RP in

predicting short-term fluctuations in financial returns. As highlighted in Zhou (2018), the

V RP exhibits significant predictive power for equity, bond, currency and credit spread

returns, with its predictive ability peaking over a few months before gradually weakening

at longer horizons. Its predictability for short horizons is meant to complement traditional

established financial indicators such as the P/E ratio, the term spread, the interest rate

differential and the leverage ratio. In addition, V RP can also serve as a proxy for macroe-

conomic uncertainty or volatility, which varies independently of consumption growth, the

target of the long-run risk model proposed by Bansal and Yaron (2004). The empirical

evidence suggests that incorporating a time-varying component of economic uncertainty

into a general equilibrium framework, especially for the case of recursive preferences, can

improve understanding of how uncertainty risk is priced in financial markets. The devel-

opment of a dynamic model for V RP is central, given it showcases significant time-series

dependencies and develops continually in response to new information. Explicitly mod-

eling V RP helps capture its persistence as well as its short and long term fluctuations.

This, in turn, gives us a clearer understanding of how it influences market uncertainty

across different time horizons. This particular approach provides insights into how vari-

ance risk affects asset returns and general financial states. Furthermore, an econometric

specification of V RP increases its usefulness in forecasting applications, rendering it a

useful instrument for risk management, asset pricing and macroeconomic analysis.

Starting from and building on these empirical insights, this thesis aims to contribute

to the ongoing discussion by analyzing the evolution of the V RP and evaluating the ef-

fectiveness of econometric models in capturing its behavior.

The first chapter will explain the derivation of the Variance Risk Premium, the formu-

lation of its components and the data and methodological tools used in the analysis.

In the second chapter, the models applied for the analysis are described in more de-
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tail. Both simple Autoregressive models AR(p) and Heterogeneous Autoregressive models

(HAR), introduced by Corsi (2009), are employed to study the dynamics of the V RP .

For the Autoregressive models, Maximum Likelihood Estimation (MLE), which in this

context is equivalent to Ordinary Least Squares (OLS), was used for parameter estima-

tion. For the different HAR-type models, only OLS regression was applied.

In the third chapter, the empirical analysis begins with a detailed examination of the

time series of implied variance (IV ), realized variance (RV ) and variance risk premium

(V RP ) for the S&P 500, focusing on their persistence and memory properties. This initial

analysis provides valuable insights into the temporal patterns of these variables, helping

to guide the selection of appropriate econometric models. Then the analysis proceeds

with both in-sample and out-of-sample estimation, followed by a forecast evaluation to

compare models performance. The estimated models are AR(1), AR(2) and HAR models

applied directly to the V RP time series, as well as an alternative approach that decom-

poses V RP in its components. In this last model, HAR models are estimated separately

for RV and IV and their forecasts are combined to construct an indirect V RP forecast.

This decomposition is done to capture the different statistical properties of realized and

implied variance and to assess whether their joint modeling improves forecasting accu-

racy. To compare forecasting performance, standard error metrics Root Mean Squared

Error (RMSE), Mean Absolute Error (MAE) and R2 are computed. In addition, the

Diebold-Mariano (DM) test is used to formally assess whether differences in predictive

accuracy between models are statistically significant.

The main result of this study is that the AR(2) model consistently outperforms all

other models in forecasting V RP , as indicated by its lowest RMSE value and highest

R2 in out-of-sample tests. This finding suggests that, despite the ability of HAR models

in capturing long-run effects, a simpler autoregressive model with only two lags is suffi-

cient to describe the short-term dynamics of V RP . The better performance of the AR(2)

specification highlights the fact that V RP fluctuations are dominated to a large extent

by short-term dependencies rather than persistent long-term patterns. This implies that

the variance risk premium reacts quickly to market conditions and that efforts to incorpo-

rate long-memory structures do not necessarily lead to better forecasts. Instead, models

that focus on capturing short-term dependencies tend to provide the best predictions,

highlighting the high-frequency nature of variance risk premium adjustments in financial

markets.
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Literature Review

The variance risk premium has received considerable attention in the financial literature

as a key indicator of market sentiment, risk aversion and macroeconomic uncertainty.

Despite defined properly by Carr and Wu (2009), the first studies on this topic focused

on it components. Whaley (2000) highlights the fact that V IX is widely recognized by

investors as an indicator of market sentiment, reflecting investors’ concerns about future

uncertainty. A major focus of financial research has been the gap between implied and

realized volatility, which is commonly used as a proxy for V RP . This difference has been

interpreted as an indicator of risk aversion, capturing how much investors demand to

compensate for exposure to volatility risk, as in Rosenberg and Engle (2002), Bakshi and

Madan (2006), Bollerslev et al. (2011) and Bekaert and Hoerova (2016). Another perspec-

tive links the V RP to economic uncertainty, suggesting that it reflects market reactions to

fluctuations in broader macroeconomic conditions, as in Bollerslev et al. (2009), Drechsler

and Yaron (2011) and Drechsler (2013). Empirical evidence underscores the predictive

power of the V RP for risk premia in various asset classes, including equities, bonds, cur-

rencies and credit markets. In particular, its predictive ability peaks at short horizons,

such as a few months, and declines over longer horizons. This short-term predictability

complements established predictions such as P/E ratios for equities, forward rates for

bonds and leverage ratios for credit markets. Moreover, the V RP improves the explana-

tory power of these traditional measures, suggesting that it captures a common component

of risk premia across financial markets. For equities, time-varying economic uncertainty,

modeled by recursive preferences, explains the role of the V RP in predicting returns

Bollerslev et al. (2009). While this study does not primarily address other asset classes, it

is worth highlighting some significant related findings. Grishchenko et al. (2022) empha-

size that in bond markets, the interest rate variance risk premium is predominantly driven

by short-term risk, complementing traditional forward-rate factors tied to both short and

long-term economic dynamics. In currency markets, Londono and Zhou (2017) reveal

that variations in the currency variance risk premium are systematically linked to global

inflation uncertainty, as explained by consumption-based asset pricing models. Similarly,

Zhang et al. (2009) argue that in credit markets, incorporating stochastic asset volatility

into standard structural models is crucial for explaining observed credit spreads and their

predictability.
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Chapter 1

Variance Risk Premium

Construction

1.1 Derivation of VRP

The Variance Risk Premium (VRP) measures the difference between the risk-neutral ex-

pectation for future variance and the realized variance over the same period. As already

said, this premium arises because investors demand compensation for bearing uncertainty

about volatility fluctuations. A standard approach to deriving the V RP follows the frame-

work introduced by Carr and Wu (2009). This method uses the concept of variance swap,

an OTC financial derivative contract that enables market participants to speculate on or

hedge against volatility risks associated with an underlying asset, such as an exchange

rate, interest rate, or stock index. Variance swaps have a zero net market value at en-

try time. Upon maturity, the payoff is calculated as the difference between the realized

variance over the contract’s duration and a constant known as the variance swap rate.

[RVt,T − SWt,T ]L, (1.1)

where RVt,T is the realized variance between time t and T , SWt,T is the fixed variance

swap rate determined at t and paid at T , and L denotes the notional amount, converting

variance payoff into monetary payouts. By no-arbitrage conditions, the variance swap

rate must be equal to the risk neutral expected value of realized variance:

SWt,T = EQ
t [RVt,T ], (1.2)
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where EQ
t [·] denotes the expectations under the risk neutral measure Q. This follows

from standard arbitrage-free pricing arguments, as the swap must be fairly priced to

prevent arbitrage opportunities in financial markets. To compute variance swap rates,

Carr and Wu assume that the future price follows a stochastic differential equation with

both continuous and jump components. Under this assumption, the quadratic variation of

log returns over a given period [t, T ] can be replicated by a portfolio of European Options

with a continuum of strike prices. The key results is that the risk-neutral expected value

of realized variance can be approximated using out-of-the-money European options across

all strikes K > 0 at the same maturity T :

EQ
t [RVt,T ] =

2

T − t

∫ ∞

0

Θt(K,T )

Bt(T )K2
dK + ϵ, (1.3)

where Bt(T ) denotes the time t price of a bond paying one dollar at T , Θt(K,T ) is the

time t value of an out-of-the-money option with strike K > 0 and maturity T ≥ t and ϵ

denotes the approximation error, which is zero when future prices process is continuous.

While instead the future prices can jump, the approximation error ϵ is of order O(( dFt

Ft−
)3)

and is determined as:

ϵ =
−2

T − t
EQ

t

∫ T

t

∫
R⊬

[ex − 1− x− x2

2
]υs(x)dxds (1.4)

Defining the physical probability measure with P, Carr and Wu relate the variance

swap to realized variance under physical measure through the following equation:

SWt,T = EP
t [Mt,TRVt,T ]/E

P
t [Mt,T ] = EP

t [mt,TRVt,T ], (1.5)

where EP
t [·] is the expectation under real-world measure P, Mt,T denotes the stochastic

discount factor and mt,T = Mt,T/E
P
t [Mt,T ]. Using no arbitrage argument, they decompose

the variance swap rate in two components:

SWt,T = EP
t [mt,TRVt,T ] = EP

t [RVt,T ] + CovPt (mt,TRVt,T ), (1.6)

The first term EP
t [RVt,T ] represents the conditional mean of the realized variance time

series. The second term captures the covariance between the stochastic discount factor and

the realized variance. The Variance Risk Premium is then defined as the negative of this

covariance term. Rearranging the formula is possible to find the empirical computation
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of the V RP :

V RPt = RVt,T − SWt,T , (1.7)

this difference represents the ex-post profit and loss form holding a long variance swap

position. The V RP is typically negative, implying that investors demand compensation

to hedge against volatility.

1.2 Implied Variance

Having derived the Variance Risk Premium (V RP ) as the difference between realized and

risk-neutral expected variance, we now turn to the empirical estimation of its compo-

nents. The first step involves obtaining a measure of implied variance, which serves as

a proxy for the market’s expectation of future variance under the risk-neutral measure

Q. This expectation is embedded in option prices and can be extracted using model-free

approaches, as exemplified by the V IX index. There will now presented three of the most

common methods use to obtain an estimation of the implied variance.

A simple yet widely used approach involves deriving the implied volatility by inverting

the standard Black-Scholes formula (developed by Black and Scholes (1973)) for the price

of a European call option and solving it for σ. The implied variance is then obtained by

squaring the implied volatility:

C(S, t) = SΦ(d1)−Ke−r(T−t)Φ(d2), (1.8)

where:

d1 =
ln(S/K) + (r + σ2/2)(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t.

Here: C(S, t) is the Price of the call option at time t, S is the current stock price, K is

the Strike price, T is Time to maturity, r is the Risk-free interest rate, σ is the Volatility

of the stock, and Φ(x) is the Cumulative distribution function of the standard normal

distribution. One of the assumption of the Black-Scholes model is that the stock prices

follow a geometric Brownian motion, which implies constant volatility. This assumption

may not hold in practice, as financial markets often exhibit time varying and stochastic

volatility.

A second method, as demonstrated by Carr and Madan (1998), Demeterfi et al. (1999),

Britten-Jones and Neuberger (2000), consists in obtaining a risk-neutral expectations of

future implied variance, and it is particularly suited for capturing the expected total
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return variation between t and t+ 1 conditional on time t. The model is expressed as:

IVt ≡ 2

∫ ∞

0

Ct(t+ 1, K
B(t,t+1)

)− Ct(t,K)

K2
dK = EQ

t [σ
2
t,t+1], (1.9)

where: Ct(T,K) is the price of a European Call option with maturity T and strike priceK,

and B(t, T ) is the price of a time t zero-coupon bond with maturity T . The computation

relies on an ever-increasing number of calls with strikes that goes from zero to infinity.

Obviously the concrete computation has to be done with a non-infinite number of strikes,

but even with a few different option prices it is possible to obtain a good approximation.

The third method refers to the previous derivation of the Variance Risk Premium based

on the work of Carr and Wu (2009). In their study, they use the variance swap as a proxy

for the volatility measure under the risk-neutral measure Q. In empirical research, it is

common to use the implied variance with a 30-day horizon, such as the VIX index, as an

approximation of this measure. However, variance swaps with an exact 30-day maturity

are not always available in the market. To address this, Carr and Wu propose constructing

a synthetic variance swap rate by applying linear interpolation between the two nearest

available variance swap maturities They compute the variance swap rate at fixed 30-day

horizon as:

SWt,T =
1

T − t

[
SWt,T1(T1− t)(T2− T ) + SWt,T2(T2− t)(T1− T )

T2− T1

]
, (1.10)

where T1 and T2 denote the two maturity dates, and T denotes the interpolated maturity

date such that T − t is 30 days.

1.3 Realized Variance

While the foundational model for Realized Variance originates from the mathematical for-

mulation of asset price dynamics,this study follows the advancements made by Barndorff-

Nielsen and Shephard (2002), who provided significant refinements to its practical imple-

mentation. Specifically, the model is grounded in the stochastic behavior of asset prices,

which can be described as a Itô semi-martingale. Let pt denote the log-price of an asset

at time t, which evolves as a stochastic process. A commonly used model is the stochastic

differential equation:

dp(t) = µ(t)dt+ σ(t)dW (t), (1.11)
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where: µt represents the deterministic drift term, σt denotes the instantaneous volatility,

Wt is a standard Brownian motion. In this framework, the integrated volatility (σ2∗
t ) over

a time interval [0, T ] is defined as:

σ2∗
t =

∫ T

0

σ2
t dt, (1.12)

Integrated volatility captures the total variation of the stochastic component of pt, but

it is not directly observable due to the continuous nature of the integral. The realized

variance offers a practical, discrete approximation of the integrated volatility by summing

squared returns over equally spaced intervals within [0, T ]. Given high-frequency price

observations at n time points [to, t1, t2, ..., tn], the log-returns are defined as:

ri = p(ti)− p(ti−1), with i = 1, ..., n.

The realized variance is calculated as:

RVt =
n∑

i=1

r2i , (1.13)

As the sampling frequency increases (n → ∞ and ∆ti → 0), the Realized Variance

converges in probability to the integrated volatility:

RVt
p−→ σ2∗

t =

∫ T

0

σ2(s)ds, (1.14)

This consinstency property, rigorously established by Barndorff-Nielsen and Shephard

(2002), ensures that RVt is a reliable estimator of Variance.

As established in the literature (e.g. Andersen et al. (2001a), Andersen et al. (2001b),

Barndorff-Nielsen and Shephard (2002), Meddahi (2002)) the RV constructed using high-

frequency intraday data provides a more accurate ex-post measure of the true and nonob-

servable return variation compared to traditional sample variances based on daily or

lower-frequency data. Using intraday data allows for more precise volatility estimation

because it enhances accuracy by capturing intra-day price movements, reduces estima-

tion bias from overnight gaps in asset prices and allows for better modeling of volatility

clustering and eventual jumps. However, in practical applications, various market mi-

crostructure limit the maximum sampling frequency that can be used to estimate RV ,

such as the bid-ask bounce effects and latency effects and price discreteness, which dis-
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tort variance estimates. To obtain a balance between the estimation error minimization

and all the noise of high frequencies prices quotation, many studies, based on the results

obtained by Andersen et al. (2000), suggest that a five minute sampling frequency is a

good choice.

1.4 Dataset

In this thesis, we focus on variance rather than standard deviation. This has been done

to ensure consistency in terms of variance, thus ensuring a correct interpretation of the

results and facilitating econometric modeling.

In analyzing the Implicit Variance we rely on the VIX index as a proxy of our IVt.

Its computation is done using option prices on the S&P500 index, based on a variance

swap model using a wide range of out-of-the-money call and put options. It is not based

on a specific pricing model, as the Black-Scholes, but instead is a model-free approach

that measures the 30-day expected volatility of the S&P500 index. A basic interpretation

of VIX’s values allows one to understand the uncertainty and investors confidence in the

short horizon1. For the construction of our model-free Realized Variance RVt, we used

intraday prices with 5 minute intervals. The dataset used consists of the daily values of

the VIX and the realized variance for the period 2000-2024. For the period from 2000

to 2020, the open source data provided by Candila (2024) was used. For the subsequent

period from 2021 to 2024, the VIX data were obtained from Investing.com, while the

five-minute historical quotes of the S&P500 were obtained from Bloomberg.

1A detailed description of the VIX computation is available in the White Paper provided in the CBOE
website
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Chapter 2

Econometric Models

In this chapter, the econometric models applied to time series analysis will be presented in

detail. First, the Autoregressive (AR) model will be introduced, along with its Maximum

Likelihood Estimation (MLE) procedure for parameter estimation. It is important to note

that MLE estimation coincides with the Ordinary Least Squares (OLS) estimation under

standard assumptions. Following this, the Heterogeneous Autoregressive (HAR) model,

proposed by Corsi (2009), will be discussed. Specifically, the classical HAR-RV model,

which focuses on volatility as the main variable, but instead here will be presented using

variance.

2.1 Autoregressive model of order p - AR(p)

The first approach employed to model the VRP is the Autoregressive model (AR). This

model assumes that the current value of the variables depends on its past values plus

a random schock, capturing the temporal dependence commonly observed in a lot of

financial time series. The AR model is defined as follows:

Xt = δ +

p∑
i=1

ϕiXt−i + ϵt with ϵt ∼ WN(0, σ2), (2.1)

Using the Lag operator L, defined as Lkxt = xt−k, it is possible to rewrite the AR(p)

process as:

(1− ϕ1L− ϕ2L
2 − ...− ϕpL

p)xt = δ + ϵt,

where the polynomial in the lag operator is: ϕ(L) = 1 − ϕ1L − ϕ2L
2 − ... − ϕpL

p. This

implies that for the process to be stationary requires that the roots of the characteristic
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equation associated with ϕ(L) lie outside the unit circle in the complex plane, or, equiv-

alently, the modulus of each root must satisfy (|z| > 1). The characteristic equation is

obtained solving: ϕ(z) = 1− ϕ1z − ϕ2z
2 − ...− ϕpz

p = 0, and here z represents the roots

of the polynomial. To granting stationarity then all roots of ϕ(z) = 0 must lie outside

the unit circle (|z| > 1). Intuitively, this implies that the influence of past values on the

current value diminishes over time, ensuring that the time series does not exhibit trends

or an explosive behavior.

For a generic Autoregressive Process of order p, the Autocorrelation function (ACF)

typically decays gradually, with an exponentially or sinuisoidal mode depending on whether

the roots of the characteristic polynomial are real or complex. The Partial Autocorre-

lation function (PACF) is a key diagnostic tool for identifying the correct order p for a

model, typically cutting off sharply after p lags.

2.1.1 AR model estimation

The parameters that are included in an AR model are typically estimated using methods

such as the Ordinary Least Squares (OLS), Maximum Likelihood Estimation (MLE) and

the Yule-Walker Equations. In this work, the focus will be on the MLE, assuming Gaussian

white noise, i.e. ϵ ∼ N(0, σ2) (which, under this assumption, is equal to OLS estimation).

Given this, the conditional probability density function of Xt, given its past values, is:

f(Xt|Xt−1, Xt−2, ..., Xt−p, ϕ, σ
2) =

1√
2πσ2

exp(− ϵ2t
2σ2

), (2.2)

Since the observations are conditionally independent, the total likelihood of the data (for

t=p+1,...T), starting from (2.2) is:

L(X,ϕ, σ2) =
T∏

t=p+1

f(Xt|Xt−1, Xt−2, ...Xt−p, ϕ, σ
2),

L(X,ϕ, σ2) =
T∏

t=p+1

1√
2πσ2

exp (− ϵ2t
2σ2

), (2.3)

Taking the logarithm of (2.3), we simplify the optimization process, converting the product
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in a summation and then expanding each term:

L(X,ϕ, σ2) = log(
T∏

t=p+1

1√
2πσ2

exp (− ϵ2t
2σ2

)),

L(X,ϕ, σ2) =
T∑

t=p+1

log(
1√
2πσ2

) +
T∑

t=p+1

log(exp(− ϵ2t
2σ2

)),

L(X,ϕ, σ2) =
T∑

t=p+1

[−1

2
log(2π)− 1

2
log(σ2)− ϵ2t

2σ2
], (2.4)

and breaking the summation in (2.4) into individual terms:

L(X,ϕ, σ2) = −T − p

2
log(2π)− T − p

2
log(σ2)− 1

2σ2

T∑
t=p+1

ϵ2t , (2.5)

Let’s introduce the parameter vector θ, defined as θ = (ϕ, σ2). Let’s call Θ its parameter

space, defined as Θ = {(ϕ, σ2) ∈ RP × R+}. Having now the Log-Likelihood function, we

can optimize the (2.5) to get the parameter estimation:

θ̂ = argmax
θ∈Θ

logL(X,ϕ, σ2),

2.2 HAR-RV

The Heterogeneous Autoregressive Realized Volatility (HAR-RV) model, as pioneered by

Corsi (2009), signifies a substantial progression in the field of financial market volatility

modeling. It is founded on the so called ”Heterogeneous Market Hypothesis” introduced

by Müller et al. (1993), which posits that financial markets comprise agents with diver-

gent time horizons and trading behaviours. These differences give rise to distinct variance

components that are shaped by interactions among heterogeneous market participants.

This multi-scale approach adopted by the HAR-RV model enables it to effectively capture

the complexities of volatility dynamics in a parsimonious yet effective manner.

The partial variance σ̃
2(.)
t represents the variance attributed to a specific market com-

ponent. The proposed model is characterized as an additive cascade of partial variances,

where each component exhibits a structure similar to an AR(1) process. The model then

assumes a hierarchical process where the future partial variances at any given level is

influenced by two factors: the historical variance observed at the same scale (the AR(1)
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component) and the partial variance from the next higher level of the hierarchy, cor-

responding to a longer time horizon. To facilitate the analysis, the model focuses on

three distinct components of variance, each associated with different time horizons: one

day (1d), one week (1w), and one month(1m). These components are represented as

σ̃
2(d)
t ,σ̃

2(w)
t and σ̃

2(m)
t . The hierarchical structure of the model facilitate the capture the

interdependence between variances observed over different time horizons, thereby provid-

ing a detailed approach to understanding market dynamics.

The model for the unobserved partial variance process, denoted by σ̃
2(.)
t at each time pe-

riod, is considered as a function of past realized variance experienced at same time scale.

This is done whilst taking into account the asymmetric propagation of variances and the

expectation of the next period values of the longer-term partial variances. The model is

defined:

σ̃
2(m)
t+1m = c(m) + ϕ(m)RV

(m)
t + ω̃

(m)
t+1m, (2.6)

σ̃
2(w)
t+1w = c(w) + ϕ(w)RV

(w)
t + γ(w)Et[σ̃

2(m)
t+1m] + ω̃

(w)
t+1w, (2.7)

σ̃
2(d)
t+1d = c(d) + ϕ(d)RV

(d)
t + γ(d)Et[σ̃

2(w)
t+1m] + ω̃

(d)
t+1w, (2.8)

Where RV
(d)
t , RV

(w)
t and RV

(m)
t are the daily, weekly and monthly Realized Variances

previously defined, while the variance innovations ω̃
(d)
t+1d, ω̃

(w)
t+1w and ω̃

(m)
t+1m are serially

independent zero mean nuisance variates with truncated left tail to guarantee the posi-

tivity of partial variances. Through straightforward recursive substitutions of the partial

variances, this cascade model can be expressed as:

σ
2(d)
t+1d = c+ β(d)RV

(d)
t + β(w)RV

(w)
t + β(m)RV

(m)
t + ω̃

(d)
t+1d, (2.9)

The equation (2.9) can be interpreted as a three factor stochastic variance model, where

the factors are directly linked to past realized variances measured at different frequencies.

Building up this process for latent variance, it is straightforward to derive the structure

of a time series model based on realized variance. Specifically, the ex-post latent daily

variance can be expressed as:

σ̃
2(d)
t+1d = RV d

t+1d + ω
(d)
t+1d, (2.10)
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Equation (2.10) establishes a connection between the ex-post variance estimate RV d
t+1d

and the corresponding contemporaneous measure of latent variance σd
t+1d. By substituting

(2.10) in (2.9), it is possible to obtain a simplified time series representation of the cascade

model:

RV d
t+1d = c+ β(d)RV

(d)
t + β(w)RV

(w)
t + β(m)RV

(m)
t + ωt+1d, (2.11)

where ωt+1d = ω̃
(d)
t+1d − ω

(d)
t+1d

In order to estimate the HAR model correctly, it is necessary to clarify certain points.

In the empirical analysis, the focus will be on Realized Variance as opposed to Realized

Volatility. This methodological decision does not affect the construction of the model,

and thus the previously outlined approaches may be applied. The following rules will be

applied to compute the monthly and weekly realized variance:

RV
(w)
t =

1

5

5∑
i=1

RV
(d)
t−i ,

RV
(m)
t =

1

22

22∑
i=1

RV
(d)
t−i ,

One of the advantages of the HAR model is that its parameters can be estimated using

Ordinary Least Squares (OLS). OLS regression method offers several benefits, such as

computation efficiency, simple implementation and interpretable results.

2.3 Tests

To ensure the reliability of the analysis, the stationarity of the time series is tested using

the Augmented Dickey-Fuller (ADF) test. The test determines whether there is a unit

root in the data, as this indicates that the time series is not stationary. Testing for

stationarity is important because many econometric models require this condition in order

to avoid bias arising from time trends or persistent data shocks. The ADF test was

applied to all the time series, to confirm whether these series exhibit mean-reverting

behavior or require transformations such as first differencing. Model performance metrics

were used to compare the forecasting ability of econometric models in capturing V RP

dynamics. The predictive models were evaluated by Root Mean Squared Error (RMSE)

and Mean Absolute Error (MAE) and R2 calculation for each model. These measures

allow a quantitative comparison of how well each model fits the data and predicts future
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values. A Diebold-Mariano (DM) test was used to determine which of the tested models

provided superior predictive accuracy. The DM test compares the forecast errors of two

competing models and determines whether the difference in their predictive performance

is statistically significant. In time series applications, the DM test is a valuable approach

because it performs the model comparison in an efficient manner that compensates for

autocorrelation and heteroskedasticity in the forecast error patterns. In the Appendix

section, the document provides a detailed explanation with mathematical representations

for ADF, RMSE, MAE, R2 and the DM test, together with their basic assumptions and

their technical implementation.
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Chapter 3

Empirical Analysis

3.1 Time series analysis

Beginning our empirical analysis, we will now examine the time series components of

the variance risk premium. The S&P 500 data have been obtained as explained in the

previous chapter, and the time series are now discussed. First, the descriptive statistics

are presented:

Table 3.1: Descriptive statistics for the period 2000-2024

Mean Median Std. Deviation Skewness Kurtosis

VRP 9.0005x10−5 7.3168x10−5 1.4589x10−4 -12.1545 448.1220

RV 9.4793x10−5 4.0603x10−5 2.3160x10−4 12.1777 260.5009

IV 1.8483x10−4 1.2601x10−4 2.0630x10−4 4.9966 39.8206

Table 3.1 provides a better understanding of the distribution of the series. For both Im-

plied Variance (IV ) and Realized Variance (RV ), the mean is higher than the median,

indicating a positively skewed distribution. This is supported by the values of the skew-

ness, especially for RV . In contrast, the Variance Risk Premium (V RP ) exhibits negative

skewness, as indicated by its mean, median, and most notably, its skewness value. The

extreme negative skewness of V RP (-12.1545) aligns with market participants’ tendency

to hedge against volatility risk, leading to sharp declines in V RP during periods of finan-

cial stress. The kurtosis values indicate the presence of heavy tails, confirming that all

series exhibit leptokurtic behavior, which is a typical characteristic of financial markets
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where volatility tends to cluster and undergo sudden, high-impact fluctuations. The ex-

tremely high kurtosis of V RP (448.1220) supports the idea that variance risk premiums

are particularly sensitive to abrupt movements. Apart from extreme events, volatility

clustering shows that periods of high volatility tend to be followed by sustained high

volatility, whereas periods of low volatility exhibit prolonged stability. This persistence in

the volatility process allows for the use of Heterogeneous Autoregressive (HAR) models,

which can capture the influence of past variance at different time horizons. The fact that

RV and IV remain low for extended periods but occasionally spike dramatically suggests

that market variance is shaped by both short-term shocks and long-term trends. The

strong negative skewness and high kurtosis of V RP also indicate that it tends to decline

sharply in response to uncertainty, reflecting the corresponding shifts in investors’ risk

perception and hedging behavior.

Figure 3.1: S&P500 Implied Variance

In Figure 3.1, the evolution of the S&P500 Implied Variance over time can be observed.

Notable spikes occur during periods of increased uncertainty, such as the 2007–2009 Great

Recession or the COVID-19 pandemic crisis. These peaks indicate moments when the mar-

ket’s perception of risk increased, leading to higher option premiums. From the analysis

of the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF),

shown in Figure 3.2, it is clear that IV exhibits a long-memory process, with persistent

correlations between implied variance and its past values. The PACF shows a sharp de-

cay after lag 2, and, together with the behavior of the ACF, supports the selection of a
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lower-order autoregressive model as a baseline for capturing time dependencies.

(a) Implied Variance ACF (b) Implied Variance PACF

Figure 3.2: Implied Variance ACF and PACF

Continuing the analysis, Figure 3.3 illustrates the evolution of the S&P500 Realized

Variance over time. Similarly to IV , it exhibits sharp peaks in periods of financial turmoil.

However, RV displays more extreme fluctuations compared to IV . This difference arises

because RV directly measures variance based on actual market movements, whereas IV

reflects investors’ forward-looking expectations of variance, indicated in option prices. As

a result, RV reacts more quickly to market shocks, showing sharp and sudden spikes in

response to significant financial events. In contrast, IV adjusts more gradually, serving as

a smoothed measure of perceived risk that incorporates market sentiment and risk premia

over time.

Figure 3.3: S&P500 Realized Variance
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The divergence between RV and IV shows the distinct nature of variance dynamics.

Realized Variance (RV ) is inherently reactive, responding immediately to the events of

the markets, while Implied Variance (IV ), being expectation based, adjusts at a slower

rate. This highlights the unique role these measures play in financial markets, showing

how each serves a different purpose: RV measures the direct impact of price fluctuations,

while IV reflects the broader assessment of future risk by the market, including both

immediate uncertainty and investor sentiment. Similar results have been found for the

Realized Variance in the analysis of the ACF and PACF functions. Looking at Figure 3.4,

RV exhibits strong memory, though with lower persistence compared to IV . The autocor-

relation function (ACF) decays slowly, while the partial autocorrelation function (PACF)

decays sharply after lag 2. This combined behavior suggests that an autoregressive model

would be a good starting point for capturing the time dependencies in Realized Variance.

(a) Realized Variance ACF (b) Realized Variance PACF

Figure 3.4: Realized Variance ACF and PACF

Now, we proceed with the analysis of the S&P500 Variance Risk Premium (V RP ). Fig-

ure 3.5 shows significant volatility peaks and clustering over time. For a more complete

overview, some key financial events are marked in the graph. The dot-com bubble of

2000–2002, which also includes the events of September 11, 2001, marks a period of

persistent volatility clustering at the beginning of the 21st century. The second cluster

corresponds to the 2007–2009 Great Recession, a period characterized by extreme intra-

day market fluctuations. In particular, the 10% variation in the S&P500 on October

10, 2008, is clearly visible, showing the extreme volatility of that period. The rest of the

spikes in volatility align with other shocks in the market, including the 2010 and 2015 flash

crashes and the 2011 European sovereign debt crisis. More recently, a third major pe-

riod of increased volatility occurred during the global coronavirus pandemic (2019–2023),

21



along with the early phase of the Russian invasion of Ukraine (2022). This latter period

introduced considerable uncertainty into financial markets due to rising energy prices and

inflation, amplifying market volatility even more.

Figure 3.5: Evolution of SP500 VRP

V RP exhibits a moderate decay in is autocorrelaton function. While there is noticeable

persistence, it is weaker compared to implied variance and realized variance, which aligns

with he nature of V RP as the difference between the two. As expected, the PACF behave

exactly as the others, decaying after lag 2.

(a) Variance Risk Premium ACF (b) Variance Risk Premium PACF

Figure 3.6: Variance Risk Premium ACF and PACF
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The Augmented Dickey-Fuller (ADF) test was conducted to asses the stationarity of

all three time series. The test was run under the null hypothesis of non-stationarity of the

series, implying the presence of a unit root, against the alternative of stationarity with a

constant and, where necessary, a linear time trend. The results confirmed that each series

is stationary at the 5% significance level, which ensures stability for econometric modeling

without requiring further transformations. This guarantees the reliability of subsequent

analyses and model estimations based on these data.

3.2 In Sample Analysis

Now, the results of the model estimations will be presented. At first, an AR(1) and

AR(2) model were estimated, where the order p was determined based on the ACF and

PACF of the V RP time series. As discussed earlier, V RP exhibits long memory, but

its partial autocorrelation function (PACF) decays sharply after lag 2, suggesting that

an autoregressive process is an appropriate model for capturing the data dynamics. The

parameters of these models were estimated using Maximum Likelihood Estimation (MLE).

Subsequently, three different HAR models were estimated. The first one is the HAR −
V RP model, defined as follows:

V RP d
t+1d = c+ β(d)V RP

(d)
t + β(w)V RP

(w)
t + β(m)V RP

(m)
t + ωt+1d (3.1)

The HAR−V RP model provides a simple framework to capture multi-scale persistence of

the V RP . It incorporates daily, weekly and monthly components, and therefore accounts

for the heterogeneous behaviour of market participants with different investment horizons.

The second and third model, respectively an HAR−RV and an HAR− IV model, will

be constructed to get forecast of future RV and IV , and then this two value will be used

to get a V RP forecast. These models are defined as follows:

RV d
t+1d = c+ β(d)RV

(d)
t + β(w)RV

(w)
t + β(m)RV

(m)
t + ωt+1d (3.2)

IV d
t+1d = c+ β(d)IV

(d)
t + β(w)IV

(w)
t + β(m)IV

(m)
t + ωt+1d (3.3)

Equation 3.2 corresponds to the model originally introduced by Corsi (2009). The deci-

sion to estimate RV and IV separately, rather than modeling V RP as a single dependent

variable, allows to satisfy the need to mitigate potential biases arising from their distinct

time series properties. By treating them individually, it becomes possible to accurately
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decompose their variance persistence across different time horizons, providing a clearer

understanding of their respective contributions to VRP dynamics. Although Implied

Variance (IV ) represents a market-based expectation of future variance, it is not directly

known at time t+1 and remains subject to dynamics that can be modeled and fore-

casted. The primary objective of applying a HAR model to IV is to provide an estimate

of tomorrow’s implied variance given today’s available information. Specifically, while

IV encapsulates market expectations, these expectations themselves evolve over time, re-

sponding to new information, changes in risk perception, and structural shifts in market

conditions. The HAR model, which captures variance dynamics over multiple horizons,

provides a structured framework to model the persistence and responsiveness of implied

variance across different time scales. Thus, the decision to apply an HAR model to IV

is motivated by the need to generate a data-driven estimate of future implied variance,

rather than assuming that IV follows a purely exogenous process. Once the forecasts R̂Vt

and ˆIVt have been obtained, an estimate of the variance risk premium, ˆV RPt, can be

computed in this way:

ˆV RP ∗
t = ˆIVt − R̂Vt

where ˆIVt and R̂Vt are the predicted values from the HAR− IV and HAR−RV models,

respectively.

AR(1) AR(2)

ω 0.001 0.001

(0.000) (0.000)

ϕ1 0.378 0.247

(0.002) (0.002)

ϕ2 0.3451

(0.003)

HAR− V RP HAR−RV HAR− IV

c 1.705×10−5 9.226×10−6 4.659×10−6

(2.368×10−6) (2.127×10−6) (9.539×10−7)

β(d) 0.094 0.313 0.757

(0.015) (0.015) (0.014)

β(w) 0.401 0.484 0.221

(0.029) (0.023) (0.018)

β(m) 0.3157 0.105 -0.002

(0.03) (0.023) (0.01)

Table 3.2: In Sample model estimations results for SP&500 VRP
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However, it is important to note that the estimated models are not all based on the

same time series, which raises concerns about the suitability of using the Akaike Informa-

tion Criterion (AIC) and the Bayesian Information Criterion (BIC) for model comparison.

While it is technically possible to compute these metrics, they mainly assess the goodness

of fit of individual models rather than the accuracy of the final V RP forecasts. For this

reason, model comparison is conducted using forecasting evaluation metrics such as Root

Mean Squared Error (RMSE), Mean Absolute Error (MAE), and the R2 coefficient,

which provide a more appropriate measure of predictive accuracy. These metrics allow

for a more reliable assessment of the models’ ability to forecast V RP , ensuring that the

results reflect out-of-sample performance rather than in-sample optimization.

Table 3.2 shows the results for the in-sample analysis. The parameters of the models

exhibit statistical significance, given that all estimated coefficients have p-values well be-

low the significance level α = 5%, providing strong evidence against the null hypothesis.

By examining the estimation results, notable patterns emerge. The estimation outcomes

for the AR(1) and AR(2) models provide valuable insights into the persistence of the time

series. Constructing a model with just a single lag offers a clear perspective on the extent

to which V RP depends on its past values, highlighting the presence of temporal depen-

dence in its evolution. In the case of the HAR models, the results from the HAR − IV

model indicate that short-term implied variance has a significantly stronger influence on

future predictions compared to long-term implied variance. This suggests that market

expectations of volatility are highly responsive to recent fluctuations rather than being

shaped by more persistent, long-term trends. Such behavior aligns with the idea that im-

plied variance primarily reflects investor sentiment and forward-looking risk perception,

incorporating new information almost instantaneously. This finding is in contrast with

the behavior of realized variance, which exhibits a more gradual adjustment to market

dynamics and is less sensitive to fluctuations occurring within specific temporal intervals.

Unlike implied variance, realized variance captures the accumulation of past variance,

making it a more stable measure that evolves in response to actual market movements

rather than anticipatory sentiment.

25



AR(1) AR(2) HAR− V RP HAR−RV HAR− IV V RP ∗

RMSE 1.351×10−4 1.268×10−4 1.28×10−4 1.568×10−4 6.715×10−5 1.339×10−4

MAE 5.198x10−5 4.552x10−5 4.245x10−5 4.899x10−5 2.910x10−5 4.354x10−5

R2 0.143 0.245 0.233 0.543 0.894 0.1599

Table 3.3: Comparative Measures for In-Sample model Estimation

Based on the results in Table 3.3, it is clear that the AR(2) model performs best

according to RMSE and R2, whereas MAE identifies HAR−V RP as the most accurate

model. While RMSE prioritizes overall accuracy by penalizing larger errors more heavily,

MAE provides a more balanced measure by treating all deviations equally, making it

less sensitive to extreme values. This distinction may help explain the divergent rankings

between the AR(2) andHAR−V RP models, and can be observed in Figure 3.7. Similarly,

the R2 statistic, which measures the proportion of variance explained by the model, also

identifies AR(2) as the best-performing model, stressing on its strong ability to capture

the underlying data patterns.

Figure 3.7: Model forecats performance during COVID-19 crisis
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3.3 Out of sample Analysis

Following the evaluation of in-sample model performance, the next step involves conduct-

ing an out-of-sample analysis to asses the predictive accuracy of the models on unseen

data. To achieve this, the dataset was split into two parts: the training set, which ac-

counted for 50% of the observations, was used to estimate the model parameters, while the

test set, consisting of the remaining 50%, was reserved for forecast evaluation. The V RP ,

RV , and IV time series consist of a total of 6,323 observations, covering the 2000–2024

period. This means that the training and test sets have respectively 3,162 and 3,161

observations. The estimation results for the same five models previously presented are

illustrated in Table 3.4, followed by the comparative performance measures contained in

Table 3.5.

AR(1) AR(2)

ω 0.001 0.001

(0.000) (0.000)

ϕ1 0.336 0.219

(0.003) (0.004)

ϕ2 0.346

(0.004)

HAR− V RP HAR−RV HAR− IV

c 1.953×10−5 1.098×10−5 4.205×10−6

4.07×10−6 3.869×10−6 1.486×10−6

β(d) 0.061 0.281 0.764

(0.021) (0.021) (0.019)

β(w) 0.392 0.433 0.191

(0.042) (0.035) (0.025)

β(m) 0.349 0.201 0.027

(0.045) (0.03) (0.015)

Table 3.4: Out of Sample model estimations results for SP&500 VRP

Before proceeding with the analysis of the data, a preliminary note is to be provided.

The results of the out-of-sample analysis for the comparative statistics yield lower values

than their corresponding in-sample counterparts. This outcome is highly counterintuitive

and does not align with the established theoretical expectations in forecast analysis, where

out-of-sample errors are generally expected to be larger due to increased model uncertainty

when applied to new data. However, a vital factor to consider is the substantial difference

27



in variance between the training and test datasets. In particular, the variance of the

training set is 3.3408 × 10−8, while the variance of the test set is significantly lower at

9.0168 × 10−9. This difference suggests that the model was estimated over a period in

which the V RP time series exhibited much higher volatility. In particular, the training

set includes periods of extreme market turbulence, such as the 2008 Global Financial

Crisis and the Eurozone Sovereign Debt Crisis of 2011. This difference in variance implies

that the model was trained under conditions of strong financial instability, making the

in-sample estimation particularly sensitive to extreme fluctuations. As per Figure 3.5,

the training set is influenced by substantial and more frequent volatility spikes, while the

test set covers a period of relatively lower market uncertainty. Consequently, the out-

of-sample performance benefits from the model being applied to a more stable dataset,

leading to lower forecast errors despite theoretical expectations suggesting otherwise.

AR(1) AR(2) HAR− V RP HAR−RV HAR− IV V RP ∗

RMSE 8.365×10−5 7.826×10−5 8.067×10−5 1.098×10−4 5.823×10−5 8.57×10−5

MAE 4.166×10−5 3.425×10−5 3.023×10−5 3.705×10−5 2.487×10−5 3.081×10−5

R2 0.224 0.321 0.283 0.543 0.859 0.192

Table 3.5: Comparative Measures for Out-of-Sample model Estimation

The out-of-sample forecast evaluation provides important insights into the predictive

performance of the models. The results for the AR(1) and AR(2) models highlight the fact

that the second outperforms the first one, as evidenced by a lower RMSE and a higher R2.

This result suggests that the Variance Risk Premium exhibits dependence beyond just a

single lag, meaning that incorporating an additional past observation improves predictive

accuracy. Despite this, the overall forecasting ability of the AR models remains limited,

as indicated by the relatively low R2 value, suggesting that the V RP dynamics are not

fully captured by simple autoregressive models.

The HAR − V RP model, estimated directly on the V RP dataset, performs better than

the AR(1) model but does not outperform AR(2). The slightly higher R2 compared to the

AR(2) model suggests that incorporating multiple time horizons provides some additional

predictive power over simple autoregressive models. However, the improvement is not

substantial enough to establish it as a clearly better approach, as it may overestimate
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the distinct dynamics of realized and implied variance, potentially introducing complexity

without significantly improving predictive accuracy. A particular aspect is that the MAE

metric, also in this case, identifies the HAR− V RP model as the best performer among

those that directly forecast V RP . This finding underscores the robustness of MAE as

an error measure compared to MSE and RMSE. While MSE and RMSE penalize

larger errors more heavily due to squaring the residuals, MAE considers all deviations

equally, making it less sensitive to extreme values and outliers. The fact thatHAR−V RP

achieves the lowest MAE suggests that it produces more stable and reliable forecasts on

average, even if it does not minimize large deviations as effectively as other models.

The V RP ∗ model, constructed using the forecasts from the HAR−RV and HAR− IV

models, does not demonstrate a significant improvement in predictive accuracy compared

to direct estimation using the HAR−V RP model or a classic autoregressive model. This

suggests that reconstructing V RP from separate variance forecasts does not necessarily

yield better out-of-sample predictions. Although not directly comparable to the other

models, the HAR−RV and HAR−IV models yield interesting insights. The HAR−RV

model performs considerably worse in an out-of-sample analysis. The much higher RMSE

and a relatively lower R2 compared to theHAR−IV model indicate that realized variance

alone does not provide useful insights for predicting future values. This result is not

surprising, as realized variance tends to be affected by sudden jumps and high persistence,

making it difficult to capture its long-term behavior through standard autoregressive

models. A particularly interesting result is that the HAR−IV model emerges as a strong

predictor in an out-of-sample context, reinforcing the idea that market expectations about

variance contain more relevant information than past realized variance when forecasting

future variance dynamics. This suggests that market expectations embedded in implied

variance play a dominant role in influencing the future trajectory of V RP , making it the

most informative predictor among the two components. Now the forecasts plots for each

of the proposed models will be presented:
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Figure 3.8: Out of sample forecast with AR(1) model

Figure 3.9: Out of sample forecast with AR(2) model
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Figure 3.10: Out of sample forecast with HAR-VRP model

Figure 3.11: Out of sample forecast with VRP* model
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3.3.1 Diebold-Mariano test

The results1 presented in Table 3.6 do non yield statistical differences in predictive accu-

racy, with the only exception of AR(1)-AR(2) comparison, where the first model seems

to perform better.

DM test p-value

AR(1)/AR(2) 2.0758 0.038

AR(1)/HAR− V RP 0.9658 0.3342

AR(1)/V RP∗ -0.2588 0.7958

AR(2)/HAR− V RP -0.5305 0.5958

AR(2)/V RP∗ -1.2306 0.2186

HAR− V RP/V RP∗ -1.1440 0.2527

Table 3.6: Results of Diebold-Mariano test for ”out-of-sample” residuals

This is in contrast with the results given by comparative metrics such as RMSE, where

AR(2) is indicated as the best one regarding predictive accuracy. This contradiction can

be due to the different methodology used for these evaluation metrics. RMSE and MAE

measure the overall magnitude of forecast errors, with lower values indicating that, on

average, a model produces more accurate predictions by minimizing the difference between

actual and predicted values. However, the DM test evaluates whether the forecasts errors

of two models are statistically different from each other, rather than just comparing their

magnitude. One possible explanation for this difference in results is that AR(2) may

produce more stable forecasts with lower error variance, while AR(1) errors might exhibit

a different distribution that leads to relative better performance when compared directly

to AR(2) model under DM test. The results of the other DM test, as already said, do not

present a statistically significant difference in the models’ forecast accuracy.

1Values for DM test have been obtained using the Matlab function called dmtest modified made by
Semin Ibisevic (2011) and Jaime Trujillo (2016)
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Conclusion

This thesis was developed around a fundamental research question: Given that the Vari-

ance Risk Premium (V RP ) is widely used as a predictive signal for asset returns, can

econometric models be effectively constructed and evaluated to systematically capture its

behavior? The ability to model and forecast V RP is particularly important in financial

markets, as it represents the compensation investors require for bearing uncertainty about

future volatility fluctuations. By identifying appropriate econometric methodologies, this

study aims to assess whether V RP can be formally modeled and whether its predictive

power can be leveraged to improve return forecasting and financial decision-making.

Empirical research, including the work of Zhou (2018), suggests that V RP exhibits

strong predictive power for asset returns, peaking over short to medium term horizons.

Specifically, its ability to forecast returns is most pronounced over a few months before

gradually weakening. This characteristic implies that V RP may serve as a valuable risk

indicator in short-term financial modeling, particularly in applications related to volatility

trading, portfolio optimization, and risk management. In this study, we focus specifically

on the equity market, using S&P500 data as a case study, given its importance as a

benchmark for global financial markets and the availability of robust measures of implied

and realized variance.

To systematically analyze the behavior of V RP , we implemented two widely used

classes of econometric models: Autoregressive (AR(p)) models and Heterogeneous Au-

toregressive (HAR) models. Within these frameworks, we estimated four specific model

specifications: AR(1), AR(2), HAR − V RP , and an alternative specification V RP ∗, de-

signed to capture different aspects of V RP dynamics, including its persistence and multi-

scale structure. The empirical findings reveal that among the models tested, the AR(2)

model achieved the lowest RMSE and the highest R2 in the out-of-sample evaluation,

indicating that it provides the most accurate forecasts of V RP relative to the alternative

specifications. This result suggests that V RP exhibits a notable degree of short-term
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predictability, reinforcing its role as an important financial signal for return forecasting.

These results contribute to the broader literature on variance risk premiums, confirming

that V RP could be used effectively as a meaningful and efficient predictor of asset returns,

particularly over short time horizons. Given its impact in particular on derivative pricing

and volatility risk assessment, future research could explore extending V RP based fore-

casting models into asset allocation strategies and examining its interaction with broader

macroeconomic variables. Additionally, exploring alternative modeling techniques that

was not used in this analysis, such as nonlinear models, regime-switching approaches,

or machine learning-based methods, could further enhance our ability to capture V RP

dynamics and improve its practical applications in financial markets.
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Appendix

A.1 Augmented Dickey-Fuller Test

The Augmented Dickey-Fuller test is a widely used statistical procedure to determine

whether a given time series is stationary, particularly in the presence of a unit root,

which is an indicator of non-stationarity. A unit root implies that the shocks to the

time series have permanent effects, making the time series non-stationary and unsuitable

for many economic analyses that rely on stationarity assumptions. the ADF test extend

the classical Dickey-Fuller (DF) test incorporating additional lagged differences to address

serial correlation in the residuals of the model. Dickey and Fuller (1979), Dickey and Fuller

(1981). The ADF test is based on estimating an augmented autoregressive equation:

∆yt = α + βt+ γyt−1 +

p∑
i=1

δi∆yt−i + ϵi,

where γyt−1 tests for the presence of a unit root. The Null Hypothesis (H0) of the ADF

test states that the time series has a unit root (γ = 0), while the Alternative Hypothesis

(H1) indicates stationarity (γ < 0). The test statistic for the ADF test is calculated as:

ADF Statistic =
γ̂

SE(γ̂)
,

where γ̂ is the estimated coefficient of yt−1 and SE(γ̂) is its standard error.

A.2 Model Performance Metrics

In this section will be illustrated the metrics used in the assessment of model estimation

and forecasting analysis.

The Root Mean Squared Error (RMSE) measures the mean of the squared errors,

which represents the average squared difference between the predicted values and the

actual values.

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi),
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where yi and ŷi are the actual and predicted values, respectively. N is the number of

observations.

The RMSE represents the standard deviation of the residuals (prediction errors). A lower

RMSE indicates that the model’s predictions are closer to the actual values. Because

RMSE squares the errors before averaging, it penalizes larger errors more than smaller

ones. This makes RMSE useful when large deviations are particularly undesirable (e.g.,

in risk forecasting or financial modeling). However, RMSE is sensitive to outliers, as the

squared term amplifies the effect of large residuals. If a dataset contains extreme values,

RMSE may not always be the best metric for evaluating model performance.

The Mean Absolute Error (MAE) measures the average magnitude of the absolute

differences between observed and predicted values. Its formula is:

MAE =
1

N

N∑
i=1

|yi − ŷi| ,

where yi and ŷi are the actual and predicted values, respectively. N is the number of

observations.

MAE provides a direct and intuitive measure of prediction errors in the same units as

the dependent variable. Unlike RMSE, it does not square the residuals, meaning all

errors contribute equally to the final metric. A lower MAE indicates that the model

has, on average, smaller absolute errors. MAE is less sensitive to outliers than RMSE

since it treats all errors equally, regardless of magnitude. This makes it particularly useful

in cases where all prediction errors should be weighted equally, rather than emphasizing

large deviations.

The R2 statistics, also known as coefficient of determination, is a statistical measure

that quantifies how well a regression model explains the variability of the dependent

variable. It indicates the proportion of the total variance in the observed data that is

accounted for by the independent variables in the model.

Mathematically, the R2 is defined as:

R2 = 1− RSS

TSS
,

where: RSS is the Residual Sum of Squares, defined as RSS =
∑N

i=1(yi − ŷi)
2, and

it represents the portion of the variance that is not explained by the model, capturing

the differrence between actual and predicted values. TSS is the Total Sum of Squares,

defined as
∑N

i=1(yi− ȳ)2, and it represents the total variability in the dependent variable,
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measuring how much the observed values yi deviate from their mean ȳ. The values that

R2 can assume goes from 0 to 1, where higher values indicates better fit for the model.

A.3 Diebold-Mariano Test

In order to compare the predictive ability of the different models used in the empiri-

cal analysis, the Diebold-Mariano (DM) test is presented here. Originally introduced in

Diebold and Mariano (1995), the test enables the assessment of whether one model sig-

nificantly outperforms another with respect to forecast accuracy.

The DM test is constructed based on the forecast errors produced by the two models

under comparison. For each time period, the forecast error is calculated as the difference

between the observed value and the predicted value from the model. Denoting the fore-

cast errors as e
(1)
t and e

(2)
t for models 1 and 2 respectively, the test evaluates the difference

in forecast accuracy based on a specific loss function. The test statistic is derived from

the sequence of loss differentials dt = L(e
(1)
t )−L(e

(2)
t ), where L represents the chosen loss

function. Under the null hypothesis H0, the two models are assumed to have equal predic-

tive accuracy, which implies that the expected value of dt is zero. The test then evaluates

whether the sample mean of dt deviates significantly from zero. The test hypotheses are:

H0 : E[dt] = 0, ∀t

H1 : E[dt] ̸= 0,

The standard DM test statistic is given by:

DM =
d√
σ̂2
d/T

,

where d is the mean loss differential and σ̂2
d is an estimate of the variance of the loss

differential. If the test statistic exceeds the critical value (in absolute terms), the null

hypothesis of equal predictive accuracy is rejected, indicating that the first model sig-

nificantly outperforms the other. While the DM test is asymptotically normal, in small

samples it has been shown to exhibit size distortions, leading to an increased likelihood

of incorrectly rejecting the null hypothesis. To address this issue, Harvey et al. (1997)

propose a small sample correction that adjusts the test statistic to improve its reliability

in finite samples. The corrected test statistic is given by:
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DMH =

(
T + 1− 2h+ h/T

T

)1/2

DM,

where T is the sample size and h is the forecast horizon. Unlike the standard DM test

statistic, which follows an asymptotic normal distribution, the corrected statistic follows

a t-distribution with T − 1 degrees of freedom. This adjustment accounts for the bias

in the variance estimator and provides a more accurate assessment of forecast accuracy

differences, especially when the sample size is limited. This correction ensures that infer-

ence drawn from the DM test remains valid and reduces the risk of over-rejecting the null

hypothesis in finite samples.

A.4 Residual Analysis

In this section, the results of the residuals analysis for the in-sample model estimation will

be presented, for all the model based on the V RP . For the V RP∗ model, the residuals

have been computed as the difference between the actual V RP and the estimation ob-

tained using the two HAR model based on RV and IV . Analyzing the residual plots, it is

clear that, in all the cases, there are some visible trends and clusters. This means that the

models are struggling to capture the complete dynamics of the data, in particular during

period of high variance. The ACF and PACF of the residuals show that the models are

not able to fully capture the real dynamics of the data. In theory, if a model fit well the

data, the residuals should no exhibit temporal correlations, but it can be seen in Figure

5-8, there are not case in which this happens. AR(2) can be individuated as the one in

which the residuals exhibit smaller correlation. The Ljung-Box test was performed on the

residuals of all four models, and every time it was possible to reject the null hypothesis

of uncorrelated residuals.
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Figure 12: Forecasts Errors for AR(1) model

Figure 13: Forecasts Errors for AR(2) model
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Figure 14: Forecasts Errors for HAR-VRP model

Figure 15: Forecasts Errors for VRP* model
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(a) AR(1) forecast errors ACF (b) AR(1) forecast errors PACF

Figure 16: AR(1) forecast errors ACF and PACF

(a) AR(2) forecast errors ACF (b) AR(2) forecast errors PACF

Figure 17: AR(2) forecast errors ACF and PACF

(a) HAR-VRP forecast errors ACF (b) HAR-VRP forecast errors PACF

Figure 18: HAR-VRP forecast errors ACF and PACF
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(a) VRP* forecast errors ACF (b) VRP* forecast errors PACF

Figure 19: VRP* forecast errors ACF and PACF

(a) AR(1) QQ-Plot (b) AR(2) QQ-Plot

Figure 20: Forecast Errors QQ-Plot for AR(1) and AR(2) models

(a) HAR-VRP QQ-Plot (b) VRP* QQ-Plot

Figure 21: Forecast Errors QQ-Plot for HAR-VRP and VRP* models

Looking at the QQ-Plots, in all the four case there are strong deviations in the tails,

suggesting that the models are not able to capturing extreme variations.
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These plots suggest that none of the estimated models could fully understand and capture

the behavior of the S&P500 V RP , meaning that further studies can improve our research.

In general, the results indicate that the models could be improved considering alternative

error distributions, or using more advanced modeling techniques that better capture the

characteristics of the V RP .
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