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INTRODUCTION 
 
The thesis aims to synthesize classical portfolio theories including Markowitz’s Mean-

Variance Theory,  Tobin’s Utility Theory, and the Sharpe Ratio to develop an integrated 

approach for the analysis of financial market dynamics. The main objective is to evaluate 

the effects of inflation on portfolio optimization and asset efficiency with special 

emphasis on the Russian equity market via the IMOEX Index. The reason why the 

objective of the analysis is represented by Russia is because of the high inflation volatility 

that has characterized the country in the past years. Using econometric analysis 

specifically Ordinary  Least Squares (OLS) and Quantile Regression (QR), the study 

investigates how inflation affects asset returns in different market conditions and 

distinguishes between high and low inflationary periods. 

This research presents the  Inflation Allocation Line (IAL) as an extension of the Capital 

Allocation Line (CAL) which incorporates inflation effects on optimal portfolio 

reallocations. Tobin’s Utility Curve is utilized to analyze the interactions among risk, 

return, and inflation from which investor behavior can be derived based on changing 

macroeconomic scenarios.  The Markov-Switching model is also implemented to better 

understand inflation's effects on financial market regime shifts and the EGARCH model 

is to check the inflation’s volatility. 

This thesis includes empirical analysis from 2014 until  2024 to detail how inflation 

affects equity returns as well as fixed-income securities within the Russian market over 

time. The research outcomes provide greater insight into how investors can make 

portfolio decisions based on macroeconomic changes which will help develop useful 

asset allocation strategies during periods of inflation. 

 
 
 
 
 



 

CHAPTER ONE 
 

MARKOVITZ THEORY: OVERVIEW 

 
Mean-variance portfolio theory, presented by Harry Markowitz and published in his 1952 

article entitled "Portfolio Selection" in the Journal of Finance represented a real 

breakthrough in modern financial theory. It has been the first systematic and quantitative 

manner of selecting an investment portfolio by means of diversification against balancing 

risk and return. Markowitz suggests that investors should not aim at the maximization of 

expected return alone but rather seek an optimal trade-off between expected return and 

risk, measured by the variance of portfolio returns. This framework introduced the 

concept of a portfolio's "efficiency", where an efficient portfolio was defined as one that 

had the highest expected return for a given level of risk or the lowest risk for a given 

expected return. 

Indeed, Markowitz's theory revolutionized the way in which analysts and investors 

appraised portfolios, switching focus from looking at individual investments within a 

portfolio and their association to one another. His research served as an introduction to 

developing the Capital Asset Pricing Model, and the Arbitrage Pricing Theory is based 

upon those very notions brought forth. While the mathematical complexity and 

computational difficulties associated with applying his theory in the 1950s and 1960s, the 

advent of computers and sophisticated portfolio management software has made practical 

implementation of Markowitz's approaches more possible. 

Nowadays, mean-variance theory serves as a basis for investment strategies not only at 

an institutional level but even at the level of an individual investor. 

For most of these disadvantages, the model has been attacked-primarily its assumption of 

returns being normally distributed-and basically estimating future variances and 

covariances correctly presents a difficult proposition. There are other recent methods 

whereby addition of other risks or alternative probabilistic distribution mechanisms 

describing the disposition of asset return series has also made this research alive.  



PRINCIPLES OF MEAN-VARIANCE PORTFOLIO THEORY 

 

The Mean-Variance Portfolio Theory showed that an investor, in a really structured and 

quantitative way, may reach the ultimate balance between his expected return and risk. In 

portfolio theory, there are a few basic concepts: definition of a portfolio, diversification, 

and efficiency of portfolio; all of them together set up a paradigm for optimal choice and 

management of investment. 

A portfolio could be thought of as a mix of different financial asset classes that an investor 

possesses. The constituent assets can be everything from stocks and bonds to mutual 

funds and all other forms of available financial instruments. Variety in the assets that make 

up one portfolio is important in that the underlying principle of diversification states that, 

with uncorrelated assets in a portfolio, one would expect overall risk to reduce. 

Practically, it means that diversification can smooth out returns over time by offsetting 

possible losses in some areas against gains in other areas. 

Underpinning the entire mean-variance portfolio theory, conceptually, rests on the theory 

of maximizing an expected return against a given degree of risk and then, inversely, 

minimizing this kind of risk for one's given or agreed return level. For achieving this end, 

something that goes by the label "efficient frontier" is theoretically developed. The 

portfolios that locate themselves on this frontier are efficient because they offer the 

highest return for a given level of risk, or the lowest possible risk for a given level of 

return. The efficient frontier thus represents a series of optimal portfolios from which 

investors can choose based on their risk tolerance. 

To define the efficient frontier, one must carry out a comprehensive analysis of variances 

and covariances in the return on securities since these are essential statistical measures 

for a good understanding of the dynamics in which the price of one security varies from 

the other due to changes in various market conditions. This is also one of the steps 

whereby such analytical process helps to bring forth not only portfolios that at any 

particular level of return have a least risk but also on which one could base rational 

decisions to reach the right matching of financial objectives and personal preferences of 

risks and return. 

 



MATHEMATICAL FRAMEWORK 

 

Portfolio optimization has a mathematical formulation that underlies the mean-variance 

portfolio theory. This will, in turn, be based on minimizing risk for any given level of 

expected return, and the relationships provided by covariance and correlation among asset 

returns, thereby deducing the efficient frontier in a mathematical sense. 

The essence of the mathematical model of the mean-variance portfolio theory is an 

optimization problem in finding the minimum of the portfolio variance for some given 

expected return. The problem can be expressed in a quadratic programming format: 

 

𝑚𝑖𝑛𝜎𝑝
2 = 𝑥𝑇∑𝑥 

subject to: 

𝑟𝑇𝑥 =  𝜇∑𝑥𝑖 = 1𝑥𝑖 ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖

𝑛

𝑖=1

 

where: 

 𝜎𝑝
2 is the variance of the portfolio's return. 

 𝑥 is the vector of portfolio weights. 

 ∑  is the covariance matrix of asset returns. 

 𝑟 is the vector of expected returns for each asset. 

 𝜇 is the desired level of the portfolio's expected return. 

 𝑥𝑖  represents the proportion of total portfolio value invested in asset i. 

THE USE OF CORRELATION AND COVARIANCE 

 

Covariance and correlation represent two important tools that are usually used to 

understand how the prices of assets move with one another. Firstly, the covariance points 

out the directional relationship between the returns of two assets. It is a central element 

in the construction of the variance-covariance matrix, ∑  , used in the optimization model. 

The correlation coefficient is a standardized covariance of the relation between -1 and 1 

that defines how intuitively assets are moving in respect to each other: 

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛( 𝑟𝑖,  𝑟𝑗 ) =
𝐶𝑜𝑣( 𝑟𝑖,  𝑟𝑗 )

√𝑉𝑎𝑟( 𝑟𝑖) 𝑉𝑎𝑟( 𝑟𝑗)
 



where: 

 𝐶𝑜𝑣( 𝑟𝑖,  𝑟𝑗 ) is the covariance between returns of asset i and asset j; 

 𝑉𝑎𝑟( 𝑟𝑖) and 𝑉𝑎𝑟( 𝑟𝑗) are the variances of returns for assets i and asset j 

respectively. 

DERIVATION OF EFFICIENT FRONTIER 

 

The efficient frontier can be derived by solving the optimization problem for varying 

levels of 𝜇. Over time, the efficient frontier has become synonymous with optimal 

portfolio construction. The efficient frontier is the set of portfolios that offers the 

minimum risk for every level of expected return. The frontier is constructed 

mathematically by varying 𝜇, the desired level of expected return, and solving the 

corresponding optimization problem for each value. This produces a series of portfolios, 

which as a group form a curve in risk-return space. Every point in this curve portrays an 

efficient portfolio, since there could be no other portfolio granting a higher return for the 

similar amount of risk, or for a lower level of risk at a similar amount of return. Hence, 

the efficient frontier is such an important tool to be used by investors, helping them in 

picking up the most optimal portfolio for their tolerance and return objectives. It is the 

implementation of Markowitz's theory in a practical sense and directly applies to 

investment strategy, showing the risk and return trade-off. Below, it is reported an 

example of the efficient frontier in which has been replied 1000 random portfolios:  

 

Figure 1.1, the Efficient Frontier. 

 

 

 

 

 

 

 

 

 

Source: personal elaboration.  

 



Through the expected return and the covariance matrix has been estimated the expected 

return weighted and the standard deviation. In addition, it has been estimated the Sharpe 

ratio and minimum risk portfolio. The resultant shape represents the efficient frontier that 

involves all the portfolios with the best possible return for every level of risk.  

  

THE MODEL IN ASSET ALLOCATION 

 

The so-called portfolio theory immediately changed the character of asset allocation in 

investment portfolios. Emphasizing the relationship between risk and return, the theory 

laid a formal framework of how to select and weight the assets in one's portfolio. This 

section sets out how Markowitz's model addresses asset selection and weighting. 

SELECTING AND WEIGHTING ASSETS IN A PORTFOLIO 

 

The process of selecting and weighting assets in a portfolio under Markowitz's model 

involves: 

1. Asset selection involves identifying a pool of assets that should be combined into 

a unique portfolio. Such a selection should be made considering not only the 

investor's financial objectives and investment time horizon, but also his or her risk 

tolerance, the historical return, single volatility of assets and the correlation with 

each other.  

2. Returns and covariances will be estimated based on investors' needs to finally 

determine the expected returns and the covariance matrix of assets. While the 

expected return will predict how the assets are likely to perform in the future, the 

covariance matrix indicates how the returns of assets move concerning one 

another. 

3. After the estimation, the investors solve an optimization problem. That is to say, 

investors either minimize the variance of the portfolio for a given expected return 

or maximize the expected return for a given level of risk. The weights of the assets 

in the portfolio are defined after the resolution of the optimization problem, hence 

showing how much capital shall be allocated to each asset. 



4. Investors achieve the desired level of risk by selecting a portfolio from the 

efficient frontier that aligns with their risk tolerance. In other words, it is merely 

the trade-off between the expected return and the amount of risk that the investor 

is willing to bear in order to receive that return. 

 

DIVERSIFICATION 

 

Diversification is a central theme in Markowitz's theory and a key factor that helps 

increase the effectiveness of a portfolio. It refers to the spreading of investments across 

different classes that do not move together, reducing unsystematic risk. The rationale 

behind diversification is underpinned by the fact that it can mitigate adverse impacts on 

the portfolio from the volatility of individual constituent assets. It is possible to reduce an 

overall portfolio's risk by diversification, if investments are spread among assets that are 

not perfectly correlated: 

 Such a case is that when one asset class, say stocks, is in the midst of decline, the 

other asset class, say bonds, may stay the same or rise in their value, therefore 

compensating for losses and making the overall performance of a portfolio stable. 

 The mathematical base for diversification is the negative covariance among 

classes that could also offset some risks of individual securities. This eventually 

leads to the total risk of a portfolio, measured by the standard deviation of returns, 

to be less than the risk of the assets that compose it alone, assuming non-perfect 

correlation of the assets. 

LIMITATION OF MEAN-VARIANCE PORTFOLIO THEORY 

 

Harry Markowitz's mean-variance portfolio theory has represented one of the 

cornerstones in finance, hence providing a structured approach to portfolio optimization. 

Despite its wide application and contribution, a number of criticisms and limitations have 

been pointed out with the theory, most of which relate to the assumptions made. One of 

the main assumptions of mean-variance theory is the normality of asset returns. This 

assumption implies that the returns of a portfolio are symmetrically distributed around 



the mean, with most of the observations clustering near the average return and fewer 

observations seen as you move away from the mean, following a bell-shaped distribution. 

Mathematically, a random variable  X follows a normal distribution if its probability 

density function is given by: 

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒−
1
2
(
𝑥−𝜇
𝜎
)2

 

where 𝜇 is the mean of the distribution and 𝜎 is the standard deviation, showing the 

dispersion around the mean. 

In the context of investment returns, assuming normality simplifies the calculation of the 

portfolio risk measured by variance and allows derivation of the efficient frontier more 

readily.   

However, financial returns hardly meet the property of normality due to the presence of 

skewness and kurtosis. These deviations suggest that this theory will underpredict the 

frequency of extreme events or "black swans" and hence could result in risk being 

underestimated when the portfolio is built. In general, the mean-variance framework 

depends on the variance and covariance of asset returns to determine the risk of different 

portfolios. In estimating these parameters, one needs historical data, which can be quite 

voluminous for a large number of diversified assets. There's then further problem 

typically of a high computational nature estimation of the covariance matrix, given that 

the outstanding amount of assets in most cases tends to be relatively a multiple of the 

recorded historical observations. 

Now, the complicating nature for most of the above renders applying these theories 

extremely burdensome at individual or smaller firms' levels. Besides these, another defect 

with the mean-variance theory is that the theoretical framework is based on using 

historical data in order to estimate future risk and returns. It presumes that the moments 

of historical means, variances and correlations will continue into the future, which often 

is not the case with highly dynamic and evolutionary markets. Financial markets are 

subject to such an array of variables, including variability in general economic conditions, 

political events, and changes in investor preferences, that sequentially altering 

performances and relationships among assets could easily occur. Making projections of 

future returns and risks based on the past information thus often leads to 

misunderstandings and underperforming portfolios. This challenge is most pronounced 



in times of market stress and structural breaks within the economy, which has emphasized 

the weaknesses of static models based on historical parameters. 

TOBIN THEORY: OVERVIEW 

 

James Tobin, a Nobel Laureate and one of the most influential economists, developed his 

utility theory in the context of portfolio selection during the late 1950s. This theory, often 

encapsulated within the broader framework known as "Tobin's separation theorem," 

fundamentally shifted the focus of portfolio management by incorporating the concept of 

utility maximization. Tobin's argument, however, lay in the fact that, unlike previous 

models, which had either maximized returns or minimized volatility, it provided a way of 

setting risk against utility derived from the investment outcome, considering the disparate 

appetites of investors for that risk. 

Up until the time of Tobin, financial theory had evolved mainly through classical and 

neoclassical economic theories that often reduced investor behavior to purely profit-

maximizing models. Harry Markowitz introduced mean-variance optimization in 1952, 

thus laying the initial way by putting into concrete form the notion of portfolio 

diversification based on risk and return. Tobin extended this to introduce utility as an 

important component and thus enhanced the process of decision-making in portfolio 

management. Added to this was his theory that investors select a portfolio in line with 

their risk tolerance and expected utility and not by quantitative measures. 

Tobin's works retain their import in the field of financial economics on various grounds. 

First, they provided a bridge between purely theoretical economics and practical finance, 

particularly with regard to understanding investment behavior under conditions of 

uncertainty. His work underlined the meaning of considering psychological and 

subjective aspects of investment decisions, later to impact the development of behavioral 

finance. Besides, Tobin's utility theory extended the application area of economic 

principles to financial markets, providing, at the same time, a more suitable attitude 

toward risk management and toward the choice of assets with regard to both economic 

and human factors. This has got very important meaning for theoretical investigations and 

real asset management: these are guiding ideas for the making up of portfolios by means 

of efforts toward meeting a wide range of investor needs created within the dynamically 

developing economic surroundings. 



 

FUNDAMENTAL PRINCIPLES OF TOBIN’S UTILITY 
THEORY 

 

In economic and financial theory, a utility function is a relation that relates the satisfaction 

or utility an investor derives from various outcomes with his or her choice. Tobin's utility 

theory postulates that investors make decisions not simply on the basis of expected returns 

and standard deviations of portfolios but on the basis of how those portfolios contribute 

to their overall utility. The utility function is, therefore, a mathematical device that 

translates levels of wealth or outcomes into levels of satisfaction. 

Utility functions in portfolio selection are particularly significant because they 

encapsulate the investor's subjective preferences regarding risk and return. It may 

represent various preferences that immediately put a higher value on returns up to a point 

where it passes beyond and, inversely, where the investor would be less sensitive to gain. 

This forms a successful investment strategy, since trade-offs between investors' comfort 

related to personal risk and the attainment of higher returns are reflected in the choices. 

Utility functions help investors select a rational or optimal investment aimed at 

maximizing their expected utility. In a practical sense, this means choosing the mix of 

assets that offers the highest expected utility rather than the highest expected return. For 

any given level of risk, the choice will depend upon the shape of the utility function that 

quantifies how much satisfaction the investor derives from various levels of wealth. The 

usual proceeding involves computation of the expected utility for a certain number of 

portfolios, followed by the selection of a portfolio showing the highest utility provided. 

The expected utility is computed as a weighted average for all possible outcomes utilities, 

with weights constituting their probabilities. Such a technique considers not only the 

return potentials on the grounds of market scenarios but also encompasses an investor's 

risk attitude or personal perception of the risk tolerance principle. 

 

 

 



RISK IN UTILITY FUNCTIONS 

 

Risk aversion is a fundamental concept in utility theory, defined as the preference for a 

certain outcome over a gamble with a higher or equal expected return. Mathematically, 

risk aversion is represented through the curvature of the utility function. A commonly 

used utility function to represent risk aversion is the exponential utility function, defined 

as: 

 

𝑈(𝑊) = −𝑒−𝑎𝑊 

where: 

 

 𝑈(𝑊)is the utility associated with wealth W, 

 𝛼 is a positive parameter representing the degree of risk aversion; a higher value 

of 𝛼 indicates higher risk aversion. 

In this function, the second derivative U′′(W) is positive, indicating that the investor's 

utility decreases when wealth increases, ensuring the principle of diminishing marginal 

utility of wealth. This form of the utility function is useful in illustrating why risk-averse 

investors favor less volatile investments since they impose a disproportionately high 

utility loss on potential negative outcomes relative to their utility gain from an equivalent 

positive change. 

 

MATHEMATICAL FRAMEWORK 

 

The utility maximization problem in portfolio management is defined within a decision-

making framework where investors strive to maximize their expected utility while 

adhering to various constraints. The fundamental mathematical formulation is given by: 

 

max 𝐸[𝑈(𝑊)] 

 

where: 

 𝐸[𝑈(𝑊)] is the expected utility of wealth W, 

 𝑈(𝑊) is the utility function representing the investor's preference. 



 

The wealth W is typically a function of portfolio returns, defined as 𝑊 = 𝑊0 +

∑ 𝑥𝑖𝑅𝑖
𝑛
𝑖=1 , where: 

 𝑊0 is the initial wealth, 

 𝑥𝑖 is the proportion of total wealth invested in asset i, 

 𝑅𝑖 is the random return of asset i, 

 n  is the number of assets in the portfolio. 

The objective is to choose portfolio weights 𝑤 𝑖 that maximize the expected utility of the 

terminal wealth. 

 

CONSTRAINTS IN UTILITY OPTIMIZATION 

 

When solving the utility maximization problem, various constraints are typically applied 

to ensure that the portfolio choices are both feasible and realistic: 

1. The budget constraint ensures that the total allocation of investments equals the 

investor's initial wealth. Formally, this is expressed as: ∑ 𝑥𝑖 = 1
𝑛
𝑖=1 , where 𝑥𝑖 

represents the proportion of wealth allocated to each asset. This condition implies 

that all available wealth is fully invested, with no borrowing or short-selling 

allowed.  

2. Return expectations are often included as a constraint where investors aim to 

achieve a specific target return. This can be expressed as:  𝐸[𝑊] = 𝑊0 +

∑ 𝑥𝑖𝐸[𝑅𝑖] >  𝑅𝑇𝐴𝑅𝐺𝐸𝑇
𝑛
𝑖=1  where 𝑅𝑇𝐴𝑅𝐺𝐸𝑇  represents the desired minimum 

expected return.  

These constraints are critical in defining the feasible set of portfolios, effectively guiding 

the investor's choices toward meeting their financial objectives while balancing risk and 

return. 

DERIVATION OF INDIFFERENCE CURVES 

 

Indifference curves are a fundamental concept in utility theory, depicting combinations 

of risk and return that provide an investor with the same level of utility. In portfolio 



management, these curves are derived by equating the utility function to a constant value 

and solving for the combinations of risk and return that satisfy this condition. 

Mathematically, this can be expressed as: 

𝑈(𝜇, 𝜎) = 𝑐 

where: 

 𝜇 is the expected return of the portfolio, 

 𝜎 is the risk, or standard deviation, of the portfolio, 

 𝑐 is a constant representing a particular utility level. 

The way indifference curves are shaped is closely tied to the investor’s utility function 

and their level of risk aversion. These curves generally slope downward, which represents 

the trade-off between risk and return. Essentially, higher returns are needed to justify 

taking on additional risk, ensuring that the investor’s level of satisfaction remains 

unchanged. 

Indifference curves are particularly useful for understanding an investor's preferences and 

tolerance for risk. They help illustrate how varying levels of risk and return influence the 

investor’s overall satisfaction. When paired with the efficient frontier, which shows the 

most efficient portfolios, these curves assist in identifying the best portfolio for the 

investor. The optimal portfolio lies at the point where the indifference curve touches the 

efficient frontier, marking the highest utility achievable within the available options. 

Below, it is reported an example of three different indifference curves: 

 

Figure 1.2, Indifference curves. 

 

 

 

 

 

 

 

 

 

 

Source: personal elaboration. 



 

Specifically, it has been estimated the expected return for the three levels of utility 

defined; in addition, the standard deviation, the risk, is calculated basing on the risk 

aversion of the investor.  

 

TOBIN’S MODEL IN ASSETS ALLOCATION 

 
James Tobin's utility theory plays a key role in shaping asset allocation strategies, 

emphasizing the importance of maximizing investor satisfaction or utility rather than 

solely concentrating on traditional risk and return metrics. This approach guides the 

process of selecting and weighting assets in a portfolio, ensuring alignment with an 

investor's unique preferences and risk tolerance. By incorporating practical examples and 

showcasing the essential role of diversification, this framework provides valuable insights 

into constructing portfolios that balance risk, return, and overall utility for investors. 

 

SELECTING AND WEIGHTING ASSETS IN A PORTFOLIO 

 

James Tobin's utility theory serves as a foundation for developing asset allocation 

strategies because it prioritizes investor satisfaction as the objective function instead of 

using risk and return as the sole criteria. The framework helps guide the process of asset 

selection and weighting to achieve alignment with individual investor preferences and 

risk preferences. The practical application of this framework combined with 

diversification analysis delivers significant insights for building investor portfolios that 

achieve optimal risk-return trade-offs. 

This process can be broken down into several key steps: 

1. Utility function specification: the utility function is specified to precisely 

represent the investor’s risk preferences while reflecting their decision-making 

preferences. Quadratic utility functions provide an easy computational framework 

because of their simple polynomial structure yet logarithmic and exponential 

functions deliver better representations of risk preferences and wealth 

diminishment. 



2. Expected utility calculation: the expected utility of each portfolio represents the 

integration result of the selected utility function with the probability distribution 

of potential outcomes. The calculation assesses both the probability distribution 

of returns and their alignment with the investor's preference function. 

3. Optimization: optimization methods select the optimal mix of assets that provide 

the highest expected utility. The utility function guides the process of varying each 

portfolio's asset ratios until an optimal mix is identified that meets the utility 

function requirements. 

4. Constraint: constraints such as budget limitations, regulatory requirements, or 

investment goals need to be included. Utility-optimal portfolios must pass realistic 

and executable constraint tests to be considered valid. 

 

DIVERSIFICATION 

 

Diversification plays an important role in Tobin's asset allocation model, as it enables 

investors to improve their utility by distributing risk across different assets. By 

diversifying, investors can minimize and contain the impact of poor performance in any 

investment on the overall portfolio. The reduction of risk is crucial for maximizing utility, 

especially for risk-averse investors, since it smooths out the returns and reduces the 

likelihood of outcomes that would decrease utility levels. 

 Utility maximization: diversification can help in achieving a smoother utility 

curve, reducing the portfolio's exposure to swings in returns that could 

significantly decrease the investor's satisfaction or utility. 

 Tail risk mitigation: effective diversification also helps in mitigating tail risks, 

which are low-probability, high-impact events that could drastically reduce wealth 

and therefore utility. 

 

LIMITATIONS OF TOBIN’S UTILITY THEORY 

 

One of the significant challenges in applying Tobin's Utility Theory lies in the empirical 

measurement and practical application of utility functions. Utility, as a concept, represents 



an individual's subjective satisfaction or preference, which is inherently difficult to 

quantify and measure. In practical terms, defining a utility function that accurately reflects 

an investor's risk tolerance and satisfaction with various outcomes involves significant 

estimation. 

The main problem is that utility functions are theoretically constructed based on 

assumptions about investor behavior, which may not necessarily hold true in real-world 

scenarios. The subjective nature of utility means that different investors may have 

different utility functions even with similar financial profiles, making it difficult to 

standardize these functions for broad application 

In addition, utility functions are designed to model future preferences and decisions based 

on current understanding and past data. However, these functions often fail to adapt to 

changing market conditions and evolving investor preferences: 

 Dynamic preferences: investor preferences and risk tolerances are not static and 

can change based on personal circumstances, market trends, and economic 

conditions. Utility functions that do not account for these dynamic preferences 

might lead to suboptimal decisions. 

 Market volatility: financial markets are inherently volatile and influenced by 

numerous unforeseeable factors. The assumption that past behavior and 

preferences will predict future decisions under different market conditions can 

lead to significant discrepancies between expected and actual outcomes. 

Tobin's utility theory, like many economic models, simplifies complex investor behaviors 

into more manageable forms. This simplification, while useful for theoretical and 

analytical purposes, often overlooks the complex realities of individual decision-making: 

 Behavioral oversights: traditional utility models generally do not account for 

behavioral biases and psychological factors that significantly influence 

investment decisions. Phenomena such as loss aversion, overconfidence, and herd 

behavior are common among investors but are not typically reflected in standard 

utility functions. 

 Rationality assumption: the theory assumes that investors are rational and that 

their decisions to maximize utility are always logically driven. In reality, many 

investment decisions are influenced by emotions, incomplete information, and 

irrational factors that the utility model does not fully encompass. 



SHARPE THEORY: OVERVIEW 

 

William F. Sharpe introduced the Sharpe Ratio in 1966 which represented next 

generation work in investment performance evaluation because it allowed for the 

comparison of investment returns to their volatility. The assessment of investment 

returns before Sharpe produced results without a review of corresponding risk 

exposures. Sharpe’s approach shifted this perspective by quantifying how much excess 

return was being generated for each unit of risk taken, compared to a risk-free rate. This 

metric has become a fundamental tool of financial economics to standardize risk-

adjusted comparisons of different investments and provide more insight into investment 

returns. The Sharpe Ratio was an important milestone in modern finance because it was 

at a time when financial market complexity was increasing and there was a demand for 

more advanced analytical solutions. The Sharpe Ratio has enabled portfolio 

management and financial analysis strategies to compare performances despite very 

different risk profiles. 

 

FUNDAMENTAL PRINCIPLES 

 

The Sharpe Ratio provided a measure that, as said before, quantifies the risk-adjusted 

return of an investment portfolio. The Sharpe Ratio is defined mathematically as: 

𝑆ℎ𝑎𝑟𝑝𝑒 𝑟𝑎𝑡𝑖𝑜 =  
𝑅𝑝 − 𝑅𝑓
𝜎𝑝

  

Where: 

𝑅𝑝 is the return of the portfolio,  

𝑅𝑓is the risk-free rate, and  

𝜎𝑝  is the standard deviation of the portfolio's excess returns over the risk-free rate.  

The risk-free rate typically refers to the yield of government bonds or bills: it’s considered 

risk-free since it’s backed by the government's ability to tax its citizens. 

The numerator, 𝑅𝑝 − 𝑅𝑓 , represents the excess return, also called premium, realized on 

an investment over a risk-free asset. This excess return is what investors seek to maximize 

since it compensates them for taking additional risk compared to simply holding a risk-



free asset. The denominator, 𝜎𝑝, represents the standard deviation of the portfolio's excess 

returns, the measure of the investment's volatility or risk. 

 

OBJECTIVE OF THE SHARPE RATIO 

 

The Sharpe Ratio is designed to answer the question of how much excess return one can 

earn for a unit of risk in an investment. As such, maximizing the Sharpe Ratio is a central 

tenet of good investment management. It is useful in assessing the performance of a 

portfolio and choice making. One way to look at it is that a portfolio with a higher Sharpe 

ratio gives more returns for the same level of risk. For diversified portfolios, Sharpe Ratio 

is a very important factor for comparison. It affords investors and fund managers the 

opportunity to compare different strategies, asset types, and performance outcomes 

irrespective of the risk profile. This is especially useful in enhancing portfolios or in 

highlighting gains in a stiff market. Focusing on risk-adjusted returns as opposed to 

nominal returns is something the Sharpe Ratio does, which means paying attention to risk 

management. This approach guarantees that risks are not only justified but also well-

rewarded; promoting a risk-aware strategy that is consistent with personal financial goals. 

 

MATHEMATICAL FRAMEWORK 

 

The Sharpe Ratio serves as a performance metric and at the same time is a mathematical 

foundation for maximizing portfolio performance. As such, its formulation allows 

investors to adjust the weights of assets in the portfolio to optimize the returns relative to 

risk. It is incorporated in portfolio management during optimization problems, and in the 

use of variance and correlation. The optimization problem concerning the Sharpe Ratio 

is to maximize this ratio by changing the weights of the assets in the portfolio. The final 

goal is to find the asset mix that provides the highest excess return per unit of risk, as 

measured by the standard deviation of portfolio returns.  

Mathematically, this can be expressed as: 

max
𝑅𝑝 − 𝑅𝑓
𝜎𝑝

 



Where: 

𝑅𝑝 is the return of the portfolio, which is a function of the weights of the various assets 

and their individual returns, 

𝑅𝑓 is the risk-free rate, and  

𝜎𝑝 is the standard deviation of the portfolio's returns. 

The weights of the assets 𝑤𝑖 and 𝑤𝑗 must be chosen such that they optimize this ratio. 

This involves solving: 

max

(

 
∑ 𝑤𝑖𝑟𝑖 − 𝑅𝑓
𝑛
𝑖=1

√∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 )

  

Subject to :  

∑ 𝑤𝑖
𝑛

𝑖=1
= 1,𝑤𝑖 ≥ 0 

Where:  

𝑟𝑖 are the expected returns of the assets,  

𝜎𝑖𝑗 are the elements of the covariance matrix, representing the covariances between the 

returns of assets i  and j. 

What the Sharpe Ratio does is to incorporate, explicitly, portfolio risk owing to the 

standard deviation of portfolio return, which is in turn a function of the variance of 

individual asset returns and the covariance between different assets. It is the variance and 

correlation that help determine the movements, relatively speaking, of the returns of the 

assets:  

 Variance: it measures how much the individual asset returns vary at different 

levels about their mean. Higher variance indicates greater risk, and potentially 

greater return. In portfolio theory the aim is to maximize high returns and 

minimize variance. 

 Covariance and correlation: covariance points out how much two assets will tend 

to move with respect to one another. A positive covariance implies that asset 

returns co-move, whereas a negative covariance implies they move in opposite 

directions. Correlation is but a standardized form of covariance and is important 

for diversifying risk. A portfolio having the same expected return may have less 

aggregate risk if the assets are not perfectly correlated. 



This is how one, in practical terms, reduces the risk of a portfolio without bearing down 

too strongly on returns, by selecting a combination of assets in which the returns are not 

perfectly correlated. Diversification benefit from this fact forms part of the basis of 

modern portfolio theory and is a key ingredient in the optimization problem that the 

Sharpe Ratio maximizes. 

 

ASSET ALLOCATION 

 

The Sharpe Ratio bears a lot of importance in asset allocation, hence deciding on the type 

of assets to be selected and the weight of such assets in a portfolio. This key metric leads 

investors to build up portfolios that satisfy desired return levels but do so at an optimal 

level of risk. In the context of asset allocation, the Sharpe Ratio refers to the determination 

of investment in various classes of assets that would result in maximum return for a risk 

taken. The process of decision-making entails: 

 Risk-adjusted performance evaluation: by comparing the different Sharpe Ratios 

of various assets or asset classes, investors can identify which of the assets yields 

the highest return per unit of risk. The higher the Sharpe Ratio, the better it is since 

it means a higher return for the level of volatility that occurred. 

 Portfolio weight adjustments: after selecting individual assets based on their 

Sharpe Ratios, the next step is to establish their relative weights within the 

portfolio. The main goal is to optimize the Sharpe Ratio of the portfolio itself. 

This process involves the solution of very complex optimization problems that 

take into consideration elements such as asset returns, the risk-free rate, and the 

interrelationships between the assets, namely, covariances, to determine the 

optimal portfolio composition. 

 Dynamic rebalancing: the weights that a particular asset bears in a portfolio are 

not set in stone; they get changed in response to shifting market conditions and 

changes in asset volatility and return. The Sharpe Ratio plays a crucial role in such 

rebalancing decisions since it always aims to maintain that, at any time, the 

portfolio is at its efficient level, i.e., the risk-adjusted return on the portfolio is at 

its best. 



LIMITATION OF SHARPE RATIO 

 

There are several limitations and criticisms of the Sharpe ratio, despite its usefulness. The 

first assumption of the ratio, as just seen in the Markovitz’s theory, is that returns are 

normally distributed. This assumption simplifies the computation and interpretation of 

the ratio by using characteristics, namely, the mean and variance of a normal distribution 

to determine the ratio. However, financial market returns often exhibit properties that 

drastically violate normality: 

 Skewness and kurtosis: almost every asset’s returns are skewed or leptokurtic, 

meaning they have fatter tails than a normal distribution, with more likelihood of 

extreme returns. Skewness can pull values more towards one end of the 

distribution. This can be an issue, as it can result in under or misestimation of the 

risk. The Sharpe Ratio, which is mainly based on standard deviation, does not 

fully take this type of risk into the picture.  

 Turbulent markets: return distributions become highly skewed and leptokurtic 

during market stress or financial crises making the  Sharpe Ratio inadequate for 

risk-adjusted performance evaluation as it can give investors a wrong impression 

of the assets’ risk levels. In fact, the computation of variance and covariance is the 

very basis for assessing the risk component of the Sharpe Ratio. Nevertheless, 

these calculations themselves are not without their problems, particularly in 

dynamic and complex markets. 

 Dynamic market conditions: the financial markets are influenced by numerous 

factors that can cause rapid shifts in asset prices. Such dynamics make the 

estimation of variance and covariance challenging in order to accurately reflect 

the current or future market conditions. 

 Estimation errors: the accuracy of variance and covariance calculations is based 

on the asset’s historical data. If the historical period does not include major market 

upheavals or the data sample is too short, the estimates may not be a reliable 

indicator of future volatility. This limitation can lead to misjudgments in the risk 

assessment of portfolios, particularly if the market environment changes suddenly.  

 Computational complexity: for portfolios with a large number of assets, 

calculating covariance matrices becomes computationally intensive and, thi 



complexity, can hinder the timely adjustment of portfolios and affect the overall 

efficiency in managing risks. 

Taking into account the limitations above, the Sharpe Ratio keeps its importance for 

evaluating risk-adjusted returns. The incorporation of behavioral finance perspectives and 

the integration of statistical measures such as skewness and kurtosis can help address the 

challenges posed by non-normal return distributions, providing a more comprehensive 

and accurate representation of investment performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER TWO 
 

MODEL’S OVERVIEW 

 
To construct a model that can capture the effects of inflation on MOEX, Markowitz’s 

mean-variance theory, Tobin’s utility function, and Sharpe’s capital allocation line are 

described. These theories form an important theoretical basis for understanding the 

optimal portfolio decisions in the presence of different economic states. With the 

inclusion of inflation in the model, we can assess the extent to which asset allocation 

strategies change for investors in response to changes in the price level under various 

economic conditions, including low and high inflation. Using Python, the empirical 

analysis was carried out and necessary data analysis, optimization, and data visualization 

were performed with the help of special libraries. The historical financial data was used 

to construct efficient portfolios with bonds and risky assets. The purpose is to graph the 

model’s structure and the assumptions and methodologies used and then apply this to 

analyze the role of inflation in portfolio selection in the Russian market on MOEX. 

 

DATA ACQUISITION 

 

The dataset consists of monthly observations from 2014 to 2024. The assets analyzed 

include: 

 IMOEX Index: the Moscow Exchange (MOEX) index tracks the major 

Russian companies and their performance across different sectors. 

 Government Bonds: 10-year government bonds act as long-term fixed-income 

securities which are represented by this category. 

 Risk-Free Asset: the one-year government treasury bill is used as the proxy 

for the risk-free rate. 

Returns were computed differently depending on the nature of the financial asset: 

IMOEX Index returns were computed using the standard return formula: 

𝑃𝑡−𝑃𝑡−1

𝑃𝑡−1
 

where 𝑃𝑡 represents the index value at time t and 𝑃𝑡−1 the value at the previous time step. 



For bonds and risk-free assets, since the raw data for bonds and risk-free assets were 

initially expressed as annual yields (𝑌𝑡), a transformation was necessary to obtain the 

monthly equivalent return. The transformation was performed using the following 

formula: 

(1 +
𝑌𝑡
12
) − 1 

This intermediate step ensures that the annual yield is properly converted into a monthly 

return. Once converted into monthly returns, the same formula applied to the IMOEX 

Index was used to compute their rate of change over time. 

This calculation provides the nominal return, excluding the effects of inflation.  

 

PORTFOLIO CONSTRUCTION 

 

The portfolio is constructed through a combination of two base assets: the IMOEX Index, 

for the high-risk, and Bonds, for the low-risk, or riskless, asset.  

The first calculation is for both the average returns of the IMOEX Index and Bonds, and 

it sets a baseline for comparing how each asset performed over a specific period of time. 

Beyond that, a covariance matrix is calculated in an attempt to understand in relation to 

each other in terms of moving together. The covariance matrix is useful for portfolio risk, 

and a calculation can be performed for a diversification gain when assets with a range of 

risk profiles are mixed together. 

Once the base information is calculated, portfolio construction seeks out an optimal mix 

between the risky asset and the bond. The analysis considers a range of portfolios with a 

range of mixes, starting with a portfolio with 100% in bonds and 0% in the risky asset 

and moving through a portfolio with 100% in the IMOEX Index and 0% in bonds. 

Intermediate portfolios are calculated with incremental change in the proportion of the 

risky asset between 0% and 100%, in 10% increments, with a change in proportion in the 

bond to make the overall proportion 100%. For each portfolio, the return is calculated as 

a weighted average of individual asset returns. Portfolio volatility, which represents the 

overall investment risk, is calculated using the variance and covariance of the assets that 

compose it. In other words, to determine the portfolio's risk level, one does not simply 

sum the risks of the individual assets but also considers how they move together through 



the covariance. If two assets tend to fluctuate in the same way, the overall risk will be 

higher; however, if they move in opposite directions, their combination will reduce 

overall volatility thanks to diversification. 

To evaluate performance, a portfolio is measured in terms of a calculation of a unit of risk 

for an excess return, with a normalized value for comparing portfolios with different risk 

profiles, through a value for a Sharpe Ratio. For calculation, an excess return benchmark 

is taken in terms of a risk-free return, calculated in terms of a mean return of a risk-free 

asset in a portfolio of assets. With a high value for a Sharpe Ratio, a portfolio is deemed 

to have a preferred risk-adjusted return, and hence a preferred portfolio for selection. 

The final output is presented in a table comparing each portfolio’s weight, predicted 

return, variance, and Sharpe Ratio. With this, one can effectively contrast a range of asset 

weightings and overall performance. By such analysis, one can identify the portfolio with 

the most satisfactory trade-off between return and risk, and make investment choices 

according to numerical values. 

The final results are presented through a Portfolio Opportunity Set graph, which 

illustrates the relationship between each portfolio’s expected return and its corresponding 

volatility, namely standard deviation. This visual representation provides a clear 

comparison of how different asset allocations influence overall performance. By 

analyzing the curve, it becomes possible to identify the portfolio configurations that offer 

the most favorable risk-return trade-offs, helping guide investment decisions based on 

quantitative metrics. The shape of the curve highlights both efficient and inefficient 

portfolios, enabling the selection of the optimal portfolio that maximizes returns for a 

given level of risk.  

 

Figure 2.1, Portfolio Opportunity set. 

 

 

 

 

 

 

 

 

Source: personal elaboration.  



In addition to the Portfolio Opportunity Set, significant descriptive statistics and a 

correlation matrix have been added to allow for a proper understanding of the dataset and 

its assets' interdependencies. Descriptive statistics include significant statistics such as 

mean return, variance, skewness, and kurtosis, offering a quick view into individual 

assets' performance characteristics. The descriptive statistics expose considerable 

performance differences between analyzed factors. Inflation expresses the most variation 

in its value, with significant fluctuations over time. The IMOEX Index shows a mean 

return with high volatility, consistent with the inherent risk in stock markets. In contrast, 

yields for bonds and the risk-free rate exhibit less variation and lower volatility, reflecting 

their status as safer investments. 

In terms of distribution, the IMOEX Index return is characterized by negative skewness, 

indicating a higher probability of extreme negative outcomes. Yields for bonds, the risk-

free rate, and inflation display positive skewness, suggesting occasioxnal significant 

positive shifts. Kurtosis values reveal that inflation experiences the most extreme 

variations, while the distribution for the risk-free rate tends toward normal. All these 

observations provide a comprehensive view of risk and return dynamics, supporting 

portfolio construction and risk management decisions. 

 

2.2, Main descriptive statistics. 

 

 

 

 

 

 

Source: personal elaboration.  

 

The correlation matrix reveals the intensity of linear relation between returns of the 

IMOEX Index and Bonds. It plays a critical role in portfolio diversification, with low and 

even negative relations between assets contributing a lot in reducing overall portfolio risk. 

The correlation matrix reveals the relationships between the IMOEX Index returns, bond 

yields, risk-free rate, and inflation rate. The IMOEX Index shows a negative correlation 

with both bonds and the risk-free rate, indicating slight inverse movements, which 



suggests some potential for diversification. Bonds display a moderate positive correlation 

with the inflation rate, reflecting their sensitivity to changes in macroeconomic 

conditions. The risk-free rate exhibits a very weak negative correlation with inflation, 

indicating minimal impact from inflation fluctuations. Overall, the matrix highlights low 

to moderate correlations, supporting the benefits of diversification across these asset 

classes. 

 

2.3, Correlation Matrix. 

 

 

 

 

 

 

Source: personal elaboration.  

SIMPLE REGRESSION ANALYSIS  

 
The regression analysis implies the verification of the stationary of data series. 

Stationarity signifies that a series possesses a stable mean, variance, and autocovariance 

across time, serving as a crucial assumption in numerous econometric models to 

guarantee accurate estimates. 

To assess if the data exhibits a unit root, suggesting non-stationarity, the Augmented 

Dickey-Fuller (ADF) test was conducted on the IMOEX Index, bond, risk-free rate, and 

inflation rate. The ADF test evaluates the null hypothesis that a unit root exists in the 

series. If the p-value is less than 0.05, the null hypothesis is rejected, confirming that the 

series is stationary. The ADF test results verify that all variables are stationary, with p-

values below the 0.05 threshold. This means that first differencing is not required to 

eliminate unit roots, allowing the regression analysis to proceed using the original dataset 

without modifications. 

This analysis investigates the relationship between key macroeconomic factors, Inflation 

Rate, Risk-Free Rate, and Bond Returns, and the IMOEX Index, dividing the model in 

two inflation regimes, high inflation and low inflation, defined by the median value of the 

Inflation Rate. To provide both average and distributional insights into how these factors 



affect the IMOEX Index, there were employed Ordinary Least Squares (OLS) and 

Quantile Regression (QR). 

 

ORDINARY LEAST SQUARES (OLS) REGRESSION RESULTS  

 
OLS regression estimates the average effect of independent variables on the dependent 

variable, revealing fundamental dynamics across the two inflation regimes. 

During high inflation periods, the model explains approximately 19.1% of the variability 

in the IMOEX Index, as indicated by the R-squared value. Notably, the Inflation Rate 

shows a positive and statistically significant impact (p = 0.001), with a coefficient of 

0.2648, suggesting that rising inflation tends to boost equity returns. This could reflect 

the stock market’s adjustment to higher price levels, possibly due to increased nominal 

revenues for companies or inflation-driven asset price growth. Conversely, Bond returns 

have a negative and significant effect with a coefficient  of -0.3629 (p = 0.009), indicating 

an inverse relationship, likely stemming from a shift in investor preference from fixed-

income securities to equities in an inflationary environment. The Risk-Free Rate, 

however, is not statistically significant (p = 0.776), suggesting a limited direct influence 

on equity returns during these periods. 

In contrast, during low inflation periods, the explanatory power of the model decreases 

slightly, with an R-squared of 11.6%. Interestingly, the Inflation Rate exhibits a negative 

and significant impact (p = 0.011), with a coefficient of -0.1705. This implies that even 

moderate increases in inflation during low-inflation environments can negatively affect 

equity returns, possibly due to concerns about rising costs, reduced consumer purchasing 

power, or expectations of tighter monetary policy. Both Bond returns and the risk-free 

rate remain statistically insignificant, reflecting their diminished role when inflationary 

pressures are subdued. 

 

QUANTILE REGRESSION (QR) RESULTS 

 

While OLS provides insights into the average relationships, Quantile Regression offers 

an insight view by examining the effects across different points of the IMOEX Index 

distribution, from the lower (5th percentile) to the upper (95th percentile) quantiles. This 



approach is particularly valuable for identifying how macroeconomic factors behave 

during extreme market conditions, such as downturns or booms. 

In high inflation scenarios, the Inflation Rate consistently shows a positive and significant 

effect across many quantiles, particularly around the median (0.5 quantile), where the 

coefficient is approximately 0.2585 (p = 0.002). This suggests that inflation’s positive 

influence on equity returns is not limited to average conditions but extends across 

different performance levels of the IMOEX Index. Interestingly, the impact is strongest 

around the middle quantiles, while it diminishes at the extreme tails, indicating that 

inflation may have a more stable, moderate effect rather than driving extreme market 

movements. Bond returns maintain a negative and significant relationship in several 

quantiles, especially between the 0.3 and 0.6 quantiles, reinforcing the inverse 

relationship observed in the OLS results. The Risk-Free rate, however, remains largely 

insignificant across all quantiles, underscoring its limited influence in inflationary 

environments. 

During low inflation periods, the pattern shifts. The Inflation rate demonstrates a negative 

and significant effect at several quantiles, particularly around the median and upper-

middle quantiles (0.4 and 0.5 quantiles), with coefficients around -0.1311 (p = 0.041). 

This suggests that even modest inflation increases can dampen equity performance in 

stable inflation environments, likely due to heightened sensitivity to economic 

uncertainty or cost pressures. Unlike in high inflation periods, the negative impact of 

inflation is more pronounced in the middle quantiles, indicating that the average firm or 

market condition is more affected than extreme scenarios. Bond returns and the Risk-Free 

rate remain largely insignificant across most quantiles, suggesting their minimal role 

during periods of low inflation volatility. 

 

REGRESSION ANALYSIS ADDING NON-LINEAR 
RELATION 

 
In order to increase the explanatory power of the model, non-linear relationships were 

included in the regression analysis. More specifically, interaction terms of bond with 

risk-free rate (Bond_Riskfree)  and with inflation (Bond_Inflation) were included to 

capture the joint impact of these variables. Other specifications included the inclusion of 



the square of the inflation rate (Inflation_sq) to capture any non-linear effects of 

inflation on equity returns and the use of a logarithmic transformation of the bond 

(Log_Bond) to reduce any potential distortions resulting from the scale. A binary 

variable  (High_Inflation) was also created to distinguish between high and low 

inflation periods based on the median inflation rate so that the model can capture the 

specific effects of different regimes. 

 

ORDINARY LEAST SQUARES (OLS) REGRESSION 

 

The OLS regression, which estimates the average effect of independent variables on the 

IMOEX Index, reveals significant differences across high and low inflation regimes. 

During high inflation periods, the model explains approximately 32.4% of the variability 

in the IMOEX Index, as indicated by the R-squared value, reflecting a substantial 

improvement in explanatory power due to the inclusion of non-linear terms. The Inflation 

Rate shows a positive and statistically significant effect with a coefficient of 0.304 (p = 

0.043), suggesting that rising inflation tends to boost equity returns. This could be 

attributed to the market’s adjustment to higher price levels or inflation-driven growth in 

nominal revenues. In contrast, Bond returns have a negative and significant impact with 

a coefficient equal to -0.369 (p = 0.010), indicating an inverse relationship, likely driven 

by a shift in investor preference from fixed-income securities to equities in an inflationary 

environment. The interaction term Bond_Riskfree also shows a strong negative effect 

through the coefficient equal to -5.1276 (p = 0.002), highlighting the adverse combined 

influence of bond yields and the risk-free rate on equity performance. Other variables, 

such as the Risk-Free rate and Log_Bond, do not exhibit significant effects, suggesting a 

limited direct influence on equity returns during high inflation periods. 

When inflation is low the model's explanatory power is reduced and R-squared is  15.7% 

which means that the impact of the macroeconomic variables on equity returns is not 

strong in stable inflation environments. The Inflation Rate has a negative and marginally 

significant effect with a coefficient of -0.279 (p =  0.092) , suggesting that even small 

increases in inflation can be negative for equity returns, possibly because of higher costs 

or expectations of tighter monetary policy. Both Bond returns and the interaction term 

Bond_Riskfree exhibit negative coefficients but are not statistically significant, reflecting 



their diminished role when inflationary pressures are subdued. The Risk-Free Rate also 

remains insignificant, underscoring its limited influence in low-inflation contexts. 

 

QUANTILE REGRESSION (QR) RESULTS 

 
Quantile Regression, even in this case, helps to identify the effect of the independent 

variable under both bullish and bearish market conditions. 

In high inflation scenarios, the Inflation Rate consistently shows a positive and significant 

effect across several quantiles, particularly around the median (0.5 quantile), where the 

coefficient remains robust (p = 0.035). This suggests that inflation’s positive influence on 

equity returns extends beyond average conditions, affecting different levels of market 

performance. The impact is more pronounced in the middle quantiles, while it diminishes 

at the extreme tails, indicating that inflation has a more stable, moderate effect rather than 

driving extreme market fluctuations. Bond returns maintain a negative and significant 

relationship in several quantiles, especially between the 0.2 and 0.6 quantiles (p-values 

ranging from 0.025 to 0.086), reinforcing the inverse relationship observed in the OLS 

results. The interaction term (Bond_Riskfree) also shows strong negative significance 

across multiple quantiles, underlining the adverse effect of combined bond and risk-free 

dynamics in inflationary environments. The Risk-Free Rate remains largely insignificant, 

highlighting its limited role under high inflation. 

During low inflation periods, the pattern shifts. The Inflation Rate demonstrates a 

negative effect at several quantiles, particularly around the median and upper-middle 

quantiles (0.4 and 0.5 quantiles), though statistical significance varies (p-values around 

0.217). This indicates that modest inflation increases can dampen equity performance in 

stable inflation environments, likely due to heightened sensitivity to economic 

uncertainty or cost pressures. The influence of Bond Returns and the interaction term 

(Bond_Riskfree) is less consistent and statistically insignificant across most quantiles, 

suggesting their minimal role during periods of low inflation volatility. Overall, the QR 

results confirm the non-linear and asymmetric effects of inflation and bond-related factors 

across different market conditions, providing a more comprehensive understanding of 

how these variables interact with equity returns. 



MARKOV-SWITCHING MODEL 

 
OLS showed the overall impact of inflation on the IMOEX Index, Quantile Regression 

examined its diverse effects at different market capitulation levels, and both approaches 

used fixed and ex-ante defined categories. However, financial markets are subject to 

structural changes that may not match the set criteria. The Markov-Switching Model 

improves on this limitation by identifying market regimes within the data instead of 

relying on  previously known thresholds.  As a model of the probability of switching 

between high and low volatility regimes over time, the MSM is a flexible and data-driven 

approach to understanding how inflation affects volatility. This approach captures the 

non-linearities and structural changes in the system and, thus, gives a more accurate and 

realistic picture of the behavior of the financial markets as opposed to the static regression 

models. The  Markov-Switching Model distinguishes two different regimes with different 

levels of volatility. Regime 0 of the model that identifies low volatility, shows that the 

Risk-Free rate is positively and strongly significant (p < 0.001) to have a stabilizing effect 

in less turbulent market conditions. On the other hand, Bond returns have a negative and 

statistically significant effect (p = 0.028), which indicates that the relationship between 

the two is negative in stable markets, perhaps because investors are risk averse. The 

interaction term Bond_Riskfree is negative but not statistically significant, which means 

that there is not much effect in this regime. 

The model's explanatory power changes significantly in Regime 1 that identifies high 

volatility. The Risk-Free rate is still positively related to equity returns, but the p-value 

increases to  0.073, which may be because of high market uncertainty. Importantly, Bond 

returns have a stronger negative and highly significant effect (p = 0.003), which reinforces 

the strong negative association observed in the turbulent periods. The interaction term 

Bond_Riskfree has a large negative and very high statistical value (p < 0.001) that shows 

the adverse impact of both the bond and the risk-free rates on the volatility of the market 

during periods of high volatility. 

The regime transition  probabilities are very high to stay in the same regime after entering 

it (p[0->0]  = 0.8575), while the probability of transferring from high to low volatility is 

relatively low  (p[1->0] = 0.3548). This asymmetry suggests that markets  are more likely 

to stick to the current situation, and once high volatility regimes are initiated, they are  

more likely to persist. The regime probabilities visualization also provides further insights 



into the temporal evolution of the probability of being in a high volatility state and can be 

very helpful for understanding the dynamics of market stress and  stability. The graph 

presents the smoothed probabilities of being in a high volatility regime over time as a red  

line, with peaks almost reaching 1 which corresponds to periods of high market volatility 

and troughs almost  reaching 0 which correspond to less volatile periods. The dotted blue 

line represents the annual inflation rate,  which can be used to compare inflationary 

patterns with volatility. Although inflation surges are often accompanied by increased 

market turmoil, the Markov-Switching Model provides a dynamic specification of regime 

transitions based on multiple, concurrent economic and financial metrics, such as risk-

free rates, bond returns, and inflation.  The dashed black line at 0.5 is the regime change 

threshold and represents the times at which the probability of switching between high and 

low volatility regimes is most uncertain. 

 

2.4, High Volatility Probability.  

 

 

Source: personal elaboration.  

 

INFLATION VOLATILITY’S ANALYSIS 

 
Inflation has a very important role in determining market expectations and the behavior 

of investors. Although the Markov-Switching approach identifies structural breaks and 



dynamic transitions between volatility states, the EGARCH model provides a similar but 

complementary view of the data by explicitly modelling asymmetric volatility clustering 

and the persistence of shocks. This allows for a more detailed analysis of how inflation 

and other financial factors affect market dynamics not only by means of abrupt regime 

changes but also by means of time-varying volatility, which provides a more refined view 

of the risk behavior over time. In order to accurately capture inflation related volatility, 

the analysis was expanded using the EGARCH model, specifically to the volatility of the 

inflation rate. Unlike standard GARCH models, EGARCH is particularly well-applied to 

model financial time series with asymmetric volatility responses, where the effect of 

negative and positive shocks on future volatility are different. This characteristic is 

particularly important in the context of inflation, in which case, unanticipated increases 

in the price level may lead to increased uncertainty, and, in turn, to a more persistent effect 

on expected prices. The main reason for choosing EGARCH with a Student’s t-

distribution is the distributional properties of inflation, as revealed by the best-fit 

distribution analysis. The Kolmogorov-Smirnov (KS) test results showed that inflation is 

leptokurtic, meaning that there are more extreme inflationary movements than what 

would be expected under the normal distribution. This is an empirical reason for using a 

Student’s t-distribution in the EGARCH specification, because it is more appropriate to 

model fat-tailed returns and to capture the occurrence of extreme observations. The model 

also ensures that inflation volatility is not underestimated, especially in the case of 

extreme price movements, which other normal-based models may not pick up well. 

Below is reported the comparison of distribution that justifies the t-student.  

 

 

 

 

 

 

 

 

 

 

 

 

 



2.5, Comparison of Distribution.  

 

 

 

 

 

 

 

 

 

 

 

 

Source: personal elaboration.  

 

Kolmogorov-Smirnov (KS) test results show that the t-Student distribution (D = 0.126, p 

= 0.027) is the best-fitting distribution for inflation rate data as compared to other 

distributions. The D-statistic that compares the empirical and theoretical distributions is 

lower for t-Student distribution than for Lévy (D =  0.274, p = 0.0) and Generalized Pareto 

(D =  0.145, p = 0.007) distributions, thus suggesting that t-Student model is a better 

representation of data structure. Furthermore, it has a p-value of 0.027 which,  although 

slightly below the usual significance level of 0.05, is greater than that of the Lévy 

distribution (0.0) which makes it even more suitable. This result justifies the choice of the 

t-Student distribution in the EGARCH model, as it properly accounts for heavy tails and 

extreme inflation fluctuations. Since financial time series often exhibit non-normality, 

incorporating a t-distributed innovation term in the EGARCH model enhances its ability 

to capture large deviations in inflation volatility, ensuring more reliable and robust 

estimations. 

The estimation results confirm the significant persistence of inflation volatility, with the 

alpha coefficient (2.4011, p < 0.001) indicating the impact of past volatility shocks, and 

the beta coefficient (0.8637, p < 0.001) suggesting that these effects remain substantial 

over time. The negative omega coefficient (-1.3599) highlights that inflation shocks are 

persistent and tend to have a lasting effect, reinforcing the necessity of nonlinear 



modeling techniques. The visualization of the volatility series illustrates distinct 

inflationary spikes, highlighting periods of heightened uncertainty. 

Below is reported the EGARCH model: 

 

2.6, Inflation Volatility Estimation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: personal elaboration.  

 

REGRESSION ADDING INFLATION VOLATILITY 

 
Following the estimation of inflation volatility using an EGARCH (1,1) model, the 

conditional volatility series was included as an explanatory variable in the regression 

model. The objective was to assess whether inflation uncertainty contributes to a better 

explanation of stock market returns, particularly for the IMOEX index. 

A comparison of the regression results before and after adding Inflation_Vol indicates that 

the R-squared value increases from 32.4% to 36% in the high inflation regime. This 

suggests that incorporating inflation volatility improves the overall explanatory power of 

the model. Despite an increase in the model’s goodness-of-fit, the coefficient for 

Inflation_Vol is marginally significant in the high-inflation regime (p =0.076) and remains 

largely insignificant across most quantile regressions. This suggests that while inflation 

volatility might contribute some explanatory power to the model, its direct impact on 

stock market returns is limited. The sign of the coefficient is negative, indicating that 

higher inflation volatility is associated with lower stock returns. 

In the low-inflation regime, the inclusion of Inflation_Vol has a smaller impact, with R-

squared remaining 15.7% and the coefficient being insignificant. This reinforces the idea 



that inflation volatility is only relevant in periods of high inflation, whereas under stable 

inflation conditions, it does not meaningfully affect stock market movements. 

From an econometric perspective, the increase in R-squared in the high-inflation regime 

suggests that inflation volatility may capture some variation in stock returns that was 

previously unaccounted for. However, the lack of strong statistical significance in the 

coefficient implies that this effect is likely indirect. Potentially, inflation uncertainty 

influences market dynamics through channels such as investor sentiment, risk premia 

adjustments, or liquidity conditions rather than exerting a direct influence on stock prices. 

This aligns with the broader economic literature suggesting that macroeconomic 

uncertainty can shape financial markets beyond its measurable impact on fundamental 

variables. 

 

CAPITAL ALLOCATION LINE 

  

The Capital Allocation Line (CAL) identifies the efficient frontier for an investor with 

access to risk-free markets and a risky portfolio of assets as the line provides the optimal 

expected return for the level of risk assumed. The CAL, illustrated as a straight black line, 

shows the various portfolio combinations that the investor can create by using or 

unwinding the optimal risky portfolio. The curve added to the graph represents Tobin's 

Utility Curve, which accounts for investor preferences in risk-taking. This curve is a 

quadratic function that captures the utility maximization process and helps identify the 

optimal portfolio for a given risk aversion level. 

The three key points on the graph correspond to different portfolio choices. Y0 represents 

an entirely bond-based portfolio, which is the lowest-risk option but also provides the 

lowest return. Y1 is the market portfolio, in this case, fully allocated to the IMOEX Index, 

representing the tangency portfolio that maximizes the Sharpe ratio. Y2 is a leveraged 

portfolio that extends beyond Y1 along the CAL, incorporating borrowed funds at the 

risk-free rate to amplify returns, though at a higher risk. 

The intersection between the utility curve and the CAL determines the investor's optimal 

portfolio choice. Given an investor's specific utility function, this point represents the best 

risk-return trade-off. The presence of Tobin’s Utility Curve enhances the interpretation of 

the CAL by explicitly illustrating how risk preferences influence portfolio selection. If an 



investor has a low-risk aversion, the optimal portfolio choice moves higher along the 

CAL, incorporating more risk. Conversely, a highly risk-averse investor will select a 

portfolio closer to Y0, allocating more wealth to risk-free assets. 

 

Figure 2.7, Capital Allocation Line. 

 

Source: personal elaboration. 

 

INFLATION ALLOCATION LINES  

 

The Inflation Allocation Lines (IAL) extend the traditional CAL framework by 

incorporating inflation as a key determinant of portfolio selection. The graph displays 

three distinct IALs corresponding to different inflationary regimes: low inflation, base 

regime, and high inflation. The downward slope of the IALs indicates that as inflation 

increases, the risk-adjusted return of portfolios decreases, shifting optimal allocations 

toward more conservative strategies. The utility curves illustrate investor preferences 

under different inflationary conditions, showing that high inflation regimes lead to a 

flattening of  IALs, reducing the attractiveness of riskier assets. The dashed lines represent 

moderate and high inflation thresholds, emphasizing the transition points where portfolio 

reallocation becomes necessary. Empirical findings confirm this behavior, as seen in the 

regression analysis, where inflation exhibits a significant impact on IMOEX index 



returns. In high-inflation periods, risk-free assets and bonds play a more substantial role 

in portfolio construction due to their lower sensitivity to inflationary shocks. Conversely, 

during low-inflation periods, equity investments provide superior risk-adjusted returns, 

encouraging investors to increase exposure to risky assets. 

 

Figure 2.8, Inflation Allocation Lines. 

 

 

Source: personal elaboration. 

 

ANALYSIS OVER YEARS 

 
Over the period from 2014 to 2024, the Russian economy was characterized by high 

volatility not only in the inflation rate, but also in bond yields and IMOEX Index. The 

reasons behind this are principally connected to geopolitical factors, monetary and fiscal 

actions, and commodity price prophylaxis. 2014 was a drastic year for the Russian 

financial markets, Western sanctions were imposed on Russia and the oil price crashed 

which made the ruble depreciate and inflation rise to 11% and above. The Central Bank 



of Russia then increased the interest rates to 17% to stabilize the currency after an 

aggressive monetary policy was adopted. This policy shift resulted in an increase in bond 

yields and a sharp decline in the  IMOEX Index and by the end of the year, the index had 

dropped 7.1%. In the following year, inflation was 15.5% because the ruble kept on falling 

and food prices increased due to trade restrictions but the IMOEX rose possibly because 

firms had learned how to operate effectively in the given environment. The results also 

show that sovereign risk perceptions were still high and therefore, bond yields were still 

relatively high. It can be seen that there is a positive correlation in the period that firms 

were able in some way to raise their prices. The inflation rate had dropped to 5.4% in the 

year 2016 due to a tight monetary policy and stability in the oil prices; a positive trend in 

the macro economy that led to a 26.8% growth in the IMOEX but bond yields fell due to 

the decrease in inflation expectations. However, the econometric analysis shows that the 

traditional macroeconomic factors explained a part of the variation in the stock indexes 

which may be the case of other or speculative factors. In 2017, the inflation was at 2.5% 

and the IMOEX fell 5.5% due to the volatility of oil prices and the persistence of sanctions 

while the bond market kept an average yield of 7.5%. In 2018 the inflation rate was 4.3% 

due to the hike in the VAT rate and depreciation of the ruble. However, the IMOEX rose  

12% in the year in question because corporate earnings growth remained strong. The 

analysis of this year’s data showed that the sensitivity of stock market returns to inflation 

shocks was decreasing. In 2019 the inflation rate was 3%, the bond market was slightly 

negative and the IMOEX Index was also slightly positive. It was a shock to the markets 

all over the world when the COVID-19 outbreak in 2020 and Russia was not spared from 

this. However, the rate of inflation was still stable at 3.4%; nonetheless, the IMOEX took 

a massive drop of almost 20% in March due to the pandemic’s uncertainty. The bond 

yields first rose during the flight to safety and then declined after the Central Bank of 

Russia reduced its policy rates to spur the economy. The regression analysis of this year 

indicated that the IMOEX was more sensitive to the macroeconomic shocks as shown by 

the higher correlation between inflation and stock returns, particularly in the lower 

quantiles which captured the negative impacts of the crisis. In 2021, Inflation was  8.4% 

due to supply-side factors and domestic demand. The MOEX also kept on rising but at a 

slower rate, and the bond yields also rose due to the inflationary pressure. The following 

are the econometric results of this period: it has been found a positive link between 



inflation and stock returns,  which supports the idea that firms were able to increase their 

prices. 2022 was dramatic due to the Russian invasion in Ukraine, able to determine 

market shocks. Inflation rose to 13.8%, the ruble dropped, and the IMOEX fell more than 

35%  in the first few days of the invasion. This is because the bond yields rose as the 

investors wanted to earn more from the Russian bonds. The statistical models for this year 

showed that inflation had a negative  effect on the stock returns and the bond yields also 

had a negative effect on the market returns. In  2023, Inflation was constant between 6.3 

and 7.0% due to the sanctions and the change of the trade partners. The MOEX recovery 

was evident with a  10% growth in the year, while the bond yields remained high. In 2024, 

the inflation rate was 7%, the bond yields were still high due to political risks and fiscal 

policies. The IMOEX also continued its recovery but the results showed that the effect of 

inflation on stock returns was still negative although it was not as high as in 2022. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CONCLUSION 
 
Using the Russian economy as a specific focus, the thesis delivered an exhaustive 

examination of the effects of inflation on financial markets. The application of classical 

portfolio theories alongside Markowitz’s Mean-Variance, Tobin’s Utility Theory and 

Sharpe’s Ratio and more advanced econometric models including Ordinary Least Squares 

(OLS), Quantile Regression (QR), Markov-Switching and EGARCH enables an 

understanding of how inflation impacts asset returns and, consequently, investment 

decision-making. 

A primary finding is the asymmetric effect of inflation across different market conditions, 

able to detect due to quantiles’ analysis. While moderate inflation can be absorbed by 

firms through price adjustments, high inflation introduces significant distortions in 

market expectations, investor sentiment, and overall asset allocation strategies. Quantile 

Regression results indicate that during market expansions, inflation has a weaker impact 

on stock returns, whereas during downturns, inflation shocks intensify financial 

instability, leading to capital outflows and increased market volatility. This insight 

highlights the importance of non-linear and distribution-sensitive models in capturing the 

full extent of inflation’s impact on asset returns. 

The Markov-Switching model further demonstrated that financial markets alternate 

between low and high-volatility regimes, with inflation acting as a key driver of these 

transitions. The persistence of inflation-induced volatility, as revealed by the EGARCH 

model, underscores the need for dynamic risk management strategies. It is therefore 

important that investors and policymakers understand that inflation is not only a 

macroeconomic variable but also a determinant of market sentiment and capital budgeting 

decisions. 

As such, a country’s ability to maintain economic credibility remains a key factor in 

attracting foreign capital even as inflation remains a factor in shaping market conditions. 

Stable inflation expectations, transparent monetary policies, and credible institutions can 

help to reduce the negative impacts of inflation on investor confidence so that capital is 

not flighted and market volatility is not excessive. 

As a result of the effects of inflationary cycles on the global financial markets, it is 

important to assess the effects on portfolio balance and stability of markets. This study 



also shows that it is important the inclusion of inflation trends in the portfolio 

optimization models as investors need to be ready to change their strategies based on the 

macroeconomic situation. 

In conclusion, inflation is not only a statistical figure but a real driver of the behavior of 

investors, risk spreads, and efficiency of the market. As financial markets grow and 

develop, the capacity to forecast and respond to inflation trends will be a critical asset for 

both investors and policymakers. 
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