LUISS

Degree Program in Data Science and Management

Course of Big Data And Smart Data Analytics

Detecting Threats in Generative Al:
Security, Interpretability, and Ethical Issues in
Deepfake Content

Prof. Irene Finocchi Prof. Emilio Coppa

SUPERVISOR CO-SUPERVISOR

ID 776831

CANDIDATE

Academic Year 2024/2025



Contents

1 Introduction
1.1 Research Background and Motivation . . . . ... ... ... ......
1.2 Study Objectives . . . . . . . . . L
1.3 Structureofthe Work . . . . . ... ... oL oo

2 Overview of Generative Models
2.1 Definition of Generative Models . . . . . . . . . . . . .. ... ... ..
2.2 Historical Evolution and Development of Generative Models . . . . . . .

2.3 Applications of Generative Models . . . . . . ... ... ... ... ...

3 Security and Ethics in Deepfake Video Generation
3.1 Deepfakes and Disinformation . . . . . .. ... ... ... .. .....
3.2 Manipulation of Textual and Visual Content . . . . . . . ... ... ...
3.3 Attacks on Generative Models . . . . ... ... ... oo
3.4 Reliability in Generative Models . . . . . .. ... ... ... ......
3.5 [Interpretability Methods . . . . ... ... .. ... ... ... ...
3.6 Security and Governance in Generative Models . . . . . . .. ... ...
3.7 Ethical Issuesand Bias . . . . . . ... .. .. ... ... ... ...
3.8 Regulationand Policy . . . . . ... ... ... ... ... ..

4 Experimental Context, Dataset, and Evaluation Criteria
4.1 Experimental Objectives and Context . . . . . . ... ... .......
4.2  Dataset Structure and Composition . . . . . . . . . ... ... ...
4.3 C(Class Distribution and Imbalance . . . . . . ... ... ... .......
4.4 Evaluation Metrics for Deepfake Detection Models . . . . . .. ... ..
4.4.1 Logarithmic Loss (LogLoss). . . . . .. .. ... .. ......
442 PrecisionandRecall . .. ... ... ... .. ..........
443 FlScore . ... . ... ...
444 AUC-ROC . ... .. . . e
445 Weighted Precision . . . . . ... ... ... ... ...
4.5 The Integrated Use of Metrics in Model Validation . . .. ... ... ..

5 Model Engineering and Architectural Choices
5.1 Introduction to the EfficientNet Family . . . . . . ... ... ... ....
5.2 Why EfficientNet-B7 Was Selected . . . . . . . ... ... ... .....

12

13
13
14
14
15
16
17
18
18

20
20
21
22
24
24
25
26
26
27
28



5.3 EfficientNet-B7inDetail . . . ... ... ... ... ... ... ...,
5.4 Architectural Comparison: Alternative Models to

EfficientNet-B7 . . . . . . . . ..
5.5 Computing Environment: Use of a Virtual Machine (VM) . . . . . . . ..

Experimental Pipeline and Model Implementation

6.1 Preprocessing and Dataset Preparation . . . . . . ... ... .......
6.1.1 Metadata Parsing and Binary Label Assignment . . . . . . . . ..
6.1.2  Uniform Extraction of 32 Frames per Video (Frame-Based Ap-

proach) and Face Detection with MTCNN . . . . . . . ... ...

6.1.3 Cropping with Contextual Margin and Resizing to 380x380 px . .
6.1.4 Saving Cropped Faces into /real and /fake Directories . . . . . . .
6.1.5 Preprocessing Parallelization with multiprocessing . . . . . . . .
6.1.6 Logging, Error Handling, and Reproducibility . . . . . . . .. ..

6.2 Construction and Organization of the Supervised
Dataset . . . . . . . .. L
6.2.1 Generation of the CSV File with Labels and Paths . . . . . . ..
6.2.2  Assignment to 5 Folds for Cross-Validation . . . . . ... .. ..
6.2.3 Use of Folds for Training/Test Separation . . . . . ... ... ..
6.2.4 Handling Class Imbalance via pos_weight . . . . . ... .. ...

6.3 Implementation of a Custom Dataloader. . . . . . .. ... ... ....
6.3.1 Definition of the DeepFakeDataset Class . . . . . ... ... ..
6.3.2 Integration with PyTorch Datal.oader . . . . ... ... ... ..
6.3.3 Data Augmentation During Training . . . . . .. ... ... ...
6.3.4 Transformation and Normalization Pipeline . . . . . .. ... ..

6.4 Training Strategy . . . . . . . ... oL
6.4.1 Adapting the Classifier for Binary Classification . . . ... ...
6.4.2 Weighted Binary Cross-Entropy Loss (BCEWithLogitsLoss) . . .
6.4.3 Optimization with Adam and Learning Rate Configuration . . . .
6.4.4 Training on 5 Folds and Best Model Saving . . . . ... ... ..
6.4.5 Overfitting Control and Epoch Management . . . . . . . . .. ..

6.5 TestingandInference . . . . . . .. ... ... ... L.
6.5.1 Frame-Level Inference with Model in Evaluation Mode . . . . . .
6.5.2 Heuristic Aggregation of Frame-Level Predictions . . . . . . ..
6.5.3 Final Label Assignmentper Video . . . . ... ... ... ....
6.5.4 Collection of y_true, y_pred, and y_prob for Evaluation . . . . .
6.5.5 Prediction on Test Set 1 (10 GB) and Test Set2 (50GB) . . . . .

6.6 Experimental Variations. . . . . . . .. ... ... Lo



6.7

6.6.1
6.6.2
6.6.3
6.6.4
6.6.5

Progressive Subsets . . . . . . ... ... oL
Metadata Generation and Image Management . . . . . . . . . ..
Objective: Identifying the Data-Performance Trade-Off . . . . . .
Epoch Variation: Comparison Between 5 and 10 Epochs . . . . .
Robustness and Randomness: Replicability Analysis Using Mul-

tipleSeeds . . . . .. ...

Comparative Experiments with Alternative Architectures . . . . . . . . .

6.7.1
6.7.2
6.7.3
6.7.4

Trainingof ResNetl8 . . . . . . .. ... ... ... .......
Training of Xception . . . . . . . ... ... ...
Lightweight Architectures: Motivations and Trade-Offs . . . . . .

Consistency of Transformations and Adapted Configurations . . .

7 Empirical Evaluation and Results

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

Overview of the Evaluation Protocol . . . . . . . .. ... ... .....

Key Experimental Variables . . . . ... ... ... ... .. ......
Performance onthe 10 GB TestSet . . . . . . . . . . . . . . ... ....
Performance onthe S0GB TestSet . . . . . . . . . . . . .. ... ....

Comparison with Alternative Architectures . . . . . . .. ... ... ..
Efficiency and Trade-Off Analysis . . . . . ... ... ... ... ....
Robustness and Repeatability . . . . .. ... .. ... ... .......

Comparative Visualization of Performance . . . . . . . ... ... .. ..

Summary of Key Results . . . . ... ... ... ... ... ... ..

8 General Discussion and Implications

8.1

Ethical and Practical Implications of Detection . . . . ... ... .. ..

8.2 Methodological Limitations and Potential Biases . . . . . ... ... ..
8.3 LimitationsoftheWork . . . . . . ... ... oo

9 Conclusions and Future Directions

References

57
57
58
59
60
62
63
65
66
68

70
70
70
71

72

74



Chapter 1
Introduction

1.1 Research Background and Motivation

In recent years, artificial intelligence has experienced an extraordinary acceleration in
the development of models capable not only of analyzing and classifying information,
but also of generating new content. Among the sectors that have benefited most from
this progress is the automatic generation of multimedia content, including images, text,
voices, and, in particular, video. The advent of increasingly sophisticated synthesis tech-
niques has enabled the creation of digital representations that, in terms of realism, are
often indistinguishable from authentic ones. So-called deepfakes represent one of the
most emblematic manifestations of this transformation. By leveraging machine learning
algorithms capable of capturing fine-grained details from training data, it is now possi-
ble to generate videos in which an individual’s face is seamlessly replaced by another’s,
or in which a person’s voice is cloned with impressive fidelity. These technologies, ini-
tially confined to academic and creative experimentation, have become accessible even to
users with no technical expertise, due to the proliferation of open-source software, mo-
bile applications, and intuitive interfaces that enable the production of deepfakes within
minutes.

Among synthetic content, deepfake videos represent the most insidious threat, as they
combine both visual and auditory channels, resulting in an immersive experience that
facilitates deception. The high degree of realism, combined with the increasing speed of
generation and dissemination on social media platforms, makes them particularly difficult
to detect. This work is situated within a historical moment in which combating disinfor-
mation and media manipulation requires technological tools that are at least as advanced
as those used to produce falsified content. The present work arises from the need to criti-
cally examine the vulnerabilities introduced by generative models, to understand how they
can be exploited for malicious purposes, and to contribute to the development of robust
and scalable strategies for the detection of manipulated media. Furthermore, the study
seeks to highlight the ethical and regulatory implications that stem from the use of such
technologies, with particular emphasis on the principles of transparency, accountability,

and interpretability in artificial intelligence models.



1.2 Study Objectives

The main objective of this work is to critically examine the threats posed by generative
models, with a specific focus on deepfake videos, and to evaluate viable solutions for their

identification and interpretation. In particular, the thesis aims to:

* Describe the core technologies underlying generative models, with attention to the

mechanisms employed in the creation of deepfakes;
* Exploring the risks and ethical challenges in the proliferation of synthetic content;

* Conduct an experimental study to assess the performance of classification mod-
els trained on real-world datasets !, such as the DeepFake Detection Challenge
(DFDC), by systematically varying architecture, data quantity, and experimental
configurations, with the ultimate goal of identifying and proposing an effective,

robust, and deployable detection model;

* Promote a reflection on the importance of interpretability and transparency in Al

models.

This study seeks to integrate both theoretical and empirical perspectives, proposing prac-
tically grounded solutions in a fast-evolving context that demands adaptive and interdis-

ciplinary responses.

1.3 Structure of the Work

This thesis is organized into nine chapters, each addressing a specific aspect of the de-
tection of Al-generated content, with a particular focus on deepfake videos. Chapter 2
introduces generative models by outlining their historical development, theoretical foun-
dations, and current applications across various domains. Chapter 3 explores the security,
ethical, and regulatory challenges associated with deepfake video generation, highlight-
ing the risks posed by misuse and the importance of governance frameworks. Chapter 4
defines the experimental context, detailing the dataset adopted, the issue of class imbal-
ance, and the evaluation metrics used to assess model performance. Chapter 5 presents

the architectural choices, with a focus on the rationale behind selecting EfficientNet-B7

IReal-world datasets refers to a dataset collected under realistic and uncontrolled conditions, characterized
by noise, imperfections, variability in devices, and complex scenarios. It includes both manipulated and
authentic audiovisual content, recorded by real actors in natural environments and subject to common
distortions such as compression, lighting variations, and different camera angles (Paullada et al., 2021.
Data and its (dis)contents: A survey of dataset development and use in machine learning research).



and a comparison with alternative architectures. Chapter 6 describes the full implemen-
tation pipeline, including preprocessing, dataset construction, training strategy, testing
procedures, and experimental variations. Chapter 7 reports the empirical results, evalu-
ating model performance in terms of accuracy, robustness, and computational efficiency.
Chapter 8 provides a critical discussion of the findings, reflecting on the ethical and prac-
tical implications of deepfake detection, as well as the methodological limitations of the
study. Finally, Chapter 9 summarizes the main conclusions and outlines future research

directions.



Chapter 2

Overview of Generative Models

Generative models are an increasingly central component in the field of artificial intel-
ligence, due to their ability to autonomously produce novel and realistic content. This
chapter provides a theoretical and historical overview of such models, examining their
main architectures, operational mechanisms, and applications across various domains,

with particular attention to the practical and ethical implications associated with their use.

2.1 Definition of Generative Models

Generative models represent a fundamental class of machine learning algorithms whose
primary objective is to learn the underlying distribution of observed data in order to gener-
ate new samples that share similar statistical and semantic characteristics. Unlike discrim-
inative models, which are designed to estimate the conditional probability or to directly
learn decision boundaries between classes or predicting output variables given an obser-
vation (e.g., classification or regression tasks), generative models focus on learning the
joint probability distribution, encompassing both observations and labels. This approach
enables not only data classification, but also the generation of new samples that are consis-
tent with the learned statistical structure. Generative models provide a formal framework
for dealing with challenges such as missing data, variable-length sequences, and latent
variables. They simulate the underlying process that generated the data, making them
particularly suitable for structured or noisy inputs (e.g., natural language, DNA, or im-
ages). However, when the primary goal is classification accuracy, discriminative models
tend to achieve superior performance, as they concentrate exclusively on class separation
(Jaakkola et al., 1998. Exploiting generative models in discriminative classifiers). Dis-
criminative models do not attempt to model the input distribution, but rather directly learn
a decision function or the conditional probability, thus improving predictive effectiveness
in many practical applications. At their most basic level, generative models attempt to es-
timate the probability p(x) of observing a given data point x within the data space. Once
this distribution is learned, it becomes possible to sample new data points, generate vari-
ants of existing inputs, or reconstruct missing parts of an input. This makes generative
models particularly useful in a wide range of domains, from the generation of realistic

images, audio, and video, to the simulation of complex scenarios and the creation of syn-



thetic data for training other models. These algorithms constitute the backbone of modern
generative artificial intelligence (GAl), as they not only reproduce structures observed in
real-world data but also imagine new, coherent configurations, thereby enhancing AI’s ca-
pacity to emulate human creativity (Ran He et al., 2025. Generative artificial intelligence:
A historical perspective).

The probabilistic nature of generative models allows them to capture the variability
and uncertainty inherent in observed phenomena. This translates into the ability to sim-
ulate multiple scenarios starting from the same initial conditions, an essential feature in
disciplines such as computational physics, biology, economics, and medicine. Generative
models provide a conceptual framework for analyzing complex systems, as they link em-
pirical data to explicit theoretical constructs through structured mechanisms, such as la-
tent variables, graphical models, or agent-based simulations > (Kris Sankaran et al., 2023.
Generative models: An interdisciplinary perspective). These tools allow researchers to
test hypotheses, explore possible outcomes, and conduct in silico experiments that would
otherwise be infeasible in the real world. Another key strength of generative models lies
in their interdisciplinary applicability. Their use extends far beyond computer science,
encompassing fields such as statistics, neuroscience, social sciences, engineering, and
more. For instance, in molecular biology, they are employed to simulate the behavior
of cell populations; in computational linguistics, to generate coherent natural language;
and in computer graphics, to synthesize realistic faces or three-dimensional environments.
From a theoretical standpoint, generative models are based on various techniques for rep-
resenting and learning data distributions: some, such as normalizing flows >, allow for
exact probability density estimation, while others, such as Generative Adversarial Net-
works (GANs) or Variational Autoencoders (VAEs), discussed in the following sections,
rely on indirect or approximate estimation methods. Despite their methodological differ-
ences, their ultimate goal remains the same: to construct mechanisms capable of learning
the deep structure of data and producing new instances that are indistinguishable from
real ones. Their growing adoption reflects the increasing centrality of these tools in the

development of creative, robust, and interpretable Al systems.

2 Agent-based simulation are computational models that simulate the interactions of autonomous agents to
analyze emergent behaviors in complex systems.

3Normalizing flows are generative models that transform a simple distribution into a complex one using
invertible functions, allowing exact probability density computation.



2.2 Historical Evolution and Development of Generative
Models

The evolution of generative models reflects the broader transformation of artificial in-
telligence over more than seventy years, encompassing distinct phases characterized by
different theoretical foundations, computational capabilities, and application contexts.

The first stage, spanning from the 1950s to the 1990s, was dominated by rule-based
generative systems. These systems were manually constructed by human experts through
the specification of symbolic rules designed to produce responses or behaviors within
narrow, well-defined contexts. A notable example is ELIZA (1966), one of the earliest
chatbots, which simulated a psychotherapist using a set of predefined lexical rules. Al-
though pioneering, such systems were highly rigid and poorly generalizable, as they could
not adapt to data or situations not explicitly foreseen in their rule sets. This rigidity repre-
sented a structural limitation that prevented their extension to more complex or dynamic
domains (Ran He et al., 2025. Generative artificial intelligence: A historical perspec-
tive). As computational capabilities advanced and interest in statistical learning grew, a
second phase emerged, centered around the adoption of probabilistic and graphical mod-
els. During this period, techniques such as Hidden Markov Models (HMMs)*, Bayesian
networks’, conditional Markov networks®, and other structured models capable of explic-
itly representing probabilistic dependencies between variables became widespread. These
tools, supported by algorithms like Expectation-Maximization (EM)’, allowed for more
flexible and robust modeling of sequential, spatial, and noisy phenomena. This phase
marked a shift in Al from a symbolic and deterministic logic toward a statistical and in-
ferential paradigm, better suited to handling uncertainty and variability in real-world data
(Hatice Kiibra Kiling et al., 2024. Generative Artificial Intelligence: A Historical and
Future Perspective).

The third and most disruptive phase began in the 2010s with the advent of deep neu-
ral networks and the development of deep learning-based generative models, capable of
learning complex representations from large datasets. Among the most representative ar-
chitectures are Generative Adversarial Networks (GANs), introduced by Ian Goodfellow

in 2014. GANs have revolutionized the generation of realistic images through a com-

“HMM s are statistical models in which the system is assumed to be a Markov process with unobserved
(hidden) states. Commonly used for modeling time series and sequential data.

SBayesian networks are probabilistic graphical models that represent variables and their conditional depen-
dencies using a directed acyclic graph. Useful for reasoning under uncertainty.

5Markov networks, also known as Markov Random Fields, these are undirected graphical models used to
represent the joint distribution of variables with a focus on spatial and contextual dependencies.

"Expectation-Maximization is an iterative algorithm used to estimate parameters in models with latent
variables by alternating between inferring missing data (E-step) and optimizing parameters (M-step).



petitive process between two neural networks: a generator, which attempts to produce
realistic data, and a discriminator, which seeks to distinguish real data from synthetic
samples. This scheme is grounded in game theory, where the two models are engaged
in a zero-sum game: the generator tries to deceive the discriminator, while the discrim-
inator strives to detect the forgeries (Goodfellow et al., 2020. Generative Adversarial
Networks). GANs belong to the category of implicit generative models, as they do not
require the explicit formulation of a density function. The generator, driven by a random
latent variable z, learns a function G(z) capable of transforming unstructured noise into
realistic samples that are statistically indistinguishable from real data. The discriminator,
in turn, estimates the probability that a given sample originates from the real dataset rather
than from the generative model. Although this adversarial dynamic is effective, it is often
subject to training instability and may lead to phenomena such as mode collapse, where
the generator produces a limited number of output variants, thereby reducing the diversity
of generated results. Nonetheless, GANs have demonstrated outstanding effectiveness in
visual domains such as facial image synthesis and image restoration, and they continue to
represent one of the most promising architectures for high-resolution content generation.
Despite their impressive results, GANs are affected by challenges such as mode collapse,
in which the generator tends to produce only a limited variety of outputs (Ruthotto et al.,
2021. An introduction to deep generative modeling).

In the same year, Variational Autoencoders (VAEs) were also proposed. These models
combine the efficiency of autoencoding with a probabilistic framework based on latent
spaces. VAEs enable more direct manipulation of internal data representations, providing
a certain level of interpretability and control in the generation process. However, the
visual quality of the outputs is often lower compared to GANSs, resulting in blurrier or
less detailed images. (Kyle Stratis, 2024. What is Generative AI? A generative Al primer
for business and technical leaders).

In subsequent years, increasing attention was directed toward diffusion models, which
simulate the generative process as a gradual and stochastic denoising® procedure that
starts from pure noise. Although computationally intensive, these models have demon-
strated superior performance in generating high-quality visual and audio content, achiev-
ing state-of-the-art results in various benchmarks (Ran He et al., 2025. Generative artifi-
cial intelligence: A historical perspective).

Starting in 2017, Transformer-based architectures gained widespread adoption. Ini-
tially designed for natural language processing, Transformers revolutionized the field

through attention mechanisms that allow for efficient modeling of long-range dependen-

$Denoising is a process that removes noise from input data, often used in generative models to reconstruct
clean signals from random or corrupted inputs.

10



cies in sequences. These architectures architectures were originally developed for natural
language processing and later extended to various other domains. Their self-attention
mechanism enables the efficient modeling of long-range dependencies in complex se-
quences, making them ideal for both textual and multimodal generation. Although highly
versatile and powerful, Transformers require substantial computational resources, partic-
ularly during training, and their performance strongly depends on access to large-scale
datasets. A representative example is ChatGPT, a generative model developed by Ope-
nAl based on the Transformer family, specifically leveraging Large Language Models
(LLMs). ChatGPT is classified as a foundation model, as it is pre-trained on a massive
corpus of text and subsequently adapted to specific tasks through fine-tuning and rein-
forcement learning techniques. Its ability to generate coherent text, answer questions,
write code, and simulate complex dialogues makes it one of the most prominent exam-
ples of the capabilities of Transformer-based models in content generation. However, like
other LL.Ms, ChatGPT requires significant computational resources for training and infer-
ence, and poses challenges related to interpretability, fine-grained control, and potential
biases in the training data. Their ability to parallelize training processes made them the
de facto standard in many generative applications, including text, images, code, and video
(Kumar et al., 2024. Exploring the efficacy of adaptive learning platforms enhanced by

artificial intelligence: A comprehensive review).

Model Strengths Limitations

GAN Highly realistic generation, suitable | Training instability, risk of mode
for images and videos collapse

VAE Controllability, interpretable proba- | Less sharp outputs, lower visual
bilistic structure quality

Transformer Versatility, excellent for sequences | High computational cost
and multimodal content

Diffusion Models | High generative quality, robustness, | Slow inference and high computa-
and zero-shot generalization tional cost

Table 1: Comparison of current generative model architectures

Table 1 lists the most commonly used models in contemporary applications. As high-
lighted in Table 1, each generative architecture presents specific strengths and limitations:
GANS excel in visual fidelity, VAEs offer greater control and interpretability, Transform-
ers are distinguished by their versatility, while diffusion models provide extremely high-
quality outputs at the expense of substantial computational costs. Nevertheless, alongside
their technical capabilities, it is essential to consider the risks associated with the misuse
of these models, thus requiring ethical reflection and the implementation of appropriate

regulatory measures.

11



2.3 Applications of Generative Models

Thanks to their ability to create new, coherent, and adaptable content, generative models
are now applied across a wide range of sectors, both creative and technical, reshaping how

we work, learn, communicate, and produce knowledge.

* Business and productivity: Models such as ChatGPT are used to automate cus-
tomer service, assist in drafting emails, documents, and reports, or generate market-
ing content in a fast and tailored manner. Other tools, like GitHub Copilot (based
on Codex), support developers in writing code, reducing time and operational com-

plexity (Feuerriegel et al., 2024. Generative Al).

* Education: Generative models function as virtual tutors, writing assistants, exer-
cise generators, or tools for personalized learning. However, improper use may
undermine academic integrity, facilitating practices such as plagiarism or cheating
that challenge traditional assessment processes (Nah et al., 2023. Generative Al

and ChatGPT: Applications, challenges, and Al-human collaboration).

* Healthcare: Generative Al can be used for patient support, automated report draft-
ing, preliminary consultations, or diagnostic assistance. LLM-based tools have
demonstrated the ability to pass medical exams and provide high-quality answers.
Nonetheless, concerns remain regarding sensitive data privacy, lack of clinical val-
idation, and the risk of misinformation (Kenthapadi et al., 2023. Generative Al

meets responsible Al: Practical challenges and opportunities).

* Multimedia content creation: Systems like DALL-E and Stable Diffusion gener-
ate images from textual descriptions, while MusicLM or AudioLM create coherent

and creative audio tracks.

¢ Journalism and communication: Generative models are used to write articles,

generate news from structured data, and summarize transcripts.

* Digital art and human-AlI collaboration: Al is increasingly integrated into artistic
processes, enabling co-creation between humans and generative systems (Weisz et

al., 2024. Design principles for generative Al applications).

Despite their numerous advantages, the widespread adoption of generative models also
entails risks and responsibilities, which will be further addressed in the following chapter

focusing on video generation.

12



Chapter 3

Security and Ethics in Deepfake Video Genera-
tion

This chapter explores the complex and multifaceted landscape of risks related to deep-
fake generation, with a focus on its disruptive consequences across political and social
domains. Through an examination of disinformation, technical vulnerabilities, inter-
pretability issues, and ethical concerns, the analysis highlights the urgent need for robust
safeguards. Particular attention is given to model attacks, governance mechanisms, and
the evolving regulatory environment, including the European Union’s Al Act. The chapter
aims to provide a critical framework for understanding how generative technologies, if not
adequately regulated and governed, can undermine democratic stability, digital integrity,

and public trust.

3.1 Deepfakes and Disinformation

The phenomenon of deepfakes represents one of the most emblematic manifestations of
both the potential and the risks associated with generative models. Initially developed
within academic and creative contexts for experimental and artistic purposes, the use of
these technologies has rapidly transcended the boundaries of research, entering the public
domain often without adequate control mechanisms or widespread awareness. The im-
proper use of deepfakes has led to the creation of highly realistic audiovisual content, arti-
ficially generated and capable of perfectly mimicking the appearance, voice, and gestures
of real individuals. This ability to produce “believable fakes™ has opened particularly con-
cerning scenarios in political, journalistic, and social contexts. The impact of deepfakes
on disinformation is now documented in numerous real-world cases. Manipulated videos
portraying political leaders issuing compromising or inflammatory statements have been
deliberately disseminated to influence public opinion, generate panic, or delegitimize in-
stitutional figures. A significant example is the case of Zao, a Chinese app launched in
2019 that enabled users to superimpose their faces onto those of famous actors in a matter
of seconds. The application reached millions of downloads within a few days, highlight-
ing how quick and easy it has become to produce realistic and viral deepfake content (Y.
Fatel et al., 2023. Deepfake generation and detection: Case study and challenges). This

episode raised concerns not only about the security of biometric data, but also about the

13



broader implications of such technologies in contemporary digital communication. Dig-
ital platforms, especially social networks, face a dual ethical and operational dilemma:
on one hand, they provide the tools and distribution channels that amplify the reach of
manipulated content; on the other, they are expected to develop moderation policies and
detection tools capable of identifying deepfakes in a timely manner and limiting their
dissemination. However, the speed at which this content spreads makes it difficult to re-
spond promptly and effectively, thereby undermining citizens’ trust in the authenticity of
online information and contributing to the so-called “crisis of truth” (S. Gupta et al., 2025.
Deepfake Overview: Generation, Detection, Risks and Opportunities). In this scenario,
the proliferation of deepfakes constitutes a tangible threat to democratic stability, social
cohesion, and institutional security, necessitating coordinated responses at technological,

legal, and cultural levels.

3.2 Manipulation of Textual and Visual Content

Deepfakes are no longer limited to traditional face swapping, but now include advanced
techniques such as morphing, face reenactment, and landmark alignment. Morphing en-
ables the gradual transformation of one face into another by progressively blending dis-
tinct facial features, and was initially used in the film industry for special effects. Face
reenactment, on the other hand, allows the transfer of one person’s facial expressions onto
another subject in real time, using algorithms capable of reconstructing micro-expressions
with high fidelity. Finally, landmark alignment relies on the automatic detection of key fa-
cial points (e.g., eyes, mouth, eyebrows), which are used to digitally deform and synchro-
nize the target image in a manner consistent with the movements of the source subject.
These techniques, although originally developed for legitimate and useful purposes, such
as rehabilitative medicine, cinema, or the creation of avatars in augmented reality, are
now increasingly employed in activities that raise serious ethical concerns. Manipulated
content can be used in fraud, scams, personal revenge, the spread of fake news, and even
the fabrication of false judicial evidence. The uncontrolled dissemination of these tools
highlights the urgent need not only for effective detection methods, but also for normative

and cultural frameworks capable of governing their use.

3.3 Attacks on Generative Models

Although generative models are extraordinarily powerful, they are subject to structural
vulnerabilities that can significantly compromise their reliability and security. Among the

most relevant threats are adversarial attacks and data poisoning, both of which exploit

14



intrinsic weaknesses of the models to alter, deceive, or manipulate them for malicious
purposes.

Adversarial attacks are based on the introduction of minimal perturbations, often im-
perceptible to the human eye, into the input data fed to the model, such as images, texts, or
audio signals. Technically, an adversarial attack consists of computing a specific pertur-
bation to apply to a given input, with the goal of misleading the model. This perturbation
is represented as a vector, often matching the input in size and shape, and is calculated
using the gradient of the model’s loss function with respect to the input. In practice, the
attacker performs a targeted optimization: identifying a direction in the data space where
even a slight shift can cause the model to produce an incorrect response. The effective-
ness of these attacks lies in their ability to explore marginal regions of the data distribution
learned during training, where the model’s behavior is less stable and predictable. These
perturbations operate within the model’s “blind spots,” exploiting the lack of coverage in
the training data to trigger erroneous outputs. For example, an image of a dog can be
subtly modified (by changing a few pixels imperceptibly) so that the model misclassifies
it as a cat, even though it remains visually identical to a human observer. In the case of a
generative model, the same principle can be applied to produce a completely different face
than expected, simply by slightly altering the input image or the initial prompt. Equally
insidious is the threat known as data poisoning, which occurs during the training phase
of the model. Here, the attacker deliberately introduces corrupted or manipulated data
into the training set, thereby distorting the model’s learning process. The consequences
may include anomalous behavior, the insertion of backdoors that can be triggered by spe-
cific inputs, or a drastic reduction in generative capabilities under certain conditions. The
severity of these attacks is amplified by the increasing adoption of open-source models,
which are often reused or adapted without appropriate security measures. In environments
where transparency and code sharing are encouraged, the absence of input and training

data control can constitute a true systemic vulnerability.

3.4 Reliability in Generative Models

The growing diffusion and increasing sophistication of generative models necessitate a
thorough reflection on their security, understood not only as protection against external
attacks but also as the capacity to operate in a reliable, controllable, and transparent man-
ner. Unlike traditional predictive models, generative models are capable of autonomously
producing new content, which makes them potentially more dangerous if compromised.
A primary line of defense consists in improving training techniques. Adversarial training,

for instance, involves inserting perturbed examples during training to enhance the model’s

15



robustness (W. Zhao et al., 2022. Adversarial training methods for deep learning: A sys-
tematic review). While effective, this approach significantly increases computational costs
and may reduce the creative capabilities of the model. For example, during the adversarial
training of a generative image model, facial images with subtle, imperceptible distortions
in key features are deliberately included in the training dataset. This process helps the
model learn to recognize such inputs as valid, rather than being misled by them. Con-
sequently, when the model encounters similarly perturbed inputs during inference, it is
more likely to respond appropriately without generating distorted or erroneous outputs.
However, security cannot rely solely on technological solutions. Technical measures
must be complemented by a suitable regulatory framework. The recent Artificial Intel-
ligence Act (2024) of the European Union, for example, represents a major step in this
direction by imposing requirements related to transparency, traceability, technical docu-
mentation, and risk assessment for systems considered to be high-impact, such as gen-
erative models. These obligations also include controls over the datasets used for train-
ing and the implementation of mitigation mechanisms against foreseeable risks (Al Act,
2024). The security of generative models must be conceived as a balance between in-
novation, protection, and responsibility. Securing these systems means safeguarding not
only the integrity of the technologies themselves, but also the public’s trust in artificial

intelligence and its growing role in contemporary society.

3.5 Interpretability Methods

The expanding adoption of generative models in increasingly critical and sensitive do-
mains has made the issue of interpretability indispensable. Unlike traditional models,
generative models operate in highly opaque ways, often described as black boxes®, mak-
ing it difficult for humans to understand the decision-making process behind the gener-
ated results. This raises crucial questions not only on a technical level, but also on ethical
and legal grounds, particularly in contexts where automated decisions can have signifi-
cant consequences for individuals. The Explainable Al (XAl) approach aims to develop
methodologies and tools capable of making artificial intelligence models interpretable by
providing human-understandable explanations of the model’s internal functioning, vari-
able relationships, and the reasoning behind predictions or generations (Xu, Feiyu, et al.,

2019. Explainable Al: A brief survey on history, research areas, approaches and chal-

A black box refers to a system whose internal workings are not visible or understandable to the user,
making it difficult to trace how inputs are transformed into outputs.

16



lenges). Techniques such as SHAP'®, LIME'!, and saliency maps'? are among the most
widely used to analyze decisions made by complex models, including the behavior of
visual and textual generators. These tools help identify, for instance, which visual or
conceptual features had the most influence on the generation of a given output, thereby
improving traceability and fostering trust in Al systems. In generative models based on
GANsS, interpretability becomes even more complex due to the interactive nature between
the generator and the discriminator, making it difficult to causally attribute a decision to
a specific part of the network. Nevertheless, dedicated tools for latent space analysis are
becoming more common, allowing researchers to understand how certain variables (e.g.,
skin tone, facial expression, vocal tone) are encoded and manipulated during the genera-
tion process. These analyses not only help improve the quality of the generated content,
but also serve to highlight and correct potential biases present in the data or the model

architecture.

3.6 Security and Governance in Generative Models

In addition to the technical protection of models, it is now essential to address the issue
of governance, namely the set of regulatory, ethical, and organizational mechanisms that
regulate the development, distribution, and responsible use of generative models. The
governance of generative Al cannot be limited to technical measures such as algorithmic
security or robustness against attacks, but must also embrace ethical, social, and legal
dimensions. One of the most delicate aspects concerns transparency and traceability:
who created a given artificially generated content? Has it been modified? From which
model does it originate?

These questions are being addressed through mechanisms such as digital watermark-
ing and metadata tracking systems, which make it possible to identify the source of gen-
erated content. At the same time, there is increasing demand for shared responsibility
among developers, platforms, and end-users. Debates on regulation often focus on the ef-
fects of deepfakes, overlooking the crucial role of developers, who may choose whether to
release source code, how to distribute their models, and whether to impose access restric-
tions or ethical safeguards. In this sense, governance is not only a legal matter but also
a cultural and professional one: it involves operational choices, responsible design prac-

tices, and the commercial logic of those who develop or deploy such tools. Ensuring the

IOSHAP (SHapley Additive exPlanations) is a method that assigns an importance value to each feature,
based on game theory, to explain the output of any machine learning model.

'LIME (Local Interpretable Model-agnostic Explanations) is a technique that approximates a complex
model locally with an interpretable one to explain a specific prediction.

12Saliency maps are visual representations that highlight the most influential regions of an input (e.g.,
image) that affect a model’s decision, commonly used in computer vision.

17



security of generative models requires a multi-level governance approach that integrates
legal standards, ethical principles, and professional accountability. Only a convergence of
technology, regulation, and social awareness can curb abuse, promote responsible inno-
vation, and ensure that generative models operate in accordance with democratic values

and fundamental rights.

3.7 Ethical Issues and Bias

Generative models, if not carefully balanced, can perpetuate discrimination based on gen-
der, race, sexual orientation, religion, or social class, not as a result of deliberate design,
but as a statistical consequence of machine learning. These biases may manifest in var-
ious ways: through the generation of stereotypical images, preferences for certain facial
traits in synthetic outputs, or the production of texts containing exclusionary or biased
language. From the standpoint of responsibility, another critical concern is the issue of
non-consensual use, particularly in cases of pornographic deepfakes, where the faces of
real individuals are superimposed onto bodies in sexually explicit contexts without their
consent. This phenomenon has been widely documented as one of the most prevalent
and damaging forms of generative model abuse (M. Pawelec 2024. Decent deepfakes?
Professional deepfake developers’ ethical considerations and their governance potential).
Beyond the violation of personal dignity, such cases raise problems related to digital iden-
tity, the right to be forgotten, and image rights. An additional ethical issue is tied to the
dilution of truth and the risk of an epistemological crisis: if synthetic content becomes
indistinguishable from authentic material, how can we be certain of the origin of what
we see, hear, or read? In this context, the spread of deepfakes represents a threat to so-
cial trust, undermines media credibility, and facilitates the dissemination of propaganda,

disinformation, and fraud.

3.8 Regulation and Policy

The growing power and diffusion of generative models has highlighted the need for a clear
and binding regulatory framework capable of governing their development and use. In this
context, the European Union’s Al Act (Regulation EU 2024/1689) represents the world’s
first horizontal legislative initiative aimed at regulating artificial intelligence through a
risk-based approach. The Al Act introduces a classification of Al systems according to
risk level, minimal, limited, high, and unacceptable, with increasing obligations for more

critical systems. Generative models, and in particular general-purpose systems with high

18



societal impact, known as GPAI'3

, are subject to specific requirements: transparency in
functioning, technical documentation, risk assessment, and the implementation of safe-
guards against misuse. The regulation also mandates that Al-generated content must be
clearly identified as such, to prevent deception and uphold transparency (Al Act, 2024).
Beyond the Al Act, other European regulations contribute to building an integrated le-
gal ecosystem. The Digital Services Act (DSA), for example, governs digital platforms
by imposing content moderation requirements, algorithmic transparency, and protections
against illegal content. Furthermore, the 2024 EU directive on combating gender-based
violence explicitly prohibits the distribution of non-consensual pornographic deepfake
material, acknowledging the gravity of the phenomenon and protecting victims through
criminal sanctions (M. Pawelec 2024. Decent deepfakes? Professional deepfake devel-
opers’ ethical considerations and their governance potential). At the international level,
regulatory and cooperative initiatives are also multiplying. UNESCO, the OECD, the G7,
and the Council of Europe have adopted guidelines and recommendations on Al ethics,
with particular attention to the protection of human rights, accountability, and sustainabil-
ity. The United States recently proposed an Al Bill of Rights, while China has introduced
specific legislation for deep synthesis providers'* (AI ACT Brief, 2024). Despite these
advances, significant challenges remain: the rapid pace of technological evolution often
outstrips the capacity of institutions to regulate effectively; furthermore, the global nature
of digital platforms makes it difficult to harmonize standards across legal jurisdictions. To
address these challenges, it is essential to promote a coordinated, multi-level, and proac-
tive approach involving legislators, tech companies, the scientific community, and civil
society. Regulating generative models requires a balance between innovation, the protec-
tion of fundamental rights, and shared responsibility. The Al Act marks a fundamental
step in this direction, but it will need to be continuously updated and expanded to respond

to the new threats and opportunities emerging from an ever-evolving ecosystem.

I3GPAI (General-Purpose Al) refers to Al systems designed for a wide range of tasks, which can be adapted
to multiple domains and use cases beyond their original context.

4Deep synthesis refers to technologies that generate or alter content (e.g., audio, images, or video) using
Al, often for realistic simulation or imitation purposes.

19



Chapter 4

Experimental Context, Dataset, and Evaluation
Criteria

This chapter outlines the experimental objectives and the application context related to
deepfake detection, with particular focus on the data collection and preprocessing phases.
Furthermore, it discusses the class distribution and the issue of imbalance, which repre-
sents one of the main challenges in binary classification tasks under real-world conditions.
Finally, the evaluation metrics adopted for model assessment are presented and justified
in light of the project’s specific goals and the unique characteristics of the application

domain.

4.1 Experimental Objectives and Context

The primary objective of this study is to design a model for the detection of artificially
generated content, with a specific focus on deepfake videos, that integrates the best strate-
gies emerging from recent literature. The aim is to extract the most effective insights from
each examined architecture. The adopted approach seeks to strike a balance between ac-
curacy and computational efficiency, in order to achieve optimal results both in terms of
performance metrics and processing time. This model is therefore intended to combine
the predictive robustness of state-of-the-art architectures with the scalability and adapt-
ability required for deployment in real-world scenarios. The increasing dissemination of
deepfakes poses a concrete and multidimensional threat: misinformation in the media, fi-
nancial fraud, reputational damage, privacy violations, and political manipulation are just
a few of the implications associated with realistically altered audiovisual content. The
easy accessibility of automatic generation tools and the speed at which such content can
spread online make the development of scalable, reliable, and adaptable detection systems
a pressing need. An important source of inspiration for the development of the proposed
model was the Deepfake Detection Challenge (DFDC), which provided a significant ref-
erence in terms of methodology and application scenarios. The purpose, dataset structure,
and experimental implications of this initiative will be explored in the following sections
in order to contextualize the design choices adopted. The proposed approach does not
aim to replicate existing models, but is instead based on a critical and selective analysis of

the most effective strategies, with the goal of leveraging their strengths while addressing

20



their limitations in terms of generalization, efficiency, and adaptability. In this sense, the
present work positions itself as a reasoned synthesis of best practices, oriented toward
the construction of a robust and scalable system capable of operating effectively on real-
world data.

The implementation of deepfake detection systems presents several computational chal-
lenges. Memory management is often complex, as processing high-resolution images
requires significant resources, especially during the training phase. Moreover, the long
times required to complete training on large datasets highlight the need for careful plan-
ning of experimental configurations. An inherent trade-off also emerges between predic-
tive performance and computational cost: increasing the amount of data or the number of
training epochs can improve accuracy but may lead to overfitting and prohibitively long
training times. Scalability represents an additional critical aspect: systems must be able to
operate in high-throughput real-world environments, ensuring fast response times with-
out compromising detection reliability. Within this context, the present work fits into the
broader field of generative model security, with the aim of critically assessing the detec-
tion capabilities offered by deep learning models. At the same time, it seeks to propose
a solution that meets key requirements in terms of accuracy, computational efficiency,
and robustness one that proves effective not only in controlled environments, but also in

realistic and highly variable scenarios.

4.2 Dataset Structure and Composition

For the purpose of this experimental study, we adopted the DeepFake Detection Challenge
Dataset"> (DFDC), made available by Meta Al as part of the international competition
launched in 2020 on Kaggle'®. The DFDC is one of the most authoritative and large-
scale initiatives in the field of synthetic content detection, and is still considered among
the most impactful global benchmarks for video manipulation detection using artificial
intelligence.

This dataset represents one of the most comprehensive public collections of synthetic
video content generated through face-swapping techniques based on generative models.
It was specifically designed to support the training and validation of automated deep-
fake detection algorithms. The DFDC dataset provides approximately 470 GB of video
data, divided into 50 ZIP files of around 10 GB each. Each archive contains a mix of

real and manipulated (fake) videos, maintaining a similar distribution between the two

5The DeepFake Detection Challenge (DFDC) dataset is a large-scale benchmark dataset developed by
Meta Al to support research on detecting synthetic media, particularly deepfake videos.

16Kaggle is an online platform for data science and machine learning competitions, offering datasets, code
sharing, and a collaborative community of researchers and practitioners.

21



classes within each individual file. However, due to computational limitations, only a
fraction of the full dataset was used in this study. The selected subset was structured to
preserve the diversity and complexity of the original collection, while keeping the dataset
size manageable for training and evaluation phases. The version of the dataset used in
this study comprises approximately 120 GB of data, consisting of over 25,300 ten-second
video clips recorded by 3,426 professional actors (all of whom provided informed con-
sent) in naturalistic settings, both indoor and outdoor, under varying lighting conditions,

resolutions, and camera angles.

Figure 1: Example of videos contained in the dataset, showing subjects in different

settings, environments, and situations. Source: DFDC

The generation techniques include a variety of approaches: autoencoders, GANs (e.g.,
StyleGAN, FSGAN), morphing, face reenactment, and landmark alignment-based meth-
ods, thus representing a broad spectrum of possible manipulations. Specifically, The

dataset adopted for the experimental phase of this study was organized as follows:

* Training set: 10,420 videos (approximately 60 GB)
* Test set 1 (standard): 3,464 videos (approximately 10 GB)

* Test set 2 (extended): 11,335 videos (approximately 50 GB)

During training, the dataset was also progressively split into incremental subsets, with
the aim of evaluating the impact of data quantity on the model’s learning capacity and
identifying an optimal trade-off between predictive accuracy, robustness to variability,
and computational efficiency. This aspect will be examined in detail in the following

chapters.

4.3 C(lass Distribution and Imbalance

One of the most critical aspects from both a statistical and methodological perspective in

building the experimental model lies in the pronounced asymmetry between the classes

22



within the dataset. Specifically, in the training data used for model development, a strong
predominance of the FAKE class is observed, accounting for approximately 90% of the
samples, while the REAL class constitutes only the remaining 10%. The dataset was
intentionally structured to emphasize the challenges posed by the overrepresentation of
manipulated content, mirroring realistic scenarios encountered in operational contexts.
Even in the two test sets employed during the validation phase, although the imbalance is
slightly less severe, a significant skew remains: the REAL class represents about 15% of
the data, while the remaining 85% corresponds to FAKE content.

This configuration should not be considered a statistical anomaly, but rather the result of a
deliberate design choice. In practical applications such as social media monitoring, digi-
tal surveillance, or forensic analysis, it is common to encounter datasets where suspicious
or altered content outnumbers authentic material. This is often due to selection criteria as
well as the high incidence of digital manipulations in high-risk environments. Therefore,
the presence of an imbalanced class distribution, while undoubtedly posing challenges
during training, is also necessary to realistically simulate the operational conditions of
automatic detection systems. However, from a supervised learning standpoint, such an
imbalanced distribution introduces substantial risks of model bias. Without appropri-
ate countermeasures, the algorithm tends to optimize the objective function by assigning
relatively low penalties to errors on the minority class, favoring predictions toward the
dominant class. The result is an apparently high accuracy that conceals poor performance
on metrics sensitive to the underrepresented class, such as recall for REAL videos, lead-
ing to an increased rate of false negatives.

To prevent the algorithm from learning incorrect heuristics based solely on frequency dis-
tribution, a class balancing strategy was adopted by weighting each label’s contribution in
the loss function. In particular, PyTorch’s BCEWithLogitsLoss!’ function was modified
through the introduction of a parameter known as pos_weight, further detailed in later
chapters, which allows the model to assign a higher penalty to errors made on the minority
class. The weights were calculated to be inversely proportional to the relative frequency
of the two classes in the training set, thereby increasing the penalty for misclassifying
REAL content as FAKE, and vice versa. This strategy significantly mitigated the effect of
structural imbalance, improving performance on minority-sensitive metrics without com-
promising the model’s overall ability to distinguish between real and manipulated content.
Additionally, the adoption of this mechanism helped achieve a more calibrated predictive
behavior, reducing the risk that the model would rely on misleading statistical shortcuts

linked to class dominance.

"BCEWithLogitsLoss is a binary cross-entropy loss function in PyTorch that combines a sigmoid activa-
tion with the standard binary cross-entropy loss, improving numerical stability.

23



4.4 Evaluation Metrics for Deepfake Detection Models

Evaluating the performance of a deepfake detection model requires careful consideration
of the chosen metrics, especially in highly imbalanced scenarios where the majority of
content is either artificially generated or real. In this context, it is essential to distinguish
between metrics suitable for model optimization (e.g., during training) and those appro-
priate for operational evaluation, that is, for simulating the system’s behavior in real-world
conditions. The metrics analyzed in this study include probabilistic, classification-based,
and weighted measures, each offering different insights into the model’s behavior.

In binary classification tasks applied to deepfake detection, it is customary to repre-
sent the two classes using numerical labels: O for authentic (REAL) content and 1 for
artificially manipulated (FAKE) content. This binary encoding, widely adopted in both
academic and industrial settings, not only simplifies the computational implementation of
machine learning models but also aligns naturally with the probabilistic interpretation of
model outputs. Specifically, the use of the sigmoid activation function in neural networks
enables the assignment of a continuous probability between 0 and 1 to each sample, in-
terpreted as the likelihood that the content belongs to the FAKE class. The final class
assignment depends on a predefined decision threshold (typically 0.5), above which the
content is labeled as manipulated, and below which it is considered real.

4.4.1 Logarithmic Loss (Log Loss)

Log Loss, also known as binary cross-entropy, is a probabilistic metric that measures
the distance between the predicted probabilities and the true class labels. It is formally

defined as:

S| =
1=

Log Loss = — [yilog(pi) + (1 —yi)log(1 — p;)] (1)

i=1

where:

* y; € {0, 1} is the true label of observation i (0 = real, 1 = fake),

* pi € (0,1) is the predicted probability that the observation is fake,
* nis the total number of samples.

This metric is continuous, differentiable, and suitable for optimization via gradient
descent. It heavily penalizes incorrect predictions made with high confidence: for exam-

ple, misclassifying a sample with a predicted probability of 0.99 incurs a much greater

24



penalty than an incorrect prediction with a probability of 0.6. Although it does not oper-
ate directly in terms of false positives (FP) or false negatives (FN), Log Loss effectively
reflects the overall probabilistic quality of the predictions.

In scenarios characterized by significant class imbalance, it is recommended to com-
plement Log Loss with additional metrics that offer better insight into error structure, aim-
ing for a more comprehensive and balanced evaluation of model performance. Nonethe-
less, Log Loss was adopted as the official evaluation metric in the DeepFake Detection
Challenge (DFDC) to assess the performance of participating models, precisely due to its

sensitivity to calibration and the confidence of predictions.

4.4.2 Precision and Recall

Precision measures the proportion of true positives among all instances that the model has
classified as positive (i.e., fake):
TP
Precision = ———— (2)
TP+FP

where:
» TP: true positives (fake videos correctly identified as fake),
» FP: false positives (real videos incorrectly classified as fake).

A high precision indicates that the model is reliable when it chooses to classify a
video as manipulated. However, it does not account for false negatives; hence, a model
that correctly identifies only a few deepfakes with high confidence may achieve high
precision while still being inadequate in practice.

Recall, on the other hand, measures the model’s ability to correctly identify all fake
videos present in the dataset, where F'N denotes false negatives, fake videos incorrectly
classified as real:

TP

Recall = —— (3)
TP+FN

A high recall is crucial in contexts where missing a deepfake could lead to severe con-
sequences (e.g., misinformation or forensic misjudgment). However, similar to precision,
this metric alone does not ensure a balanced evaluation of the classifier.

To overcome the limitations of using precision and recall in isolation, it is common
practice to consider both metrics jointly. While precision reflects the reliability of positive
predictions, recall reflects the model’s ability to capture the actual number of manipulated

videos. The integration of these two aspects allows for a more complete and balanced

25



assessment of model performance. In particular, their trade-off is effectively summarized
through the FI-score, which represents the harmonic mean of precision and recall, of-
fering a unified indicator of the model’s robustness in scenarios characterized by class

imbalance and high variability in detection risk.

4.4.3 F1 Score

The F1 score is the harmonic mean between precision and recall, and is defined as:

Precision - Recall

F1=2 (4)

" Precision + Recall

Unlike the arithmetic mean, the harmonic mean tends to emphasize the lower of the
two values. In other words, the F1 score will be high only when both precision and recall
are high. If either metric is low, the resulting F1 score will also be low. This property
is particularly useful in binary classification contexts where it is crucial to maintain a
balance between the reliability of positive predictions (precision) and the model’s ability
to identify all actual positive cases (recall). The use of the harmonic mean reflects a
practical need: to avoid having high precision compensate for low recall (or vice versa)
in the computation of an aggregate metric. In summary, the F1 score heavily penalizes
models that perform well in one dimension at the expense of the other, providing a more
conservative and balanced view of overall performance.

However, it is important to note that the F1 score does not take true negatives (TN) into
account. In the presence of imbalanced datasets, this limitation can result in a misleading
representation if not interpreted alongside other metrics. For this reason, the analysis
incorporated additional complementary metrics that account for the full error structure
(AUC-ROC), including true negatives, to obtain a more complete understanding of model
behavior. Furthermore, during the training phase, a weighted version of the F1 score
was implemented to strengthen its sensitivity to class imbalance and ensure balanced

optimization across both classes.

44.4 AUC-ROC

AUC-ROC represents the Area Under the ROC Curve (Receiver Operating Characteris-
tic), which illustrates the trade-off between the True Positive Rate (TPR) and the False

Positive Rate (FPR) across different decision thresholds:

TP FP

TPR=——— . FPR=— " _
TP+FN FP+TN

(5)

26



As the classifier’s decision threshold varies, the proportion of true positives and false
positives changes, thus shaping the ROC curve. The area under this curve (AUC) pro-
vides a synthetic measure of the model’s ability to distinguish between classes. An AUC
value of 1.0 indicates a perfect classifier capable of distinguishing real and fake content
without errors, while an AUC of 0.5 corresponds to a random classifier with no discrim-
inative power. Since AUC is independent of the chosen threshold, it is particularly use-
ful for comparing the global quality of different models. However, this metric does not
directly reflect the operational impact of classification errors in highly imbalanced sce-
narios, where distinguishing between false positives and false negatives may carry very
different consequences depending on the specific application. For this reason, in this
study, AUC was used in combination with the previously described metrics to provide a

more complete, balanced, and contextually relevant assessment of model performance.

TPR

FPR

Figure 2: Illustration of the ROC Curve and AUC Concept.

4.4.5 Weighted Precision

In real-world applications, such as social media monitoring, automated moderation, or
forensic investigations, the proportion of manipulated content compared to authentic ma-
terial is often extremely low. This creates a significant discrepancy relative to the datasets
used for training and evaluating models, in which the "fake" class is often overrepresented
for methodological reasons.

To address this asymmetry, the Weighted Precision (WP) metric has been introduced. It

adjusts for the real-world prevalence of fake content in the target operational environment:

TP with o real-world prevalence (6)

WwP= ———
TP+o-FP dataset prevalence

27



where:
» TP refers to true positives, i.e., fake content correctly classified as fake;
» FP denotes false positives, i.e., real content incorrectly classified as fake;

* o is a correction factor that scales the weight of false positives according to the
difference between the prevalence of manipulated content in the dataset and its

prevalence in real-world operational contexts.

Several studies in the literature simulate prevalences greater than 5% to reflect high-
risk or pre-filtered operational scenarios, where the likelihood of encountering manip-
ulated content is significantly higher than the global average (Zhou et al., 2023; Chen
et al., 2023). In alignment with these academic references, this analysis adopts a simu-
lated real-world prevalence of deepfake content equal to 5%. This coefficient was used
to proportionally modulate the impact of false positives, which, although statistically less
likely in real-world contexts, can lead to significant operational and decision-making con-
sequences, particularly in automated detection systems.

From a practical standpoint, this metric proves especially valuable when transition-
ing from academic validation to real-world deployment, where the goal is not merely to
maximize performance on a balanced test set, but rather to minimize the operational risks
associated with misclassifications. The use of weighted precision thus allows the eval-
uation of model performance to be aligned with real-world criteria such as risk, impact,
and accountability, which are critical in applied contexts where these models are actually
deployed.

4.5 The Integrated Use of Metrics in Model Validation

Evaluating the performance of a deepfake detection model requires a critical and compre-
hensive analysis of the metrics employed. In the context of binary classification applied
to synthetic content, often characterized by class imbalance, traditional metrics, while es-
sential during the training phase, are often insufficient to capture the model’s real-world
effectiveness. For this reason, based on the literature, in this chapter we have overviewed
an evaluation strategy based on a heterogeneous set of indicators, including probabilistic
metrics (such as Log Loss), classical classification metrics (Precision, Recall, F1-score),
global performance indicators (AUC-ROC), and correction-based measures tailored for
real-world application (weighted precision using the coefficient ). The use of binary en-

coding (0/1) enabled an efficient computational formulation of the problem, while the

28



sigmoid activation function allowed the model to output interpretable probabilistic pre-
dictions, an essential feature for applying dynamic thresholds and calculating calibration-
sensitive metrics. For instance, Log Loss proved particularly valuable in penalizing high-
confidence misclassifications more severely, offering a continuous and differentiable sig-
nal ideal for the optimization phase. Nevertheless, metrics such as precision and recall,
while crucial for understanding binary prediction performance, suffer from structural lim-
itations when used in isolation. The adoption of the F1-score as a harmonic mean allowed
for a balanced synthesis of the model’s ability to identify manipulated content without
overlooking the reliability of its predictions. However, this balance does not account
for true negatives, thus necessitating the inclusion of global metrics such as AUC-ROC,
which evaluates overall model behavior across varying decision thresholds.

Finally, weighted precision with coefficient o has emerged as a key metric in bridging
the gap between theoretical evaluation and real-world deployment. In scenarios where
deepfake content is less prevalent but highly critical from an operational standpoint, this
metric enables the targeted penalization of false positives, reducing the risk of misclassi-
fying authentic content. The introduction of ¢, calculated as the ratio between real-world
prevalence and dataset prevalence, allowed for the simulation of high-risk contexts such
as forensic or investigative domains, where the significance of individual errors is am-
plified compared to generic settings. In summary, this chapter has shown that a robust
evaluation of deepfake detection models cannot rely on a single metric. Instead, it must
adopt a coherent and context-aware combination of indicators capable of addressing both
methodological rigor and practical requirements. Only through this integrated approach
is it possible to ensure an effective measurement of a model’s discriminative capability

while anticipating the risks and limitations of its real-world application.

29



Chapter 5

Model Engineering and Architectural Choices

The effectiveness of a deep learning—based classification system largely depends on the
architecture of the model employed. This chapter presents the architecture selected as
the foundation of the experimental framework, with a specific focus on the EfficientNet
family, considered among the most advanced and efficient convolutional neural network
architectures available. After a general overview of the common characteristics of this
model family, the analysis will concentrate on the EfficientNet-B7 variant, examining its
strengths, internal structure, and the rationale behind its selection. For the implementa-
tion of the deepfake detection model, EfficientNet-B7 was selected by adopting a transfer
learning approach using the pretrained version available in TorchVision, originally trained
on ImageNet. Open-source code was used to load the model, and full fine-tuning was per-
formed on the custom dataset created from the DFDC corpus, as previously described in
Chapter 4. Subsequently, this chapter will explore alternative architectures used for com-
parative purposes, ResNetl18 and Xception, will be introduced. The chapter concludes
with a methodological discussion of the computational infrastructure adopted, highlight-
ing the operational choices and the benefits associated with deploying a high-performance

virtual machine (VM).

5.1 Introduction to the EfficientNet Family

For the model considered in this study, an architecture from the EfficientNet family was
selected, specifically, the EfficientNet-B7 variant, due to its high discriminative capacity,
architectural depth, and excellent balance between accuracy and computational scalabil-
ity. This choice was not arbitrary, but driven by the need to balance accuracy, general-
ization, and structural robustness, all of which are essential in the automatic detection of
manipulated audiovisual content.

EfficientNet is one of the most advanced and optimized families of convolutional neu-
ral networks developed in recent years, thanks to a method known as compound scaling,
which enables the simultaneous and balanced scaling of depth, width, and input resolu-
tion. Unlike traditional models that grow unevenly, EfficientNet employs a controlled
growth strategy that maintains a high performance-to-cost ratio. The family includes sev-

eral variants, from BO (lightweight and fast) to B7 (deepest and most accurate), all based

30



on the same modular design. Below is a summary of the main configurations:

* EfficientNet-B0: The baseline model, designed for mobile devices and low-resource
contexts. It contains approximately 5.3 million parameters and uses 224x224 pixel
input images. Although highly efficient, it is not well-suited to complex tasks such

as detecting subtle visual manipulations (Keras, EfficientNet BO to B7).

* EfficientNet-B1/B2/B3: These represent a progression from the base model, with
input sizes of 240x240, 260x260, and 300x300 pixels respectively, and up to roughly
12 million parameters for B3. They are suitable for general classification tasks but
do not yet offer sufficient capacity to distinguish fine-grained alterations in facial
features, as required by more sophisticated deepfake detection scenarios (Keras,
EfficientNet BO to B7).

* EfficientNet-B4/BS: These occupy the upper-mid range of the family. B4 ac-
cepts 380x380 pixel input with around 19 million parameters, while BS increases to
456x456 with over 30 million parameters. These models offer strong performance
in more demanding computer vision tasks, but the trade-off between precision and

computational cost becomes increasingly significant (Keras, EfficientNet BO to B7).

* EfficientNet-B6: One of the higher-end variants in the series, B6 uses 528x528
pixel inputs and contains approximately 43 million parameters. It is well-suited to
scenarios where a solid balance is required between accuracy and available com-
putational resources. Its architectural depth enables the learning of complex visual
representations, making it appropriate for advanced image classification, object de-
tection, and video analysis tasks. However, despite accuracy gains over B4 and

BS, its training cost grows considerably, especially with larger batch sizes (Keras,
EfficientNet BO to B7).

* EfficientNet-B7: The most powerful variant in the series and the one selected for
this project. In Keras, it is configured for 600x600 pixel input images, while in Py-
Torch, due to GPU compatibility and stability considerations, it is often used with
380x380 input resolution without significant performance degradation. The model
features a deep and refined structure with approximately 66 million parameters and
employs the Noisy Student Training strategy, a pre-training approach, detailed in
the following paragraph, that combines weak supervision with extensive unlabeled
data to improve generalization. This enables B7 to achieve superior robustness and
better generalization when facing perturbed or manipulated content. Its characteris-
tics make it particularly suitable for deepfake detection, where visual anomalies are

often subtle and localized. EfficientNet-B7 is capable of capturing imperceptible

31



details such as irregularities in facial boundaries, inconsistencies in eye structure,

or texture variations in the skin (Keras, EfficientNet BO to B7).

5.2 Why EfficientNet-B7 Was Selected

The selection of EfficientNet-B7 as the reference model for this study was not arbitrary,
but rather the result of a careful evaluation that considered both theoretical and exper-
imental aspects. In a complex task such as automatic deepfake video detection, where
visual manipulations can be extremely subtle and localized, it is essential to rely on an
architecture capable of capturing minimal differences between authentic and manipulated
content, while ensuring robustness and generalization. EfficientNet-B7 represents the

most advanced model in the EfficientNet family and stands out for the following reasons:

* High accuracy on standard benchmarks: EfficientNet-B7 has achieved state-

t18

of-the-art performance on datasets such as ImageNet '°, ranking among the top-

performing standard CNN models.

* High-resolution input (380x380 in PyTorch): This allows the model to operate
on very fine visual details, including facial imperfections, edge misalignments, and

ocular artifacts.

* Deep architecture with 66 million parameters: Its structural depth makes it par-

ticularly suitable for high-complexity visual classification tasks.

* Proven adoption in production systems and advanced pipelines: Its widespread
use in real-world applications reflects the architectural maturity and practical relia-
bility of the model.

In addition, EfficientNet-B7 was pre-trained using the Noisy Student Training tech-
nique, a semi-supervised approach that leverages a large set of unlabeled data (approxi-
mately 300 million images from Google’s internal JFT-300M !° dataset) combined with
pseudo-labels generated by a teacher model previously trained on ImageNet (1.2 million
labeled images). The resulting student model benefits from a significantly enhanced gen-
eralization capability, enabling strong performance even on previously unseen content.

This training strategy also enabled EfficientNet-B7 to reach a top-1 accuracy of 88.4%

8ImageNet is a widely used benchmark dataset in computer vision, containing over 1.2 million labeled
images across 1,000 object categories, designed to support the development and evaluation of large-scale
image classification models.

19JFT-300M is a large-scale internal dataset developed by Google, consisting of approximately 300 million
weakly labeled images drawn from the web, used primarily for training and pre-training deep learning
models at scale.

32



on ImageNet, outperforming larger models trained on billions of weakly labeled images.
These characteristics make EfficientNet-B7 one of the most suitable architectures for rig-

orously and effectively addressing the challenge of deepfake detection in video analysis.

5.3 EfficientNet-B7 in Detail

As previously discussed, the guiding principle behind the entire EfficientNet family is
compound scaling, which enables simultaneous and balanced scaling of three core dimen-
sions: depth (number of layers), width (number of channels), and input resolution. The
result is a more compact yet highly expressive network, capable of capturing increasingly
abstract and detailed hierarchical representations. Figure 2 schematically illustrates the
architecture of blocks 1 through 7 in EfficientNet-B7, highlighting the sequence and types
of convolutional modules applied to the input data. The data flow through the network is

described below:

Block1 Block2 Block3 Block4
L |

L

-
il
y
-
-

\
| o
i 1L i mmmmme;n mmmm
¢ HERR2 LEEEELE L BEEEEEEEEE
E o 1 3 L0 A0 WO W0 W B O WY W0 W W W o0 o
c-BEEEE BEREEEEEzEz2EeE=Ez
] S . | 8888888888
g- agg | @ § ,:nmmmgggggg
= =22=22 .EEEE‘;EEiEEEEEEEEEE
i1 1 B

m m M N unuMnununnmumMounmuOun uuMunuouononomouo,m
% KKQRXKKXKXKXKKRKKXKKXKXKKKH
mMm M M M U N W WWUWNLWnD WM mWmumDm Nuu uww w uw oy
£ u:?u‘\n‘ugm‘m“m‘du“m“tﬂ‘\ﬂ'w‘\dm‘n‘m‘ OO0 WwWOWw oo o
o 2 "EE2EEEEEEEecececececegegeeteeee
2 8888583858838 888533383883838
™ Q ngmmggmmgggmmmmmmmmmmmm
P EBEEEECEEEEEESEEE 2R 2SS S22 22222

! JL ) ——

T I |

Block7 Block6 BlockS

Figure 3: Architecture of the EfficientNet-B7 model: schematic overview of
convolutional blocks. Source: Yahia Ibrahim, N., & Talaat, A. S. (2022)

¢ Initial Block (Stem): The input image (e.g., 380x380 pixels) is first processed by
a standard 3x3 convolution that extracts low-level visual features such as edges and

33



textures. This step prepares the data for the subsequent MBConv blocks 2.

* Block 1: Consists of MBConv1 modules with 3x3 kernels and reduced expansion
(limited channel expansion). It performs the first nonlinear transformation of the

data while maintaining low computational cost.

* Block 2: Introduces MBConv6 modules (with x6 expansion) and 3x3 kernels, sig-
nificantly increasing the number of filters and enhancing the model’s depth and

ability to capture more complex patterns.

* Block 3: Incorporates larger 5x5 kernels to detect broader spatial patterns. The se-
quence of MBConv6 modules increases the receptive field and abstraction capacity

of the network.

* Block 4: Continues the previous strategy with additional MBConv6 3x3 modules,

now operating on more compact feature maps with deeper channels.

* Block 5: Entirely composed of MBConv6 with 5x5 kernels. At this stage, the net-
work processes highly abstract representations, approaching the final classification

layer.

* Block 6: One of the deepest blocks, featuring numerous MBConv6 5x5 modules.
Although the input has been significantly downsampled, the number of channels is

high, enabling the model to discriminate between very similar classes.

* Block 7: The final convolutional block, composed of three MBConv6 modules with

3x3 kernels. This block refines the last visual features before the classification step.

Following the last convolutional block, the model applies a global average pooling op-
eration, followed by a fully connected (dense) layer for final classification. EfficientNet-
B7 processes the input image through a highly structured pipeline, where each block
progressively refines the spatial features. Thanks to the extensive use of MBConv mod-
ules, depthwise convolutions, and squeeze-and-excitation (SE) attention mechanisms,
the model achieves high performance with a number of parameters that, although con-
siderable, is optimized relative to its architectural depth. With 66 million parameters,
EfficientNet-B7 delivers extremely high predictive capacity, making it well-suited for de-
manding applications.

20OMBConv (Mobile Inverted Bottleneck Convolution) is a lightweight block combining depthwise separable
convolution, expansion-projection, and optional SE attention. It enables rich feature extraction with low
computational cost and is a core component of EfficientNet’s scalable architecture.

34



5.4 Architectural Comparison: Alternative Models to
EfficientNet-B7

Although EfficientNet-B7 represents one of the most advanced solutions in terms of ac-
curacy and discriminative power for image classification tasks, it is essential from an
experimental standpoint to critically evaluate whether such a complex and computation-
ally demanding model is truly necessary. In realistic deployment scenarios, where hard-
ware resources may be limited, or systems are required to operate in real time or on
edge devices, the use of an architecture comprising over 66 million parameters may prove
prohibitive. For this reason, the present work includes a systematic comparison with al-
ternative models, selected for their architectural simplicity and proven reliability in binary
classification tasks. The aim of this comparison is not merely competitive but analytical:
to explore whether simpler and less resource-intensive architectures, when well-designed,
can deliver comparable or acceptable performance in deepfake detection. This analysis al-
lows for an assessment of the trade-off between accuracy and computational cost, helping
identify which architecture offers the best compromise based on the intended applica-
tion context. Moreover, employing alternative models provides a broader perspective on
the robustness of the task itself, investigating whether the visual information needed for
classification can be effectively captured only by deep models, or also by lighter architec-
tures. To this end, two models were selected: ResNet18 and Xception, both recognized
in the scientific community for their favorable balance between architectural complexity

and generalization capacity.

* ResNet18 is one of the most compact versions of the Residual Network family, in-
troduced by He et al. (2015), whose main innovation is the use of residual skip con-
nections. These connections allow gradients to propagate more easily through the
network, mitigating the degradation problem that affected earlier deep networks.
ResNet18 contains approximately 11 million parameters, trains quickly, and ex-
hibits stable behavior, making it an ideal baseline for evaluating more complex
architectures. Despite its limited depth (18 layers), ResNetl8 is capable of cap-
turing robust visual patterns and is widely used in low-cost binary and multiclass

classification tasks.

* Xception, short for “Extreme Inception,” was proposed by Francois Chollet (2017)
as an evolution of the Inception-v3 architecture 2!. Its primary contribution lies in

2lnception-v3 is a convolutional neural network architecture developed by Szegedy et al. (2016), known
for its modular structure and factorized convolutions. It was designed to improve classification accu-
racy while reducing computational cost, and became one of the top-performing models on the ImageNet
benchmark.

35



the extensive use of depthwise separable convolutions, which decompose the stan-
dard convolution into two stages: a depthwise (channel-wise) convolution followed
by a 1x1 pointwise convolution. This approach dramatically reduces the number of
parameters and operations compared to standard convolutions, while maintaining
or even improving performance. Xception has a significantly deeper structure than
ResNet18 and lies somewhere between the latter and EfficientNet-B7 in terms of
complexity. It is known for strong performance in image classification and has been
successfully applied in early studies on detecting synthetically generated content,

including deepfakes.

The comparison among these three models was not based on identical training config-
urations but rather adapted to suit the specific characteristics and computational needs of
each architecture. In particular, for ResNetl18 and Xception, more lightweight and faster
training setups were adopted compared to those used for EfficientNet-B7, in order to ex-
plore the possibility of achieving good performance with reduced training time and lower
resource consumption. The following chapters provide a detailed explanation of the setup
used for each model, including input preprocessing, training parameters, dataset man-
agement, and optimization techniques, thereby ensuring a transparent and comprehensive
understanding of the experimental conditions.

The goal is not only to compare the resulting accuracy or F1-score, but also to evaluate
model resilience to computational constraints, scalability across data availability, and gen-
eralization to previously unseen manipulated content. This comparison with ResNet18
and Xception helps determine whether lighter models can serve as valid alternatives to
EfficientNet-B7, at least in certain application scenarios, contributing to a broader discus-

sion on the optimization of efficiency in Al systems focused on digital content security.

5.5 Computing Environment: Use of a Virtual Machine
(VM)

In the context of this work, a virtual machine (VM) was adopted as the primary computing
environment to leverage the various advantages it offers in terms of flexibility, scalability,
and resource management. A VM enables the creation of an isolated and controlled en-
vironment that can be replicated across different infrastructures. Moreover, using a VM
allows precise configuration of the development environment, installing only the nec-
essary components and optimizing the use of available resources. A mid-range virtual

machine was deliberately adopted to promote the replicability of the experiments and the

36



results obtained. The selected VM, provided through the Vast.ai 2? platform, is equipped
with an NVIDIA RTX 4080 GPU based on the Ada Lovelace architecture, offering 48.3
TFLOPS of FP32 computational power, supported by 16 GB of video memory and 12.8
GB of effective usable CUDA memory. This configuration proved to be a key enabler
for training EfficientNet-B7, which is known for its high demand in terms of VRAM and
computational throughput.

The GPU is paired with an AMD EPYC 7502 processor, a 32-core / 64-thread CPU
with PCle 4.0 x16 support, capable of efficiently handling the parallel workload gener-
ated by the training and preprocessing pipelines. Additionally, the machine is equipped
with a 600 GB NVMe SSD (WD_BLACK SN850) with read speeds exceeding 6,000
MB}/s, an essential component for mitigating I/O bottlenecks, especially during the con-
tinuous reading of thousands of video frames in the image extraction process. The VM
also provides a stable and adequate network connection for transferring large datasets,
with upload speeds of 183 Mbps and download speeds of 328 Mbps, allowing efficient
data and model exchanges with the local development environment. This computational
infrastructure thus served as an enabling factor for the successful implementation of a
complete deep learning workflow for training, testing, and comparing models designed
for detecting manipulated content.

22Vast.ai is a cloud computing platform that provides on-demand access to virtual machines with GPU ac-
celeration. It is designed to offer cost-effective and flexible infrastructure for machine learning, scientific
computing, and rendering tasks, allowing users to rent computing power from a decentralized network of
providers.

37



Chapter 6

Experimental Pipeline and Model Implementa-
tion

This chapter presents a comprehensive overview of the experimental pipeline developed
for deepfake detection, encompassing all stages from data preprocessing to model train-
ing and architectural implementation. The primary objective is to detail the engineering
and methodological choices made to construct a robust and efficient deep learning work-
flow, without delving into the performance results or comparative analyses, which are
addressed in subsequent chapters.All implementation activities were carried out using
the PyTorch framework, selected for its flexibility, modularity, and wide adoption in the
research community. The chapter begins by describing the dataset preparation process,
including frame extraction, face detection, and normalization techniques. It then outlines
the construction of training, validation, and test splits, followed by the configuration of
data loaders and preprocessing pipelines. Subsequent sections focus on the implemen-
tation of the selected models, detailing the hyperparameters, loss functions, and opti-
mization strategies employed. Particular attention is given to EfficientNet-B7, the main

architecture under study, as well as alternative models such as ResNet18 and Xception.

6.1 Preprocessing and Dataset Preparation

The effectiveness of a deep learning model for deepfake detection is closely tied to the
quality and consistency of the dataset used for training. In this project, the preprocess-
ing phase was designed as a series of deterministic and repeatable operations aimed at
generating standardized facial images that accurately represent the semantic structure of
the videos. The entire process was optimized to ensure consistency across the training,
validation, and test sets, while minimizing noise and variability introduced by irrelevant

artifacts.

6.1.1 Metadata Parsing and Binary Label Assignment

The initial step involved reading and analyzing the metadata. json file provided with
the DFDC (DeepFake Detection Challenge) dataset. This file maps each video to a set

of information, including the type of manipulation and the corresponding binary label

38



(O for real content, 1 for fake content). Metadata parsing was implemented in Python
using the json module, producing a dictionary structure that enabled the mapping of
each video to its respective class. The label was then persistently associated with the
images extracted from the video frames, ensuring full traceability between raw data and
preprocessed model inputs.

This step was essential for constructing a coherent and verifiable foundation for the su-
pervised dataset, upon which a CSV file was generated for the subsequent cross-validation
phase. The CSV file, created after parsing and label assignment, represents the core struc-
ture of the supervised dataset. For each image derived from a video frame, a row was
recorded containing: the image filename, the associated binary label (0 = real, 1 = fake),
and the assigned fold number (from 1 to 5). This structure supports the 5-fold cross-
validation strategy, which divides the dataset into five partitions: in each iteration, four
folds are used for training and one for validation. The model is thus validated on each par-
tition at least once, ensuring a robust and reliable performance estimate. The CSV file is
later read by the dataloader to dynamically load images, distinguishing between training

and validation sets according to the selected fold.

6.1.2 Uniform Extraction of 32 Frames per Video (Frame-Based Ap-
proach) and Face Detection with MTCNN

Subsequently, 32 frames were uniformly extracted from each video, distributed across
the entire duration of the footage. This method allows for the preservation of temporal
diversity in facial expressions and movements, providing comprehensive coverage of the
visual content. Frame extraction was performed using video-processing tools (OpenCV),
configured to skip frames at equal intervals regardless of the total video length, ensuring
a constant and representative sampling rate. This strategy proved particularly effective in
capturing facial manipulations that occur at specific moments, avoiding biases introduced
by randomly selected or initial frames.

Each of the 32 extracted frames was subjected to face detection using the MTCNN
(Multi-task Cascaded Convolutional Networks) architecture, implemented through the
facenet-pytorch library. MTCNN is one of the most reliable neural networks for face
detection in uncontrolled environments, due to its ability to perform bounding box predic-
tion and facial landmark localization simultaneously. For each frame, the most prominent
face was automatically identified, discarding any frames where no face could be detected.
The selection was limited to the face with the highest detection probability, in order to
avoid ambiguity in videos featuring multiple subjects. Problematic cases, such as missing

faces, decoding errors, or corrupted frames, were handled through exception management

39



and logged in a dedicated file for subsequent analysis.

6.1.3 Cropping with Contextual Margin and Resizing to 380x380 px

Once the face was identified, the image was cropped with a contextual margin of 30%
relative to the original bounding box. This extension allowed the inclusion of adjacent
areas such as hair, parts of the neck, and the immediate background, contributing to the
preservation of visual cues useful for the model, in line with recommendations from the
literature. After cropping, the images were resized to 380x380 pixels, an optimal reso-
lution for input into the EfficientNet-B7 model. This size represents a trade-off between
representational capacity and computational efficiency: it is lower than the input size used
by more redundant architectures, yet sufficient to capture subtle visual artifacts typical of

deepfakes (e.g., blurred contours, skin inconsistencies, etc.).

6.1.4 Saving Cropped Faces into /real and /fake Directories

The cropped facial images were saved in . png format into two separate directories (/real
and /fake), according to the binary label obtained from the metadata. Each image was
uniquely named to include references to the source video and the corresponding frame
number, ensuring full traceability throughout the entire preprocessing pipeline. In total,
more than 330,000 preprocessed images were generated. This hierarchical structure en-
abled efficient data management in the subsequent stages of CSV generation, training,
and testing. It also simplified dataset organization for alternative model implementations

such as Xception and ResNet18.

6.1.5 Preprocessing Parallelization with multiprocessing

Preprocessing the entire video dataset required significant computational resources. To re-
duce processing time, a parallelization strategy was implemented using Python’s multipr-
ocessing module, leveraging all available CPU cores and, where possible, asynchronous
GPU capabilities. Videos were divided into batches and assigned to separate processes
for frame extraction, face detection, and image saving. This approach reduced total pro-
cessing time from several days to just a few hours, making preprocessing scalable even
for large datasets (over 100 GB of video data).

6.1.6 Logging, Error Handling, and Reproducibility

Throughout all preprocessing stages, specific measures were adopted to ensure repro-

ducibility and traceability. Any errors or exceptions encountered (e.g., unreadable videos,

40



frames without detectable faces, I/O issues) were recorded in a log. txt file, including a
timestamp, filename, and error type. This logging strategy not only allowed for continu-
ous monitoring of the pipeline’s reliability but also enabled the identification of recurring
issues associated with specific video subcategories. Finally, to ensure full reproducibility
of the experiments, a global random seed (e.g., 42) was fixed, and all configuration pa-
rameters and relative paths were saved in a dedicated .yaml configuration script>>. This

made the entire workflow replicable across different machines and hardware settings.

6.2 Construction and Organization of the Supervised
Dataset

The effective organization of the dataset represents a crucial step in ensuring consistency
and reproducibility throughout the training process. After completing the preprocessing
operations and obtaining a set of labeled images (i.e., faces extracted from video frames,
normalized and stored), it was necessary to construct a logical and functional structure to
enable cross-validation, manage class imbalance, and clearly separate the training, vali-
dation, and test phases. This structure was formalized through the generation of a CSV
file, which allowed fine-grained control over the behavior of the DatalLoader during all

stages of the experimental pipeline.

6.2.1 Generation of the CSYV File with Labels and Paths

As discussed in the previous sections, the CSV file represents the core of the supervised
dataset: for each preprocessed image (corresponding to a face extracted from a video

frame), a row was generated containing at least three essential pieces of information:

1. File path: the absolute or relative path of the image, stored in either the /real or

/fake directory;

2. Binary label: obtained from the metadata. json file, where O denotes real content

and 1 denotes manipulated (deepfake) content;

3. Fold number: an integer value between 1 and 5, randomly assigned to implement

fold-based cross-validation.

ZYAML (Yet Another Markup Language) is a human-readable data serialization format commonly used
for configuration files. It allows for structured, hierarchical parameter definitions using indentation-based
syntax. Its simplicity and readability make it ideal for specifying experimental setups in machine learning
pipelines.

41



This tabular structure was entirely constructed in Python using libraries such as pandas
for DataFrame management and os for iterating over image paths. The resulting file,
saved in .csv format, was then employed by the PyTorch Dataset module to dynami-
cally load data batches, thereby facilitating the separation between training and validation
sets at each stage of the learning process. Additionally, for experimental variants (e.g.,
datasets reduced to 5%, 10%, 15%, and 20% of the original data), dedicated CSV files
were generated (e.g., a CSV file for the 20% training subset), maintaining the same struc-

ture but containing progressively smaller subsets of the original dataset.

6.2.2 Assignment to 5 Folds for Cross-Validation

The K-Fold Cross-Validation technique, adopted here with k = 5, allows for a robust eval-
uation of model performance that is independent of the initial data split. The assignment to
the five folds was performed through random sampling, using a fixed seed (random seed
= 42) to ensure reproducibility of the experiments. Each image was thus assigned to one
of the five folds (from 1 to 5) in a stratified manner, maintaining approximately the same
class distribution (real and fake) within each fold. This approach prevented any single
fold from being unbalanced, which could have compromised the validity of the evalua-
tion. The choice of using five folds represents a compromise between statistical accuracy
and computational efficiency. A smaller k value (such as 2 or 3) would lead to unstable
estimates, highly sensitive to the specific data split. Conversely, higher values (such as 10
or leave-one-out) would significantly increase training time, as the model would need to
be trained many more times. In the case of complex architectures like EfficientNet-B7,
for which a single training cycle can require several hours even on advanced GPUs, an
intermediate value like k = 5 is widely accepted in the scientific literature and represents
an optimal choice in terms of balancing accuracy and computational sustainability.

The assignment of images to the folds was stratified, ensuring approximately the same
proportion of real and fake content within each subset. This strategy is particularly im-
portant in the presence of class imbalance, as in the DFDC dataset, where manipulated
videos account for about 90% of the total. A purely random distribution without stratifi-
cation could have undermined the quality of the validation, resulting in folds with insuf-
ficient representation of the minority class. During training, for each iteration, four folds
were used as the training set and one as the validation set, in rotation. This mechanism
ensured that each image was validated exactly once and used for training in the remaining

iterations, thereby maximizing the informational efficiency of the dataset.

42



6.2.3 Use of Folds for Training/Test Separation

Beyond their direct use in cross-validation, the fold structure was repurposed to separate
data for training and testing in a coherent and controlled manner. Although the two main
test sets used in the project (one of 10 GB and one of 50 GB) were entirely separate from
the training dataset, the folds were also used internally to distinguish data during “out-
of-fold” inference simulations 24 . During the training of the EfficientNet-B7 model, for
each fold, the model that achieved the best validation loss across 10 epochs was saved.
Subsequently, each model was tested not only on unseen videos (contained in the external
test sets), but also on data from folds different from the one it was trained on, in order to
obtain more stable performance aggregation and reduce dependency on specific partitions.

In practice, the folds enabled the construction of a modular system in which:
» Each image is clearly labeled and traceable;
» Each data batch can be filtered depending on the phase (training or validation);

* Inference results can later be aggregated for video-level evaluation through frame-

wise heuristics.

6.2.4 Handling Class Imbalance via pos_weight

One of the most critical aspects in constructing the dataset was the imbalance between
classes: in both real and synthetic datasets used in this study, the fake class accounts
for approximately 90% of the total videos, while the real class comprises only around
10%. This imbalance, deliberately imposed to maximize the model’s discriminative ca-
pacity, presents significant challenges for supervised training, particularly in the accurate
detection of the minority class (real videos). To mitigate this imbalance, the pos_weight
parameter of PyTorch’s BCEWithLogitsLoss function was employed. This parameter
allows adjustment of the internal weighting of the loss function by assigning greater im-
portance to errors made on the minority class. The pos_weight value was calculated as
the ratio between the total number of class 1 (fake) and class O (real) examples, and it
was dynamically updated for each fold. For instance, if a fold contained 1,000 real ex-
amples and 9,000 fake ones, the pos_weight was set to 9.0. This means that an error on
a real (rarer) sample was penalized more heavily than an error on a fake one. Through

this mechanism, the model was explicitly encouraged not to disregard the less frequent

24Out-of-fold (OOF) inference refers to generating predictions on a subset of the data using a model that
has not been trained on that specific subset. It is commonly used in K-Fold Cross-Validation to ensure
unbiased performance estimation and to prevent information leakage.

43



class, thereby improving critical evaluation metrics such as recall, F1 score, and weighted

precision.

6.3 Implementation of a Custom Datal.oader

To ensure efficient and modular image loading during training, validation, and testing
phases, a custom class named DeepFakeDataset was implemented, following the stan-
dard structure defined by PyTorch. The preprocessed image dataset (stored in /real and
/fake) was made accessible via a CSV file containing image paths, binary labels, and
fold numbers for cross-validation. This approach enabled the creation of a highly flexible
loading pipeline, capable of dynamically filtering by fold, conditionally applying trans-
formations, optimizing GPU throughput, and integrating with distributed batch training

strategies.

6.3.1 Definition of the DeepFakeDataset Class

The DeepFakeDataset class was implemented in Python by extending the abstract inter-
face torch.utils.data.Dataset?. Its main purpose is to provide modular and con-
trolled access to the supervised dataset, by reading directly from the CSV file contain-
ing preprocessed image paths, associated binary labels, and fold assignments for cross-
validation. The dataset is initialized by loading the CSV file using the pandas library,
from which the relevant columns (image paths, labels, and fold numbers) are extracted.
For each requested sample, the corresponding image is loaded into memory in RGB for-
mat?® using either PIL.Image?’ or cv2.imread (properly converted), and then passed
through a transformation pipeline defined externally via torchvision.transforms.
This transformation pipeline may include data augmentation®®, resizing, and normal-
ization. Once the transformations are applied, the image is converted into a PyTorch
tensor and paired with the corresponding label (also converted into a tensor), returning a
tuple”® (input_tensor, label) compatible with training, validation, or testing phases.
The class structure was designed to be highly flexible. Upon instantiation, it is possible

to specify different input parameters, including the desired split type (train, val, or test),

Btorch.utils.data.Dataset is a base class provided by PyTorch for defining custom datasets. It allows
developers to implement methods to support flexible and efficient data loading.

26RGB is a standard color model where images are represented using red, green, and blue color channels.

2’pPIL.Image is a module from the Python Imaging Library (Pillow) used for opening, manipulating, and
converting image files in various formats.

Z8Data augmentation refers to a set of techniques used to artificially increase the diversity of training data
by applying transformations such as rotation, flipping, scaling, or color adjustment.

29A tuple is a fixed-size ordered collection of elements. In this context, it contains the input tensor and its
corresponding label.

44



the fold to exclude for out-of-fold logic, and whether to enable data augmentation. This
modular approach enabled the construction of dynamic training and evaluation pipelines

while maintaining full consistency across different experimental configurations.

6.3.2 Integration with PyTorch Datal.oader

The DeepFakeDataset class was integrated into PyTorch’s DataLoader module to en-
able efficient data loading during training, validation, and testing phases. The DataLoader
plays a central role in managing data flow in deep learning environments, as it allows for
automatic batching of the dataset, optimized loading latency, and proper memory handling
between CPU and GPU. In this project, the batch_size’? was set to 8 when training with
EfficientNet-B7 to accommodate GPU memory constraints and the large image resolution
(380x380 pixels). For lighter models such as ResNet18, larger batch sizes, up to 16, were
feasible, benefiting from the lower memory footprint of the architecture. During the train-
ing phase, the presentation order of the data was randomized using automatic shuffling to
prevent the model from learning fixed sequences or undesirable patterns related to data
ordering.

The DataLoader was also configured to perform data loading in parallel using the
num_workers parameter, which enables the use of multiple subprocesses for prefetch-
ing>! and batch preparation. This significantly reduced 1/0 latency, especially when im-
ages had to be read from disk or converted into tensors. Finally, asynchronous data trans-
fer to the GPU was enabled by setting pin_memory=True’?, which improves the data
transfer speed between RAM and GPU memory through pre-allocated pinned memory.
This integration between the custom dataset and the DataLoader ensured high throughput
during training, even with complex models and high-resolution images, thus supporting

both the scalability of the system and the reproducibility of experimental results.

6.3.3 Data Augmentation During Training

During the training phase, a data augmentation module was implemented to increase
dataset variability and reduce the risk of overfitting, without altering the semantic prop-
erties of the images. The transformations were applied only during training (not during

validation or testing) and included the following:

Obatch_size refers to the number of samples processed simultaneously during a single forward/backward
pass of the model. Smaller values reduce memory usage, while larger values may improve training speed.

31Prefetching is the technique of loading or preparing data in advance while the model processes the current
batch, thereby minimizing idle time and improving efficiency.

3pin_memory is a PyTorch option that pre-allocates page-locked memory in RAM to speed up data transfer
between CPU and GPU.

45



* Random Horizontal Flip: horizontal flipping with a probability of 0.5, useful for

simulating facial symmetry variations;

* Color Jitter: random adjustments of brightness, contrast, and saturation to mimic

changes in lighting conditions;

* Random Crop / Resize: random cropping followed by resizing, useful for intro-

ducing small geometric variations.

These transformations were implemented using the torchvision. transforms.Compose
module and controlled via a boolean flag passed to the dataset. Their application improved
the model’s generalization capability while preserving visual consistency with the original
image. It is worth noting that, to ensure fairness in model comparison (EfficientNet-B7,
Xception, ResNet18), data augmentation was deliberately disabled in some experimental

configurations, as described in the section on experimental variations (Section 6.6).

6.3.4 Transformation and Normalization Pipeline

To ensure compatibility with models pre-trained on ImageNet and to maintain stability
during training and inference phases, all images were processed through a standardized
transformation pipeline, applied uniformly to both training and validation/test data.

The first operation in the pipeline involved resizing the images according to the archi-
tecture in use: for EfficientNet-B7, images were scaled to 380x380 pixels; for ResNet18,
to 224x224; and for Xception, to 299x299 pixels, the official input resolution used dur-
ing pretraining on ImageNet. This design choice is based on the specific input size re-
quirements dictated by each model’s pretraining configuration. Next, the images were
converted into PyTorch tensors using the transforms.ToTensor ()3, which performs
initial normalization of pixel values. This conversion is essential for the proper func-
tioning of convolutional operations, which require continuous numerical inputs within a
normalized range.

Finally, channel-wise RGB normalization was applied using the standardized mean
and standard deviation values from ImageNet. These parameters reflect the statistical dis-
tribution of pixel intensities in ImageNet data and are critical for producing balanced ac-

tivations in the initial convolutional layers. Any deviation from these statistics can hinder

Btorchvision.transforms.Compose is a PyTorch utility that allows multiple image transformations to
be chained together and applied sequentially.

3transforms.ToTensor () is a PyTorch function that converts a PIL Image or NumPy array into a nor-
malized tensor with pixel values scaled between 0 and 1. This format is required for tensor operations in
neural networks.

46

33



learning efficiency, slow convergence, or introduce undesired behavior in the network, es-
pecially during the early stages of training. Strict adherence to this preprocessing pipeline
ensured uniformity across all input data, enabling effective reuse of pre-trained weights
and improving the model’s ability to generalize to previously unseen videos, while reduc-

ing the risk of overfitting to specific visual characteristics.

6.4 Training Strategy

Model training represents the central phase of the entire experimental pipeline. Archi-
tectural choices, optimization strategies, epoch management, and evaluation metrics all
contribute to shaping a process aimed at building a robust, generalizable classifier that is
resilient to class imbalance. The training strategy described in this section is structured
into six main components, each outlining a specific step in the K-Fold-based training

process.

6.4.1 Adapting the Classifier for Binary Classification

As outlined in previous chapters, the model selected for the main experiment is Efficient-
Net -B7, one of the most advanced architectures in terms of balancing accuracy and com-
putational complexity. EfficientNet introduces a paradigm known as compound scaling,
which enables simultaneous and harmonious scaling of depth, width, and input resolu-
tion, delivering high performance with fewer parameters than traditional convolutional
networks. EfficientNet-B7, in its original version, is designed for multi-class classifica-
tion tasks on ImageNet, with a fully connected output layer of size 1000. To adapt it
for the task of deepfake detection, formulated as a binary classification problem (real vs.
fake), the final classifier was replaced with a single neuron producing a continuous output.

From a theoretical standpoint, this classifier modification is not only valid but also
exemplifies a key principle of transfer learning: the adaptation of pre-trained models to
new tasks, often involving a different number of output classes. The deep convolutional
layers, which represent the most informative component of the model, are preserved,
while the task-specific output layer is replaced to reflect the new binary structure. In
this case, adding a single output neuron without an explicit sigmoid activation enables
seamless integration with the BCEWithLogitsLoss function, which internally applies the
sigmoid transformation to yield probabilistic outputs. This approach improves numerical
stability during training and enables a clear and interpretable decision threshold (0.5),

facilitating the aggregation of predictions during the video-level inference phase.

47



6.4.2 Weighted Binary Cross-Entropy Loss (BCEWithLogitsLoss)

The loss function adopted for training was Binary Cross-Entropy with Logits (BCEWith-
LogitsLoss), specifically designed for binary classification tasks. This loss measures the
distance between the model’s continuous output (prior to the sigmoid activation) and the
binary label, and is used to update the network’s weights during optimization. A critical
aspect of the training phase was the dataset imbalance, with the fake class accounting
for approximately 90% of the samples. To address this asymmetry, the pos_weight
parameter was used, which increases the penalty associated with errors on the minority
class. The value of pos_weight was dynamically calculated for each fold as the ratio
between the number of fake and real samples, ensuring that the network learned not to
ignore false negatives while still distinguishing fake content correctly. This choice aligns
with best practices for rare event classification and allows the model to maintain high

sensitivity to the real class, preventing it from being overlooked due to class imbalance.

6.4.3 Optimization with Adam and Learning Rate Configuration

Parameter optimization was performed using the Adam algorithm (Adaptive Moment Es-
timation), known for its efficiency in adapting the learning rate of each weight based on
estimates of the first and second moments of the gradients. Adam is particularly effective
in scenarios involving moderately sized datasets and complex architectures, as it provides
good stability and rapid convergence even in the presence of noise. The initial learn-
ing rate was set to 1 x 107#, a value considered conservative yet stable for pre-trained
networks. This choice aimed to avoid significantly disrupting the pre-initialized weights
during the early epochs, preserving the feature representations learned from ImageNet. In
later configurations, a dynamic learning rate adjustment mechanism (scheduler) was im-
plemented to automatically reduce the learning rate if the validation loss did not improve

after a predefined number of consecutive epochs.

6.4.4 Training on S Folds and Best Model Saving

Training was conducted following the 5-Fold Cross-Validation scheme described in Sec-
tion 6.2.2. In each iteration, the model was trained on four folds of the dataset and val-
idated on the remaining one. This mechanism enabled fair and generalizable evaluation
of the model’s predictive capability, ensuring that each image was used exactly once for
validation and four times for training. Throughout each training cycle, the validation
loss was monitored epoch by epoch. The model achieving the lowest validation loss was

saved as the best model for that fold and was subsequently used during the testing phase

48



for inference on unseen data. This approach allowed the construction of an ensemble of
independently validated models, improving prediction reliability and reducing the risk of

overfitting to specific data subsets.

6.4.5 Opverfitting Control and Epoch Management

To monitor and mitigate overfitting, the training and validation loss curves were continu-
ously recorded during each epoch. Training was performed for a maximum of 10 epochs
per fold, based on a methodological compromise between learning depth and computa-
tional sustainability. This value was selected to provide the model with sufficient capac-
ity to learn complex representations without excessively prolonging the training cycle or
overloading computational resources. It is important to note that, as discussed in Sec-
tion 6.6.2, a systematic comparison was conducted between models trained for 10 epochs
and those trained for 5 epochs. This comparison aimed to assess the impact of training
duration on final performance, offering broader insights into the role of epoch count in
balancing predictive accuracy and computational efficiency.

In cases where a significant divergence between the training and validation curves was
observed, a soft early stopping mechanism was employed, saving the model correspond-
ing to the lowest validation loss and avoiding further training of overfitted models. Ad-
ditionally, the use of data augmentation techniques (described in Section 6.3.3) increased
the variability of input samples, reducing the likelihood that the model would learn super-
ficial patterns or dataset-specific artifacts. These precautions, together with the implicit
regularization provided by the Adam optimizer and standardized data normalization, con-
tributed to a robust and reproducible training process, enabling the models to perform

effectively even on previously unseen videos, as demonstrated during the testing phase.

6.5 Testing and Inference

The testing and inference phase represents the final and most critical stage of the exper-
imental process, during which the model’s true ability to distinguish between authentic
and manipulated content is evaluated on data never seen during training. The objective
is to start from raw video input and arrive at the assignment of a binary label along with
an associated probability score. The testing infrastructure was designed to ensure repro-

ducibility, modularity, and consistency with the entire preprocessing and training pipeline.

49



6.5.1 Frame-Level Inference with Model in Evaluation Mode

Inference was performed at the frame level, in line with the frame-based approach adopted
during the training phase. Each video was previously split into 32 equally spaced frames,
from which normalized faces were extracted and saved into the testing directory. During
inference, the pre-trained model is loaded in eval mode, a configuration that disables
stochastic operations used during training (such as dropout and batch normalization in
update mode), thereby ensuring deterministic predictions. For each frame, a forward

pass>

is executed through the model, producing a continuous output, which is then trans-
formed into a probability using the sigmoid function. This value represents the estimated

probability that the given frame was artificially generated.

6.5.2 Heuristic Aggregation of Frame-Level Predictions

Since the ultimate goal is to classify the entire video rather than individual frames, it
was necessary to introduce a mechanism for aggregating frame-level predictions. For this
purpose, a simple mean heuristic was implemented, consisting of computing the arith-
metic average of the predicted probabilities across all frames of a video. The decision
to use the mean as an aggregation strategy was based on two main considerations: first,
it offers a robust compromise between sensitivity and predictive stability, avoiding situ-
ations in which a single anomalous frame determines the overall outcome; second, it is
an interpretable and computationally efficient method that can be easily integrated into a

real-time pipeline.

6.5.3 Final Label Assignment per Video

Once the average frame probability is computed, the final binary label for the video is
determined using a fixed decision threshold of 0.5. If the average probability exceeds this
value, the video is classified as fake; otherwise, it is considered real. Although this
threshold can be adjusted to optimize for precision or recall in specific application scenar-
ios, using the neutral value of 0.5 represents a fair and balanced choice for experimental
evaluation, consistent with standard benchmark metrics. This decision strategy, combined
with the aforementioned heuristic aggregation, enables consistent, reproducible, and eas-

ily interpretable evaluation of model performance at the video level.

33 A forward pass refers to the process of feeding input data through the model to obtain predictions, without
performing any weight updates.

3 A real-time pipeline refers to a processing system designed to handle data and produce results with mini-
mal latency, suitable for time-sensitive applications such as video streaming or live detection.

50



6.5.4 Collection of y_true, y_pred, and y_prob for Evaluation

For each video processed during the inference phase, three key values were recorded to
support the subsequent evaluation of model performance. First, the ground truth label
of the video, denoted as y_true, was obtained directly from the metadata. json file,
which specifies whether the content is authentic or manipulated. This was paired with
y_pred, the binary label predicted by the model (O for real, 1 for fake), derived by apply-
ing a fixed threshold to the aggregated probability. Lastly, the continuous value y_prob,
corresponding to the average frame-level probability before thresholding, was also stored.

The simultaneous availability of the y_pred (binary labels) and y_prob (continuous
probabilities) vectors allows for the computation of different evaluation metrics, each with
a distinct sensitivity to the model’s confidence level. Specifically, while discrete metrics
such as precision, recall, Fl-score, or accuracy consider only the correctness of the pre-
dicted class, continuous metrics like log loss or AUC-ROC take into account the predicted
probability itself, penalizing high-confidence errors more severely. For example, predict-
ing a probability of 0.9 when the actual label is real constitutes a more serious mistake
(and is penalized accordingly) than an incorrect prediction with a confidence of 0.6. This
enables a more nuanced assessment of model performance, which is especially useful in

scenarios where the classification threshold may be adjusted based on operational risk.

6.5.5 Prediction on Test Set 1 (10 GB) and Test Set 2 (50 GB)

The entire inference pipeline was applied to two distinct test sets, designed to evaluate the
model’s generalization capability on content not seen during the training phase.

The first, referred to as Test Set 1, has a size of approximately 10 GB and consists
of videos drawn from the same distribution used for training, although entirely excluded
from the training process. This set was used as an intermediate evaluation tool due to its
manageable size and structural consistency with the data processed during model learning.

The second set, referred to as Test Set 2, has a size of approximately 50 GB and was
designed to test the model’s robustness under more heterogeneous and realistic condi-
tions. This set includes a greater variety of faces, visual conditions, video compression
levels, and recording quality. Its class distribution is unbalanced, with 85% of the content
labeled as fake and 15% as real. Although this ratio is closer to real-world scenarios
than a perfectly balanced set, it still does not reflect the actual prevalence of manipulated
content in operational contexts, where deepfakes typically represent only a small minor-
ity. To better simulate realistic conditions in which deepfakes occur with an estimated
prevalence of around 5%, as discussed in the literature and analyzed in Chapter 4, cor-

rective evaluation metrics were introduced based on an assumed real-world distribution.

51



Among these, the Weighted Precision metric was adopted. This metric appropriately ad-
justs the impact of false positives and false negatives, offering a performance assessment
that accounts not only for the internal distribution of the test set but also for operational
risk in real-world deployment scenarios. In both cases, inference was performed in a fully
automated manner, maintaining the same preprocessing parameters, transformations, and

dataloader structure used during training.

6.6 Experimental Variations

In addition to the main experiment conducted on the full available dataset, a series of sec-
ondary experiments were designed and executed with the aim of analyzing the model’s
behavior along three fundamental dimensions: the amount of training data, the number of
training epochs, and robustness to randomness. These variations made it possible to eval-
uate not only the absolute effectiveness of the adopted architecture, but also its sensitivity

to different and more constrained operational conditions.

6.6.1 Progressive Subsets

To evaluate the impact of data availability on the learning process, five progressive subsets
of the full training dataset were created, corresponding to 5%, 10%, 15%, 20%, and 100%
of the total training images. Each subset was selected in a stratified manner, preserving
the original class distribution (fake and real) and ensuring consistency across fold assign-
ments. This procedure allowed the model’s behavior to be measured under conditions of
data scarcity, verifying whether the network could still achieve satisfactory performance

in low-information scenarios.

6.6.2 Metadata Generation and Image Management

For each generated subset, a dedicated copy of the .csv metadata file was created, con-
taining only the paths and labels of the images selected for that specific subset size. The
fold assignments remained unchanged from the full dataset, allowing for direct compar-
ison between models trained on different subsets. Folder structure and image path refer-
ences were also kept consistent, ensuring compatibility with the existing dataloader and
transformation pipeline. This modular management enabled automated and reproducible

training for each data volume level.

52



6.6.3 Objective: Identifying the Data-Performance Trade-Off

The main goal of this analysis was to identify an optimal balance point between the
amount of training data and the quality of the model’s predictions. The evaluation of
models trained on progressive subsets made it possible to observe how performance im-
proved as data availability increased, while also identifying potential thresholds beyond
which additional data yielded only marginal benefits relative to the added computational
cost. The results of this analysis are presented in Chapter 7 and serve as practical guidance

for defining more efficient training strategies in resource-constrained environments.

6.6.4 Epoch Variation: Comparison Between 5 and 10 Epochs

In addition to training data volume, the effect of training duration on model performance
was also analyzed. Specifically, two configurations were compared: one with 10 epochs
(the standard setting), and one with only 5 training epochs. Both configurations were
replicated across each of the previously defined subsets, enabling a cross-comparison be-
tween learning depth and data quantity. The goal was to determine whether a reduced
number of epochs could still yield acceptable performance while significantly decreas-
ing training time. This type of comparison is particularly useful in real-world scenarios
where computational resources are limited or where rapid model deployment is a critical
requirement.

Reducing the number of epochs can help mitigate the risk of overfitting, especially
when working with small datasets. However, too few iterations may hinder model con-
vergence, leading to an underestimation of its full potential. As discussed in the following
sections, the results showed that in some cases, the 5-epoch configuration produced per-
formance comparable to that of the 10-epoch setting, particularly on the smaller subsets,
while halving computational cost. These findings raise important considerations about
dynamically adapting the number of training epochs based on data volume and task com-

plexity.

6.6.5 Robustness and Randomness: Replicability Analysis Using Mul-
tiple Seeds

To assess the statistical robustness of the results, a replicability experiment was conducted
using two different random seeds. Since many training operations, such as data shuffling,
weight initialization, and batch ordering, depend on pseudorandom number generators, it
is essential to verify that the observed performance is not the result of a lucky configu-

ration, but is instead stable and repeatable. In each replication, training was carried out

53



under identical configurations, except for the random seed. Performance metrics were
then compared to measure the variance and possible sensitivity of the model to stochastic
components.

The results, presented in the following sections, demonstrate that while minor varia-
tions in performance occurred between runs, the model’s overall behavior remained con-
sistent. This suggests that the architecture and pipeline setup are sufficiently robust to
absorb the fluctuations introduced by initialization randomness. These findings under-
score the importance of fixing the random seed in scientific experiments and of repeating
evaluations to ensure the reliability of results, particularly in contexts where small differ-

ences may significantly impact operational decisions or model comparisons.

6.7 Comparative Experiments with Alternative Architec-

tures

As previously outlined, in order to evaluate the effectiveness and flexibility of the exper-
imental pipeline, two alternative convolutional neural network architectures, ResNet18
and Xception, were considered in addition to the primary model, EfficientNet-B7. The
objective of this phase was not to replace the reference model, but rather to explore lighter
and less computationally demanding architectural solutions. The aim was to assess their
structural compatibility with the implemented data pipeline and to evaluate their poten-
tial impact on training and inference efficiency. The experiments were conducted using
the same methodology as for EfficientNet-B7, in order to enable a controlled comparison

based solely on architectural differences.

6.7.1 Training of ResNet18

ResNet18 is one of the lightest variants of the ResNet (Residual Networks) family, known
for introducing residual blocks that help mitigate the degradation problem often encoun-
tered in deep networks. The decision to include ResNet18 among the tested models was
motivated by its compact architecture, consisting of only 18 layers, which allows for faster
training even in environments with limited computational resources.

To ensure compatibility with the pretrained weights from ImageNet, input images
were resized to 224x224 pixels, in accordance with the original dimensional specifica-
tions of the model. The final classifier was also modified by replacing the fully con-
nected layer with 1000 neurons with a single neuron producing a continuous output, in

line with the adaptation performed for EfficientNet-B7. The loss function used was again

54



BCEWithLogitsLoss, and the training procedure was kept identical, including standard-

ized data transformations and 5-fold cross-validation.

6.7.2 Training of Xception

The second alternative model evaluated was Xception (Extreme Inception), a deep convo-
lutional network based on depthwise separable convolutions and designed as an evolution
of the Inception-v3 architecture. Xception offers a good trade-off between representa-
tional power and computational efficiency, owing to the replacement of standard convolu-
tions with depthwise separable ones, which significantly reduce the number of parameters
while maintaining high performance. In this case as well, to ensure compatibility with the
pretrained ImageNet weights, input images were resized to 299x299 pixels, as required
by the model’s original design. The final classifier was adapted for the binary classifica-
tion task, and the training scheme was preserved, featuring fold-based stratification, data

augmentation, and normalization consistent with ImageNet statistics.

6.7.3 Lightweight Architectures: Motivations and Trade-Offs

The decision to experiment with lightweight architectures was motivated by several opera-
tional considerations. In particular, adopting models with a reduced number of parameters
can be advantageous in contexts where computational resources are limited, or where the
model must run in real-time or on edge devices such as smartphones, smart cameras, or
embedded systems. ResNetl8 and Xception are emblematic examples of this category,
although they embody different architectural approaches: the former is a network deeply
optimized for stability, while the latter emphasizes computational efficiency. However,
the use of shallower architectures inevitably involves trade-offs in terms of representa-
tional capacity. Smaller models may exhibit lower sensitivity to complex visual artifacts
or reduced generalization capability in heterogeneous scenarios. For this reason, the com-
parison was carefully planned by keeping all other components of the pipeline as constant

as possible, in order to isolate the purely architectural effects on performance.

6.7.4 Consistency of Transformations and Adapted Configurations

To ensure methodological consistency across models, each architecture was tested within
the same experimental infrastructure. This required careful adaptation of transformations,
particularly during image preprocessing, to comply with the dimensional and statistical
requirements of each backbone.

Basic transformations, such as resizing, normalization, and tensor conversion, were

55



kept as equivalent as possible, with adjustments made only to strictly necessary parame-
ters like input resolution. The configurations for learning rate, loss function, batch size,
and number of training epochs were aligned with those used for EfficientNet-B7, except
where mandatory adjustments were needed due to memory constraints or architectural
compatibility. The aim of this consistency was to minimize experimental variables, al-
lowing for more accurate attribution of any observed differences to the nature of the ar-
chitecture itself, rather than to discrepancies in the training pipeline or hyperparameter
settings.

56



Chapter 7

Empirical Evaluation and Results

This chapter is dedicated to the empirical evaluation of the proposed model, with the aim
of thoroughly analyzing its performance under various training configurations. Follow-
ing a description of the experimental protocol and the key variables adopted, the results
obtained on the two test sets of different sizes, introduced in the previous chapters, are
presented, followed by a comparison with alternative architectures and an in-depth analy-
sis of computational efficiency and generalization capability. The chapter concludes with
a comparative visualization of the main evaluation metrics and a summary of the models

that achieved the best performance in terms of stability and computational sustainability.

7.1 Overview of the Evaluation Protocol

The evaluation phase followed an experimental protocol consistent with the methodolog-
ical framework outlined in the preceding chapters, with the objective of systematically
comparing the performance of different binary classification models in detecting manip-
ulated video content. The reference model was EfficientNet-B7, previously introduced
in the section on architectural choices. The training process employed a 5-fold cross-
validation strategy, with the best model from each fold saved based on validation loss, as
thoroughly detailed in Chapter 6.

Model performance was primarily assessed using the logarithmic loss (log loss) met-
ric, selected for its ability to capture not only classification accuracy but also the calibra-
tion of predicted probabilities. This metric is also the official evaluation criterion used
in the DeepFake Detection Challenge (DFDC), making it particularly suitable for stan-
dardized comparisons. In addition, complementary metrics were computed, including
F1 score, precision, recall, AUC-ROC, and weighted precision, to provide a more com-
prehensive performance evaluation. The testing phase was conducted on two separate

datasets:
* 10 GB set comprising 3,464 videos,
* 50 GB set comprising 11,335 videos.

This distinction allowed for an evaluation of model behavior as the quantity and di-

versity of input data increased, effectively simulating scenarios of growing complexity

57



and conditions close to real-world, uncontrolled environments. Finally, the introduction
of key experimental variables, the percentage of training data, the number of training
epochs, and the model architecture, enabled an in-depth analysis of the trade-off between

accuracy, computational efficiency, and generalization capacity.

7.2 Key Experimental Variables

This section outlines the main experimental variables that guided the design and evalua-

tion of the deepfake detection model. In particular:

* Training Data Percentage: one of the central questions of this experiment was:
how much data is truly necessary to develop an effective and generalizable model?
To explore this, five incremental training set configurations were tested (5%, 10%,
15%, 20%, and 100%), while keeping the test set constant. The objective was to find
a balance between sample size and predictive capability, and to determine whether
high performance could be achieved even with a reduced subset. Once the 20% con-
figuration demonstrated already strong results (notably in terms of log loss and F1
score), further intermediate increments (e.g., 25%, 30%) were deemed unnecessary,
as the additional training time was unlikely to yield substantial improvements. The
analysis therefore focused on comparing this “optimal” threshold against the upper
bound (100%) to assess whether full-data training would significantly outperform
lighter and more cost-efficient alternatives. This strategic approach maximized ex-
perimental insight while minimizing computational waste, emphasizing scalability

and efficiency in real-world applications.

* Number of Training Epochs: alongside data quantity, the number of training
epochs, that is, the number of complete passes over the dataset, was also varied.
Two training depths were tested for each configuration: 5 and 10 epochs. This made
it possible to observe how increased exposure to data influences model convergence,
prediction stability, and the risk of overfitting, especially in low-data scenarios. A
minimum of 5 epochs was required to allow the model to sufficiently learn discrim-
inative patterns, particularly for a complex task such as deepfake detection. Fewer
than 5 epochs led to unstable and unreliable results. On the other hand, 10 epochs
represented a balanced choice between thorough learning and computational sus-

tainability, especially for full-data configurations.

* Model Architecture: to evaluate the impact of architectural choices, three mod-
els were compared: EfficientNet-B7 (the primary model), ResNet18, and Xception.

EfficientNet-B7 was selected for its strong ability to capture fine visual artifacts in

58



7.3

The fi

manipulated faces, despite its higher computational cost. ResNetl8, being more
compact and shallow, offered a lightweight and fast alternative, while Xception
was considered an intermediate choice in terms of performance and resource re-
quirements. Unlike EfficientNet-B7, which was analyzed across different training
percentages and epochs, ResNetl8 and Xception were only trained on 100% of
the data. This choice limited training time while still allowing for evaluation un-
der ideal conditions. Both architectures were tested on the 10 GB and 50 GB test
sets to assess their behavior under increasing complexity and their generalization
to realistic scenarios. The goal was not to replicate the entire experimental design
of EfficientNet-B7, but to provide a focused comparative analysis, highlighting the
strengths and structural limitations of each model. This strategy reduced the number
of experiments while preserving analytical rigor, and enabled a clear comparison of
accuracy, training time, and computational cost, key considerations for selecting an

appropriate model based on available resources and intended applications.

Performance on the 10 GB Test Set

rst phase of the experimental evaluation was conducted on a relatively small test

set (3,464 videos, approximately 10 GB) with the goal of analyzing the impact of training

data volume and number of epochs on the performance of the EfficientNet-B7 model. Five
different fractions of the training dataset (5%, 10%, 15%, 20%, and 100%) were tested,

each with two levels of training depth (5 and 10 epochs). The analysis highlighted a par-

ticularly significant result: the model trained with 20% of the data for 5 epochs achieved

the lowest log loss overall (0.2809), with the exception of the 100%—-10 epochs config-

uration, which reached a slightly better log loss (0.2803). However, the latter required

approximately ten times more training time. This suggests that a lighter configuration can

still deliver high performance while significantly reducing computational costs.

Train % | Epochs | Test Set | Accuracy | Precision | Recall | F1 Score | ROC AUC | Log Loss | Weighted Precision | Training Time
5 5 10 GB 0.8303 0.8895 | 0.9211 0.905 0.6979 0.3867 0.8089 ~3.30h
10 5 10 GB 0.8879 0.9045 | 0.9559 | 0.934 0.8046 0.3146 0.8513 ~6.30h
15 5 10 GB 0.9046 0.8979 | 0.9779 | 0.9565 0.8347 0.3069 0.8679 ~10h
20 5 10 GB 0.8932 0.9017 | 0.9859 | 0.9419 0.8322 0.2809 0.8759 ~13h
100 5 10 GB 0.8832 0.8915 | 0.9318 | 0.9306 0.8225 0.3104 0.8634 ~2.7d

Table 2: Performance of the model on 5 epochs (Test set: 10 GB)

The comparison among the 5-epoch configurations confirms the efficiency of the

20%-5 epochs model, which also achieved a strong F1 score of 0.9419 and a recall of

59



98.59%, showing an excellent ability to detect the minority class (i.e., fake videos). On
the other hand, the 100%-5 epochs model recorded a worse log loss (0.3104) despite
using significantly more data, possibly indicating cognitive overload or the presence of
noisy information in the full dataset. To further explore the effect of training depth, each
configuration was subsequently evaluated with 10 epochs. Results show a general im-
provement in the metrics, with the 100%—10 epochs model achieving the lowest absolute
log loss (0.2803) and an F1 score of 0.9358, which is very close to the 20%-5 epochs
configuration. However, this came at a much higher computational cost, making it less

desirable in practice.

Train % | Epochs | Test Set | Accuracy | Precision | Recall | F1 Score | ROC AUC | Log Loss | Weighted Precision | Training Time
5 10 10 GB 0.8025 0.8924 | 0.8813 | 0.8868 0.7082 0.4015 0.8143 ~7h
10 10 10 GB 0.8733 0.9122 | 0.9467 | 0.9292 0.7916 0.3252 0.8587 ~13h
15 10 10 GB 0.8938 0.9037 | 0.9839 | 0.9421 0.8295 0.3081 0.8763 ~20 h
20 10 10 GB 0.8909 0.9073 | 09753 | 0.9401 0.8295 0.2925 0.8717 ~1d
100 10 10 GB 0.8834 0.9061 | 0.9674 | 0.9358 0.8581 0.2803 0.8618 ~4d

Table 3: Performance of the model on 10 epochs (Test set: 10 GB)

A direct comparison between the two best-performing models 100%—-10 epochs and 20%—-5

epochs, reveals the following insights:

* The log loss of the 100%—10 epochs model is only slightly better (0.2803 vs 0.2809).

* The 20%-5 epochs model achieved a higher recall (0.9859 vs 0.9674), a higher F1
score (0.9419 vs 0.9358), and a superior weighted precision.

* The complete model with 10 epochs required significantly more time and resources,

thus being less efficient relative to the marginal performance gain.

These results demonstrate that a model trained on a reduced portion of the dataset with a
limited number of epochs can offer highly competitive performance. This configuration
represents an optimal trade-off between accuracy and computational sustainability, an
insight of particular relevance in real-world scenarios where the availability of data, time,

and resources may be constrained.

7.4 Performance on the 50 GB Test Set

The second phase of evaluation was conducted on a significantly larger test set (11,335

videos, approximately 50 GB), characterized by a greater variety in terms of visual qual-

60



ity, camera angles, manipulation techniques, and acquisition conditions. This more real-
istic and complex scenario was designed to assess the generalization ability of the models
under less controlled and more real-world-like conditions. The configurations tested mir-
rored those of the previous experiment: EfficientNet-B7 models trained on increasing
proportions of the training dataset (5%, 10%, 15%, 20%, and 100%) and with two levels
of training depth (5 and 10 epochs). The results confirmed the trends observed in the first

test, though with some notable differences due to the higher data complexity.

Train % | Epochs | Test Set | Accuracy | Precision | Recall | F1 Score | ROC AUC | Log Loss | Weighted Precision | Training Time
5 5 50 GB 0.8738 0.878 0.9899 | 0.9306 0.7418 0.3164 0.8607 ~3.30h
10 5 50 GB 0.8779 0.9276 | 0.9446 | 0.9159 0.7802 0.3375 0.8448 ~6.30h
15 5 50 GB 0.8865 09179 | 09774 | 0.9198 0.8174 0.3137 0.8603 ~10h
20 5 50 GB 0.8778 0.880 | 0.9925 | 0.9329 0.852 0.3284 0.8711 ~13h
100 5 50 GB 0.8632 0.8719 | 0.9633 | 0.9412 0.8122 0.3601 0.8545 ~2.7d

Table 4: Performance of the model on 5 epochs (Test set: 50 GB)

In this context, the model trained with 20% of the data for 10 epochs achieved the
best overall performance, obtaining the lowest log loss value of 0.2862 across all config-
urations tested on the 50 GB set. This is a particularly significant outcome, as it demon-
strates how a deeper training process (10 epochs) on a limited but well-curated subset of
the dataset enables the model to better adapt to the diversity and unpredictability of the

test set, enhancing probability calibration and overall prediction accuracy.

Train % | Epochs | Test Set | Accuracy | Precision | Recall | F1 Score | ROC AUC | Log Loss | Weighted Precision | Training Time
5 10 50 GB 0.8714 0.881 0.9823 | 0.9289 0.7306 0.3724 0.851 ~7h
10 10 50 GB 0.8672 0.8976 | 0.9535 | 0.9247 0.8396 0.3142 0.8496 ~13h
15 10 50 GB 0.8778 0.8796 | 0.9930 | 0.9329 0.8224 0.3383 0.8720 ~20h
20 10 50 GB 0.8763 0.8843 | 0.9841 | 0.9315 0.8718 0.2862 0.8603 ~1d
100 10 50 GB 0.8708 0.878 0.9859 | 0.9288 0.8697 0.3795 0.8516 ~4d

Table 5: Performance of the model on 10 epochs (Test set: 50 GB)

Unlike the 10 GB test, where the 20%-5 epochs configuration achieved an optimal
balance between efficiency and performance, in this case the depth of training proved
crucial. Increasing the number of epochs allowed the model to refine the weight param-
eters and capture more complex patterns without overfitting. Conversely, configurations
with fewer epochs or larger training datasets did not yield substantial improvements and,
in some cases, resulted in higher log loss values. Furthermore, the 20%—10 epochs model

demonstrated excellent generalization capabilities, showing stable results across different

61



data samples (as confirmed by robustness testing using multiple random seeds), and de-
livering performance comparable to or even exceeding that of models trained on 100%
of the data. The 50 GB test highlights the fact that training quality outweighs quantity:
a well-balanced model in terms of training depth and dataset size can outperform more
intensive approaches, provided that the data used is sufficiently representative. There-
fore, the 20%—10 epochs configuration is confirmed as the most suitable for complex
environments, offering the best compromise between performance, generalization, and

computational sustainability.

7.5 Comparison with Alternative Architectures

In addition to the extensive experiments conducted using EfficientNet-B7, the project in-
cluded a systematic comparison with two alternative architectures: ResNetl8 and Xcep-
tion. These models were evaluated on both the 10 GB test set (3,464 videos) and the larger
50 GB test set (11,335 videos), in order to assess their effectiveness in terms of accuracy,
probability calibration, training time, and generalization ability. The results confirm the
superior performance of EfficientNet-B7 in high-complexity scenarios. Its architecture,
based on the principle of compound scaling, enables an optimal balance between depth,
width, and resolution. On both test sets, it achieved the best log loss scores (as low as
0.2803 on the 10 GB set and 0.2862 on the 50 GB set), demonstrating its high capacity
for accurate probability calibration.

Metric Xception (10 GB) | ResNet18 (10 GB) | ResNet18 (50 GB) | Xception (50 GB)
Accuracy 0.816 0.138 0.1498 0.8658
Precision 0.882 0.630 0.5405 0.8719
Recall 0.997 0.044 0.0392 0.9883
F1 Score 0.936 0.082 0.0731 0.9265
ROC AUC 0.752 0.277 0.2472 0.7536
Log Loss 0.546 5.113 6.4419 0.6294
Weighted Precision 0.865 0.567 0.4802 0.8431

Table 6: Comparison of performance metrics between Xception and ResNet18

The Xception model, although lighter and less computationally demanding, delivered

surprisingly strong results. On both test sets, it achieved a recall close to 99% and an F1

62



score comparable to EfficientNet-B7, particularly on the 10 GB set. However, it exhib-
ited higher log loss values (0.546 on the 10 GB and 0.629 on the 50 GB set), indicating
lower reliability in probability estimation. While the model effectively detects both false
positives and false negatives, it is less reliable in the confidence associated with its pre-
dictions. ResNetl8, on the other hand, showed significantly lower performance in both
contexts. On the 10 GB test set, it recorded a log loss above 5.1 and a recall of approx-
imately 4%, making it unsuitable for deepfake detection tasks. On the larger 50 GB test
set, performance remained poor, with an accuracy of only 14.9% and a log loss of 6.44.
These results highlight the limited representational capacity of the architecture, which,
despite being fast to train and lightweight, fails to effectively distinguish between real
and manipulated content. In terms of training time, Xception required approximately 5
hours to complete training, while ResNet18 proved even faster, with an average training
time of about 3 hours, due to its lighter and shallower architecture. From a computa-
tional perspective, EfficientNet-B7 was the most demanding model in terms of resources
and training time, but delivered consistently high and stable performance, reaffirming its
role as the go-to solution for those seeking maximum accuracy and reliability. Xception
may serve as a viable alternative in scenarios where recall is prioritized and trade-offs in
probability calibration are acceptable. ResNetl8, although suitable for low-power envi-
ronments due to its rapid training and low computational requirements, proved inadequate

without significant architectural or training optimizations.

7.6 Efficiency and Trade-Off Analysis

One of the central insights emerging from the entire experimental workflow concerns the
balance between predictive performance and computational cost. The comparative anal-
ysis of different configurations revealed that it is not always necessary to rely on the full
dataset or extremely deep models to achieve excellent results. There exist optimal thresh-
olds beyond which the marginal benefit becomes significantly lower relative to the time
and resources required. In particular, the EfficientNet-B7 model trained with only 20%
of the dataset for 10 epochs proved to be one of the most effective configurations in terms
of trade-off. It achieved a minimum log loss of 0.2862 on the 50 GB test set, with per-
formance comparable to or even exceeding that of the model trained on 100% of the data
for the same number of epochs. The training time for this configuration was reduced by
approximately 75% compared to the full-data setup, enabling more sustainable resource
management and faster development and validation cycles. This result highlights that a
well-curated subset of data, combined with deeper training, can lead the model to gen-

eralize better, avoiding the risk of overfitting on noise or redundancy typically found in

63



large-scale datasets. Moreover, using a smaller data volume enhances the scalability of
the pipeline, as it allows for faster updates, easier deployment in lower-powered environ-
ments, and more frequent retraining with new data.

On the other hand, the full-data approach can be advantageous in high-stakes scenar-
10os where maximum data coverage is essential to prevent false negatives, or when high-
performance infrastructure is available. In such contexts, training on the entire dataset,
although it requires several days of computation, enables full exploitation of the model’s
expressive capacity, potentially improving robustness in rare cases or edge scenarios not
represented in smaller subsets. However, the results show that the benefit of the full-
data approach is not proportional to the increase in resources used. When comparing the
EfficientNet-B7 model trained on 100% of the data for 10 epochs with the 20%—10 epochs
model, the difference in log loss is marginal, while the training time is approximately
four times longer. This imbalance between cost and benefit makes the 20% configura-
tion a strategically more efficient choice for most operational applications, especially in
environments where response time, scalability, and reproducibility are critical.

Another key element in the efficiency analysis is the classification time per video. For
all configurations based on EfficientNet-B7, regardless of the data percentage or num-
ber of epochs, the average time to classify a single video as “real” or “fake” is approx-
imately 1.5 seconds. This value includes the entire testing pipeline: frame reading (32
frames per video), face detection and preprocessing, frame-level inference, and final pre-
diction aggregation. The consistent latency across configurations makes the model partic-
ularly suitable for near real-time applications such as automated video stream monitoring,
large-scale screening, or integration into content verification platforms. The low inference
time, combined with high accuracy, represents an additional strength of EfficientNet-B7-
based solutions in real-world scenarios. As for alternative architectures, the Xception and
ResNet18 models, due to their lighter computational footprint, showed lower inference
times, around 1 second per video or slightly less. However, this came at the expense of
generally lower performance. The 20%-10 epochs configuration stands out as the optimal
balance between accuracy, computational efficiency, and implementation speed. While
the full-data approach may be theoretically more comprehensive, it should be reserved
for specific cases where maximal data coverage and minimal tolerance for error are abso-
lute requirements. The ability to achieve high performance using a limited fraction of the
data confirms the effectiveness of targeted strategies in the design of deep learning-based
detection systems.

64



7.7 Robustness and Repeatability

To assess the stability and reliability of the configurations identified as optimal, specifi-
cally, EfficientNet-B7 trained with 20% of the data for 5 epochs (tested on the 10 GB set),
and EfficientNet-B7 trained with 20% of the data for 10 epochs (tested on the 50 GB set),
a robustness and repeatability analysis was conducted. The experiments were carried out
using the full training dataset of 10,420 videos, from which two distinct 20% subsets were
randomly generated using random seeds 42 and 99. The goal was to determine whether
the strong performance previously observed was the result of a fortuitous data selection,
or whether the model could generalize robustly across different training data samples of

equal size and structure.

Random Seed | Epochs | Test Set | Accuracy | Precision | Recall | F1 Score | ROC AUC | Log Loss | Weighted Precision
42 5 10 GB 0.8932 0.9017 | 0.9859 | 0.9419 0.8322 0.2809 0.8759
99 5 10 GB 0.8943 0.8979 | 0.9824 | 0.9428 0.8317 0.2811 0.8831
42 10 50 GB 0.8763 0.8843 | 0.9841 | 0.9315 0.8718 0.2862 0.8603
99 10 50 GB 0.8823 0.8843 | 0.9841 | 0.9355 0.8853 0.2872 0.8831

Table 7: Robustness of the 20% configuration with different training samples

The results confirmed a high level of consistency in performance metrics across both
test sets. For instance, on the 10 GB test set with 5 epochs, the log loss remained vir-
tually unchanged: 0.2809 with seed 42 versus 0.2811 with seed 99. Similarly, both F1
score and recall showed only minimal variations (F1: 0.9419 vs 0.9428), well within the
bounds of acceptable statistical variability. Likewise, on the 50 GB test set, the model
trained with the two seeds yielded stable results: log loss increased only slightly from
0.2862 to 0.2872, and the F1 score ranged from 0.9315 to 0.9355. These minor differ-
ences demonstrate that the 20%—10 epochs configuration tested on 50 GB is not the result
of a particularly favorable subset of data, but rather a robust, repeatable, and methodolog-
ically sound setup. These findings indicate that the model is resilient to sample variability,
meaning it maintains high performance even when the composition of the training data
changes, assuming size and training parameters remain constant. This trait is essential in
real-world scenarios, where data may evolve over time or originate from heterogeneous
sources. Stability in predictions and the ability to behave consistently across varying input
conditions provide a crucial foundation for deploying the model in production environ-
ments. The repeatability experiment further reinforced the validity of the EfficientNet-B7
—20%-10 epochs configuration, confirming it as an optimal solution not only in terms of

accuracy and generalization, but also in terms of operational reliability.

65



7.8 Comparative Visualization of Performance

To support the experimental analysis conducted, the following image provides a graphical
summary of the trends in the main evaluation metrics (Accuracy, Precision, Recall, F1
Score, ROC AUC, Log Loss, and Weighted Precision) as a function of the percentage of
training data used (5%, 10%, 15%, 20%, 100%) and the number of training epochs (5 or
10). The plots are arranged in vertical pairs, with the 10 GB test set on the left and the 50
GB test set on the right, allowing for a direct comparison between the two experimental
conditions. Blue lines represent models trained for 5 epochs, while red lines indicate

models trained for 10 epochs.

Accuracy - Test Set 10 GB Accuracy - Test Set 50 GB
0.90 4 5 Epochs o0.885 4 5 Epochs
—— —a— 10 Epochs —a— 10 Epochs
/ T
0.88 - /
¥ 0.880 1
[
2 086 f |
5 | 0.875 1 /
o - —
% ogal /] . T - —
0.870 »
0.82 o
| 0.865 4
oa it ; ———t !
5 10 15 20 100 5 10 15 20 100
Training Data (%) Training Data (%)
Precision - Test Set 10 GB Precision - Test Set 50 GB
093
t 5 Epochs 5 Epochs
09104 ,‘ \ #— 10 Epochs 0.92 #— 10 Epochs
[ » —_—
I\ ——e
0,905 \/ 0.91
It
c
] |
a | -
7 09004 | 090 2
g /
| 0.89 \
08954 | [\ —
| ossd ¢ —— —
o . ¥ — 5
0,890
T T 0.87 ™ T T
5 10 15 20 100 5 10 15 20 100
Training Data (%) Training Data (%)
Recall - Test Set 10 GB Recall - Test Set 50 GB
[ 5 Epochs
0.98 4 I, — — .
[ o —e— 10 Epochs 098{ % ) =
{ D 4 \
0.96 f
/ 0.96
’ L}
= 094 |
IV | 0.94
& | ’
0.92
0.92
0.90
0.90 4 5 Epochs
L —&— 10 Epochs
088 { ® P
5 101520 100 5 10 15 20 100
Training Data (%) Training Data (%)

66



F1 Score - Test Set 10 GB

F1 Score - Test Set 50 GB

5 Epochs 0.94 5 Epochs
0.95 —e— 10 Epochs —e— 10 Epochs
0.94 Ll S — ) —— o
f — 3§ 0934 o /' — <
o 093 ¥ 'S
g [
& 092 | 0.92
o |
w [
0.91 f
| 0.91
0.90 f
|
0.89 b 0.90
5 10 15 20 100 5 10 15 20 100
Training Data (%) Training Data (%)
ROC AUC - Test Set 10 GB ROC AUC - Test Set 50 GB
0.86 B —e Ps ’y
0.84 — e - 0.86 1
—— /
0.82 v 0.84 it
0.80 / 0.82 [ %
g 4 -‘
o078 0804 |
2 076 [
” ored |
0.74 {
f 0764
0.72 ‘ 5 Epochs 074 f 5 Epochs
0.70 ®— 10 Epochs ) P #- 10 Epochs
5 101520 100 5 10 15 20 100
Training Data (%) Training Data (%)
Log Loss - Test Set 10 GB Log Loss - Test Set 50 GB
0401 % 5 Epochs 0.38 ad
‘|I —a— 10 Epochs b e
0384 0361 | /"/
| P
036 {1 \ =
é | 034 5 # -
o 0.34 \ 0V, s
S \ \[ A\ /
- ) 0.32 LIAY -
0.32 4 \ g ¥ p
A\ /
l\ g
0.30 4
— ——— 0.30 \\ 7 5 Epochs
028 _’ — —— ‘,/" —8— 10 Epochs
5 10 15 20 100 5 10 15 20 100
Training Data (%) Training Data (%)
Weighted Precision - Test Set 10 GB Weighted Precision - Test Set 50 GB
[ | 5 Epochs
/ e 1 A
0.87 4 / Pa S — — 0870 —e— 10 Epochs
/ — S — |
/ —g |
c 086 4‘ 0.865 f
2 |
a J | \
g 0.85 1 [
£ | 0.860 P
E 0.84 i T —
e 03 [ 0.855 f S—
g | T
- [ o/ —~e
0.82 .‘I = 0.850 4 v
¢ pochs
0.81 —a— 10 Epochs 0.845 1
5 10 15 20 100 5 10 15 20 100

Training Data (%) Training Data (%)

Figure 4: Visual Comparison of Evaluation Metrics by Training Sizes and Epochs.

From the visual analysis, it clearly emerges that the 20%—10 epochs configuration
represents a particularly favorable balance point for nearly all evaluation metrics. Specif-
ically, in the 50 GB test set, increasing the number of epochs results in a marked im-
provement in metric stability and a reduction in log loss, indicating a better calibration
of predicted probabilities. In the 10 GB test set, the benefits of deeper training are more

limited but still consistent.

* Accuracy increases rapidly at lower training percentages in the 10 GB set, peaking

at the 20%-5 epochs configuration. Further increases in training depth yield only

67



marginal improvements. In the 50 GB test set, models trained for 10 epochs show
greater stability, while the 100%—-10 epochs configuration exhibits a slight decline

in accuracy, possibly due to noise or data redundancy.

Precision is more sensitive to training depth. On the 10 GB test set, the 10-epoch
configuration maintains consistently high values, whereas the 5-epoch model ex-
hibits greater variability. On the 50 GB test set, precision tends to decline as training

size increases, with the 20%—10 epochs setup providing the best compromise.

Recall is high across all 5-epoch configurations, especially at 20%. However,
deeper training helps reduce variability between training percentages and improves

metric consistency, particularly in the more complex 50 GB test set.

F1 Score, which balances precision and recall, confirms the strong performance of
the 20%-10 epochs configuration in both test sets. On the 50 GB test set, it achieves
the highest score, outperforming the 100%—-10 epochs model.

ROC AUC improves in both test sets, with stronger gains observed in 10-epoch
models. In the 10 GB test set, the metric plateaus around 15-20% training data. In

contrast, the 50 GB test set shows more fluctuations, reflecting its higher complex-
ity.

Log Loss results highlight that increasing training data does not always yield better
calibration. On the 10 GB test set, the lowest log loss is achieved with the 20%-5
epochs model. On the 50 GB test set, the 20%—10 epochs configuration performs
best, while the 100%—10 epochs version suffers from a noticeable increase in log

loss.

Weighted Precision follows a consistent trend with other metrics: the 20% con-
figurations deliver high and stable results, while the full-data version experiences
a slight decline. The 20%—-10 epochs model maintains strong performance across

both test sets and stands out as the most balanced overall.

7.9 Summary of Key Results

The analysis of results made it possible to identify distinct optimal configurations de-

pending on the size and complexity of the test set. For the 10 GB test set, which is

relatively smaller and more homogeneous, the EfficientNet-B7 model trained on 20% of

the data for 5 epochs proved to be the most efficient and effective. It achieved the highest

68



F1 score (0.9419), a very low log loss (0.2809), and a reduced training time of approxi-
mately 13 hours. This makes it an excellent solution for scenarios characterized by limited
computational resources or requiring rapid development cycles. The configuration using
EfficientNet-B7 trained on 100% of the data for 10 epochs also delivered excellent re-
sults on the same test set, registering the lowest log loss overall (0.2803). However, the
required training time was approximately six times longer, making it less advantageous
when considering the trade-off between computational cost and marginal performance
gain. Therefore, its use may be justified only in high-stakes contexts, where even minimal
improvements in accuracy or probability calibration are considered strategically relevant.

Regarding the 50 GB test set, which is more heterogeneous and complex, the best-
performing configuration was EfficientNet-B7 trained on 20% of the data for 10 epochs.
With a log loss of 0.2862 and an F1 score of 0.9315, this model demonstrated strong ca-
pability to handle data variability while maintaining high computational efficiency, with
a training time of approximately one day. As such, this configuration is confirmed to
be the most balanced for large-scale production scenarios, where strong performance
must be achieved without compromising time and resource constraints. In contrast, the
EfficientNet-B7 configuration trained on 100% of the data for 10 epochs required over
four days of training, while yielding a slightly lower F1 score (0.9288) and a significantly
higher log loss (0.3795). These results make it less competitive compared to the lighter
configuration and, for many practical applications, difficult to justify in terms of effi-
ciency. For smaller or more controlled datasets such as the 10 GB set, the 20%—5 epochs
model proves the most advantageous in terms of accuracy, speed, and stability. For larger
and more complex datasets, such as the 50 GB set, the 20%—10 epochs configuration
stands out as the optimal choice, capable of effectively balancing predictive performance
and computational sustainability. The full-data (100%) approach, while delivering solid
results, should be reserved for situations where computational resources are not a limiting
factor and the objective is to maximize every percentage point of performance, even at the

cost of significant time and resource investment.

Train % | Epochs | Test Set | Accuracy | F1 Score | Log Loss | Weighted Precision | Training Time
20% 5 10 GB 0.8932 0.9419 0.2809 0.8759 ~13 hours
100% 10 10 GB 0.8834 0.9358 0.2803 0.8618 ~4 days
20% 10 50 GB 0.8763 0.9315 0.2862 0.8603 ~1 day
100% 10 50 GB 0.8708 0.9288 0.3795 0.8516 ~4 days

Table 8: Summary Table — EfficientNet-B7 (Key Configurations)

69



Chapter 8

General Discussion and Implications

This chapter briefly discusses the ethical, methodological, and practical implications of
the work. It highlights potential biases and limitations of the adopted approach, offering

critical reflections on the applicability and reliability of the proposed deepfake detection.

8.1 Ethical and Practical Implications of Detection

The automatic detection of deepfakes raises significant ethical and practical considera-
tions. From an application standpoint, models such as EfficientNet-B7, capable of classi-
fying a video in approximately 1.5 seconds with high accuracy, offer promising solutions
for integration into digital surveillance systems, fact-checking frameworks, and content
moderation platforms. However, the availability of such tools must be accompanied by
responsible usage. While the technology can help mitigate dangerous phenomena such as
disinformation, non-consensual content, or digital fraud, its large-scale deployment intro-
duces risks related to privacy, potential abuse of power, and algorithmic censorship. It is
essential that detection technologies be implemented transparently, with explainable and
verifiable outcomes, and within a well-defined regulatory framework to prevent misuse.
In this context, artificial intelligence applied to deepfake detection emerges as a valuable,

but not neutral, tool, demanding careful, participatory, and multidisciplinary governance.

8.2 Methodological Limitations and Potential Biases

The methodology adopted in this study ensured a high level of experimental rigor and
reproducibility, thanks to the use of cross-validation, best-model checkpointing, and re-
peated experiments on subsets generated with fixed random seeds. Nevertheless, several
factors could represent sources of bias or methodological limitations. A first concern
relates to the nature of the dataset itself (DFDC), which, although extensive, does not en-
compass all possible video manipulation techniques currently in use. Some of the more
recent or less widespread methods may not have been adequately represented, potentially
limiting the model’s generalizability in emerging scenarios. Secondly, the choice of ar-
chitectures and hyperparameters, though justified by computational constraints and prior

literature, may have influenced the outcomes. For instance, transformer-based approaches

70



or spatiotemporal models were not explored, even though they might offer advantages in
different contexts. A potential drawback, though more accurately reflecting the complex-
ity of the task, is the relatively long training time (up to four days for full-data configu-
rations). However, such durations are entirely reasonable given the large volume of data
involved, the need to process tens of thousands of frames per video, and above all, the em-
phasis on ensuring replicability and robustness of the results. In real-world applications,
this initial training effort is more than compensated by the resulting speed and reliability

of the inference phase.

8.3 Limitations of the Work

Despite the methodological robustness of the analysis, this study presents certain limita-
tions that deserve to be acknowledged. The first concerns the adopted approach, which is
based on a frame-based pipeline and, therefore, does not take into account the temporal
component of videos. While this choice aligns with many strategies commonly found in
the literature, it may reduce the effectiveness of detection in cases where manipulation
signals are distributed over time or manifest through motion inconsistencies, which are
difficult to detect when frames are analyzed in a static and isolated manner. A second lim-
itation relates to the handling of video length. In this study, the DFDC dataset was used,
in which videos are relatively short (approximately 10 seconds), allowing each video to
be treated as a single analytical unit. However, in real-world scenarios, video content
may have significantly longer durations, making the direct application of the model chal-
lenging or inefficient. A more scalable approach would involve segmenting longer videos
into shorter temporal fragments to be analyzed independently. The predictions associated
with each segment could then be aggregated to obtain an overall assessment. Although
this strategy increases the model’s flexibility and applicability to extended content, it may
also introduce critical issues: fragmented analysis risks losing the coherence of the over-
all content or producing inconsistent predictions between segments of the same video,
particularly in the presence of partial, intermittent, or localized manipulations. A simple
summation of isolated decisions may therefore fail to accurately reflect the true nature of

the video as a whole, ultimately compromising the quality of the final judgment.

71



Chapter 9

Conclusions and Future Directions

This study set out to systematically address the problem of detecting content generated
by artificial intelligence, with a specific focus on deepfake videos, a phenomenon that is
becoming increasingly widespread and insidious. The initial objectives of this research
included: describing the generative technologies underlying deepfakes; exploring the eth-
ical challenges posed by the proliferation of synthetic content; experimentally evaluating
the effectiveness of classification models trained on real-world datasets; and promoting a
critical reflection on the importance of interpretability and transparency in artificial intel-
ligence systems. All these objectives were addressed throughout the course of the work.
After outlining in the first chapter the theoretical, technological, and ethical framework
that contextualizes the phenomenon, the study combined a conceptual discussion with an
advanced experimental analysis aimed at evaluating the behavior of deep learning mod-
els in binary classification tasks involving real versus manipulated videos. The original
contribution of this research lies in the development and validation of a pipeline based
on modern convolutional architectures applied to video frames. The experimental phase
demonstrated that it is possible to achieve very high performance even when using a re-
duced portion of the training dataset, provided that an appropriate training strategy is
adopted. This result underscores that efficiency and accuracy are not necessarily tied to
the massive use of data, but rather to intelligent selection and optimization of the learning
process. The proposed models also proved robust in terms of replicability. Experiments
conducted on different random subsets showed good performance stability, indicating that
the solutions identified are consistent and not dependent on a specific initial data split.
Moreover, the system was able to classify videos with very short inference times, making
it suitable for deployment in real-world scenarios where speed is a crucial requirement.
Looking ahead, several promising directions for further development emerge. The first
involves moving beyond the frame-based approach toward models capable of capturing
the temporal dimension of videos, by leveraging complete sequences through architec-
tures such as video transformers. The second involves the adoption of interpretability
techniques to enhance the transparency of model decisions and increase trust in sensitive
applications. Finally, it will be crucial to train models on increasingly updated, diverse,
and representative datasets that reflect the plurality of subjects and contexts in which
deepfakes may appear, in order to strengthen their generalizability and adaptability at a

global scale. In conclusion, this study represents a concrete step toward the design of

72



deepfake detection models that are not only accurate, but also efficient, replicable, and
ready for deployment in real-world environments. It makes a meaningful contribution to
the scientific and societal debate on the safe use of generative artificial intelligence and

the development of reliable tools to safeguard the integrity of information.

73



References

Al Act. (2024). Regulation (EU) 2024/1689 of the European Parliament and of the

Council on Artificial Intelligence. Official Journal of the European Union.
AI ACT Brief, 2024. Official Journal of the European Union.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., &
Liang, P. (2021). On the opportunities and risks of foundation models. ArXiv preprint.

Dasgupta, D., Vanugopal, D., & Dattagupta, K. (2023). A review of generative Al

from historical perspectives. Technical report.

Feuerriegel, S., Hartmann, J., Janiesch, C., & Zschech, P. (2024). Generative Al

Business & Information Systems Engineering, 66(1).

Fui-Hoon Nah, E.,, Zheng, R., Cai, J., Siau, K., & Chen, L. (2023). Generative Al and
ChatGPT: Applications, challenges, and AI-human collaboration. Journal of Information
Technology Case and Application Research, 25(3).

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
& Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM,
63(11)

Gupta, S., Kaushik, A., & Kaur, P. (2025). Deepfake Overview: Generation, Detec-
tion, Risks and Opportunities.

He, R., Cao, J., & Tan, T. (2025). Generative artificial intelligence: A historical

perspective. National Science Review, 12(5).

Jaakkola, T., & Haussler, D. (1998). Exploiting generative models in discriminative

classifiers. In Advances in Neural Information Processing Systems, 11.

Kaggle. Deepfake Detection Challenge. Hosted by Meta and Kaggle.
https://www.kaggle.com/competitions/deepfake-detection-challenge

Kenthapadi, K., Lakkaraju, H., & Rajani, N. (2023, August). Generative Al meets
responsible Al: Practical challenges and opportunities. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining.

Keras, EfficientNet BO to B7. https://keras.io/api/applications/efficientnet/

74



Kiling, H. K., & Kegecioglu, O. F. (2024). Generative Artificial Intelligence: A His-
torical and Future Perspective. Academic Platform Journal of Engineering and Smart
Systems, 12(2).

Kumar, P., Vashishtha, S., Sharma, P., & Agarwal, E. (2024). Exploring the efficacy of
adaptive learning platforms enhanced by artificial intelligence: A comprehensive review.

In Integrating Generative Al in Education to Achieve Sustainable Development Goals.

Patel, Y., Tanwar, S., Gupta, R., Bhattacharya, P., Davidson, I. E., Nyameko, R., &
Vimal, V. (2023). Deepfake generation and detection: Case study and challenges. IEEE

Access.

Paullada, A., Raji, I. D., Bender, E. M., Denton, E., & Hanna, A. (2021). Data and
its (dis)contents: A survey of dataset development and use in machine learning research.
Patterns, 2(11).

Pawelec, M. (2024). Decent deepfakes? Professional deepfake developers’ ethical

considerations and their governance potential. Al and Ethics.

Ruthotto, L., & Haber, E. (2021). An introduction to deep generative modeling.
GAMM-Mitteilungen, 44(2).

Sankaran, K., & Holmes, S. P. (2023). Generative models: An interdisciplinary per-
spective. Annual Review of Statistics and Its Application, 10(1).

Stratis, K. (2024). What is Generative AI? A generative Al primer for business and
technical leaders. Sebastopol, CA: O’Reilly Media.

Xu, F., Uszkoreit, H., Du, Y., Fan, W., Zhao, D., & Zhu, J. (2019). Explainable Al: A
brief survey on history, research areas, approaches and challenges. Springer International
Publishing.

Weisz, J. D., He, J., Muller, M., Hoefer, G., Miles, R., & Geyer, W. (2024, May).
Design principles for generative Al applications. In Proceedings of the 2024 CHI Con-

ference on Human Factors in Computing Systems.

Zhao, W., Alwidian, S., & Mahmoud, Q. H. (2022). Adversarial training methods for

deep learning: A systematic review. Algorithms, 15(8).

75



	Introduction
	Research Background and Motivation
	Study Objectives
	Structure of the Work

	Overview of Generative Models
	Definition of Generative Models
	Historical Evolution and Development of Generative Models
	Applications of Generative Models

	Security and Ethics in Deepfake Video Generation
	Deepfakes and Disinformation
	Manipulation of Textual and Visual Content
	Attacks on Generative Models
	Reliability in Generative Models
	Interpretability Methods
	Security and Governance in Generative Models
	Ethical Issues and Bias
	Regulation and Policy

	Experimental Context, Dataset, and Evaluation Criteria
	Experimental Objectives and Context
	Dataset Structure and Composition
	Class Distribution and Imbalance
	Evaluation Metrics for Deepfake Detection Models
	Logarithmic Loss (Log Loss)
	Precision and Recall
	F1 Score
	AUC-ROC
	Weighted Precision

	The Integrated Use of Metrics in Model Validation

	Model Engineering and Architectural Choices
	Introduction to the EfficientNet Family
	Why EfficientNet-B7 Was Selected
	EfficientNet-B7 in Detail
	Architectural Comparison: Alternative Models to EfficientNet-B7
	Computing Environment: Use of a Virtual Machine (VM)

	Experimental Pipeline and Model Implementation
	Preprocessing and Dataset Preparation
	Metadata Parsing and Binary Label Assignment
	Uniform Extraction of 32 Frames per Video (Frame-Based Approach) and Face Detection with MTCNN
	Cropping with Contextual Margin and Resizing to 380×380 px
	Saving Cropped Faces into /real and /fake Directories
	Preprocessing Parallelization with multiprocessing
	Logging, Error Handling, and Reproducibility

	Construction and Organization of the Supervised Dataset
	Generation of the CSV File with Labels and Paths
	Assignment to 5 Folds for Cross-Validation
	Use of Folds for Training/Test Separation
	Handling Class Imbalance via pos_weight

	Implementation of a Custom DataLoader
	Definition of the DeepFakeDataset Class
	Integration with PyTorch DataLoader
	Data Augmentation During Training
	Transformation and Normalization Pipeline

	Training Strategy
	Adapting the Classifier for Binary Classification
	Weighted Binary Cross-Entropy Loss (BCEWithLogitsLoss)
	Optimization with Adam and Learning Rate Configuration
	Training on 5 Folds and Best Model Saving
	Overfitting Control and Epoch Management

	Testing and Inference
	Frame-Level Inference with Model in Evaluation Mode
	Heuristic Aggregation of Frame-Level Predictions
	Final Label Assignment per Video
	Collection of y_true, y_pred, and y_prob for Evaluation
	Prediction on Test Set 1 (10 GB) and Test Set 2 (50 GB)

	Experimental Variations
	Progressive Subsets
	Metadata Generation and Image Management
	Objective: Identifying the Data-Performance Trade-Off
	Epoch Variation: Comparison Between 5 and 10 Epochs
	Robustness and Randomness: Replicability Analysis Using Multiple Seeds

	Comparative Experiments with Alternative Architectures
	Training of ResNet18
	Training of Xception
	Lightweight Architectures: Motivations and Trade-Offs
	Consistency of Transformations and Adapted Configurations


	Empirical Evaluation and Results
	Overview of the Evaluation Protocol
	Key Experimental Variables
	Performance on the 10 GB Test Set
	Performance on the 50 GB Test Set
	Comparison with Alternative Architectures
	Efficiency and Trade-Off Analysis
	Robustness and Repeatability
	Comparative Visualization of Performance
	Summary of Key Results

	General Discussion and Implications
	Ethical and Practical Implications of Detection
	Methodological Limitations and Potential Biases
	Limitations of the Work

	Conclusions and Future Directions
	References

	Titolo tesi prima riga1: Detecting Threats in Generative AI:
Security, Interpretability, and Ethical Issues in Deepfake Content
	Matr1: ID 776831
	AAAA/AAAA1: 2024/2025
	Cattedra1: Big Data And Smart Data Analytics
	Prof2: Prof. Irene Finocchi
	Prof1: Prof. Emilio Coppa
	Dipartimento di1: Degree Program in Data Science and Management


