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Introduction

Option pricing remains among the most critical topics in quantitative finance.

Options are financial derivatives whose value depends on the behavior of an un-

derlying asset. They are widely used for purposes such as speculation, portfolio

insurance, and risk management. As such, constructing accurate and robust pric-

ing models for these instruments is important.

The classical model developed by Black and Scholes in 1973 marked a turning

point in option pricing theory. By assuming constant volatility and a lognormal

distribution for asset prices, the Black-Scholes framework allows for the derivation

of a closed-form solution for European options. Despite its elegance and analytical

tractability, the model fails to capture several well-documented empirical features

observed in real markets.

One of the most notable shortcomings of the Black-Scholes model is its inability

to reproduce the so-called “volatility smile” and “volatility skew”, that are patterns

observed in implied volatilities across different strikes and maturities. In practice,

implied volatility is not flat, as the Black-Scholes model would suggest, but instead

varies systematically.

To address these inconsistencies, more sophisticated models have been pro-

posed. One of the most prominent alternatives is the Heston model, introduced

by Steven Heston in 1993. Unlike Black-Scholes, the Heston model assumes that

volatility itself is a stochastic process, introducing randomness into its evolution
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over time. This added flexibility enables the model to capture the observed smile

effects.

Although other approaches exist, for example, the local volatility model devel-

oped by Dupire, which treats volatility as a deterministic function of time and the

asset level. The core focus of this thesis lies in the implementation, calibration,

and empirical testing of the Heston model. In particular, we aim to assess its

ability to replicate the real market implied volatility surface by calibrating it to a

dataset of European options.

The calibration is carried out using equity options on Bank of America Cor-

poration (BAC), retrieved from Bloomberg Terminal. These data provide implied

volatilities across a range of maturities and deltas.

The Heston model is calibrated by minimizing the discrepancy between ob-

served market prices and those generated by the model. A nonlinear least squares

optimization is applied to find out the five model parameters: long-term variance,

mean-reversion speed, volatility of volatility, initial variance, and correlation be-

tween asset returns and variance. Calibration is performed across a grid of deltas

and maturities, following standard market conventions.

To validate the calibration results, we compare the implied volatility surface

generated by the Heston model with that obtained from market data. As a bench-

mark, we also compute the implied volatility surface resulting from the Black-

Scholes model using the market implied volatilities directly. This comparison

highlights the Heston model’s ability to better fit the market implied volatility.

The improvement is also supported by quantitative error metrics such as the mean

absolute error and the root mean square error.

Through this work, we aim to offer both a rigorous theoretical foundation and

a concrete empirical application of stochastic volatility modeling.

Chapter 1 provides an introduction to the world of derivatives, focusing on the
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fundamental instruments such as forward contracts, futures, and swaps. While

a general overview is presented, the core of the chapter is dedicated to option

contracts.

Chapter 2 establishes the mathematical foundation for option pricing, begin-

ning with the modeling of stock prices via stochastic processes. In particular, the

geometric Brownian motion is introduced as the standard model for asset dynam-

ics, reflecting the log-normality assumption of returns. From this basis, we derive

the celebrated Black-Scholes model for European options, including the derivation

of the Black-Scholes partial differential equation (PDE) and introduce the closed-

form solutions for option prices. Moreover, we discuss the practical limitations

that emerge when applying this model to real-world data.

Chapter 3 shifts the focus to the concept of implied volatility, a key market-

based input for option pricing. By inverting the Black-Scholes formula, practi-

tioners can infer the volatility that is "implied" by observed market prices. When

plotted across different strikes and maturities, the implied volatility surface ex-

hibits systematic patterns, commonly known as the volatility smile and volatility

skew (or smirk). These patterns reveal the failure of the constant volatility assump-

tion in the Black-Scholes framework and motivate the exploration of alternative

models. In this context, we introduce the concept of local volatility and present

the Dupire formula.

The core modeling framework explored in this thesis is presented in Chapter 4,

which is devoted to the Heston model. This stochastic volatility model assumes

that the variance of the underlying asset evolves according to a mean-reverting

square-root process, introducing an additional source of randomness. The chapter

includes the derivation of the Heston PDE for option prices, and show the well-

known semi-analytical solution obtained via Fourier inversion techniques.

Chapter 5 constitutes the heart of this thesis, focusing on the calibration of
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the Heston model to real market data. The calibration process refers to the proce-

dure of adjusting model parameters so that the resulting option prices or implied

volatilities closely match observed market values. The chapter begins with a gen-

eral discussion on model calibration. We then delve into the specific calibration

strategy implemented for this thesis, which includes the optimization of the He-

ston model parameters using MATLAB. A section of the chapter is dedicated to

describing the empirical dataset used in the calibration. The results of the calibra-

tion are then thoroughly presented and interpreted. The fitted Heston surface is

compared with the market surface and with the one produced by the Black-Scholes

model. Finally, the chapter closes with a financial interpretation of the calibrated

parameters and a brief explanation of the use of calibration in finance.
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Chapter 1

Derivatives

Over the last decades, derivatives have become increasingly utilized in the fi-

nancial industry. Some of these financial instruments, like futures and options, are

widely traded on international exchanges, and other derivatives, like forwards and

swaps, are traded over the counter. The derivatives market is huge, it is much big-

ger than the stock market when misured in terms of the value of underlying assets.

Nowadays, it is essential that all professionals working in this field understand how

derivatives work, how they are used, and how they are priced.

A derivative is a contract that involves two parties agreeing to a future transac-

tion. Its value depends on the values of underlying variables. Often, the underlying

variable is represented by the value of a tradable asset, such as in the case of stock

option, that is a derivative whose value is dependent on the price of a stock. The

fact that the underlying variables of derivatives can be of any imaginable type,

such as interest rates, weather conditions, or even the outcome of a specific event,

and that these variables can influence the terms and the payoff of the contract,

makes derivatives really flexible and perfect for investment and risk management

strategies.

Derivatives can be used for hedging, which involves reducing risk by providing a

1



way to insure against price movements. Investors also use derivatives to profit from

price fluctuations of underlying assets, attempting to predict the direction in which

the prices of assets will move. Moreover, traders use derivatives to profit from

discrepancies in prices by engaging in arbitrage which is the practice of exploiting

prices differences of the same or similar financial instruments on different markets

or in different forms.

As we said, derivatives market is enormous, given that either exchange-traded

derivatives and Over-the-counter(OTC) derivatives are enormous. However, even

if the number of derivative transaction per year in OTC markets is smaller than

in exchange-traded markets, the average size of the transactions is much greater.

This means that the volume of the business in the OTC markets is much larger

than in exchange-traded markets.

1.1 Forward contracts

Let’s look at the various types of derivatives. A forward contract is an agree-

ment to buy or sell an asset at a certain future time for a certain price. One of

the parties to a forward contract assumes a long position and agrees to buy the

underlying asset on a certain specified future date for a certain specified price. We

can say that it is the opposite of a spot contract1. One of the main characteristics

is that a forward contract is traded in the OTC market.

1.1.1 Forward Payoff

Let K be the delivery price and ST the spot price of the asset at maturity of

the contract. We can say that, in general, the payoff from a long position in a

forward contract on one unit of an asset is g(ST ) = ST − K. In a similar way, the
1It is an agreement to buy or sell an asset almost immediately
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payoff from a short position in a forward contract to one unit of an asset is K −ST .

Obviously, the payoff can be positive or negative, because we must remember that

the holder of the contract is obligated to buy an asset worth ST for K, in case of

a long position in the contract, or is obligated to sell an asset worth ST for K, in

case of a short position.

Fig. 1.1: Payoffs from forward contracts: (a) long position, (b) short position. Source: [10]

1.2 Futures Contracts

This type of derivative is similar to forward contract. The difference between

the two contracts is that future contracts are usually traded on an exchange. To do

this, the exchange specifies certain standardized characteristics of the contract, this

is done to make the trading possible. The clearing house acts as an intermediary for

all futures transactions. Infact, the main goal of the clearing house is to mitigate

the risk of counterparty default by guaranteeing the performance of both parties

in the contract. The advantage of this is that traders do not have to worry about
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the creditworthiness of the people they are trading with. The clearing house meke

this job by requiring each of the two traders to deposit funds with the clearing

house to ensure that they will live up their obligations.

1.3 Option Contracts

Options ate contracts that are traded both on exchanges and in OTC market.

The contract is done like the other two derivatives that we have seen but with the

difference that the option gives the holder the right to buy or sell the underlying

asset by a certain date, called expiration date or maturity, for a certain price, called

Exercise Price or strike price. The holder has no duty to exercise the right. If the

Holder has the right to buy, the option is called call, otherwise it is called put.

Another important difference is between American option that can be exercised in

any time up to the expiration date, while European option can be exercised only

on the expiration date itself. In the exchange-traded equity option market, one

contract is usually an agreement to buy or sell 100 shares. Thus, there are four

types of participants:

• Buyers of calls,

• Sellers of calls,

• Buyers of puts,

• Sellers of puts.

Selling an option is known as writing an option.

1.3.1 Option Payoff

It is useful to characterize an option in terms of its payoff, that doesn’t include

the initial cost of the option. If K is the strike price and ST is the price of the
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underlying asset at the end of the contract, the payoff from a long position in a

European call option is

g(ST ) = max(ST − K, 0). (1.1)

It occurs because the option will be exercised only if ST > K, otherwise the option

will not be exercised, thus the payoff is 0. On the other hand, the payoff to the

holder of a short position in the European call option is − max(ST − K, 0) =

min(K − ST , 0). The payoff to the holder of a long position in a European put

option is g(ST ) = max(K −ST , 0.) The payoff from a short position in a European

put option is g(ST ) = − max(K − ST , 0) = min(ST − K, 0).

Fig. 1.2: Payoffs from option contracts: (a) long position on call, (b) short position on call, (c)

long position on put, (d) short position on put. Source: [10]
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1.4 Put-Call Parity

This relationship shows that the value of a European Call with a certain exercise

price and exercise date can be deduced from the value of a European put with the

same exercise price and exercise date, and vice versa.

Proposition 1.4.1 (Put-Call Parity). Let c be the price of a European Call option

and p the price of a European Put option, then the following equation holds:

c + Ke−rT = p + S0

Where:

• K is the strike prize of the option

• e−rT represents the exponential discount factor, where r is the risk-free rate

and T is the time to expiration

• S0 is the current price of the underlying asset

This equation is known as put-call parity.

Note: If the put-call parity is not maintained, there would be arbitrage oppor-

tunities.
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Chapter 2

Black-Scholes Model

The Black-Scholes model revolutionized financial economics by providing the

first rigorous framework for option pricing. Developed in 1973, it introduced a

systematic way to determinate the fair value of options under idealized market

conditions. These "ideal conditions" in the market for the stock and for the options

are:

1. The short-term interest rate is known and is constant through time.

2. The stock price follows a random walk in continuous time with a variance

rate proportional to the square of the stock price. Thus the distribution

of possible stock prices at the end of any finite interval is log-normal. The

variance rate of the return on the stock is constant.

3. The stock pays no dividends or other distributions.

4. The option is a "European Option".

5. There are no transaction costs1.
1Costs for buying or selling the stock or the option
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6. It is possible to borrow any fraction of the price of a security to buy or to

hold it, at the short-term interest rate.

7. There are no penalties to short selling2.

Although its assumptions simplify reality, the model’s analytical elegance and

practical utility made it a cornerstone of modern finance.

2.1 Geometric Brownian Motion

Suppose that S(t) denotes the stock price. A lot of random quantities are

normally distributed but it is not so reasonable for S(t), given that the stock price

can not be negative, while with normal distribution, a normal random quantity

X can satisfy P [X < 0] > 0, thus negative stock prices. Therefore, a more

appropriate alternative is the log-normal distribution because preserve S(t) > 0.

A random variable X is log-normal if it is strictly positive and its logarithm,

log(X), is normally distributed. This property aligns well with the characteristics

of stock prices. Define the accumulation factor from time t to u > t as

A(t, u) = S(u)
S(t) ,

If A(t, u) > 1 means that the stock price increases. On the other hand, if A(t, u) <

1, it decreases. The proportional change in the stock price is

A(t, u) − 1 = S(u) − S(t)
S(t) .

We are interested in the values of P[A(t, u) < x] for any given x, and for any given

t, u. To facilitate modeling, we introduce the following assumptions:
2A seller who does not own a security will simply accept the price of the security from a buyer,

and will agree to settle with the buyer on some future date by paying him an amount equal to

the price of the security on that date
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• The distribution of A(t, t + h) depends only on the length of the interval h

and is independent of the starting time t.

• The distribution is even independent of the current stock price S(t) and any

historical prices.

Whether these assumptions imply that the probability distribution of the propor-

tional change in the stock price over the next h units of time does not depend

on its current value or on its historical values. Let us fix t < u. Consider n as

a positive integer, and for each period j = 0, 1, 2, ..., n, define the points in time

tj = t + (j/n)(u − t). As n → ∞, the number of intermediate points increases and

the time steps between them shrink to zero. In this limiting process, we transition

from a discrete-time multiplicative model to a continuous-time formulation. This

leads us naturally to model the stock price dynamics using a stochastic differential

equation (SDE), which accurately captures the infinitesimal behavior of S(t) over

time. Hence, we have t0 = t and tn = u. It follows that

S(u)
S(t) = S(tn)

S(t0)
=
(

S(t1)
S(t0)

)(
S(t2)
S(t1)

)(
S(t3)
S(t2)

)
· · ·

(
S(tn)

S(tn−1)

)
.

Thus,

A(t, u) = A(t0, t1)A(t1, t2) · · · A(tn−1, tn).

Now, if we define L(t, u) = log A(t, u), then we have

L(t, u) = log[A(t0, t1)A(t1, t2) . . . A(tn−1, tn)]

= log[A(t0, t1)] + log[A(t1, t2)] + . . . + log[A(tn−1, tn)]

= L(t0, t1) + L(t1, t2) + . . . + L(tn−1, tn).

From our assumptions, the random variables L(tj−1, tj), 1 ≤ j ≤ n, are inde-

pendent and identically distributed (i.i.d). Given their i.i.d nature, when n is
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sufficiently large, we can invoke the central limit theorem to argue that L(t, u) is

approximately normally distributed.

Under our assumptions, the distribution of L(s, s + t) depends only on t. As

previously stated, we further assume it follows a normal distribution with mean

m(t) and variance v(t). Additionally, the relationship

L(0, t + u) = L(0, t) + L(t, t + u), (2.1)

rapresents a sum of independent normal variables. By computing the mean and

variance in eq. (2.1), we derive

m(t + u) = m(t) + m(u),

v(t + u) = v(t) + v(u).

These functional equations imply that both m(t) and v(t) scale linearly with t.

Hence, there exists a non-negative constant σ such that

m(t) = ct,

v(t) = σ2t.

This linearity has two key interpretations: First, the expected increment of the

process grows proportionally with time, meaning that over longer intervals, the

process tends to increase at a constant rate c. Second, the variability of the ac-

cumulated increments also increases linearly with time, indicating that extended

observation periods lead to greater dispersion in the process’s trajectory. Conse-

quently, for any t < u, we have

log S(u)
S(t) = log A(t, u) = L(t, u)

∼ N(c(u − t), σ2(u − t)).

Let’s work through an example assuming S(0) = 1. We want to compute the

expected value E[S(t)].
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Recall that

S(t) = A(0, t) = exp L(0, t),

and

L(0, t) ∼ N(ct, σ2t),

meaning it can be expressed as L(0, t) = ct + σ
√

tZ, where Z is a standard normal

random variable, i.e., Z ∼ N(0, 1). (This holds because a random variable X that

follows a normal distribution N(µ, σ2t) can be written as X = µ + σ
√

tZ, where

σ is the standard deviation.)

At this point, it is useful to clarify the distinction between Z, dZ, and dWt, as

these notations represent different but related concepts in the modeling framework.

This will become especially important as we transition from discrete-time reasoning

to continuous-time stochastic calculus.

• Z is a standard normal variable, typically used in expressions like X =

µ + σZ, where X ∼ N(µ, σ2).

• Wt is a Brownian motion (or Wiener process), a continuous-time process

with W0 = 0 and increments such that Wt − Ws ∼ N(0, t − s) for t > s.

• dWt is the infinitesimal increment of Wt over an interval dt, and is informally

interpreted as dWt ∼ N(0, dt). It satisfies E[dWt] = 0 and E[dW 2
t ] = dt.

• dZ is sometimes used interchangeably with dWt in the finance literature,

although dWt is the more rigorous notation in continuous-time models.

For this reason

S(t) = A(0, t) = exp(ct + σ
√

tZ)

= ecteσ
√

tZ .

11



Now, taking the expectation:

E[S(t)] = E[ecteσ
√

tZ ] = ectE[eσ
√

tZ ].

We want to compute the expected value of eσ
√

tZ , where Z ∼ N (0, 1). Using the

definition of expectation for continuous random variables:

E[eσ
√

tZ ] =
∫ ∞

−∞
eσ

√
tz · 1√

2π
e−z2/2 dz

= 1√
2π

∫ ∞

−∞
eσ

√
tz− 1

2 z2
dz.

We complete the square in the exponent:

σ
√

tz − 1
2z2 = −1

2
(
z2 − 2σ

√
tz
)

= −1
2(z − σ

√
t)2 + 1

2σ2t.

Substituting back into the integral:

E[eσ
√

tZ ] = 1√
2π

∫ ∞

−∞
e− 1

2 (z−σ
√

t)2+ 1
2 σ2t dz

= e
1
2 σ2t · 1√

2π

∫ ∞

−∞
e− 1

2 (z−σ
√

t)2
dz︸ ︷︷ ︸

1

.

The part that we highlighted is the total area under the probability density function

of a normal distribution with mean σ
√

t and variance 1, which is equal to 1. Hence:

E[eσ
√

tZ ] = e
1
2 σ2t.

= ecteσ2t/2 = e((c+(σ2/2))t).

Writing µ = c + σ2/2, we have: E[S(t)] = eµt. Let µ denote the expected growth

rate of the stock price, while the risk-free interest rate r represents the growth rate

of a risk-free investment. For instance, an investment of one unit at the risk-free

rate at time 0 will grow to ert by time t.
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We say that the stock price process follows a Geometric Brownian Motion (or

Log-normal process) with an expected rate of return (or infinitesimal drift) µ and

volatility σ.

It is important to note that µ, the expected return of this process, is related

to c via:

µ = c + σ2

2 so, c = µ − σ2

2 .

Definition 2.1. Let σ > 0 be the volatility and µ a constant. A Geometric Brow-

nian Motion (or Log-normal process) with expected return µ and volatility σ is a

family of random variables {S(t)}t≥0 satisfying the following properties:

• For each t ≥ 0,u ≥ 0, log S(t+u)
S(t) ∼ N

((
µ − σ2

2

)
u, σ2u

)
.

• For all t ≥ 0,u ≥ 0 and any sequence 0 ≤ s1 < s2 < · · · sn ≤ t,
S(t+u)

S(t) is independent of (S(s1), S(s2), . . . , S(sn)).

Using reasoning similar to that employed in computing E[S(t)], when S(0) = 1,

We conclude that S(t),t ≥ 0 follows a log-normal process with infinitesimal drift

µ and volatility σ. Moreover, if the value of S(t) is known at time t = Tµ ≥ 0

We have: E[S(u)] = S(T )eµ(µ−T ). An alternative way to understand the behavior

of the log-normal process is by examining stock price changes over small time

intervals.

Suppose the stock price S(t) follows a log-normal process with expected return

rate µ and volatility σ. For t ≥ 0 and h ≥ 0,the definition of the log-normal

process gives:

log
(

S(t + h)
S(t)

)
∼ N

((
µ − σ2

2

)
h, σ2h

)
.

Letting Z denotes a standard normal variable, we can express this as,

log
(

S(t + h)
S(t)

)
=
(

µ − σ2

2

)
h + σ

√
hZ,

13



which implies

S(t + h)
S(t) = exp

((
µ − σ2

2

)
h + σ

√
hZ

)
.

Let λ(t, h) represent the proportional change in stock price from time t to t + h:

λ(t, h) = S(t + h) − S(t)
S(t) = S(t + h)

S(t) − 1.

Thus:

λ(t, h) = exp
((

µ − σ2

2

)
h + σ

√
hZ

)
− 1.

Using the Maclaurin series expansion of the exponential function (ex = 1 + x +
x2

2 + x3

3 + · · · ), for small x we have:

ex − 1 ≃ x + x2

2 ,

and for a small h, we can apply this to x = (µ − (σ2/2))h + σ
√

hZ. By ignoring

higher-order terms in h, we obtain:

λ(t, h) ≈
((

µ − σ2

2

)
h + σ

√
hZ

)
+ 1

2σ2hZ2

= µh + σZ
√

h + σ2h

2 (Z2 − 1).

In this expression:

• the first term µh is deterministic.

• the second term σZ
√

h is normally distributed with mean zero and variance

σ2h

• the third term has mean zero (since E[Z2] = 1) and a variance much smaller

than the second term’s (as it scales h rather than
√

h).
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For sufficiently small h, the third term becomes negligible, yielding:

λ(t, h) ≃ µh + σ
√

hZ,

which implies:

λ(t, h) ≃ N(µh, σ2h).

In differential notation, we often write:

• dt instead of h for an infinitesimal time increment

• dS(t) for the stock price change in the time window [t, t + dt]

• dZ (or dW ) for a normal random variable with mean 0 and variance dt,

independent of prior events

This leads to the standard representation: dS(t)
S(t) = λ(t, dt) = µdt + σdZ, or equiva-

lently: dS
S

= µdt + σdZ. This expression describes the instantaneous rate of return

of the stock. It consists of a deterministic part µdt (the drift) and a stochastic

part σdZ (the volatility-driven random shock).

and:

dS = µSdt + σSdZ. (2.2)

2.2 Black-Scholes Model Derivation

To derive the model, we first explore Itô’s Lemma then we obtain the Black-

Scholes PDE, and with this we derive the Black-Scholes Formula for the option

prices.

2.2.1 Itô’s Lemma

Itô’s Lemma is the stochastic counterpart of the chain rule in classical calculus.

It allows us to compute the differential of a function that depends on a stochastic
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process.

Theorem 2.2.1. Suppose that Xt is a diffusion process that satisfies the following

stochastic differential equation:

dXt = a(Xt, t) dt + b(Xt, t) dWt, (2.3)

where a(Xt, t) is the drift term, b(Xt, t) is the diffusion (volatility) term, and Wt

is a standard Brownian motion.

Let u(x, t) be a function such that u ∈ C2,1(R× [0, ∞)), i.e., u is twice contin-

uously differentiable in x and once in t. Define the process Yt = u(Xt, t). Then,

Yt evolves according to the following stochastic differential equation:

du(Xt, t) = ∂u

∂t
(Xt, t) dt + ∂u

∂x
(Xt, t) dXt + 1

2
∂2u

∂x2 (Xt, t) b2(Xt, t) dt. (2.4)

The key difference from the classical chain rule lies in the presence of the second-

order term. In stochastic calculus, we cannot ignore terms like dX2
t . In fact, using

the identity dW 2
t = dt and the Itô product rule, the term dX2

t gives rise to a non-

zero contribution, specifically b2(Xt, t) dt. This correction term is fundamental and

is what allows Itô calculus to properly describe stochastic dynamics.

2.2.2 Application of Itô’s Lemma to Geometric Brownian

Motion

We now apply Itô’s Lemma to a function C = C(S, t), which represents the

price of a derivative (e.g., an option) that depends on both the stock price St and

time t. The function C(S, t) is assumed to be continuously differentiable in t and

twice differentiable in S.

Suppose that the stock price St follows a Geometric Brownian Motion described

by the stochastic differential equation:

dSt = µSt dt + σSt dWt, (2.5)
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where µ is the drift, σ is the volatility, and Wt is a standard Brownian motion.

We are now interested in finding the differential of the function C(St, t) using

the general form of Itô’s Lemma:

du = ∂u

∂t
dt + ∂u

∂x
dXt + 1

2
∂2u

∂x2 b2(Xt, t) dt. (2.6)

We identify the following correspondence:

• Xt = St,

• u(St, t) = C(St, t),

• a(St, t) = µSt,

• b(St, t) = σSt.

Substituting Xt = St and u = C into eq. (2.6), we obtain:

dC = ∂C

∂t
dt + ∂C

∂S
dSt + 1

2
∂2C

∂S2 σ2S2
t dt.

Now, replace dSt from eq. (2.5):

∂C

∂S
dSt = ∂C

∂S
(µSt dt + σSt dWt) = µSt

∂C

∂S
dt + σSt

∂C

∂S
dWt

Substituting back into the expression for dC, we obtain:

dC = ∂C

∂t
dt + µSt

∂C

∂S
dt + σSt

∂C

∂S
dWt + 1

2σ2S2
t

∂2C

∂S2 dt

Finally, grouping all the terms involving dt, we arrive at the full expression:

dC =
(

∂C

∂t
+ µSt

∂C

∂S
+ 1

2σ2S2
t

∂2C

∂S2

)
dt + σSt

∂C

∂S
dWt (2.7)

This is the stochastic differential equation that describes the infinitesimal evolution

of the option price C(St, t) as a function of the underlying asset price and time.
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2.2.3 The Black-Scholes PDE

Now we are able to derive the Black-Scholes PDE, from our SDE (2.7). We now

consider a self-financing portfolio strategy that replicates the value of the option.

Let xt be the number of units held in the risk-free asset and yt the number of units

held in the underlying stock. The value of this portfolio at time t is:

πt = xtBt + ytSt, (2.8)

where Bt is the value of the risk-free asset, which evolves deterministically as:

dBt = rBtdt We choose xt and yt such that the portfolio exactly replicates the

option value at all times, i.e., πt = C(St, t) for all t. Applying Itô’s Lemma to the

portfolio, we differentiate πt:

dπt = xtdBt + ytdSt

= xtrBtdt + yt (µStdt + σStdWt)

= (rxtBt + ytµSt) dt + ytσStdWt. (2.9)

Since the portfolio replicates the option, it must follow the same stochastic dy-

namics. Thus, comparing the drift and diffusion terms in eq. (2.9) and eq. (2.7),

we match the coefficients:

yt = ∂C

∂S
, (2.10)

rxtBt = ∂C

∂t
+ 1

2σ2S2
t

∂2C

∂S2 . (2.11)

We now substitute eq. (2.10) and eq. (2.11) into the identity Ct = πt = xtBt +ytSt

and derive the partial differential equation satisfied by C. Multiply eq. (2.11) by

1 (i.e., isolate rxtBt) and rewrite the identity:

rC = rxtBt + rytSt =
(

∂C

∂t
+ 1

2σ2S2 ∂2C

∂S2

)
+ rS

∂C

∂S
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Rearranging terms gives the celebrated Black-Scholes Partial Differential Equation

(PDE):
∂C

∂t
+ 1

2σ2S2 ∂2C

∂S2 + rS
∂C

∂S
− rC = 0 (2.12)

This equation governs the evolution of the option price under the assumption of

no arbitrage and in a complete, frictionless market with a constant risk-free rate.

2.2.4 Black-Scholes formula

The Black-Scholes PDE (2.12) describes the evolution of the option price

C(S, t). For this reason, we have to introduce the following boundary conditions

for a European call option:

• Terminal condition: C(S, T ) = max(S − K, 0)

• Boundary conditions: C(0, t) = 0 and C(S, t) ∼ S as S → ∞

To directly solve the PDE (2.12), the well-known closed-form solution is:

C(S, t) = SΦ(d1) − Ke−r(T −t)Φ(d2) (2.13)

where Φ(·) is the cumulative distribution function of the standard normal distri-

bution, and

d1 =
log

(
S
K

)
+
(
r + σ2

2

)
(T − t)

σ
√

T − t
,

d2 = d1 − σ
√

T − t.

To verify that eq. (2.13) indeed solves the PDE, we can substitute eq. (2.13) into

eq. (2.12) and check analytically that the PDE is satisfied. The intuitive reasoning

behind the solution, and thus its suitability for finance applications, arises from

the concept of risk-neutral valuation. Specifically, the PDE obtained assumes a

risk-free growth rate r, independent of investors’ risk preferences. This approach is
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the cornerstone of modern derivatives pricing, known as risk-neutral pricing. Thus,

the Black-Scholes formula eq. (2.13) provides the analytic price for a European call

option under the assumptions of the Black-Scholes model, aligning clearly with the

practical financial reasoning used in markets.

2.3 Black-Scholes-Merton Model

In the original Black-Scholes framework, one of the simplifying assumptions

is that the underlying asset pays no dividends. However, many real-world stocks

distribute dividends, which directly affect the option’s value. Thus, the Black-

Scholes model can be extended to include a continuous dividend yield q, assuming

that dividends are paid at a constant proportional rate over time. This extension,

commonly referred to as the Black-Scholes-Merton model, was formally introduced

by Merton (1973) [12]. It adjusts the risk-neutral valuation framework by incorpo-

rating the continuous dividend yield, leading to modified option pricing formulas

that better reflect the reduced expected growth of the underlying asset.

2.3.1 Adjusted Geometric Brownian Motion

When a stock pays a continuous dividend yield q, the stock price dynamics

under the risk-neutral measure are modified as follows:

dSt = (r − q)St dt + σSt dWt,

where q is the continuous dividend yield.

The key change here is that the expected growth rate of the stock under the

risk-neutral measure becomes r −q, reflecting the fact that a portion of the stock’s

return is paid out as dividends and does not contribute to capital gains.
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2.3.2 Adjusted Black-Scholes PDE

Following the same derivation steps as in the dividend-free case, we obtain the

adjusted Black-Scholes Partial Differential Equation:

∂C

∂t
+ (r − q)S ∂C

∂S
+ 1

2σ2S2 ∂2C

∂S2 − rC = 0, (2.14)

where C(S, t) is the price of the option at time t when the underlying asset price

is S.

2.3.3 Adjusted Black-Scholes Formula

For a European call option with continuous dividend yield q, the Black-Scholes

formula becomes:

C(S, t) = Se−q(T −t)Φ(d1) − Ke−r(T −t)Φ(d2), (2.15)

where:

d1 =
log S

K
+ (r − q + 1

2σ2)(T − t)
σ

√
T − t

,

d2 = d1 − σ
√

T − t,

and Φ(·) is the cumulative distribution function of the standard normal distribu-

tion.

The key modification introduced by q is that the present value of the expected

payoff is reduced to account for the continuous outflow of dividends. This impacts

both the drift term in the underlying asset’s stochastic process and the discounted

value of the stock in the pricing formula. For put options, a similar adjustment

applies, ensuring the model remains arbitrage-free under dividend-paying condi-

tions.
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2.4 Limitations

Despite its groundbreaking contribution to financial theory, the Black-Scholes

model presents several notable limitations that restrict its accuracy in real-world

applications. One of the most significant is the assumption of constant volatil-

ity: the model treats the underlying asset’s volatility as fixed over time, whereas

empirical evidence shows that market volatility fluctuates, often systematically,

in ways that produce patterns like the volatility smile or volatility skew, that we

will present in the next chapter. Additionally, the Black-Scholes framework as-

sumes that asset prices follow a continuous log-normal process, implying normally

distributed returns.

Another key limitation is the absence of price jumps or discontinuities: the

model assumes that price paths evolve smoothly, ignoring the possibility of sud-

den jumps due to unexpected news, earnings announcements, or macroeconomic

shocks. Furthermore, Black-Scholes presumes a world with no transaction costs,

no bid-ask spreads, and no restrictions on borrowing or short selling, idealized con-

ditions that rarely hold in practice. Finally, the model was originally developed for

European options, which can only be exercised at maturity, whereas many traded

options are American and can be exercised at any time.

These limitations have spurred the development of more advanced models that

attempt to better capture the complexities of financial markets.
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Chapter 3

Volatility Smile and Skew

3.1 Implied Volatility

The concept of implied volatility plays a central role in this thesis.

Implied volatility is defined as the value of the volatility parameter σ that, as

we saw, when input into the Black-Scholes pricing formula, yields a model option

price equal to the observed market price.

In mathematical terms, given the observed price Cmarket of a European call

option, we solve the following equation for σ:

CBlack-Scholes(S, K, r, T, σ) = Cmarket, (3.1)

where S is the current underlying price, K is the strike price, r is the risk-free

rate, T is the time to maturity, and σ is the volatility.

This approach reflects the market’s collective expectations about the future

variability of the underlying asset, as implied by the option’s price.

In the original Black-Scholes framework, the assumption is that volatility is

constant over the life of the option, independent of strike or maturity. This leads

to the theoretical expectation that implied volatility, when plotted across different
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strike prices and maturities, should form a flat surface, meaning the same value of

σ applies to all options on the same underlying, regardless of their moneyness or

time to expiration.

However, when practitioners compute implied volatilities from real market

data, they often observe systematic patterns and deviations from this flat sur-

face. These empirical phenomena, known as the volatility smile and the volatility

skew, reveal that the assumption of constant volatility is too simplistic to capture

the complexities of financial markets.

In the following sections, we will explore these empirical patterns and highlight

why they motivate the development of more advanced models.

3.2 Volatility Smile and Skew

One of the most well-known empirical patterns observed in options markets is

the volatility smile. When implied volatilities are plotted against strike prices for

options with the same maturity, practitioners often observe a curve that resembles

a smile: implied volatilities are higher for deep in-the-money and deep out-of-the-

money options, and lower for at-the-money options.

The reason behind the volatility smile lies in the market’s recognition that

extreme movements (large upward or downward price jumps) are more likely than

predicted by the Black-Scholes model. Specifically, empirical distributions of asset

returns tend to exhibit fat tails, meaning that large deviations from the mean occur

more frequently than under the normal distribution assumed by Black-Scholes.

Investors, aware of this, are willing to pay a premium for options that protect

against extreme market moves, leading to higher implied volatilities for strikes far

away from the current price. Furthermore, the implied volatility curve is not always

symmetric: many markets display an asymmetric pattern known as the volatility
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skew or volatility smirk. For example, in equity and index option markets, implied

volatilities tend to increase as strike prices decrease, meaning that out-of-the-

money puts are typically priced with higher implied volatilities than out-of-the-

money calls.

This asymmetry is largely attributed to the market’s anticipation of downside

risk: large negative moves tend to be more abrupt and severe than large positive

moves, so investors are willing to pay a premium for put options that hedge against

such events.

Figure 3.1 provides a synthetic example of a volatility surface where both the

smile and skew effects are visible, highlighting how implied volatilities vary with

strike price and time to expiry.

Fig. 3.1: Synthetic volatility surface with base level, skew, and smile components.

Source: own elaboration with Matlab
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3.2.1 Dupire’s Formula

The local volatility model, introduced by Bruno Dupire [7], extends the Black-

Scholes framework by allowing volatility to vary deterministically with both time

and the current level of the underlying. Under the risk-neutral measure, the asset

price St follows the stochastic differential equation:

dSt = (r − q)St dt + σloc(t, St)St dWt, (3.2)

where:

• r is the constant risk-free rate,

• q is the continuous dividend yield,

• Wt is a standard Brownian motion under the risk-neutral measure,

• σloc(t, St) is the local volatility function.

To connect market-observed European call prices to the local volatility func-

tion, we derive the celebrated Dupire formula. The starting point is the Fokker-

Planck equation, which governs the evolution of the density p(T, S) of ST :

∂p

∂T
= − ∂

∂S

[
(r − q)Sp

]
+ 1

2
∂2

∂S2

[
σ2

loc(T, S)S2p
]
. (3.3)

The value of a European call option with strike K and maturity T is given by:

C(T, K) = e−rT
∫ ∞

K
(S − K)p(T, S) dS. (3.4)

We now compute the derivatives of C(T, K):

∂C

∂K
= −e−rT

∫ ∞

K
p(T, S) dS, (3.5)

∂2C

∂K2 = e−rT p(T, K). (3.6)

26



Differentiating eq. (3.4) with respect to T :

∂C

∂T
= −re−rT

∫ ∞

K
(S − K)p(T, S) dS + e−rT

∫ ∞

K
(S − K) ∂p

∂T
(T, S) dS.

We now substitute the Fokker-Planck eq. (3.3) into the second integral:

∂C

∂T
= −rC(T, K) + e−rT

∫ ∞

K
(S − K)

[
− ∂

∂S
((r − q)Sp) + 1

2
∂2

∂S2 (σ2S2p)
]

dS.

We apply integration by parts twice. For the drift term:∫ ∞

K
(S − K)

(
− ∂

∂S
[(r − q)Sp]

)
dS = (r − q)

∫ ∞

K
(S − K)p(T, S) dS.

For the diffusion term:∫ ∞

K
(S − K)

(
1
2

∂2

∂S2 [σ2S2p]
)

dS = 1
2σ2(T, K)K2p(T, K).

Putting all together:

∂C

∂T
= −rC(T, K) + e−rT

[
(r − q)

∫ ∞

K
(S − K)p(T, S) dS + 1

2σ2(T, K)K2p(T, K)
]

.

(3.7)

From the eq.3.6 we can write:

p(T, K) = erT ∂2C

∂K2 . (3.8)

Furthermore, taking the derivative of C(T, K) with respect to K, eq.(3.5) Multi-

plying both sides by K:

K
∂C

∂K
= −Ke−rT

∫ ∞

K
p(T, S) dS. (3.9)

Now, summing the original expression C(T, K) and K ∂C
∂K

:

C(T, K) + K
∂C

∂K
= e−rT

[∫ ∞

K
(S − K) p(T, S) dS − K

∫ ∞

K
p(T, S) dS

]
. (3.10)

= e−rT
[∫ ∞

K
S p(T, S) dS − K

∫ ∞

K
p(T, S) dS

]
= e−rT

∫ ∞

K
(S − K) p(T, S) dS.

(3.11)
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Thus, we recover the identity:∫ ∞

K
(S − K)p(T, S) dS = erT

[
C(T, K) + K

∂C

∂K

]
, (3.12)

so, taken this identity with eq.(3.8) an put inside eq.(3.7),

∂C

∂T
= −rC(T, K) + (r − q)

[
C(T, K) + K

∂C

∂K

]
+ 1

2σ2(T, K)K2 ∂2C

∂K2 .

Which simplifies to:

∂C

∂T
+ qK

∂C

∂K
+ qC = 1

2σ2
loc(T, K)K2 ∂2C

∂K2 . (3.13)

Solving for the local volatility yields the Dupire formula:

σ2
loc(T, K) =

∂C
∂T

+ qK ∂C
∂K

+ qC
1
2K2 ∂2C

∂K2

. (3.14)

Once the local volatility surface σlocal(T, K) is computed from observed market

option prices via Dupire’s formula, it must be transformed into a function of time

and the spot price, σlocal(t, St), for use in the asset price dynamics. This transfor-

mation typically involves either interpolation techniques or a numerical inversion

of the pricing PDE.

Once σlocal(t, S) is available, the pricing of European options no longer relies

on closed-form solutions, as in the Black-Scholes model. Instead, two primary

numerical methods are commonly employed:

• The PDE method: One can solve the forward pricing partial differential

equation using finite difference methods1. The PDE for the option price

C(t, S) becomes:

∂C

∂t
+ (r − q)S ∂C

∂S
+ 1

2σ2
local(t, S)S2 ∂2C

∂S2 − rC = 0, (3.15)

how we can see this is the eq.(2.14) but modified for the local volatility.
1Finite difference methods are numerical techniques for solving differential equations by ap-

proximating derivatives with differences over a discrete grid in time and space. This transforms

the PDE into a system of algebraic equations that can be solved iteratively.
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• Monte Carlo simulation: Alternatively, the dynamics of the underlying asset

can be simulated using the SDE(3.2) and option prices are computed as

discounted expectations of the payoff with a Monte Carlo Simulation2.

These numerical approaches allow practitioners to evaluate option prices even

in the absence of analytical pricing formulas.

Despite its ability to fit the implied volatility surface, the local volatility model

presents notable limitations. Its deterministic nature prevents it from capturing

the stochastic evolution of volatility observed in the markets, leading to unrealistic

smile dynamics. Another important drawback is the instability in the calibration

process: small perturbations in market data can lead to large variations in the

estimated local volatility surface. So, these issues motivate the adoption of more

sofisticated models.

2See appendix A.1
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Chapter 4

Heston Model

The Heston model was developed to overcome one of the key limitations of

the Black-Scholes framework: the assumption of constant volatility. While the

Black-Scholes model assumes, as we said, that the volatility of the underlying

asset remains fixed over the life of the option, empirical evidence shows that in

real markets, volatility fluctuates over time and exhibits systematic patterns such

as the volatility smile and volatility skew that we have shown in the last chapter.

The central idea behind the Heston model is to treat volatility itself as a

stochastic process, allowing it to evolve randomly over time alongside the asset

price. By doing so, the model captures richer market dynamics and provides a

more realistic description of option prices.

4.1 Heston Model Derivation

4.1.1 Feller Square-Root Process

The FSR process (1954) is a stochastic process used to model quantities that

must remain non-negative, such as interest rates or variances. It was introduced
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in finance by Cox Ingersoll and Ross in 1985 to model the short interest rate. It

is defined as solution of the following stochastic differential equation

dvt = κ(v − vt)dt + σ
√

vtdWt (4.1)

where:

• κ is the rate at which the process reverts to its long-term mean v.

• v is the long-term average level of the process.

• σ is the volatility of the process (sometimes called “volatility of volatility”

or vol of vol although it is actually the volatility of variance).

• Wt is a standard Brownian motion.

The FSR process guarantees the positiveness of vt, provided the Feller condition1

holds:

2κv ≥ σ2. (4.2)

This condition ensures that the stochastic variance does not become negative,

which is crucial when modeling financial variables like volatility.

4.1.2 Heston Model Dynamics

Built on the FSR process, the Heston model describes the joint evolution of the

asset price St and its variance vt through a system of two stochastic differential

1This condition arises because the FSR process is a square-root diffusion, and from stochastic

process theory we have that if 2κv ≥ σ2, the mean reversion force dominates random shocks,

making the zero boundary inaccessible and ensuring variance remains strictly positive.
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equations,

dSt = rStdt + √
vtStdW1,t, (4.3)

dvt = κ(v − vt)dt + σ
√

vtdW2,t, (4.4)

E[dW1,tdW2,t] = ρdt. (4.5)

Here:

• r: risk-free interest rate.

• vt: instantaneous variance at time t.

• ρ: correlation between the Brownian motions W1,t (driving the asset) and

W2,t (driving the variance).

As we can see, the asset price evolves similarly to Black-Scholes but now has a

stochastic variance, while the variance itself follows a mean-reverting FSR process.

The correlation ρ between asset and variance innovations allows the model to

capture asymmetries and leverage effects observed in real markets.

4.1.3 Itô’s Lemma

In the Black-Scholes framework, the option price C(St, t) depends only on two

variables: the asset price St and time t. Applying Itô’s Lemma, we used the

one-dimensional form:

du = ∂u

∂t
dt + ∂u

∂x
dXt + 1

2
∂2u

∂x2 b2(Xt, t) dt, (4.6)

where u(x, t) = C(St, t) and Xt = St. In the Heston model, the option price

C(St, vt, t) depends on three variables: time t, asset price St, and variance vt. We

therefore apply Itô’s Lemma for functions of two stochastic variables:

du = ∂u

∂t
dt + ∂u

∂x
dXt + ∂u

∂y
dYt + 1

2
∂2u

∂x2 (dXt)2 + 1
2

∂2u

∂y2 (dYt)2 + ∂2u

∂x∂y
dXt dYt,

(4.7)
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where u(x, y, t) = C(St, vt, t), Xt = St, Yt = vt. We now substitute the Heston

dynamics:

dSt = rStdt + √
vtStdW1,t, (4.8)

dvt = κ(v − vt)dt + σ
√

vtdW2,t, (4.9)

E[dW1,tdW2,t] = ρdt, (4.10)

We compute the quadratic terms:

(dSt)2 = vtS
2
t dt, (4.11)

(dvt)2 = σ2vt dt, (4.12)

dSt dvt = ρσvtSt dt. (4.13)

Therefore, applying Itô’s Lemma gives:

dC = ∂C

∂t
dt + ∂C

∂S
dSt + ∂C

∂v
dvt + 1

2
∂2C

∂S2 vtS
2
t dt + 1

2
∂2C

∂v2 σ2vt dt + ∂2C

∂S∂v
ρσvtSt dt.

(4.14)

Finally, grouping all the terms involving dt, we arrive at the full stochastic differ-

ential equation describing the infinitesimal evolution of the option price under the

Heston model:

dC =
∂C

∂t
+ rSt

∂C

∂S
+ κ(v − vt)

∂C

∂v
+ 1

2vtS
2
t

∂2C

∂S2 + 1
2σ2vt

∂2C

∂v2 + ρσvtSt
∂2C

∂S∂v

dt

+ √
vtSt

∂C

∂S
dW1,t + σ

√
vt

∂C

∂v
dW2,t.

(4.15)

4.1.4 From the SDE to the Heston PDE

Starting from the stochastic differential eq. (4.15), we construct a self-financing

replicating portfolio:

πt = xtBt + ytSt + ztvt, (4.16)
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where xt is the position in the risk-free asset Bt, yt is the position in the risky asset

St, and zt is the position in the variance process vt. The dynamics of the portfolio

is

dπt = xtrBtdt + yt(rStdt + √
vtStdW1,t) + zt(κ(v − vt)dt + σ

√
vtdW2,t). (4.17)

Since the portfolio replicates the option, we require

πt = C(St, vt, t). (4.18)

To eliminate the stochastic terms, we match

yt = ∂C

∂S
, zt = ∂C

∂v
. (4.19)

Focusing now on the deterministic (drift) part, we have

dπt =
(

xtrBt + rSt
∂C

∂S
+ κ(v − vt)

∂C

∂v

)
dt. (4.20)

From the replicating condition, we solve for xtrBt

xtrBt = rC − rSt
∂C

∂S
− κ(v − vt)

∂C

∂v
. (4.21)

Therefore, the total drift becomes

dπt =
rC − rSt

∂C

∂S
− κ(v − vt)

∂C

∂v
+ rSt

∂C

∂S
+ κ(v − vt)

∂C

∂v
(4.22)

+ ∂C

∂t
+ 1

2vtS
2
t

∂2C

∂S2 + 1
2σ2vt

∂2C

∂v2 + ρσvtSt
∂2C

∂S∂v

dt. (4.23)

Semplifying:

dπt =
rC + ∂C

∂t
+ 1

2vtS
2
t

∂2C

∂S2 + 1
2σ2vt

∂2C

∂v2 + ρσvtSt
∂2C

∂S∂v

dt. (4.24)

So, now we can say that after simplifying the portfolio drift, we are left with a

purely deterministic (riskless) component. As a result, the portfolio πt behaves like
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a risk-free asset, and under the risk-neutral measure, it must grow at the risk-free

rate r. Therefore, we impose the no-arbitrage condition

dπt = rC dt. (4.25)

Equating the drift expression derived from the SDE (4.15) with the no-arbitrage

condition eq. (4.25), and rearranging, we obtain the Heston PDE (4.26),

∂C

∂t
+ rSt

∂C

∂S
+ κ(v − vt)

∂C

∂v
+ 1

2vtS
2
t

∂2C

∂S2 + 1
2σ2vt

∂2C

∂v2 + ρσvtSt
∂2C

∂S∂v
− rC = 0.

(4.26)

4.1.5 Semi-Analytical Solution

Although the Heston PDE (4.26), formally governs the option price dynamics,

solving this equation numerically can be computationally intensive. Fortunately,

Heston (1993) [9] proposed a semi-analytical solution for European options that

avoids solving the PDE directly. The idea is to express the European call option

price under the risk-neutral measure as

C(S, v, t) = SP1 − Ke−r(T −t)P2, (4.27)

where P1 and P2 are risk-neutral probabilities defined as:

• P1: the probability that the option finishes in-the-money under the Q1 mea-

sure, linked to the asset’s expected value discounted at the risk-free rate.

• P2: the probability that the option finishes in-the-money under the Q2 mea-

sure, related to the option’s discounted strike.

These probabilities are computed using the characteristic function ϕ(u) of the

log-asset price,

Pj = 1
2 + 1

π

∫ ∞

0
Re

[
e−iu log Kϕj(u)

iu

]
du, j = 1, 2, (4.28)
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where ϕj(u) is the characteristic function under each probability measure Qj.

Specifically, the characteristic function under the Heston model takes the form

ϕ(u; t, S, v) = eC(u,τ)+D(u,τ)v+iu log S, (4.29)

where τ = T − t is the time to maturity, and the functions C(u, τ) and D(u, τ) are

C(u, τ) = riuτ + κv

σ2

[
(b − d)τ − 2 log 1 − ge−dτ

1 − g

]
, (4.30)

D(u, τ) = b − d

σ2

(
1 − e−dτ

1 − ge−dτ

)
, (4.31)

with

d =
√

(ρσiu − b)2 − σ2(2αiu − u2), (4.32)

g = b − d

b + d
, (4.33)

b = κ + λ − ρσiu, (4.34)

α = −u2

2 − iu

2 , (4.35)

where λ is the market price of volatility risk, typically set to zero under risk-neutral

valuation.

This semi-analytical solution provides a foundation for pricing options close to

the observed market option prices.
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Chapter 5

Calibration

As presented in the previous chapter, the Heston model extends the Black-

Scholes framework by allowing volatility to evolve stochastically. This is achieved

by introducing five parameters that are not directly observable from market data.

Unlike the Black-Scholes model, where the volatility can be inferred from a single

market price, the Heston model requires a more involved procedure to estimate

all five parameters simultaneously. This leads to what is known as “calibration

problem”.

Calibration refers to the procedure of determining the model parameters that

allow the model to reproduce observed market prices as closely as possible. Cali-

bration becomes the key tool for inferring them from data.

In mathematical terms, the calibration problem can be formulated as an op-

timization task, where one aims to minimize the discrepancy between the model

output and the market data.

Proposition 5.0.1. Let Vmarket denote the observed market prices and Vmodel(θ)

the corresponding model prices for the parameter set θ. The calibration problem is

thus explain as

min
θ∈P

f (Vmodel(θ), Vmarket) , (5.1)
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where f is a loss function measuring the error between model and market prices,

and P is the domain of admissible parameter values (typically bounded by financial

or mathematical constraints, as we can see later).

5.1 General Calibration Strategies

The solution of a calibration problem depends on several modelling and nu-

merical choices. In this section, we describe the main components that define a

calibration strategy, independently of the specific model under consideration.

The performance and stability of the calibration process are strongly influenced

by some definitions, that are:

• The choice of the loss function;

• The numerical method adopted to solve the optimization problem;

• The use of constraints or penalty terms to ensure arbitrage-free and stable

solutions.

The goal is to provide a general point of view, which will be applied in a specific

way to the Heston model.

5.1.1 Objective Functions

As we said the definition of the objective function, that we called before "loss

function", is a central component of any calibration because that quantifies the

difference between model outputs and market observations as described in eq. (5.1).

Beyond this, the specific form of the loss function has a significant impact on the

behaviour of the calibration algorithm. In fact, it directly shapes the optimization

landscape and thus influences three key aspects of the calibration process:
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• Convergence: the smoothness and convexity of the objective function affect

how easily the optimization algorithm can approach a minimum. For exam-

ple, a poorly scaled1 loss function may create flat regions or multiple local

minima, making it harder to converge.

• Accuracy: the weighting and normalization applied inside the loss function

determine which parts of the data are fitted more precisely. Using a relative

or vega-weighted loss can improve accuracy in regions that are more relevant

from a pricing or hedging perspective (e.g., at-the-money options).

• Robustness: a well-constructed loss function avoids overfitting to noisy data

and produces stable parameter estimates. Incorporating regularization or

normalizing by market prices helps reduce the sensitivity to small perturba-

tions or data irregularities.

In general, the most common loss functions used in option pricing calibration are

based on: Prices, volatilities and vega weighted loss.

Let Vmarket,i and Vmodel,i(θ) be the market and model prices of option i, and let

N2 be the number of input data points used in calibration. A classical price-based

objective function is the mean square error (MSE)

fMSE(θ) = 1
N

N∑
n=1

(Vmodel,n(θ) − Vmarket,n)2 . (5.2)

Alternatively, one can use the relative mean square error (RMSE), normalized by

market price,

frel(θ) = 1
N

N∑
n=1

(
Vmodel,n(θ) − Vmarket,n

Vmarket,n

)2

. (5.3)

1A poorly scaled loss function may lead to numerical instability during optimization. This oc-

curs when the errors associated with different options have vastly different magnitudes, typically

because option prices vary widely across strikes and maturities.
2For example, if 10 maturities and 17 delta values are used to construct the implied volatility

surface, then N = 10 × 17 = 170.
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Indeed, the relative error is often preferred over absolute differences because it

naturally normalizes the pricing error with respect to the scale of each option.

This allows for a more balanced treatment of deep in-the-money, at-the-money, and

out-of-the-money options, avoiding the overweighting of options with high nominal

prices. As discussed in [14] and [11], using relative errors leads to a more stable

and robust calibration, especially when the price range is heterogeneous3. About

Implied volatility-based loss functions, these are often preferred because volatilities

are less sensitive to discounting, this is because option prices are affected by the

discounting of future payoffs, and thus depend heavily on the interest rate and

time to maturity. Implied volatilities, being derived from prices through inversion,

tend to be less sensitive to such effects, making them more stable and easier to

compare across different maturities. So, let σmodel,n(θ) and σmarket,n be the model

and the market implied volatility values of option n, thus

fσ(θ) = 1
N

N∑
n=1

(σmodel,n(θ) − σmarket,n)2 . (5.4)

The choice between these alternatives depends on data availability and model

structure. Price-based loss functions are more robust when working with deep

ITM/OTM options [14, 11], whereas volatility-based loss functions better reflect

market quoting conventions4.

In some cases, the loss function is weighted by the sensitivity of each option to

volatility, a quantity known as vega.

Proposition 5.1.1. The vega Vn of an option measures how much the option price
3A heterogeneous price range refers to the situation where option prices vary significantly

across strikes and maturities. For example, deep in-the-money options may have prices close to

the underlying asset, while deep out-of-the-money options may be worth only a few cents.
4Volatility is often the preferred quoting metric in derivative markets. Market participants

typically refer to the implied volatility surface rather than to the raw option prices when quoting,

trading, and calibrating.
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changes in response to a small change in implied volatility, i.e.,

Vn = ∂Vn

∂σ
. (5.5)

It tends to be largest for options that are at-the-money (ATM) and with short

to medium maturities, and smallest for deep in-the-money or out-of-the-money

options. A common formulation is the vega-weighted loss

fV(θ) =
N∑

n=1

(
Vmodel,n(θ) − Vmarket,n

Vn

)2

, (5.6)

where Vn is the vega of option n.

This approach improves the calibration quality by emphasizing options with

high sensitivity to volatility, such as ATM options, and down weighting those with

low vega, which are often less liquid or more prone to pricing noise.

5.1.2 Optimization Algorithms

The calibration of financial models is typically formulated as a nonlinear con-

strained optimization problem. Solving such problems requires the use of opti-

mization algorithms numerical procedures that explore the parameter space to

minimize a given objective function.

A central concept in optimization is the distinction between local and global

minima.

Proposition 5.1.2. A parameter set θ∗ is called a local minimum if there exists

a neighborhood around θ∗ such that

f(θ∗) ≤ f(θ), for all θ in a neighborhood of θ∗. (5.7)

Proposition 5.1.3. It is a global minimum if this inequality holds for all θ in the

admissible set P

f(θ∗) ≤ f(θ), ∀ θ ∈ P . (5.8)
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Nonlinear models such as Heston often lead to loss functions with multiple local

minima, making the choice of algorithm and initial guess particularly important,

because if you do not guess very well the initial parameters, there is the possibility

to stumble upon a local minimum.

Among the most commonly used methods in practice are gradient-based algo-

rithms, which rely on information from the first or second derivatives of the loss

function.

Gradient Descent This is the simplest iterative method based on first-order

information. At each iteration, the parameters are updated along the direction of

steepest descent,

θk+1 = θk − η∇f(θk), (5.9)

where η > 0 is the step size, also called learning rate. The gradient ∇f(θk) points

in the direction of maximal increase of the loss function, so its opposite reduces it.

The convergence depends critically on η: if too large, the method may overshoot;

if too small, it may converge very slowly.

Newton’s Method While gradient descent only uses first-order information,

Newton’s method includes curvature by incorporating the second derivative (the

Hessian matrix H(θ)). The update step becomes

θk+1 = θk − H−1(θk)∇L(θk). (5.10)

This method converges much faster but requires the computation and inversion of

the Hessian, which may be computationally intensive and unstable if H is non-

invertible.

In summary, both methods aim to descend the loss surface:

• Gradient descent follows the slope, using only direction and a fixed step.
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• Newton’s method uses both slope and curvature, adapting the step to the

geometry of the surface.

5.1.3 Constraints and Regularization

In practical calibration problems, simply minimizing a loss function may lead

to solutions that are numerically unstable or economically unrealistic. To address

this, one often incorporates constraints and regularization terms into the optimiza-

tion framework. These mechanisms help ensure that the calibrated parameters

remain useful for the purpose.

Constraints are imposed directly on the parameters, to enforce financial or

mathematical validity. Typical constraints include:

• Non negativity: Ensuring that parameters such as variances or volatilities

remain positive;

• Upper and lower bounds: bounding parameters to lie within a reasonable

range derived from empirical studies or market intuition;

• No-arbitrage conditions.

These constraints are typically enforced through the optimizer.

Regularization augments the objective function with penalty terms that dis-

courage certain undesirable behaviors. Formally, the modified loss function be-

comes

freg(θ) = L(θ) + λR(θ), (5.11)

where R(θ) is a regularization term and λ > 0 is a penalty weight controlling the

trade-off between data fit and regularity. The most common regularizations are:

• L2 penalty or ridge or Tikhonov, that discourages large parameter values,

R(θ) = ∥θ∥2
2 =

d∑
j=1

θ2
j ; (5.12)

45



• L1 penalty or LASSO that encourages sparsity in the parameter vector,

R(θ) = ∥θ∥1 =
d∑

j=1
|θj|; (5.13)

• Elastic net, a combination of both L1 and L2 penalties to balance both

methods,

R(θ) = α∥θ∥1 + (1 − α)∥θ∥2
2; (5.14)

• Smoothness penalties that discourage rapid changes in volatility surfaces or

other model-implied quantities.

In Appendix A.3 there is the difference between the two types of norms that we

used. These regularization techniques are particularly useful when dealing with ill-

posed calibration problems, or when market data is noisy. In [8] we saw that intro-

ducing regularization can significantly improve the robustness and interpretability

of the calibrated model.

From a financial point of view, constraints reflect prior knowledge about the

plausible range of parameters, while regularization acts as a safeguard against

overfitting.

5.2 Data

For the calibration and empirical analysis of the Heston model, we use real

market data obtained from Bloomberg for the stock "BANK OF AMERICA" or

[BAC]5 as of 16 May 2025. We choose BAC as the underlying asset due to the

high liquidity of its equity options, and a good range of available maturities and

strikes, and comprehensive data coverage on Bloomberg. These properties make it

an ideal candidate for our calibration. The data includes the implied volatilities,
5The market ticker of Bank of America Corporation.

46



option deltas, strikes, risk-free interest rates, and dividend yields for a range of

maturities, in particular it goes from 23 May 2025, so 1 week after the current day,

to 16 May 2035, so ten years after the current day.

Bloomberg provides implied volatilities across maturities and deltas, which

represent the sensitivity of the option price with respect to the underlying as-

set. Rather than organizing the volatility surface by strike directly, Bloomberg

often quotes implied volatilities as a function of delta and maturity, especially for

OTC (over-the-counter) markets. This is because delta provides a more stable

and model-independent measure of moneyness across time and market conditions.

Unlike strike prices, which are absolute and shift in relevance as the spot price

moves, the delta directly reflects the option’s sensitivity to the underlying asset

and maintains a consistent economic meaning across maturities and volatilities.

Therefore, quoting in delta allows market participants to compare options with

similar exposure across time. This stability is one of the main reasons why fi-

nancial data providers, including Bloomberg, prefer delta-based grids for quoting

volatility.

In particular, we obtain implied volatilities for both put and call options across

a grid of deltas and maturities. For each entry, Bloomberg also reports the corre-

sponding strike price, so that the implied volatility surface can be mapped directly

to the strike and maturity space. Volatilities are quoted in annualized percentage

terms and were converted to decimal form for calibration. All maturities were also

transformed into fractional years to obtain time-to-maturity values τ consistent

with continuous-time option pricing models.

Moreover, from Bloomberg we also collect the term structures of the risk-free

rate and the dividend yield. These are required inputs for both the Black-Scholes

formula and the Heston model pricing equations. For each maturity, we obtain:

• the zero-coupon risk-free rate (from government bond yields),
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• the implied dividend yield (computed from the spot-forward relationship).

Figure 5.1 shows the implied volatility surface organized by delta and maturity,

along with the associated strike prices. Figure 5.2 presents the term structures of

the risk-free rate and the dividend yield. Note that in the Bloomberg volatility

surface interface, values shown in orange represent market quotes that are directly

observed or interpolated using liquid instruments, while values shown in gray are

extrapolated estimates beyond the liquid region of the surface. These gray entries

are typically the result of Bloomberg’s internal interpolation and extrapolation

algorithms when no direct quotes are available for that specific combination of

delta and maturity.

To improve the quality and stability of the calibration, we apply a truncation

of the dataset. In particular, we exclude option maturities that are either too

short or too long, specifically, less than 2 months or more than 5 years, since it

is well documented that the Heston model performs poorly in these regimes due

to instability in short-term implied volatility fits and unrealistic extrapolations

in long-term dynamics [6, 14], that we have just described. Therefore, the final

maturity range used for calibration is restricted to [ 2
12 , 5] years. The following is

the Matlab code related to the truncation,

% Truncation to keep maturities between 2 months and 5 years

valid_idx = (tau >= 2/12) & (tau <= 5);

vol0 = vol0( valis_idx )

K = K( valid_idx );

tau = tau( valid_idx );

r = r( valid_idx )

q = q( valid_idx )
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Fig. 5.1: Implied volatilities and strikes by delta and maturity for Bank of America (Bloomberg,

16 May 2025).

Source: Bloomberg Terminal

Fig. 5.2: Risk-free rate and dividend yield term structures for Bank of America (Bloomberg,

16 May 2025).

Source: Bloomberg Terminal

The final goal of our calibration is to create a model that can fit the volatility

surface displays in Figure 5.3, that is the raw implied volatility surface retrieved

from Bloomberg, before any model fitting.

To plot our volatility surface, for convention, we use only negative values, but
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they mean from [-0.5,0] for delta put and [-1,-0.5] for delta call.

Fig. 5.3: Initial implied volatility surface from Bloomberg data.

The surface is expressed as a function of delta and maturity.

Source: own elaboration with Matlab

5.3 Methodology

To implement the calibration strategy in practice, we adopt a structured work-

flow, summarized in Figure 5.4. This scheme traces the full calibration path high-

lighting each conceptual step and its corresponding Matlab function. Following the

workflow, we describe each component of the methodology adopted for calibrating

the Heston model.

5.3.1 Market Prices Using the Black-Scholes Formula

Given Strikes K, maturities τ(τ = T − t), implied volatilities σ, the spot price

S0, the risk-free rate r(τ), and the continuous dividend yield q(τ), we compute the
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market-consistent option prices using the standard Black-Scholes formula for calls

and puts that we have derived in eq. (2.3.3)

V = v
[
S0e

−qτ Φ(d1) − Ke−rτ Φ(d2)
]

, (5.15)

with

d1 =
log

(
S0
K

)
+ (r − q + 1

2σ2)τ
σ

√
τ

, (5.16)

d2 = d1 − σ
√

τ , (5.17)

where v = +1 for calls and v = −1 for puts. The main differences between this

formula is and eq. (2.15) is that this formula is valid for both puts and calls that

depends on the sign of v and that we use S0 to describe the value of the underlying

asset.

This step transforms the observed implied volatilities into market prices that

will serve as the reference for model calibration. The relevant code in Matlab is

d1 = (log(S0./K)+( r_mat -q_mat +0.5* vol .^2).* tau_mat ) ...

./( vol .* sqrt( tau_mat ));

d2 = d1 - vol .* sqrt( tau_mat );

V = theta_mat .*( S0*exp(-q_mat .* tau_mat ).* normcdf ( theta_mat .*d1) ...

-K.* exp(-r_mat .* tau_mat ).* normcdf ( theta_mat .*d2 ));

These computed prices Vmarket constitute the target surface to which the Heston

model will be calibrated in subsequent steps.

5.3.2 Option Prices with the Heston Model

As described in the previous chapter 4, given the Heston model parameters

p = (κ, v, σ, ρ, v0), that before we called θ , we compute the theoretical option

prices using a Fourier-based method inspired by the original approach of Heston
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(1993) [9].

The function europeanPricing.m implements this method, incorporating even the

term structures of the risk-free rate r(τ) and dividend yield q(τ) as retrieved from

Bloomberg.

Below we describe the key steps in the pricing routine, with inline explanations

of the Matlab code:

% Input: model parameters and market data

kappa = p(1); % Rate of mean reversion

theta = p(2); % long -term variance level

sigma = p(3); % volatility of volatility

rho = p(4); % correlation between weiner processes

v0 = p(5); % initial variance

The input also includes the option maturity τ , strike price K, spot price S0, and

the yield curves r and q for each maturity.

% Fourier grid parameters

u = 80; % upper bound of integration domain

ngrid = 2^12; % number of evaluation points

dxi = pi / u; % spacing in Fourier space

xi = dxi * (0: ngrid -1); % frequency grid

• u determines how far we evaluate the option payoff across possible asset

price changes. A wider range (larger u) improves accuracy but increases

computation time.

• ngrid is the number of evaluation points on the frequency grid. Using a

power of two allows efficient computation via the Fast Fourier Transform

(FFT)6.
6The Fast Fourier Transform (FFT) is an algorithm that allows efficient evaluation of Fourier
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• dxi sets the spacing between points in the frequency grid and ensures nu-

merical stability.

• xi is the actual grid of frequencies where we evaluate the characteristic func-

tion.

To ensure numerical stability when evaluating the Fourier transform, a damping

factor α is introduced. This technique smooths the payoff function and guarantees

convergence.

% Damping factor

if theta > 0

alpha = -3; % call option

else

alpha = 4; % put option

end

xi_shifted = xi + 1i * alpha;

We then compute the characteristic function of the log-price under the Heston

model, which captures the full distributional behaviour of the asset price under

stochastic volatility.

% Auxiliary variables for the characteristic function

c = kappa - rho * sigma * 1i * xi_shifted ;

d = sqrt(c.^2 + sigma ^2 * (1i * xi_shifted + xi_shifted .^2));

g = (c - d) ./ (c + d);

The characteristic function is then assembled. Note that we adjust it to match the

given term structures of interest rate and dividend yield.

% Final characteristic function

integrals by exploiting symmetries in the data structure. It is commonly used in option pricing

with characteristic functions.
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phi = exp (1i * xi_shifted * log(S0) ...

+ (kappa * theta / sigma ^2) * ((c - d) * tau ...

- 2 * log ((1 - g .* exp(-d * tau )) ./ (1 - g))) ...

+ (v0 / sigma ^2) * ((c - d) .* (1 - exp(-d * tau )) ...

./ (1 - g .* exp(-d * tau ))));

The final option price is obtained through numerical integration in the Fourier

domain.

The function returns the theoretical Heston prices Vmodel for each (K, τ) pair.

5.3.3 Implementation of the Objective Function

In Section 5.1.1, we discussed various possible definitions of the loss function for

model calibration, such as price-based, implied volatility-based, and vega-weighted

objective functions. Among these, we opted for the relative price-based loss func-

tion defined in eq. (5.3), as it offers a good balance between interpretability and

numerical stability.

The objective function is implemented in the Matlab script objfun.m, which

is called during the optimization procedure. Below, we describe its structure.

function err = objfun (p, tau , K, theta , S0 , r, q, Vmarket )

The function takes as input the same that we took in the last two section, given

that the loss function is built on the errors of the prices with the two different

methods described.

% Compute model prices using Heston pricing

Vmodel = europeanPricing (p, tau , K, theta , S0 , q, r);

We call the pricing function europeanPricing.m, previously discussed, which re-

turns the Heston prices Vmodel.

% Compute squared relative error
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squared_diff = (( Vmodel - Vmarket ).^2) ./ Vmarket .^2;

This implements the relative squared error for each option, following eq. (5.3).

Normalizing by Vmarket.ˆ2 prevents large-priced options from dominating the

objective function.

To avoid overfitting and enforce parameter regularity, we augment the loss with

a regularization term based on the Elastic Net, which is the regulation term that

we described erealier. Thus, adding the term in eq. 5.14 at the loss function, we

have:

freg(p) = frel(p) + λ
(
α∥p∥1 + (1 − α)∥p∥2

2

)
. (5.18)

This combines the sparsity-promoting effect of the L1 norm with the stability of

L2, helping control both the parameter magnitude and interpretability. In Matlab:

% Elastic Net regularization

lambda = 0.01; % Regularization weight

alpha = 0.5; % Balance between L1 and L2

reg_term = lambda * (alpha * sum(abs(p)) + (1 - alpha) * sum(p .^2));

% Final objective : relative error + Elastic Net penalty

err = mean( squared_diff , ’all ’) + reg_term ;

The result is a smooth, convexified objective that favors both data fit and model

parsimony. This encourages the optimizer to explore only meaningful regions of the

parameter space while maintaining stability and avoiding large or erratic parameter

estimates.

5.3.4 No-Arbitrage Constraints

As anticipated in the general discussion on constraints section 5.1.3 are used to

ensure economically and mathematically meaningful solutions. While the regular-

ization term was added directly to the objective function (see Section 5.3.3), here
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we describe the implementation of external constraints enforced separately via the

function nonlcon.m. These are used to ensure that model prices are arbitrage-free,

following the conditions described in [1] and [4].

The constraints are implemented in the following Matlab script:

function [c,ceq] = nonlcon (p,tau_mat ,K,theta_mat ,S0 ,r_mat ,q_mat ,N)

Below we explain the financial meaning of each condition included in the constraint

vector c, which must satisfy c ≤ 07:

Monotonicity in maturity: ∂V
∂τ

≥ 0

dV1 = diff(V_model ,1 ,1);

ctau = -dV1 (:);

This constraint enforces that the price of an option should not decrease as maturity

increases. Financially, a longer maturity means more time value, therefore greater

uncertainty, so the option should be worth at least as much as the same one with

shorter maturity.

Monotonicity in strike: ∂Vcall
∂K

≤ 0, ∂Vput
∂K

≥ 0

dV2_call = diff( V_model_call ,1 ,2);

dV2_put = diff( V_model_put ,1 ,2);

cK_call = dV2_call (end );

cK_put = -dV2_put (1);

As the strike increases, the price of a call should decrease, and the price of a put

should increase.

Slope bounds with respect to the strike: −e−rτ ≤ ∂V
∂K

≤ 0

7The condition c(p) ≤ 0 follows a standard convention in constrained optimization: each

constraint must be expressed in a way that it is satisfied when the corresponding element is less

than or equal to zero. This is the required format for solvers like fmincon in Matlab. Therefore,

when we write a condition such as ∂V
∂τ ≥ 0, it is reformulated as − ∂V

∂τ ≤ 0 to fit this convention.
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dVdK_call = dV2_call ./ diff(K_call ,1 ,2);

dVdK_put = dV2_put ./ diff(K_put ,1 ,2);

discount_factor = exp(-r_mat (: ,1).* tau_mat (: ,1));

cdf_call = -discount_factor (:) - dVdK_call (1);

cdf_put = -discount_factor (:) + dVdK_put (end );

These slope bounds ensure that the rate of change of the option price with respect

to strike is within theoretical limits. The discount factor appears as a theoretical

upper bound on the slope, derived from the Breeden-Litzenberger relation8.

Convexity with respect to strike: ∂2V
∂K2 ≥ 0

d2VdK2_call = diff(dVdK_call ,1 ,2);

d2VdK2_put = diff(dVdK_put ,1 ,2);

cK2_call = -d2VdK2_call (:);

cK2_put = -d2VdK2_put (:);

Convexity of the option price in strike is a key no-arbitrage requirement. It reflects

the idea that the price of an option must not have "kinks" or "non-smooth" be-

havior as the strike varies, and ensures the existence of a non-negative probability

distribution.

Thus, this is the final constraint vector:

c = [ctau; cK_call ; cK_put ; cdf_call ; cdf_put ; cK2_call ; cK2_put ];

ceq = [];

These constraints are passed to the optimizer fmincon, that we will describe in the

following section, as a separate nonlinear constraint function, independent from

the objective function and enforce fundamental structural conditions that option

prices must satisfy in order to avoid arbitrage opportunities.

8See Appendix A.2 for the explanation of the Breeden-Litzenberger relation and its role in

this section.
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5.3.5 Initial Parameter Guess and Black-Scholes Volatility

To initialize the calibration routine, we must specify both a starting point

for the Heston parameters and a reference volatility for the Black-Scholes model.

These choices significantly affect the convergence behavior of the optimization

algorithm, especially for a non-linear model like this which may exhibit multiple

local minima.

The initial guess for the Heston parameters was selected based on economic

intuition and empirical studies from the literature (e.g., [8, 14]). Specifically, we

used:

• κ0 = 2.0 (moderate mean reversion),

• v0 = 0.05 (long-run volatility level of 22%),

• σ0 = 0.5 (moderate volatility of volatility),

• ρ0 = −0.5 (typical leverage effect),

• v0 = 0.04 (initial volatility of 20%).

These values reflect a market with negative correlation between asset returns

and volatility (consistent with equity markets) and moderate variance fluctuations.

Regarding the Black-Scholes model, we assumed a constant volatility equal to

the implied volatility of the 1-year at-the-money (ATM) call option. This choice is

motivated by the fact that the ATM region is where the Black-Scholes assumptions

are most accurate and where implied volatility tends to be most stable. The

estimated ATM volatility at this point was approximately σBS = 26.5%, which

was used uniformly across all strikes and maturities in the Black-Scholes pricing

and implied volatility surfaces.
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5.3.6 Optimization

To calibrate the Heston model, we solve a nonlinear constrained optimization

problem. For this purpose, we use Matlab built-in solver fmincon, which is specif-

ically designed to handle such problems.

Among the algorithms supported by fmincon, we select the interior-point

method. This method is well-suited for problems with nonlinear constraints and

provides good convergence behavior even in the presence of multiple local minima

or ill-conditioned objective functions.

The interior-point method operates by transforming the original constrained

problem into a sequence of approximate unconstrained problems. This is achieved

by incorporating the inequality constraints directly into the objective function us-

ing a so-called barrier term, which penalizes infeasible solutions by becoming very

large near the boundary of the feasible region. The modified objective function,

known as the barrier function, takes the form

fbarrier(p, µ) = f(p) − µ
∑

j

log(−cj(p)), (5.19)

where cj(p) ≤ 0 are the inequality constraints, and µ > 0 is a parameter that

controls the strength of the penalty.

The optimization proceeds iteratively. At each step, the method:

1. solves a subproblem by minimizing the barrier-augmented objective using

Newton-type steps,

2. updates the parameters p within the interior of the feasible region,

3. and gradually reduces the barrier parameter µ so that the approximation

improves over time.

As µ becomes smaller, the solution of the barrier problem converges to the solution

of the original constrained problem.

59



The result of this is a set of parameters p that should be the most efficient

parameters that our calibration could reach.

5.3.7 Recovering Implied Volatilities

Once the model prices have been computed using the calibrated parameters,

we recover the corresponding implied volatilities to enable a direct comparison

with market data. This step is crucial because implied volatilities, rather than

raw option prices, are typically used by market practitioners to evaluate model

accuracy and behavior.

To this end, we use the Matlab built-in function blsimpv, which computes

the Black-Scholes implied volatility given an option price and the other contract

terms. Specifically, for each model-generated price Vmodel, the function solves the

following inverse problem

CBS(S0, K, r, q, σ, τ) = Vmodel, (5.20)

where the goal is to find the value of σ (volatility) that matches the model price

under the Black-Scholes formula.

Since this is a nonlinear equation in σ, blsimpv uses numerical root-finding

methods internally. The result is a matrix of implied volatilities corresponding to

each delta and maturity, which can then be plotted and compared directly against

the market implied volatility surface.

5.4 Results

5.4.1 Calibrated Parameters and Performance Metrics

After performing the calibration using the procedure described previously, we

obtain the following optimal parameters for the Heston model with market data
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that we described in sec. 5.2.

Parameter Description Calibrated value

κ Rate of mean reversion 7.528391

v Long-run variance 0.069999

σ Volatility of variance 1.165200

ρ Correlation -0.505768

v0 Initial variance 0.096673

Table 5.1: Calibrated parameters for the Heston model. Source: own elaboration.

The calibration process converged to a final value of the objective function

Loss function value: 0.038346 and required approximately CPU time: 93 seconds

Each parameter of the Heston model influences the shape of the implied volatil-

ity surface in a distinct way. Understanding these effects is crucial to interpret the

calibration results.

• Mean-reversion rate κ: Determines how quickly the variance reverts to

its long-run level v. A higher κ results in faster mean reversion, which gener-

ally reduces instant volatility persistence. On the implied volatility surface,

increasing κ tends to flatten the term structure of volatility, especially for

short-term maturities.

• Long-run variance v: Represents the level around which the variance os-

cillates in the long run. It sets the baseline level of volatility. A higher v

raises the entire volatility surface uniformly, particularly affecting long-dated

options.

• Volatility of volatility σ: Governs how volatile the variance itself is. It

controls the curvature and smile effects on the implied volatility surface.
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Larger values of σ enhance the smile and skew, especially for options far

from the money, and cause more pronounced convexity.

• Correlation ρ between asset and variance: This parameter is key to

reproducing the skew observed in equity markets. A negative ρ (typically

observed empirically) implies that volatility tends to rise when the asset

price drops. This causes implied volatility to increase for lower strikes (put

options) and decrease for higher strikes, generating a leftward skew on the

surface.

• Initial variance v0: Reflects the instantaneous variance at the time of cal-

ibration. It influences the short end of the implied volatility term structure.

If v0 is far from v, the volatility curve will initially drift toward the mean,

producing term structure effects at short maturities.

In our case, the calibrated parameters provide meaningful insights into the dy-

namics captured by the Heston model. The estimated value of the mean-reversion

rate κ ≈ 7.53 indicates that the variance is expected to revert quickly to its long-

run average, implying a market where volatility shocks are short-lived and the

volatility term structure tends to be relatively flat for shorter maturities. More-

over, the proximity between the long-run variance v ≈ 0.07 and the initial variance

v0 ≈ 0.097 suggests that the current volatility regime is not far from its expected

long-term level, pointing to a market in equilibrium or steady state.

The volatility of volatility parameter, σ ≈ 1.16, is relatively high, reflecting

the presence of strong smile and skew features in the market-implied volatility

surface. This value allows the model to replicate sharp curvature, especially for

options that are deep in-the-money or out-of-the-money. Finally, the negative cor-

relation ρ ≈ −0.51 between the asset price and the variance confirms the typical

leverage effect observed in equity markets, where negative returns are associated
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with increased volatility. This contributes to the asymmetric shape of the im-

plied volatility surface, especially for lower strikes, which display higher implied

volatilities due to increased downside risk.

Taken together, these parameters highlight the ability of the Heston model to

reproduce both the level and the structure of observed market volatilities with

greater flexibility.

5.4.2 Heston vs Black-Scholes

As we said, the calibration process is a fundamental component in any model-

based pricing framework. Its importance goes far beyond the mere interpretation

of the model parameters.

What truly validates a model is its ability to replicate observed market phe-

nomena. In the context of option pricing, this translates into the model’s capability

to reproduce both the implied volatility surface and the option price surface with

high accuracy.

This is where the Heston model demonstrates an advantage over the Black-

Scholes framework.

In the following analysis, we compare the two models in terms of pricing ac-

curacy and their ability to replicate the implied volatility surface. Indeed, as we

said the calibration started from our market implied volatility surface Fig. 5.3.

As observed from the figures below, both the Black-Scholes and Heston models

are able to reproduce the overall shape of the market option price surface with

notable precision. Despite their fundamental differences, the resulting pricing sur-

faces appear visually close to that of the market.

In particular, the shape, slope, and general curvature of the surfaces align well

in all three cases, suggesting that both models are capable of capturing the main

features of observed option prices. The figures presented below show, respectively,
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the price surface generated from the market data, the one obtained using the

Black-Scholes model, and the one generated by the Heston model.

Fig. 5.5: Top-Left: Market prices surface; Top-Right: Black-Scholes prices surface; Bottom:

Heston prices surface. Source: own elaboration with Matlab.

To assess the fidelity of the models in replicating real market behavior, we

now compare the theoretical surfaces directly against the empirical surface. The

following Fig. 5.6 overlay the option prices computed from both the Black-Scholes

and Heston models with those observed in the market.

From these plots, we notice that the Heston model tends to match the market

data more closely across the entire range of deltas and maturities. In particular, it

better captures curvature and variation in the medium-term and long-term regions

of the surface. The Black-Scholes model, while generally accurate, appears slightly
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less flexible in reproducing such nuances.

An exception to this trend occurs in the region of the surface characterized

by long maturities and a delta close to −0.5, which corresponds to the transition

zone between put and call options. In this specific area, the Black-Scholes model

exhibits an advantage, managing to align slightly better with the market prices

than the Heston model.

This phenomenon can be interpreted as follows. When delta is close to −0.5,

we are considering put options that are at-the-money forward. These options

have a strike price close to the expected future value of the underlying asset. In

this region, the market prices are particularly stable and sensitive to volatility

variations, which makes the evaluation highly accurate and reliable.

The Black-Scholes model, although based on the strong assumption of con-

stant volatility, tends to perform very well in this central region of the distribu-

tion. Indeed, the lognormal assumption underlying Black-Scholes produces its best

approximations around the current spot price9, where the probability density is

highest. This makes the model naturally suited to price ATM options with good

precision, especially when the implied volatility surface is relatively smooth, as it

often is for these maturities and deltas.

On the other hand, the Heston model is designed to capture complex features

of the volatility surface, such as skew and smile, through a stochastic variance

process. While this flexibility is essential to fit the entire surface, it introduces more

complexity into the pricing formula, involving numerical inversion of characteristic

functions or Fourier transforms. These numerical procedures can introduce minor

9In the Black-Scholes model, the logarithm of the underlying price follows a normal distri-

bution, meaning the price itself follows a lognormal distribution. This implies that the highest

probability density is located near the expected future price of the asset, which, under normal

market conditions, is close to the current spot price. As a result, the model’s approximations

are particularly accurate around the at-the-money (ATM) region.
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approximation errors, especially in regions of the surface where the curvature is

low and precision is critical, such as near ∆ = −0.5 and long maturities.

As a result, while Heston performs better globally across most of the surface,

the Black-Scholes model shows a slight edge in this narrow band where its struc-

tural assumptions are naturally more aligned with market dynamics and where

even small deviations in model output are more easily noticed.

These visual impressions are confirmed by the numerical error metrics. By sum-

ming the absolute differences between model and market prices across all points

on the surface, we obtain the following results:

--- Error Prices Analysis ---

Black-Scholes vs Market:

Absolute Error: 41.557900

Mean Error: 0.244458

Heston vs Market:

Absolute Error: 25.033199

Mean Error: 0.147254

These values quantitatively confirm that the Heston model achieves a better

overall fit than the Black-Scholes model in terms of pricing accuracy. However,

the most significant improvements are observed not in the price surfaces, but in

the ability of the Heston model to replicate the market implied volatility surface.

As observed from the figures below, the differences between the two models

are now more pronounced. The Black-Scholes model assumes a constant volatility,

which results in a completely flat surface, a clear contrast with the observable

market patterns.
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Fig. 5.7: Top-Left: Heston implied volatility surface; Top-Right: Black-Scholes implied volatil-

ity surface; Bottom: Market implied volatility surface. Source: own elaboration with Matlab.

To better appreciate the models’s performances, we now compare their implied

volatility surfaces directly with the one derived from market data. Figure 5.8

overlays the theoretical implied volatilities from both Black-Scholes and Heston

with the market-implied volatility surface.

Visually, the Heston-implied volatility surface aligns much more closely with

the market one. Indeed, if we see the shape of the surfaces are really similar.

The main goal, that was to replicate the smile is done with the exception that

Heston can’t replicate perfectly the smile over deep in-the-money call, in fact

in this area, there is a difference between the surfaces. In particular the main

difference is around the long-maturity options, as we can see when τ/y ≈ 5.
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This discrepancy can be attributed to the fact that, although the Heston model

incorporates stochastic volatility, it still lacks mechanisms such as jumps or higher-

order corrections that could better reflect market dynamics in extreme moneyness

regimes and even the fact that for long-maturites the market data are not so

precise, as we said in sec.5.2.

These visual findings are confirmed by numerical error metrics. As with prices,

we compute both the absolute and mean error between model and market volatil-

ities over the entire surface:

--- Error Volatility Analysis ---

Black-Scholes vs Market:

Absolute Error: 4.408500

Mean Error: 0.025932

Heston vs Market:

Absolute Error: 2.268112

Mean Error: 0.013342

The Heston model reduces the mean error by nearly half compared to Black-

Scholes and this quantitative evidence reinforces the visual impression, Indeed,

while Black-Scholes provides a useful benchmark and performs not bed, it cannot

reproduce the full structure of the implied volatility surface as we said at the

beginning of the thesis. The Heston model, offers a significantly more accurate

framework for capturing market volatility dynamics.

5.5 Financial Relevance of Calibration

The ultimate purpose of model calibration in financial contexts is not merely

academic or theoretical, it is intrinsically tied to concrete tasks such as pricing,
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hedging, and risk management of derivative instruments. Among all the quantities

derived from option models, the implied volatility plays a pivotal role, as it encap-

sulates the market’s expectation of future asset fluctuations in a model-consistent

framework.

Accurately fitting the implied volatility surface enables traders and risk man-

agers to assess option values more consistently across different strikes and matu-

rities, which is essential in constructing arbitrage-free pricing systems. Moreover,

the implied volatility surface serves as a core input in the computation of Greeks,

which are used to build dynamic hedging strategies. Even small deviations in

volatility estimates can lead to significant errors in delta or vega hedging, ulti-

mately exposing portfolios to unintended risk.

In addition, a well-calibrated model supports the evaluation of exotic options,

which do not have closed-form solutions and must be priced using Monte Carlo

or tree-based methods built on top of a volatility model and if the base model

fails to replicate observed market behavior the pricing of these instruments may

be materially biased.

From a regulatory and risk management point of view, institutions must also

compute Value-at-Risk (VaR) and stress scenarios10 that depend on forward-

looking volatility estimates. A model that fits the implied volatility surface well

provides a more accurate and consistent risk profile across different market condi-

tions.

As discussed in [8], the calibration of volatility models is therefore not simply

a technical exercise, but a critical component in achieving reliable pricing and

hedging in practice. Furthermore, as emphasized in [14], improved fit to implied

10Stress scenarios refer to hypothetical situations used to evaluate the behavior of a financial

portfolio under extreme market conditions, such as sudden interest rate spikes, volatility surges,

or market crashes.
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volatility surfaces translates into better replication of market dynamics, reducing

the need for ad hoc volatility adjustments and enhancing model credibility in

front-office applications.

In summary, high-precision calibration enables more faithful replication of mar-

ket conditions, minimizes hedging errors, and strengthens the reliability of risk

metrics and all of these tasks are essential for effective decision-making in financial

markets.
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Implied volatility data from Bloomberg

Compute market option prices

using Black-Scholes formula

Compute model prices with Heston parameters

europeanPricing.m

Define loss function

objfun.m

Add constraints

nonlcon.m

Run constrained optimization algorithm

fmincon

Back out implied volatilities from model prices

blsimpv

Results

Fig. 5.4: Calibration flowchart and Matlab functions. Source: Own elaboration with Matlab.
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Fig. 5.6: Top: Heston vs Market ; Bottom: Black-Scholes vs Market. Source: own elaboration

with Matlab.
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Fig. 5.8: Top:Heston vs Market implied volatility surface; Bottom: Black-Scholes vs Market

implied volatility surface. Source: own elaboration with Matlab.
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Conclusion

In this thesis, we have investigated option pricing models with a particular focus

on the calibration process of the Heston model. Our journey began by introducing

the notion of pricing models, with special attention to one of the most foundational

and widely used frameworks: the Black-Scholes model. While models such as

Merton‚Äôs, with adjustments for dividend payments, extend Black-Scholes in

certain directions, they still retain one of its major limitations: the assumption of

constant volatility.

To address this, we explored the empirical inconsistencies between market data

and the theoretical implications of constant volatility. Specifically, we discussed

the phenomena of the volatility smile and skew, which manifest in the market’s

implied volatility surface and are incompatible with the flat volatility predicted by

Black-Scholes. As a response, we briefly introduced the local volatility approach

via Dupire’s formula, acknowledging its ability to model the smile statically, yet

also highlighting its limitations due to determinism and instability under certain

market conditions.

Consequently, we turned our attention to a more flexible, though more com-

plex, model: the Heston model. This stochastic volatility model allows the volatil-

ity itself to evolve as a random process over time, better capturing the dynamic

behavior observed in financial markets. Introducing such a model, however, sig-

nificantly departs from the Black-Scholes framework and introduces considerable
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mathematical and computational complexity.

After presenting the theoretical structure of the Heston model, including its

dynamics, assumptions, and semi-analytical solution for option pricing, we shifted

our focus to its calibration. We explained the general problem of calibration. This

step represents a crucial bridge between theory and practice.

The calibration task proved to be the most technically challenging part of this

thesis. As discussed, effective calibration requires several components to be ad-

dressed simultaneously: the selection of a suitable objective function, the choice of

an appropriate optimization algorithm, and the imposition of realistic constraints

to ensure meaningful and interpretable parameter values. Even decisions such as

the initial guess of parameter values have a significant impact on the convergence

and stability of the algorithm.

To validate our methodology, we extracted an implied volatility surface from

the Bloomberg Terminal for Bank of America (BAC) equity options. This real-

world dataset served as the foundation for our calibration test. We then imple-

mented our calibration routine in MATLAB, aiming to align the Heston-implied

volatilities with the market-observed ones. To assess the effectiveness of our cali-

bration, we used the Black-Scholes model as a benchmark. The comparison clearly

demonstrated that, although more computationally demanding, the calibrated He-

ston model succeeded in closely replicating the shape and curvature of the market’s

implied volatility surface.

Nevertheless, our results also revealed some limitations of the Heston model.

While the model successfully captures the general smile and skew structure, there

are still discrepancies in certain regions of the volatility surface, for instance for

deep in-the-money call options or long maturities, where the model fails to fully

replicate market behavior. This may be due to the equity underlying exhibiting

jump behaviors, which the Heston model does not account for.
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These observations suggest promising directions for future research. One nat-

ural extension would be to explore jump-diffusion models or hybrid frameworks

that combine stochastic volatility with discontinuous processes, such as the Bates

model. These approaches may offer further improvements in aligning theoretical

models with complex market realities.

In conclusion, this thesis has highlighted the importance and challenges of

calibrating advanced stochastic models in quantitative finance. While the Black-

Scholes model provides a useful starting point, it is insufficient for capturing the

nuanced features of market volatility. The Heston model, although more intri-

cate, offers a viable and more accurate alternative. Our calibration procedure

demonstrated that, when implemented with care, it can significantly reduce the

gap between theoretical and market prices, providing a valuable tool for both

academic study and practical application in derivatives pricing.
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Appendix

Proposition A.1 (Law of Large Numbers). Let X1, X2, . . . be a swquence of i.i.d.

random variables, each with finite meanµ. Thus

P
(

lim
n→∞

X1 + . . . + Xn

n
→ µ

)
= 1 ,

or equivalently, almost surely,

lim
n→∞

X1 + . . . + Xn

n
= µ .

Proposition A.2 (Central Limit Theorem). Let X1, X2, . . . a swquence of i.i.d.

random variables with mean µ < ∞ and variance σ2 < ∞. Define: Sn =∑
i = 1nXi e Zn = Sn−nµ

σ
√

n
as the normalized sum, then, for every t ∈ Rwe have:

FZn(t) := P(Zn ≤ t) q.c.−→ P(Z ≤ t) per n → ∞ ,

dove Z ∼ N (0, 1). Equivalently, Zn converges in distribution to Z ∼ N (0, 1) for

n → ∞.

A.1 Monte Carlo Simulation

The Monte Carlo method is a class of computational algorithms that rely on

repeated random sampling to estimate numerical results. In finance, it is especially

valuable for evaluating expectations under stochastic processes, such as option

prices, where analytical solutions may be unavailable.
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Formally, suppose one is interested in estimating the expected value of a ran-

dom variable X under a certain probability distribution:

E[X] =
∫

X(ω) dP(ω).

Monte Carlo estimation proceeds by generating N independent random samples

ω1, . . . , ωN from the distribution P, and then computing the sample average:

E[X] ≈ 1
N

N∑
i=1

X(ωi).

According to the law of large numbers, this estimate converges almost surely to

the true expected value as N → ∞.

In practice, the method involves three key steps:

1. Simulation of paths: Generate realizations of the underlying stochastic vari-

ables .

2. Evaluation of the payoff: Compute the value of the contingent claim (e.g.,

option payoff) on each simulated path.

3. Discounting and averaging: Average the discounted payoffs across all paths

to estimate the present value.

This method is widely used due to its generality, particularly in high-dimensional

problems or in models where the underlying dynamics (e.g., local or stochastic

volatility) prevent analytical treatment.

Source: Note del corso "Probabilità e applicazioni alla finanza"

A.2 The Breeden-Litzenberger Relation

The Breeden-Litzenberger relation [3] shows how European call option prices

embed information about the risk-neutral distribution of the underlying asset at
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maturity. Specifically, as discussed in [10] under no-arbitrage and smoothness

assumptions, the second derivative of the call price with respect to the strike gives

the risk-neutral density,

∂2C(K, τ)
∂K2 = e−rτ fQ(K), (21)

where fQ(K) is the risk-neutral probability density at strike K.

This result has two important implications:

• Since fQ(K) ≥ 0, call prices must be convex with respect to the strike,

∂2C

∂K2 ≥ 0. (22)

• The call price must satisfy a slope condition with respect to the strike price:

the derivative of the call price with respect to the strike must lie between 0

and minus the discount factor e−rτ ,

−e−rτ ≤ ∂C

∂K
≤ 0, (23)

which reflects the fact that call prices decrease with strike, but not too

rapidly.

These conditions are useful when constructing no-arbitrage constraints for calibra-

tion, as they ensure that the prices are consistent with an underlying probability

distribution.

A.3 L1 and L2 Norms

In this section, we briefly recall the two most commonly used vector norms in

optimization:
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Proposition A.1. The L1 norm or Manhattan norm of a vector x = (x1, x2, . . . , xn)

is defined as:

∥x∥1 =
n∑

i=1
|xi|.

Proposition A.2. The L2 norm or Euclidean norm is defined as:

∥x∥2 =
(

n∑
i=1

x2
i

)1/2

.

It corresponds to the standard Euclidean distance from the origin.
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