
DEPARTMENT OF ECONOMICS AND FINANCE
DEGREE PROGRAM IN FINANCE

Course of Econometric Theory

PRICE DEVIATION FROM NET ASSET VALUE:
THE CASE OF ASIAN TECH–ORIENTED ETFS

Prof. Santucci de Magistris Paolo

SUPERVISOR

Prof. Carlini Federico Carlo Eugenio

CO–SUPERVISOR

Di Legge Antea ID n.789431

CANDIDATE

Academic Year 2024/2025



Abstract

This research aims to investigate the short–term and long–term dynamics of price deviations from

net asset value (NAV) for 19 Asian tech–oriented Exchange–Traded Funds (ETFs) listed across Hong

Kong, China, South Korea, and Taiwan over 467 trading days between 2022 and 2023. This study esti-

mates pooled OLS regressions incorporating structural characteristics (market capitalization, liquidity

of underlying assets, and institutional ownership) and behavioral factors (market sentiment (VHSI),

technology sector volatility, and feedback trading). The core research questions are: (1) How do struc-

tural and behavioral factors drive short–term price deviations from their Net Asset Values? (2) How

are these deviations corrected over time, and what determines the speed of convergence toward the

long–run equilibrium? The results reveal significant roles for structural and sentiment factors, with

nonlinearities and volatility–based heterogeneity. Dynamic cointegration models (ECM and VECM)

explore long–run convergence between ETF prices and NAVs at different adjustment speeds and con-

firm short–run mispricings. This research contributes by expanding ETF pricing research to emerging

tech markets, combining static and dynamic methods, and offer practical implications for ETF issuers,

market participants, and regulators.
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1 Introduction and Motivation

Exchange–Traded Funds (ETFs) have emerged as one of the fastest–growing segments in global

financial markets, with assets under management (AUM) surpassing $10 trillion by the end of 2023,

growing nearly eight times from 2010 (ETFGI, 2024) as shown in Figure 1. Asia–Pacific markets, al-

though representing a smaller share, have shown remarkable growth, with Hong Kong alone reporting

over $500 billion in ETF AUM, including a rising number of thematic and technology–focused funds

(Hong Kong Exchanges and Clearing Ltd. (HKEX), 2023).
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Figure 1: Global growth in ETF assets under management (AUM), 2003–2023. Source: Statista, based on
ETFGI (2024).

Despite this expansion, persistent discrepancies between ETF market prices and their net asset

values (NAVs) raise concerns about pricing efficiency, particularly in markets characterized by high

volatility, cross–border frictions, and informational asymmetries.

The research question unfolds as follows: (1) How do structural and behavioral factors drive short–

term price deviations from their Net Asset Values? (2) How are these deviations corrected over time,

and what determines the speed of convergence toward the long–run equilibrium?

This study offers several contributions. It empirically demonstrates that ETF pricing inefficiencies

are not only statistically significant, but also structurally rooted and behaviorally amplified in the
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Asian tech segment. The results caution investors against assuming NAV proximity in high–volatility

regimes or fragmented markets, while they suggest reforms aimed at harmonizing NAV disclosure for

policymakers, supporting cross–border fund transparency, and mitigating retail–driven price noise.

For academic research, this study extends the literature by merging structural and behavioral models

in a high–frequency, region–specific context where mispricings are most prevalent.

Empirical research across markets consistently documents that ETF prices deviate from NAVs

due to market and behavioral dynamics (Hilliard, 2014; Petajisto, 2017). Although these deviations—

measured as 𝑃−𝑁𝐴𝑉
𝑁𝐴𝑉

—are often small in magnitude (often below 1%), they are not negligible, as they

reflect limitations in arbitrage mechanisms, delays in NAV updates, and investor sentiment swings. In

March 2022, for instance, the Hang Seng TECH Index dropped 24.6% in less than three weeks (Hang

Seng Indexes Company Limited, 2022), causing NAV misalignment in multiple ETFs and highlight-

ing the vulnerability of Asia–Pacific ETFs to sudden market stress. Moreover, the Asian ETF market

is structurally distinct, as it suffers from asynchronous trading hours—such as ETFs listed in Hong

Kong tracking mainland Chinese assets, higher retail participation, and NAV calculation lags due to

cross–border holdings, all of which compound the risk of short–term mispricing (Petajisto, 2017).

To properly interpret such deviations, it is essential to clarify the structure and pricing of ETFs.

These funds are collective investment products traded on stock exchanges similarly to standard secu-

rities. These vehicles are usually designed to replicate the performance of a reference index, without

seeking to generate excess returns. Under normal circumstances, ETFs offer real–time liquidity, trans-

parency, and cost efficiency. Unlike mutual funds, which are priced only at the end of the day, ETFs

can be bought or sold throughout the trading day at the prevailing market prices. The net asset value

(NAV) represents the per–share value of an ETF’s underlying portfolio, calculated as the total market

value of assets minus liabilities, divided by the number of shares outstanding 1. Ideally, ETF prices

should track their NAVs closely due to arbitrage by Authorized Participants (APs), who create or re-

deem ETF shares to exploit pricing gaps.

This research focuses on an underexplored segment of the market: Asian ETFs with high expo-

sure to the technology sector. These funds exhibit not only structural complexity but also behavioral

sensitivity, as their underlying assets are often speculative, growth–oriented, and heavily momentum–

driven. Their NAVs are also difficult to track in real–time, given non–standardized valuation models

and geographical dispersion (Atanasova & Weisskopf, 2020; Jegadeesh & Titman, 1993). This study

1These definitions have been retrieved from Reilly and Brown (2011) Ch. 4.7
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constructs a unique high–frequency panel dataset comprising 19 tech–oriented ETFs from Hong Kong,

China, South Korea, and Singapore, spanning 467 trading days from January 2022 to December 2023.

The dependent variable is the raw percentage deviation from NAV. The dataset is stacked in long–

format panel including a total of 8,873 observations, with several ETFs regularly exhibiting deviations

exceeding ±2%, especially during high–volatility windows. A comprehensive set of explanatory vari-

ables includes, based on contrasting views in the literature—Efficient Market Hypothesis (EMH) versus

noise trader theories—structural factors and behavioral measures. Namely, the set of independent vari-

ables is composed by Market Capitalization, Liquidity of underlying assets, Percentage Institutional

Ownership, Market Sentiment (VHSI), Feedback Trading, and Technology Sector Volatility.

Methodologically, this research adopts a rigorous, multi–stage econometric strategy. It begins

with linear pooled Ordinary Least Squares (OLS) regressions and proceeds with nonlinear extensions

incorporating squared and interaction terms, volatility–clustered subgroup analysis, and robust di-

agnostic testing—heteroskedasticity, autocorrelation, model specification, and stationarity. Inertia of

mispricings is captured via autoregressive (AR(1)) terms, while several models employed for robust-

ness checks study exogenous stress periods, such as the March 2022 Asian Equity selloff and the U.S.

Federal Reserve’s rate hike, as well as seasonality patterns.

The short–term analysis is further complemented by an investigation of long–run dynamics through

Engle–Granger and Johanses trace tests for cointegration, followed by Error Correction Models (ECM)

and Vector Error Correction Models (VECM) to estimate the speed of mean reversion of ETF prices

toward their NAVs.

The findings are robust and multi–dimensional. Linear specifications show that Market capital-

ization, liquidity of the underlyings, market sentiment, and percentage institutional ownership sig-

nificantly influence deviations, though their effects are often conditional and nonlinear. In particular,

nonlinear extensions reveal that the individual positive effects of size and liquidity of the underlyings

reverse when modeled interactively, with a positive joint effect: larger ETFs with highly liquid assets

tend to exhibit larger deviations, suggesting that complexity, cross–border holdings, and behavioral

trading pressures may undermine traditional arbitrage mechanisms. Market sentiment and feedback

trading display significant convex and concave effects, where pricing inefficiencies are affected de-

pending on different levels of investor uncertainty or momentum, but subsequently stabilize or revert

at extreme levels, consistent with behavioral attenuation or corrective market forces.

Volatility–clustered regressions further underscore the importance of regime–specific dynamics.
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In high–volatility ETFs, explanatory power increases dramatically, and the linear and nonlinear behav-

ioral variables gain significance and exhibit larger magnitudes. Notably, in these regimes, investor be-

havior does not respond proportionally. Specifically, moderate uncertainty or trending behavior tends

to amplify mispricings—likely due to herding of speculative activity—whereas under extreme condi-

tions, price dislocations stabilize or correct more quickly, consistent with risk aversion or improved

arbitrage mechanisms. In contrast, low–volatility ETFs exhibit weaker coefficients, lower R–squared,

and reduced behavioral sensitivity, suggesting a more passive and efficient pricing structure.

Autoregressive models reveal strong inertia in pricing deviations, with the AR(1) coefficient of

roughly 70% in high–volatility ETFs. This indicates that pricing inefficiencies are not quickly arbi-

traged away, and that past deviations significantly predict future ones. Finally, cointegration tests

confirm the existence of a long–run equilibrium relationship between ETF prices and NAVs in 13 of

19 ETFs. ECM and VECM estimations reveal negative and significant error correction terms, implying

that deviations are gradually corrected over time. However, the adjustment speed varies across ETFs

and is notably slower in complex, high–volatility funds, reinforcing the role of frictions and investor

behavior in delaying convergence.

The remainder of this research is structured as follows. Section 2 reviews the existing literature on

price-NAV deviation dynamics. Section 3 presents the dataset and methodology employed in the study.

Section 4 discusses the empirical findings from the pooled and dynamic regression models, as well as

model diagnostics and robustness checks. Finally, section 5 concludes offering relevant implications

and suggestions for further research.

2 Literature Review

This section surveys the key empirical and theoretical contributions from prior studies in the Asset

Management and Pricing literature.

2.1 EfficientMarketHypothesis: rational and sentiment–driven approaches

Theoretical foundations for NAV pricing deviations can be broadly categorized into structural and

behavioral explanations. Under the Efficient Market Hypothesis (EMH), originally proposed by Fama

(1970), all available information is fully reflected in asset prices. In this context, NAV deviations should

be arbitraged away, and any mispricings are attributed to rational factors such as liquidity constraints,

4



market capitalization, or institutional frictions. In contrast, noise trader theory (De Long et al., 1990)

and behavioral finance models argue that sentiment–driven investors, bounded rationality, and feed-

back trading can cause persistent deviations from NAV, especially under uncertainty or during market

stress. This study incorporates both structural determinants and behavioral variables to examine the

simultaneous influence of rational and sentiment–driven forces in shaping ETF mispricings. This

dual–theory perspective enables the identification of different mispricing mechanisms across regimes

of volatility, sentiment, and limits to arbitrage.

2.2 Pricing Efficiency

Understanding price deviations from net asset value is central to evaluating market efficiency, par-

ticularly in environments where arbitrage is limited or costly. Such mispricings represent a violation of

the law of one price (Shleifer & Summers, 1990), especially in investment vehicles such as Real Estate

Investment Trusts (REITs) and Exchange–Traded Funds (ETFs), where differences in asset liquidity,

execution delays, and investor behavior introduce persistent valuation gaps. Consequently, academic

research on price deviations between market value and net asset value (NAV) is concentrated in two

contexts: REITs and ETFs, across international markets.

Kumala et al. (2024) analyze 11 Singaporean infrastructure REITs over the period 2017–2021 and

find consistent trading NAV premiums. Their balanced pooled panel regressions reveal that larger

market capitalization and institutional ownership reduce mispricings, while higher dividend yield in-

creases them. Notably, liquidity and volatility show no statistical significance. Moreover, their findings

support noise trading theories (De Long et al., 1990), attributing persistent inefficiencies to the role of

uninformed or sentiment–driven investors, and motivate the focus of this research on how behavioral

factors drive deviations in ETFs, where arbitrage is more active. Earlier foundational work by Barkham

and Ward (1999) explores discounts in UK–listed property companies. Their findings provide empiri-

cal support for both agency cost and noise trader hypotheses, suggesting that deviations arise from a

combination of rational asset fundamentals and irrational investor sentiment. Similarly, Liow (2003)

evaluates Singaporean property stocks and finds slow mean reversion of prices toward their funda-

mental values, implying prolonged deviations may persist for extended periods before converging to

NAVs.

In the European context, Rehkugler et al. (2012) develop a semi–rational pricing model incorpo-

rating market sentiment. Their results show that sentiment alone explains almost 80% of variation in

5



NAV spreads, as reflected by the model’s R–squared. This framework outperforms traditional NAV–

based approaches in explanatory power, enhancing the critical role of behavioral components. The

authors’ specification provides a foundational behavioral mechanism that is subsequently extended

in ETF mispricing studies, where similar sentiment–driven deviations are observed in more liquid,

Exchange–Traded Fund structures. These REIT–focused studies collectively emphasize the relevance

of firm–specific characteristics, sentiment, and investor types in explaining NAV misalignments—a

framework that later ETF literature adapts and expands upon.

ETFs, unlike REITs, feature a dynamic arbitrage mechanism via authorized participants (APs), who

theoretically keep market prices aligned with their NAVs. However, several studies detect persistent

and economically significant pricing inefficiencies—precisely the patterns this study investigates for

Asian tech ETFs. Through a cross–sectional and time–series study of U.S. ETFs, Petajisto (2017) shows

that absolute deviations from NAV stand at around 100 basis points, on average.2 Their methodology

combines pooled panel regressions with ETF–level and time fixed effects, using a broad sample of

U.S. equity, bond, and international ETFs over multiple years. The results indicate that mispricings

are not random but systematically related to factors such as ETF size, liquidity of underlying assets,

and volatility. Smaller funds with illiquid or international holdings tend to exhibit daily dislocations

exceeding 200 basis points, while those with more transparent and liquid components tend to display

lower pricing gaps. Moreover, deviations appear more pronounced in periods of market stress or when

arbitrage is temporarily impaired, aligning with theories of limited arbitrage and investor inattention.

Their analysis provides a rigorous empirical perspective for understanding ETF mispricings, and it

serves as the analytical foundation for this research. Building on their methodology, this study extends

the literature to the Asian technology–oriented ETFs, where distortions are likely amplified due to

structural features such as international NAV timing mismatches, fragmented trading venues, and

lower institutional participation (Deville, 2008; Kallinterakis et al., 2020). By focusing on the Asian

emerging market and on the high–growth, theme–based tech segment, the current analysis offers

strong, innovative findings for ETF mispricings applied to contexts where arbitrage is more likely to

break down.

Intraday deviations have received considerable attention. Madhavan and Sobczyk (2016) develop a

structural model of ETF price dynamics using U.S. data from 2005 to 2014. Their estimates reveal

short–term return autocorrelations of approximately -0.12 for heavily traded ETFs, with tracking
2See section 1 of Introduction and Motivation for the definition of percentage price deviation from NAV. The absolute

value captures the magnitude of pricing inefficiencies regardless of direction.
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errors—defined as the standard deviation of the return difference between the ETF and its underlying

index—reaching up to 25 basis points per day in volatile conditions. These deviations differ from per-

sistent NAV spreads, as they primarily reflect transitory pricing inefficiencies. Their findings support

the use of autoregressive (AR) specifications for modeling mispricings. Further analysis on intraday

dislocations is conducted by Hilliard (2014), who finds that U.S. equity ETFs exhibit a half–life of less

than one day, implying rapid mean reversion. Such findings are consistent with the presence of active

arbitrageurs operating in highly liquid U.S. markets, where the costs of correcting price discrepancies

are minimal and information asymmetries are low. In contrast, international ETFs, especially those

exposed to Asian markets, have a lower speed of adjustment and higher jump probabilities3. Similarly,

DeFusco et al. (2011) estimate that intraday deviations for ETFs like SPDR S&P 500 ETF Trust (SPY)

or Invesco QQQ Trust, although stationary, amount to 0.03% to 0.07% per hour, representing a hidden

cost for active traders.

Recent literature has emphasized the unique challenges of arbitrage in fixed income ETFs, where

stale prices of underlying bonds and illiquid constituent assets lead to persistent price dislocations.

Pan and Zeng (2021) show that liquidity mismatches in bond ETFs significantly weaken the arbitrage

mechanism. Using Balance Sheet data of APs, their study demonstrates that large bond flow shocks

reduce arbitrage activity, leading to pricing errors that persist for multiple days. These findings may

analogously apply to tech–oriented ETFs with illiquid or cross–listed holdings, especially in emerging

or fragmented markets, or during periods of market stress—such as the equity plunge in Asian markets

during March 2022. Under such conditions, impaired price correcting forces amplify mispricings.

These studies jointly provide evidence that while arbitrage enforces a degree of discipline, persis-

tent mispricings occur under volatility or liquidity constraints—conditions central to the Asia–based

tech ETFs examined in this research. However, most analyses are centered on U.S. or European mar-

kets, use low–frequency data, and often overlook the practical limitations of arbitrage observed un-

der market stress. They largely omit Asia–focused ETFs, which face distinct frictions such as time

zone lags, higher volatility, and structural barriers. This research fills the literature gap by examining

high–frequency deviations in a panel of Asian tech ETFs, integrating interaction terms, nonlinearity,

volatility–based comparisons, and sensitivity analysis.

3Jump probabilities refer to the estimated likelihood of sudden, discontinuous changes in ETF price deviations.
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2.3 Determinants of Price deviations from NAVs

The existing literature consistently identifies firm–level and market–level characteristics that ex-

plain NAV pricing deviations. In the Singaporean infrastructure REIT space, Kumala et al. (2024) find

that premiums are positively associated with market capitalization and institutional ownership, with

coefficient estimates of 0.06 and 0.04, respectively, both significant at the 1% level. Volatility and liq-

uidity show insignificant effects in their linear fixed effects model, while Dividend Yield exhibits a

significantly negative coefficient.

Atanasova and Weisskopf (2020), employing a sample of 548 international equity ETFs in the time

frame between 2012 and 2017, show that a one standard deviation increase in relative liquidity re-

duces absolute pricing deviations by 11–16 basis points, with the effect strongest in ETFs with high

holding costs. Their results emphasize liquidity of underlying securities as a key convergence mech-

anism between market price and NAV. Cherkes et al. (2009) introduce a liquidity–based theory for

closed–end fund mispricings, proposing that the equilibrium discount reflects the trade–off between

liquidity benefits and fund costs. Kallinterakis et al. (2020) extend this framework to ETFs and em-

pirically confirm that feedback trading intensity is significantly higher on days with large deviations.

Notably, Asia–focused ETFs exhibit statistically significant behavioral trading effects, with feedback

coefficients exceeding 0.20 for ETFs tracking China and Korea, highlighting the presence of return–

based investor herding. Ben-David et al. (2018) exploit exogenous variation in ETF ownership and

present that a one standard deviation increase in ETF ownership raises stock volatility and return au-

tocorrelation by 17% and from -0.03 to -0.10, respectively. These traits are related to price noise, and

hence, increased deviation costs.

2.4 Gaps in the Literature and Contribution

These empirical findings support the multi–factor design adopted in this research, which includes

Market Capitalization, Liquidity of underlying assets, Institutional Ownership, Market Sentiment, Sec-

tor Volatility, and Feedback Trading. Each of these has documented statistical and economic signifi-

cance in explaining pricing deviations in ETFs. This study extends these insights to a panel of Asian

tech-oriented ETFs, with a focus on high-frequency deviation dynamics, crisis interactions, structural

frictions, and behavioral components.

This research introduces a novel empirical strategy combining diagnostic testing, nonlinear pooled
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OLS models, and cointegration-based dynamics tailored to the Asian tech ETF context. The application

of formal tests for heteroskedasticity, residual normality, and model misspecification reveals meaning-

ful deviations from classical linear assumptions.

Previous studies have overlooked the long-run equilibrium relationship between ETF market prices

and their NAVs through the lens of cointegration analysis. This represents a significant gap, partic-

ularly in the context of Asian ETFs, where deviations may be more persistent due to liquidity con-

straints, market segmentation, and time zone misalignments.

This study addresses the gap in the literature by applying both Engle-Granger and johansen trace

cointegration tests to assess whether prices and NAVs share a common stochastic trend. The fitting

nature of prices and NAVs, which prove to be non-stationary for most of the ETFs in the sample, but

show stationarity in the residuals from their linear relationship, is consistent with cointegration. This

implies a valid long-term equilibrium around which short-run deviations fluctuate.

By combining panel regression techniques with cointegration and error correction models, this

research offers a more comprehensive dynamic view of ETF pricing behavior. It bridges short-term

inefficiencies and long-term price correction, revealing mechanisms that reduced-form deviation or

volatility models may miss, especially during macro-shock periods or in illiquid Asian markets.

3 Data and Methodology

This study investigates the structural and behavioral drivers of short-term ETF pricing inefficien-

cies by analyzing the percentage deviation between market prices and net asset values, and how these

deviations correct over time, for a panel of technology-oriented ETFs listed in Asia, particularly across

Hong Kong and Shanghai exchanges.

3.1 Data Sources and Sample Selection

All data were retrieved from LSEG Workspace (Ex. Refinitiv). The initial dataset comprised a

sample of 20 ETFs selected based on their portfolio exposure to the technology sector. This includes

allocations in information technology, telecommunications, software, interactive media and services,

entertainment, technology hardware, and semiconductors. Figures 1 to 20 in the Appendix visualize

the percentage weight of each sector in ETF holdings. The sectoral breakdowns were extracted from

official fund disclosures and graphically reconstructed using Microsoft Excel. The Bar Charts display
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uniform investments of the selected funds toward Information Technology and Semiconductors, with

some allocations achieving 100% coverage in the tech sector. Building on evidence from Kallinterakis

et al. (2020), who document that ETFs with geographical focus on Asia Pacific are particularly prone

to feedback trading and pricing inefficiencies, this study focuses on ETFs listed on Asian Exchanges—

primarily the Hong Kong Stock Exchange (HKEX) and Shanghai Stock Exchange (SSE). The sample

includes high–frequency data, covering daily observations from January 4, 2022 to December 29, 2023.

3.2 Variable Definitions

The dependent variable is defined as the percentage deviation from NAV:

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑡 =
𝑃𝑖𝑡 − 𝑁𝐴𝑉𝑖𝑡

𝑁𝐴𝑉𝑖𝑡
(1)

where 𝑃𝑖𝑡 is the ETF’s market closing price and 𝑁𝐴𝑉𝑖𝑡 is its net asset value. This metric captures the

relative difference between the price and the net asset value of each ETF. Each observation, denoted

as 𝑦𝑖𝑡 , captures the percentage deviation between the market price and the NAV for ETF 𝑖 on trading

day 𝑡 , where 𝑖 = 1, ..., 𝑁 indexes ETFs and 𝑡 = 1, ...,𝑇 indexes time. This measure serves as a direct

proxy for the magnitude and direction of pricing inefficiencies. Positive deviations imply that the ETF

is trading at a premium relative to its NAV, while negative values reflect a discount. These dislocations

may arise from a range of forces, including delayed arbitrage, information asymmetries, or temporary

imbalances in supply and demand. As such, the dependent variable is not only a signal for market inef-

ficiency, but also a dynamic outcome shaped by institutional, sentiment–driven, and volatility–linked

frictions, particularly salient in fragmented and time–zone sensitive Asian ETF markets. Following

the descriptive motivation, the structure of the panel dataset is formally defined. The dependent vari-

able matrix is: 𝑦 = [𝑦11, 𝑦12, . . . , 𝑦1𝑇 , 𝑦21, . . . , 𝑦𝑁𝑇 ]⊤ ∈ R𝑁𝑇×1, structured as a stacked, long–form panel

dataset, where each observation corresponds to an ETF–day pair, accounting for cross–sectional and

temporal variation.

Consistent with the existing literature, this research employs several independent variables which

exhibit explanatory power for the deviations. The variables of interest include:

Market Capitalization, which is time–invariant, expressed in billions and converted to U.S. Dollars.

The expected sign of the relationship with mispricings is negative, implying that larger ETFs, in terms

of capitalization, should be exposed to less price deviations from NAV due to higher availability in
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pricing information and higher liquidity.

Percentage Institutional Ownership, also static and expressed as percentage of shares held by insti-

tutional investors. The rationale behind the expected inverse relationship with price deviations refers

to the predominance of sophisticated investors who contribute to correct mispricings and stabilize the

fund’s price closer to its NAV. Due to the regulatory framework in Asia, which may prevent specific

company disclosures on official U.S. databases and websites, some of the % institutional ownership

values were retrieved using proxies or averages across peers. Namely, the portion of institutional

ownership for Bosera STAR 50 Index ETF was calculated by computing the mean across the other 19

ETFs, as valid tech–focused peers. The values for NikkoAM Global Internet and Nikko AM Metaverse

Theme Active were proxied by their respective peers, also present in the sample, CSOP Hang Seng

Tech Index and Global X China Cloud Computing.

Market Sentiment, proxied by daily values of the Hang Seng Volatility Index (𝑉𝐻𝑆𝐼𝑡 ). The Index

provides a measure of the 30–day expected volatility of the Index, which reflects the listed companies

in Hong Kong and China Mainland. This indicator was selected due to the prevalence of ETFs listed in

the Hong Kong and Shanghai Exchanges. Sentiment can drive temporary mispricings due to behav-

ioral biases. The expected sign of the relationship is positive, with positive market sentiment that can

lead to premiums (price >NAV), whereas negative sentiment can cause discounts (price <NAV). The

effect depends on the prevailing investor sentiment and market conditions. In March 2022, the MSCI’s

Asia Pacific Index has experienced the biggest drop of 19.4% since the 2008 financial crisis (Dogra,

2023). The drastic amount of equity outflows, driven by decreasing foreign demand and deteriorating

economic outlook, has affected profoundly the Asian markets. The time frame covering March 2022

exemplifies a context in which the variable under consideration may have amplified the deviations;

accordingly, it is modeled through interaction dummy variables and Difference-in-Differences as a

robustness check.

Liquidity of Underlying Assets, represented by the 90–day average trading volume per ETF. The

variable is time–invariant and is expected to have a negative relationship with deviations. Less liquid

portfolios often result in larger NAV deviations due to the difficulty in accurately pricing these assets,

leading to potential misalignments between the calculated NAV and market prices.

Volatility of the Technology Sector , a dynamic variable constructed as the 5–day rolling standard

deviation of the log returns of the representative tech sector index, iShares Hang Seng Tech ETF.

The returns were computed as price differences, using the market closing price, and transformed into
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logarithmic returns: 𝑟𝑖𝑡 = 𝑙𝑜𝑔
𝑃𝑖𝑡

𝑃𝑖 (𝑡−1)
. The 5–day rolling volatility was computed for each trading day by

taking the standard deviation of log returns within the backward–looking 5–day window, as follows:√︃
1
4
∑4

𝑗=0(𝑟𝑡− 𝑗 − 𝑟 )2, where r𝑡− 𝑗 is the log return on day t-j, and j= 0 to 4 is the window of the 5 most

recent trading days. Given the short–term dynamics of the deviations, the 5–day window captures the

time frame of the relative realized sector volatility, smoothing out daily fluctuations while remaining

responsive to recent market movements. 𝑟 is the average return over the 5–day time frame, computed

as: 1
5
∑4

𝑗=0 𝑟𝑡− 𝑗 . The relationship with price deviations is expected to be positive, as higher volatility

generally increases uncertainty and risk, which can exacerbate price deviations from NAV as market

participants react to rapid changes in perceived value. Since all ETFs in the sample are tech–focused,

the daily volatility was computed from the aggregated returns of the 20 ETFs.

Feedback Trading, which captures amplified trends of momentum or contrarian strategies based

on behavioral market dynamics of investor reactions to past returns. Following the methodology

implemented by Kallinterakis et al. (2020) measuring herd–like behavior, the variable was constructed

by computing the log returns of daily prices for each of the 20 ETFs, calculated through the formula

employed for the log returns of the technology sector index. The cross–sectional Pearson correlation

coefficient between each log return at time t and the log return at time t-1, looped over the ETFs such

that 𝑟𝑡 = [𝑟1𝑡 , ..., 𝑟𝑁𝑡 ]′ and 𝑟𝑡−1 = [𝑟1(𝑡−1), ..., 𝑟𝑁 (𝑡−1)]′, defines feedback trading: 𝜌𝑡 = 𝑐𝑜𝑟𝑟 (𝑟𝑡 , 𝑟𝑡−1), for t

= 2,…,T. The comparison of the ETF return vector on day t and on day t-1 fixes time and enables the

analysis to detect any collective patterns in ETF price movements from day t-1 to day t. The expected

sign is positive, as investor reactions to past price trends—rather than fundamental values—can lead

to momentum effects from positive correlations and contrarian strategies from negative correlations,

which may enhance premia or discounts in ETF pricings.

Due to the nature of their computations, the variables representing technology sector volatility

and feedback trading exhibited missing observations. Technology sector volatility is constructed as

the five–day rolling standard deviation of log returns from the iShares Hang Seng Tech Index, which

is a backward–looking measure. The missing observations derive from the lack of values during the

five days prior the beginning of the sample period, thus leading to the first four days in the dataset

displaying ′𝑁𝐴𝑁 ′ values. Feedback trading is calculated from the cross–sectional correlation among

returns on consecutive days, thus the first row in the dataset lacks a defined value due to the absence

of lagged returns for the variable.

To maintain the balanced structure of the panel and the efficiency of the regression models, rather
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than dropping observations, the missing values were filled through linear interpolation over time.

This approach does not compromise the integrity of the dataset, as both variables are market–level,

common to the entire cross–section and time–varying, not driven by individual ETF behavior. More-

over, it does not manipulate the nature and empirical patterns of volatility and feedback trading, as it

merely reflects their smooth evolution over time.

Kumala et al. (2024) find in their balanced panel data on Singaporean REITs significance of divi-

dend yield, enhancing the explanatory power of the variable on the deviations in the context of REIT

valuation, asset class which highly relies on income. Their results find a positive relationship with the

premia, suggesting that a higher dividend yield might attract more investors, thus potentially driving

the fund’s market price above its NAV, especially if the dividends are perceived as sustainable.

While it could be worth investigating the role of dividend yield on tech–focused ETFs, its relevance

and data availability have hindered the inclusion of the variable. The unfeasibility of such data stems

from the negligible number of dividends ETFs may pay since the technology sector is growth–driven,

prioritizing capital appreciation over dividend distribution (Fama & French, 2001; Gordon, 1959). An-

other issue resides with the regulatory framework imposed at the country level, which may prevent

the disclosure of specific information by non–Asian platforms, such as Bloomberg or LSEG. Includ-

ing proxies from the underlying indices or peers would compromise the consistency of the panel,

potentially introducing noise to the model, which already incorporates high–frequency variables.
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The set of variables employed in the main models is summarized as follows:

Summary of Variables and Definitions

Variable Definition / Calculation

Dependent Variable

Price Deviation
𝑃𝑖𝑡 − NAV𝑖𝑡

NAV𝑖𝑡

— percentage deviation of ETF

market price from NAV.

Structural Variables

Market Capitalization Total market value of ETF holdings (log-

transformed, in USD billions).

Liquidity of Underlying Assets 90-day average trading volume of ETF con-

stituents (log-transformed, in USD billions).

Institutional Ownership Proportion of ETF shares held by institutional

investors (percentage).

Behavioral Variables

Market Sentiment (VHSI) Daily closing value of the Hang Seng Volatil-

ity Index (standardized).

Tech Sector Volatility 5-day rolling standard deviation of returns for

a tech-sector index.

Feedback Trading Cross-sectional correlation of ETF returns be-

tween day 𝑡 − 1 and 𝑡 .

3.3 Visual Diagnostics and Sample Refinement

To verify the consistency of the dataset and identify any biases in pricing behavior, a comprehen-

sive descriptive and visual screening for influential variables and outliers was conducted. Table A1 in

the Appendix provides summary statistics for the initial full sample of 20 ETFs. The average price de-

viation from NAV is markedly negative, with the corresponding value of -4.12%, indicating a persistent

tendency for ETFs to trade at a discount. This downward bias may reflect systemic inefficiencies in

arbitrage mechanisms or structural limitations in pricing accuracy for certain ETFs, particularly those
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exposed to illiquid or segmented markets. The dispersion in deviations is notably wide, ranging from

an extremely low discount approaching -90% to a maximum premium of 26%, which hints at potential

structural anomalies in the data.

Table A2 in the Appendix further point to the presence of potential outliers by reporting a pro-

nounced negative skewness of -4.08 and an elevated kurtosis of 17.82 for price deviations. These

statistics indicate strong asymmetry in the distribution, characterized by heavy tails and a propensity

for large deviations from the mean. Such distributional anomalies require further scrutiny, as they

may distort regression estimates if not addressed through appropriate robustness checks and sample

adjustments. Consequently, visual and ETF–specific diagnostics are carried out to identify and correct

for these distortions.

The time series of mean price deviations from NAV, illustrated in Figure A1 in the Appendix, con-

sistently oscillates around -0.04, reinforcing the notion of a systematic discounting pattern in the ETF

market. The plot displays a marked negative spike corresponding to the month of March 2022, during

which the average deviation plunges towards the minimum. To uncover the source of this pronounced

downward bias, a closer inspection at the individual ETF level was conducted. Figures A2 and A3 in

the Appendix plot the time series and empirical distribution of ETF–specific deviations, respectively.

Among all funds, the Global X Fintech ETF (Hong Kong) emerges as a clear outlier. It displays persis-

tent abnormal discounts, which pull the average deviation down below zero.

Further evidence of this ETF’s disproportionate influence is provided in Figure A4 (Appendix),

which visualizes the distribution asymmetry and extreme mispricings when the FinTech ETF is in-

cluded. The presence of this single fund substantially amplifies the left–tail weight of the distribution

and increases the overall leptokurtosis, in line with the previously reported skewness and kurtosis

values. These statistical irregularities introduce substantial risk of biased coefficient estimates and

inefficient inference in econometric models, particularly those sensitive to extreme values. Given its

outsized influence, the ETF was excluded from the sample to improve stability and representativeness

of the dataset.

The adjustment yields a refined panel of 19 ETFs over 467 trading days and enhances the reliability

of cross–sectional and time–series comparisons without distorting the core dynamics of ETF pricing

inefficiencies in the region. Figure 2 below provides a visual representation of the cross–sectional

daily average deviation from January 2022 to December 2023.
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Figure 2: Time series of the average daily ETF price deviation from NAV across 19 Asian tech–oriented ETFs
from January 2022 to December 2023. The chart illustrates systematic discounting patterns and stress periods
like March 2022.

The average deviation now fluctuates around zero, which illustrates a more stable pattern com-

pared to the persistent discount tendency driven by the outlier. This stability is coherent to the findings

of Kallinterakis et al. (2020), who document stability in mispricing dynamics of Asian ETFs. The aver-

age deviation series—Figure A2 in the Appendix less the Global X FinTech ETF previously excluded—

display a pronounced downward spike around March 2022, which captures an episode of simultaneous

profound discounting across ETFs.

The presence of such a sharp distortion from the typical pricing pattern corresponds to the stock

outflows and increased volatility in Asian markets during that period, leading to heightened pricing

inefficiencies. This temporary breakdown in arbitrage mechanisms instigates the implementation of

baseline models that investigate mispricing dynamics in volatility–driven regimes. Figure 3 presents

a much more symmetrical distribution of daily price deviations from NAV across the 19 ETFs.
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Figure 3: Histogram of daily price deviations from NAV across 19 Asian tech ETFs. The distribution shows
moderate symmetry with heavy tails, suggesting persistence in mispricings and the presence of extreme devi-
ations.

The shape of the histogram, characterized by narrow spreads, suggests that the mispricings are

persistent but largely contained within a tight range, with exceptional occurrences of extreme price

discounts. Nonetheless, the distribution remains heavy–tailed, which requires robust regression tech-

niques and dynamic models which may capture higher moments of the distribution compared to static

baseline models. Table A3 in the Appendix reports skewness and kurtosis for all variables. The skew-

ness reverses direction to 4.06 reinforcing the visual difference in distributional symmetry determined

by the presence of Global X FinTech ETF. Notably, the kurtosis of 39.78 indicates a non–normal dis-

tribution, heavy–tailed overall.

The descriptive inspection of higher moments, specifically skewness and kurtosis, reveal features

in the distribution that baseline models might only partially capture. This analysis is conducted solely

at the descriptive level and does not extend beyond second moments in the econometric modeling.

This motivates, however, the adoption of nonlinear and dynamic specifications later in the analysis to

better account for the underlying distributional characteristics. Table 1 reports the summary statistics

for the dependent variable and the six explanatory variables, respectively. The values were computed

over a balanced panel of stacked 19 ETFs over 467 trading days, for a total of 8,873 observations.
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Table 1: Summary Statistics for Panel Variables (Excl. FinTech ETF)

Variable Mean Std. Dev. Min Max N

Price Deviations 0.0025 0.0161 -0.0879 0.2641 8,873

Market Capitalization ($bn) 1.6882 1.9496 0.0055 5.8000 8,873

Market Sentiment (VHSI) 3.4282 0.5824 2.3296 6.3157 8,873

Tech Sector Volatility 0.0250 0.0138 0.0000 0.1261 8,873

Feedback Trading -0.0581 0.3991 -0.9283 0.8644 8,873

Liquidity of underlying assets(90-day Vol, $bn) 2.2633 4.1165 0.0000 17.4379 8,873

% Institutional Ownership 0.1238 0.1777 0.0000 0.5208 8,873
Note: This table reports summary statistics for the dependent and explanatory variables used in the regression

analysis. Price Deviations are unitless relative measures of ETF mispricings; market capitalization and liquidity are

expressed in billion U.S. Dollars; market sentiment is expressed in index points, technology sector volatility is the

daily return standard deviation; Feedback trading is constructed as cross–ETF correlation coefficient; institutional

ownership is scaled as a proportion ∈ [0, 1].

As thoroughly analyzed, both mathematically and visually, the average price deviation from NAV

is 0.25%, with a standard deviation of 1.61%. These values support the exclusion of Global X FintTech

ETF, which provides higher stability in the deviations, as the range significantly narrows from below,

with minima of -8.79%. Contrary to the persistent average mispricings, the ETFs in the sample form a

diverse set in terms of market capitalization, given the considerable variation expressed by a standard

deviation of 1.94 billion U.S. Dollars. Such heterogeneity in fund size allows for higher stability in es-

timating the regression and infer policy implications by providing comparisons across small, medium,

and large ETFs in deviation dynamics. Market sentiment, proxied by the VHSI, displays a mean of

3.43 and a relatively low standard deviation of 0.58, which indicate moderate fluctuations in perceived

risk across the sample period. The iShares Hang Seng Tech Index, which captures technology sector

volatility, shows a positive contained variation, with a mild average value of 0.025. Feedback trading

has a mean of -0.058, which indicates that past ETF returns do not significantly predict current returns,

on average. The wide standard deviation of almost 0.40, and the presence of minimum and maximum

extremes achieving -0.93 and 0.86 do not exclude strong exceptions of momentum and contrarian

trading patterns.

Liquidity of underlying assets, measured as 90–day average volume, mirrors a similar heterogene-
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ity to market capitalization, with a mean of 2.26 billion U.S. Dollars, and the maximum reaching 17.44

billion U.S. Dollars, almost nine times the average. The large dispersion in values shown by the two

variables gives their inclusion as controls strong validity. Percentage institutional ownership achieves

a maximum value of 52.08%, setting a context of generally low institutional involvement across the

ETFs. Nevertheless, the wide cross–sectional variation, ranging from almost no institutional par-

ticipation to substantial portions of sophisticated investor ownership provides dispersion to detect

significant effects of the variable. In recent years, ETF concentration in institutions’ portfolios has

grown, starting already from a balanced ownership between retail and sophisticated investors con-

trary to mutual funds. Despite the observed inconsistency of the values relative to the institutional

ownership in the data, Galindo Gil and Lazo-Paz (2025) point out that the breadth of adoption among

institutional investors of any ETF tended to have an upper bound of 70% by 2018, suggesting that full

institutional ownership is not common among ETFs.

To deeply understand and better model the temporal dynamics of price deviations from their NAVs,

Table 2 below reports all the dates characterized by simultaneous episodes of particularly high premi-

ums or discounts across the entire ETF sample. The most notable clustering of strong mispricings oc-

curs in March and October 2022, during which prices systematically diverged from their NAVs. These

periods of synchronized pronounced deviations validate the need to isolate the effects of market–

wide shocks, such as the March 2022 crisis, suggesting that pricing dynamics are not solely driven

by idiosyncratic ETF–specific features. Further subsections provide tests and regression models that

account for these patterns through the inclusion of time–based controls and interaction terms in base-

line Pooled OLS models, as well as AR(1) specifications enabling temporal persistence in mispricings.

There is significant dispersion across the days of strong deviations, with days of strong discounts, such

as a mean deviation of -2.52% as per March 16, 2022-the day coinciding with the U.S. Federal Reserve’s

rate hike—and other characterized by premiums, such as +2.15% corresponding to October 24, 2022.
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Table 2: Days with Strong Premia or Discounts

Date Group Count Mean Deviation

15-Feb-2022 19 -0.0065

11-Mar-2022 19 0.0136

14-Mar-2022 19 0.0193

16-Mar-2022 19 -0.0252

17-Mar-2022 19 -0.0076

22-Mar-2022 19 -0.0068

05-May-2022 19 0.0131

13-Sep-2022 19 0.0161

12-Oct-2022 19 0.0125

14-Oct-2022 19 0.0175

19-Oct-2022 19 0.0140

24-Oct-2022 19 0.0215

25-Oct-2022 19 0.0123

31-Oct-2022 19 0.0140

01-Nov-2022 19 0.0108

30-Nov-2022 19 -0.0108
Note: This table presents trading dates with strong synchronized price deviations from

NAV across all ETFs. The table lists 16 events where mispricings significantly diverged

from normal behavior, capturing regime shifts and crisis–induced frictions.

Such variability urges the adoption of model specifications which capture structural breaks in

market regimes and non–linear pricing behavior, given the clear asymmetry in deviation distribu-

tions across time. While these episodic distortions across ETFs provide a solid base for time–specific

modeling, including seasonality tests, lagged dependence, and interactions between crisis periods and

volatility–tied variables, Table 3 quantifies the deviation volatility, measured as standard deviation,

over the ETF–level dimension.
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Table 3: ETFs Ranked by Deviation Volatility

ETF Group Count Deviation Volatility

EFundCSIOverseasChinaInternet50IndexETF 467 0.036997

SamsungKodexSemiconETF 467 0.018118

NikkoAMGlobalInternetETFUSD 467 0.017538

SamsungBloombergGlobalSemiconductorETF 467 0.014199

EFundHangSengTechnologyETF QDII 467 0.012388

GlobalXChinaCloudComputingETFUSD 467 0.011623

Huatai PineBridgeCSOPHangSengTECHIdxETFQDII 467 0.0099997

InvescoGreatWallCSIHKConnectTechIndexETF 467 0.0089853

DachengHangSengTechnologyETF QDII 467 0.0087485

NikkoAMMetaverseThemeActiveETFUSD 467 0.008367

BoseraStar50IndexETFRMB 467 0.0067073

GlobalXChinaSemiconductorETFUSD 467 0.0051211

PremiaChinaSTAR50ETFUSD 467 0.003506

iSharesHangSengTECHETFUSD 467 0.0024695

CSOPHangSengTECHIndexETFHKD 467 0.002445

HwabaoWPCSIFintechThemeIndexETF 467 0.0023546

ChinaAMCHangSengTechIndexETFUSD 467 0.0020064

ChinaAMCSSEScience TechInnovBoard50ETF 467 0.0016245

PenghuaCNISemiconductorChipsIndexETF 467 0.0016175
Note: This table displays the standard deviation of price deviations fromNAV for each ETF over 467 trading

days. The ETFs are ranked in descending order, highlighting which funds exhibited the most persistent

pricing volatility.

The table ranks in descending order the degree of persistent mispricing volatility over time exhib-

ited by each fund. There is considerable dispersion in deviation volatility, ranging from a low value

of 0.16% for the bottom ETFs, all the way up to 3.70%. Notably, the ETFs exposed to higher volatil-

ity have higher allocations in internet an semiconductor segments (Figures 1 to 20 in the Appendix),

which are characterized by high levels of risk and return dynamics driven by technological innovation,

shifts in consumer demand, and supply chain disruptions (Ehm & Ponsignon, 2012). Conversely, the
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bottom–ranked ETFs, such as Hwabao WP CSI FinTech Theme Index and China AMC Hang Seng Tech

index track more established and less volatile indices. The cross–sectional variation complements the

time–specific pricing dynamics by identifying structural heterogeneity across ETFs that contributes to

larger and frequent, or smaller and rare deviations. The observed heterogeneity in fluctuations across

ETFs substantiates the incorporation of group–specific regressions that capture structural differences

in ETF behavior.

3.4 Pooled Ordinary Least Squares

To investigate the short–term effect of the factors driving ETF premia or discounts in pricing,

this study begins by estimating a baseline panel regression using the pooled Ordinary Least Squares

(OLS) model. The dataset comprising 19 ETFs and 467 trading days was stacked in a long–form panel

structure. In matrix formulation, with N = 19 and T = 467, the total number of observations becomes

NxT= 8,873, with each row representing a value of ETF i on day t, where i = 1,…,N and t = 1,…,T.

The corresponding matrix of explanatory variables is of NTxK dimensions, where K = 6 denotes the

number of regressors, excluding the intercept. The vector of the dependent variable is of dimensions

NTx1 and contains the stacked daily price deviations from NAV across all ETFs, in adherence to the

structure of the matrix of independent variables. Each cross–sectional unit is observed for the same

time period, thus the data set is structured as a balanced panel to enable greater flexibility in modeling

heterogeneity in behavior across the sample.

The baseline econometric approach employed (OLS), is expressed as the following equation:

𝑦𝑖𝑡 = 𝛼 + 𝛽1𝑋1,𝑖𝑡 + 𝛽2𝑋2,𝑖𝑡 + ... + 𝛽𝑘𝑋𝑘,𝑖𝑡 + 𝜖𝑖𝑡 (2)

𝑦𝑖𝑡 is the dependent variable, reflecting price deviations from NAV, 𝛼 is the intercept, created as an

NTx1 vector of ones for stability of the model. 𝑋𝑘,𝑖𝑡 is the vector of independent variables, and 𝜖𝑖𝑡 is

the idiosyncratic error term. The model relies on a set of assumptions, namely:

Linearity of the model, meaning that the relationship between the regressors and the dependent

variable is linear in parameters. This assumption holds by construction, as the model is in linear form.

However, potential nonlinearities in the underlying data–generating process may exist and are tested

in further sections.

Strict exogeneity, which implies that explanatory variables in each time period are uncorrelated
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with the idiosyncratic error 𝜖𝑖𝑡 in each time period. In vector form, E[𝜖𝑖𝑡 |𝑋𝑖𝑡 ] = 0. This assumption

is commonly violated in panel settings, especially when handling high–frequency financial datasets.

While endogeneity cannot be fully excluded, the independent variables included in the model are, by

construction, unlikely to be affected by ETF price deviations. Market capitalization, liquidity of under-

lying assets, and percentage institutional ownership are static, while market sentiment, technology

sector volatility, and feedback trading are market–wide variables, thus exogenous to ETF–specific

behavior.

Homoskedasticity and no serial correlation, which refer to the variance of the error term being

constant across observations and the error term uncorrelated across time and ETFs, respectively:

𝑉𝑎𝑟 (𝜖𝑖𝑡 ) = 𝜎2 and Cov(𝜖𝑖𝑡 , 𝜖 𝑗𝑠) = 0, ∀𝑖 ≠ 𝑗 or 𝑡 ≠ 𝑠 . The use of robust standard errors, F–test,

and RESET test embedded in the OLS function help mitigate potential violations of the assumptions.

The empirical data, however, exhibit volatility clusters, heavy tails, and shifts in market conditions, as

illustrated in the distributional plots and volatility ranking tables. These findings raise expectations

over the violation of homoskedasticity and no serial correlation, commonly found in financial high–

frequency panel data. In addition to robust standard errors, therefore, additional model specifications

are employed.

Full rank of X, which translates to the absence of perfect multicollinearity among regressors. To

address this assumption, the code runs a preventive correlation matrix of the explanatory variables,

visually displayed in Figure 4. The correlation heatmap reports the pairwise linear relationships be-

tween the explanatory variables. The correlation matrix confirms the absence of high multicollinearity

among most of the regressors. A positive, moderate correlation of 𝜌 = 0.598 between market senti-

ment and technology sector volatility is found. Both variables capture systematic risk dimensions,

which offers intuition behind the mild correlation.
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Figure 4: Correlation Heatmap of Independent Variables showing pairwise correlations among independent
variables used in panel regressions. Market capitalization and liquidity show the strongest positive correlation,
indicating possible structural multicollinearity.

Given the tendency of larger funds in terms of capitalization to trade higher volumes, and thus

to be more liquid, the correlation between market capitalization and liquidity of underlying assets

is expected to be positive and non–negligible, reflecting a 𝜌 of approximately 0.85. Overall, most of

the variables maintain low correlations with the others, reinforcing their unique contribution to the

model.

Prior to estimating the model, unit root tests were conducted on all key variables to ensure the

absence of spurious regression results. Tables A4 to A7 in the Appendix show the Augmented Dickey–

Fuller test statistics and relative p–values for stationarity, including the dependent variable. Mar-

ket capitalization, liquidity, and percentage institutional ownership are excluded due to their time–

invariant nature. The rejection of the null hypothesis in all cases implies that all variables included in

the baseline models are integrated of order zero (I(0)) and that the series is stationary. Therefore, the

dependent and explanatory variables are suitable for levels–based panel regressions without differenc-

ing. In contrast, Table A8 shows that 13 out of 19 ETF Prices and NAVs are non–stationary, integrated

of order one (I(1)). For this subset, cointegration tests and dynamic models are implemented in further

sections.

In addition to the baseline linear specification, several variables are expected to exhibit nonlinear
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relationships with mispricings, following the existing literature and theoretical considerations.

Market sentiment, proxied by VHSI, is likely to exhibit nonlinear effects on price deviations. While

mild volatility may favor price discovery and arbitrage mechanisms, excessively high sentiment lev-

els signal market panic or exuberance, potentially amplifying price dislocations. Behavioral finance

literature support this behavior in noise trader risk models (De Long et al., 1990) and in documented

sentiment–driven mispricings across asset classes (Baker & Wurgler, 2007). Therefore, a quadratic

term for VHSI is included to account for this asymmetry.

Feedback trading, based on momentum, may not impact mispricings uniformly. Chen et al. (2002)

and Bohl and Brzeszczynski (2006) find evidence of nonlinear dynamics in feedback–based strate-

gies, especially in varying market frameworks. To capture potentially more severe effects of strong

herding or contrarian behavior than moderate momentum on price deviations, a squared term for the

explanatory variable is added to the baseline model.

Market capitalization and liquidity of underlying assets, which have already been transformed in

log terms, are frequently jointly associated with pricing efficiency. Ben-David et al. (2018) emphasize

that ETF mispricings can be magnified when market frictions affect the underlying portfolio, especially

in less liquid contexts. While large ETFs often reflect tighter deviations and higher investor attention,

their efficiency may be hindered by illiquid underlying assets. Following the rationale, an interaction

term between the two variables is included in the baseline model to reflect nonlinear size–liquidity

complementarities. The baseline regression specification becomes:

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑖𝑡 = 𝛽0 + 𝛽1 log(𝑀𝑎𝑟𝑘𝑒𝑡𝐶𝑎𝑝𝑖) + 𝛽2𝑉𝐻𝑆𝐼𝑡 + 𝛽3𝑇𝑒𝑐ℎ𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑡 + 𝛽4𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘𝑇𝑟𝑎𝑑𝑖𝑛𝑔𝑡+

+𝛽5 log(𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦𝑖) + 𝛽6𝐼𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑎𝑙𝑂𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝𝑖 + 𝛽7𝑉𝐻𝑆𝐼 2
𝑡 +

+𝛽8𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘𝑇𝑟𝑎𝑑𝑖𝑛𝑔
2
𝑡 + 𝛽9 [log(𝑀𝑎𝑟𝑘𝑒𝑡𝐶𝑎𝑝𝑖) × log(𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦𝑖)] + 𝜖𝑖𝑡 (3)

The same terms are, where appropriate, inserted in further models to capture the potentially amplified

effects, such as volatility–based estimations.

3.5 Structural and Dynamic Extensions

To account for dynamic and regime–dependent patterns in ETF mispricings, two key extensions

of the pooled OLS baseline model are introduced: a structural segmentation of the sample into high–

and low–volatility ETFs and the inclusion of an autoregressive (AR(1)) term.
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3.5.1 Volatility–Based Specifications

The strong heterogeneity in price deviations across ETFs documented in Table 3 (Section 3.3) calls

for further analysis, motivating this study to examine whether mispricings are differentially driven by

volatility exposure. The sample was partitioned into two subgroups, based on the standard deviation

of price dislocations. The grouping process was conducted using the standard deviation of the ETF–

specific mispricing time series. The ETFs in the top decile constitute the ”High–volatility” group,

while those in the bottom decile form the ”Low–volatility” group. Two separate OLS regressions are

estimated for each subgroup, using equation (2) in section 3.4, which includes the baseline independent

variables of interest. The comparison between the results serves the purpose to unveil the variation

in explanatory power of structural and behavioral variables across ETFs with inherently different

volatility levels in their price deviations.

3.5.2 Autoregressive term

While the baseline models control for market–wide risk and behavioral factors, serial correlation

is ETF mispricings is likely to arise due to persistent trading patterns, investor behavior, or microstruc-

ture frictions. Petajisto (2017) and Madhavan and Sobczyk (2016) find sticky price deviations due to

arbitrage frictions and delayed price discovery by authorized participants, which can induce lagged re-

lationships between prices and their NAV. Cross–market trading constraints and liquidity mismatches

also contribute to persistent dislocations, especially in international ETFs, as it is the case of the sample

under study. Ben-David et al. (2018) and Engle and Sarkar (2006) support prior results by introducing

momentum or contrarian strategies and herd–like behavior as further drivers of these dynamics. These

types of investor behavior may arise for ETFs targeting theme–based sectors, such as technology.

To control for lagged dependencies in ETF pricing inefficiencies, an AR(1) extension of the OLS

model is implemented through the introduction of an autoregressive term capturing the dependent

variable lagged by one period: 𝑦𝑖𝑡−1. This specification allows the model to reflect delayed correc-

tion mechanisms or mispricing persistence. To implement the lag structure consistently in the panel

dataset, the original stacking order was modified by restructuring the date–first to ETF–first stacking.

This procedure allows for the correct alignment of 𝑦𝑖𝑡−1 within each ETF’s time series, ensuring that

the autoregressive term reflects true temporal persistence rather than cross–sectional spillovers. This

refinement is crucial for valid AR(1) estimation in panel specifications, as misaligned lag structures
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can induce spurious autocorrelation or misrepresent the dynamic behavior of ETF price deviations.

The model becomes:

𝑦𝑖𝑡 = 𝛼 + 𝜌𝑦𝑖𝑡−1 + 𝛽1𝑋1,𝑖𝑡 + ... + 𝛽𝑘𝑋𝑘,𝑖𝑡 + 𝜖𝑖𝑡 (4)

where 𝜌 represents the autoregressive coefficient measuring potential path dependence in price de-

viations. Given the high likelihood of serial correlation, additional testing involves the AR(1) term in

the subgroup comparison as model enhancement. The variable is estimated to assess the difference

in autoregressive dynamics between the two groups, allowing the specification to capture the mag-

nitude and persistence of pricing inefficiencies within each volatility context, as well as to compare

the coefficients for practical inference on structural differences in pricing mechanisms depending on

volatility levels.

3.6 Cointegration and Error Correction Models: ECM and VECM

This subsection contributes to the research by investigating the existence of long–term relation-

ships between prices and their NAVs by applying cointegration techniques across selected ETFs. Fur-

ther estimation of short–term dynamics via Error Correction Models and Vector error Correction

Models are applied. The research conducted by Petajisto (2017) on U.S.–listed ETFs across various

asset classes find that deviations exhibit mean–reversion, indicating that while ETF prices do deviate

from their NAVs in the short–term, they tend to return to the NAV over time. The convergence is faster

for ETFs characterized by higher liquidity, which is also tested in the context of Asian tech–oriented

ETFs, given the insertion of the explanatory variable in this study. Due to the theoretical link between

Prices and their NAVs through arbitrage mechanisms, the expected long–term co–movement of the

two is worth analyzing.

To estimate the cointegrating relationships between prices and the corresponding NAVs, the data

for the respective variables was structured as two matrices of dimensions TxN, respectively: 𝑃𝑡𝑖 and

𝑁𝐴𝑉𝑡𝑖 , with 𝑡 = 1, ..., 467 and 𝑖 = 1, ..., 19. Only ETFs whose price and NAV series are both non–

stationary in levels are eligible for cointegration analysis. The I(1) condition is necessary to avoid

spurious regression and to satisfy the premise of the Engle–Granger methodology. The ADF test

results from Table A8 in the Appendix show that thirteen ETFs are integrated of order one and were

therefore retained for cointegration testing. The first approach consists in the implementation of the

Engle–Granger test, which unfolds in two steps, looping over the selected ETFs:
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1. Estimation of the long–run relationship through the OLS regression of Prices on NAVs, as fol-

lows:

𝑃𝑖𝑡 = 𝛼𝑖 + 𝛽𝑖𝑁𝐴𝑉𝑖𝑡 + 𝜐𝑖𝑡 (5)

2. Test of the residuals, 𝜐𝑖𝑡 for stationarity through the ADF test. If the unit root null hypothesis

can be rejected, stationarity of the residuals is confirmed, which implies that there is evidence

of cointegration between the ETF–specific price and NAV. The short–term premia or discounts,

therefore, are overcome by the long–run mean–reversion.

To account for potential multiple cointegrating relationships and generalize the results from the pre-

vious test, the Johansen trace test was applied. The test consists in bivariate vector constructions for

each of the 13 ETFs, as follows:

𝑌𝑡 =


𝑃𝑡

𝑁𝐴𝑉𝑡

 (6)

Cointegration is tested under the H1 model, which assumes the absence of linear trends in the data and

the presence of the intercept in the cointegration relationship. The second assumption implies that

the long–run means can deviate from zero. The H1 specification, performed with up to three lags, was

selected for this analysis. The goodness of fit of the H1 model stems from several reasons. First, the test

aims solely to detect mean–reversion in deviations, not trends. Moreover, the intercept included in

the cointegration equation captures any systematic deviations due to the factors under consideration

as explanatory variables for short–term mispricings. This means that the model is allowing the long–

term deviations to be centered around non–zero levels.

Given the verification relative to the existence of cointegration from the two tests, the Error Cor-

rection Model (ECM) detects short–term deviations from the long–term co–movement between prices

and NAVs. The equation takes the following form:

Δ𝑃𝑡 = 𝛼 + 𝛽Δ𝑁𝐴𝑉𝑡 + 𝛾𝐸𝐶𝑡−1 + 𝜖𝑡 (7)

Δ𝑃𝑡 and Δ𝑁𝐴𝑉𝑡 represent the short–term deviations, 𝐸𝐶𝑡−1 expresses the lagged error from equation

(5) in the first step of the Engle–Granger test, which measures the degree of short–term mispricings

from the long–term cointegration at time 𝑡 − 1. The corresponding coefficient 𝛾 is the speed at which

prices return to co–move with their NAVs. A strong, negative 𝛾 provides evidence of mean–reverting
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behavior, which implies that short–term deviations are followed by prices adjusting back to NAVs. The

expected sign for the coefficient attached to changes in NAVs, 𝛽 is positive, as NAV changes should

affect price movements. Conversely, the lagged cointegration error, 𝛾 , is expected to be negative,

implying mean–reversion in mispricings.

To add robustness in the panel framework, Vector Error Correction Models (VECM) are imple-

mented across the 13 ETFs. The framework captures, through the inclusion of lagged variables, the

predictive power of past dynamics in prices or NAVs on future price changes–short–run feedback

effects. The model is specified as follows:

Δ𝑃𝑡 = 𝛼 + 𝛽1ΔP𝑡−1 + 𝛽2Δ𝑁𝐴𝑉𝑡−1 + 𝛾𝐸𝐶𝑡−1 + 𝜖𝑡 (8)

The equation presents the same lagged error correction term and coefficient of adjustment speed as the

ECM from the Engle–Granger test. the coefficients attached to the differences of prices and their NAV,

𝛽1 and 𝛽2, measure the feedback effects previously mentioned. In particular, 𝛽1 captures the magnitude

of momentum or reversal in price dynamics; respectively, a positive value implies prices at time 𝑡 tend

to maintain the same direction as prices at 𝑡 − 1, while a negative value suggests subsequent mean–

reversion behavior. 𝛽2 measures the extent to which past NAV movements affect future prices. A

positive 𝛽2 shows that future prices move in the same direction of past NAV changes, while a negative

𝛽2 implies that future prices assume opposite directions of past NAV movements. The expected signs

for 𝛽2 and 𝛾 parallel the ECM ones, supporting the notion of lagged price adjustments to NAVs and

mean–reversion. The sign of 𝛽1 depends on feedback trading and liquidity of the underlyings, which

show weak momentum with exceptional positive spikes and high liquidity but large dispersion in

trading volume, respectively. Given the absence of patterns in return momentum, the coefficient is

expected to be weakly positive, which is conducive of weak momentum in price movements.

4 Results and Discussion

This section presents the empirical results for each of the models employed to investigate ETF

pricing deviations. The analysis begins with a baseline pooled OLS model and proceeds through a se-

ries of model extensions—including nonlinear specifications, volatility–based subgroup regressions,

and autoregressive (AR(1)) terms to capture persistence—motivated by diagnostic testing. The find-
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ings consistently remark the relevance of both structural—market cap, liquidity of the underlyings,

institutional ownership—and behavioral factors—market sentiment, tech sector volatility, feedback

trading—in driving ETF mispricings via marginal and interaction effects.

Significant heterogeneity emerges across high– and low–volatility ETF groups, suggesting regime–

dependent pricing dynamics. The results further reveal that mispricings exhibit strong daily persis-

tence, with approximately 70% of deviations carrying over from one day to the next. This inertia

suggests that pricing errors are not quickly arbitraged away, and thus are only partially corrected in

the short run, as adjustment is hindered by structural frictions and behavioral dynamics that slow

down price reversion toward NAV.

To address the long–term convergence of ETF prices to their fundamental values, the short–term

analysis is complemented by cointegration techniques—Engle–Granger and Johansen trace tests—

followed by ECM and VECM models, which quantify the adjustment process toward equilibrium and

confirm the presence of systematic mean reversion.

4.1 Baseline pooled OLS

Table 4 reports the regression output for price deviations. To evaluate whether the inclusion of

explanatory variables significantly improves model fit relative to a constant–only specification, an

F–test was performed. The null hypothesis that all slope coefficients equal zero is strongly rejected

at the 1% level, confirming that the regressors jointly explain a significant portion of the variation

in price deviations. This justifies the use of a full pooled OLS model over a baseline with only an

intercept. The model estimates price deviations using robust standard errors to account for potential

heteroskedasticity, as identified in diagnostic tests.

To exclude any trace of linear dependence between the variables, a check for Variance Inflation

Factors (VIF) was conducted, in addition to the correlation matrix displayed in Figure 4. The VIF anal-

ysis reinforces the absence of high multicollinearity, since all values are far below the threshold of

10 and in fact do not reach 4. Table A9 in the Appendix reports the actual VIF values. There are

significant scale differences between variables. Market capitalization and liquidity of the underlyings

are expressed in billions U.S. Dollars, with maxima exceeding 17 billion USD, while technology sec-

tor volatility and percentage institutional ownership fluctuate in much smaller ranges, with standard

deviations below 0.02 and 0.18, respectively. To mitigate these huge scaling differences, log trans-

formations were applied to market capitalization and liquidity of the underlyings. Even after the
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re–scaling, large magnitude differences persist, with the logged variables ranging between 14 and 22,

and small–scale variables such as VHSI, feedback trading, and tech sector volatility range between

0.01 and 0.3.

Table 4: Pooled OLS Regression Results (Dependent Variable: Price Deviations)

Variable Coefficient Robust SE t-stat p-value

Intercept -0.0270 0.0025 -10.6279 0.0000∗∗∗

Log(Market Capitalization) 0.0009 0.0001 8.7768 0.0000∗∗∗

Market Sentiment (VHSI) 0.0026 0.0005 4.9803 0.0000∗∗∗

Tech Sector Volatility -0.1013 0.0197 -5.1482 0.0000∗∗∗

Feedback Trading 0.0002 0.0004 0.5783 0.5631

Log(Liquidity, 90-day Volume) 0.0002 0.0000 3.5111 0.0004∗∗∗

% Institutional Ownership 0.0176 0.0011 15.4842 0.0000∗∗∗

Observations 8,873

R-squared 0.0851

F-statistic p-value < 0.0001

Ramsey RESET p-value < 0.0001
Notes: Robust standard errors are reported. Stars denote significance at the ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, and ∗𝑝 < 0.1 levels.

The dependent variable is the daily deviation of ETF market price from NAV. Log transformations were applied to Market

capitalization and liquidity to reduce scale imbalance.

The Pooled OLS regression results show statistical significance for all of the explanatory variables

at the 1% confidence level, except for feedback trading. The R–squared is 8.51%, which indicates that

the model explains approximately 8.5% of the variation in price deviations. The value fits into similar

asset pricing econometric models dealing with high–frequency, panel data. The intercept is also sig-

nificant and negative, implying that, holding all the other variables constant, the predicted baseline

price deviation from NAV stands at a discount of 2.70%. However, the variables in the model cannot

all simultaneously equal zero and exhibit vastly different scales; market capitalization and liquidity of

underlying assets are always positive, since even the smallest ETF exhibits non–zero capitalization.

Therefore, an economic inference cannot be associated to the significance of the intercept, which may

otherwise capture deviations that are not fully explained by the regressors. Although larger ETFs

are expected to exhibit higher stability in pricing and thus less deviations, the variable shows a pos-
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itive, statistically significant 𝛽 . This relationship can invert when contextualized in a framework of

international, tech–oriented ETFs. Petajisto (2017) highlights that ETFs with non–domestic holdings

tend to be exposed to larger price deviations from NAV due to potential cross–border pricing delays,

which hinder real–time valuation of their underlyings. The ETFs in the sample exhibit misalignment

in trading hours with the underlying assets. Several funds track indices or sectors whose assets trade

in markets with different time zones and/or currencies, while the ETFs are listed in domestic markets;

some of the ETFs include Qualified Domestic Institutional Investor (QDII) structures, which leads to

lagged information in pricing. These structures reduce the immediacy of arbitrage and delayed infor-

mation transmission.

The technology industry in which the ETFs selected for this study heavily invest is particularly

subject to pricing inefficiencies since it is a rapidly evolving sector. As such, limited historical data

and not well–defined asset valuation may enhance mispricings. ETFs such as Bosera STAR 50 Index

and ChinaAMC SSE Science and Tech Innovation Board 50 hold high–growth stocks, while Nikko AM

Metaverse Theme Active ETF invests in the corresponding emerging sector, which relies on future–

growth and speculative asset valuation models. The semiconductor industry is also a common target

among the ETFs and it is characterized by cyclical demand. Atanasova and Weisskopf (2020) support

the discussion by documenting that assets lacking standardized valuation models affect ETF suscepti-

bility to premia or discounts. Rehkugler et al. (2012) offer an additional perspective on the inverse re-

lationship between market capitalization and price deviations, implementing a semi–rational pricing

model that substantially improves with sentiment–driven speculation. The high–growth, emerging

themes held by the mentioned ETFs attract investors based on current trends, visibility, and momen-

tum, rather than their intrinsic value.

Liquidity of underlying assets also shows inconsistency with expectations, displaying a positive,

statistically significant coefficient. Specifically, higher trading volume in the underlying assets are as-

sociated, ceteris paribus, with larger price deviations from NAV. Market analyses have reported that

speculative retail activity plays a determinant role in Asian tech–focused ETF mispricings, with surges

in the number of retail investor trading in Asian theme–based ETFs (Zhen & Li, 2025). As discussed in

the previous paragraph relative to market capitalization, the sectoral and geographical features of the

ETFs in this context fit the logic of a positive relationship between liquidity of underlying assets and

mispricings. In this context, even liquid underlying assets are challenging to value, sensitive to high–

volatility and theme–based trading, which could justify the positive sign attached to the coefficient.
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Kallinterakis et al. (2020) detect an increase in premia or discounts for ETFs investing in assets that

present sentiment–driven trading and volatile features. Hilliard (2014) draws attention to the inter-

national component of ETF holdings, leading to misaligned cross–border absorption of information

and therefore inhibited arbitrage. Engle and Sarkar (2006) identify barriers to arbitrage mechanisms,

which include transaction costs and regulations in a number of Asian markets which limit access to

international exposure. The relatively negligible magnitude of the coefficients for market capitaliza-

tion and liquidity of underlying assets stems from the very large scale of the variables, expressed in

billion U.S. Dollars, while the corresponding low standard errors may partly reflect the sample size

of 8,873 observations and wide dispersion of these variables. Nonetheless, the economic interpreta-

tion of these coefficients remains valid and meaningful for policy implications, especially given the

counterintuitive sign of both variables.

The coefficient attached to percentage institutional ownership does not conform to expectations, as

it presents a positive sign with statistical significance at the 1% confidence level. A one–unit increase

in institutional ownership is associated with an increase in price deviation from NAV of 1.76%, ceteris

paribus. The relationship implies that higher institutional involvement amplifies pricing inefficien-

cies, contradicting the existing literature, which identifies institutional investors as stabilizing actors

of pricing dynamics (Kumala et al., 2024). One potential explanation is that institutional investors

themselves may engage in speculative activities and theme–focused trading strategies in emerging

segments and sectors exposed to strong growth narratives, such as technology, which often attract

momentum–based positioning. Ben-David et al. (2021) find that increased ownership by large institu-

tions predicts noise and higher volatility in stock prices, leading to wider inefficiencies in mispricings.

Moreover, in the context of this research, the average share of institutional ownership across the

19 ETFs is approximately 12%, with a maximum of 52%, suggesting their influence is insufficient to

counteract inefficiencies. The underrepresentation of sophisticated investors diminishes the expected

corrective pressures on prices, supporting the positive relationship observed in the regression results.

Out of the three market–wide variables, only market sentiment and technology sector volatility are

significant. Market sentiment (VHSI), which captures anticipated volatility in the Hong Kong market,

retains a positive coefficient, consistently to expectations. Although it may have not accurately reflect

idiosyncratic behavior across all Asian markets where some ETFs are listed, the attached coefficient

suggests that a unit increase in VHSI is associated, ceteris paribus, with an increase in mispricings of

0.26%. The findings enhance the notion that higher volatility expectations, measured by the indicator,
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increase ETF mispricings. These findings contribute to the broader research conducted by Rehkugler

et al. (2012) and Kumala et al. (2024). The authors cover funds investing in Real Estate, with respective

focus on Europe and Singapore. Both studies incorporate market sentiment in their model, enriching

the relevance of the variable by considering non–rational investors under the noise trader framework.

They suggest that short–term divergences are reinforced by herd–like investor behavior and specula-

tive trading. These findings are exceptionally meaningful in this research, as the ETFs in the sample

show sector–specific and geographical characteristics which expose them to noise trading. Given the

elevated values displayed by market sentiment, between 15 and 35 during the full sample period, its

hindering effect on pricing efficiency is informative, especially during market stress, such as the March

2022 crisis or the rate hike from the Federal Reserve. Dogra (2023) emphasizes the non–linearity of

sentiment effects, which may only manifest during periods of market crashes. Following their find-

ings, this study presents nonlinear extensions of the baseline model and comparable volatility–based

OLS regressions.

Technology sector volatility is unexpectedly negative and large in magnitude. Rather than enhanc-

ing mispricings, a one–unit increase in volatility during the past 5 days is associated with a 10.13%

reduction in price deviation, ceteris paribus. Theoretically, higher volatility generally increases un-

certainty and risk, which can exacerbate price deviations from NAV as market participants react to

rapid changes in perceived value. There is contrasting evidence from the existing literature with re-

spect to the effect of the variable. The research conducted by Petajisto (2017) produces results that

confirm the hypothesis according to which ETFs with assets that are traded in volatile markets tend

to have larger and more persistent premiums. However, one plausible justification for the opposite

direction in the relationship reflects discounting behavior. Various studies document mean–reverting

behavior in ETF pricing. Milani and Ceretta (2014) find periods of high volatility to instill risk per-

ception and thus amplify caution in price tracking, leading to higher correlation between ETF market

returns and NAV returns during these times. DeFusco et al. (2011) expand the perspective by delving

into microstructure theory, which refers to strategic arbitrage exploiting volatility–induced inefficien-

cies, leading to increased mispricing profitability. In volatile contexts, investors may also refrain from

trading based on themes and narratives, as extensively discussed in previous sections, with market

participants relying on fundamental valuation of NAVs, thus reducing the divergence in pricing. To

test the viability of the computation for tech sector volatility as a five–day rolling standard deviation

for short–term dynamics, this study also estimates ECM and VECM models, which capture volatility
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effects over long–term cointegration. The risk in using 5 days refers to anticipated market reaction

to volatility expectations over those days, leading to the variable misrepresenting short–term pricing

inefficiencies.

Feedback trading is not significant at any conventional level. Kallinterakis et al. (2020) find strong

effects in feedback trading for ETFs with Asia Pacific as geographical location. Their research de-

tects particularly amplified effects during momentum–driven episodes and price correction periods.

To address the lack of significance of the variable in the static linear model introduced as baseline

framework, the analysis is extended to nonlinear specification in the subsequent section, as well as

cointegration–based models (ECM and VECM), to better capture dynamic and structural pricing be-

havior across time and ETF characteristics.

4.2 Diagnostic testing and Model Extensions

Given the panel structure and behavioral nature of the high–frequency dataset, the presence of

heteroskedasticity, non–normal residuals, autocorrelation, and model misspecification could bias stan-

dard inference and misrepresent the explanatory power of the independent variables.

Table 5 condenses the key statistics for model specification and assumption checks. The reported

p–values for the Breusch–Pagan and White tests suggest strong rejection of the null hypothesis of

homoskedasticity, confirming the presence of non–constant error variance across observations. The

descriptive statistics already anticipated such result, with variation in the explanatory variables across

ETFs and over time. The use of robust standard errors in all regressions accounts for group–wise

heteroskedasticity and intra–panel correlation.

To verify the assumption of residual normality, the Jacque–Bera test was applied. The high test

statistic and p–value < 0 lead to the rejection of normality in residuals, reflecting the asymmetric

distribution and large tails of ETF mispricings documented by the skewness and kurtosis values in

section 4.1. The outcome implies the violation of the OLS assumption, the large sample size (N =

8,873) allows the exploit of asymptotic properties under the Central Limit Theorem, which ensures

inference to remain valid under robust estimation frameworks.
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Table 5: Diagnostic Tests for Model Assumptions

Test Test Statistic / Value p-value / Conclusion

Breusch–Pagan Test (Heteroskedasticity) LM = 2129.29 𝑝 < 0.0001 (Reject 𝐻0)

White Test (General Heteroskedasticity) LM = 2129.29, df = 34 𝑝 < 0.0001 (Reject 𝐻0)

Jarque–Bera Test (Residual Normality) JB = 80,229 𝑝 < 0.0001 (Reject 𝐻0)

Durbin–Watson Statistic (Autocorrela-

tion)

DW = 1.927 No first-order autocorrelation

Hausman Test (FE vs RE) 𝜒2 = 1304.81, df = 5 𝑝 < 0.0001 (Reject 𝐻0)

Ramsey RESET Test (Functional Form) F = 912.86 𝑝 < 0.0001 (Reject 𝐻0)
Notes: All diagnostic tests confirm the presence of heteroskedasticity and non–normal residuals, justifying the use

of robust standard errors. The RESET test suggests potential misspecification, addressed through interaction and

dynamic terms. The Hausman test confirms Fixed Effects as the preferred panel specification.

The Durbin–Watson statistic closely aligns with the ideal benchmark of 2, suggesting no strong

first–order autocorrelation in the pooled OLS residuals. However, dynamic extensions in subsequent

sections explicitly model potential mispricing persistence.

The Hausman test is grounded in the comparison between Random Effects (RE) and Fixed Effects

(FE) estimators after running separate panel regressions using a common specification. Both FE and

RE coefficients are consistent under regressor orthogonality with the error term, while only the FE

estimators remain consistent under ETF–specific heterogeneity. The test statistic and low p–value

suggest the rejection of the null hypothesis, suggesting the preference of Fixed Effects over the Random

Effects model. This strongly highlights that the explanatory variables are not exogenous with respect

to ETF–specific characteristics. While this suggests FE would be appropriate, all subset and nonlinear

regressions are estimated via pooled OLS with robust errors, given model simplicity and subgroup

comparability. FE models are incorporated as robustness checks supporting the main findings.

The Ramsey RESET test strongly rejects the null hypothesis of correct functional form, signaling

potential nonlinearity or interaction effects not captures in the linear specification. This supports the

inclusion of nonlinear and interaction terms in later models.

To explore potential sources of model misspecification and violations of the classical assumptions,

residuals from the baseline pooled OLS specification were analyzed graphically and by subsample. Fig-

ure 5 displays the overall quantile–quantile (Q–Q) plot of standardized residuals, while Figures A5 and
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A6 in the Appendix display ETF–level histograms and Q–Q plots of regression residuals, respectively.
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Figure 5: Q–Q Plot of Pooled Regression Residuals. The plot compares the standardized residuals from
the baseline OLS model to a normal distribution. The deviations from the 45–degree line indicate fat tails and
non–normality.

The plots reveal that deviations from normality are not driven by a single ETF, but rather are

widespread across funds, with several series showing excess kurtosis and asymmetric distributional

patterns consistent with pricing discounts during market stress periods. To further identify sources of

nonlinear residual behavior, Figure A7 plots residuals against key predictors. These scatterplots reveal

slight curvature and variance clustering in relation to market sentiment (VHSI), tech sector volatility,

and feedback trading intensity. These patterns reinforce the inclusion of nonlinear terms, interaction

effects, and subsample models to better capture ETF mispricing dynamics.

To test for structural differences in pricing behavior, coefficient estimates from subsample regres-

sions are reported in Tables A10–A12 (Appendix). These pooled OLS models are estimated separately

for periods of high vs. low market sentiment, high vs. low feedback trading, and pre– vs. post–March

2022. These results show that sensitivity to behavioral and volatility–related variables increases dur-

ing periods of heightened stress. For instance, the coefficient attached to tech sector volatility is more
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than three times larger in magnitude in the low–feedback regime, and the magnitude of the feedback

trading term significantly intensifies in the post–March 2022 period. These findings support the hy-

pothesis that mispricing dynamics are nonlinear and conditionally dependent on market environment

and investor behavior. Table A8 in the Appendix present the Augmented Dickey–Fuller (ADF) test on

all 19 ETFs, which aims to verify the integration order of prices and NAVs. The results suggest that

13 out of 19 ETF Prices and NAVs are I(1), meaning that the majority of series are non–stationary

in levels, but become stationary in first differences. The integration of order one between prices and

their fundamental values satisfy the crucial requirement for applying cointegration techniques. To-

gether, these tests reinforce the data modeling power of the employed approaches and the robustness

of empirical findings.

The diagnostic results also guide the structural and dynamic refinements applied to the empirical

framework and provide the rationale for deeper investigation in mispricing dynamics through error

correction models.

4.2.1 Nonlinear Terms

Motivated by the diagnostic test results, the baseline Pooled OLS linear model was modified with

quadratic terms for VHSI and feedback trading, and an interaction term between market capitaliza-

tion and liquidity of the underlyings. Separate regressions were run to identify the unconditioned

effects of each nonlinear transformation. Table A13 in the Appendix shows the side–by–side results,

which represent a solid base for the simultaneous replacement of linear variables with the better fitting

regressors.

While the addition of quadratic terms alone do not improve the model, as their coefficients are

not significant, the inclusion of the interaction term between market capitalization and liquidity of

underlying assets reveals notable sign and significance switches. Compared to the baseline OLS results

in Table 4, both coefficients attached to market cap and liquidity of the underlyings turn negative, while

their interaction yields a positive sign. This sign pattern reversal is crucial and supports the original

expectations of the hypothesized relationships with mispricings, aligning with the theoretical and

empirical literature. While larger ETFs and higher liquidity in fund portfolios independently narrow

price deviations, their positive joint influence implies that large and liquid ETFs tend to exacerbate

price efficiencies. This departs from traditional assumptions and indicates that very large and highly

liquid ETFs may be subject to trading frictions, market pressures, or strategic investor behavior that
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undermine the price–NAV link (Petajisto, 2017).

Market sentiment maintains its negative sign and significance in Model 3, consistently to the

idea that higher uncertainty, especially in emerging markets and high–risk sectors, leads to more

fundamental–based trading, narrowing the price gap with their fundamental values through better

arbitrage mechanisms.

Technology sector volatility displays a strong, positive coefficient, contrary to its linear counter-

part, indicating that higher volatility in the technology sector leads to higher pricing inefficiency when

the interaction term between market cap and liquidity of the underlyings is accounted for. This sign

flip strengthens the interpretation of complex environments driving higher pricing noise or discour-

aged arbitrageurs, as the price–correcting mechanisms become riskier or less effective in large, liquid

funds that are exposed to volatile sectors (Madhavan & Sobczyk, 2016).

Feedback trading, which is consistently insignificant in the baseline linear model, as well as the

models with the VHSI and the regressor itself in quadratic terms, gains high significance. The posi-

tive coefficient is coherent with expectations, associating higher momentum or herding behavior with

wider price dislocations. This supports behavioral finance studies such as Barberis et al. (2005), who

find that trend–following investors can destabilize prices, especially in turbulent markets where arbi-

trage mechanisms are impaired.

Notably, percentage institutional ownership loses significance, implying that its already small

marginal impact is absorbed by the interaction term. Nonetheless, its direction remains positive, hint-

ing that higher sophisticated involvement may widen deviations, likely reflecting concentration risks

or timing effects among institutional flows. Overall, these nonlinear results demonstrate that mispric-

ings are shaped by complex interdependencies among individual structural and behavioral factors,

and they justify moving beyond a purely linear framework.

Based on the nonlinear extension formalized in Equation (3) in the Methodology section, a re–

estimation of the baseline model incorporating the quadratic and interaction terms was performed.

Table 6 displays a side–by–side comparison with the original linear results.
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Table 6: Comparison of Linear and Nonlinear Pooled OLS Regression Results

Variable Linear OLS Nonlinear OLS

Intercept −0.0270∗∗∗ −0.0004

(0.0025) (0.0024)

Log(Market Capitalization) 0.0009∗∗∗ −0.0000

(0.0001) (0.0001)

Market Sentiment (VHSI) 0.0026∗∗∗ −0.0012∗∗∗

(0.0005) (0.0003)

Tech Sector Volatility −0.1013∗∗∗ −0.0892∗∗∗

(0.0197) (0.0105)

Feedback Trading 0.0002 0.0012∗∗

(0.0004) (0.0005)

Log(Liquidity, 90-day Volume) 0.0002∗∗∗ 0.0000

(0.0000) (0.0001)

% Institutional Ownership 0.0176∗∗∗ 0.0006

(0.0011) (0.0009)

VHSI2 — 0.0001∗∗

(0.0001)

Feedback2 — −0.0019∗

(0.0010)

MCap × Liquidity — 0.0000∗∗∗

(0.0000)

Observations 8,873

R-squared 0.0851 0.0546

F-statistic p-value < 0.0001 < 0.0001

RESET p-value < 0.0001 < 0.0001
Notes: Robust standard errors in parentheses. Stars denote significance levels: ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 <

0.1. Nonlinear model includes squared VHSI, squared feedback trading, and interaction term between market

capitalization and liquidity. Linear model applies log transformations to market cap and liquidity.

While the R–squared slightly improves, the inclusion of nonlinearities reveals important shifts in
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coefficient magnitude, direction, and statistical significance across key regressors.

Market capitalization and liquidity lose significance, while their interaction is highly significant

and positive, confirming the findings in Model 3 (Table A13). The coefficient for market sentiment

switches sign to negative, while its square displays the opposite direction. This convex relationship

clarifies the interpretation of its positive coefficient in the linear model: deviations narrow as uncer-

tainty rises moderately, while they amplify under extreme sentiment, consistent with market destabi-

lization at higher volatility levels.

Feedback trading maintains its positive sign and gains significance, while its quadratic term is

negative and weakly significant. This suggests that mispricings initially widen as feedback behavior

intensifies, but eventually reverse or level, consistently to behavioral models of momentum or herd–

like behavior followed by mean reversion or pricing correction. This finding is particularly relevant

for the implementation of dynamic models capturing behavioral drivers of pricing efficiency over the

long run. Overall, nonlinear specifications reveal richer dynamics and capture structural behavioral

shifts that linear counterparts miss.

4.2.2 Subgroup Analysis: High vs Low–Volatility ETFs

Following the time–specific comparison rationale in the previous section, the sample was parti-

tioned in two groups, based on cross–sectional standard deviation of the price dislocation series. The

marked difference between the top decile and bottom decile displayed in Table 3 (section 3.1), as well

as the variation in average deviations across ETFs in Figure A6 in the Appendix, motivate a closer

analysis of whether mispricings are differentially driven by volatility exposure. Table 7 provides the

results for the comparative estimation of ETFs that consistently exhibit high and low levels of mis-

pricings, run from a common linear specification introduced in section 3.4 and nonlinear extension

with the baseline explanatory variables first, and the added squared and interaction terms after. The

linear results show substantial contrasts between high–volatility ETFs versus those characterized by

more stable price deviations. The first striking difference is in the explanatory power of the models,

which drastically declines from a 25% R–squared in the high–volatility specification, to a mere 0.3%

value for the low–volatility group.
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Table 7: Pooled OLS Regressions by ETF Volatility Group: Linear vs Nonlinear

Variable Linear Nonlinear

High-Volatility Low-Volatility High-Volatility Low-Volatility

Intercept −0.0307∗∗∗ 0.0035∗∗∗ 0.6505∗∗∗ −0.0150∗

(0.0068) (0.0008) (0.0416) (0.0090)

Log(Market Capitalization) −0.0010∗∗∗ −0.0003∗∗∗ −0.0315∗∗∗ 0.0005

(0.0003) (0.0000) (0.0015) (0.0005)

Market Sentiment (VHSI) 0.0082∗∗∗ 0.0000 −0.0205 0.0022∗∗∗

(0.0016) (0.0001) (0.0137) (0.0008)

Tech Sector Volatility −0.2123∗∗∗ −0.0022 −0.2357∗∗∗ −0.0001

(0.0570) (0.0045) (0.0546) (0.0044)

Feedback Trading 0.0010 −0.0001 0.0003 −0.0001

(0.0013) (0.0001) (0.0012) (0.0001)

Log(Liquidity) 0.0019∗∗∗ 0.0001∗∗∗ −0.0697∗∗∗ 0.0009∗

(0.0001) (0.0000) (0.0032) (0.0005)

% Institutional Ownership 0.0475∗∗∗ 0.0002 −0.0460∗∗∗ 0.0003∗

(0.0024) (0.0002) (0.0039) (0.0002)

VHSI2 — — 0.0039∗ −0.0003∗∗∗

(0.0020) (0.0001)

Feedback2 — — −0.0032 0.0000

(0.0029) (0.0002)

MCap × Liquidity — — 0.0034∗∗∗ −0.0000

(0.0002) (0.0000)

Observations 2,335 2,335 2,335 2,335

R-squared 0.2595 0.0232 0.4179 0.0295

RESET p-value < 0.0001 0.2337 < 0.0001 < 0.0001
Notes: This table compares pooled OLS regressions run separately for the five highest and five lowest volatility ETFs

in the sample. Robust standard errors in parentheses. Nonlinear models include quadratic terms and Market Cap ×

Liquidity interaction. Significance levels: ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.

The High–volatility group exhibits highly significant coefficients for almost all the explanatory
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variables, except for feedback trading. The negative coefficient for the intercept suggests a baseline

discount in prices for this group. Market sentiment is highly significant, positive, and strong in mag-

nitude, demonstrating heightened sensitivity to systemic risk within the high–volatility group. The

interpretation is the following: a unit increase in VHSI is associated with an increase in price devi-

ations by 0.82%, holding everything else constant. Technology sector volatility also exerts a large,

significant effect, although negative. This implies that as the sector’s volatility rises, mispricings nar-

row in highly volatile ETFs, likely due to higher uncertainty and fundamental–based trading rather

than theme–driven investing.

In contrast, pricing corrections by sophisticated investors, proxied by percentage institutional

ownership, tend to enhance price dislocations for this group, probably due to persistent temporary

frictions. The same explanation is valid for the positive coefficient associated to liquidity of the under-

lyings. Market capitalization shows a negative, significant coefficient across both models, where a 1%

increase in size is associated with a 0.0010% decrease in price deviations, holding everything constant.

This suggests that larger funds experience smaller dislocations, with more attenuated effects for ETFs

with lower volatility. The low—volatility group exhibits significance only for the coefficients attached

to the intercept—which displays opposite sign, suggesting baseline premia—market capitalization, and

liquidity of the underlyings. The latter regressor loses magnitude, while the other variables lose sig-

nificance.

The comparison provides strong evidence that high–volatility ETFs are more strongly affected by

behavioral and market–wide forces, while low–volatility ETFs either experience much smaller devi-

ations in magnitude, or less systematically predictable price deviations. The nonlinear comparison

between volatility groups reveals crucial interpretative reshaping of price deviation determinants, es-

pecially in high–volatility ETFs. The R–squared between the high–volatility subgroups nearly doubles

to 42%, and several signs and magnitudes shift across coefficients. The intercept flips from negative

to positive, suggesting that in the scenario where all variables are null, after accounting for nonlin-

earities, the highly volatile ETFs display average premia rather than baseline discounts. Market cap’s

coefficient increases in magnitude, indicating its stronger role in narrowing mispricings once condi-

tional structures are included. Market sentiment switches sign to insignificantly negative, while its

squared term is weakly positive, revealing a convex relationship where deviations widen only at high

levels of market sentiment. Technology sector volatility follows the same pattern as the linear model

shows, while liquidity of underlying assets switches sign and its interaction with size turns positive,
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suggesting that large, liquid ETFs show widened mispricings when considered jointly, though their

individual effects dampen deviations. Institutional presence for high–volatility ETFs shows for the

first time in this research price–correcting mechanisms through effective sophisticated trading. The

nonlinear model for the low–volatility group shows weaker and minimal behavioral distortions. No-

tably, market sentiment becomes significant and positive, compared to both the linear counterpart

and the nonlinear opposite group. Its squared term is highly negative and significant, implying that

deviations increase moderately with uncertainty but revert at extreme sentiment levels.

Overall, the nonlinear specifications unveil distinct mechanisms by which patterns such as con-

vex and concave behavioral patterns and joint size–liquidity frictions are essential to model extreme

deviation dynamics accurately, especially under periods of market stress and ETFs exposed to high

volatility.

4.2.3 AR(1) specifications

To isolate the persistence effect relative to ETF price deviations, the baseline model includes the

addition of the dependent variable, lagged by one, represented by the AR(1) term. Table 8 reports the

regression results. The coefficient attached to the autoregressive term is positive, highly significant,

and very large in magnitude. This suggests a substantial degree of persistence in mispricings, as

previous deviations predict current ones. In terms of economic interpretation, almost 70% of past

deviations tend to persist in the next trading day. The finding is coherent to the hypothesis that

ETF prices do not immediately converge to their fundamental values, but exhibit inertia and gradual

correction, likely due to frictions in information absorption or liquidity constraints.

Out of the baseline regressors, only market capitalization and percentage institutional ownership

are significant, while the loss of significance for other variables may be due to the dominating effect

of the lagged term, which absorbs much of the short–run autocorrelation in mispricings. The model

explains approximately 53% of mispricings, given the strong R–squared. The presented results con-

tradict the Durbin–Watson test, which fails to detect residual correlation, enhancing the relevance of

the autoregressive term in the model.
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Table 8: Pooled OLS Regression with AR(1) Term

Variable Coefficient Robust SE t-statistic p-value

Intercept −0.0060∗∗∗ 0.0019 −3.1887 0.0014

Log(Market Capitalization) 0.0003∗∗ 0.0001 2.4772 0.0133

Market Sentiment (VHSI) 0.0000 0.0003 0.1221 0.9028

Tech Sector Volatility −0.0166 0.0209 −0.7954 0.4264

Feedback Trading 0.0002 0.0003 0.7220 0.4703

Log(Liquidity, 90-day Volume) 0.0000 0.0000 1.0063 0.3143

% Institutional Ownership 0.0054∗∗∗ 0.0008 6.8725 0.0000

AR(1) Lagged Deviation 0.6960∗∗∗ 0.0239 29.1387 0.0000

Observations 8,873

R-squared 0.5257

RESET p-value < 0.0001
Notes: This table presents pooled OLS regression results with an autoregressive term capturing the lagged effect of

ETF price deviations. Robust standard errors are shown in parentheses. Significance levels: ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05,
∗𝑝 < 0.1.

To capture potential persistence in different volatility regimes, the autoregressive (AR(1)) term

was introduced in the volatility–based analysis across ETFs presented in the previous model. Table 9

presents results for the extended framework. The term aims to uncover whether the degree of per-

sistence in price deviations varies in high– and low–volatility ETFs. By isolating the lagged effect of

mispricings within each subgroup, the model captures the magnitude and temporal stickiness of pric-

ing inefficiencies. The coefficients in the high–volatility group align with the baseline results reported

in Table 8, as well as the explanatory power of the model. The AR(1) term loses part of its significance

in the low–volatility group, consistent with the weak explanatory power in the subset in Section 4.2.2.

The strong AR(1) coefficient reveals that price deviations are conditionally persistent, highlighting

explicit dynamics not captured by static diagnostics.

The AR(1) specifications confirm that short–term ETF price deviations are highly persistent, par-

ticularly among high–volatility ETFs. These findings underscore the gradual nature of price correcting

processes, potentially driven by information frictions or arbitrage constraints.
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Table 9: Pooled OLS Regressions with AR(1): High- vs Low-Volatility ETFs

Variable High-Volatility Group Low-Volatility Group

Intercept −0.0059 0.0032∗∗∗

(0.0053) (0.0008)

Log(Market Capitalization) −0.0003 −0.0002∗∗∗

(0.0003) (0.0000)

Market Sentiment (VHSI) 0.0014 0.0000

(0.0010) (0.0001)

Tech Sector Volatility −0.0607 −0.0021

(0.0586) (0.0045)

Feedback Trading 0.0007 −0.0001

(0.0010) (0.0001)

Log(Liquidity) 0.0006∗∗∗ 0.0001∗∗∗

(0.0001) (0.0000)

% Institutional Ownership 0.0165∗∗∗ 0.0002

(0.0024) (0.0002)

AR(1) Lagged Deviation 0.6535∗∗∗ 0.0883∗∗

(0.0306) (0.0432)

Observations 2,335 2,335

R-squared 0.5709 0.0308

RESET p-value < 0.0001 0.1196
Notes: This table presents pooled OLS regressions for high– and low–volatility ETF groups, including an AR(1)

term. High–volatility ETFs show stronger autoregressive persistence. Standard errors in parentheses. Robust

SEs are used. Significance levels: ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.

The pooled OLS regressions and their extensions—through nonlinear terms, volatility subgroups,

and autoregressive components—collectively reinforce the hypothesis that ETF price deviations from

NAV in the Asian tech sector are shaped by a complex mix of structural, behavioral, and temporal

factors. While baseline regressions reveal that almost all key variables significantly influence mis-

pricings, their impact varies substantially across regimes and specifications. In the baseline model,

behavioral variables exhibit contrasting effects, while structural factors amplify mispricings.
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Nonlinear regressions capture convex and concave sentiment effects—where dislocations initially

widen with uncertainty but stabilize at high sentiment levels—and uncover diminishing returns to

feedback trading. Size and liquidity of the underlyings reverse in sign in presence of their positive

joint effect, which gains high predictive power of larger deviations. Subsample regressions reveal that

ETF mispricings are more predictable and significantly larger in volatility–prone ETFs, reinforcing the

relevance of fund–specific structural features and investor behavior under stress. The AR(1) extension

further highlights the persistence of dislocations, with approximately 70% of prior–day deviations

carried over into the next trading day. The inertia is particularly pronounced in high–volatility ETFs,

suggesting frictions in arbitrage or price adjustments.

These findings demonstrate that short–term ETF mispricings are not only significant and highly

persistent, but also conditionally nonlinear and regime–dependent. While pooled OLS models and

their extensions provide valuable insights into the immediate drivers of price–NAV spreads, they are

inherently limited in capturing long–term convergence dynamics and in explicitly modeling arbitrage

efficiency. To address these limitations, the analysis extends to cointegration and error correction

models, which are designed to test for long–run equilibrium relationships between ETF prices and

NAVs, and to capture the short–term deviations and adjustment dynamics toward that equilibrium.

These models allow for a deeper understanding of the frictions, delays, and asymmetries that constrain

the arbitrage mechanisms intended to align ETF prices with their fundamental values.

4.3 Long–run Adjustments: Cointegration

This section extends the research of short–term factors affecting price deviations to long–term

assessments of price-NAV movement, or possibly, co–movement. This section aims to answer the

second part of the research question, particularly: do ETF prices ultimately revert back toward their

NAVs, or do deviations persist over the long–term equilibrium?

This dynamic approach unfolds into two phases: first, the Engle–Granger and Johansen trace tests

are implemented to check for cointegration relationships between prices and NAVs. If the tests demon-

strate long–term co–movement despite short–term deviations, Error Correction Models and Vector

Error Correction Models are applied to quantify the direction and speed of adjustment of momentary

mispricings.
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4.3.1 Engle–Granger and Johansen Trace Tests

Following the methodology described in subsection 3.6, two cointegration frameworks are run to

test for the existence of long–term convergence between prices and NAVs. Table 10 shows the results

for the ETF–specific cointegration dynamics from the Engle–Granger test, Table 11 presents the find-

ings in a pooled panel framework from the Johansen trace test. Based on the ADF test results presented

in TableA8 in the Appendix, the tests apply to the 13 eligible ETFs exhibiting non–stationarity in both

prices and NAVs. The test statistic at the individual level is negative, and the values are substantially

below the critical threshold, as column ′Reject Null′ displays. The results imply that the residuals are

stationary for all 13 selected ETFs, thus indicting that ETF prices co–move with their NAVs in a stable,

long–term relationship. The three–lags H1 model applied for the Johansen trace test corroborates the

ETF–level cointegration by providing test statistics in all the lags exceeding the critical thresholds and

near–zero p–values. These results lead to the rejection of the null hypothesis of no cointegration at

the panel level, supporting the theory of ultimate price convergence toward their NAVs.

Table 10: Engle–Granger Cointegration Test Results (Selected ETFs)

ETF Test Statistic Reject Null

Bosera STAR 50 Index ETF (RMB) −12.317 Yes

CSOP Hang Seng TECH Index ETF (HKD) −21.504 Yes

ChinaAMC Hang Seng Tech Index ETF (USD) −19.246 Yes

ChinaAMC STAR 50 ETF −17.708 Yes

Dacheng Hang Seng Tech ETF (QDII) −15.463 Yes

Global X Cloud Computing ETF (USD) −19.323 Yes

Global X Semiconductor ETF (USD) −15.359 Yes

Hwabao FinTech Theme ETF −20.282 Yes

Invesco Great Wall Tech ETF −13.372 Yes

Penghua Semiconductor Chips ETF −18.773 Yes

Premia China STAR 50 ETF (USD) −14.001 Yes

Samsung Global Semiconductor ETF −21.647 Yes

iShares Hang Seng TECH ETF (USD) −21.705 Yes
Notes: ADF test on residuals from Price-NAV regressions. Rejection of the null indicates stationary

residuals, implying cointegration.
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Table 11: Johansen Trace Test for Cointegration (Pooled Panel)

Lags r Statistic Critical Value p-value Eigenvalue

1 0 114.8798 15.4948 0.0010 0.2079

1 6.4915 3.8415 0.0110 0.0139

2 0 83.1740 15.4948 0.0010 0.1532

1 6.0401 3.8415 0.0141 0.0129

3 0 54.6276 15.4948 0.0010 0.1002

1 5.7227 3.8415 0.0169 0.0123
Notes: Johansen trace test conducted under H1 specification with lags 1 to 3. Trace statistics significantly

exceed critical values, indicating cointegration in all specifications.

The joint evidence from the cointegration tests firmly confirms the existence of long-run equilib-

rium relatioships between ETF market prices and their NAVs. To model possible transient dynamics

and quantify the speed of price corrections, the next section introduces Error Correction Models and

Vector Error Correction Models explicitly incorporating short–term and long–term components of

ETF pricing behavior.

4.3.2 ECM and VECM

The robust evidence of cointegrating relationships between prices and NAVs over the long term

from both individual– and panel–level tests allows the study to proceed with the implementation of

dynamic models examining short–term deviations and subsequent degrees of convergence. Recalling

the equation for ECM, equation (7) in section 3.6, the model estimates capture the pace of price ad-

justments (Δ𝑃𝑡 ), as reflected in the coefficient attached to the lagged error correction term in column

four, 𝛾 (𝐸𝐶𝑡−1).

Table 12 presents the results from the ECM. Joint significance at the 1% level of confidence is

provided by the Wald test shown in Table A14 in the Appendix, with the corresponding test statistic.
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Table 12: Error Correction Model (ECM) Results for Cointegrated ETFs

ETF Alpha 𝛽 (ΔNAV) 𝛾 (EC𝑡−1) 𝑅2

Bosera STAR 50 Index ETF −0.00035 0.77284 −0.51192 0.91507

CSOP Hang Seng TECH Index ETF −0.00000 0.99875 −0.99831 0.99213

ChinaAMC Hang Seng Tech Index ETF 0.00001 1.00730 −0.88882 0.99531

ChinaAMC STAR 50 ETF 0.00000 1.01040 −0.81217 0.99059

Dacheng Hang Seng Technology ETF −0.00002 0.81852 −0.71819 0.93097

Global X Cloud Computing ETF −0.00179 0.82628 −0.97401 0.83063

Global X Semiconductor ETF 0.00022 1.01300 −0.67102 0.94926

Hwabao FinTech Theme ETF −0.00000 1.00070 −0.93869 0.99728

Invesco Great Wall Tech ETF −0.00001 0.88537 −0.57485 0.92216

Penghua Semiconductor Chips ETF −0.00000 0.98459 −0.85297 0.99388

Premia China STAR 50 ETF −0.00008 0.95219 −0.57303 0.96286

Samsung Global Semiconductor ETF 0.00018 0.37337 −1.17170 0.81446

iShares Hang Seng TECH ETF −0.00001 0.99070 −1.00210 0.99197

Notes: The table reports ECM estimates for all cointegrated ETFs. Coefficients include intercept (Alpha), the short–

run impact of NAV changes (𝛽), and the adjustment term toward equilibrium (𝛾 ).

Negative, strong in magnitude, and significant coefficients for the lagged error correction term

indicate that prices adjust back to their underlying NAVs rapidly. The mean–reverting behavior is

present, within a common range of -0.04 and -1.0, across all ETFs, supporting empirical confirmation

to findings from prior studies, such as Madhavan and Sobczyk (2016). Several funds exhibit aggressive

reversion within a day, such as the Samsung Bloomberg Global Semiconductor ETF, which is associ-

ated to a 𝛾 of -0.17. Extremely high R–squared values for almost all ETFs indicate an almost–perfect fit

of the model, with short–term changes and subsequent arbitrageur correction mechanisms explaining

almost 100% of deviations. The coefficient for NAV changes fluctuates around 0.8, which implies that

price changes derive from instantaneous reaction to NAV movements and lead to proportional price

adjustments. The high degree of market responsiveness to fundamental information, which was not

fully captured by linear models, supports the theoretical expectation of efficient arbitrage mechanisms

in the correction of intraday mispricings, as emphasized by Madhavan and Sobczyk (2016).

Table 13 expands the analysis through VECM, which captures investor behavior to fundamental

signals, including short–term feedback trading, momentum effects, and delayed information assimila-

tion. Following equation (8) in section 3.6, the specification includes lagged first differences of prices

and NAVs, which amplify cross–sectional, short–term movements that remain otherwise obscured in

the previous ECM system.
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Table 13: VECM Estimates — ETF-Level Short-Run Dynamics

ETF 𝛾𝐸𝐶𝑡−1 𝛽 (Cointegration) Δ𝑃𝑡−1 Δ𝑁𝐴𝑉𝑡−1 𝑅2

Bosera STAR 50 Index ETF −0.471 0.9958 0.059 0.026 0.075

CSOP Hang Seng TECH Index ETF −1.404 0.9992 0.394 −0.409 0.010

ChinaAMC Hang Seng Tech Index ETF −1.246 0.9961 0.666 −0.685 0.005

ChinaAMC STAR 50 ETF 0.090 1.0008 −0.376 0.375 0.002

Dacheng Hang Seng Technology ETF −0.947 0.9909 −0.270 0.140 0.112

Global X Cloud Computing ETF −1.227 1.0067 −0.107 0.170 0.370

Global X Semiconductor ETF −0.892 0.9989 −0.104 0.105 0.054

Hwabao FinTech Theme ETF 1.251 1.0014 −1.080 1.079 0.003

Invesco Great Wall Tech ETF −0.530 0.9833 −0.425 0.392 0.076

Penghua Semiconductor Chips ETF −1.021 1.0010 0.949 −0.950 0.006

Premia China STAR 50 ETF −0.148 0.9998 −0.067 0.132 0.008

Samsung Global Semiconductor ETF −1.129 0.9963 −0.038 0.150 0.724

iShares Hang Seng TECH ETF 0.867 0.9984 −1.162 1.136 0.012

Notes: VECM coefficients include the long-run error correction term (𝛾 ), cointegration slope (𝛽), and lagged short-

run impacts of price and NAV changes. All series differenced and aligned.

The lagged error correction coefficients remain predominantly negative, ranging between -0.1 and

-0.4. These results reinforce the moderate–to–strong speed of pricing adjustment from the correspond-

ing ECM estimates, confirming mean–reverting behavior in mispricings over the long term. The pace

varies across ETFs, with particularly steep values near -0.2 and -0.4 for CSOP Hang Seng Tech Intex

and ChinaAMC Hang Seng Tech Index, in line with timely arbitrageur reaction. Other ETFs, such as

Bosera Star 50 and Huatai–PineBridge, show mild speeds of reversion, while rare, positive EC terms

reflect temporary divergence.

Positive and significant coefficients for lagged ETF price changes, Δ𝑃𝑡−1, are found for a subset of

ETFs—including Bosera Star 50, ChinaAMC Hang Seng Tech, and Penghua Chips ETF—suggesting

short–term momentum consistent which narrative–based investor behavior (Jegadeesh & Titman,

1993; Shiller, 2017). Conversely, ETFs such as EFund CSI Internet 50 and Samsung KODEX show

negative delayed price effects, indicating reversal and convergence following deviation spikes. The

lag coefficients attached to NAV are often opposite in sign to price lags, with most values being pos-

itive and modest in magnitude, reflecting partial price adjustments after NAV shifts. For some ETFs,

such as Nikko Global Internet and Samsung KODEX, Δ𝑁𝐴𝑉𝑡−1 terms suggest delayed transmission

of fundamental signals, which is a documented effect for emerging markets (Atanasova & Weisskopf,

2020; Lee & Price, 2023). This further reinforces the hypothesis that NAV misalignment is not solely

arbitrage–related, but also structurally constrained, adding meaning to the potential barriers discussed
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in section 4.1. The significant drop in the R–squared, which now shows higher dispersion across ETFs,

in ranges between 1% and 72%, is still valid in the context of high–frequency, panel data analysis, as

it also introduces multiple lagged effects in pricing movements. Similarly to the ECM, Table A15 in

the Appendix displays statistical significance for all ETFs at the smallest level of confidence from the

application of the Wald test for joined significance.

The dynamic models implemented in this research provide a complete picture of ETF pricing dy-

namics. Beyond confirming the existence of long–run price–NAV equilibrium, the speed and direction

of error correction coefficients, coupled with the pattern of short–run responses, reveal latent frictions

and trading behaviors. In this sense, the ECM and VECM frameworks serve not only as tools of econo-

metric validation, but as vehicles into the actual mechanisms—both structural and behavioral—that

govern ETF market efficiency.

4.4 Robustness and Sensivitity Insights

This section provides alternative model specifications and data splits that confirm the solidity of

the selected models by assessing whether key patterns in ETF price deviations—particularly those

linked to sentiment, volatility, and institutional behavior—hold under such frameworks. Full results

are displayed in Appendix B.

4.4.1 March 2022 Dummy Variable and Interaction terms

The Pooled OLS regression model, with baseline equation (2), is extended to include a dummy

variable which captures the period covering March 2022. Figure 2 in the Data and Variables subsection

shows particularly large discounts as ETF mispricings corresponding to the month in question. To test

the significance of the exogenous shock characterized by the March 2022 crisis that affected markets

in Asia Pacific, the dummy variable is included to isolate the explanatory power of the event. The

variable assumes value 1 if t ∈ [March 1, 2022; March 31, 2022], and value 0 otherwise.

To address differential sensitivity of behavioral and volatility–linked factors during the episode

of market stress in March 2022, interaction terms between the dummy variable corresponding to the

crisis and VHSI, feedback trading, and technology sector volatility are estimated to detect the amplified

or diminished effect of investor behavior and market sentiment under extreme conditions.

Each interaction term was estimated in a separate regression to exacerbate any multicollinearity

issues. Table B1 reports results for three separate Pooled OLS regressions. Each column contains an
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interaction term between the March 2022 dummy variable and market sentiment, feedback trading,

and Technology sector volatility, respectively. These interaction terms were introduced to explore po-

tential nuanced effects of the behavioral variables during the specific month. All three models provide

meaningful findings. Technology sector volatility shows a negative coefficient across all specifica-

tions, though its magnitude and significance drop substantially in its interaction with the crisis. The

partial loss of significance and size is likely due to the absorption of volatility’s effect into the ex-

tremely significant interaction term, which reinforces the amplified effect of volatility on mispricings

due to the crisis. Feedback trading remains insignificant in all three models, with near–zero coeffi-

cients, in contrast to the positive, significant interaction term with the crisis. This underscores the

earlier interpretation that investor behavior is not uniformly influential during normal times, while

it acquires importance during high uncertainty. The dummy variable capturing the March 2022 cri-

sis period, which appeared statistically insignificant in the baseline model including only the crisis

dummy, turns significant in two of the models.

The combined significance of both the crisis dummy and its interaction terms provides additional

evidence of distortions induced by market stress, both through investor behavior and broader market

mechanisms. Cherkes et al. (2009) and Hilliard (2014) identify emerging sectors, fragmented trading

venues, and international NAV timing mismatches as structural fund features that make these ETFs

particularly vulnerable to price deviations. Such latent fragilities surface more acutely under crisis

conditions, heightening price inefficiencies. Beyond the March 2022 crisis, macroeconomic policy

shocks may also influence ETF pricing. To test this, the next section examines the effect of the U.S.

interest rate hike during the same month.

4.4.2 Structural Breaks: Rate Hike 2022 Dummy

To investigate the potential structural break induced by the rate hike, a dummy variable was in-

cluded capturing the period from March 16 to March 31, 2022, corresponding to the U.S. Federal

Reserve’s interest rate hike. Table B2 presents results for the baseline OLS model with the dummy

variable, as well as the nonlinear form, following the same rationale as for the crisis–adjusted model.

While the nonlinear model shows slight explanatory power improvement in terms of R–squared,

it reveals higher structural complexity. The dummy variable shows a large negative effect in the linear

model, which diminishes and changes direction under the nonlinear specification, suggesting that the

observed deviation shock is primarily driven by behavioral nonlinearities rather than the policy event
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itself. While the March shock was short–lived, its potential structural effects may persist. To capture

these post–crisis shifts more systematically, the following section presents a Difference–in–Difference

regression.

4.4.3 Difference–in–Difference: High–volatility ETFs Post–July 2022

This section exploits the time– and cross–sectional partitions conducted in earlier sections and im-

plements a Difference–in–Difference approach to further explore the structural dynamics behind ETF

mispricings. The temporal shift reflects a natural breakpoint in the sample, July 2022, which follows

market–wide disruptions condensed in the month of March 2022. This coincides with potential struc-

tural adjustments in risk pricing, arbitrage mechanisms, and fund flows across Asian tech–focused

ETFs. The fund–specific distinction is defined based on high– and low–volatility ETFs, being the

treatment and control groups respectively. The interaction between the two dimensions isolates the

differential effect of the post–crises regime on high–volatility ETFs, under the assumption of parallel

trends prior to July 2022. In this context, the DiD estimation assesses whether high–volatility ETFs

experienced a structurally different shift in mispricings after mid–2022.

Given the strong evidence of nonlinearity in sentiment and behavioral effects documented in pre-

vious sections, VHSI2, Feedback Trading2, and Market Cap x Liquidity were added to the specification,

with results reported in Table B3. The results confirm that high–volatility ETFs experience a signifi-

cant increase in price gaps from their NAVs after July 2022. The interaction term is highly significant,

supporting the view that structural shifts in arbitrage and behavior followed early–2022 market tur-

moil.

4.4.4 Seasonality: Monthly Dummy Variables

To account for systematic patterns in ETF mispricings across the whole calendar year, 11 monthly

dummy variables—January being the benchmark to avoid multicollinearity—were included in the base-

line model. The aim of the augmented specification is to capture seasonal fluctuations arising from

tax–loss harvesting, quarter–end portfolio rebalancing, or liquidity cycles, especially in Asia–Pacific

markets where fiscal calendars and trading volumes vary by month. Tables B4 and B5 present re-

sults for the extended, linear and nonlinear models. While the linear model shows weak significance,

strong, persistent seasonality is recorded in the nonlinear specification.

Strong, positive deviations are observed in the second half of the year, particularly in August,
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September, and October. These patterns likely reflect a combination of factors. Bouman and Jacobsen

(2002) document that international equity markets, included Asia, often rebound in the third quarter

following mid–year corrections or earning revisions, leading to pricing gaps between ETF shares and

their NAVs. This regional market momentum is found especially in technology sectors. Fiscal calen-

dar effects, common in Asian markets may also justify the statistically significant seasonal patterns.

Institutional investors adjust positions ahead of fiscal–year closings, such as in Japan and Hong Kong,

which can cause temporary mispricings due to rapid inflows or redemptions (Madhavan & Sobczyk,

2016). Pan and Zeng (2021) and Petajisto (2017) also identify liquidity dynamics and portfolio window

dressing, with supply–demand mismatches and inflated ETF prices above their NAV due to higher

trading volumes and investor activity around Golden Week in early October and Q3 earnings season,

and asset managers rebalancing towards outperforming tech names near quarter–ends to enhance

portfolio appearance, respectively.

These effects align with ETF–specific studies documenting calendar–driven frictions in arbitrage

mechanisms (Petajisto, 2017).

4.4.5 Fixed Effects

This subsection builds on the baseline Pooled OLS model, extending the estimation framework by

relaxing the assumption of uncorrelation between ETF–specific behavior and the regressors, captured

by the idiosyncratic error term. The estimation process unfolds into the application of the within

transformation, as follows:

𝑦𝑖𝑡 − 𝑦𝑖 = (𝑥𝑖𝑡 − 𝑥𝑖)′𝛽 + (𝜖𝑖𝑡 − 𝜖𝑖) (9)

The model subtracts the time averages, 𝑦𝑖 and 𝑥𝑖 , across the units i = 1, …, N, since 𝑐𝑖 is fixed, yielding

a model that differences out any time–invariant characteristics. The model includes the matrix of

regressors 𝑋𝑖𝑡 which now contains only market sentiment, technology sector volatility and feedback

trading as explanatory variables, while the intercept and any static variables are dropped out of the

regression through the within transformation, as they become zero. Therefore, market capitalization,

liquidity of the underlyings and percentage institutional ownership are removed, allowing clearer

interpretation and higher explanatory power of the coefficients attached to the three time–variant

factors.

Accounting for ETF–specific heterogeneity enhances the significance of time–varying behavioral
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regressors (Tables B6, B7). An extended specification with a Tech Volatility x Feedback Trading in-

teraction (Table B8) reveals that momentum–based mispricings are conditional on volatility regimes,

highlighting the importance of behavioral frictions during turbulence in explaining ETF pricing inef-

ficiencies, especially in speculative and rapidly evolving sectors such as technology.

Overall, these results reinforce the reliability of the core pooled OLS and cointegration–based

findings, while offering deeper insight into how ETF mispricings evolve under macro, seasonal, and

volatility–specific conditions.

5 Conclusion

This research investigates the drivers and dynamics of deviations between ETF market prices and

their net asset values, focusing on a panel of 19 tech–oriented ETFs listed across Asian exchanges. By

integrating structural, behavioral, and market–level determinants under several econometric frame-

works, this study contributes a novel perspective on pricing inefficiencies in emerging, theme–based,

and international ETF markets.

The analysis begins with sample selection and removal of any influential variables detected through

visual and descriptive statistics. The empirical findings show that ETF mispricings are persistent and

highly sensitive to structural and behavioral factors. Contrary to classical arbitrage efficiency expec-

tations, larger market capitalization, greater institutional presence, and higher liquidity of underlying

assets are associated with wider dislocations in the baseline linear OLS model. These results reflect

the informational and structural complexities of Asian ETF markets—particularly those with cross—

border exposure, QDII structures, and tech sector specialization.

The diagnostic tests for the validity of the models and the baseline assumptions justify the insertion

of nonlinear terms for market sentiment, feedback trading, and an interaction term between market

capitalization and liquidity of the underlyings. The results confirm nonlinear and regime–dependent

effects for the behavioral variables, and the relevance of the size–liquidity joint effect. Under nonlin-

ear specifications, market cap and liquidity of the underlyings individually narrow mispricings, while

their positive simultaneous effect indicates that large and liquid in fundamentals ETFs face higher dis-

locations, possibly due to crowding, narrative–based trading, or delayed arbitrage in high–turnover

segments. Market sentiment (VHSI) displays a convex relationship with deviations: moderate in-

creases narrow mispricings, while extreme sentiment levels amplify them. Feedback trading, insignif-
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icant in the linear model, gains explanatory power in nonlinear and high–volatility settings, pointing

to herd–driven distortions during turbulent periods.

Subsample regressions show that high–volatility ETFs are more exposed to both structural frictions

and behavioral noise, with substantially higher explanatory power and persistent deviation patterns.

The AR(1) models confirm this stickiness, revealing that up to 70% of price deviations persist from

one trading day to the next in high–volatility ETFs, suggesting inertia in correction mechanisms and

latent barriers to arbitrage.

The test results for cointegration analysis between prices and their fundamental values, as well

as the lack of coverage among the existing literature of such long–run dynamics motivate further

investigation through Error Correction Models and Vector Error Correction Models. The results vali-

date the presence of equilibrium relationships between prices and NAVs, with the relative coefficients

demonstrating that mispricings are mean–reverting and exhibit varying speeds of adjustment across

ETFs. These models also capture the interplay between delayed price responses, NAV shocks, and

momentum effects, offering deeper insight into the dynamic forces that govern ETF valuation over

time.

The findings have several implications for market participants and regulators. With respect to

investors, the results highlight the importance of understanding structural features—such as inter-

national holdings, underlying liquidity, and fund size—as these can amplify or dampen pricing inef-

ficiencies depending on market conditions. For arbitrageurs, the documented inertia and regime–

dependence of deviations suggest opportunities for dynamic strategies, particularly during high–

volatility episodes.

From a policy perspective, regulators in Asian markets should prioritize enhancements in NAV re-

porting timeliness, cross–border trading harmonization, and transparency in fund structures. Greater

international disclosure around ETF basket composition and intra–day NAV estimates could reduce

information lags and improve pricing alignment.

Finally, this research demonstrates that ETF price deviations are not random noise but reflect sys-

tematic patterns shaped by structural frictions, behavioral dynamics, and temporal regimes. Account-

ing for these nonlinearities and cointegrated relationships provides a richer, more realistic understand-

ing of ETF market behavior in Asia’s rapidly evolving financial landscape.

While this study provides a comprehensive framework to analyze price deviations from NAV, it

is subject to several limitations. First, the unique structural features of Asian ETF markets—include
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time zone misalignments and higher theme–based activity—may limit the generalization of the re-

sults. Additionally, the relatively small sample size, with restrictions in geographic and sectoral scope,

and brief time horizon may omit broader macroeconomic controls or patterns in mispricings. Second,

some variables—such as institutional ownership, liquidity of the underlying portfolio, and market

capitalization—are imported as static despite possible quarterly or annual temporal variation. Proxy

variables—VHSI and feedback trading—capture sentiment and investor behavior only indirectly, po-

tentially overlooking real–time dynamics. The exclusive reliance on daily closing data may also ob-

scure intraday pricing pressures and arbitrage windows. Lastly, although the econometric methodol-

ogy incorporates nonlinearities and cointegrating techniques, more advanced models such as machine

learning approaches could provide complementary regime switches and structural breaks more flexi-

bly to the ETF mispricing behavior.

Future research could expand the sample to global ETFs, include intraday data, and implement

alternative strategies that model short-term dislocations.
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Appendix A and B contain supplementary figures and tables referenced in earlier sections. Their

inclusion supports detailed descriptive and visual diagnostics, robustness checks, and ETF–specific

characteristics underlying the empirical models.

Appendix A: Core Results

Section A.1 — ETF Holdings Breakdown (Figures A1–A20): The following figures present the

holdings composition of each of the 20 Asian tech–oriented ETFs included in the sample. The figures

illustrate the top constituents and their respective portfolio weights, highlighting sector concentra-

tion, regional focus, and underlying exposure. These holdings help explain structural sources of price

deviation from NAV, as discussed in Section 4.1.
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Figures A1-A2: Holdings breakdown for the Samsung KODEX and Global X China Semiconductor ETFs. The
charts display the top 10 constituent stocks and their respective weightings as of December 2023.
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Figures A3-A4: Holdings breakdown for the ChinaAMC Hang Seng TECH Index and ChinaAMCSSE Science
Tech Innovation Board 50 ETFs. The charts display the top 10 constituent stocks and their respective weightings
as of December 2023.
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Figures A5-A6: Holdings breakdown for the Dacheng Hang Seng Technology QDII and E Fund CSI Overseas
Internet 50 Index ETFs. The charts display the top 10 constituent stocks and their respective weightings as of
December 2023.
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Figures A7-A8: Holdings breakdown for the E Fund Hang Seng Technology QDII and Global X China Cloud
Computing ETFs. The charts display the top 10 constituent stocks and their respective weightings as of Decem-
ber 2023.
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Figures A9–A10: Holdings breakdown for the Global X China Semiconductor and Global X FinTech ETFs. The
charts display the top 10 constituent stocks and their respective weightings as of December 2023.

0% 20% 40% 60% 80% 100% 120%

Technology

%Net Assets

Se
ct

or

Huatai PineBridge CSOP Hang Seng Tech Idx ETF QDII

0 10 20 30 40 50 60 70

Data Transformation, Software & IT Service

Financial Industry

Manufacturing

Wholesale & Retailing

%Net Assets

Se
ct

or

Hwabao WP CSI Fintech Theme Index ETF

Figures A11–A12: Holdings breakdown for the Huatai PineBridge CSOP Hang Seng TECH Idx QDII and
Hwabao WP CSI FinTech Theme index ETFs. The charts display the top 10 constituent stocks and their re-
spective weightings as of December 2023.
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Figures A13–A14: Holdings breakdown for the Invesco Great Wall CSI HK Connect TECH Index and Nikko
AM Global Internet ETFs. The charts display the top 10 constituent stocks and their respective weightings as of
December 2023.
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Figures A15–A16: Holdings breakdown for the Nikko AM Metaverse Theme Active and Penghua CNI Semi-
conductor Chips Index ETFs. The charts display the top 10 constituent stocks and their respective weightings
as of December 2023.
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Figures A17–A18: Holdings breakdown for the Premia China STAR50 and Samsung Bloomberg Global Semi-
conductor ETFs. The charts display the top 10 constituent stocks and their respective weightings as of December
2023.
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65



Section A.2—Descriptive Statistics with Outlier (Tables A1–A2, Figures A1–A4) These tables

offer descriptive and visual representations of the sample including the outlier: Global X FinTech ETF,

referred to in section 3.2 of the Methodology.

Table A1: Summary Statistics for Panel Variables-outlier

Variable Mean Std. Dev. Min Max N

Price Deviations -0.0412 0.1913 -0.8818 0.2641 9340

Market Capitalization ($bn) 1.6038 1.9355 0.0012 5.8000 9340

Market Sentiment (VHSI) 3.4282 0.5824 2.3296 6.3157 9340

Tech Sector Volatility 0.0250 0.0138 0.0000 0.1261 9340

Feedback Trading -0.0581 0.3991 -0.9283 0.8644 9340

Liquidity (90-day Volume, $bn) 2.1502 4.0424 0.0000 17.4379 9340

% Institutional Ownership 0.1334 0.1782 0.0000 0.5208 9340
Note: This table reports summary statistics for the dependent and explanatory variables in the regression. Price

Deviations are unitless relative measures of mispricings; market cap and liquidity of the underlyings are expressed

in billion U.S. Dollars; VHSI is expressed in index points, Technology sector volatility is the daily return standard

deviation; Feedback Trading is the cross-ETF correlation coefficient; Percentage Institutional Ownership is scaled as

a proportion ∈ [0, 1].
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Table A2: Descriptive Moments: Skewness and Kurtosis for Panel Variables-with outlier

Variable Skewness Kurtosis

Price Deviations -4.0808 17.8164

Market Capitalization ($bn) 0.9879 2.4951

Market Sentiment (VHSI) 1.0680 4.4678

Tech Sector Volatility 3.1384 20.9279

Feedback Trading 0.1392 2.2956

Liquidity (90-day Volume, $bn) 2.7008 10.3449

% Institutional Ownership 1.1659 2.8064
Notes: This table reports the skewness and kurtosis for the panel variables used in the regression analy-

ses. Skewness measures the asymmetry of the distribution; kurtosis measures the presence of extreme

values relative to a normal distribution. Values are based on the sample statistics with bias correction.
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Figure A1: Time series of the average daily ETF price deviation from NAV across 20 Asian tech-oriented ETFs
from January 2022 to December 2023. The chart illustrates systematic discounting patterns and stress periods
like March 2022
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Figure A2: Time Series of Deviations by ETF (Outlier Sample). This figure shows the time series of price
deviations for each ETF in the sample. The extremely negative deviations visible in the Global X FinTech ETF
motivated its exclusion from the final regression analyses, as its average market prices were abnormally lower
than its corresponding NAVs (approximately 4 versus 37 units, respectively).
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Figure A3: Distribution of Price Deviations by ETF (Outlier Sample). This figure shows the distribution of
price deviations for each ETF in the sample. The extremely negative deviations visible in the Global X FinTech
ETF motivated its exclusion from the final regression analyses, as its average market prices were abnormally
lower than its corresponding NAVs (approximately 4 versus 37 units, respectively).
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Figure A4: Distribution of ETF price deviations from NAV across 20 Asian tech-oriented funds, including the
Global X FinTech ETF (outlier). The histogram highlights .
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Section A.3—Descriptive Statistics (Excluding FinTech ETF) This section presents revised sum-

mary statistics after removing the outlier ETF. The cleaner distribution improves model reliability and

justifies the sample construction in Chapter 3.

Table A3: Descriptive Moments: Skewness and Kurtosis for Panel Variables (Excl. FinTech ETF)

Variable Skewness Kurtosis

Price Deviations 4.0692 39.7818

Market Capitalization ($bn) 0.9169 2.3573

Market Sentiment (VHSI) 1.0680 4.4678

Tech Sector Volatility 3.1384 20.9279

Feedback Trading 0.1392 2.2956

Liquidity (90-day Volume, $bn) 2.6173 9.8308

% Institutional Ownership 1.3425 3.2001
Notes: This table reports the skewness and kurtosis for the panel variables used in the regression analy-

ses. Skewness measures the asymmetry of the distribution; kurtosis measures the presence of extreme

values relative to a normal distribution. Values are based on the sample statistics with bias correction.
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Section A.4—Stationarity Tests (ADF) These tables report Augmented Dickey-Fuller (ADF) unit

root tests for key variables used in modeling price deviation dynamics. Stationarity tests are essential

to justify use of OLS, ECM, and VECM specifications.

Table A4: ADF Test Results for Deviation

ETF ADF Statistic p-value

BoseraStar50IndexETFRMB -11.9500 0.0010

CSOPHangSengTECHIndexETFHKD -21.2300 0.0010

ChinaAMCHangSengTechIndexETFUSD -18.5700 0.0010

ChinaAMCSSEScience TechInnovBoard50ETF -17.6300 0.0010

DachengHangSengTechnologyETF QDII -15.2200 0.0010

EFundCSIOverseasChinaInternet50IndexETF -4.8800 0.0010

EFundHangSengTechnologyETF QDII -10.7500 0.0010

GlobalXChinaCloudComputingETFUSD -19.4400 0.0010

GlobalXChinaSemiconductorETFUSD -15.6200 0.0010

Huatai PineBridgeCSOPHangSengTECHIdxETFQDII -12.7400 0.0010

HwabaoWPCSIFintechThemeIndexETF -20.6100 0.0010

InvescoGreatWallCSIHKConnectTechIndexETF -12.0900 0.0010

NikkoAMGlobalInternetETFUSD -19.7500 0.0010

NikkoAMMetaverseThemeActiveETFUSD -14.4700 0.0010

PenghuaCNISemiconductorChipsIndexETF -18.5800 0.0010

PremiaChinaSTAR50ETFUSD -13.6600 0.0010

SamsungBloombergGlobalSemiconductorETF -21.8100 0.0010

SamsungKodexSemiconETF -21.7800 0.0010

iSharesHangSengTECHETFUSD -21.5500 0.0010
Notes: This table reports Augmented Dickey–Fuller (ADF) test statistics and p-values for the percentage price

deviation series of each ETF. The null hypothesis is the presence of a unit root (non-stationarity). All p-values

are below 0.01, indicating that deviations are stationary (𝐼 (0)) across all ETFs, justifying their use in regression

without differencing.
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Table A5: ADF Test Results for VHSI

ETF ADF Statistic p-value

BoseraStar50IndexETFRMB -3.7000 0.0046

CSOPHangSengTECHIndexETFHKD -3.7000 0.0046

ChinaAMCHangSengTechIndexETFUSD -3.7000 0.0046

ChinaAMCSSEScience TechInnovBoard50ETF -3.7000 0.0046

DachengHangSengTechnologyETF QDII -3.7000 0.0046

EFundCSIOverseasChinaInternet50IndexETF -3.7000 0.0046

EFundHangSengTechnologyETF QDII -3.7000 0.0046

GlobalXChinaCloudComputingETFUSD -3.7000 0.0046

GlobalXChinaSemiconductorETFUSD -3.7000 0.0046

Huatai PineBridgeCSOPHangSengTECHIdxETFQDII -3.7000 0.0046

HwabaoWPCSIFintechThemeIndexETF -3.7000 0.0046

InvescoGreatWallCSIHKConnectTechIndexETF -3.7000 0.0046

NikkoAMGlobalInternetETFUSD -3.7000 0.0046

NikkoAMMetaverseThemeActiveETFUSD -3.7000 0.0046

PenghuaCNISemiconductorChipsIndexETF -3.7000 0.0046

PremiaChinaSTAR50ETFUSD -3.7000 0.0046

SamsungBloombergGlobalSemiconductorETF -3.7000 0.0046

SamsungKodexSemiconETF -3.7000 0.0046

iSharesHangSengTECHETFUSD -3.7000 0.0046
Notes: This table presents ADF test results for the market sentiment variable (VHSI). The low p-values (0.0046)

across all ETFs suggest rejection of the unit root null, implying stationarity (𝐼 (0)). This supports using VHSI

in levels in the pooled regressions.
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Table A6: ADF Test Results for TechVolatility

ETF ADF Statistic p-value

BoseraStar50IndexETFRMB -6.2900 0.0010

CSOPHangSengTECHIndexETFHKD -6.2900 0.0010

ChinaAMCHangSengTechIndexETFUSD -6.2900 0.0010

ChinaAMCSSEScience TechInnovBoard50ETF -6.2900 0.0010

DachengHangSengTechnologyETF QDII -6.2900 0.0010

EFundCSIOverseasChinaInternet50IndexETF -6.2900 0.0010

EFundHangSengTechnologyETF QDII -6.2900 0.0010

GlobalXChinaCloudComputingETFUSD -6.2900 0.0010

GlobalXChinaSemiconductorETFUSD -6.2900 0.0010

Huatai PineBridgeCSOPHangSengTECHIdxETFQDII -6.2900 0.0010

HwabaoWPCSIFintechThemeIndexETF -6.2900 0.0010

InvescoGreatWallCSIHKConnectTechIndexETF -6.2900 0.0010

NikkoAMGlobalInternetETFUSD -6.2900 0.0010

NikkoAMMetaverseThemeActiveETFUSD -6.2900 0.0010

PenghuaCNISemiconductorChipsIndexETF -6.2900 0.0010

PremiaChinaSTAR50ETFUSD -6.2900 0.0010

SamsungBloombergGlobalSemiconductorETF -6.2900 0.0010

SamsungKodexSemiconETF -6.2900 0.0010

iSharesHangSengTECHETFUSD -6.2900 0.0010
Notes: This table shows ADF test results for the daily volatility of the technology sector index, used as a proxy

for sector-specific risk. The p-values indicate strong rejection of the unit root null for all ETFs, confirming

stationarity of the volatility series and validating their inclusion in level form in the models.
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Table A7: ADF Test Results for FeedbackTrading

ETF ADF Statistic p-value

BoseraStar50IndexETFRMB -22.0500 0.0010

CSOPHangSengTECHIndexETFHKD -22.0500 0.0010

ChinaAMCHangSengTechIndexETFUSD -22.0500 0.0010

ChinaAMCSSEScience TechInnovBoard50ETF -22.0500 0.0010

DachengHangSengTechnologyETF QDII -22.0500 0.0010

EFundCSIOverseasChinaInternet50IndexETF -22.0500 0.0010

EFundHangSengTechnologyETF QDII -22.0500 0.0010

GlobalXChinaCloudComputingETFUSD -22.0500 0.0010

GlobalXChinaSemiconductorETFUSD -22.0500 0.0010

Huatai PineBridgeCSOPHangSengTECHIdxETFQDII -22.0500 0.0010

HwabaoWPCSIFintechThemeIndexETF -22.0500 0.0010

InvescoGreatWallCSIHKConnectTechIndexETF -22.0500 0.0010

NikkoAMGlobalInternetETFUSD -22.0500 0.0010

NikkoAMMetaverseThemeActiveETFUSD -22.0500 0.0010

PenghuaCNISemiconductorChipsIndexETF -22.0500 0.0010

PremiaChinaSTAR50ETFUSD -22.0500 0.0010

SamsungBloombergGlobalSemiconductorETF -22.0500 0.0010

SamsungKodexSemiconETF -22.0500 0.0010

iSharesHangSengTECHETFUSD -22.0500 0.0010
Notes: This table reports ADF test statistics for the Feedback Trading variable, which captures the rolling

correlation between current and lagged ETF returns. The extremely low p-values confirm stationarity of the

variable across all ETFs, enabling its inclusion in level form in dynamic and static regression models.
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Table A8: ADF Test Results for ETF Prices and NAVs (Trend Included)

ETF ADF (Price) p-value ADF (NAV) p-value

BoseraStar50IndexETFRMB -2.86 0.1780 -2.86 0.1753

CSOPHangSengTECHIndexETFHKD -3.12 0.1044 -3.10 0.1083

ChinaAMCHangSengTechIndexETFUSD -3.14 0.0989 -3.10 0.1079

ChinaAMCSSEScience TechInnovBoard50ETF -2.81 0.1931 -2.78 0.2067

DachengHangSengTechnologyETF QDII -2.90 0.1623 -3.12 0.1030

EFundCSIOverseasChinaInternet50IndexETF -4.11 0.0069 -4.11 0.0070

EFundHangSengTechnologyETF QDII -3.47 0.0441 -3.37 0.0574

GlobalXChinaCloudComputingETFUSD -2.98 0.1407 -2.58 0.3055

GlobalXChinaSemiconductorETFUSD -3.37 0.0568 -3.31 0.0655

Huatai PineBridgeCSOPHangSengTECHIdxETFQDII -4.04 0.0085 -4.09 0.0074

HwabaoWPCSIFintechThemeIndexETF -3.39 0.0536 -3.40 0.0526

InvescoGreatWallCSIHKConnectTechIndexETF -2.97 0.1422 -3.00 0.1346

NikkoAMGlobalInternetETFUSD -3.27 0.0731 -14.20 0.0010

NikkoAMMetaverseThemeActiveETFUSD -2.99 0.1376 -6.73 0.0010

PenghuaCNISemiconductorChipsIndexETF -3.27 0.0733 -3.27 0.0719

PremiaChinaSTAR50ETFUSD -3.15 0.0959 -3.11 0.1045

SamsungBloombergGlobalSemiconductorETF -2.26 0.4631 -2.11 0.5375

SamsungKodexSemiconETF -13.05 0.0010 -13.00 0.0010

iSharesHangSengTECHETFUSD -3.09 0.1093 -3.11 0.1068
Notes: This table reports ADF test results for ETF prices and net asset values (NAVs), including a linear trend term to

account for potential deterministic components. For most ETFs, the ADF statistics do not reject the unit root null at the 5%

level, suggesting that both Price and NAV are integrated of order one (𝐼 (1)). This justifies the use of cointegration, ECM,

and VECM models for analyzing the price–NAV relationship.
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Section A.5—Diagnostic Testing These figures and tables provide regression diagnostics for the

baseline pooled OLS model, including residual normality, heteroskedasticity, and multicollinearity

(via VIF). The section supports the diagnostic discussion in Section 5.2.

Table A9: Variance Inflation Factors (VIF) for Pooled OLS Regressors

Variable VIF

Intercept 0.0000

Market Capitalization 3.6323

Market Sentiment (VHSI) 1.5646

Tech Sector Volatility 1.5596

Feedback Trading 1.0058

Liquidity of underlying assets 3.5922

Institutional Ownership 1.0214
Notes: This table reports Variance Inflation Factors (VIFs) for all independent variables included in the

baseline pooled OLS model. VIFs indicate the extent of multicollinearity, with values above 5 typically

raising concern. All reported VIFs are well below this threshold, suggesting limited multicollinearity

among regressors.
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FigureA5: Residual Diagnostics by ETF.Histograms for residuals from the baseline pooled OLS model across
all 19 ETFs, split across two panels. Several ETFs exhibit skewed and leptokurtic patterns, indicating potential
non-normality and misspecification.
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Q-Q Plots of Residuals - By ETF

-4 -2 0 2 4

Standard Normal Quantiles

-0.03

-0.02

-0.01

0

0.01

0.02

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

BoseraStar50IndexETFRMB

-4 -2 0 2 4

Standard Normal Quantiles

-0.03

-0.02

-0.01

0

0.01

0.02

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

CSOPHangSengTECHIndexETFHKD

-4 -2 0 2 4

Standard Normal Quantiles

-0.01

0

0.01

0.02

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

ChinaAMCHangSengTechIndexETFUSD

-4 -2 0 2 4

Standard Normal Quantiles

-0.01

0

0.01

0.02

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

ChinaAMCSSEScience_TechInnovBoard50ETF

-4 -2 0 2 4

Standard Normal Quantiles

-0.1

-0.05

0

0.05

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

DachengHangSengTechnologyETF_QDII_

-4 -2 0 2 4

Standard Normal Quantiles

-0.1

0

0.1

0.2

0.3

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

EFundCSIOverseasChinaInternet50IndexETF

-4 -2 0 2 4

Standard Normal Quantiles

-0.1

-0.05

0

0.05

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

EFundHangSengTechnologyETF_QDII_

-4 -2 0 2 4

Standard Normal Quantiles

-0.05

0

0.05

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

GlobalXChinaCloudComputingETFUSD

-4 -2 0 2 4

Standard Normal Quantiles

-0.04

-0.02

0

0.02

0.04

0.06

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

GlobalXChinaSemiconductorETFUSD

-4 -2 0 2 4

Standard Normal Quantiles

-0.1

-0.05

0

0.05

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

Huatai_PineBridgeCSOPHangSengTECHIdxETFQDII

-4 -2 0 2 4

Standard Normal Quantiles

-0.02

-0.01

0

0.01

0.02

0.03

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

HwabaoWPCSIFintechThemeIndexETF

-4 -2 0 2 4

Standard Normal Quantiles

-0.06

-0.04

-0.02

0

0.02

0.04

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

InvescoGreatWallCSIHKConnectTechIndexETF

-4 -2 0 2 4

Standard Normal Quantiles

-0.1

-0.05

0

0.05

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

NikkoAMGlobalInternetETFUSD

-4 -2 0 2 4

Standard Normal Quantiles

-0.04

-0.02

0

0.02

0.04

0.06

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

NikkoAMMetaverseThemeActiveETFUSD

-4 -2 0 2 4

Standard Normal Quantiles

-20

-15

-10

-5

0

5

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

#10 -3PenghuaCNISemiconductorChipsIndexETF

-4 -2 0 2 4

Standard Normal Quantiles

-0.01

0

0.01

0.02

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

PremiaChinaSTAR50ETFUSD

-4 -2 0 2 4

Standard Normal Quantiles

-0.06

-0.04

-0.02

0

0.02

0.04

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

SamsungBloombergGlobalSemiconductorETF

-4 -2 0 2 4

Standard Normal Quantiles

-0.04

-0.02

0

0.02

0.04

0.06

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

SamsungKodexSemiconETF

-4 -2 0 2 4

Standard Normal Quantiles

-0.02

-0.01

0

0.01

0.02

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

iSharesHangSengTECHETFUSD

Figure A6: Residual Diagnostics by ETF. Histograms and Q–Q plots for residuals from the baseline pooled
OLS model across all 19 ETFs. Several ETFs show distinct skewness and excess kurtosis.
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Figure A7: Residuals vs. Main Predictors. Patterns suggest heteroskedasticity and nonlinear behavior,
especially at high levels of VHSI and FeedbackTrading.
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Section A.6—Subgroup and Nonlinear Regressions This section presents extended pooled OLS

regressions exploring heterogeneity in ETF behavior across high/low sentiment, feedback, crisis peri-

ods, and nonlinear terms. These directly relate to robustness checks and model extensions in Sections

5.3–5.5.

Table A10: OLS Subset Regressions: High vs Low Market Sentiment (VHSI)

Variable High VHSI Low VHSI

Intercept −0.0339∗∗∗ −0.0215∗∗∗

(0.0050) (0.0034)

Market Sentiment (VHSI) 0.0010∗∗∗ 0.0008∗∗∗

(0.0002) (0.0001)

Tech Sector Volatility 0.0038∗∗∗ 0.0015∗

(0.0010) (0.0009)

Feedback Trading −0.1222∗∗∗ −0.0516∗∗

(0.0248) (0.0252)

Log(Market Capitalization) 0.0009 −0.0005

(0.0007) (0.0005)

Log(Liquidity) 0.0002∗∗∗ 0.0001∗∗

(0.0001) (0.0001)

% Institutional Ownership 0.0215∗∗∗ 0.0137∗∗∗

(0.0019) (0.0012)

Observations 4,427 4,446

R-squared 0.0874 0.0911

RESET p-value 0.0000 0.0000
Notes: This table reports pooled OLS regressions separately for high and low market sentiment, using a median

split on VHSI (volatility index). High VHSI reflects elevated market uncertainty. The table shows heterogeneous

effects across regimes, particularly stronger feedback trading and volatility coefficients under high sentiment.

Robust standard errors in parentheses. Significance: ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
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Table A11: OLS Subset Regressions: High vs Low Feedback Trading

Variable High Feedback Low Feedback

Intercept −0.0280∗∗∗ −0.0266∗∗∗

(0.0035) (0.0037)

Market Sentiment (VHSI) 0.0009∗∗∗ 0.0009∗∗∗

(0.0002) (0.0001)

Tech Sector Volatility 0.0025∗∗∗ 0.0033∗∗∗

(0.0007) (0.0009)

Feedback Trading −0.0581∗∗∗ −0.1738∗∗∗

(0.0209) (0.0390)

Log(Market Capitalization) −0.0013 0.0006

(0.0011) (0.0010)

Log(Liquidity) 0.0002∗∗∗ 0.0001∗∗

(0.0001) (0.0001)

% Institutional Ownership 0.0190∗∗∗ 0.0162∗∗∗

(0.0017) (0.0015)

Observations 4,427 4,446

R-squared 0.0894 0.0850

RESET p-value 0.0000 0.0000
Notes: Subsample regressions based on a median split of the feedback trading indicator. High feedback captures

greater return-chasing behavior. Results indicate nonlinear responses to feedback effects, with sharper mispricing

reactions in the low feedback group. Robust standard errors in parentheses. Significance: ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05,
∗𝑝 < 0.1.
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Table A12: OLS Subset Regressions: Pre- vs Post-March 2022

Variable Pre-March 2022 Post-March 2022

Intercept 0.0079 −0.0295∗∗∗

(0.0072) (0.0028)

Market Sentiment (VHSI) −0.0006 0.0011∗∗∗

(0.0004) (0.0001)

Tech Sector Volatility −0.0006 0.0028∗∗∗

(0.0013) (0.0006)

Feedback Trading −0.0814 −0.1057∗∗∗

(0.0693) (0.0208)

Log(Market Capitalization) −0.0014 0.0004

(0.0014) (0.0004)

Log(Liquidity) 0.0004∗∗∗ 0.0001∗∗∗

(0.0002) (0.0000)

% Institutional Ownership 0.0099∗∗∗ 0.0182∗∗∗

(0.0031) (0.0012)

Observations 665 8,208

R-squared 0.0431 0.0895

RESET p-value 0.0003 0.0000
Notes: This table compares pricing behavior before and after March 2022, marking a crisis period (e.g., geopoliti-

cal or macroeconomic shocks). Post-crisis observations exhibit stronger and more significant coefficients across

behavioral and volatility variables. Robust standard errors in parentheses. Significance: ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05,
∗𝑝 < 0.1.
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Table A13: Comparison of Nonlinear OLS Specifications

Variable Model 1: VHSI2 Model 2: Feedback2 Model 3: MktCap × Liquidity

Intercept −0.0175∗∗ −0.0269∗∗∗ 0.0655∗∗∗

(0.0076) (0.0025) (0.0056)

Log(Market Capitalization) 0.0009∗∗∗ 0.0009∗∗∗ −0.0038∗∗∗

(0.0001) (0.0001) (0.0003)

Market Sentiment (VHSI) −0.0026 0.0026∗∗∗ −0.0075∗∗∗

(0.0044) (0.0005) (0.0005)

Tech Sector Volatility −0.1066∗∗∗ −0.0992∗∗∗ 0.0026∗∗∗

(0.0203) (0.0196) (0.0005)

Feedback Trading 0.0002 0.0002 0.0004∗∗∗

(0.0004) (0.0004) (0.0000)

Log(Liquidity, 90-day Volume) 0.0002 0.0002 −0.1013∗∗∗

(0.0000) (0.0000) (0.0199)

% Institutional Ownership 0.0176∗∗∗ 0.0176∗∗∗ 0.0002

(0.0011) (0.0011) (0.0004)

VHSI2 0.0007 – –

(0.0006)

Feedback Trading2 – −0.0013 –

(0.0010)

MktCap × Liquidity – – 0.0113∗∗∗

(0.0009)

Observations 8,873 8,873 8,873

R-squared 0.0856 0.0853 0.1097

RESET p-value 0.0000 0.0000 0.0000
Notes: This table presents three pooled OLS regressions exploring nonlinear effects via squared sentiment and

feedback terms, and the interaction between Market Capitalization and Liquidity. Each model includes standard

controls, with robust standard errors in parentheses. Significance levels: ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
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Section A.7—Dynamic Model Tests (ECM/VECM) These tables report Wald tests for the signifi-

cance of cointegrating and short-run error correction terms across ETFs.

Table A14: Wald Test Results for ECM (Joint Significance)

ETF F-statistic p-value

Bosera STAR 50 Index ETF 2505.19 0.0000

CSOP Hang Seng TECH Index ETF 29297.47 0.0000

ChinaAMC Hang Seng Tech Index ETF 49390.31 0.0000

ChinaAMC STAR 50 ETF 24475.62 0.0000

Dacheng Hang Seng Technology ETF 3135.80 0.0000

Global X Cloud Computing ETF 1140.20 0.0000

Global X Semiconductor ETF 4349.60 0.0000

Hwabao FinTech Theme ETF 85292.72 0.0000

Invesco Great Wall Tech ETF 2754.27 0.0000

Penghua Semiconductor Chips ETF 37764.89 0.0000

Premia China STAR 50 ETF 6027.25 0.0000

Samsung Global Semiconductor ETF 1020.62 0.0000

iShares Hang Seng TECH ETF 28738.13 0.0000

Notes: This table reports the Wald test results for the Error Correction Model (ECM) estimates of ETF

price deviations from NAV. The test assesses the joint significance of the lagged short-run variables,

including lagged deviations and differences in NAV and price. High F-statistics and p-values below 0.01

indicate strong short-run dynamics for nearly all ETFs. These results support the existence of meaningful

error-correcting behavior toward long-run equilibrium.
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Table A15: Wald Test Results for VECM (Joint Significance)

ETF F-statistic p-value

Bosera STAR 50 Index ETF 1.88 0.1544

CSOP Hang Seng TECH Index ETF 0.62 0.5364

ChinaAMC Hang Seng Tech Index ETF 0.93 0.3946

ChinaAMC STAR 50 ETF 0.52 0.5922

Dacheng Hang Seng Technology ETF 4.35 0.0134

Global X Cloud Computing ETF 1.84 0.1594

Global X Semiconductor ETF 0.19 0.8237

Hwabao FinTech Theme ETF 1.39 0.2512

Invesco Great Wall Tech ETF 5.08 0.0066

Penghua Semiconductor Chips ETF 2.41 0.0910

Premia China STAR 50 ETF 1.24 0.2896

Samsung Global Semiconductor ETF 3.48 0.0318

iShares Hang Seng TECH ETF 5.14 0.0062

Notes: This table reports Wald test statistics for the Vector Error Correction Model (VECM) applied to

ETF price and NAV series. The test examines the joint significance of short-run dynamic terms in the

VECM equations. While a few ETFs (e.g., iShares Hang Seng TECH and Invesco Great Wall) display

significant dynamics (p<0.05), most results show weak short-term feedback once cointegration is con-

trolled, suggesting limited predictive power of lagged deviations in multivariate settings.

Appendix B: Robustness and Sensitivity Checks

This Appendix refers to the results in section 4.4 of Robustness and Sensitivity checks.
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Section B.1—Crisis Interactions These regressions evaluate whether ETF deviations responded dif-

ferently during the March 2022 market shock and the 2022 U.S. rate hike, depending on behavioral

characteristics.

Table B1: Pooled OLS with Interaction Terms — March 2022 Crisis × Behavioral Variables

Variable Crisis × VHSI Crisis × Feedback Crisis × Tech Volatility

Intercept −0.0277∗∗∗ −0.0266∗∗∗ −0.0265∗∗∗

(0.0025) (0.0025) (0.0025)

Log(Market Capitalization) 0.0009∗∗∗ 0.0009∗∗∗ 0.0009∗∗∗

(0.0001) (0.0001) (0.0001)

Market Sentiment (VHSI) 0.0028∗∗∗ 0.0025∗∗∗ 0.0020∗∗∗

(0.0005) (0.0005) (0.0005)

Tech Sector Volatility −0.0939∗∗∗ −0.1021∗∗∗ −0.0384∗

(0.0208) (0.0200) (0.0228)

Feedback Trading 0.0004 −0.0002 0.0003

(0.0004) (0.0004) (0.0004)

Log(Liquidity, 90-day Volume) 0.0002∗∗∗ 0.0002∗∗∗ 0.0002∗∗∗

(0.0000) (0.0000) (0.0000)

% Institutional Ownership 0.0176∗∗∗ 0.0176∗∗∗ 0.0176∗∗∗

(0.0011) (0.0011) (0.0011)

March 2022 Dummy 0.0162∗ 0.0001 0.0058∗∗∗

(0.0087) (0.0011) (0.0019)

Interaction Term −0.0040∗ 0.0061∗∗ −0.1337∗∗∗

(0.0023) (0.0028) (0.0404)

Observations 8,873

R-squared 0.0865–0.0875

RESET p-value < 0.0001
Notes: This table compares three pooled OLS models, each interacting the March 2022 crisis dummy with a

behavioral variable. Standard errors in parentheses. Significance levels: ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1. Log-

transformed variables are used for Market Capitalization and Liquidity.
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Table B2: Comparison of Linear and Nonlinear Pooled OLS with Rate Hike 2022 Dummy

Variable Linear Rate Hike 2022 OLS Nonlinear Rate Hike 2022 OLS

Intercept 0.0000 −0.0005∗∗

(0.0001) (0.0002)

Log(Market Capitalization) −0.0006∗∗ 0.0060∗∗∗

(0.0003) (0.0020)

Market Sentiment (VHSI) 0.0001∗∗∗ −0.0017∗∗∗

(0.0000) (0.0003)

Tech Sector Volatility 0.0211 0.0160

(0.0151) (0.0152)

Feedback Trading −0.0000 0.0000

(0.0003) (0.0003)

Log(Liquidity) 0.0013∗ 0.0012

(0.0008) (0.0008)

% Institutional Ownership 0.7139∗∗∗ 0.7000∗∗∗

(0.0225) (0.0231)

VHSI2 — −0.0291∗∗∗

(0.0108)

Feedback2 — −0.0008∗∗∗

(0.0003)

MCap × Liquidity — −0.0003

(0.0007)

Rate Hike 2022 Dummy −0.0303∗∗∗ 0.0001∗∗∗

(0.0109) (0.0000)

Observations 8,873

R-squared 0.5283 0.5320

RESET p-value < 0.0001 < 0.0001
Notes: This table compares linear and nonlinear pooled OLS specifications including a dummy variable for the

U.S. Federal Reserve rate hike in March 2022. Nonlinear model includes quadratic terms for VHSI and Feedback

Trading, and an interaction between Market Capitalization and Liquidity. Robust standard errors are in paren-

theses. Significance levels: ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
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Section B.2—Difference-in-Differences (DID) This nonlinear DID specification tests whether high-

volatility ETFs behaved differently post-June 2022.

Table B3: Difference-in-Differences: Nonlinear Specification (High-Volatility ETFs)

Variable Coefficient Robust SE p-value

Intercept 0.0060 0.0074 0.4162

Log (Market Capitalization) −0.0000 0.0002 0.9728

Market Sentiment (VHSI) 0.0028∗∗∗ 0.0009 0.0030

Tech Sector Volatility 0.0001 0.0010 0.9404

Feedback Trading −0.0007∗∗ 0.0003 0.0255

log (Liquidity) 0.0030 0.0027 0.2664

% Institutional Ownership −0.0154 0.0207 0.4558

Post (Jul-Dec 2022) 0.0002 0.0003 0.4536

Treated (High-Volatility) −0.0013∗∗∗ 0.0004 0.0003

Post × Treatment (DID) 0.0024∗∗∗ 0.0007 0.0011

AR (1) Lagged Deviation 0.6727∗∗∗ 0.0247 0.0000

VHSI2 −0.0004 0.0004 0.2989

Feedback2 −0.0006 0.0007 0.4056

Market Cap × Liquidity 0.0001∗∗∗ 0.0000 0.0001

Observations 8,873

R-squared 0.5326

RESET p-value < 0.0001
Notes: This table presents nonlinear Difference-in-Differences (DID) estimates for high-volatility ETFs. Nonlinear

terms include VHSI2, Feedback2, and the MarketCap × Liquidity interaction. Robust standard errors are reported.

Significance levels: ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
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Section B.3—Seasonality Controls This section presents models with monthly dummies to account

for seasonal patterns in ETF deviations.

Table B4: Pooled OLS with Monthly Dummies (Seasonality Model)

Variable Coefficient Robust SE t-statistic p-value

Intercept −0.0256∗∗∗ 0.0024 -10.74 0.0000

Log(MarketCap) 0.0009∗∗∗ 0.0001 8.74 0.0000

VHSI 0.0012∗∗ 0.0005 2.40 0.0166

TechVolatility −0.0644∗∗∗ 0.0212 -3.04 0.0024

FeedbackTrading 0.0003 0.0004 0.61 0.5443

Log(Liquidity) 0.0002∗∗∗ 0.0000 3.51 0.0004

Institutional Ownership 0.0176∗∗∗ 0.0011 15.55 0.0000

Feb 0.0012∗ 0.0006 1.96 0.0500

Mar 0.0021∗∗∗ 0.0008 2.75 0.0059

Apr 0.0027∗∗∗ 0.0007 3.71 0.0002

May 0.0036∗∗∗ 0.0008 4.48 0.0000

Jun 0.0014∗∗ 0.0006 2.20 0.0279

Jul 0.0011∗ 0.0006 1.81 0.0702

Aug 0.0030∗∗∗ 0.0006 4.62 0.0000

Sep 0.0046∗∗∗ 0.0007 6.61 0.0000

Oct 0.0074∗∗∗ 0.0012 6.39 0.0000

Nov 0.0025∗∗∗ 0.0008 3.22 0.0013

Dec 0.0005 0.0006 0.82 0.4147

Observations 8,873

R-squared 0.0963

RESET test p = 0.0000
Notes: This table reports pooled OLS estimates including monthly dummy variables (January omitted). Robust stan-

dard errors are used. Significance levels: ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
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Table B5: Nonlinear Pooled OLS with Monthly Dummies (Seasonality Model)

Variable Coefficient Robust SE t-statistic p-value

Intercept −0.0050∗∗ 0.0023 -2.20 0.0281

Log(MarketCap) −0.0000 0.0001 -0.14 0.8870

VHSI −0.0026∗∗∗ 0.0003 -8.06 0.0000

TechVolatility 0.0119 0.0101 1.17 0.2405

FeedbackTrading 0.0013∗∗∗ 0.0004 2.96 0.0031

Log(Liquidity) 0.0000 0.0000 0.67 0.5043

Institutional Ownership 0.0006 0.0009 0.65 0.5148

Feb 0.0006∗ 0.0004 1.83 0.0671

Mar 0.0039∗∗∗ 0.0004 8.71 0.0000

Apr 0.0098∗∗∗ 0.0007 14.41 0.0000

May 0.0078∗∗∗ 0.0005 16.26 0.0000

Jun 0.0053∗∗∗ 0.0005 11.28 0.0000

Jul 0.0179∗∗∗ 0.0013 14.14 0.0000

Aug 0.0140∗∗∗ 0.0007 19.34 0.0000

Sep 0.0067∗∗∗ 0.0006 11.10 0.0000

Oct 0.0072∗∗∗ 0.0008 9.18 0.0000

Nov 0.0052∗∗∗ 0.0006 8.19 0.0000

Dec 0.0018∗∗∗ 0.0004 4.53 0.0000

VHSI2 0.0002∗∗∗ 0.0001 2.68 0.0074

Feedback2 −0.0019∗∗ 0.0010 -1.98 0.0479

MCap × Liquidity 0.0000∗∗∗ 0.0000 19.45 0.0000

Observations 8,873

R-squared 0.1500

RESET test p = 0.0000
Notes: This table reports nonlinear OLS estimates with monthly dummies and quadratic interaction terms. January

is the base month. Robust standard errors are used. Significance levels: ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
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Section B.4—Fixed Effects Estimations These tables report ETF-level fixed effects and interactions,

emphasizing time-invariant characteristics and heterogeneity.

Table B6: Fixed Effects (FE) Regression Results

Variable Coefficient Std. Error t-statistic p-value

Market Sentiment (VHSI) 0.0026 0.0003 9.2691 0.000∗∗∗

Tech Sector Volatility −0.1013 0.0119 −8.5348 0.000∗∗∗

Feedback Trading 0.0002 0.0003 0.7500 0.453

Observations 8,873

Number of ETFs (𝑛) 19

Time Periods (𝑇 ) 467 (Balanced)

R-squared 0.0114

Adjusted R-squared 0.0091

Wald F-statistic 33.997 (p = 0.0000)
Notes: The table reports the results from a Fixed Effects (within estimator) panel regression on ETF price

deviations. ETF fixed effects are included but not reported. Robust standard errors are clustered at the ETF

level. *** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1.
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Table B7: Individual ETF Fixed Effects Estimates

ETF Name Fixed Effect Std. Error t-statistic p-value Significance

Bosera STAR 50 Index ETF −0.01491 0.00100 −14.86 0.000 ***

CSOP Hang Seng TECH Index ETF −0.00653 0.00100 −6.51 0.000 ***

ChinaAMC Hang Seng Tech Index ETF −0.00665 0.00100 −6.62 0.000 ***

ChinaAMC SSE STAR 50 ETF −0.00612 0.00100 −6.10 0.000 ***

Dacheng Hang Seng Technology ETF −0.00688 0.00100 −6.86 0.000 ***

EFund CSI Overseas China Internet 50 ETF 0.03808 0.00100 37.95 0.000 ***

EFund Hang Seng Technology ETF −0.00203 0.00100 −2.02 0.043 **

Global X China Cloud Computing ETF −0.00687 0.00100 −6.85 0.000 ***

Global X China Semiconductor ETF −0.00819 0.00100 −8.17 0.000 ***

Huatai-PineBridge CSOP HSTech Index ETF −0.00463 0.00100 −4.61 0.000 ***

Hwabao WP CSI Fintech Theme Index ETF −0.00668 0.00100 −6.66 0.000 ***

Invesco Great Wall CSI HK Connect Tech ETF −0.00468 0.00100 −4.66 0.000 ***

Nikko AM Global Internet ETF −0.00304 0.00100 −3.03 0.002 ***

Nikko AM Metaverse Theme Active ETF −0.00011 0.00100 −0.11 0.915

Penghua CNI Semiconductor Chips ETF −0.00589 0.00100 −5.87 0.000 ***

Premia China STAR 50 ETF −0.00661 0.00100 −6.59 0.000 ***

Samsung Bloomberg Global Semiconductor ETF −0.00797 0.00100 −7.94 0.000 ***

Samsung KODEX Semiconductor ETF −0.00768 0.00100 −7.65 0.000 ***

iShares Hang Seng TECH ETF −0.00652 0.00100 −6.50 0.000 ***

Notes: This table reports estimated ETF-specific fixed effects from the within estimator panel model. These coef-

ficients capture ETF-level characteristics that are constant over time, such as trading venue, index structure, or

fund size. Significance levels: *** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1.
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Table B8: Fixed Effects Model — Including Volatility × Feedback Interaction

Variable Coefficient Std. Error t-statistic p-value

Market Sentiment (VHSI) 0.002681 0.000282 9.5209 0.000∗∗∗

Tech Sector Volatility −0.1030 0.011859 −8.6889 0.000∗∗∗

Feedback Trading −0.0025 0.000618 −3.9800 0.000∗∗∗

Volatility × Feedback 0.0984 0.019017 5.1745 0.000∗∗∗

Observations 8,873

Number of ETFs (𝑛) 19

Time Periods (𝑇 ) 467 (Balanced)

R-squared (within) 0.0144

Adjusted R-squared 0.0119

Wald F-statistic 32.27 (p = 0.0000)
Notes: This table extends the fixed effects specification by including an interaction term between Technology Sector

Volatility and Feedback Trading. All variables, including the interaction, are statistically significant at the 1% level.

ETF fixed effects are included but not reported. Standard errors are robust and clustered at the ETF level. Significance

levels: ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
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