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Introduction

Bubbles have played a significant role throughout the history of finance. Since
the ”tulip bubble” of 1636–1637, they have had the power to shatter entire
economies and, in exceptional cases, turn the tide of history. Bubbles can
happen in any market, be it the stock market, credit, derivatives, crypto,
and many others. In particular, stock market bubbles can be categorized
into three types:

1. Endogenous, which arise from internal positive feedback loops within
the market. Examples of this type are the Dotcom and the 2021–2022
bubbles.

2. Exogenous, such as the Covid crash of 2020, caused by the news of
lockdown.

3. Mixed, such as the 2008 bubble, which originates from the subprime
market and is transmitted later on in the major stock indexes.

Furthermore, a bubble can typically be decomposed into three different
stages:

1. a random walk with positive drift, that represents the secular positive
trend of the major stock markets;

2. an AR(1) process with ϕ1 > 1, which is the upward explosive phase;

3. a random walk with negative drift, which is the decline phase.

The topic of financial bubbles has always interested both economists and
market investors alike. Economists have tried to explain the existence—or
the impossibility—of bubbles through different theoretical frameworks, while
analysts have spent great effort developing methods useful to detect stock
market speculative regimes before their collapse.
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In particular, the Efficient Market Hypothesis (EMH) claims that all avail-
able information is instantaneously reflected in prices, which therefore follow
a martingale process. Within this paradigm, bubbles cannot be detected ex
ante, since any deviation from fundamentals would be arbitraged away. On
the opposite side, Behavioral Finance stresses the role of cognitive biases,
herding, and reflexivity in generating self-reinforcing feedback loops that
detach prices from intrinsic values. These distortions are not immediately
corrected by rational arbitrage, and can therefore lead to the endogenous for-
mation of bubbles. A third view, originating from Minsky, focuses on credit
cycles and the progressive accumulation of financial fragility as a structural
cause for booms and crashes.

This thesis pursues a twofold objective. First, to demonstrate that finan-
cial bubbles can be detected ex ante, i.e., before they reach their tipping point
and crash. Second, to compare econometric and non-econometric approaches
to early bubble detection, evaluating their relative accuracy, robustness, and
interpretability. This comparative analysis allows to assess not only whether
these methods work, but also how and why their performance varies across
different market environments.
In particular, four distinct approaches will be considered:

1. Random Coefficient Autoregression (RCA), an econometric technique
designed for real-time monitoring of regime shifts in time series.

2. The Log-Periodic Power Law Singularity (LPPLS) model, based on the
idea of accelerating log-periodic structures before the crash.

3. Topological Data Analysis (TDA), a geometric approach based on the
persistent homology of sliding windows over market prices.

4. Permutation Entropy (PE), a nonparametric, information-theoretic mea-
sure of randomness versus order in a time series.

These four approaches are tested on two empirical cases: the S&P 500
and Natural Gas (NYMEX) bubble of 2021–2022. Through their applica-
tion, it will be demonstrated that financial bubbles can be identified before
they peak, and that speculative episodes—even in highly liquid and informa-
tionally efficient markets—display a consistent endogenous component that
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can be measured and monitored.

This thesis contributes to the literature in three main ways:

1. It offers a systematic and comparative analysis of both econometric and
non-econometric bubble detection techniques, an area in which existing
studies are typically fragmented or methodologically isolated.

2. It expands the application of recent models—such as RCA and TDA—to
asset classes beyond equities, such as energy futures, where their effec-
tiveness is less documented.

3. It provides evidence supporting the hypothesis that financial bubbles, far
from being unpredictable anomalies, can be anticipated through changes
in the statistical and structural properties of price time series.

The empirical findings show that RCA is the most effective method in
terms of early detection and signal stability. When coupled with exogenous
variables—like the VIX or WTI—it provides both an early warning signal
and an interpretable explanation of the regime change. LPPLS, while capa-
ble of predicting the timing of the crash with reasonable precision, is sensitive
to the choice of in-sample windows and prone to instability. TDA offers a
powerful visual and structural insight into market phases, particularly when
applied to multi-dimensional time series, but its computational intensity and
sensitivity to thresholds make it less practical. PE, although elegant and
computationally efficient, underperforms in complex or noisy environments
such as commodity futures.
This thesis shows that bubbles are not purely exogenous or random phe-
nomena, but instead are shaped by internal market dynamics (particularly
feedback loops, misperceptions, and herding behavior) that manifest them-
selves well before prices reach unsustainable levels, thus giving credit to Be-
havioral Finance. The combined use of econometric and non-econometric
approaches allows for a more nuanced and comprehensive view of these phe-
nomena, bridging theoretical models and empirical applications in financial
market analysis.
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1 Theoretical Frameworks

1.1 Efficient Market Hypothesis and Rational Bubbles

The efficient market hypothesis (Fama, 1970; Fama,1976) states that, regard-
ing public markets, prices incorporate all available information, formally

fm(p1t, . . . , pnt|ϕmt−1) = f(p1t, . . . , pnt|ϕt−1). (1.1)

where ϕt−1 is the complete available information set at time t− 1 and

f(p1t, . . . , pnt|ϕt−1) (1.2)

is the joint density of prices of n assets conditioned on the available infor-
mation set. The letter m stands for market, thus Equation 1.1 expresses the
idea that the information used by it at time t− 1 coincides with all available
information and that the market uses this information correctly to determine
asset prices. Furthermore, the EMH distinguishes three levels of information
processing by investors (Fama, 1970):

1. The weak form: current prices incorporate only data about past prices
and volumes. This implies the ineffectiveness of the usage of technical
analysis to achieve above-average returns.

2. The semi-strong form: current prices incorporate all publicly available
information, including earnings data. This demonstrates that also fun-
damental analysis cannot be used to outperform stock indexes.

3. The strong form: current prices incorporate also privately held informa-
tion, implying that neither insider traders or investors who have privi-
leged access to information (e.g. hedge funds which have real time access
to brokers order flow) can outperform consistently in the long run.
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While the forms 1. and 2. have been empirically tested (Fama et al., 1969
; Fama, 1970; Jensen, 1978) particularly through ”event studies”, the third
one has been criticized, being it also much more difficult to test. Generally
speaking, the EMH implies that financial bubbles cannot be tested, and that
prices follow a random walk

Xt = Xt−1 + ϵt (1.3)

and that they are martingales, that is

E[Xt+1|Ft] = Xt (1.4)

as stated by Fama, 1970. Brock (1982) and Tirole (1982) constructed a the-
oretical argument against the existence of bubbles in stock prices: assuming
a constant number of asset holder with infinite planning horizon, if bubbles
existed, investors would expect utility gains from selling the stock and never
repurchasing it
However, Lo & MacKinlay (1988)demonstrated that prices do not always fol-
low a random walk and that they can shift toward an explosive behavior,
while others (Blanchard & Watson, 1982; Diba & Grossman, 1988) tried to
explain the existence of bubbles in a rational market framework. Particularly,
Diba & Grossman (1988) demonstrated the existence of strictly positive ra-
tional bubbles, i.e. the possibility of overestimation of assets values from
the majority of investors, starting from the maximization of the following
expected utility of a typical household over an infinite horizon:

Et

[ ∞∑
τ=t

βτ−tu(cτ)

]
, 0 < β < 1 (1.5)

where cτ is a stochastic process representing consumption of a single perish-
able good, and β is the discount factor for future consumption. The fact
that present consumption is preferred over future consumption implies that
the discount factor is lower than unity. The utility function u(·) is strictly
concave, increasing and continuously differentiable. Each period, the house-
hold has an endowment yτ of the aforementioned consumption good. The
household can smooth consumption by acquiring shares, sτ , at the price pτ
units of consumption good per share. Each share pays a dividend dτ units of
consumption good per period. The budget constraint faced by the household
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at a given point in time is

cτ + pτ(sτ+1 − sτ) ≤ yτ + dτsτ (1.6)

and the first order condition for the utility maximization is

pτu
′(cτ) = βEτ+1 [(ρτ+1 + dτ+1)u

′(cτ+1)] . (1.7)

By normalizing the number of shares per capita to 1, the market clearing
condition is

cτ = yτ + dτ for all τ ≥ t (1.8)

As done by Lucas (1978), it is possible to put Equation 1.8 into Equation 1.7
to get the expression

Etqt+1 − β−1qt = −Et [u′(yt+1 + dt+1)dt+1] (1.9)

where
qt ≡ u′(yt + dt)pt. (1.10)

Equation 1.9 has a forward-looking solution that can be expressed as Ft, i.e.
the market-fundamentals component of qt, which is

Ft =
∞∑
j=1

βjEt [u′(yt+j + dt+j)dt+j] (1.11)

Particularly, if the household is risk neutral, Equation 1.11 reduces the stock
price to the sum of present values of expected future dividends. However,
Equation 1.9 has also a general solution that includes not only a fundamental
component, but also a positive rational bubble factor, that is

qt = Bt + Ft (1.12)

where Bt is the solution to the expectational difference equation

EtBt+1 − β−1Bt = 0 (1.13)

In this framework, market bubbles are endogenous, since they are the product
of expectations of investors, which can anticipate the fact that other investor
will feed the bubble in the future and therefore buy the asset in order to
profit from this subsequent upward movement. However, this model does not
explain how bubbles peak and crash, i.e. how Bt changes over time, often
because of exogenous informational shocks, and why in many cases financial
markets can remain persistently undervalued after a crash, i.e. how there can
be a negative bubble, not only a positive one.
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1.2 Behavioral Finance and Soros’ Reflexivity

After the EMH started to prevail in the academic field, a growing number
of psychologists and economists started to gather empirical evidence that
investors are not perfectly rational, they do not always process information
correctly, being afflicted by cognitive biases, and thus the degree of distortion
of prices with respect to fundamentals may vary significantly, from negligible
to consistent. The prospect theory (Kahneman & Tversky, 1979) demon-
strates through a series of surveys that outcomes obtained with certainty are
overweighted with respect to uncertain outcomes. If a choice between two
positive events must be done, the so called ”certainty effect” makes people
prefer a smaller sure gain over a larger gain that is merely probable, whereas
in a choice between negative outcomes this same effect drives towards a larger
merely probable loss over a certain smaller one. Also, if two similar events are
compared, people tend to overestimate differences and underestimate analo-
gies between them; this explains why it is a common bias among investors
to insist on the fact that ”this time is different”, justifying the absence of
a bubble with a different macroeconomic and technological environment. In
addition to that, if markets were perfectly efficient, every specific investor
which tries to outsmart it by gathering additional information would never
be compensated for bearing the cost, therefore there must be a variable degree
of non-incorporation of information into markets, assuming that investors are
not equally informed (Grossman & Stiglitz, 1980).
The overreaction to positive and negative news is another reason for the erro-
neous incorporation of information into public markets (De Bondt & Thaler,
1985).
Shiller (2003) explores the feedback loop mechanism that underlies the devel-
opment and crash of every speculative bubble: if prices go up for a long time,
this attracts the attention of the media and academia towards that particular
asset class and new theoretical models to justify this rise are created, thus
enhancing a new round of price increases. If this feedback loop is not inter-
rupted, after many round a speculative bubble is formed, in which high cur-
rent prices are only supported by future expectations of equal or larger price
increases. When these expectations of price increase are not met anymore, the
bubble eventually bursts even if there is no news to support radical changes
in the market’s fundamentals, bringing prices to an unsustainable low level.
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In his Reflexivity theory, Soros (2013) deepens the perspective on feedback
loops given by Shiller (1990): they can be positive or negative; the positive
ones are self-reinforcing, bringing about increasing detachment of prices from
fundamentals, while negative ones are self-correcting, bringing prices from
undervaluation to their fair value. Also, investors are not only perfect or im-
perfect, passive analyzers of information but have a performative role towards
the market and, as a consequence, on future information about them. As an
example, during 2021, Bulge Bracket investment banks forecasted a positive
annual return for the S&P 500 also for 2022, thus allowing a prolonged pos-
itive self-reinforcing pattern that would be abruptly corrected the following
year; in a counterfactual world, it is possible to imagine a negative reaction
to a forecast of opposite sign made by these banks bringing about a milder
correction and preventing the insurgence of speculative phenomena. Accord-
ing to the famous Hungarian speculator, the most important cognitive flaw
for investors is confirmation bias: market operators tend to trust the vision of
neighboring practitioners if these views are similar to their own and are prone
to gather news that confirms their previous beliefs. Interestingly, a K-nearest
neighbors setting for traders’ behavior is also one of the key assumptions of
the LPPLS model (Sornette & Johansen, 1997). Daniel, Hirshleifer and Sub-
ramanyam (1999) demonstrated that feedback loops are created mainly by a
”self-attribution bias,” identified by psychologist Daryl Bem (1965) as a pat-
tern of behavior in which people attribute events similar to their view as the
product of their skill, whereas events contrary to their vision are attributed to
bad luck. Shiller (1990) synthesized feedback loops through an autoregressive
distributed lag model, in which present stock returns are the weighted sum of
past prices changes, to which exponentially declining weights are attributed.
Thus, current price changes are explained mainly, but not exclusively, by
recent changes. This framework has been proved by Jegadeesh and Titman
(1993), which found that stock that showed exceptionally high six-months
returns beat stock showing exceptionally low returns by 12 percent over the
following year. This demonstrated that investors are afflicted by a ”temporal
proximity bias”, i.e. they give more importance to recent events with respect
to past ones not because of an objective greater impact on market fundamen-
tals, but only because of their recency. Also, Shiller (1990) does not make
any difference between institutional investors and uninformed traders, since it
appears clearly that in most cases more expert investors amplify, rather than
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diminish, speculative feedback loops. De Long et al. (1990b) explains this
behavior with the rational concern of experienced investors for the risk gen-
erated by the unexperienced ones and with the cost that offsetting this risk
would be necessary to bear. Also in the case of behavioral finance bubbles are
a substantially endogenous phenomenon, arising from erroneous information
processing by practitioners.

1.3 Credit-Debt Cycles as a cause for bubbles

Minsky (1992) describes bubbles as the result of the change in attitude of
businesses, households and bankers towards credit. He distinguishes three
phases:

1. ”Hedge Finance”, in which people households and companies borrow
money well knowing that they have the capacity to pay both principal
and interest without rolling over the debt.

2. ”Speculative Finance”, in which people borrow now money in order to
pay the principal, even if future revenues still have the capacity to pay
the interest.

3. ”Ponzi Scheme Finance”, and it happens when borrowers have to borrow
again to pay both the principal and the interest. This is the time in which
crashes and recessions happen.

Although this framework is useful to describe crises that arise from high-
leverage industries, such as the Subprime crisis of 2008, it cannot explain nei-
ther stock market bubbles arising from completely new technological trends
(such as the Dotcom bubble in 2000) nor bubbles in new asset classes such
as cryptocurrencies, since the impact of leverage on inflows in this new asset
class is negligible.

1.4 The 2021-2022 bubble

In order to face the Covid crisis and avoid a complete collapse of internal de-
mand due to lockdown measures, in 2020 central banks all around the world
initiated Quantitative Easing measures and lowered policy rates to histor-
ically low levels. Fiscal Policy was oriented toward direct stimulation for
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households and businesses. After the pandemic ended, the delayed return to
a normal monetary policy (the ”tapering” phase) stimulated above-average
stock market returns (the S&P 500 gained 16.16% in 2020 and 26.89% in
2021). The US stock market was flooded by fintech IPOs, particularly trad-
ing platforms such as Robinhood, which went public on Nasdaq on July 29,
2021. On November 2021, the Cyclically Adjusted PE ratio, formulated by
Shiller in his book Irrational Exuberance (2000), reached 38.58, close to the
historical maximum touched at the peak of the Dotcom bubble (44.19, De-
cember 1999). The most liquid cryptocurrencies reached new historical highs
(Bitcoin was quoted $ 64402.50 on November 13 2021, while on the same day
Ethereum reached the value of $ 4646.21). The Non-Fungible Token mar-
ket was born, attracting $ 10 Billion mainly from HNWI investors. Many
world-renowned multinationals, such as Maersk Line, announced the imple-
mentation of Blockchain solutions.
However, some hedge fund managers started to sense the irrational behavior
of the markets: on 22 October 2021, David Tepper, founder and CEO of
Appaloosa Capital Management, with a track record of 25% average return
since 1993, gave an interview to CNBC in which he stated that ”there are
not really any great asset classes now”; as a matter of fact, the S&P 500
peaked on 31 December 2021 at 4776.18. At the beginning of 2022, rampant
inflation in the EU and the US, caused by the delayed effect of demand sub-
sidies, provoked a general increase in interest rates, while the Ukrainian war,
which began on 20 February, caused the expulsion of Russia from the energy
international market because of new American sanctions. This caused a spike
in commodity prices, further intensifying inflationary pressures on advanced
economies. In addition to this, earnings of the main technology companies,
the ”Magnificent Seven”, largely disappointed market expectations. The S&P
500 declined until 14 October, losing approximately 25% of its value. This
represents the most significant US stock market drawdown since the 2008
crisis. Only at the end of 2023 did the US stock market recover from this
crash. In the following chapters, it will be demonstrated that this bubble
cannot be considered as exogenous and that the assumption of existence of
an endogenous component can be useful to detect it in advance.
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2 Random Coefficient Autoregression

2.1 Introduction and literature review

Many econometric techniques have been developed for real-time detection of
financial bubbles. Some of them are based on the calibration of p-values of
the Augmented Dickey-Fuller test, to achieve the superuniformity property,
that is to have a uniform distribution conditioned to the fact that the bubble
has not yet developed (Genoni et al., 2023). Other models try to monitor in
real time the change in the coefficient of an AR (1), to detect the transition
time from a random walk to an explosive regime (Whitehouse et al., 2023).
In addition to that, many ex post techniques of detection of bubbles have
been formalized in recent years, such as the supremum-ADF test (Philips et
al., 2011; Philips & Yu, 2011), and the generalized sup-ADF test (Philips et
al., 2015a;Philips et al., 2015b).
The first model that will be applied is the Random Coefficient Autoregression
(RCA) model, in which the AR coefficient is modified by a stochastic error
term. A specific test statistic, belonging to the weighted-CUSUM family, will
be used to detect market regime shifts in real time. The approach followed
is that of Horváth & Trapani, 2022 and Horváth & Trapani, 2023. In this
context, no prior knowledge about heteroskedasticity is needed.

2.2 Univariate Model

2.2.1 Stationarity conditions and model assumptions

The RCA model is

yi = (βi + ϵi,1)yi−1 + ϵi,2. (2.1)
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As per Aue et al., 2006, in Equation (2.1) the stationarity or lack thereof is
determined by E log |β0 + ϵ0,1|:

1. if −∞ ≤ E log |β0 + ϵ0,1| < 0, then yi converges exponentially fast to a
strictly stationary solution ∀y0

2. if E log |β0 + ϵ0,1| > 0, then yi is nonstationary with |yi|
a.s.−−→ ∞ expo-

nentially

3. if E log |β0+ϵ0,1| = 0, then |yi|
P−→ ∞ but a rate slower than exponential.

Two assumptions must be held in all three cases:

1. ϵi,1 and ϵi,2 are IID random variables random variables with

• E[ϵi,1] = E[ϵi,2] = 0

• 0 < E[ϵ2i,1] = σ21 <∞ and 0 < E[ϵ2i,2] = σ22 <∞
• E[ϵi,1ϵi,2] = 0

• E[|ϵi,1|ν] <∞ and E[|ϵi,2|ν] <∞ for some ν > 2

2. βi is constant over the training set {yi, 1 ≤ i ≤ m}, i.e. the non-
contamination assumption.

In case of nonstationarity, three additional assumptions are required:

1. ϵ0,2 has a bounded density

2. ϵi,1 and ϵi,2 are independent ∀ i

3. P {(β0 + ϵ0,1)y0 + ϵ0,2 = x} = 0 ∀ −∞ < x <∞

The null hypothesis is that, in the test set after m, βi remains constant, that
is

H0 : β0 = βm+1 = βm+2 = . . . (2.2)

2.2.2 Weighted CUSUM detector

The Weighted Least Squares estimator using the training set is

β̂m =

(
m∑
i=1

y2i−1

1 + y2i−1

)−1( m∑
i=1

yiyi−1

1 + y2i−1

)
. (2.3)

14



The cumulative sum (CUSUM) process of the WLS residual is

Zm(k) =

∣∣∣∣∣
m+k∑
i=m+1

(yi − β̂myi−1)yi−1

1 + y2i−1

∣∣∣∣∣ , k ≥ 1 (2.4)

Under the null hypothesis of no change of the estimator, the residuals have
zero mean; therefore, the partial sum process Zm(k) should fluctuate around
zero as well. If at k∗ there is a break, then β̂m is a biased estimator for the
autoregressive coefficient βm+k∗+1. A break is therefore signaled if Zm(k) ex-
ceeds a threshold defined by the following boundary function

gm,ψ(k) = cα,ψδm
1/2

(
1 +

k

m

)(
k

m+ k

)ψ
. (2.5)

with 0 ≤ ψ ≤ 1/2 and δ defined as

δ2 =

{
a1σ

2
1 + a2σ

2
2, if −∞ ≤ E log |β0 + ϵ0,1| < 0,

σ21, if E log |β0 + ϵ0,1| ≥ 0.
(2.6)

where σ21 and σ22 are variance of the errors, while a1 and a2 are defined as

a1 = E

(
ȳ20

1 + ȳ20

)2

, and a2 = E

(
ȳ0

1 + ȳ20

)2

(2.7)

where ȳi is the stationary solution of Equation 2.1. The point of change of
market regime is found at a stopping time τm,ψ defined as

τm,ψ =

{
inf{k ≥ 1 : Zm(k) ≥ gm,ψ(k)},
∞, if Zm(k) < gm,ψ(k) for all 1 ≤ k <∞.

(2.8)

The constant cα,ψ is chosen to ensure that the I type error is lower than α
under the null and that, under the alternative, limm→∞ P {τm,ψ <∞ | H1} =
1.
In the previous case, we operate in an ”open-ended” monitoring, i.e. the
sequential monitoring lasts for the entire out of sample. However, there
is also a ”closed-ended” framework, which can be applied by stopping the
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monitoring after a given observation m∗ because no break has been found or
the training period may be extended; in the present thesis, the open-ended
approach will be followed.
In three recent contributions,Fremdt (2015) , Kirch and Stoehr (2022a) and
Kirch and Stoehr (2022b) created a different class of detector, which searches
for the maximum value of Zm(k) in a given subset of observations from 1 to
k, the Page-CUSUM process. However, since the accuracy of detection of
regime change does not improve significantly, while the assumptions became
much stricter, the analysis will be limited to the standard weighted CUSUM
process.

2.2.3 Asymptotics

The formulation of the limits of the test statistics depends on the choice of
ψ, the use of an ”open-ended” or ”closed-ended” approach and the type of
detector (weighted CUSUM or Page-CUSUM).

Under the null hypothesis, ∀ ψ < 1/2, it holds that

lim
m→∞

P {τm,ψ = ∞} = P

{
sup

0≤u≤1

|W (u)|
uψ

< cα,ψ

}
. (2.9)

where W (·) is a Wiener process.

Under H1 we assume a change in the deterministic part of the autoregressive
coefficient

yi =

{
(β0 + ϵi,1)yi−1 + ϵi,2, 1 ≤ i ≤ m+ k∗,

(βA + ϵi,1)yi−1 + ϵi,2, i > m+ k∗.
(2.10)

with β0 ̸= βA and k∗ is the time of regime change. The change can happen
between two stationary regime, two nonstationary regimes, from a stationary
to a nonstationary one and vice versa.

We assume

1. that market regime transition depends on the size of the training set m

∆m = βA − β0 (2.11)
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2. that k∗ = O(m), i.e. that the breaking point gets further as the training
set becomes larger

Following these two last assumptions, if it is true that

lim
m→∞

m1/2|∆m| = ∞ (2.12)

then, ∀ ψ < 1/2,
lim
m→∞

P {τm,ψ <∞ | HA} = 1 (2.13)

is also true.

2.3 Multivariate Model

Astill et al. (2023) proved that, by integrating exogenous variables into the
RCA model, it is possible to have quicker detection of bubbles. The multi-
variate expansion of Equation 2.1 is

yi = (βi + ϵi,1)yi−1 + λ⊤0xi + ϵi,2, (2.14)

where y0 is an initial value and xi ∈ Rp. Equation 2.14 is a dynamic model
with exogenous covariates, with λ0 constant over time.
A weighted CUSUM detector is based on the following WLS loss function

Gm(β, λ) =
m∑
i=2

(yi − βyi−1 − λ⊤xi)
2

1 + y2i−1

. (2.15)

The estimators of β0 and λ0 are defined as

(β̂m, λ̂m) = argmin
β,λ

Gm(β, λ),

and satisfy the following condition

∂

∂β
Gm(β̂m, λ̂m) = −2

m∑
i=2

(yi − β̂myi−1 − λ̂⊤mxi)yi−1

1 + y2i−1

= 0, (2.16)

The weighted CUSUM detector is a generalization of Equation 2.4

ZX
m (k) =

∣∣∣∣∣
m+k∑
i=m+1

(yi − β̂myi−1 − λ̂⊤mxi)yi−1

1 + y2i−1

∣∣∣∣∣ . (2.17)
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In addition to the assumptions contained in Chapter 2.2.1, it is also necessary
to assume that

1. the exogenous covariates xi form a weakly dependent and stationary
process

2. xi are independent of ϵi,1 and ϵi,2

The boundary function is defined as

g(x)m (k) = c
(x)
α,ψδ

2
xm

1/2

(
1 +

k

δ2x,dm

)(
k

δ2x,dm+ k

)ψ

, (2.18)

where c
(x)
α,ψ is a critical value, and

δ2x =

{
δ2x,2/δx,1, if −∞ ≤ E log |β0 + ϵ0,1| < 0,

σ1, if E log |β0 + ϵ0,1| > 0,
(2.19)

δ2x,d =

{
δ2x,2/δ

2
x,1, if −∞ ≤ E log |β0 + ϵ0,1| < 0,

1, if E log |β0 + ϵ0,1| > 0,
(2.20)

with

δ2x,1 = a⊤QCQa, and δ2x,2 = σ21E

(
y0

1 + y0
2

)2

+ σ22E

(
y0

1 + y0
2

)2

. (2.21)

where a is a vector of weights, Q is a matrix including information on past
normalized data, while C is the covariance matrix of the errors of the model.
y0 is the stationary solution of the training set, while σ21 and σ22 are the
variances of the innovations ϵi,1 and ϵi,2.
The stopping time rule definition is the same as Equation (2.8), albeit with
different CUSUM detector and boundary function. The asymptotic theory is
also the same with respect to the univariate model (Equation 2.9-2.13).
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2.4 Simulations

First, I provide the results of simulations to find empirical rejection frequen-
cies of the null hypothesis under the null of no changepoint under an ”open-
ended” framework. Only weighted CUSUM is considered. The coefficient
β0 is chosen in order to represent nonstationary regimes, random walks and
explosive regimes, while σ1 = 0.1 and σ2 = 0.2.

ψ p m = 50 m = 100 m = 200 m = 400
0.00 0 0.053 0.017 0.015 0.003
0.00 1 0.034 0.021 0.003 0.006
0.00 2 0.027 0.014 0.003 0.004
0.25 0 0.070 0.032 0.017 0.006
0.25 1 0.031 0.017 0.016 0.005
0.25 2 0.034 0.024 0.007 0.007
0.45 0 0.067 0.035 0.034 0.027
0.45 1 0.043 0.020 0.014 0.009
0.45 2 0.031 0.020 0.012 0.015

Table 2.1: Weighted CUSUM - Open-Ended - Rejection Frequencies (β0 = 0.5, α = 0.01, p
is the number of covariates)

ψ p m = 50 m = 100 m = 200 m = 400
0.00 0 0.062 0.043 0.028 0.018
0.00 1 0.043 0.033 0.023 0.007
0.00 2 0.049 0.027 0.016 0.004
0.25 0 0.058 0.046 0.029 0.027
0.25 1 0.049 0.047 0.025 0.015
0.25 2 0.043 0.037 0.018 0.024
0.45 0 0.067 0.046 0.030 0.041
0.45 1 0.056 0.034 0.047 0.043
0.45 2 0.074 0.047 0.035 0.037

Table 2.2: Weighted CUSUM - Open-Ended - Rejection Frequencies (β0 = 1, α = 0.01,p is
the number of covariates)

19



ψ p m = 50 m = 100 m = 200 m = 400
0.00 0 0.021 0.010 0.001 0.002
0.00 1 0.020 0.008 0.005 0.001
0.00 2 0.014 0.010 0.005 0.006
0.25 0 0.013 0.007 0.010 0.006
0.25 1 0.021 0.015 0.011 0.004
0.25 2 0.021 0.014 0.007 0.003
0.45 0 0.022 0.011 0.008 0.010
0.45 1 0.012 0.007 0.008 0.010
0.45 2 0.022 0.007 0.015 0.006

Table 2.3: Weighted CUSUM - Open-Ended - Rejection Frequencies (β0 = 1.05, α = 0.01, p
is the number of covariate)
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3 The LPPLS model

3.1 Introduction and literature review

The second ex ante technique that will be presented is the Log-Periodic Power
Law Singularity (LPPLS) model, also known as the Johansen-Ledoit-Sornette
(JLS) model. This model affirms that speculative phenomena are not the
result of an exponential increase in price since the exponential increase in
prices is only the result of a compound interest with a constant compound
rate. Rather, bubbles happen when prices assume a super-exponential be-
havior, i.e. when they increase at a rate that is increasing itself. This
super-exponential growth happens because of positive self-reinforcing feed-
back loops in the valuations of assets among both traders and investors; this
growth stops at a finite-time singularity, which happens at time tc, before
the crash starts to unfold. As said in Chapter 1.2, positive feedback loops
are the result of an instinctive impulse of humans not only to imitate others
but also to consider mainly data that confirm their previous beliefs, without
listening to dissenting voices. The positive feedback phenomenon is not only
characteristic of bubbles in asset pricing but can also happen in option hedg-
ing, insurance portfolio strategies, procyclical financing of firms by banks,
and even network effects on social media. The LPPLS, appeared for the first
time in Sornette & Johansen (1997), has been improved over time by Jonasen,
Ledoit & Sornette (2000) and by Filimonov & Sornette (2013). It has been
used to successfully detect bubbles and crashes in emerging markets (Jiang et
al., 2010), in advanced economies (Zhou et al., 2008; Zhou & Sornette, 2003;
Zhou & Sornette, 2006) and in commodities markets (Sornette et al., 2009).
Also, confidence intervals have been constructed to detect probabilities of
positive bubbles in real time (Shu & Song, 2024).
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3.2 Assumptions

1. Prices accelerate hyperbolically, i.e. via a super-exponential trajectory
with compounding growth rate. This price trajectory can be synthesized
by the following formula (Sornette & Johansen, 1997):

log p(t) = A+B(tc − t)m (3.1)

with B < 0 and 0 < m < 1 and tc being the end of the bubble (and the
beginning of the crash).

2. Price growth is directly proportionate to the probability of a crash, which
grows as price approaches to the singularity.

3. Competition between two sets of market operators (short-term traders
and long-term investors) bring log-periodic oscillations to the super-
exponential trend. As the price approaches tc, their wavelength dimin-
ishes and their frequence grows.

4. Traders operate in a herd-like environment, and the choice they make (to
be a short-term or long-term operator) is highly influenced by how other
near traders behave. In mathematical terms, this would be a k-means
clustering setting.

3.3 Model Derivation

The LPPLS model aims to describe the dynamics of financial bubbles by
characterizing their intrinsic instability and the buildup toward a finite-time
singularity. Following Sornette & Johansen (1997), we begin with the stan-
dard price dynamic expressed as a stochastic differential equation:

dp

p
= µ(t)dt+ σ(t)dW − κdj. (3.2)

Here, p(t) is the asset price, µ(t) is the drift term, σ(t)dW is the stochastic
component following a standard Wiener process, and κdj models a discrete
price drop associated with a crash. The variable dj is a jump process that
takes the value 0 before the crash and 1 after it. The occurrence of this
jump is governed by a time-varying crash hazard rate h(t), which expresses
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the probability that a crash occurs in the infinitesimal interval [t, t + dt],
conditional on survival until t.

Given this framework, the expected value of the jump component becomes:

Et[dj] = h(t)dt. (3.3)

To incorporate the idea that the likelihood of a crash increases with the
unsustainable growth of the bubble, the hazard rate is modeled with a log-
periodic power law form:

h(t) = B′(tc − t)m−1 + C ′(tc − t)m−1 cos (ω ln(tc − t)− ϕ′) . (3.4)

This function captures both the accelerating risk (through the power law
term) and the cyclical fluctuations often seen in price trajectories near spec-
ulative peaks (through the cosine term). These oscillations are interpreted
as the result of alternating phases of bullish and bearish sentiment among
heterogeneous traders, consistent with behavioral finance theories of herding,
imitation, and confirmation bias.

Assuming no arbitrage in a risk-neutral world, the expected return of the
asset must be zero. Taking expectations in Equation (1), and using the
properties Et[dW ] = 0 and Et[dj] = h(t)dt, we get:

Et[dp] = µ(t)p(t)dt− κp(t)h(t)dt = 0 (3.5)

which implies:

µ(t) = κh(t). (3.6)

Thus, the drift term (i.e. the expected return) grows proportionally with
the perceived crash probability. Conditioning on the fact that the crash has
not yet occurred, the stochastic differential equation becomes:

dp

p
= κh(t)dt+ σ(t)dW. (3.7)

Taking expectations and integrating the deterministic part, we obtain the
expected log-price:

Et[ln p(t)] = A+B(tc − t)m + C(tc − t)m cos (ω ln(tc − t)− ϕ) . (3.8)
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Here, A is the expected log-price at the critical time tc, the moment in
which the bubble peaks. B = −κB′/m controls the magnitude of the acceler-
ating growth, and C = −κC ′/

√
m2 + ω2 governs the amplitude of log-periodic

fluctuations. The exponent m ∈ (0, 1) ensures that prices remain finite up to
the singularity, while ω and ϕ control the frequency and phase of oscillations,
respectively.

Filimonov & Sornette (2013) proposed an alternative formulation to sim-
plify estimation. They expand the cosine term into sine and cosine compo-
nents using the identities

C1 = Ccosϕ (3.9)

and
C2 = Csinϕ (3.10)

which represent the amplitude of log-periodic oscillations. Thus, we obtain
the following equation as a result:

Et[ln p(t)] = A+B(tc − t)m

+ C1(tc − t)m cos[ω ln(tc − t)]

+ C2(tc − t)m sin[ω ln(tc − t)]. (3.11)

This reparameterization eliminates the need to estimate the phase ϕ directly
and reduces the number of nonlinear parameters from four (tc,m, ω, ϕ) to
three (tc,m, ω), enhancing numerical stability.

3.4 Estimation

The model is Equation (3.11) is characterized by three nonlinear parameters
(tc, m, ω) and four linear ones (A,B,C1,C2). Following the steps of Shu &
Song (2024) the estimation can be done by minimizing the sum of squared
residuals (SSR)

F (tc,m, ω,A,B,C1, C2) =
N∑
i=1

[
ln p(τi)− A−B(tc − τi)

m

− C1(tc − τi)
m cos(ω ln(tc − τi))

− C2(tc − τi)
m sin(ω ln(tc − τi))

]2
. (3.12)
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In order to have a ”pure” nonlinear optimization, we consider the four linear
parameters as dependent on the nonlinear ones, thus having the following
optimization problem:

{tc, m̂, ω̂} = arg min
tc,m,ω

F1(tc,m, ω) (3.13)

where the cost function F1 is

F1(tc,m, ω) = min
(A,B,C1,C2)

F (tc,m, ω,A,B,C1, C2),

and this optimization problem can be rewritten as:

(Â, B̂, Ĉ1, Ĉ2) = arg min
(A,B,C1,C2)

F (tc,m, ω,A,B,C1, C2) (3.14)

= arg min
(A,B,C1,C2)

N∑
i=1

[ln p(τi)− A−Bfi − C1gi − C2hi]
2 (3.15)

where
fi = (tc − ti)

m, (3.16)

gi = (tc − ti)
m cos(ω ln(tc − ti)), (3.17)

and
hi = (tc − ti)

m sin(ω ln(tc − ti)). (3.18)

Now the LPPLS estimation problem has been divided into a two steps op-
timization: first, we estimate the non-linear parameters using metaheuristic
algorithms and derivative based methods, then, keeping the non-linear pa-
rameters constant, it is possible to proceed to estimate the linear ones with
Ordinary Least Squares.

3.4.1 Estimation of non-linear parameters

Since the cost function is extremely complex, it is useful to use a metaheuristic
algorithm to have good preliminary conditions for the nonlinear parameters.
One of the most used derivatives-free optimization algorithms used for this
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purpose is the taboo search algorithm (Cvijovic & Klinowski, 1995). This
algorithm starts by defining a search space S, thus the problem becomes

min
s∈S

f(s).

where s is the starting solution. We define a neighborhood N(s) as

N(s) = { s′ ∈ S | d(s, s′) ≤ δ}.

where d(s, s′) is the distance (e.g. Euclidean) between the first and any other
solution in that given neighborhood. Each of the already verified solutions
is included in a taboo (i.e. non-touchable) list, and cannot be considered as
feasible unless it satisfies the following condition:

f(sn) < min f(s1:n−1).

The algorithm stops either when the value of the objective function is under
a predetermined value or the improvement of the objective function becomes
negligible. The boundaries of the search space has been suggested by Shu &
Zhu, 2020b:

1. m ∈ [0, 1]

2. ω ∈ [1, 50]

3. tc ∈ [t2, t2 +
t2−t1
3 ], where t1 and t2 are respectively the beginning and

the end of in-sample data

4. m|B|
ω
√
C2

1+C
2
2

≥ 1 to ensure the non-negativity of crash hazard rate h(t).

Once the boundaries are defined, the Taboo Search algorithm is executed to
generate robust initial values for the nonlinear parameters tc,m, ω. These ini-
tial values are then refined using the Levenberg–Marquardt (LM) algorithm,
a damped least-squares optimization method designed to minimize the non-
linear sum of squared residuals (SSR). The LM algorithm iteratively solves
the following system:

(J⊤J + λI)∆p = −J⊤r, (3.19)

where J is the Nx3 (where N is the number of in-sample observations)
Jacobian matrix of partial derivatives of the residuals with respect to the
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nonlinear parameters, λ is the damping parameter, I is the identity matrix,
∆p is the update vector for the nonlinear parameters, and r is the residual
vector. The Jacobian matrix J is defined as:

Jij =
∂ri
∂θj

where θj ∈ {tc,m, ω}, and ri = ln p(ti)− f(ti; θ). These partial derivatives
are computed numerically using finite difference approximations.

3.4.2 Estimation of linear parameters

Once the optimal nonlinear parameters t̂c, m̂, ω̂ are estimated, the model
becomes linear in the parameters A,B,C1, C2, and can be estimated using
Ordinary Least Squares (OLS).

We define the transformed variables:

fi = (tc − ti)
m, gi = fi cos(ω ln(tc − ti)), hi = fi sin(ω ln(tc − ti)),

so that the regression model can be written as:

ln p(ti) = A+Bfi + C1gi + C2hi + εi.

The model in matrix form becomes:

y = Xβ + ε

where:

X =


1 f1 g1 h1
1 f2 g2 h2
...

...
...

...
1 fN gN hN

 , β =


A
B
C1

C2

 , y =


ln p(t1)
ln p(t2)

...
ln p(tN)

 .

The OLS estimator is then:

β̂ = (X⊤X)−1X⊤y

This completes the two-step estimation process: first the nonlinear param-
eters via Taboo Search and Levenberg-Marquardt optimization, and then the
linear coefficients via closed-form OLS regression.
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3.5 Simulations

First, the model is applied to three different types of time series, each of them
with log-periodic oscillations:

1. An AR process yt = (ϕ1yt−1 + ϵt)(1 + 0.1 cos(2πt/20)) with ϕ1 = 0.8.

2. A log-periodic random walk

3. An explosive process with log-periodic oscillations yt = (ϕ1yt−1+ ϵt)(1+
0.1 cos(2πt/20)) with ϕ1 = 1.05

Each of the 1000 simulations has 500 steps. Without prior constraints on pa-
rameter bounds, the LPPLS is applied on each time series to verify whether
the four aforementioned conditions are respected. If the fitted LPPLS re-
spects all of the four conditions, then the simulation is classified as a bubble.
The percentages of simulations detected as bubbles have the following per-
centages:

AR(1) with ϕ=0.8 RW AR(1) with ϕ = 1.05
0.00% 0.81% 100%

Table 3.1: Simulation Results

The distribution of m, tc and ω are provided for all three models

Figure 3.1: Stationary AR(1) distributions of m (blue), tc (red) and ω (green)
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Figure 3.2: RW distributions of m (blue), tc (red) and ω (green)

Figure 3.3: Explosive AR(1) distributions of m (blue), tc (red) and ω (green)

The LPPLS model is very robust, being able to distinguish among sta-
tionary, nonexplosive, and explosive processes.
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4 Topological Data Analysis

4.1 Introduction and literature review

Topological Data Analysis has drawn attention in recent years as a power-
ful tool in time series analysis and signal processing, particularly through the
transformation of a time series into a point cloud in a higher-dimensional Eu-
clidean space. The shape of the point cloud can be characterized by persistent
homology, that is the connections among a given subset of the point cloud
that persist at different resolution levels. The study of persistent homology
in a sliding window of points can give early warning signals of potential shifts
between regimes in a time series. TDA has been applied in different fields,
such as finance, climatology, biology, and biomedicine (e.g. Sheffer et al.,
2009; Lenton, 2011; Thompson & Sieber, 2011), specifically to detect critical
transitions. A growing field of research pertains to the application of TDA to
financial time series, particularly to detect both positive and negative bub-
bles (Philips & Yu, 2011; Gidea & Katz, 2017; Gidea et al., 2018; Akingbade
et al., 2023; Rai et al., 2024). TDA performs very well when facing transition
to endogenous bubbles, less so when the bubble has mainly exogenous nature
(Song & Zhu, 2020). The evidence on the ability of TDA to detect bubbles
has been mostly empirical. Some research tries to explain it by assuming
the fact that time series follow the already mentioned log-periodic power law
behavior before crashing. Some works lead positive TDA results back to the
analogy between markets undergoing a crash and bifurcations in dynamical
systems, while others explain it with drift changes or volatility shifts.
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4.2 Methodology

Let us consider a univariate financial time series of length n. It is possible
to transform this series into a multidimensional object by selecting a window
length m and creating overlapping rolling windows of the same size. Each
of these windows can be treated as a point in the space Rm, resulting in a
high-dimensional point cloud that represents the evolving structure of the
time series.

To extract information from this point cloud, we apply a Vietoris–Rips
filtration. More precisely, we select a second window of size k ≫ m, and
for each point in this window, we center a ball of radius ϵ. As ϵ increases,
these balls start intersecting and generate simplices: connected pairs, trian-
gles, tetrahedra, and so on. The presence of loops (1-dimensional homologies,
which are the only ones we focus on) formed during this process is especially
informative in financial contexts, as it may reflect coordinated or cyclical
behavior among agents. As ϵ grows further, these features eventually disap-
pear, marking their “death.” The crucial concept in persistent homology is
the lifespan of such features. The difference between the scale at which a
feature appears (birth) and the scale at which it disappears (death) defines
its persistence. Robust features persist over wide ranges of ϵ, while short-
lived features are typically treated as noise. These topological features are
encoded in a persistence diagram Pk, a scatterplot in R2 where each point
(bα, dα) represents the birth and death of a feature α of dimension k. The far-
ther a point lies from the diagonal b = d, the more persistent the associated
feature.
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Figure 4.1: Vietoris-Rips filtration (adapted from Rai et al., 2024)

In the example above, four initially disconnected points (a) form edges as
the radius grows (b), eventually generating a loop (c) which collapses as more
triangles are filled in (d). The resulting persistence diagram is shown below:
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Figure 4.2: Corresponding Persistence Diagram

To enable quantitative analysis, the persistence diagram is transformed
into a persistence landscape, which maps each topological feature into a
piecewise-linear function. Given a persistence diagram Pk, the landscape
consists of a sequence of functions λk(x) constructed as follows:

λk(x) = max
{
f(bα,dα)(x)

∣∣∣ (bα, dα) ∈ Pk

}
[k-th largest]

,

where f(bα,dα)(x) is the triangular tent function associated with each point:

f(bα,dα)(x) =


x− bα, if x ∈

(
bα,

bα+dα
2

]
dα − x, if x ∈

[
bα+dα

2 , dα
)

0, otherwise.

Each triangle has as its base the interval between birth and death, and its
peak at the midpoint. A visualization of this transformation is given below:
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Figure 4.3: Persistence Landscape. The blue traingle represente the 0-dimensional homology,
while the red represent the 1-dimnesional homology

Once the persistence landscape has been constructed, its Lp norm can be
used to summarize the information into a single scalar indicator. The most
common choice is the L1-norm, which is computed as:

∥λ∥L1 =

∫ ∞

−∞
|λk(x)| dx.

This norm captures the total topological activity in the signal, giving
greater weight to persistent features. In financial applications, it has been
empirically shown that the L1-norm increases significantly during the for-
mation of bubbles, making it a useful early warning indicator of speculative
regimes.
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5 Permutation Entropy

5.1 Introduction and Literature Review

Permutation Entropy (PE), introduced by Bandt and Pompe (2002), is a
non-parametric and model-free method used to quantify the complexity of
time series by examining the order relations between values. Unlike classi-
cal entropy measures, PE is based on the ordinal structure of the data and
is therefore robust to noise and invariant under monotonic transformations.
Its utility has been demonstrated in distinguishing between deterministic,
stochastic, and chaotic dynamics. More recently, PE has been applied in
the context of financial markets, especially in emerging markets (Hou et al.,
2023), as a tool to detect structural changes or episodes of abnormal behav-
ior in asset prices. In this thesis, we evaluate its effectiveness in detecting
speculative dynamics in the S&P 500 and the NYMEX Natural Gas futures
market.

5.2 Methodology

Given a time series {xt}Tt=1, the Permutation Entropy is computed via the
following steps:

For a fixed embedding dimension m and time delay τ , we generate a se-
quence of vectors:

vi = [xi, xi+τ , xi+2τ , . . . , xi+(m−1)τ ], for i = 1, . . . , T − (m− 1)τ.

Each vector vi is then mapped to its corresponding ordinal pattern π,
which is the permutation of indices that reorders the elements of vi in in-
creasing order. In case of ties (equal values), the original order of appearance
is preserved. For example, for the vector

vi = [4.1, 2.0, 3.5],
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the ordinal pattern is
π = (1, 2, 0),

since 2.0 < 3.5 < 4.1.
We then compute the relative frequency pj of each of the m! possible

ordinal patterns:

P = {p1, p2, . . . , pm!},
m!∑
j=1

pj = 1.

The permutation entropy is defined as the Shannon entropy of this distri-
bution:

H = −
m!∑
j=1

pj log pj.

To make the measure scale-invariant, H is normalized by the maximum
entropy log(m!), leading to:

Hnorm =
H

log(m!)
.

The normalized Permutation Entropy Hnorm lies in the interval [0, 1]. A
value close to 1 suggests that the time series exhibits randomness similar to a
white noise or random walk. Conversely, values closer to 0 suggest increased
determinism or the presence of temporal structure, such as causality or regime
shifts.

In this study, we use m = 2 and τ = 1 as standard parameters following
the literature, ensuring simplicity and comparability with prior applications.

To evaluate the statistical significance of the observed permutation en-
tropy, we perform a one-sided Monte Carlo test against the null hypothesis
that the series is generated by a random walk. The procedure is as follows:

1. Simulate N = 1000 independent random walks, each with the same
length T as the original time series.

2. Compute the normalized PE for each simulated series, obtaining an em-
pirical distribution {PE(i)

rw}Ni=1.

3. Compute the PE of the observed time series, denoted PEreal.
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4. Calculate the empirical p-value as:

p =
1

N

N∑
i=1

I(PE(i)
rw ≤ PEreal),

where I(·) is the indicator function.

If p < 0.05, we reject the null hypothesis and conclude that the time series
exhibits statistically significant deviation from random walk behavior, which
may indicate the presence of nonlinear structure or speculative dynamics.
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6 Data Description

6.1 Main variables

The main variables object of the thesis are the S&P 500 index and the con-
tinuous future of natural gas, as listed on the New York Mercantile Exchange
(NYMEX). All the data are taken from Bloomberg, as daily close prices. In
the case of the S&P 500, daily prices are taken as adjusted for dividends.
The daily S&P 500 for years 2021-2022 has this path.

Figure 6.1: S&P daily price for 2021-2022

with this subsequent main descriptive statistics.

Table 6.1: Descriptive statistics for the S&P 500 index

Variable Count Mean Std Dev Min 25% Median 75% Max

S&P 500 504 4.186 0.302 3.577 3.919 4.181 4.437 4.797

The continuous natural gas future has had the following trajectory.
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Figure 6.2: Natural Gas daily price for 2021-2022

with these descriptive statistics.

Table 6.2: Descriptive statistics for Natural Gas Futures

Variable Count Mean Std Dev Min 25% Median 75% Max

Natural Gas Futures 504 5.164 1.963 2.456 3.599 4.871 6.705 9.647

6.2 Control variables

Apart from the two main variables, in order to enhance the detection of
bubbles, control variables are also considered. The first subgroup of control
variables is strictly macroeconomic. They are the US stock market volatility
index (VIX), the US Dollar Index (DX), WTI crude oil, and the yield to ma-
turity of US 3-month Bills and 10-year Treasuries. All of them are considered
as daily close prices and are taken from Bloomberg.
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Figure 6.3: From above: VIX, 3M yield, 10y yield, Dollar Index and WTI during 2021-2022.
Daily data

The main descriptive statistics for these control variables are the following.

Table 6.3: Descriptive Statistics of macroeconomic control variables

Variable Count Mean Std. Dev. Min 25% Median Max

VIX 504 22.64 4.92 15.01 18.58 21.89 37.21
3M Yield 504 1.05 1.46 0.01 0.05 0.09 4.46
10Y Yield 504 2.19 0.92 0.92 1.48 1.71 4.25
USD Index 504 98.21 6.94 89.41 92.41 96.01 114.05
WTI Crude Oil 504 81.67 17.32 47.28 68.61 79.68 128.26

These statistics reveal several important dynamics. The natural gas mar-
ket displays significant price volatility, with values ranging from 2.5 to nearly
10 USD—more than triple its minimum. Conversely, the rapid increase in
short-term interest rates (3M yield) from near-zero levels to above 4% high-
lights the aggressive monetary tightening conducted by the Federal Reserve
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over the period. Beyond these macroeconomic indicators, the analysis also
incorporates four sector-specific exchange-traded funds (ETFs), particularly
relevant in the context of the Topological Data Analysis (TDA) framework.
These include:

• XLK – Technology Select Sector SPDR Fund

• XLF – Financial Select Sector SPDR Fund

• XLY – Consumer Discretionary Select Sector SPDR Fund

• XLU – Utilities Select Sector SPDR Fund

These ETFs are used to isolate and capture sectoral dynamics within the
broader market. Each represents a distinct segment of the S&P 500 and
is used to explore whether the early signals of financial bubbles are more
pronounced in specific sectors.

Figure 6.4: Daily price trajectories of sector ETFs for the 2021–2022 period. From top to
bottom: XLK (Technology), XLF (Financials), XLY (Consumer Discretionary), and XLU
(Utilities)
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Table 6.4: Descriptive statistics for sector ETFs (2021–2022)

ETF Count Mean Std Dev Min 25% Median 75% Max

XLK (Tech) 504 144.02 13.93 116.56 132.53 142.10 154.45 176.65
XLF (Financials) 504 35.77 2.93 28.95 33.52 35.96 38.21 41.42
XLY (Cons. Disc.) 504 169.94 19.57 126.26 155.62 171.66 181.88 211.42
XLU (Utilities) 504 68.09 4.11 58.36 65.20 67.45 70.71 78.12

The different price paths and descriptive statistics reveal heterogeneous
behavior across sectors. The Technology ETF (XLK) exhibits the highest
average price, with significant variation, reflecting growth-oriented volatility.
Conversely, the Utilities ETF (XLU) shows more stable dynamics, with the
lowest standard deviation and narrower price range. Financials (XLF) and
Consumer Discretionary (XLY) present intermediate patterns, with XLY dis-
playing greater volatility due to its sensitivity to cyclical consumption. These
sectoral differences are crucial for understanding how financial bubbles may
emerge or be anticipated differently across market segments.
Regarding the application of multivariate TDA, three different stock indexes
are employed together with the S&P 500. These indexes are:

• RUT – the Russell 2000 index, composed by the smallest 2000 American
publicly listed companies

• DJI – the Dow Jones Industrial Average, made by 30 among the largest
US listed companies. It is the only price weighted index still tracked
worldwide.

• IXIC – the Nasdaq Composite, mainly composed by technology stocks.

Figure 6.5: Russell 2000 daily adjusted close price 2021-2022
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Figure 6.6: From above: NASDAQ Composite and Dow Jones Industrial Average adjusted
close price 2021-2022

Table 6.5: Descriptive Statistics of Major U.S. Stock Indices

Statistic Russell 2000 NASDAQ
Composite

DJIA

Count 504 504 504
Mean 2,066.43 13,303.63 33,477.47
Standard deviation 209.31 1,554.59 1,770.00
Minimum 1,649.84 10,213.29 28,725.51
25th percentile 1,866.02 11,872.63 32,134.02
Median (50%) 2,131.45 13,542.12 33,891.35
75th percentile 2,243.04 14,542.46 34,798.00
Maximum 2,442.74 16,057.44 36,799.65

The descriptive statistics reveal distinct characteristics across the three in-
dices. Notably, the NASDAQ Composite exhibits the highest standard de-
viation among the three, confirming its greater volatility compared to the
Dow Jones Industrial Average and the Russell 2000. This heightened vari-
ability reflects the tech-heavy composition of the NASDAQ and may suggest
a higher susceptibility to speculative episodes. Conversely, the Dow Jones,
with the lowest volatility, appears more stable, aligning with its traditional
and value-oriented constituents. The Russell 2000 presents an intermediate
profile, indicative of its focus on smaller, potentially more sensitive firms.
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7 Empirical Results

Once that both the models and the data used have been described, it is
possible to show how the different approaches can detect both the insurgence
of bubbles and, if possible, the sharp decline after the asset reaches its peak.
For each asset, the outputs of the four models will be presented, together
with a summary table comparing how early (or late) each model can detect
the start and the peak of the bubble.

7.1 S&P 500 Application

7.1.1 Random Coefficient Autoregression

The in-sample period goes from July 2020 to December 2020 (128 observa-
tions), while the out-of-sample goes from January 2021 to December 2022
(503 observations), embedding both the ascending and descending phases of
the bubble.

Figure 7.1: S&P 500 Daily Prices
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Figure 7.2: Univariate RCA. The sum of the absolute value of the errors is in blue, while
the dynamic threshold is in yellow

First, the univariate model has been tested, but no regime shift is detected.
Since the weighted CUSUM does not reach the dynamic boundary function,
the explosive regime is not detected, which is coherent with the results of
Horvath & Trapani (2023).
Secondly, a bivariate RCA is applied to the same time series, using the VIX
as exogenous covariate. The VIX is a measure of expected volatility, based
on the weighted average of implied volatility of call and put OTM options of
the S&P 500. In this case, the speculative regime is detected.

Figure 7.3: S&P 500 and VIX RCA. The sum of the absolute value of the errors is in blue,
while the dynamic threshold is in yellow

The break is detected on the 4 August 2021, 108 trading days before the
peak of the bubble (31 December 2021). This would provide a useful signal
for asset managers or speculators to capitalize on the upward trend or to
reallocate toward a more conservative asset allocation.
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In the third application of RCA the price of oil (West Texas Intermediate) is
added. The detection of the speculative regime happens even earlier.

Figure 7.4: S&P 500, VIX and WTI RCA. The sum of the absolute value of the errors is in
blue, while the dynamic threshold is in yellow

The bubble is detected on 23 February 2021, almost one year before its
tipping point.
The model is very accurate not only in terms of detection of the beginning
of the positive phase of the bubble, i.e. the ascending phase, but can also,
although with some delay, detect the shift from the positive explosive phase
to the subsequent crash. At 1% significance level, using an in-sample span
from April to October 2021 and an out-of-sample from November 2021 to
December 2022, the shift toward the crash has been detected on 18th March
2022. This detection allows a potential speculator to sell short the S&P 500,
potentially gaining almost 20% if the position is kept until the bottom is
reached (20th September 2022).
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Figure 7.5: S&P 500, VIX and WTI RCA with crash detection. The sum of the absolute
value of the errors is in blue, while the dynamic threshold is in yellow

However, the results exhibit sensitivity to the choice of parameters ψ, α
and cα,ψ. The estimation of the variances of the innovations ϵi,1 and ϵi,2, and
δ is also subject to a certain degree of uncertainty, since the two types of
innovations are not directly observable.

7.1.2 LPPLS model

The LPPLS is now applied to the S&P 500 daily data. The in-sample goes
from May 2020 to July 2021, the out-of-sample goes from August 2021 on-
wards. The JLS model, however, only describes prices’ behavior until the
peak of the bubble is reached, but gives no information on the development
of the crash. The results of the fitting is the following:

Table 7.1: LPPLS with Taboo Search, Levenberg–Marquardt and OLS
Parameter Value
Taboo Search Solution (non linear) [536.9, 0.99, 14.23586066]
Score Taboo 0.098
tc 594.58 (16/12/2021)
m 0.998
ω 17.32
A 8.52 ($ 5047.03)
B -0.000936
C1 4.079×10−5

C2 2.747×10−5

m |B|
ω
√
C2

1 + C2
2

1.088
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It is important to highlight that all four conditions outlined in Chapter 3.4
are satisfied; this confirms that the conditions of the bubble are effectively
developing in the in-sample data. The fitting of the model on S&P 500 gives
the following result:

Figure 7.6: LPPLS fitted on S&P 500

The model misses the data of the tipping point by only 15 calendar days,
while the real historical maximum of the bubble is about 7 % lower than
what the model forecasts; nonetheless, the results demonstrate a high degree
of accuracy. However, the model is quite unstable; moving the beginning
or the end of the in-sample can bring completely different results, which is
consistent with the lack of asymptotic properties of the model. Sornette et
al. (2015) and Shu & Song (2024) have proposed a confidence indicator for
the short term to detect positive bubbles in real time:

1. For a given instant t2, different fitting windows are defined. In partic-
ular, for the short term indicator, we begin by fitting the model in an
interval of 200 observation between t1 and t2, decreasing this interval
by 5 observations each time until we reach a distance of 50 observations
between t1 and t2. In this way, for each feasible t2, we get 30 fitting
windows.

2. The LPPLS is fitted on each of these windows

3. If the filtering conditions imposed on the Levenberg-Marquardt opti-
mization are respected, a particular fitting is considered as bubbly. The
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short-term confidence indicator is, for a given t2, the ratio of bubbly
windows over 30.

We also smooth the confidence indicator using a moving average. The result
for the short-term indicator is the following:

Figure 7.7: S&P 500 Short Term Confidence Indicator

Although it is quite precise in terms of detecting the peak of the bubble,
which is missed only by a few weeks, this confidence indicator also shows a
false signal towards the mid of 2022. Due to its ”sloppiness” and instability,
the LPPLS model has been thoroughly criticized; also, the quite strict as-
sumptions on the behavior of market operators leave no room for this model
to spot an exogenously driven bubble or a bubble that is transmitted from
one asset class to another. Furthermore, many studies show that the log-
periodic component is statistically insignificant, as proven by Feigenbaum
(2001a, 2001b) and that a Hidden Markov model can explain much more ac-
curately and easily the shift between non-bubbly and bubbly market regimes
(Chang & Feigenbaum, 2006 & 2008).

7.1.3 Topological Data Analysis

First, we simulate 3000 AR processes (1000 stationary with ϕ1 = 0.8, 1000
random walks and 1000 explosives with ϕ1 = 1.1), each with 1000 observa-
tions (300 observations are used for the in-sample, 700 for the out-of-sample).
Each time series is treated as a multidimensional object by using a rolling
window of three observations to mark the coordinates of each point. Then, to
compute the persistence diagram, a rolling window of 5 points is used. The
L1 norm is computed and, if the L1 norm surpasses the threshold of µ+ 4σ,
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the time series is counted as a bubble. With this methodology, 87% of ex-
plosive processes are counted as bubbles, whereas only 15% of random walks
and 0.8% of stationary processes are classified as such. Therefore, TDA is
able to distinguish among stationary, non stationary and non explosive, and
non stationary and explosive regimes. The methodology that is now applied
is adapted from Rai et al., 2024. I take adjusted close daily prices for four
US stock indexes (S&P 500, Dow Jones Industrial Average, NASDAQ Com-
posite and Russell 2000) from July 2020 to December 2020 as the in-sample
(132 observations) and the years 2021-2022 as the out-of-sample (521 obser-
vations). Each point of the point-map is formed by the vector of four prices
for each day, while the rolling window of points is formed by 30 days. The
in-sample is used to determine µ and σ, while the thresholds to mark the
structural break of the L1 norm are µ+ 4σ,µ+ 5σ, and µ+ 6σ .

Figure 7.8: Topological Data Analysis using major US equity indices: S&P 500, Dow Jones
Industrial Average, Nasdaq Composite, and Russell 2000. The L1 norm of the persistence
landscape indicates a structural break around April 2021, aligning with the early stages of
the bubble. No signal is detected for the subsequent crash.

The conclusions to be drawn are as follows: the model detects a structural
break as early as the beginning of April 2021, which almost coincides with the
analysis of multivariate RCA in Chapter 2. However, after having marked
the transition toward a speculative regime, TDA does not detect the crash,
since the L1 norm remains stationary from July 2021 onward. Instead of
considering only US stock market, we can incorporate data such as the VIX
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and the 3-month Treasury Bill rate. Furthermore, in order to capture in
a better way the fact that only a small number of sectors actually drive
the returns of the S&P 500, I included in the second attempt the SPDR
sectorial ETFs covering IT, financials, consumer discretionary, and utilities
(since these last ones were highly hit by the spike in commodity prices),
while I excluded the entire time series data of all US stock indexes. Finally,
different thresholds have been used to test the ”noisy” nature of L1 norm
signals, using the same in-sample and out-of-sample. The results are much
more accurate than before:

Figure 7.9: Topological Data Analysis using sectorial ETFs (XLK, XLF, XLY, XLU), VIX,
and 3-month US Treasury Bills. The L1 norm shows a structural break early in 2021 and
again in early 2022, corresponding to the formation and collapse of the S&P 500 bubble.

Although the lower threshold yields mixed results, the µ+4σ threshold not
only marks the starting point of the bubble (which is now well before April
2021) but also the starting point of the crash, which is indicated slightly after
the beginning of 2022. However, this approach has also some evident flaws:
since this approach is computationally intensive, it is difficult to scale. The
chosen threshold is arbitrary and results could greatly vary if we choose a
different one. Also, the conformation of the L1 norms heavily depends on
arbitrary choices, such as the usage of one time series or of multiple ones
on the same timespan; particularly, if each point is represented by multiple
prices from a single time series, instead of using the price of different sequences
referring to the same date, the norm is much more noisy, leading to less easily
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interpretable results.

7.1.4 Permutation Entropy

Now Permutation Entropy is applied to the S&P 500.

Figure 7.10: Normalized Permutation Entropy of the S&P 500 Index (2021–2022)

Figure 7.11: Empirical p-value of PE compared to simulated Random Walks (S&P 500)

As far as it concerns the S&P 500, the detection of the bubble only happens
roughly a month before its peak.

7.1.5 Models comparison

Table 7.2: Comparison of Bubble Detection Models on the S&P 500

Method Bubble Onset Days Before Peak Crash Detected

RCA (S&P 500 + VIX) 04 Aug 2021 108 No
RCA (S&P 500 + VIX + WTI) 23 Feb 2021 212 Yes (18 Mar 2022)
LPPLS (Fitting) 16 Dec 2021 15 No
LPPLS – Confidence Indicator Dec 2021 20–40 Yes
TDA Setup 1 (S&P500, DJIA, Nasdaq, Russell) 01 Apr 2021 190 No
TDA Setup 2 (Sector ETFs + VIX + 3M Yield) 10 Feb 2021 220+ Yes
Permutation Entropy (S&P 500) 01 Dec 2021 22 No

52



The table provides a comparison of the different bubble detection methods
applied to the S&P 500. While RCA and TDA setups involving exogenous
variables provide earlier and often more informative signals, models like LP-
PLS and Permutation Entropy offer more lightweight but delayed or partial
detection. The choice of method thus depends on the specific application,
computational constraints, and desired robustness of the signal.

7.2 Natural Gas Futures Market Application

7.2.1 Random Coefficient Autoregression

After the analysis of the US stock market, we pass to the examination of the
continuous Natural Gas NYMEX futures, to test whether CUSUM method-
ology is effective in the commodities futures market. The price series of the
futures is split as follows, using the same span for the in-sample and out-of-
sample adopted for the S&P 500.

Figure 7.12: NYMEX Natural Gas daily prices

In the case of the natural gas market, the bubble is ”double-peaked” (10th
June and 26th August 2022), but it will only be examined whether the model
catches the drop after the second peak. The univariate case does not catch the
switch between the random walk of the in-sample and the explosive pattern
in the out-of-sample, but if we add WTI, VIX, the Dollar Index, and the 10y
Treasury yield as exogenous covariates, the results are the following.
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Figure 7.14: NYMEX Natural Gas decline with WTI,VIX,DIX and 10y YTM. The sum of
the absolute value of the errors is in blue, while the dynamic threshold is in yellow

Figure 7.13: NYMEX Natural Gas with WTI, VIX, DIX and 10y YTM. The sum of the
absolute value of the errors is in blue, while the dynamic threshold is in yellow

The results obtained using the CUSUM method are of particular interest,
since the transition to a speculative bubble is identified at the very begin-
ning of the out-of-sample period. Shifting the beginning of the out-of-sample
window by a year, it is possible to see whether the model catches the shift
between the bubble and the crash. In the case of the decline, the result is
disappointing, since the detection occurs prematurely relative to the actual
price decline. In conclusion, the CUSUM test statistic works better for the
stock market than for the commodities future market, since the first is much
more efficient, i.e. incorporates information from other asset classes, in a
much faster and effective way than futures.
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7.2.2 LPPLS model

The application of LPPLS to Natural Gas reveals a much less accurate fit-
ting. Considering an in-sample going from January 2021 to April 2022, the
following results were obtained.

Table 7.3: LPPLS Calibration Results for Natural Gas
Parameter Value
Taboo Search Solution (non-linear) [553.8, 0.696, 6.18586066]
Taboo Score 2.047
tc 593.299 (17/08/2022)
m 0.6149
ω 6.917
A 1.961 ($ 7.1085)
B -0.015
C1 -2.916×10−3

C2 5.286×10−3

m |B|
ω
√
C2

1 + C2
2

0.229

The fitting of the model yields the following result.

Figure 7.15: LPPLS fitting to NYMEX Natural Gas

Only the second peak is predicted, which is coherent with the assumption
of the model, but the gap between the predicted and actual prices is substan-
tial, being the actual 35% higher than the predicted. Using the LPPLS as a
confidence indicator, the results appear to be more precise.
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Figure 7.16: Natural Gas Short term confidence indicator

The confidence indicator is much more stable in terms of detecting poten-
tial bubbles, and can be successfully used not only to ride the bubble but
also, and even more profitably, to sell short both assets.

7.2.3 Topological Data Analysis

Using only the series of prices from NYMEX, we consider a rolling window
of three daily prices to get each point, and then a rolling window of 10 points
to compute the persistence landscape and its L1 norm. The results, together
with the threshold of extreme events, are the following.

Figure 7.17: Topological Data Analysis on Natural Gas futures. The L1 norm of the persis-
tence landscape is shown along with the thresholds. A significant deviation occurs only near
the price peak, limiting its forecasting usefulness

The analysis indicates that TDA fails to detect the shift toward a bubble
unless the prices are in close proximity to the peak; therefore, the opportunity
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to ”ride” the explosive phase presents only a narrow window, although this
indicator could be useful in a short-selling strategy. Also, the presence of a
false signal at the end of 2022 deserves attention. Therefore, we can conclude
that TDA is less efficient as a bubble indicator for the natural gas market
than in the case of US stock markets. This could be explained by the fact
that the S&P 500 is driven by few fundamental long-term factors, such as the
leverage in the corporate sector, the growth of total factor productivity and
the general openness of the global trade system, while the natural gas futures
market depends also on short-term factors, such as climate shocks, seasonality
and OPEC meetings, since oil-exporting countries are almost always also the
major exporters of natural gas.

7.2.4 Permutation Entropy

The application of Permutation Entropy to the NYMEX futures yields the
following result.

Figure 7.18: Normalized Permutation Entropy of Natural Gas Futures (2021–2022)

Figure 7.19: Empirical p-value of PE compared to simulated Random Walks (Natural Gas)

Regarding the natural gas, no bubbly pattern is detected.
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7.2.5 Models comparison

Table 7.4: Comparison of Bubble Detection Models on Natural Gas Futures

Model Onset Days Crash
Before Peak Detected

RCA (Univariate) – – No
RCA (NG + WTI + VIX + DXY + 10Y) 04 Jan 2021 599 No
LPPLS (JLS) 17 Aug 2022 9 No
LPPLS (Conf. Ind.) mid-2022 30–60 Yes
TDA (Daily Prices) Aug 2022 0 No
PE (Permutation Entropy) – – No

This summary shows that the RCA model using a full macro setup is the only
method detecting the bubble onset significantly in advance, though it fails to
capture the collapse. The LPPLS fitting is weak, but its confidence indicator
improves performance. TDA and PE display limited predictive power in the
natural gas futures market, likely due to its higher exposure to exogenous
and seasonal shocks.
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8 Conclusion

It has been proven that bubbles can be detected before they crash using dif-
ferent techniques, both econometric and non-econometric ones, contrary to
what is stated by the EMH. The cycles of credit and debt, whose importance
was claimed by Minsky, are not really necessary to analyze in order to detect
the majority of endogenous bubbles. In fact, most of the assumptions of be-
havioral finance, particularly the presence of feedback loops and the ‘cluster‘
behavior of traders, have been proven correct. Also, these features of the mar-
ket can, by changing their structural dynamics, cause a bubble on their own,
without having to process extraordinarily negative information coming pub-
lic. Particularly, the RCA model, conjugated with the CUSUM test statistics,
has proven to be not only the most accurate method in terms of detecting
both the bubble and the crash, but also the most stable with respect to data
and parameters modifications. The LPPLS, in its confidence-indicator usage,
has been proven accurate, but somehow noisy, with respect to the previous
model. Topological Data Analysis approach yields mixed results: the noisy
nature of the L1 makes it difficult to be reliably used as a single tool to de-
tect bubbles, although it may offer additional insights when combined with
more statistically rigorous approaches. In conclusion, permutation entropy
appears to be the least effective among the examined approaches.
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