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Abstract 
 
Urban mobility is increasingly challenged by congestion, environmental impacts and 
inefficiencies inherent in traditional transport management systems and aging 
infrastructures. This study employs an agent-based modeling approach using 
NetLogo to simulate and analyze urban traffic dynamics in Geneva and Rome, two 
cities characterized by distinct urban structures, transportation policies, and cultural 
attitudes toward mobility. 
 
The research aims to identify traffic patterns under varying simulated scenarios, 
compare urban mobility between the two cities, evaluate the efficiency of different 
transportation methods, and analyze opportunities for improvement in urban mobility 
systems. The simulation integrates real-world data, including OpenStreetMap 
networks and TomTom congestion data, to enhance accuracy and reliability. In the 
model, agents behave as fully rational individuals, always selecting the shortest 
route through the A* pathfinding algorithm. 
 
Results from the simulations highlight substantial differences in transportation 
efficiency. In ideal traffic conditions, private vehicles are shown to be the most 
efficient mode of transportation. Under realistic, congested scenarios, alternative 
modes such as cycling and public transport significantly outperform cars, particularly 
in Geneva, due to its robust cycling infrastructure and compact urban design. 
Conversely, Rome's extensive reliance on cars, coupled with limited infrastructure for 
alternative modes, exacerbates congestion, emphasizing the necessity for systemic 
infrastructure enhancements and cultural shifts towards sustainable mobility. 
 
This study’s innovative contribution lies in demonstrating the capability of ABM to 
produce actionable insights with limited computational resources, effectively guiding 
urban planning and policy decisions. The research highlights the utter contrasts 
between Geneva’s proactive infrastructure developments and Rome’s entrenched 
car dependence, underscoring the importance of context-specific, sustainable 
transport strategies tailored to each city’s unique characteristics. 
 
 

 

GitHub Repository: 
 https://github.com/4lucolo20/Rome-Geneva-Traffic-Simulation 
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1. Introduction 
 
The way cities evolve has always reflected how people move within them. Since the 
earliest settlements, urban spaces have taken shape around the need to enable 
mobility, whether for trade, daily work, or social interaction. The Industrial Revolution 
marked a turning point, driving rapid urban expansion and putting pressure on 
existing transport systems. Later, the rise of private car ownership in the twentieth 
century radically transformed urban design, leading to the spread of highways and 
the emergence of car-centric suburbs. Today, as cities grow larger and more 
complex, the challenge of rethinking how humans plan and manage mobility systems 
has become more pressing than ever. 
 
Modern urban mobility is characterized by increasing congestion, environmental 
concerns, and the need for more sustainable transport solutions. Rapid urbanization 
has led to a surge in private vehicle ownership, placing immense pressure on 
existing road networks1. Traffic congestion not only results in longer travel times but 
also contributes to higher fuel consumption and emissions, as well as negatively 
impacting economic productivity, as delays and unreliable mobility options hinder the 
smooth functioning of cities2. Beyond the technical opportunity cost, time lost in 
traffic deprives individuals of moments that could be spent on leisure or meaningful 
personal activities, ultimately reducing overall quality of life. A 2024 study reveals 
that drivers in four major cities - Istanbul, Turkey; Chicago and New York, USA; and 
London, UK - spend an average of over 100 hours per year stuck in traffic. Rome 
ranks as the first Italian city in this unfavorable list, placing 17th, with residents losing 
approximately 71 hours annually to gridlock3. An average daily schedule of 7 hours 
of sleep and 8 hours of work means that around 2% of an individual's yearly ‘free’ 
time is lost to traffic, taking away precious hours from leisure and meaningful 
personal activities. While this percentage may not seem alarming at first glance, over 
an average lifetime, it amounts to a staggering 5.893 hours, equivalent to nearly 
eight whole months, spent idling in traffic. Paradoxically, the very lifespan for this 
calculation is itself reduced by prolonged exposure to air pollution from motionless 
vehicle emissions, creating a dual burden of lost time and compromised health. 
 
Traditional approaches to traffic management, such as fixed traffic light cycles, rigid 
public transport timetables, and static road layouts, often fall short when faced with 
the dynamic nature of modern urban life. These systems are typically unable to 
adjust to real-time changes in traffic conditions, resulting in congestion, uneven use 
of infrastructure and suboptimal distribution of transport capacity. At the same time, 
connecting different transport options, like buses, trains, cycling routes and ride-
sharing platforms, remains a complex task in many urban contexts. In the absence of 
smooth integration, commuters often encounter fragmented journeys, which 
discourages multimodal travel and reinforces the tendency to rely on private 

 
1 Hemilä, J., Kettunen, O., & Ollus, M. (2009). Management View on Intelligent Intermodal Transport. 16th ITS World Congress 
and Exhibition on Intelligent Transport Systems and ServicesITS AmericaERTICOITS Japan. 
https://trid.trb.org/view.aspx?id=911444 
2 Abbas, Q., Alyas, T., Alyas, T., Alghamdi, T., Alsaawy, Y., & Alzahrani, A. (2023). Revolutionizing Urban Mobility: IoT-Enhanced 
Autonomous Parking Solutions with Transfer Learning for Smart Cities. Sensors, 23(21), 8753. 
3 INRIX (7. January, 2025). Congestions most conspicuous conurbations worldwide in 2024 (by time loss per year). 
InStatista Accessed on 16. March 2025, from https://de.statista.com/statistik/daten/studie/970465/umfrage/stauauffaelligste-
ballungsraeume-weltweit/ 
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vehicles. This, in turn, feeds back into the very congestion these systems are meant 
to alleviate. 

2. Foundations of the Research 
 
Data is an incredibly powerful tool, pervasive in every aspect of our daily lives, often 
without us even realizing it. Over the past few decades, data analytics has expanded 
beyond technological experts to become a common part of everyday life. In the 
context of this research, data-driven tools have gained widespread use, even among 
parts of the population who may not consider themselves tech-savvy. Navigation 
systems like Google Maps or Waze have become indispensable for millions of 
commuters, as well as ride-sharing apps and public transportation platforms facilitate 
convenient and flexible mobility. This shift in the everyday employment of data by the 
general population has opened new avenues for optimizing urban mobility, especially 
considering the real-time applications they offer. 
 
 

2.1 Motivation and Context 
 
This project will examine two cities with fundamentally different transportation 
systems and commuting trends, not for direct comparison but to explore how distinct 
solutions can be tailored to diverse urban environments. These cities are also 
personally significant to me: Rome, where I spent some of the most formative and 
eventful years of my life, and Geneva, where I began my professional career abroad. 
 
Rome, often referred to as an open-air museum, makes walking particularly 
enjoyable, with its culture-rich and vibrant atmosphere enhancing the experience. 
However, as an intrinsic consequence of its millennial history, the city's urban 
landscape, characterized by narrow streets, steep turns, and limited space, was not 
designed with large-scale public transport or modern infrastructure in mind, forcing 
reliance on inefficient, and in most cases unsustainable, means of transport. 
 
On the other hand, the characteristics of Geneva, with its surface area being almost 
a hundredth of Rome’s one and hosting one-tenth of the population, make it far more 
manageable in terms of traffic and urban planning. The city’s more modern 
infrastructure and relatively smaller size allow for greater integration of efficient 
public transport and progressive sustainable mobility options, such as an extensive 
tram network and a focus on promoting cycling and pedestrian-friendly spaces.  
 
While both cities present unique challenges and opportunities, this project aims to 
explore how different transportation solutions can be applied to meet the specific 
needs of each city’s infrastructure and population density and habits. In this regard, 
the project becomes particularly relevant: by examining traffic trends, urban 
development, and the centrality of key junctions, the overarching aim is to develop 
tailored transportation strategies that integrate various modes of transport, involving 
public transit, pedestrian and active transportation, and private vehicles.  
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In the past, urban transportation planning relied heavily on the Four-Step Travel 
Demand Model, a top-down, aggregate method dividing planning into trip generation, 
distribution, modal split, and assignment. While useful for long-range planning, such 
traditional models often struggle to capture individual behavioral adaptations and 
real-time network feedback4. Over the last two decades, and especially in the last 
five years, agent-based modeling has emerged as a bottom-up alternative that can 
simulate each traveler or vehicle as an autonomous “agent” making decisions, 
thereby reproducing emergent traffic patterns from the ground up. The distinction 
between these new approaches and the more aggregate, static conceptions and 
representations that they seek to complement, if not replace, is that they facilitate the 
exploration of system processes at the level of their constituent elements, enabling 
unprecedented degrees of variability and granularity across their components. 
 
The increased specialization and diversity afforded by agent-based approaches 
make them particularly well-suited for research projects focused on urban mobility 
and transport efficiency. In light of these strengths, this thesis seeks to address the 
following research questions: 
 

1. What is the most efficient mode of transportation under ideal conditions, 
where vehicles travel at the speed limit and congestion is absent, and can this 
be further optimized?  
 

2. In a day-trip scenario, which mode offers the best travel solution, considering 
slower movement and planned stops?  

 
3. Under congested rush hour conditions, would individuals be better off if they 

behaved rationally, switching modes to avoid traffic bottlenecks as the model 
allows? 

 
At the heart of agent-based modeling lies the concept of the agent, a discrete, 
autonomous entity endowed with specific behavioral rules, preferences, and 
decision-making capabilities. In the context of urban mobility, agents typically 
represent individual commuters, drivers, pedestrians or vehicles, each with their own 
travel goals, modes of transportation and adaptive responses to their environment; 
characteristics that make them particularly suitable for scenario simulations. Diversity 
in their applications makes agent characteristics and definition difficult to identify in a 
consistent and concise manner, but it is possible to identify several features common 
to most agents: 
 

• Autonomy: agents are autonomous units, capable of processing and 
exchanging information with other agents, making them independent decision-
makers. 
 

• Heterogeneity: agents represent autonomous individuals, each with 
distinctive demographic or behavioral identifiers; this allows deep granularity 
and personalization. Groups of agents sharing common features can exist as 

 
4 Hofer, C., Jäger, G. & Füllsack, M. Including traffic jam avoidance in an agent-based network model. Comput Soc Netw 5, 5 
(2018). https://doi.org/10.1186/s40649-018-0053-y 
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the result of the amalgamations of similar autonomous individuals, mimicking 
task-driven top-down approaches typical of traditional modeling methods, 
while still retaining the complexity and singularity of each individual agent. 
 

• Active: autonomy and heterogeneity enable agents to exert independent 
influence in a simulation. Depending on their scope, agents can have different 
degrees of activity: 
 
• Pro-active/goal-directed: agents might be assigned goals to achieve (not 

necessarily objectives to maximize) with respect to their behaviors. 
 
• Reactive/Perceptive: agents can be designed to have an awareness or 

sense of their surroundings, allowing them to elaborate spatial data. 
 

• Bounded/Full Rationality: Rational-choice models generally assume that 
agents are perfectly rational optimizers with unlimited access to 
information, foresight, and infinite analytical ability. However, agents can 
be configured with ‘bounded’ rationality (through their heterogeneity). This 
allows agents to make inductive, discrete, and adaptive choices that move 
them towards achieving goals5. 
 

• Interactive/Communicative: agents have the ability to communicate 
extensively in the form of data and information exchange. 

 
• Mobility: agents can ‘roam’ the space within a model, incorporating also a 

spatial or physical dimension. 
 

• Adaptation/Learning: agents can be designed to alter their state 
depending on previous states, permitting them to adapt with a form of 
memory or learning. Models where agents adapt at the individual micro-
level or at group macro-level produce Complex Adaptive Systems (CAS), 
the most coarse-grained form of simulation6. 

 
Building on the foundational elements of ABM and the defined characteristics of 
agents, the choice of Rome and Geneva as case studies represents an ideal setting 
to apply this modeling approach. Their markedly different urban morphologies, 
population densities, transport infrastructures, and modal preferences create a 
natural testbed for leveraging heterogeneity in simulating and managing complex 
mobility systems.  
 
 
 
 

 
5 Parker, D.C., et al. (2003) Multi-Agent Systems for the Simulation of Land-Use and Land-Cover Change: A Review. Annals of 
the Association of American Geographers, 93, 314-337. 
https://doi.org/10.1111/1467-8306.9302004 
6 Holland, J.H. Studying Complex Adaptive Systems. Jrl Syst Sci & Complex 19, 1–8 (2006). https://doi.org/10.1007/s11424-
006-0001-z 
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 Rome Geneva 

Surface Area (km2) 1.285 15,92 

Population 2.746.984 201.741 

# Traffic Lights 14577 ~280 

Motorization Rate (per 100 inhabitants) 61%8 37%9 

Bike Lanes Aggregate Length (km) 32110 6411 

Bike to Extension Rate 25% 402% 

 
 
Rome’s sprawling layout, informal driving culture, and reliance on private vehicles 
contrast sharply with Geneva’s compact geography, structured multimodal transport 
system, and coordinated cross-border commuting flows. In such a dual setting, the 
ability to assign distinct behavioral profiles to agents becomes not just 
advantageous, but essential, accommodating the distinct ways in which commuters 
in each city respond to congestion, route availability, and travel alternatives. A single, 
homogeneous model would risk overgeneralization and lose explanatory power in 
these contrasting environments.  The heterogeneity and autonomy of agents 
become particularly valuable for modeling behaviors reflecting frequent illegal 
parking, non-compliance with traffic norms, and low modal shift elasticity, in Rome, 
while Geneva’s agents can be equipped with higher propensities for multimodal 
transport use, sensitivity to schedule adherence, and reliance on well-integrated tram 
or train lines. This level of specificity supports accurate scenario testing and context-
sensitive behavior, possibilities that traditional top-down approaches would exclude.  
 

 

 
7https://romamobilita.it/it/tecnologie/impianti-
semaforici#:~:text=Tutti%20gli%20impianti%20semaforici%20di,UTC)%20e%20577%20non%20centralizzati. 
8 Euromobility. (December 2, 2019). Number of cars per 100 inhabitants in selected Italian cities in 2018. In Statista. Retrieved 
May 23, 2025 from https://statista.com/statistics/1077673/motorization-rate-italy-by-city/ 
9 FSO, FEDRO – New Registrations of Road Vehicles (IVS) https://www.bfs.admin.ch/bfs/en/home/statistics/mobility-
transport/transport-infrastructure-vehicles/vehicles/road-new-registrations.html 
10 Roma Mobilità - https://romamobilita.it/it/muoversiaroma/ciclabilita 
11 Carte vélo Ville de Genève - https://www.ge.ch/document/carte-velo 

 Rome Geneva 

# Nodes 43.657 1.076 

# Edges 90.434 3.376 

Diameter (in # edges) 234 69 

Diameter (in meters) 35.976 6.930 

Table 1. Rome and Geneva comparison of morphological and urban layout statistics.  

Table 2. Rome and Geneva comparison of graphs descriptive statics. 
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Considering both cities at system-wide level, this approach also provide significant 
insights into the complex feedback systems that challenge equilibrium-based 
models12. In Rome, even minor disruptions can cause systemic gridlock, while in 
Geneva, small modal shifts can produce meaningful changes in congestion levels 
due to the city’s spatial constraints. ABM, grounded in systems theory, is uniquely 
equipped to simulate these nonlinear dynamics. It captures how local interactions 
among agents, such as drivers re-routing simultaneously to avoid traffic or 
pedestrians switching to cycling, can yield emergent patterns like congestion 
cascades or temporary equilibria.  
 

 
 
Figure 1 pictures the importance of tailoring models specific to the context. The 
Geneva network is composed of 3.376 edges for 1.076 nodes, while Rome graph 
consists of 90.434 edges serving 43.657 nodes. Nodes (or vertices) are individual 
entities from which graphs are constructed, connected and communicating with each 
other through edges. In the model, nodes represent intersections, junctions and any 
point of interest relevant when navigating a street network, such as where a road 
changes attributes like direction or speed limit. The edges represent the actual roads 
and streets connecting the nodes. When applied to urban street networks, the 
diameter offers insight into the compactness and connectivity of a city's layout. A 
smaller diameter typically reflects dense, well-connected urban fabric, and more 
efficient traffic routing. Larger diameters are often associated with urban sprawl, a 
condition in which cities expand in a fragmented and unplanned manner, leading to 
lower density and poor network connectivity. With this mind, the networks diameters 
confirm the visual cues from the cities’ layouts: Rome’s diameter in edges is 3,4 
times longer than the Geneva one, 5,2 times longer if measure in meters. 
 

 
12 K. B. Sibale and K. G. . Munthali, “Analysing Road Traffic Situation in Lilongwe: An Agent Based Modelling (ABM) Approach”, 
Adv. J. Grad. Res., vol. 10, no. 1, pp. 3–15, Mar. 2021. 

Figure 1. Networks Diameter of (a) Geneva and (b) Rome.  
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2.2 Literature Review 
 
The increasing complexity of urban mobility has led to significant challenges in traffic 
management, congestion mitigation, and transportation planning. Traditional 
approaches to traffic modeling, such as macroscopic and mesoscopic models, rely 
on aggregate-level analysis and often fail to capture the heterogeneity of individual 
behavior. Macroscopic models generally allow the representation of large road 
networks with an acceptable computational load. This computational advantage is 
counterbalanced by the lack of precision in capturing specific traffic phenomena 
related to the behavior of individual drivers. On the opposite side, microscopic 
models describe the dynamic behavior of every single vehicle in the traffic stream, 
trying to capture the interactions among vehicles and between vehicles and the road 
infrastructure. These models can be very detailed and accurate in representing 
specific traffic features but, of course, are very demanding from a computational 
point of view, making them mostly used to analyze specific reduced areas or for trial 
tests13. 
 
In contrast, Agent-Based Modeling (ABM) offers a different way of simulating traffic 
systems by focusing on the behavior of individual components. Rather than relying 
on aggregated data and fixed equations, ABM builds from the bottom up, allowing 
complex system-wide patterns to emerge from the actions and interactions of 
individual agents. In traffic simulations, these agents can take the form of drivers, 
vehicles, pedestrians, or even elements of the infrastructure itself, each defined by 
specific attributes such as speed, route choice, and reaction time. What makes this 
approach particularly effective is its ability to reflect the heterogeneity of real-world 
behavior—agents differ from one another, react to their surroundings, and in some 
cases adapt over time. This level of detail makes it possible to reproduce dynamics 
like traffic jams or emergency evacuations, which are often the result of local 
interactions and would be difficult to anticipate with more traditional modeling 
methods14. 
 
The development of Agent-Based Modeling has mirrored the increasing availability of 
data and the broader interest in simulating complex systems at a finer level of detail. 
Early conceptual models, like Schelling’s segregation simulation from 1971, showed 
how simple rules, such as agents relocating when fewer than 40% of their neighbors 
shared a specific trait, could lead to intricate spatial patterns15. This foundational 
work demonstrated the potential of ABM to connect individual choices to large-scale 
outcomes, as well as its capacity for capturing personalized dynamics. By the mid-
1990s, Epstein and Axtell’s SugarScape project took this further, modeling artificial 
societies where agents competed for resources like “sugar,” and in doing so revealed 
emergent behaviors including inequality, trade networks, and the spread of cultural 
norms16. These models underscored ABM’s ability to simulate processes, such as 
adaptation and competition, rather than static states.  

 
13 Ferrara, A., Sacone, S., Siri, S. (2018). Microscopic and Mesoscopic Traffic Models. In: Freeway Traffic Modelling and 
Control. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-75961-6_5 
14 Crooks, Andrew. (2015). Agent-based Models and Geographical Information Systems. 
15 Schelling, T.C. (1971) Dynamic Models of Segregation. Journal of Mathematical Sociology, 1, 143-186. 
http://dx.doi.org/10.1080/0022250X.1971.9989794 
16 Duffy, John. Southern Economic Journal, vol. 64, no. 3, 1998, pp. 791–94. JSTOR, https://doi.org/10.2307/1060800. Accessed 31 Mar. 
2025. 
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In the field of transportation, ABM’s value became increasingly apparent through 
models that reproduced traffic flow dynamics. Wilensky’s 1997 simulation, for 
instance, used simple rules such as slowing down when another car is ahead, yet 
still managed to replicate stop-and-go traffic waves, often referred to as 
“rubbernecking” effects, without requiring any physical obstruction17. Later, ABMs 
incorporated greater realism, such as integrating GIS-based road networks or 
modeling multimodal transport choices (e.g., car vs. bus)18. The framework’s 
flexibility also enabled applications beyond academia: Southwest Airlines optimized 
cargo logistics, while urban planners used ABM to test evacuation protocols or 
congestion pricing.  
 
More recent advancements in ABM for urban traffic optimization have proven 
particularly effective for modeling complex mobility patterns in cities with high spatial 
and behavioral heterogeneity. These high-resolution simulations often draw on 
detailed data and require significant computational power. Projects like MATSim, 
which have been applied in cities such as Zurich and Berlin, simulate individual 
travel patterns using activity chains, route preferences, and mode switching, all 
running on high-performance computing clusters capable of processing millions of 
agents19. Similarly, POLARIS, developed by the U.S. Department of Energy, employs 
ABM to optimize traffic signals and evacuation routes by modeling adaptive driver 
behavior, necessitating both supercomputing infrastructure and proprietary 
software20. In Rome, recent work has explored congestion pricing in terms of 
environmental pollution using ABM run through large-scale, GPU-accelerated 
simulations21, while Geneva has seen applications in exploring human decision-
making in multimodal traffic integrations via computationally intensive discrete-choice 
models22.  
 
These examples illustrate the strength of ABM in testing policy scenarios at a 
granular level, such as low-emission zones or dynamic tolling systems. However, 
they also highlight a clear limitation: the models’ dependence on heavy infrastructure 
and proprietary tools makes them less accessible to researchers or decision-makers 
without significant computational resources. Full-scale MATSim implementations, for 
instance, often require terabytes of RAM and can take several days to run, while 
POLARIS depends on licensed solvers like Gurobi. These constraints make it difficult 
for smaller cities or universities to take full advantage of ABM’s potential. This thesis 
addresses that challenge by proposing a streamlined approach that maintains 
analytical depth while emphasizing adaptability and computational efficiency, making 
it more suitable for resource-constrained settings. 
 

 
17 Wilensky, Uri & Resnick, Mitchel. (1999). Thinking in Levels: A Dynamic Systems Approach to Making Sense of the World. 
Journal of Science Education and Technology. 8. 3-19. 10.1023/A:1009421303064. 
18 Benenson, Itzhak & Torrens, Paul. (2004). Geosimulation: Automata-Based Modeling of Urban Phenomena. 
10.1002/0470020997. 
19 Grunicke, Conny & Schlueter, Jan & Jokinen, Jani-Pekka. (2020). Implementation of a cost-benefit analysis of Demand-
Responsive Transport with a Multi-Agent Transport Simulation. 10.48550/arXiv.2011.12869. 
20 Auld, Joshua & Hope, Michael & Ley, Hubert & Sokolov, Vadim & Xu, Bo & Zhang, Kuilin. (2015). POLARIS: Agent-based 
modeling framework development and implementation for integrated travel demand and network and operations simulations. 
Transportation Research Part C: Emerging Technologies. 64. 10.1016/j.trc.2015.07.017. 
21 Cipriani, Ernesto & Mannini, Livia & Montemarani, Barbara & Nigro, Marialisa & Petrelli, Marco. (2018). Congestion Pricing 
Policies: Design and Assessment for the city of Rome, Italy. Transport Policy. 80. 10.1016/j.tranpol.2018.10.004. 
22 Bierlaire et al. (2020). Multimodal Integration in Geneva: A Behavioral ABM Approach. Transport Policy. 
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Three key distinctions emerge: 
 

• Resource-Aware Modeling: Unlike MATSim, which typically requires access 
to high-performance computing infrastructure, or POLARIS, which depends 
on licensed optimization tools, this framework produces policy-relevant 
insights using open-source environments like NetLogo and Mesa on standard 
hardware. Rather than attempting to model entire metropolitan areas in full 
detail, it concentrates computational effort on high-impact subsystems, such 
as Rome’s Limited Traffic Zones (ZTL) or Geneva’s cross-border commuting 
corridors. This selective focus helps preserve analytical depth where it matters 
most while avoiding unnecessary complexity in less critical areas. Efficiency is 
further improved by using streamlined agent behaviors, such as bounded-
rationality mode choices, calibrated against local travel data, which strike a 
balance between realism and computational simplicity. 

 
• Empirical Anchoring with Pragmatic Data: Where large-scale models often 

rely on abstract assumptions, like system-wide utility functions or generalized 
origin-destination matrices, this framework roots agent behavior in concrete, 
context-specific observations. In Rome, for instance, behavioral assumptions 
reflect a strong preference for private vehicle use and a high tolerance for 
informal parking, patterns captured through traffic count data and violation 
records. In Geneva, cross-border commuters’ reliance on regional public 
transport has been incorporated without the need for computationally 
demanding discrete-choice modeling. This form of targeted calibration 
enables a credible representation of agent behavior, even when granular or 
real-time datasets are unavailable—a frequent constraint in mid-sized cities 
with limited digital infrastructure. 

 
• Modular Policy Testing: Thanks to its modular design, the model can 

support rapid scenario testing without requiring a complete reconfiguration of 
the system. This flexibility allows interventions to be introduced, adjusted, and 
re-tested iteratively, offering a level of responsiveness rarely possible in large-
scale agent-based systems, where technical complexity often obscures 
cause-and-effect relationships. For policymakers, this means being able to 
explore a wide range of targeted policy options—from traffic restrictions to 
modal incentives—without committing to a full system overhaul at each stage. 

 
These differences enable the exploration of new perspectives on urban governance: 
by demonstrating that actionable insights need not require industrial-scale 
computation, this work expands ABM’s accessibility to resource-constrained 
contexts. The approach is particularly salient for large and mid-sized European cities 
like Rome and Geneva, where traffic dynamics are often localized (e.g., historic-
center congestion) but poorly served by models designed for megacities. 
 
Crucially, the framework does not dismiss high-resolution ABMs but instead offers a 
complementary pathway, one that acknowledges the 80/20 Pareto rule of urban 
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policy analysis: often, 80% of actionable insights derive from 20% of a system’s 
complexity23. 
 
 

2.3 Data Sources 
 
The reliability of any simulation hinges on the quality and scope of its underlying 
data. In this study, multiple data sources were used to construct, enrich, and 
calibrate the simulation environment for Rome and Geneva. These datasets range 
from open geospatial data to real-time traffic records and public transport schedules, 
ensuring that agent behavior is grounded in contextual, empirical input. This section 
outlines the data sources, formats, and preprocessing steps that underpinned the 
construction of the dual-layer transportation networks and the behavioral logic of the 
agents. 
 

• Geographic Network Data: OpenStreetMap24: the foundational data for 
constructing both the driving and walking networks were retrieved via the 
OpenStreetMap (OSM) Editing API, accessed through the osmnx Python 
library. For each city, the "drive" and “walk” network were downloaded, 
yielding nodes and edges representing street intersections and road 
segments, respectively. Each edge record includes road attributes that 
revealed crucial in the final analysis, discussed in Chapter 2.4. All geospatial 
data were projected using EPSG:4326, as required by NetLogo's GIS 
extension. Distance normalization and travel speed conversions were 
performed in Python, and extensive visual checks were conducted using 
geopandas and contextily for basemap validation. Walking and driving 
paths were integrated from separate shapefiles, filtered to avoid duplication of 
common edges and reduce dimensionality. To reconcile coordinate distortions 
between projection systems, manual stretching and adjustment of the 
NetLogo basemap were performed using the resize-world command.  

 
• Traffic Data: TomTom Developer API25: to integrate real-world congestion 

patterns, data was sourced from the TomTom Developer API, which provided 
travel time and speed metrics for each road segment in August 2024. Despite 
seasonal limitations, this dataset offered valuable insight into structural 
bottlenecks and enabled relative comparisons between free-flow and 
congested conditions. These values were matched to the corresponding 
edges in the network and used to adjust agent speed profiles during 
congestion simulations. 

 
• Public Transport Data: TPG Open Data26: the Transport Publics Genevois 

(TPG) open data portal provided detailed information on Geneva's tram and 
bus network. Two datasets were used: 

 
23 Koch, R. (1999). The 80/20 principle: the secret of achieving more with less (1st Currency paperback ed., p. X, 277). 
Currency; Doubleday. 
24 https://www.openstreetmap.org/#map=11/41.8586/12.6034 
25 https://developer.tomtom.com 
26 https://opendata.tpg.ch/explore/?sort=title 
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• Ridership per Day per Stop per Line, containing information on the route of 
each line; 

• Stops, containing stop identifiers and coordinates. 
 

The datasets were merged using stop IDs and spatially joined with the 
network nodes to flag public transport accessibility. This enabled pedestrian 
agents to include multimodal trips in their movement logic, simulating 
transitions between walking and public transport. 

 
• Public Transport Data: Roma Open Data27: the Data Portal in Rome 

Municipality’s website provides a Static GTFS dataset with geospatial 
information on public transport stops and lines. 

 

2.4 Methodology 
 
The collection and selection of resources to employ is a crucial step towards any 
data-related project, as it defines the further steps and shapes the process for 
getting to a solution. For the purpose of initially building the networks where agents 
will move, the OpenStreetMap28 Editing API (henceforth, OSMx) was employed. It 
allows rapid fetching and saving of raw geodata, that serve as the main building 
blocks of the nodes and edges composing the road network. The resulting data from 
the OSMx extraction can be converted into two much more practical dataframes for 
cleaning and analysis, respectively containing nodes and edges. The nodes’ one 
contains coordinates and references for localization, while the edges’ one contains 
the following features: 
 

Osmid ID for the road segment. Unique identifier. 

Oneway Boolean. True if the road is one-way, False if it's two-way. 

Lanes The number of lanes in the road segment. Affects road capacity. 

Ref Road reference number (e.g., codes like "A1" for major roads). 

Name The name of the road (if available). 

Highway The road classification (e.g., "motorway", "primary", "residential"). 

Maxspeed Speed limit in km/h. 

Reversed True if the direction is opposite to how it appears in OSM. 

Length Length of the road segment (in meters). 

Bridge Boolean. True if the road is a bridge. 

Tunnel Boolean. True if the road is a tunnel. 

 
27 https://dati.comune.roma.it/catalog/dataset/c_h501-d-9000/resource/266d82e1-ba53-4510-8a81-370880c4678f 
28 OpenStreetMap.org 
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Junction Type of junction (e.g., "roundabout"). 

Access Restrictions on road access (e.g., "private", "no", "yes"). 

Width Road width (if available). 

 
The features have varying degrees of usefulness and application for the purpose. 
Length, oneway, lanes and highway will be crucial for instructing agents on taking 
the shortest path and simulating realistic traffic conditions: agents will be aware of 
the length of edges (roads), whether they allow circulation on both directions, the 
number of lanes and what type of road it is.  Having identifiers such as names, 
junctions and access will be especially useful for plotting roads’ particularity from 
which to expect special behaviours from agents: the junction and access variables 
will influence the speed with which agents approach edges and whether they can 
enter them. 
 
Once the raw geodata is extracted and cleaned, the next step is to construct the 
road network. This involves converting the two dataframes into shapefiles to retain 
their geographic features and merging them in a single file, that NetLogo will handle 
autonomously separating nodes and edges. Before enriching the code furtherly, 
visualizations were employed to ensure the correct processing of the geodata.  
 

 
In order to augment the networks’ information, speed limits and travel times were 
added to the edges graphs. Speed limits were defined  from the maxspeed column, 
replacing the empty cells with 50 km/h for residential roads and 130 km/h for 
highways (for Italy). Ideal conditions travel times were computed on the basis of the 
edges’ length and speed limit, using the latter as numerator and the former as 
denominator. They will be used as weights for the edges, representing a measure of 
cost, time or capacity associated with passing through it. 
 

Figure 2. a) Rome Road Network. b) Geneva Road Network. 

Table 3. Feature list of entries in the edges dataframe. 
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To identify congestion hotspots, the network’s betweenness centrality is calculated 
using the NetworkX29 library, a Python package for the creation, manipulation, and 
study of the structure and dynamics of complex networks (henceforth, Nx). 
Betweenness centrality quantifies the importance of a node (or edge) based on the 
number of shortest paths that pass through it. In a road network, nodes with high 
betweenness centrality are likely to experience more traffic, as they lie on the most 
efficient routes between many pairs of nodes. Mathematically, betweenness 
centrality for a node (𝑣) is defined as: 
 

𝐵𝐶(𝑣) = '
𝜎!"(𝑣)
𝜎!"!#$#"

 

Where: 
 

• 𝜎!" is the total number of shortest paths from node 𝑠  to node 𝑡; 
• 𝜎!"(𝑣) is the number of those paths that pass through node 𝑣. 

 
The previously created graphs were thus converted into directed graphs using the 
information contained in the oneway variable: roads might connect one way but not 
the other, which sensibly impacts the road layout and path choice, especially for 
cars. Edges labelled as one-way kept their original starting and end point, while for 
two-way lanes reversed starting and end-point were added. The Nx proprietary 
betweeness_centrality function was then used on the directed graph with the 
relative weights. This process is known to be computationally expensive, as it 
requires identifying all shortest paths in the network. In the case of Rome, the graph 
comprises 43.657 nodes and 90.334 edges, and the full computation took 4 hours. 
Geneva, by contrast, has a significantly smaller graph (1.076 nodes and 3.376 
edges) and was processed much more quickly, in about 20 minutes. Considering 
these values, the denominator in the formula outlined above can become 
exponentially large, making the betweenness centrality measures infinitesimally 
small: in the case of Rome’s graph, it translates to over 1.9 billion shortest path 
evaluations. For this reason, betweenness centrality measures were normalized and 
scaled, and only the ones above the 90th percentile were used for the graphs below. 

 
29 NetworkX.org 

Figure 3. Betweenness centrality normalized distribution in (a) Geneva and (b) Rome. 

0                                                                                                  1                      0                                                                                                1                      Betweeness Centrality Normalized Betweeness Centrality Normalized 
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Betweeness Centrality Analysis in Geneva and Rome 
 
Figure 3 illustrates key differences in the spatial distribution of betweenness 
centrality across the two cities. Both Rome and Geneva exhibit left-skewed centrality 
distributions, with, respectively, 5 and 4 nodes having more than 0.8 betweenness 
centrality. Figure 4 shows where the highest betweenness points are located, 
marked in red and bigger in shape. In Geneva, they are key arteries for traveling 
within the city: Gare Cornavin, the main station receiving an outstanding number of 
commuters each day and therefore requiring a major degree of connectivity; the 
Cirque stop in Plainpalais, a vital stop in the exact center of the city, and the two 
junctions at the extremes of Pont du Mont-Blanc, connecting the two sides of 
Geneva over the lake. This centrality aligns with Geneva’s compact, monocentric 
structure, where much of the economic and transport activity is concentrated in and 
around the city center, reinforcing central locations as inevitable thoroughfares. 
 
In contrast, Rome’s most central nodes southern sector of the Grande Raccordo 
Anulare (GRA), a peripheral orbital motorway, and, in particular, along Via Cristoforo 
Colombo. This reflects the polycentric and fragmented nature of Rome’s urban 
fabric, where the historic core is heavily pedestrianized and often restricted to private 
vehicles. Consequently, major traffic flows and strategic connectivity tend to bypass 
the center, relying instead on peripheral roads, especially for paths crossing through 
the whole city. This suggests that Rome’s congestion patterns are not only driven by 
radial inflows to the center but also by circumferential traffic that circulates around it, 
making the outer ring a crucial hub in maintaining overall network efficiency.  
 
 
 
 

Betweenness Centrality Normalized: 

0                                        0.5                                      1 

Figure 4. Visualization of top 10% nodes by betweenness centrality in 
(a) Geneva and (b) Rome. 
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TomTom Data Enriching 
 
In order to make the analysis more realistic, real traffic data were extracted using 
TomTom Developer API30, from the famous homonymous satellite navigation device 
company. The free trial version allows to generate detailed reports on the real travel 
times and congestion of nodes and edges of the selected cities, limited, however, to 
the month of August 2024 alone, notably when the vast majority of people leaves 
both cities for their summer vacations. Despite the fact that such limited amount of 
data does not constitute a sample of observations large enough to quantify the 
realistic, year-round phenomenon, the data accessed via TomTom contain accurate 
speed limits, actual travel times and street names, that were added to the previously 
created graphs. The data also include statistical indicators, such as the speed 
harmonic average, as well as the median and mean, and average travel times, 
supplemented by the sample size used for their calculation. This can help making 
sense of the most ‘central’ areas of the cities, as it reflects the actual amount of cars 
transitated daily through each edge, but the data lack information on the time the 
observations were collected. Therefore, TomTom average distances and travel times 
will be used as a comparison for the ideal condition scenario simulation, in Chapter 
5. 
 

 
 

 
30 TomTom Developer 

speedLimit Speed limit of the segment (in km/h) 

distance Length of the segment (in meters) 

shape List of lat/lon coordinates defining the road segment geometry 

streetName Name of the street 

date Date 

harmonicAverageSpeed Harmonic average speed across samples 

medianSpeed Median speed measured 

averageSpeed Average speed measured 

sampleSize Number of samples used for statistical measures 

averageTravelTime Average travel time across the segment (in seconds) 

medianTravelTime Median travel time (in seconds) 

Table 4. Feature list of edges in the TomTom dataframe. 
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2.5 Netlogo 
 
NetLogo is a multi-agent programming language and cross-platform modeling 
environment used to simulate complex natural and social systems, particularly well-
suited for studying the impact of changes overtime to such systems. A major strength 
of NetLogo lies in its ability to simulate the behavior of hundreds or even thousands 
of independent "agents" acting at the same time. This allows researchers to examine 
how simple, local interactions at the individual level can lead to larger, emergent 
patterns across the system. 
 
NetLogo models consist of three main types of agents: turtles, patches, and the 
observer. Turtles are mobile agents that move around and interact with each other 
and their environment, following a set of predefined rules, specified by the user. The 
environment itself is made up of patches, these are fixed grid cells that make up the 
two-dimensional world. Each patch can hold its own set of variables (like color, 
elevation, or traffic density), and turtles can sense and react to these properties as 
they move over them. The observer, on the other hand, is a special agent that 
oversees the simulation. It doesn't exist within the grid, but it can set up the 
environment, monitor variables, and issue commands that affect all agents at once31. 
 
One of NetLogo’s most useful features is its interactivity, enabling users to run 
simulations and experiment with different parameters in real time, observing how the 
system responds under different conditions. To support learning and 
experimentation, NetLogo includes detailed documentation, tutorials, and a library of 
over 150 ready-made models. 
 
Traffic modeling is one area where NetLogo has proven especially valuable. Several 
models have been developed to explore traffic flow, driver behavior, and congestion 
patterns, and are all available in the latest versions of the software: 
 

• The "Traffic Basic" model, included in the standard library, simulates 
vehicles on a single-lane highway. Each car follows simple rules: it slows 
down when another car is nearby and speeds up when the path is clear; 
 

• The "Traffic 2 Lanes" model adds complexity by allowing cars to change 
lanes, making it possible to observe how traffic jams can form and how drivers 
respond; 

 
• The "Traffic" model introduces adjustable speed settings, the presence of 

law enforcement, and a special driver who always adheres to the speed limit. 
It also includes tools for running quantitative experiments; 

 
• The "Traffic Mode" model expands the simulation to three lanes and 

investigates the impact of conditions like traffic lights and driver distraction on 
traffic flow; 

 
 

31 Janota, Aleš & Rastocny, Karol & Zahradník, Jiří. (2005). Multi-agent Approach to Traffic Simulation in NetLogo Environment - 
Level Crossing Model. Zeszyty Naukowe. Nr 1691. 181-188. 
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• The "Gridlock" model gives users control over traffic lights, speed limits, and 
vehicle numbers in real time, making it a powerful tool for exploring the 
dynamics of traffic systems; 

 
• The "HubNet Gridlock" model extends this by treating traffic as an adaptive 

problem, where flow and density are constantly shifting, requiring agents to 
adjust accordingly. 

 
While NetLogo has been used extensively for traffic simulations32, most existing 
models simplify road networks rather than representing real city streets, making the 
simulations more applicable to actual transportation systems. Building on existing 
research and documentation, this thesis takes a different approach by incorporating 
real-world urban traffic data into NetLogo and providing a more realistic way to 
study traffic dynamics. 
 
Despite Python’s frameworks Mesa and Mesa-Geo’s flexibility, this thesis 
deliberately opted for NetLogo as the primary simulation environment. This decision 
is grounded in both practical considerations and methodological advantages that 
NetLogo offers in the context of this research. 
 
NetLogo provides a significantly lower barrier to entry in terms of environment 
complexity and runtime stability. During the early stages of the project, considerable 
time was lost managing dependency issues and version mismatches between Mesa 
and Mesa-Geo, and the project required frequent packages interaction, often with 
poor documentations; in NetLogo, the GIS extension is purpose-built for geospatial 
simulations, that allows direct manipulation of geographic data without external 
dependencies. 
 
Another decisive factor was computational efficiency. Although Python offers more 
optimization options through parallelization and custom memory handling, running 
even moderately complex agent simulations in Mesa-Geo with hundreds of agents 
on realistic street networks was computationally prohibitive. The cost of initializing 
the environment, running pathfinding algorithms, and just loading the networks 
quickly became unsustainable, requiring hours to run relatively short simulations. 
NetLogo, by contrast, demonstrated excellent performance even with complex dual-
layer networks (roads and walking paths), hundreds of agents, and dynamic routing.  
Moreover, NetLogo's built-in interactivity and visualization capabilities offered an 
added benefit. For an application focused on urban mobility, being able to observe 
the simulation unfold in real time and to adjust parameters mid-run proved invaluable 
for both debugging and interpretation. This feature, absent or much harder to 
implement in Python, facilitates more intuitive model calibration and manipulation. 

 
32 J. J. Kponyo et al., "A Distributed Intelligent Traffic System Using Ant Colony Optimization: A NetLogo Modeling Approach," 
2016 International Conference on Systems Informatics, Modelling and Simulation (SIMS), Riga, Latvia, 2016, pp. 11-17, doi: 
10.1109/SIMS.2016.32.  
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3.  Model Simulation 
 
Before starting building the actual model, all NetLogo projects begin with importing 
extensions and define breeds, which form the substantial architecture for the 
simulation. In this case, the required extensions are gis and csv: the former allows 
NetLogo to interact with shapefiles, necessary to import the real-world street network 
extracted from OpenStreetMap, the latter enables importing data structures from pre-
prepared CSV files. Extensions can be seen as Python packages, enriching its 
functionalities and capabilities. Breeds are groups of agents of the same type, 
similar to classes in Python.  
 

 
Nodes represent the different intersection points connecting edges, searchers are an 
internal, invisible breed temporarily used during pathfinding calculations to identify 
the shortest paths for movements, which will constitute the main logic for building 
rational agents: collecting the information provided by searchers, agents have 
complete information over the most efficient way to reach their destination, allowing 
them to avoid taking longer routes. The last three breeds are self-explanatory, and 

breed [nodes node] 
breed [searchers searcher] 
breed [cars car] 
breed [pedestrians pedestrian] 
breed [bikers biker] 
 

Figure 5. NetLogo Interface.  
On the left side, the toggle to turn on and off mode switching and buttons to call the different interface 
and movement setup. The button Report Totals records the distances travelled and the button Load 

Cached loads a cached version of the setup network for time saving (Rome setup takes 4 days).  
On the right, a visualization of distances travelled per agent category. 
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represent the different types of agents in the model. Each individual category of 
agents has its own set of rules and additional variables for modelling specific 
behaviours, making the simulation more realistic and modular. Taking cars an 
example, the nuances in their behavior are defined as cars-own [car-path 
current-node waiting-time], where car-path contains the list of nodes the car 
must follow according to the pathfinding logic, current-node is a placeholder for 
keeping track of the position of the agent at any step and waiting-time is a timer 
used to simulate stopping at destinations, useful for later functions. In parallel, 
nodes-own defines node-specific attributes: nodes-own [myneighbors home-
node? destination-node? public-transport-stop? residential-street? 
node-type]. The myneighbors variable lists the adjacent nodes, accessible through 
a single edge, while attributes featuring a question mark are Boolean flags, 
outputting 0 for false and 1 for true, in pure Python style. This structure mirrors the 
concept of class attributes in Python object-oriented programming, abstracting it for 
agents; this way each agent is a miniature object with its own memory and its own 
set of characteristics. Lastly, global variables are created, applied and visible to all 
agents.  
 
globals [ pic-roads pthk basemap pic-walk minx miny public-transport-routes          
famous-destinations car-total-time pedestrian-total-time biker-total-time ] 
 
They are employed to store imported GIS datasets, load the environment, and create 
helper variables and functions for later use. In Python terms, these would be module-
level variables: accessible everywhere, but mutable and needing careful 
management across agent types to model different specific own aspects. The 
attributes pic-roads, phtk and basemap are specific to the basemap uploading: the 
first two are NetLogo proprietary functions to load .png files, while the latter declares 
the variable containing the map file. 
 
After setting up the reference tools, the first step is to upload the basemap for visual 
reference. Here the first pain-point came up, namely Coordinate Reference Systems 
(CRS). The shapefile (.shp) dataframes employed for the network structures were 
extracted using the native EPSG:4326 format, where spatial positions are projected 
on a 3D ellipsoidal Earth model. It is the standard format for GPS as it uses latitude 
and longitude to locate points in space, which makes it particularly reliable for 
computing travel times as it faithfully reproduces distances.  
 
However, it is not ideal for a 2D representation, as its unit of measure, degrees, 
makes paths look distorted and stretched. The best way to address this issue would 
then have been to directly attach a basemap using the Contextily Python package, 
which retrieves tile maps from the internet for reliable visualization, projecting them 
on a 2D flat plane and converting the unit of measure to meters, employing the Web 
Mercator CRS – EPGS:3857, the one used for physical paper maps. However, 
NetLogo and the gis extension expect the previous CRS for precise mapping of 
coordinates, causing misalignments between the imported basemap and the network 
when first testing the model. In order to overcome this issue, the only feasible 
solution was to manually resample and stretch the basemap, using resize-world in 
NetLogo to match dimensions and tiles with the network. 
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Having set the basemap, driving and walking networks shapefiles were finally 
loaded. The walking network augments the driving one, as it contains more edges 
where agents can walk or bike, like riversides, parks and residential streets. Another 
important technical challenge is that NetLogo, considering the previous CRS 
requirement, interprets lengths in degrees, not meters. This implied careful 
adjustment of speed and distance calculations to ensure realistic mapping: real-
world speeds were scaled against road lengths, which were converted keeping in 
mind that 1 degree of latitude corresponds to 111 kilometers, while longitude varies 
with latitude. After a thorough preprocessing of the measures in Python and many 
visual checks, all distances ensured proper correspondance between the basemap 
and the networks. Then, in order to let the two networks communicate between each 
other and to allow agents to flow through them, the create-nodes-and-links function 
was employed. 
 
Checking the coordinates of each node and edges, the code below connects 
adjacent point in space through edges across the two networks, deleting the 
duplicate common ones between the two shapefiles: the walking network already 
contains the road networks, as pedestrians can use sidewalks located on roads. 
Here, from the previously declared nodes and edges-own specifics, speeds are 
attached to each link based on the maxspeed attribute extracted earlier, while 
residential streets are detected and tagged, influencing where home nodes will be 
later assigned. Walk-only paths are treated separately, since they have no speed 
limit, and merged with road networks where they intersect: this is done by connecting 
walking edges with no neighbors with the adjacent driving edges and labelling them 
as ‘shared’. Connecting this dual-layer network was crucial for the further steps 
introducing mode choice walking, cycling, public transport or driving. 
 
to create-walk-nodes-and-links 
  foreach gis:feature-list-of pic-walk [ 
    segment -> 
    foreach gis:vertex-lists-of segment [ 
      vertex-list -> 
      let previous-node-pt nobody 
      foreach vertex-list [ 
        vertex -> 
        let location gis:location-of vertex 
        if not empty? location [ 
          let raw-x (item 0 location) 
          let raw-y (item 1 location) 
 
          let nearby-node one-of nodes with [distancexy raw-x raw-y < 0.001] 
 
          ifelse (nearby-node != nobody) [ 
            ask nearby-node [ set network-type "shared" ] 
            if previous-node-pt != nobody [ 
              create-link-between-nodes nearby-node previous-node-pt 
            ] 
            set previous-node-pt nearby-node 
          ] 
 
  delete-duplicates 
  ask nodes [set myneighbors link-neighbors] 
end 
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The public transport network integration involved some other minor technical 
manipulation. The Canton of Geneva is currently adopting an open data policy for its 
public transport data, enabling researchers to conduct studies for its optimization. All 
the data employed for mapping the public transport network can be accessed in the 
Transport Publique Genève Data Portal.33 For the purpose of the project, the Stop 
and Lines .csv files were extracted. The former contained the list of all stops with 
their reference code and coordinates, the latter contained the list of stops driven 
through by each line. They were merged on the stop reference codes to obtain the 
list of lines passing through each stop to reconstruct to whole network. In order to 
avoid overly complicating the already complex network composition, stops were 
assigned to the nearest node, leveraging the coordinates mapping. 

 
 
 
The only bit of data manipulation here was due to the limitation of the csv:from-
file function that natively reads all data as strings, regardless of their formats. In 
order to use coordinates as numbers, they were manually casted using read-from-
string (word item x row), where x and y represent latitude and longitude. 
 
 
 

3.1 Agent Initialization and Path Assignment 
 
Once the environment (streets, walking paths, basemap, public transport) is loaded, 
the next step is to populate the world with agents representing urban travelers using 
the breeds defined earlier. To simulate realistic urban movement, agents were 
assigned a starting point, where they spawn, and a destination. The rationale behind 
the assignment leveraged the column highway in the original network’s dataset, 
which contains indicators about the type of street, including ‘residential’, ‘living street’ 
and similar: agents don’t spawn randomly, but they start their journey from ‘house’ 
locations towards predefined real places, categorized as work, leisure (gyms and 
parks) and shopping places. This allows great modularity potential with further 

 
33 TPG Open Data 

to assign-public-transport-stops 
  foreach public-transport-routes [ 
    stop-info -> 
    let stop-lat item 1 stop-info 
    let stop-lon item 2 stop-info 
     
    let nearest-node min-one-of nodes [ 
      distancexy stop-lon stop-lat 
    ] 
     
    if nearest-node != nobody [ 
      ask nearest-node [ set public-transport-stop? true ] 
    ] 
  ] 
end 
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computational power, possibly including useful destinations, such as hospitals, 
schools, airports and others.  
At the setup, 50 nodes are chosen as home nodes. These are the nodes closer to 
edges marked as residential, living street and related.  
 
 
 
 
 
 
 
The list of destinations was hardcoded using their coordinates and assigned to the 
nearest node in the network. For ease of visualization, each of the four categories 
was flagged with different symbols. Once all network components are loaded, agents 
are initialized. For each of them, one of the nodes in the home category is chosen as 
start-node, one of the destinations as destination, and a path between them is 
assigned according to the A* algorithm. 
 

 
 

3.2 The A* Pathfinding Algorithm 
 
At the heart of the simulation’s mobility logic lies the A* algorithm, a cornerstone in 
pathfinding and graph traversal used extensively in computer science, robotics, and 
transportation modeling. Introduced by Hart, Nilsson, and Raphael in 1968, A* 
improves upon earlier search algorithms like Dijkstra’s by introducing a heuristic, a 
way of estimating the cost to reach the goal from any given point, thus guiding the 
search more intelligently34. In a city context, one might imagine it as the equivalent of 
a pedestrian glancing at a map and saying, “This route looks fastest not just because 
it’s short, but because it follows wide roads and avoids hills.” It’s a balance between 
what we know and what we expect. 
 

 
34 Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths. IEEE 
Transactions on Systems Science and Cybernetics, 4(2), 100–107. 

  set famous-destinations [ 
  [46.203497 6.144514 "shopping"] ;; Rue du Rhône - shopping 
  [46.194178 6.142556 "shopping"] ;; Rue de Carouge - shopping 
  [46.204112 6.120856 "office"]   ;; Plainpalais - university 
  [46.206147 6.134604 "office"]   ;; Cornavin Station - offices 
  [46.228533 6.139728 "shopping"] ;; Balexert Mall 
  [46.221518 6.102301 "shopping"] ;; IKEA Vernier 
  [46.207273 6.139417 "shopping"] ;; Manor Geneva 
  [46.206356 6.123309 "office"]   ;; Victoria Hall - Events/Offices 
                                  . 
                                  . 
                                  . 
] 

ask n-of 50 nodes with [residential-street?] [ 
  set home-node? true 
  set node-type "home" 
] 
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Formally, the algorithm minimizes a cost function 𝑓(𝑛) 	= 	𝑔(𝑛) 	+ 	ℎ(𝑛) where: 
 

• f(𝑛) is the total estimated cost of the cheapest solution path that goes through 
node n; 

• 𝑔(𝑛) is the known cost from the start node to node n (the “travel so far”); 
• ℎ(𝑛) is the heuristic estimate of the cost from n to the goal (the “best guess” of 

the travel ahead). 
 

In this model, 𝑔(𝑛)	is computed based on the real travel distance, adjusted by the 
road’s speed limit, simulating travel time rather than geometric distance. This makes 
the cost more grounded in how real people make route decisions. For example, a 
highway might be longer in meters than a side street, but its higher speed limit 
makes it a faster, and thus preferred, option. The heuristic ℎ(𝑛) is calculated using 
Euclidean distance, which, while a simplification, serves as a mathematically 
admissible estimate (i.e., it never overestimates the true cost), ensuring the 
algorithm remains both optimal and complete35. 
 
 

 
35 Pearl, J. (1984). Heuristics: Intelligent search strategies for computer problem solving. Addison-Wesley. 

to-report A* [#Start #Goal] 
. 
. 
. 
  ask #Start [ 
    hatch-searchers 1 [ 
      set localization myself 
      set memory (list ([who] of localization)) 
      set cost 0 
      set total-expected-cost (cost + heuristic #Goal) 
      set active? true 
    ] 
  ] 
. 
. 
. 
  while [not any? searchers with [localization = #Goal] and any? searchers with 
[active?]] [ 
    ask min-one-of (searchers with [active?]) [total-expected-cost] [ 
      set active? false 
      let this-searcher self 
      let Lorig localization 
      ask ([link-neighbors] of Lorig) [ 
        let connection link-with Lorig 
        let c ([cost] of this-searcher) + [link-length] of connection 
        if not any? searchers-in-loc with [cost < c] [ 
          hatch-searchers 1 [ 
            set localization myself 
            set memory lput ([who] of localization) ([memory] of this-searcher) 
            set cost c 
            set total-expected-cost (cost + heuristic #Goal) 
            set active? true 
            ask other searchers-in-loc [die] 
. 
. 
. 



 21 

The implementation in NetLogo is both elegant and efficient. A temporary, invisible 
breed called searchers acts as the expanding wave of intelligence from the source 
node. These searchers function almost like neurons firing across a spatial network, 
testing routes, remembering their cost (𝑔(𝑛)), and projecting their potential (𝑓(𝑛)). 
At each iteration, the algorithm selects the most promising node, that is, the one with 
the lowest estimated total cost, and expands it, spawning new searchers into 
neighboring nodes if those paths improve upon existing alternatives. Once the goal 
node is reached, the optimal path is backtracked from the searcher’s memory, 
passed back to the agent, and stored as its car-path, ped-path, or biker-path. 
 
This mechanism creates a boundedly rational system in which agents behave with 
limited, localized knowledge but pursue clearly defined objectives. They cannot see 
the whole city, but they can make decisions that are “good enough” given the 
available data, a paradigm aligned with the classical behavioral economics 
tradition36. This is crucial for urban simulations, where the complexity of the 
environment makes full omniscience both unrealistic and computationally 
impractical. 
 
In metaphorical terms, one could imagine each agent as a commuter waking up, 
checking Google Maps, and planning their route based on what they know: 
estimated times, traffic speeds, and road types. They don’t need to explore every 
corner of the city, they trust a smart shortcut. But unlike in real life, where people 
may choose suboptimal routes due to habit, misinformation, or mood, agents here 
are purely rational. That’s what makes this model such a powerful contrast to actual 
traffic behavior: it gives us a baseline of how urban flow could look if everyone made 
efficient choices. And comparing this ideal to real-world congestion later in the thesis 
provides valuable insights on the difference complete information on traffic and 
rational pathfinding make, exemplifying the cost of human unpredictability in 
simulated realistic scenarios. 
The code above was used to model the A* pathfinding algorithm. Initially, a validation 
check ensures that a goal node is defined and reachable for all agents. Once the 
validation is passed, a searcher agent is created at each starting point. Searchers 
hold a list of identifier variables, namely their localization, or the node they’re 
currently on, a memory of the nodes they visited, the total expected cost, set to 0 at 
the start of the travel, and a Boolean to check if they already reached their goal or 
they’re still active. Active searchers reach their destinations by iteratively selecting 
the searcher with the lowest total expected cost among their neighbor nodes, ask 
min-one-of (searchers with [active?]) [total-expected-cost]. For each 
neighbor, a new searcher is spawned only if no existing searcher at that node has a 
lower cost. The new searcher inherits the memory and cumulative cost from its 
predecessor, updates its localization, recalculates the total expected cost, and sets 
its active status to true. Sub-optimal searchers, those with a cost higher than the 
chosen one, are killed: ask other searchers-in-loc [die]. 
 
 

 
36 Simon, H. A. (1955). A behavioral model of rational choice. The Quarterly Journal of Economics, 69(1), 99–118. 
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3.3 Agent Movement Logic 
 
Once agents are spawned, assigned a starting node, and given a destination, the 
logic of the simulation truly manifests, translating static data into dynamic behavior. 
Movement in NetLogo is not continuous, but discretized into ticks, each tick 
representing one unit of simulation time. While ticks represent simulation time steps, 
their real-world equivalent (seconds, minutes) can be interpreted flexibly depending 
on calibration needs. In each tick, agents check their environment, update their state, 
and take a small step toward their target. This logic is structured through a series of 
move-agent procedures, tailored to each breed.  
There are two main procedures handling movement: 
 

• move-agent: used for general simulations; 
• move-daytrip-agent: a more nuanced version used of the first function, 

imitating a classic daytrip path to explore the city, introducing pauses at scenic 
or destination nodes. 
 

Both follow a very similar logic: they retrieve the next node from the agent’s path and 
attempt to move the agent toward that node. If the agent gets close enough (within a 
0.5 NetLogo unit radius), it “snaps” to the new node, updates its current-node 
variable, and proceeds to the next step of the path. 
At its core, the movement logic can be broken down as follows: 

 
This retrieves the next node from the path, and references it using NetLogo’s who 
identifier system (analogous to a unique node ID). We then determine a movement 
speed (move-speed), which varies by agent type. 
 
For cars, speed is based on the link-maxspeed of the road segment connecting the 
current node to the next. However, this speed is scaled to simulate real-world traffic 
frictions such as stops, turns, or lights. The scaling factor (0.8 for general movement, 
0.6 for daytrips) is a crucial modeling assumption: while a road might be marked at 
50 km/h, urban environments rarely allow constant maximum-speed driving. This 
accounts for waiting at intersections, pedestrians crossing, or simply 
acceleration/deceleration patterns. 
 
if agent-type = "car" [ 
      if connecting-link != nobody [ 
        let road-speed [link-maxspeed] of connecting-link 
        if rush-hour-mode = "morning" [ 
          set move-speed (road-speed / 50) * 0.38 
        ] 
        if rush-hour-mode = "evening" [ 
          set move-speed (road-speed / 50) * 0.35 
        ] 
        if rush-hour-mode != "morning" and rush-hour-mode != "evening" [ 
          set move-speed (road-speed / 50) * 0.8 
        ] 
      ] 

 
let next-node-who item 0 path 
    let next-node turtle next-node-who 
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This converts a 50 km/h speed into a normalized scale where 1 unit = “full speed”, 
then scales it by 0.8. The scaling factors for the morning and evening rush hour 
scenarios simulations are defined from the traffic reports in Chapter 4. 
  
Pedestrian logic introduces mode differentiation: some pedestrians walk entirely, 
while others use public transport, a decision randomly assigned at setup with a 50% 
chance. Randomness introduces agent heterogeneity, an essential element in 
representing real-world urban dynamics where not all agents behave identically. 
When pedestrians hop on buses, their speed increases to match the speed limit of 
the road they are on. 
Bikers are given a constant speed of 0.5 units per tick. This sits between the walking 
speed (0.2) and scaled car speed (~ 0.6 - 0.8), based on data from Geneva's bike-
sharing system, which reports average inner-city biking speeds around 15 km/h37.  
Once speed is determined, the agent orients toward the next node and moves. The 
model uses NetLogo’s built-in turtle movement logic (fd = “forward”). Then, if the 
distance to the next node is below 0.5 units, it “lands”: 

 
 
This update also checks if the path is empty, creates a new working one using the A* 
algorithm, simulates a new daily trip, or reroutes. 
 
In the move-daytrip-agent version, there's an extra twist: agents pause at 
destinations (e.g., parks, shopping centers, landmarks) before continuing. A waiting-
time variable controls this, triggered when the agent lands on a node marked with a 
node-type, simulating the idea that people don’t just move, but linger, explore, and 
return. 

 
 
This mechanic adds both realism and variability to the simulation, giving a more 
human-like rhythm to the agents' behavior. From a human-centered perspective, 
each agent mimics a person in a city: they wake up at home, glance at a map or app, 

 
37TPG VéloPartage 

    face next-node 
    fd move-speed 
 
    if distance next-node <= 0.5 [ 
      move-to next-node 
      set current-node next-node-who 

to move-daytrip-agent [path agent-type] 
  ifelse waiting-time > 0 [ 
    ;; Still waiting at scenic location 
    set waiting-time waiting-time - 1 
  ] [ 
    ;; Otherwise normal movement 
 
if [node-type] of next-node != "" [ 
          set waiting-time 10 + random 20 ;; 10 to 30 ticks         
] 
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pick the best route to their goal, and head out. Their movement is rational but not 
robotic. Some take bikes. Some hop on trams. Some drive. Once at their destination, 
they stay a while, window-shopping, attending a class, or just sitting by the lake, and 
then move on. By embedding this logic in the simulation, the aim is not just to 
simulate routes, but to simulate routines. And this is where NetLogo’s agent-based 
framework shines: instead of traffic being treated as a fluid or a queue, it becomes 
the emergent result of thousands of tiny decisions - each path calculated, each turn 
taken, each pause intentional. 
 
For simulating rush hours scenarios, most congested points were hard-coded using 
their coordinates from Figures 8 and 11, together with nodes in an area of radius of 
0.05 degrees from them: ask nodes with [distancexy ([xcor] of center-
node) ([ycor] of center-node) < 0.05]. 
 

 
 
With this chunk of code, car agents that have congested nodes on their path are 
allowed to switch mode of transportation, with a likelyhood facture of choosing the 
bike dependent on the city (10% of switching drivers will ride a bike in Geneva, 5% in 
Rome). The switch happens with agents mutating category and getting assigned 
either walking or pedestrians features and paths. 
 

to decide-switch-if-congested 
  let path-nodes map [n -> turtle n] car-path 
  if any? path-nodes with [member? self congested-nodes] [ 
    if allow-mode-switch [ 
      ;; 90% switch to walking, 10% to biking 
      ifelse random-float 1.0 < 0.9 [ 
        hatch-cars 1 [ 
          set shape "person" 
          set color red 
          set size 12 
          set ped-distance-traveled car-distance-traveled 
          set current-node [current-node] of myself 
          move-to myself 
          assign-ped-path 
        ] 
      ] [ 
        hatch-cars 1 [ 
          set shape "wheel" 
          set color green 
          set size 12 
          set biker-distance-traveled car-distance-traveled 
          set current-node [current-node] of myself 
          move-to myself 
          assign-biker-path 
        ] 
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4. Traffic Background 
 
To dive deeper into the cross-analysis between actual and simulated data, it is 
necessary to understand the current and past traffic and urban transportation trends 
in the two cities under investigation. Despite being different in many dimensions, 
especially the number of inhabitants and the expansion of the metropolitan area, 
they essentially share similarities in terms of traffic congestion and gridlock.  
 
 
 

4.1 Geneva Urban Mobility: Traffic Patterns and Modal 
Split 

 
Geneva consistently ranks as one of the most congested cities in Switzerland, and 
indeed, across Europe. Despite its relatively compact size and high public transport 
usage, the city’s road network remains under considerable pressure. In recent years 

Figure 6. Geneva (a) and Rome (b) networks once all agents, start and destination nodes are 
generated. The red ‘person’ symbols represent pedestrians, the green ‘wheel’ symbols represent 

bikers, the blue ‘car’ symbols represent cars. The small blue icons represent the different categories 
of destination nodes; making icons bigger and of different colors overloads the model, increasing the 

computational time for the simulation by 20%, resulting in an additional hour for loading Geneva 
network and a whole day for Rome. 

houses 
public transport stops 
shopping places  
gyms and leisure 
work places 
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(2020–2025), Geneva’s transportation environment has been defined by a paradox: 
a highly multimodal society, yet persistent traffic bottlenecks. Nearly half of all trips 
by Geneva residents are undertaken on foot, about a third by private vehicles, and 
roughly 14% using public transport. Nonetheless, strategic arteries such as the Pont 
du Mont-Blanc continue to experience daily gridlock, particularly during peak 
commute hours. 
 
This situation provides a valuable backdrop for this project. If even a city where 
walking is dominant struggles with car congestion, it raises crucial questions about 
behavior, rationality, and network strain, precisely the elements that an agent-based 
model can help unpack. In fact, understanding Geneva’s specific mobility structure is 
crucial before testing simulated changes: small shifts in modal share here could 
ripple through the system in unexpected ways, due to the tightness and sensitivity of 
the urban fabric. 
 
The 2021 Swiss Mobility and Transport Microcensus shows Geneva’s modal split to 
be unusually favorable to walking: about 49% of all trip stages are made on foot. 
This is higher than the Swiss national average (41%) and only slightly down from 
2015 (52%)38. Such a walking culture is rooted in Geneva’s dense urban layout, its 
compact city center, and pedestrian-friendly infrastructure. These characteristics 
make short trips feasible without a vehicle and foster a kind of localized mobility that 
is quite distinct from sprawling urban forms elsewhere. 
 
Private motorized transport (cars and motorcycles) accounts for around 31% of trip 
stages, a share significantly lower than the Swiss national average of about 39%. 
Within this, solo car driving represents roughly 20% of trips, while being a car 
passenger covers about 8%, and motorcycles or mopeds add another small fraction. 
Notably, while Geneva’s car usage is relatively modest compared to other cities, it 
remains a major contributor to congestion hotspots, especially given that a large 
volume of regional and cross-border traffic must pass through a limited number of 
lake crossings and downtown corridors. 
 
Public transportation, including trams, buses, and regional trains like the Léman 
Express, carries about 14% of trips, with an average of 742,000 boarding 
passengers daily39. This share dipped slightly in 2021 compared to pre-pandemic 
levels (~16% in 2015), mainly due to COVID-19 disruptions, but rebounded strongly 
by 2022–2023, reflecting the resilience of Geneva’s transit system. Importantly, many 
Geneva residents already own transit passes or bikes, making them flexible travelers 
able to switch modes depending on time, weather, or incentives, a behavioral trait 
that agent-based modeling can directly simulate. 
 
Cycling, although historically limited, has been growing. In 2021, about 6% of trips 
were made by bike (combining traditional bikes and e-bikes), double the share 
recorded in 2015. The rise of e-bikes and the expansion of dedicated bike 
infrastructure during the pandemic have helped accelerate this shift. While still a 
small share compared to walking or driving, it represents an essential evolving trend: 

 
38La Mobilité des habitants du canton de Genève en 2021 
39 TPG Open Data 
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Geneva’s mobility system is becoming more multimodal and responsive to policy 
nudges. 
 

In aggregate, the city’s modal split stands at approximately 50% walking, 30% 
private motorized transport, 15% public transport, and 5% cycling. From a modeling 
standpoint, this mixed-use environment is vital: agents cannot be simply assigned 
one default behavior, but must reflect diverse preferences and possibilities. The 
dynamic interactions between these modes and their sensitivity to infrastructure 
changes are central to replicating Geneva’s real-world mobility flows in simulation. 
 
 

4.1.1 Congestion Hotspots and Temporal Patterns 
 
Despite its favorable modal shares, Geneva remains one of the most congested 
cities in Europe. In 2024, drivers lost an average of 69 hours annually in traffic jams, 
making it the worst figure in Switzerland. Peak travel times typically see a 30% 
increase journey duration compared to free-flow conditions, with central crossings 
like Pont du Mont-Blanc and Pont de la Coulouvrenière acting as recurrent choke 
points. Around 80,000 vehicles daily cross Pont du Mont-Blanc alone, funneling 
regional and cross-border commuters through a few constrained bottlenecks40. 
 
 

 
40 TomTom Traffic Index Switzerland 2024 

Figure 7. Distribution of transport mode with reason. Source: La Mobilité des 
habitants du canton de Genève en 2021 
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The causes of this congestion are structural. Geneva’s geography, bounded by the 
lake, the Rhône river, and the French border, inherently channels traffic into a 
handful of critical corridors. Local commuting, cross-border flows (over 100,000 
workers daily from France), and tourism-related movements converge, particularly 
during weekday rush hours (7–9 a.m. and 5–6 p.m.)41. During these windows, typical 
travel times across the city can increase by 50% to 70% compared to free-flow 
conditions. 

TomTom traffic data, among other sources, confirms these patterns. During evening 
rush hour, delays of up to +71% have been recorded in Geneva, comparable to 
larger metropolitan areas such as Hong Kong or New York. Interestingly, the morning 
peak tends to be slightly broader and less sharp, possibly due to a staggered start 
among different sectors (e.g., construction workers starting earlier, office workers 
later). This particular temporal structure also reflects Geneva’s unique economic 
fabric, with many international organizations and service-sector employers 
concentrated downtown. 

Midday traffic volumes are moderate but still substantial, especially around major 
commercial areas. A smaller “lunch peak” is often noticeable between 12:00 and 
1:30 p.m., driven by people making short errands, going to lunch, or moving between 
work meetings. On the other hand, late evening and nighttime traffic tends to be 
light, a trend reinforced by Geneva’s introduction of a citywide 30 km/h nighttime 
speed limit in 2022 to reduce noise pollution. 

 
41 Office Cantonal de la Statistique 

Figure 8. Geneva Traffic Congestion on a Wednesday at 6pm.  
Source: TomTom Geneva Real Time Traffic Report 
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Weekend traffic patterns are somewhat different. Saturdays typically see a spike in 
shopping-related travel, especially around malls like La Praille or along major 
commercial streets like Rue de Carouge. Sunday traffic is lighter overall, although 
airports, lakeside promenades, and tourist sites can still generate localized jams. 
Seasonal events, such as ski season weekends or summer festivals, add further 
variation: during these times, Geneva’s outskirts, particularly access roads to France 
or to the mountains, can experience unusually severe congestion. 

 

 

From the perspective of agent-based modeling, these temporal dynamics are critical. 
Agents should not behave identically throughout the day or week: instead, they must 
adapt to fluctuating conditions, representing morning versus evening travel, weekday 
versus weekend behavior, and even seasonal shifts. In the future development of 
this model, the introduction of time-based policies (e.g., peak-hour restrictions, 
congestion pricing) could be simulated by adjusting agent preferences or route 
choices depending on the current simulation tick, allowing the model to test 
interventions not just spatially, but temporally as well. 

 

4.1.2 Recent Policy Changes and Interventions (2019–2025) 

Over the past five years, the Geneva Canton has rolled out a series of policy 
interventions aimed at tackling its persistent traffic congestion and aligning mobility 
practices with broader environmental goals. These actions range from expanding 
non-car infrastructure to regulating road use more strictly, while making significant 
investments in public transport. As Geneva's Cantonal Climate Plan emphasizes, the 
objective is not simply to ease traffic, but to reshape the system toward more 
sustainable and resilient mobility patterns42. This broader vision fits directly into the 
systems view underpinning this thesis. 

 
42 My Climate Geneva 

Figure 9. Weekly congestion and average speed per hour in Geneva.  
Source: TomTom Geneva Traffic Index 
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One of the most visible changes has been the surge in cycling facilities across the 
canton. Following intense public support expressed in a 2018 referendum, Geneva 
launched the Plan d’Actions Mobilité Douce 2019–2023, accelerating investments 
into cycling and walking infrastructure. Among the most notable projects is the Voie 
Verte, a continuous active-mobility corridor partially built along a former railway line, 
opened in stages by 202143. 

Additionally, the construction of protected two-way cycle tracks along key arteries 
such as Quai du Mont-Blanc and Quai Wilson has, for the first time, created a safe 
north-south bicycle route parallel to the heavily congested lakeside roads. 
Intersections have been reengineered to prioritize cyclists, and contra-flow bike 
lanes have become common downtown. 

The outcomes are encouraging. By 2021, the modal share of cycling had doubled to 
around 6%, with city officials reporting traffic counts on some lanes more than 
doubling. However, the transition has not been without tensions. Some lanes were 
created by reallocating car lanes (notably during the COVID-19 pandemic), sparking 
backlash from driver associations who claimed that these changes exacerbated 
congestion. Authorities have since adopted a balancing strategy, retaining successful 
bike lanes while adjusting others in response to traffic pressures. 

From a modeling perspective, this shift underlines the necessity of simulating modal 
shift dynamics carefully: expanding cycling infrastructure does not simply displace 
drivers instantly, but gradually reconfigures trip choices over time, influenced by 
perceived safety and convenience. 

At the same time, Geneva has made major moves to strengthen public transport, 
with the most transformative being the opening of the Léman Express in December 
2019. This cross-border commuter rail network has added significant capacity, linking 
French neighboring towns like Annemasse and Annecy and Swiss suburbs like 
Coppet directly to Geneva’s central stations. 

In parallel, extensions to the tram network, such as the cross-border extension of 
Tram 17 to Annemasse and the 2022 Tram 15 extension to Plan-les-Ouates, have 
expanded the catchment area for high-quality transit. Alongside these projects, the 
number of park-and-ride (P+R) facilities was expanded to facilitate multimodal 
commuting. 

Despite the disruption of COVID-19, public transport ridership has rebounded 
strongly: by 2023, Geneva's public transport agency (TPG) reported daily boardings 
approaching pre-pandemic levels, with user satisfaction rates exceeding 80%44. 

Geneva has also introduced smarter traffic management strategies. Intelligent traffic 
lights now adjust in real-time to flow conditions on major corridors like Route de 
Meyrin, while ramp metering systems regulate the influx onto the autoroute. The 
adoption of a blanket 30 km/h speed limit at night (since 2022) fits into a broader 
trend of using speed management not only for safety and noise reduction, but 

 
43 Plan d'Actions de la Mobilité Douce 2019-2023 
44 Bus Tram Genève - Histoire & Actualité de la mobilité Genevoise 
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potentially for congestion smoothing by limiting stop-start behavior. Although 
controversial, some business groups fear negative effects; the international 
experience suggests that lower urban speeds can sometimes improve flow reliability 
without significantly impacting travel times. It is noteworthy, however, that Geneva 
has so far avoided implementing more aggressive demand management strategies 
such as congestion pricing. Although proposals, like tolling the Mont-Blanc Bridge, 
have been floated, political resistance remains high. 

 

4.1.3 Expert Analyses and Future Traffic Projections 

When looking at Geneva’s congestion challenges through the lens of expert studies, 
a clear message emerges: the current situation is the product of deep structural 
forces and, without bold, coordinated action, things are set to get worse. It’s not just 
about slow cars in narrow streets; it’s about how the city and the wider region have 
evolved, and how different layers of policy and behavior interact over time. 

Understanding this systemic view is critical not only for policy but also for building 
meaningful agent-based models. In a city like Geneva, where local conditions reflect 
decades of urban, economic, and cross-border dynamics, capturing future scenarios 
demands that models reflect more than just traffic volumes: they must encode 
underlying drivers of change. 

Experts agree that congestion in Geneva is not primarily a result of inefficient traffic 
management or "bad" driver behavior. Instead, it stems from broader patterns: 
regional economic growth, persistent housing shortages, and the resulting “pendular 
dependency” on commuting across long distances. 

Lorenzo Quadranti from OFROU (Federal Roads Office) points out that across 
Switzerland, traffic on major highways, including Geneva’s bypass, has grown much 
faster than the population45. Economic prosperity brought higher mobility demand, 
but infrastructure expansion hasn't kept pace. Geneva's case is even more acute 
because high real estate prices have pushed thousands of workers to live outside 
the canton, many in neighboring France, thus locking in long daily commutes. 

Urban sociologist Alexis Gumy (EPFL) emphasizes that Geneva’s urban sprawl into 
France means that many commuters have no realistic alternative to driving. Until 
housing supply near jobs is improved and better regional transport is built, 
congestion will remain deeply entrenched46. 

The patterns and interventions observed in Geneva’s traffic system over the last few 
years offer clear lessons, not just for policymakers, but also for researchers aiming to 
model urban transport systems more accurately. One thing becomes obvious when 
looking at Geneva as a living system: congestion is not simply a technical failure. It’s 
the emergent outcome of millions of small individual decisions, shaped by 

 
45 Office Fédéral des Routes Report Annuelle du Trafic 2023 
46 Laboratoire de Sociologie Urbaine de l'Ecole Polytechnique fédérale de Lausanne 
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infrastructure, incentives, habits, and external shocks. In order to truly understand or 
change these outcomes, both planning and modeling approaches must embrace this 
complexity. Building a meaningful ABM for Geneva is not just about replicating 
congestion levels; it’s about capturing why and how people move the way they do, 
and how small shifts at the individual level ripple through the whole system. 

 

4.2 Rome Traffic Patterns and Urban Mobility 
In Rome, the dominant presence of private vehicles continues to define the city's 
mobility landscape. With 64 cars for every 100 residents, one of the highest 
motorization rates in Europe, Rome far outpaces cities like Milan (49), Madrid (46), 
London (31), and Paris (25) in car ownership47. Unsurprisingly, private transport 
overwhelmingly shapes the modal split: around 59% of daily trips are made by car or 
motorbike, according to the latest Sustainable Urban Mobility Plan (PUMS). Public 
transport captures about 21–22% of trips, mainly through buses, trams, and the 
metro system, while active modes, walking and cycling, account for roughly 18% and 
a marginal 1–2%, respectively48.  

This distribution clearly illustrates Rome's deeply rooted car culture, especially 
compared to cities like Paris or London, where cycling and public transport have a 
more substantial share. Micro-mobility solutions like e-scooters have emerged 
quickly since 2019, becoming visible especially in central neighborhoods, yet they 
still represent a tiny proportion of trips (around 1% or less). 

The structure of the city itself reinforces this pattern. Rome’s sprawling metropolitan 
footprint, limited high-capacity transit coverage, and a fragmented network of radial 
roads naturally encourage private car use. Motorbikes and scooters, about 8% of the 
modal split, offer an agile solution to navigate traffic and tight urban spaces. 

While Rome’s public transport system, composed of buses, two metro lines (A and 
B), a partially operational Line C, urban railways, and trams, handles about 1.3 
million trips per weekday, its effectiveness is often constrained by chronic reliability 
issues. Compared to other European cities, the underground network in Rome really 
represents a ‘black sheep’ in the category: in the Italian Capital, only 60,6 km are 
covered through 73 stations, as shown in Figure 10. To put it into context, Milan has 
113 stations serving 96,8 km; the underground network in Paris runs for 215,6 km, 
with 302 stations. Worsening the scenario even further, 47% of the rail means of 
transport were established more than 15 years ago. The extensive use of cars feeds 
into a cycle of congestion that discourages alternatives: limited public transport 
coverage leads people to drive, and the more congested the roads become, the 
harder it is for other modes to gain ground.  

 

 
47 Ecosistema Mobilità - Roma: Mobilità urbana, criticità e prospettive 
48 Urban Logistics as an On-Demand Service 
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On the active mobility side, walking retains a meaningful role, particularly within the 
historic center and dense neighborhoods. However, the city's peripheral areas, 
characterized by sprawl and car-oriented urban forms, remain inhospitable primarily 
to pedestrians. Cycling continues to lag behind, hindered both by infrastructural 
deficits (few protected bike lanes) and the city's challenging topography, 
cobblestones, hills, and chaotic traffic all pose barriers. 

That said, there have been signs of gradual change in recent years. The number of 
electric scooters available for rent exploded to around 14,500 by 2022, and small 

Figure 10. Rome public transportation map (buses excluded). Large part of the metropolitan 
area remains unserved. Source: Apple Maps, Public Transport Level. 
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investments in bike lanes hint at an emerging micro-mobility culture49. However, the 
incremental growth of micro-mobility options didn’t sit right with the already chaotic 
Roman transportation picture, forcing the municipality to limit the service exclusively 
to 3 companies, reducing the number of e-scooters to 9,00050 as of September 1, 
2023. Yet, despite these developments, private cars continue to dominate, feeding 
congestion levels and locking the city into a self-reinforcing pattern: the lack of 
attractive alternatives sustains high car use, which in turn further discourages a 
modal shift. 

4.2.1 Congestion Hotspots and Bottlenecks 

Rome is consistently ranked among Europe’s most congested cities, and anyone 
who has spent time navigating its streets quickly understands why. Even before the 
pandemic, in 2019 Roman drivers were losing around 166 hours a year stuck in 
traffic, the worst figures in Europe and the third in the world, only behind Bogota and 
Rio de Janeiro51. Although travel patterns shifted temporarily in 2020 and 2021, 
congestion by 2022–2023 had largely rebounded to pre-pandemic levels. 

The city’s complex road network, an often chaotic blend of ancient, medieval, and 
modern layers, creates a geography of congestion that is anything but uniform. 
Traffic bottlenecks can generally be divided into two main categories: those in the 
historic core, and those on the city's outer beltways and radial roads. 

In the center, the narrow medieval streets of the Centro Storico, combined with 
intense tourist activity, naturally limit traffic capacity. Despite the existence of Limited 
Traffic Zones (ZTLs) designed to restrict car access, congestion remains a daily 
reality, especially along the Lungotevere (the boulevards flanking the Tiber River), 
around Termini Station, and at major intersections like Porta Maggiore. Key arteries 
such as Via del Muro Torto and Viale del Circo Massimo regularly slow to a crawl 
during peak hours. Similarly, the bridges across the Tiber, including Ponte Vittorio 
Emanuele and the Ponte Sisto area, serve as critical chokepoints, concentrating 
flows and generating frequent bottlenecks. 

Adding to the complexity, construction projects, particularly those tied to the ongoing 
extension of Metro Line C near the Colosseum, have occasionally caused major 
detours and local tailbacks. Tourist sites like the Vatican and Piazza Venezia attract 
constant streams of visitors and create traffic surges that ripple outward into 
surrounding neighborhoods. Even where access to the historic core is restricted, 
traffic often queues just outside the ZTL boundaries, causing daily congestion around 
perimeter streets like Lungotevere and Via Gregorio VII. 

Outside the core, the city’s vast metropolitan area is structured around the Grande 
Raccordo Anulare (GRA), a 68-kilometer ring motorway that encircles Rome. The 

 
49 Fondazione per lo Sviluppo Sostenibile. (October 23, 2023). Provincial capitals with the largest number of shared e-scooters 
in operation in Italy in 2022 [Graph]. In Statista. Retrieved April 26, 2025, from https://www.statista.com/statistics/1462424/e-
scooter-sharing-vehicles-italy-by-city/ 
50 Roma Sito Turistico Ufficiale 
51 INRIX. (March 9, 2020). Cities with the longest traffic jam delays in Europe in 2019, based on average number of hours lost 
per year [Graph]. In Statista. Retrieved April 26, 2025, from https://www.statista.com/statistics/1112832/cities-hours-lost-traffic-
jams-europe/ 
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GRA, together with the city’s radial highway system, absorbs massive volumes of 
daily commuter traffic. It is not unusual for major junctions, such as those connecting 
with the A24 (east), A1 (north and south), Via Aurelia (west), and Via Pontina (south), 
to experience severe slowdowns during both morning and evening peaks. 

The GRA’s critical role in regional commuting means that even minor disruptions 
quickly escalate into multi-kilometer tailbacks. For instance, the A24 approach from 
the eastern suburbs regularly sees queues stretching for kilometers during the 
morning rush hour. Similarly, the Via Pontina corridor, serving a dense suburban 
population south of the city, suffers daily congestion where it intersects the GRA and 
beyond. 

Inside the ring road, certain radial and semi-ring urban highways, the so-called 
tangenziali, face similar issues. The Tangenziale Est, for example, funnels enormous 
volumes of traffic across the city’s northeastern quadrant and is notorious for 
gridlock, particularly near Tiburtina Station and San Lorenzo. Other major corridors 
like Via Cristoforo Colombo, Via Salaria, and Via Appia Nuova also experience 
relentless stop-and-go traffic for much of the day. 

In short, congestion in Rome is a geographically widespread phenomenon. It 
radiates outward from the historic center, gripping not only the core but also the 
beltways and highways leading into and out of the city. The combination of an urban 
form ill-suited to mass motorization, a sprawling metropolitan footprint, and a strong 
car culture results in a multi-nodal congestion pattern that severely hampers urban 
mobility across the entire metropolitan area. 

 

4.2.2 Temporal Patterns of Congestion 

Rome’s congestion levels follow a distinct rhythm throughout the day, the week, and 
the year, but it's far from a simple pattern. The city’s traffic pulses with daily life, 
shaped by commuting habits, tourism, work schedules, and the seasons. 

On weekdays, the morning rush begins early, peaking between 7:30 and 9:30 a.m., 
as huge numbers of commuters pour in from the suburbs and outer districts. These 
two hours alone account for about 20% of daily trips, showing just how compressed 
and intense the city’s mobility demand can be. During this window, traffic on the main 
corridors slows dramatically, and the main inbound arteries often stretch into 
kilometers of stop-and-go movement. 

The evening rush unfolds differently. Starting around 5:00 p.m. and stretching until 
well past 8:00 p.m., outbound traffic gradually builds. Part of this extended evening 
peak reflects Rome’s cultural rhythms: many people finish work later, run errands, or 
participate in social activities before heading home. Although the morning and 
evening peaks are roughly similar in volume, the evening congestion tends to last 
longer. 
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Midday traffic, between the two rushes, never truly dies down. Around 1:00–2:00 
p.m., there’s a noticeable uptick linked to lunch breaks, errands, and deliveries. In a 
city like Rome, where tourism is strong and many businesses keep traditional hours, 
traffic remains substantial throughout the day, particularly around the city center and 
commercial areas. 

 

Tourism adds another layer of congestion, especially around famous sites like the 
Vatican, Piazza Venezia, or the Colosseum. Even late in the morning or mid-
afternoon, hours that in many cities are quieter, Rome can still feel saturated, thanks 
to fleets of tour buses, taxis, and rental cars navigating the historic streets. The 
weekly cycle also leaves a clear imprint. Tuesdays through Thursdays are generally 
the worst days for traffic, as the workweek hits full stride. Mondays tend to be a little 
lighter, while Fridays often see earlier congestion in the afternoon, as residents head 
out of town for the weekend, a ritual that clogs the GRA ring road and the primary 
radials leading out of the city. 

Figure 11. Rome traffic congestion on a Wednesday at 6pm. It is clear how the city center 
suffers major delays, while key arteries from and to the city (Via Tiburtina, Nomentana, Salaria) 

are particularly clogged. Source: TomTom Rome Real Time Traffic Report 
  

Figure 12. Weekly congestion and average speed per hour in Rome.  
Source: TomTom Rome Traffic Index 
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On weekends, the profile changes. Saturday afternoons are often jammed near 
shopping malls and nightlife districts, and while Sundays are quieter overall, special 
events like football matches, open museums, or large religious ceremonies can 
cause sudden local bottlenecks. Even when events are absent, Rome’s strong car 
culture keeps weekend traffic far from negligible.  

Seasonal shifts are just as significant. During the traditional holiday exodus in 
August, Rome empties out and traffic drops dramatically. Typically, gridlocked streets 
move freely, offering a rare glimpse of a less congested city. Yet in recent years, 
rising summer tourism has kept the center busier than it once was. September brings 
an abrupt return to heavy traffic, as schools reopen and offices resume normal 
operations. Traffic reports regularly highlight the rientro, the mass return in the city, 
as one of the most stressful periods for Roman drivers. Other months like October 
and November also tend to be heavy, while December brings congestion surges 
around Christmas shopping periods. 

Weather, accidents, and roadworks often act as wildcards. A sudden rainstorm or a 
major crash on the GRA can instantly turn a manageable commute into a two-hour 
ordeal, and the worrying numbers of car crashes and fatal accidents, respectively 
13,000 and 116 in 2023, making the Italian Capital 6th in the world in this 
discouraging ranking, contribute to worsening this already complex landscape52. 
Rome’s aging infrastructure, including frequent maintenance and long-term metro 
construction projects, compounds these challenges. 

 

4.2.3 Recent Urban Mobility Policies and Their Impacts 

Over the past few years, Rome has introduced a series of urban mobility policies, 
aiming to reshape how people move through the city. These initiatives range from 
expanding traffic-restricted areas to updating the public transport system and 
managing the explosion of micro-mobility services like e-scooters. While each 
measure targets a specific aspect of the problem, together they form the city’s 
broader attempt to tackle congestion and encourage more sustainable transport 
choices. 

Rome’s system of ZTL has been a fixture in the historic center for decades, but 
recent years have seen a tightening and expansion of these restrictions. By 2022, 
the city had restored pre-pandemic ZTL hours, after suspensions during COVID, and 
even started discussing further extensions to the night-time ZTLs in nightlife districts 
like Trastevere and San Lorenzo. 

In parallel, the city moved toward a broader low-emission zone (ZBE) model. The 
Fascia Verde, a wide green belt around the city’s core, now bans older, more 

 
52 ITF. (5. November, 2020). Durchschnittliche Anzahl der Todesfälle im Straßenverkehr weltweit in ausgewählten Städten 2018¹ 
(Todesfälle je 100.000 Einwohner) [Graph]. In Statista. Zugriff am 26. April 2025, von 
https://de.statista.com/statistik/daten/studie/1207893/umfrage/todesfaelle-im-strassenverkehr-weltweit-nach-stadt/ 
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polluting diesel vehicles during the day. The idea is not just to limit traffic in the 
center, but to gradually push cleaner vehicles citywide. 

The impact on congestion has been uneven. Within the central ZTLs, traffic volumes 
have clearly dropped, fewer cars are entering the city's heart during restricted hours, 
and public transport performance (especially buses) has improved slightly on key 
streets like Via del Corso. Air quality data also show small but measurable 
improvements inside the ZTL. 

Yet outside the restricted zones, traffic hasn't necessarily disappeared; it has shifted. 
Streets like Lungotevere and Via Gregorio VII, just beyond the ZTL boundaries, often 
see heavier flows when restrictions are active. Residents in these areas have voiced 
concerns about "spillover traffic," highlighting a common challenge: localized traffic 
bans can displace congestion without reducing it overall. 

As for the broader LEZ, its full impact remains to be seen. While some residents 
have upgraded their vehicles or switched to alternatives, there has been pushback 
too, protests in late 2023 pointed to fears about affordability and access. In practice, 
if the LEZ gradually cuts the number of old cars on the road without simply 
encouraging mass vehicle replacement, it could contribute to cleaner air and 
eventually to lower congestion levels. But for now, the effect on traffic volumes 
seems modest. 

Rome’s Metro Line C project, the first new subway line in decades, has been slow-
moving but symbolically important. Since its extension to San Giovanni station in 
2018, Line C has offered a new east-west connection across peripheral 
neighborhoods traditionally underserved by rail. 

Work continues to push the line deeper into the center, with the eagerly awaited 
Colosseo/Fori Imperiali station scheduled to open in 2025. This extension is critical: 
linking Metro C to the existing Lines A and B should vastly improve network 
connectivity, making public transport a more attractive alternative to driving for many 
residents and tourists. 

Each new station brings incremental gains. Though the scale was modest, the San 
Giovanni extension already encouraged some residents in areas like Pigneto and 
Centocelle to shift away from car use. The impact could be more visible once 
Colosseo opens, giving tourists and locals a direct metro link to one of Rome’s 
biggest attractions. 

Beyond the metro, Rome has also invested in new buses (including electric models), 
expanded bus lanes, and started planning new tramlines. Some corridors, like Via 
Tiburtina and Via Nomentana, have seen travel time improvements for buses, 
helping public transport’s competitiveness. However, service reliability issues, 
including vehicle breakdowns and sporadic strikes, continue to plague the system 
and limit its overall impact on reducing car dependency. 

Construction itself has not been without consequences. Major worksites, especially 
near historic areas like Piazza Venezia and Fori Imperiali, have disrupted road 
networks, creating local bottlenecks and detours. Although these disruptions are 
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temporary, they have added another layer of complexity to Rome’s already strained 
mobility system. 

Overall, transit improvements are slowly nudging Rome toward better alternatives to 
driving, but the pace is gradual. The real benefits will likely emerge in the second half 
of the 2020s, if, and only if, investments stay on track and service reliability 
improves. 

 

4.2.4 Expert Opinions and Future Projections 

Among transport engineers, urban planners, and mobility researchers, there’s broad 
agreement on two points: first, that Rome’s traffic congestion is a deeply rooted, 
complex issue; and second, that real improvement is possible, but only with 
sustained, large-scale interventions. 

Technical experts often describe Rome’s network as structurally vulnerable to 
bottlenecks. The city’s historical layout, with limited bridge crossings over the Tiber 
and a relatively sparse metro system compared to other European capitals, naturally 
funnels large volumes of traffic into a few critical corridors. Looking ahead, the city’s 
official mobility plans are cautiously optimistic. If all the measures currently planned 
are completed, namely the full opening of Metro Line C into the city center, 
expansion of tram lines, stricter low-emission zones, and widespread traffic calming 
measures, the modal share of private vehicles could drop from about 59% today to 
around 50% by 2030. Under that scenario, average congestion delays could fall by 
15–20%, a significant but hardly revolutionary improvement. However, the alternative 
scenarios that experts warn about are sobering. If car ownership continues to rise, if 
remote work trends reverse, or if planned public transport projects are delayed (as 
often happens), then congestion could worsen beyond pre-pandemic levels. Some 
projections suggest that daily vehicle kilometers traveled in Rome could grow by 
about 5% between 2019 and 2025 if no further action is taken53. 

The Jubilee Year of 2025 adds another layer of complexity. Rome is currently 
welcoming millions of extra visitors during the event, placing enormous pressure on 
its transport systems. City planners are scrambling to accelerate infrastructure 
upgrades and temporary traffic management measures to avoid complete gridlock 
during peak pilgrimage periods. Experts widely view the Jubilee as a critical stress 
test: if Rome’s mobility system can handle 2025 without collapsing into chaos, it 
would bode well for longer-term resilience. 

Regarding emerging strategies, many specialists advocate for a mix of supply- and 
demand-side measures. On the one hand, expanding public transport and micro-
mobility infrastructure remains essential. Conversely, tools like congestion pricing, 
stricter parking controls, and incentives for remote working could help shift behavior 

 
53 Carrese S, Cipriani E, Colombaroni C, Crisalli U, Fusco G, Gemma A, Isaenko N, Mannini L, Petrelli M, Busillo V, Saracchi S. 
Analysis and monitoring of post-COVID mobility demand in Rome resulting from the adoption of sustainable mobility measures. 
Transp Policy (Oxf). 2021 Sep;111:197-215. doi: 10.1016/j.tranpol.2021.07.017. Epub 2021 Jul 22. PMID: 36568353; PMCID: 
PMC9759737. 
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more decisively. London’s congestion charge is frequently cited as an example 
Rome could eventually follow, although politically, introducing a similar scheme in 
Rome would be far from easy. 

There’s also growing interest in technological solutions, like smart traffic lights and 
real-time traffic management platforms. While helpful, these are generally seen as 
marginal gains rather than game-changers: no amount of algorithmic optimization 
can solve the fundamental imbalance between too many cars and too little road 
space54. 

Ultimately, the consensus among experts is that Rome is at a crossroads. The 
foundations for change are being laid, but whether the city truly transforms its 
mobility system will depend not only on infrastructure investments but on political will 
and cultural shifts. Without a genuine reduction in private car dependency, 
congestion will likely remain a defining feature of daily life in the Eternal City. 

Given the complexity of Rome’s traffic, shaped by a mix of private cars, scooters, 
buses, tourists, and unpredictable local behaviors, traditional modeling approaches 
often fall short. This is where ABM becomes especially valuable. Capturing 
everything from commuters adjusting their routes to avoid a ZTL, to tourists 
randomly circling for parking near the Vatican, to delivery drivers double-parking in a 
second lane on a narrow street, trying to reflect the “messiness” of real-world 
behavior, is a really complex and articulated task. But at the same time, this opens 
enormous potential for algorithmic optimization.  

 

5.  Analysis of the Results 
 
For each of the two cities, the code helps answer three main research questions:  
 

1. What is the most efficient mode of transportation under ideal conditions, 
where vehicles travel at the speed limit and congestion is absent, and can this 
be further optimized?  
 

2. In a day-trip scenario, which mode offers the best travel solution, considering 
slower movement and planned stops?  

 
3. Under congested rush hour conditions, would individuals be better off if they 

behaved rationally, switching modes to avoid traffic bottlenecks as the model 
allows? 
 

Comparisons and analyses will be conducted considering the total distance travelled, 
in meters, by each mode of transportation in the same period, measured in 1000 
ticks. TomTom Traffic Report Index data will be employed in the congestion 
scenarios, tracking the location of the most congested spots identified in Figures 5 

 
54 Engineering Rome 2026 
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and 7. Geneva traffic data show the average speed in the city center to be 18.8 km/h 
during the morning rush hour and 17.9 km/h during the evening rush hour55. In 
Rome, these figures become 17.1 km/h and 16.6 km/h, respectively56. The move-
agent functions previously defined will be modified, adding congestion factors, 
setting the speed of travel according to the average speed measures discussed 
above, to faithfully reproduce congestion conditions. To introduce full rationality by 
agents, cars that have to travel through highly congested spots, with an attention 
radius of 0.5 degrees, incorporating also adjacent nodes, will be allowed to switch 
mode of transport to reach their destinations: 90% of them will continue their trip 
walking, while the remaining will ride a bike to their destinations, in order to adopt the 
same split in mode of transport defined in Chapter 4. 
 

5.1 Geneva Results 
 
Under ideal traffic conditions, and considering 50 agents for each transport mode, 
the total distance travelled in meters in 1000 ticks is as follows: 
 
 

 
 
As expected, car agents are the ones travelling the most distance in the same period 
of time. However, the influence of traffic lights and road exclusivity is already visible, 
as bikers advanced only 24.4% fewer meters than cars. The difference in road 
structure and congestion will be much more evident in the analysis of rush hours. 
Regardless of parking availability and its price (2.80 CHF/hour in Geneva), private 
transportation methods, such as cars and motorbikes, still represent the most 
efficient solution under ideal traffic conditions, with smooth traveling and no 
congestion. 
 
In the day-trip scenario, results discourage private car usage even more. 
 

 
55 TomTom Geneva Traffic Index Report 
56 TomTom Rome Traffic Index Report 

Ideal Conditions Cars Pedestrians Bikers 

Total Distance (by Category) 138.040,14 46.210,63 103.940,61 

Total Distance (per Agent) 2.760 924 2.088 

Day-Trip Scenario Cars Pedestrians Bikers 

Total Distance (by Category) 84.843,5 44.146,3 79.442 

Total Distance (per Agent) 1.696 882 1.588 

Table 5. Geneva Travelled Distances in Ideal Traffic Conditions. 

Table 6. Geneva Travelled Distances under the Day-Trip Scenario. 
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Considering the relatively small extension of Geneva and the closeness of points of 
interest in the city, using a car represents the least efficient possible means of 
transportation for a day trip, with only 6% more distance travelled than bikes and less 
than double compared to walking. This is due to pedestrian-exclusive streets in the 
city center, which force car users to park further away from the desired destination 
and then proceed on foot, reducing the amount of meters recorded by the function. 
And being realistic, passing by the lake or taking pictures at St. Pierre Cathedral 
while riding a bike or having a peaceful stroll sounds much more scenic than just 
driving from one point to another. It is also interesting to see how the ratio between 
the distance travelled walking and by bike decreases during a day-trip, from 45% to 
55%. This is due to the fact that sightseeing allows pedestrians to keep their usual 
walking pace, while bikers slow down and peacefully enjoy their ride. 
 
During morning rush hours, the congestion level is clearly visible: in the same 
amount of time, cars manage to travel 12% less distance than pedestrians, as they 
are allowed to also take public transport, knowing that tram lines don’t share roads 
with cars and therefore don’t experience the same level of traffic. It is evident that in 
these conditions, bikes are the preferred options: an extensive bicycle lanes network 
and the favorable topography of the city, with few uphill or downhill slopes, make 
cycling both convenient and efficient, allowing bike commuters to travel 19% and 
35% more distance than pedestrians and car drivers, respectively.  
 

 
After allowing for mode switching, the figures look slightly better for car drivers. 
 

 
Cycling is still confirmed as the best commuting option, travelling 16% more distance 
than mixed-mode agents. It is however interesting to see pedestrians walk 11% less 
distance compared to the normal morning congestion setting. This is likely due to 
increased crowding on public transport lines. In the model, after mode switching, the 
number of pedestrians nearly doubles, which also increases the number of people 

    

Morning Rush-Hour Cars Pedestrians Bikers 

Total Distance (by Category) 52187.7 59198.2 70408.8 

Total Distance (per Agent) 1043.7 1183.4 1408 

Morning Rush-Hour Cars Pedestrians Bikers 

Total Distance (by Category) 61040 48824.5 71287 

Total Distance (per Agent) 1220.8 998.5 1443.7 

Table 7. Geneva Travelled Distances in the Morning Rush-Hour. 

Table 8. Geneva Travelled Distances in the Morning Rush-Hour after allowing mode-switch. 
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using public transport, leading to longer waiting times as buses become 
overcrowded. Faced with the prospect of a stressful journey packed like sardines, 
many may prefer to wait for the next available vehicle instead of boarding 
immediately. 
 
The same phenomenon can be seen in the evening rush hour setting, exacerbating 
the difference in travelling distance between bikes and other modes of transport. 
 

 
Allowing mode switch decreases the bikes/cars deviation from 45% to 33% more 
distance travelled in favor of the former, while pedestrians share the same conditions 
as the morning scenario previously outlined. 
 

Evening Rush-Hour Cars Pedestrians Bikers 

Total Distance (by Category) 49776 52818.2 70621.3 

Total Distance (per Agent) 995.3 1056.4 1412.4 

Evening Rush-Hour Cars Pedestrians Bikers 

Total Distance (by Category) 58742 49637.4 78562 

Total Distance (per Agent) 1174.8 992.7 1573 

2760

995,3
924

1056,4

0

2088

1412,4

Average Distance Travelled by Mode of Transportation 
Geneva

Cars Evening Rush: Cars
Pedestrians Evening Rush: Pedestrians
Bikers Evening Rush: Bikers

Figure 13. Average Distance Travelled by Mode of Transportation – Geneva. 
The difference in travelled distance by cars in Ideal conditions vs. Evening Rush Hours is clearly 

visible, especially if compared to bikes, which do not experience such a variation. 

Table 9. Geneva Travelled Distances in the Evening Rush-Hour. 

Table 10. Geneva Travelled Distances in the Evening Rush-Hour after allowing mode-switch. 
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Figure 13 pictures the average distance travelled by agents of all categories. The 
main take-away is the striking difference between the journey lengths of drivers 
under normal traffic conditions and evening rush-hour, especially compared to the 
other modes of transport. Pedestrians, unsurprisingly, are the category retaining the 
most distance under the two scenarios. Bikes remain the most efficient mode of 
transport in rush hour conditions, as shown by the considerable gap with the 
distance travelled by cars. 
 
 

5.2 Rome Results 
 
The first results from Rome network’s simulation highlight some particular differences 
with respect to the Geneva one: 
 
 

 
The first overall difference is that distances are 59% lower, on average, than those 
recorded in the Geneva simulation, underscoring the already covered network 
disparities in terms of road composition. The biggest gaps can be seen confronting 
the cars and bikes simulations, respectively 72% and 87% lower than the previous 
reproductions. Before delving into further analyses, these results already carry an 
important message: Rome, as a city, is not an efficient playground for private means 
of transport. 
 

 
In the day-trip scenario, the limitation of private car usage in Rome historical city 
centre really become visible. While walking distances remain flat, with a 10% 
tolerance level, bikes confirm themselves are the preferred method to enjoy a 
peaceful ride while sightseeing and exploring the Capital’s beauties, allowing higher 
travel distance than cars. Unexpectedly, in these conditions bikes travel more 
distance than in the ideal scenario previously analyzed; the cause can be attributed 
to the reduced concentration of cars in the city center, which effectively frees up road 

Ideal Conditions Cars Pedestrians Bikers 

Total Distance (by Category) 39.501,15 27.049,24 28.911,88 

Total Distance (per Agent) 790 541 578,2 

Day-Trip Scenario Cars Pedestrians Bikers 

Total Distance (by Category) 33.325,25 28.451,76 35.815,65 

Total Distance (per Agent) 667 589 716,3 

Table 11. Rome Travelled Distances in Ideal Traffic Conditions. 

Table 12. Rome Travelled Distances under Day-Trip Scenario. 
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space, providing cyclists with safer and more favorable riding conditions. On the 
other hand, cars travel 18% less distance than before: without taking into account 
the real-world propensity of Roman drivers to resort to illegal parking practices and 
to risk fines, behaviors inherently difficult to quantify and incorporate accurately 
within the parameters of a basic simulation model, this reduction still feels reliable. 
Even those drivers that want to test the limit of Rome’s police officers’ patience will 
realistically give up on their cars and go on walking.  
 
 
Moving to rush hours analyses, the figures totally discourage cars’ usage. 
 

 
During the morning rush hour, the average distance traveled by cars per agent 
decreases by 27%, resulting in only a marginal 7% advantage over walking. In this 
scenario, bicycles emerge as the most efficient mode of transportation, traveling 
53% further than pedestrians and 47% further than drivers.  
 

 
After enabling mode switching, allowing drivers to opt for public transport or walking, 
the morning scenario shows modest improvement: car commuters now travel 20% 
further than previously, while the distances traveled by pedestrians and bikers 
remain stable, with variations below a 10% threshold. 
 

 
 

Morning Rush-Hour Cars Pedestrians Bikers 

Total Distance (by Category) 25.549,5 26.232,7 36.121,2 

Total Distance (per Agent) 577 537 822 

Morning Rush-Hour Cars Pedestrians Bikers 

Total Distance (by Category) 28.848,3 26.863,39 41.104,33 

Total Distance (per Agent) 697 538 749 

Evening Rush-Hour Cars Pedestrians Bikers 

Total Distance (by Category) 34.863,7 26.906,11 37.471,38 

Total Distance (per Agent) 511 525 722 

Table 13. Rome Travelled Distances in the Morning Rush-Hour. 

Table 14. Rome Travelled Distances in the Morning Rush-Hour after allowing mode-switch. 

Table 15. Rome Travelled Distances in the Evening Rush-Hour. 
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During evening rush hours, cars become the least efficient transport mode, 
consistent with the congested traffic conditions highlighted in Section 4. Indeed, 
anyone who has driven in Rome between 6 p.m. and 8 p.m. has likely experienced 
severe congestion, reconsidering their car usage. In this period, pedestrians cover 
approximately 3% more distance than car commuters. However, pedestrians are not 
immune to the consequences of congestion either, given their heavy reliance on 
public transportation: they travel, on average, 4% less compared to ideal traffic 
scenarios. 
 

 
 
When mode switching is permitted in the evening, car users slightly increase their 
traveled distance by 5%, thus surpassing pedestrians, whose distances remain 
unchanged. Interestingly, cyclists reduce their traveled distance by 6% after drivers 
are allowed to switch to walking or cycling. A plausible explanation for this 
unexpected decline is that the influx of former car commuters onto bike lanes, often 
inadequately sized or poorly structured in Rome, and non-existent in the city center, 
may generate additional congestion on cycling paths, thereby slowing down overall 
cycling traffic. 
 

 
 
 

Evening Rush-Hour Cars Pedestrians Bikers 

Total Distance (by Category) 26.985,3 26.315,7 34.233,8 

Total Distance (per Agent) 539.7 526 684.6 

511

541
525

578

722
790

Average Distance Travelled by Mode of Transportation 
Rome

Evening Rush: Cars Pedestrians

Evening Rush: Pedestrians Bikers

Evening Rush: Bikers Cars

Figure 14. Average Distance Travelled by Mode of Transportation – Rome. 
Striking gap between distance travelled by cars in Ideal conditions vs. Evening Rush Hours. 

Table 16. Rome Travelled Distances in the Evening Rush-Hour after allowing mode-switch. 
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Figure 14 highlights the complex traffic conditions in Rome for all categories of 
agents. Cars, in particular, become the worst mode of transport during the evening 
rush hour, covering less distance than pedestrians. Bikes remain the most efficient 
mode of transport, especially during rush hours. 
 
Comparing these results with the actual travel data provided by TomTom, it is 
possible to analyze discrepancies and variations that the simulation couldn’t capture. 
In the simulation, time was represented by ticks, with agents traversing an average 
of 132 edges over a 1000-tick interval in Rome and 69 in Geneva. To evaluate the 
realism of this behavior, 1000 samples of actual paths, each consisting of exactly 
132 road segments, were extracted from the TomTom dataset. By summing the real-
world distances and observing the actual average speed of travel of these samples, 
it was possible to estimate how accurately the simulation replicates observed 
mobility patterns. TomTom Data trials results, observable in Figure 15, suggest car 
drivers in Rome travel, on average, just 2,36 meters more than the simulation results 
(790 meters, Table 11). The mean of the actual speeds derived from the sampled 
TomTom data is notably lower than the average speeds reported during morning and 
evening rush hours in the TomTom Traffic Index.  
 

 
 
This discrepancy can be partly attributed to the nature of the dataset: the free trial 
version covers only a subset of the total road network in Rome and reflects 
conditions during a specific time window. Nonetheless, the result is noteworthy. It 
suggests that even over short paths, subtle behavioral and environmental factors, 
such as brief traffic build-ups or irregular parking, can accumulate and significantly 
slow down travel, highlighting dynamics that may not be fully captured in broader 
traffic averages and indicators. To simulate more realistic driving behavior, the agent 

Figure 15. Density plots of Average Speed and Total Distance travelled across 132 edges from a 
1000 observations sample from Rome TomTom Data. 
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speed on each road segment is computed as a function of the posted speed limit 
and a scenario-specific modifier, 𝑣!"# = (𝑣$"#"%/50) ⋅ 𝑓. 
 
This approach introduces a dynamic tolerance mechanism, allowing for relatively 
higher speeds on roads with higher speed limits, reflecting the common tendency of 
drivers to exceed limits on wider or faster roads. On highways or arterial roads with 
higher 𝑣$"#"%, like some portions of the Grande Raccordo Anulare in Rome with 
speed limits of 130 km/h, this results in a multiplier effect, allowing agents to exceed 
the legal limit slightly. Conversely, it imposes a proportionally greater penalty in areas 
with lower speed limits, such as narrower residential streets, where speeding is less 
common or more constrained by road conditions. The discount factor was designed 
to simulate minor disruptions in otherwise smooth traffic flow, as previously 
discussed. By slightly reducing the effective speed, it accounts for small, often 
unobservable interruptions, such as brief stops, hesitations at intersections, or mild 
congestion, that typically occur even under relatively fluid driving conditions. 
 
Geneva presents a slightly different scenario. A more robust infrastructure, a limited 
number of fully residential areas and easier overall navigability result in longer 
edges, averaging 47 meters, compared to Rome’s average length of 17 meters. 
Drivers, in the simulation, travelled over 69 edges in the 1000-tick interval, with an 
average of 2670 meters (Table 5). Actual path samples drawn from the TomTom 
data, shown in Figure 16, suggest a lower real-world average of around 1.950 
meters. This 29% discrepancy is significant and offers a compelling insight. It may be 
partially explained by the nature of the dataset, which shares the same temporal and 
spatial constraints discussed earlier in the context of Rome, but there is a structural 
factor worth noting. As outlined in Chapter 2.1, only 3% of Rome’s network nodes 
are traffic lights, 1457 out of 43657, compared to 26% in Geneva 280 out of 1076. 
The presence of traffic lights, excluded as variable for the model because of the 
additional computational performances required and the absence of exact data 
regarding their spatial localization, seems to have an impact on the error of the 
model against normal traffic conditions. 
 

Figure 16. Density plots of Average Speed and Total Distance travelled across 69 edges from a 
1000 observations sample from Geneva TomTom Data. 
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6.  Conclusion 
 
 
The comparative analysis of Geneva and Rome illustrates how urban structure, 
transportation policy, and cultural practices critically shape urban mobility outcomes. 
Geneva's compact geography, bounded by natural constraints such as Lake Geneva 
and the Rhône River, inherently channels traffic into a limited number of corridors, 
causing persistent congestion on key arteries like the Pont du Mont-Blanc. 
Nevertheless, its dense, pedestrian-oriented urban fabric and proactive policy 
measures, particularly the rapid expansion of dedicated cycling infrastructure and 
protected cycle tracks, significantly enhance sustainable transportation options. 
Simulation results confirm bicycles as the most efficient mode during peak hours, 
effectively navigating congestion bottlenecks and demonstrating the benefits of 
Geneva’s strategic investments in active mobility. 
 
Rome’s sprawling metropolitan layout, historical urban constraints, and pronounced 
car-centric culture exacerbate its chronic congestion issues. The city's high 
motorization rate, coupled with fragmented and outdated public transport 
infrastructure, continually reinforce dependence on private vehicles. Despite recent 
policy interventions like the expanded aiming to reduce vehicular traffic, these 
measures often shift congestion rather than eliminate it, highlighting enforcement 
challenges and cultural resistance. The simulations mirrored this reality effectively, 
particularly during evening rush hours, where pedestrians notably outperformed cars 
due to severe congestion, reflecting real-world observations like frequent traffic 
delays along the Lungotevere and key radial routes such as Via Tiburtina and Via 
Appia Nuova. 
 
An important insight from the model is the discrepancy between idealized rational 
behaviors simulated in the ABM and complex, unpredictable real-world behaviors, 
including Rome’s common illegal parking practices and inconsistent adherence to 
traffic regulations. This emphasizes the model’s limitations and highlights the need 
for improved data inputs and more nuanced behavioral modeling backed by 
increased computational power, to accurately capture the granularity of human 
decision-making complexities in urban mobility. 
 
Explicitly addressing the research questions from Section 5: 
 

• Under ideal conditions, private vehicles remain the most efficient mode due to 
uninterrupted flow and higher travel speeds. However, this efficiency quickly 
diminishes under realistic congestion scenarios. 

 
• In a day-trip scenario, bicycles prove to be the most effective and enjoyable 

mode of transportation, especially in Geneva, where pedestrian-oriented 
urban spaces enhance cycling convenience. Rome shows similar trends, 
although cycling advantages are more evident in the reduced presence of 
cars, particularly in the historical city center. 

 
• Under congested rush hour conditions, rational mode-switching behavior 

significantly improves individual travel efficiency. In both Geneva and Rome, 
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allowing drivers to shift to walking or cycling substantially alleviates 
congestion impacts, although this effect is more pronounced in Geneva due to 
its superior cycling infrastructure. 

 
 

 Cars 
Rome 

Cars 
Geneva 

Pedestrians 
Rome 

Pedestrians 
Geneva 

Bikers 
Rome 

Bikers 
Geneva 

Ideal 
Conditions 790 2.760 541 924 578,2 2.088 

Day-Trip 
Scenario 667 1.696 589 882 716,3 1.588 

Morning Rush 577 1.043,7 537 1.183,4 822 1.408 

Morning Rush 
mode switch ON 697 1.220,8 538 998,5 749 1.443,7 

Evening Rush 511 995,3 525 1.056,4 722 1.412,4 

Evening Rush 
mode switch ON 539,7 1.174,8 526 992,7 684,6 1.573 

 
The simulation results reveal clear differences in mobility efficiency between Rome 
and Geneva, highlighting how urban structure and infrastructure shape travel 
behavior. In every scenario, agents in Geneva consistently covered more distance 
per trip than those in Rome, particularly when traveling by car. Under ideal 
conditions, cars in Geneva averaged 350% the distance travelled in Rome; in all 
other scenario, Swiss drivers accumulate at least 80% more meters than Italian 
ones. Pedestrians and bikers also performed better in Geneva, where walking 
agents regularly traveled nearly twice as far as their Roman counterparts, and biking 
distances were up to three times higher in some cases. These results reflect 
Geneva’s compact layout, well-integrated transport systems, and prioritization of 
sustainable mobility. In contrast, Rome’s congested, car-dependent network and 
fragmented infrastructure impose constraints across all travel modes, especially 
during peak hours. This gap illustrates the real-world implications of urban design, 
with Geneva enabling smoother, longer, and more efficient travel for all types of 
agents. The model reproduced reliably the distances travelled by drivers in Rome 
during normal traffic conditions, while, in Geneva, it overestimated their paths. This 
punctuates the huge potential developments of projects in this field, from more 
precise and tailored analytics, like Geneva’s significantly higher density of traffic 
lights, in this case, to higher computational power and resources. Imagining full 
availability of data, further steps would include introducing more personalized traits 
and parameters for agents for higher granularity and variation between behaviors; 
simulating the flow of traffic hour-by-hour, taking into consideration the smallest 
temporal patterns; incorporate real-time traffic indicators coverage for hands-on 
policy testing and intervention.  

Table 17. Comparison of all simulation results analytics. 
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