

LUISS Guido Carli University

Degree Program in Management and Computer Science

Bachelor Thesis

Spring 2025

Thesis Title

Creating a Simulation of Life and its Interaction with the Environment

to Induce a Complete Cycle of Unsupervised Self-development

Candidate

Savva Krasnokutskii (281441)

Supervisor

Professor Alessio Martino

0

Abstract

This thesis aims to create a simulation of life and its interaction with the environment to

induce a complete cycle of unsupervised self-development by the means of expanding upon

the classical cellular automaton model by simulating fundamental evolutionary principles via

addition of genome based sexual reproduction to each ‘cell’ of an organism. Each cell in the

proposed simulation will have an arbitrary long genome which would define the way a ‘cell’

would interact with the outside environment, how it would react to its surroundings, compete

for resources, interact with other cells and reproduce. The objective of this investigation is to

implement the aforementioned simulation and attempt to analyze its underlying mechanisms,

placing particular emphasis on the notion of developmental continuity.

1

Table of Contents
1. Introduction...4
2. Theoretical Background... 5

2.1 Introduction to Cellular Automatons..5
2.1.1 Discrete vs. Continuous Automatons... 6
2.1.2 Dimensionality of an Automaton..7
2.1.3 Update Principles..7
2.1.4 Multiple States.. 8
2.1.5 On the Notion of Reducibility.. 8
2.1.6 On Loops and Graphs... 9

2.2 Automaton Convergence..10
2.3 Self-development in Context of Automatons...14
2.4 Important Concepts.. 16

3. Study Design..18
3.1 Introduction to Project Design... 18

3.1.1 General Description.. 18
3.1.2 Implementation... 18

3.1.2.1 Environment..18
3.1.2.2 Energy... 19
3.1.2.3 Reproduction... 20
3.1.2.4 Simulation Order...22
3.1.2.5 Genome and Mutation...23
3.1.2.6 Observations on Simpler Systems...26

3.2 Simulation Architecture... 27
3.2.1 Creature Architecture..27

3.3 Data Visualisation Environment...30
3.4 Save File Handling... 32

4. Methodology.. 34
4.1 Data Collection...35
4.2 Handling Replicability... 37

4.2.1 On the notion of gambler's ruin in the context of cyber biology......................... 38
4.3 Developer Tools and Methods for Data Analysis.. 39

5. Findings and Results...41
5.1 Preliminary Analysis.. 41

5.1.1 On the Notion of Genders...48
5.1.2 Strength of Natural Selection..48
5.1.3 Closing Remarks...50

5.2 Complex Analysis.. 50
5.2.1 Visual Analysis... 52
5.2.2 Visual Inspection Conclusions..54

5.3 Potential Limitations and Confounding Factors...73
5.3.1 Limitations..73
5.3.1 Confounding Factors.. 74

2

5.4 Findings Compilation...76
6. Conclusion... 79

6.1 Practical Applications.. 79
6.2 Possible Areas of Further Research... 80
6.3 Closing Remarks.. 81

Appendix..83
References..85

3

1.​ Introduction

The fundamental goal of machine learning, the Philosopher’s stone of this discipline, lies in

the creation of a self improving model, capable of single handedly, without human

intervention constructing better versions of itself. To the best of my knowledge, so far, no

such model exists (or at least it is not publicly available).

My hypothesis is that the creation of such a model could be made possible by shifting the

approach we use, via changing the paradigm, where instead of teaching the model (be so

directly or indirectly) we shift our focus from model oriented approaches, to the environment

oriented ones.

Let us look at the existing example, humans. Humans are an intelligent species, capable of

self-development. From the stone tools and silicon weapons, we have made it to space, to the

Moon, our spacecraft has reached interstellar space. But let us look at how we appeared as we

are. The appearance of the human species was a result of a long interaction. At first an

interaction within the environment which gave birth to life. Later interaction of life with the

same environment, the process of evolution.

In my study I will try to solve the problem of development of self learning and self improving

models, by turning to cyber biology and cellular automation fields. My aim lies in the creation

of a simulation of life and its interaction with the environment to induce the complete and

sustaining cycle of self-development.

It is important to note that the key concept would be the interaction between creatures and

environment, as specified in the title of the thesis. Here I am only stating the necessity of

greater emphasis on working with the environment. It is imperative to have both parts of the

simulation to be well developed and capable of working together, in order to even have an

opportunity to go beyond the scope of classical cyber biological methodology and the tools

that the discipline offers.

4

2.​ Theoretical Background

In this section our aim would be to formalize the notions brought up in the introductory

sections and briefly document preliminary research conducted, as well as to document early

hypotheses regarding the expected performance of the project’s prototype.

2.1​ Introduction to Cellular Automatons

For the sake of this thesis report let us use the Stanford definition of cellular automaton.

Despite there exist many possible ways of defining it, the Stanford definition is the most

definitive, elegant, as well as more convenient in regards to the topic of our report.

The definition provided by Stanford is as follows:

“Cellular Automatons are discrete abstract computational systems [...] typically

spatially and temporarily discrete: composed of a finite or denumerable set of homogeneous,

simple units, the atoms or cells. At each time unit, the cells instantiate one of a final set of

states. They involve parallel at discrete time steps, following state update functions or

dynamical transition rules: the update of a cell state obtains by taking into account the states

of a cell in a local neighbourhood.”

From the above definition, we can also conclude that cellular automatons can be represented

by abstract systems: it is not necessary for such a simulation to represent something practical.

It can be defined in mathematical terms, using matrixes or graphs from graph theory, later in

more complex cases. This does not however mean that the physical structures can not

implement them.

Thirdly and lastly, an important corollary of such a definition would be the possibility to

define such rules for an automaton, that it would meet the requirements to be considered an

emulator of a Turing-complete machine (therefore, by the Church-Turing thesis, being

capable of computing everything that is computable). Again that would require a very special

subset of all possible rules and it would not look like a classical Turning machine, but the

mathematically defined system is still able to produce a sufficiently powerful mathematical

5

toolset to make such operations possible. Yet since this is not directly related to the topic of

the thesis I will omit proof of this statement from the report, for more information on the topic

the interested reader is referred to the bibliography section at the end of the report.

Now that we have a more formal understanding of what a cellular automaton is, we will be

able to translate our goals into a more rigorous and formal language. First of all, let us set a

strategic goal of defining what a self-developing system is in the context of a classical cellular

automaton. That is, let us define a classical cellular automaton as a two dimensional array of

numbers, representing states. The states are updated each turn, where a turn is defined as a

function applied to the state matrix in order to get the next result. It is very important to note

that when it comes to classical automatons, the update function is not dynamic. The entirety

of the state matrix is being updated at the same time where the values of the surrounding

states are calculated based solely on the previous state matrix.

2.1.1​ Discrete vs. Continuous Automatons

In order to make the above points clearer, let me give a trivial example. Suppose that the state

of the field is defined by the opposite of the value of the field to the right of it. Let us also

assume that the rightmost field is connected to the leftmost field. Let us say that at turn one

the system looked like this “001”, then it might seem logical to conclude that at the next state

would look like “100”, but in fact this is wrong since we are doing the calculation instantly

and therefore the field would look like “101”, since first element at the time of the update is

still zero.

That is a fundamental distinction between dynamically updating automatons (100) and

discretely updating ones (101). From now on let us define discrete automatons as the ones

updated using previous state matrix as reference and dynamic ones as ones using current state

matrix as reference. Note that in case of dynamic cellular automatons there can be multiple

algorithms to determine the possible order of operations, whilst on discrete ones there exists

only one. Let us also note that the classical automatons are almost always discrete.

6

2.1.2​ Dimensionality of an Automaton

When we were defining cellular automatons we used two dimensional matrices to describe

the state in which they operate. Yet since we know cellular automata as an abstract concept

we have no difficulty in extrapolating the aforementioned definition to tensors of any rank.

Speaking in Pythonic language we are not necessarily stuck working with 2D arrays, an

automaton can be defined in 1D, 3D up to -dimensions, where N is arbitrarily large. 𝑁

An example of a 2D automaton could be the famous “Conway’s game of life” (CGL), a

classical member of the genre. It is a simple discrete automaton with rules concerning the

amount of neighbours in the “alive” state. An example of a 3D cellular automaton can be

found in the Appendix as a link to my Github repository. A classical automaton concept

implies it being 2D though.

2.1.3​ Update Principles

A cellular automaton rules can vary from case to case, or be a combination of a few principles

we are about to talk about. The most basic rule would be to give a cell with coordinates (𝑋, 𝑌)

to update depending on the number of cells in state 1. An example would be to take a cell

above, below, to the left, to the right and all diagonal cells, count the number of cells in state

1. If this number is in range - kill cell, - cell stays alive or appears if it was empty (0, 𝑎) (𝑎, 𝑏)

previously, - cell dies. (𝑏, 8)

Again, there are thousands of potential variations: you can choose any region in which to

count the states. That region can be predefined, as well as dynamic, changing its shape every

turn also depending on the states previously assigned to it, gerrymandering of some sort. This

would create very complex simulations, but right now is not the point of our investigation, it

is however worth noting that such operations are legal, possible and can/should be well

defined.

Turning back to the rules, counting the states in the region is by far not the only way to make

a decision, you can assign dynamically changing weight coefficients to the states and apply

different arithmetic and logical operations to their states in order to get the final result. For

example we might require the state on the upper right diagonal to be equal to the state on the

7

lower left diagonal and there to be at least 3 cells in state 0 in the direct proximity to the cell

in order to reverse its state else we do nothing.

Classical automatons follow the “make everything as simple as possible” paradigm and

therefore rarely practice the additions described above, since despite they seem to

overcomplicate the model greatly, they might end up being reducible and therefore having

practically little effect on the simulation.

2.1.4​ Multiple States

A state does not have to be a boolean variable itself. It can be represented by a subset of

integers, or more broadly speaking any set that is ordered and finite. Expanding a definition of

the state would allow to make the rules more complicated and more complex. Yet all classical

automatons are using only 2 states. Often labeled in the corresponding literature, as alive and

dead.

2.1.5​ On the Notion of Reducibility

When working with different systems it soon becomes obvious that a bigger formula does not

necessarily mean more complex. For example, let us define a given function as 𝑓(𝑥)

. This function seems to be very complex, yet is completely 𝑓(𝑥) = 𝑥2+1

𝑥2+1
+ 𝑥! − 𝑥!

analogous to . By drawing this analogy, I want to express the fact that the same 𝑓(𝑥) = 1

thing can be applied to cellular automatons, the rules might end up reducing each other and in

the end we might end up in a situation where the model would act like a simpler model, but

due to us being overloaded with different factors we would have no capacity in any way shape

of form to understand it.

Therefore to avoid creating “reducible” simulations it would be very important to adopt and

follow, as a simple but not simpler motto. The sheet existence of a possibility to complexify

the ruleset, is not sufficient reason for its implementation. Before implementing we would

need to think about what the implications and consequences of such a decision would be and

only proceed with the implementation further knowing that without it the desired ruleset is

unexpressible (or very difficult to express).

8

2.1.6​ On Loops and Graphs

As we previously saw, one fundamental problem of classical cellular automatons are borders.

An angular tile only has 4 neighbours, whilst central have nine, that makes the edges behave

differently throughout the simulation. That breaks the common convention of classical

cellular automatons: the simulation behaves differently at different points on the graph, and

whilst officially by the word of the definition that is not forbidden, it is considered a good

style to have the simulation playout without borders.

From a programming standpoint simulating an infinite field is impossible and implausible due

to the eventual memory over usage (2 gliders going in the opposite directions would

eventually make the system run out of memory). Therefore a solution is either to put up

borders, which assume state 0 by default and can not change, or to use a loop.

A loop is a simple concept, where pixel A is linked to pixel B despite not bordering each

other, it is usually done vertically and horizontally. Connecting rightmost cells to leftmost

cells and upmost cells to downmost cells. Such loops are quite convenient and simple, yet

they make the system less clear for the outside observer.

Loops can be developed further however. For example we can use a graph to define the

connecting relationship between cells. This would permit us to simulate not only more

sophisticated loops, but also tilings. Now for example we would be able to cover a sphere

with 2D tiles (more on that later) and have a simulation play out on it.

Note that besides squares we can also use hexes, pentagons and many other shapes in any

combination. A graph would permit us to do that.

It is worth noting that no stochastic operators are permitted in cellular automation. There must

exist a definitive ruleset, which given the same initial state does not change when experiment

is repeated. This is a very important feature of classical automatons.

9

2.2​ Automaton Convergence

In mathematical analysis and calculus one of the most important tools designed to study

functions is the limit. We try to understand what value the function assumes at a point or 𝑋

infinity: will it converge or diverge? Since we want to define a continuous self-developing

system we would also need to define a limit and convergence for automatons. We should try

to first heuristically study and later fundamentally understand the behaviour of such a system.

What does it mean to develop? What does it mean to converge? Does a Conway’s glider

converge or not? To understand that let us define a concept of repeatability.

From now on assume, unless specified otherwise, that we are dealing with classical cellular

automata.

Upon first visual inspections of cellular automatons with different rule sets I was able to

derive 6 potential endings. The first one being total extinction, the entire field is empty, no

cell left alive. Second one is complete filling - all spaces covered with cells, no cells die,

nothing happens. The third one is some sort of static continuous oscillation where there are

certain configurations of cells that alternate one another. The Fourth one is also oscillating,

but moving.

For example, like a glider. When cells also alternate a series of configurations, but are not

static with respect to coordinates. Fifth one (hypothetical) is when the repetitions (𝑋, 𝑌)

happen all around the experimentation plane. And six one (also hypothetical) is when we

encounter types of motion close to stochastic, without noticeable patterns. The last two were

not noticed by me when experimenting with CGL and were only noticed by me in more

complicated simulation.

In order to visually enhance my description, below I attach examples of states (three, four,

five and six) on Diagrams 1, 2, 3, 4 respectively. Note that states 1 and 2 would not be shows,

due to their trivial nature.

The observations are certainly interesting, but require a much more rigorous definition and

particular simplification. Let us try to use a concept of repeatability for that. For our definition

let us define some variables. There exists a classical cellular automaton C, it has a border, it

follows a particular static ruleset, it has some starting configuration S0 (zero indexed) it was

simulated for N rounds, where N is arbitrarily large.

10

Diagram 1 (Depicting state 3) Diagram 2 (Depicting state 4)

Diagram 1 (Depicting state 5) Diagram 2 (Depicting state 6)

Definition attempt 1

A cellular automaton is considered to be looping when there exist a state such that, for 𝑆
𝑛

every element of , 𝑆
𝑛

𝑆
𝑛
(𝑥, 𝑦) = 𝑆

0
(𝑥, 𝑦)

This definition seems solid, yet it is not rigorous enough. Indeed assume we have a case 3

looping cellular automaton, then add a configuration that leads to case 0 in 1 turn far away

from it. Such configuration would disappear, but according to our definition the system would

not loop, because . Also periodic is a better word as compared to looping. 𝑆
0

≠ 𝑎𝑛𝑦 𝑆
𝑛

Definition attempt 2

A cellular automaton is considered to be periodic when there exists such a pair of states 𝑆
𝑁

and such that for all and , where , with periodicity of 𝑆
𝐾

𝑆
𝑁

(𝑥, 𝑦) = 𝑆
𝐾

(𝑥, 𝑦) 𝑥 𝑦 𝑁 ≠ 𝐾

. 𝑁 − 𝐾| |

11

Corollary 1

All automatons can be considered to have a period of 0.

Corollary 2

An automaton with a maximum period of 0 is non periodic.

This definition is better, but according to it a glider is not periodic, since its states never

repeat. Therefore in order for a definition to be truly rigorous and all encompassing the

positions should not be considered relative to the coordinates but relative to the states. For

that we need to define an operation of shifting, where we move the entire simulation pixel 𝑛

up/down and pixel left/right. 𝑘

Auxiliary definition

Given a state matrix a shifted matrix is defined as , 𝑆 𝑆*{𝑛,𝑘} 𝑆 * (𝑥, 𝑦): = 𝑆(𝑥 + 𝑛, 𝑦 + 𝑘)

where and are constant for all values of and . 𝑛 𝑘 𝑥 𝑦

Definition attempt 3

A cellular automaton is considered to be periodic when there exists such a pair of states 𝑆
𝑁

and such that for all and , where . 𝑆
𝐾

𝑆
𝑁

(𝑥, 𝑦) = 𝑆
𝐾

*{𝑛,𝑘}(𝑥, 𝑦) 𝑥 𝑦 𝑁 < 𝐾

Note that is different from and is different from : and define turns, whilst and 𝑁 𝑛 𝐾 𝑘 𝑁 𝐾 𝑛 𝑘

define shifts.

The following definition can be extrapolated to more than two dimensions and non-binary

states.

Theorem 1

A cellular automaton for which is true, given , it 𝑆
𝑁

(𝑥, 𝑦) = 𝑆
𝐾

*{𝑛,𝑘}(𝑥, 𝑦) 𝐾 − 𝑁 = 𝑃

continues to be periodic with period forever. The proof is trivial, since classical cellular 𝑃

automatons do not have stochastic factors after applying a change of state function the result

that is yielded is always the same, therefore once periodic means always periodic.

12

This allows me to simplify the previous 6 case definitions I came up with. Cases 1 and 2 are

simply 0-periodic; 3, 4 and 5 have -th periodicity; whilst 6 is aperiodic. With this we are 𝑁

now able to understand that if we are interested in creating a self-developing system we ought

to avoid any sort of periodicity. Because, as Theorem 1 states, once a period is always a

perpetual period. Therefore a periodic state, like a glider or an object moving in place is a

state analogical to death and therefore should not be considered.

Fundamentally speaking we were able to discover the two stages of any simulation. Period 1

(from to) when initially placed objects dynamically interact, and another period to 𝑆
0

𝑆
𝑁

𝑆
𝑁

 and till infinity when the simulation starts looping. We are therefore more interested in the 𝑆
𝐾

 to state, we need to find an aperiodic automaton, for which there do not exist states 𝑆
0

𝑆
𝑁

𝑆
𝑁

and at which all cells share an identical structure, irrespective of coordinates. Note that 𝑆
𝐾

having a border is an extremely important prerequisite, because otherwise you would need

another definition, since an infinitely expanding simulation, even with a trivial ruleset, is hard

to prove to be repetitive. Example making all fields with at least one active neighbour active

as well, on an infinite scale would never loop with accordance to our definitions therefore we

assume borders. Plus by assuming them, we are not losing much, since as we said there exists

a lot of fundamental problems concerning practical computation of such a simulation.

Therefore our goal is to create an aperiodic simulation on a finite space, but since it might not

be possible we might introduce stochastic factors deviating from a classical cellular

automaton approach (keeping everything else intact), which would not permit the looping of

the simulation.

Note that a question whether it is possible to create a continuous aperiodic classical cellular

automaton is a big and interesting question by itself, and might be worth investigating in the

future. Also, since computationally it is impossible to simulate true randomness, I came up

with an interesting theorem.

Theorem 2

Every bounded cellular automaton, with non stochastic ruleset and finite number of states is

bound to be looping.

13

Proof

Assume we have tiles and each cell can have states. In total there are possible 𝑛 × 𝑘 𝑚 𝑚𝑛·𝑘

arrangements of the state matrix . If we run a simulation for turns there bound to 𝑆 𝑚𝑛·𝑘 + 1

be repetitions and by Theorem 1. A single repetition implies periodicity.

Imagine proving it also for unbounded cases, since cellular automaton are also Turing

complete: that can have some super interesting implications. However, back to the topic. Now

that we are able to define what we mean by continuous, let us talk about self-development.

2.3​ Self-development in Context of Automatons

Notion of self-development is clear in the field of Artificial Intelligence (AI), where given

various tests (e.g., guessing a credit score, writing a sentence), given a second player that

would not be able to identify an AI is being evaluated, and given some performance metrics

(e.g., F1-score), we conclude that development was successful if such performance metrics

tend to improve. Sometimes the AI is allowed to play against itself or is being controlled and

taught by an independent set of examples.

So far, however, there has not been an AI capable of achieving complete self-development,

that is, a cycle where AI continuously improves at a relatively steady rate without human

intervention. Many models exhaust themselves, or get overfitted. Even state of the art

Generative AI models (e.g., transformers) are not safe from these types of problems:

Chat-GPT stagnated in its development and it is only capable of simulating thought and

guessing next words, but unlike real human beings it does not have consciousness.

My thoughts on it are as follows: so far we were most likely unable to simulate (at least

openly) an AI which has a real consciousness and is capable of thinking logically without

being hard coded on how to do so and it is still significantly behind humans in many areas.

However a potential fix to that would be turning our attention to nature. We humans were able

to evolve as a thinking species capable of rapid self-development. Life as a whole evolved

extremely rapidly, their universe in the process of self organisations moved from gas fields, to

stars and planets. Slowly all the elements and molecules became a primitive cell without a

nucleus. Life started and soon humans appeared, the universe therefore is a self-developing

14

system. We can see that it develops very rapidly and exponentially: it took Billions of years

for planets to form, millions of years for life to evolve.

Human civilization had moved from the late neolithic age to the Roman empire over the

course of only a few millennia. And less than one thousand years separate crusades and the

first spacecraft landing on Venus. This made me think that we should focus on the

evolutionary approach and creature environment interaction in order to later apply the

knowledge acquired to design an AI with the ability to self-develop and self improve

continuously.

But it is nevertheless important to define a development as a process with respect to cellular

automatons, because greater complexity over time as definition is lacking.

All of the processes need a metric, a subjective concept such as development can be defined

with a help of one. Because development is subjective the same process might seem like a

development from one point of view, but like a stagnation or regress from another. When it

comes to country development metrics like GDP or GDP per capita can be used, or even HDI.

Yet to measure a development of a cellular automaton such metrics would be unusable.

Let us divide a problem into smaller steps, first let us bring up the notion of complexity. You

can theoretically measure development of a simulation, by how complex it is, for example

how many interactions happen and by some other metrics which potentially we would be able

to define and analyze in a clearer way.

However complexity in fact does not always mean development, for example if we want a

good shovel we want it to have a somewhat simple shape, making the shape more complex,

filling the blade with composite holes and adding spikes would not make the shovel better.

This means that the development is primarily subjective with respect to the environment,

since the point of life is to survive and reproduce. Obviously development and survivability

are not the same concepts, for example some bacterias can survive and form colonies in the

environments human will perish in, while being significantly less developed live form than

humans, meaning that in the simulation we are making an evolutionary adaptability is an

important and mandatory, but not the only criterion of success.

15

Therefore five development criterions I was able to derive are as follows:

1.​ Survivability: ability of a creature to survive in an environment

2.​ Adaptability: ability of a creature to adapt to the changing environment

3.​ Complexness: how complex the creature ruleset is

4.​ Complexness evolutionary dynamics: how does complexness change as creature

adapts

5.​ Impactfulness: how strong is the creature's influence on the environment.

These rules are still broad, however they can apply better since objective metrics can be

developed to measure them. Some concepts like “creatures” and “genome” might still be

unclear, as when we were talking mainly about the classical cellular automatons so far. We

will soon define them better. For now it is worth noting that the genome corresponds to the

state and creature to the cell. Also important to note, that these five characteristics are present

and strong for humans, but not for rocks, tentatively pre-affirming this theory.

The particular metrics used, as well as practical implementations of their calculations would

be available in the third chapter, concerning the study design.

2.4​ Important Concepts

Before we would be able to proceed to the study design section I would like to make a few

definitions and to outline some concepts which I will use later. Since we are making a

transition from a classical cellular automaton, to a complicated cellular automaton.

Fundamentally not much is changing, but I would like to avoid confusion and get the

terminology sorted out:

●​ Cellular automata or cellular automaton: in this thesis, these two terms are used

interchangeably;

●​ Genome: a string from which simulation would be able to parse the information about

the creature, its body parameters and certain behavioral biases;

●​ Creature: a “unit” in the simulation, with ability to move;

●​ Mega creature: agglomeration of creatures, typically with each element having unique

specialisation or a specific role;

16

●​ Hex: a cell of which the environment is composed, as opposed to classical cellular

automaton simulation, those are hexes, not squares, each has 6 neighbours (despite

there being 12 pentagons) but individual cells would still be called hex;

●​ Energy: a characteristic of each hex in the environment. Is defined by a dynamic

function with stochastic cyclical elements. Is used to simulate changes in the

environment and create evolutionary challenges for the population, as well as to

bolster creature environment interaction. Creatures would be able to store/release

energy, whilst the environment can accommodate it;

●​ SUI (Simulation User Interface): a visualisator program that would be showing us the

environment visually, instead of numerically.

●​ RC (Render Core): a Java application which will do the rendering of the final project.

Other analysis would be done by working with save files (history of states of the

simulation).

17

3.​ Study Design

3.1​ Introduction to Project Design

3.1.1​ General Description

The project aims to expand upon the classical cellular automaton model by simulating

classical evolutionary principles via addition of genome based sexual reproduction to each

‘cell’ of an organism. Each cell in the proposed simulation will have an arbitrary long genome

which would define the way a ‘cell’ would interact with the outside environment, that is, how

it would react to its surroundings; compete for resources, interact with other cells and

reproduce.

3.1.2​ Implementation

3.1.2.1​Environment

Let our environment be represented as a 2-dimensional plane, subdivided into pixels of equal

size. The plane size is planned to be made parameterizable (i.e., it would be possible to select

a size before starting a simulation). Another important feature of such a plane would be the

possibility to make it loop on the or/and axis (Illustration 2). The point of this feature is to 𝑥 𝑦

avoid system’s impairment around the border region (which is a very common problem for

many similar situations).

Each pixel of the environment would be able to host a cell, just like in vanilla CGL. But

unlike CGL, it would also have the ability to store energy (see illustration 1).

0,c 0 1 1 4

0 0 0 3,c c

1 8 2 1 c

18

4 1 2,c 2 c

Illustration 1

Example field. Structure: energy, cell. Each cell of the above table would be a cell in the

simulation environment.

1 2 3 4 5

Illustration 2

The environment is wrapped around, so neighbours of 3 are 2 and 4. While neighbours of 5

are 4 and 1.

3.1.2.2​Energy

Since the simulation setting is a ‘game-of-life’-like simulation, I will also need to revoke the

live/die/reproduce criterion to make it work adequately with improved ‘cell’ mechanics. To

this end, let us define the notion of energy. In our simulation setup, every cell would need

energy to live/reproduce, or take any other actions. If a cell runs out of energy, it dies. The

energy costs would be subdivided into two main categories: maintenance fee, an energetical

cost a cell would pay just to exist - it would be based on genome and organism characteristics

(stronger ones might need to consume more), and action fees - how much an organism would

pay per action.

In the simulation (at least during early stages of development) the energy distribution would

be similar to the one of digital tree evolution projects. In other words, there would exist an

energy source, (let us call it “sun”) which at the start of a new round would add an amount 𝑥

of energy to every pixel on the plane of our environment. The would not be constant, 𝑥

contrary to that it would be possible to express as some periodical function with 𝑥

trigonometric elements, to simulate day/night, or seasonal cycle. By controlling the value of 𝑥

it would be possible to experiment and see how life adapts to rapid changes to the

environment.

19

Any cell would also have some energy stored to consume when needed. When a cell dies, it

leaves some energy behind on the tile it died at. That would also allow to implement

predatory behaviour into the simulation, together with parasitism and would allow for more

complex interactions and more dynamic behaviours of cells in general.

3.1.2.3​Reproduction

Sexual vs. Asexual: reasonings

My simulation would permit both types of reproductions, because both are present in the real

world as well. The type of reproduction an organism would be practising would be specified

in its genome.

From my research/previous experimentation, I was able to come to the conclusion that sexual

reproduction is in general significantly better - since it allows populations to evolve faster.

Imagine the situation, an optimal genome is 12345 (highest adaptability). And in the

asexually reproducing population there appeared (via mutation) two organisms 02000 and

10000, both of them have element of correct sequence, but only one of them would win in the

population, since in the asexual reproduction there would be no way to combine them

together quickly.

Asexual Step x (base step) Step x+1 (mutation) Step x+n (all others

died)

Sample genome 1 00000 02000 02000

Sample genome 2 00000 00000 02000

Sample genome 3 00000 10000 02000

Sexual Step x (base step) Step x+1 (mutation) Step x+n

(descendants of

20

02000 and 10000

dominate)

Sample genome 1 00000 02000 12000

Sample genome 2 00000 00000 12000

Sample genome 3 00000 10000 12000

One large population sexual reproduction fixes this problem by having the most adaptable

cells split their genome evenly to send to the next generation preserving successes of all

members of the system, instead of just one most successful. Of course there are problems and

disadvantages, like per say the fact that it might happen that “good part of” the genome is

simply not selected on the next stage of offspring, but these problems are simply covered by

the large population size, where by law of big numbers the population would be able to

evolve correctly.

Asexual reproduction details

In the asexual reproduction a ‘cell’ would just create an offspring on one of the sides (where

exactly specified by genome). The genome would be taken from its parent, with some random

small altering (mutation).

Step 1

Empty cell Empty cell Empty cell

Empty cell Cell A Empty cell

Empty cell Empty cell Empty cell

Step 2

Empty cell Empty cell Empty cell

Cell A offspring Cell A Empty cell

21

Empty cell Empty cell Empty cell

Sexual reproduction details

In sexual reproduction a cell would find a partner capable of reproducing. They will split the

genome 50/50 and create an offspring in any cell adjacent to parents.

 Step 1

Empty cell Empty cell Empty cell

Cell P1 Cell P2 Empty cell

Empty cell Empty cell Empty cell

Step 2

Cell C1 Empty cell Empty cell

Cell P1 Cell P2 Empty cell

Empty cell Empty cell Empty cell

Lifespan

A cell would have a life expectancy, the average would be specified in the genome and it

would follow a Gaussian distribution. Hence, each individual life length would be somewhat

unpredictable. For example, if the life expectancy of an organism is 20 turns (and standard

deviation of 1), it could live for 18, or 21 years, not necessarily 20.

3.1.2.4​Simulation Order

The naive solution to the problem would be to make a cell by cell implementation, but it

would give cells that start an unfair competitive advantage. Also the newborn cells, they

would either be over privileged or placed in an unfortunate position. So classical list stack

implementation would be flawed.

22

Approach 1

1 2 3 4 5 … 1 2… If a new element appears it would be in trouble because all other → → → → → → →

cells would be able to take ‘action’, whilst it would not be able to do anything.

Approach 2

2 3 4 1 5. An approach would be to select cells randomly, sampling without → → → →

replacement. But that would be very chaotic on a smaller simulation, and would make the

project much more difficult to debug. Plus there is an extremely high risk that the simulation

would go out of sync, killing complicated organisms like colonies and composite nomads.

Approach 3

Making a linked list, where every cell would have a next/previous attribute. Each time a new

offspring would be born it would be inserted after its parent. Each time a cell dies it is simply

removed and the chain is restored. For example:

Cell 1 (Prev 4 Next 2)

Cell 2 (Prev 1 Next 3)

Cell 3 (Prev 2 Next 4)

Cell 4 (Prev 3 Next 1)

Assuming Cell 2 died, we simply restore connection, since due to the chosen data structure

we can restore the flow without damaging integrity. Reconnecting cells 1 and 3:

Cell 1 (Prev 4 Next 3)

Cell 3 (Prev 3 Next 4)

Cell 4 (Prev 3 Next 1)

3.1.2.5​Genome and Mutation

Genomes are fundamental for our simulation. In the genome all the characteristics of a cell

23

would be stored (such as reproduction, life expectancy, behavioural preferences). An example

of data structure hosting the genome is given below:

Genes Val 1 Val 2 Val 3 Val 3 Val 4 … Val x

Gene 1 002 232 212 100 011 .. 071

Gene 2 093 081 122 062 100 … 164

Gene 3 051 023 205 111 034 … 078

Gene 4 044 082 142 001 044 … 195

… … … …. ….. ….. … …

Gene 𝑛 172 010 029 091 156 … 255

Genomes would be expressed as a sequence of genes (likely 16, 32 or 64 genes per genome).

Note that by genome I do not mean the classical scientific definition of a “building unit”, but

a complete set of characteristics/instructions for the cell. During the simulation it would be

possible for the cell to switch between different behaviours.

The cell will have some physical characteristics, such as:

●​ Health points

●​ Energy storage capacity

●​ Livespan

and many behavioural characteristics, such as:

●​ Movement

●​ Aggressiveness

●​ Reproduction

●​ Energy management

Each “Val” from the table above would represent one of these characteristics. During each

new turn the execution might go as follows. Suppose the gene (tiny part of it) is structured

like this:

24

121-001

We first take a random number from 0 to 256. If it is above 121 the specified action would be

taken. The genome would be big enough to account for all potentially takeble actions.

Active genes

Is an idea I saw on Simullife Youtube channel, which also does cyber biology. There to allow

for many different behaviours the gene is split into a table of many smaller genes responsible

for fewer interactions and then the cell picks the active genome that suits it the best depending

on the environment.

Energy Management

To allow for more complicated life forms the cells would have the ability to transfer energy to

each other to allow specialisation. Because the simulation would be made in a way in which if

a cell is good at extracting resources from the outside world it would have debuffs on a

physical level, promoting diversification and formation of more complicated systems.

For example the cell which is specialised at extracting resources would not be able to attack

others. But would have an opportunity to give energy to offspring, which in turn might switch

to predatory or parasitic behaviour.

The genome would be subdivided into 2 different parts. The first part would concern the

physical characteristics of an organism. How fast is it? Can it eat other cells? What size will it

have? From there we would derive an energy cost for an organism to last for the next round.

The second part of the genome would be concerning the behavior of an organism. Different

biases (Granivorous or Carnivorous) propensity to stay still, propensity to nomad lifestyle,

propensity to symbiosis, etc.

From a practical standpoint I have further developed my concept: each organism would be

similar to a small artificial neural network (1 hidden layer) where the input would be

environment characteristics, whilst the output would be one amongst all possible actions

25

which a being can take during a turn.

This implementation's big advantage is the fact that the creature would have the starting

characteristics and biases in its genome (starting weights and balances), whilst would have an

opportunity to adapt and change its weights and balances during the simulation1.

3.1.2.6​Observations on Simpler Systems

Looking at most basic simulations I have discovered that there are only three scenarios that

can happen when dealing with trivial simulations:

●​ Scenario 1: perma-statis. The simulation reached stability (or loop with step 1), where

either all cells died, or all cells stuck at their static places.

●​ Scenario 2: loop. CGL gliders are a prime example of a loop. Cells engage in

repetitive behaviour, each steps they return to the same configuration (might move 𝑛

as a whole).

●​ Scenario 3: bifurcation, chaos. The system never stabilises and just acts stochastically.

My final product is expected to end up in one of the following scenarios. But before I expect

some time of ‘interesting development’ when different life forms appear and compete for

resources. Since the simulation is complex, the time before an appearance of an ultimate gene

is expected to be somewhat long.

The calculations are going to be executed using matrices/tensors, whilst there would exist a

separate visualization program, which would make us able to observe the situation as it

proceeds.

1 Have not decided on how to do this exactly, probably would be some process similar to mutation, but instead of
being random it would be guided by an immediate reward system.

26

3.2​ Simulation Architecture

3.2.1​ Creature Architecture

Illustration (A1)

In this illustration we see how an individual creature would be structured. The creature's key

component is a genome with length less or equal to 2048. As said previously it is subdivided

into cellular composition, creature characteristics and decision biases, where individual cells

take up only a small size of a genome. Most important factor would be creature characteristics

and decision biases, since most of the creatures would simply have one cell to begin with.

Later on the creature would interact with the environment via handling energy, costs and gains

some would be stored affecting the environment, which interacts with a creature by providing

energy and being interacted by a creature via creature receiving energy as a deposit or

releasing it.

27

Illustration (A2)

In this illustration there is a bit more insight on the inner workings of energy function. It

would be a noised triple nested sinusoidal function. With smallest cycles being called

day/night more global to be called seasonal and most global to be climatic. Obviously it is just

a tag assignment, to make a mathematical function have some real life analogies. The SREDA

block might seem unclear for now, it would be more clearly defined in the next illustration.

28

Illustration (3)

Clarifications: the aim of the block is to avoid the environment/creature interaction from

getting into any sort of constant equilibrium. The environment itself is as simple as possible

(at the start), but as soon as creatures apply different actions to it it reacts accordingly and

develops together with them.

Another purpose of such an environment auxiliary would be to implement a logger function

there, which would take the simulation data and create a json formatted save file, that would

be consequently used during visualisation stages as well as parsed for analysis.

It is also important to know that there exists two separate parts of the project: the

Python-based simulation code and Java-based render code. The reasons behind choosing Java

for visualising the execution lies in the existence of more potent libraries for 3D visualisation,

whilst Python was used in the simulation due to its speed.

29

3.3​ Data Visualisation Environment

Visualising a complicated cellular automata can prove to be a big challenge. The first big

problem which we needed to deal with was the borders, as I told previously infinite

automatons are incomputable in the long run, but bounded are difficult to preview. I knew that

I needed to have a loop to visualise the final product. At first I sought to simply have a 2D

interface neglecting the visual imperfections. Yet later I came to the conclusion that it would

not match with the overall spirit of the project and decided to bound the simulation by putting

it on the sphere. Also instead of a sphere I wanted to use hexes, because unlike squares the

diagonal and directly adjacent hexes are equidistant to each other.

Illustration (B1)

An early prototype of the interface.

This caused some fundamental topological problems: the problem of tiling the sphere with

hexes has been known for a long time and has been proven to be impossible and unsolvable.

During my research I have found two potential alternatives: first one would be to use

Lobachevsky geometry in 3-dimensions and generate a slightly corrupted space in which such

action is possible, however due to the nature of a sphere such modifications would be visible

and would create an visual unpleasantries as well as dramatically increase the computation

power. The second solution was slightly different. By adding 12 pentagons to the tiling to be

used as reper points, it actually was possible to generate a desired tiling to an arbitrary large

size.

30

The process I used for it was as follows. To create a Goldberg (also known as geodesic)

polyhedron I started by taking an icosahedron. Later I applied a truncate operation on it,

cutting away its edges (with power = 1/2). Later on I dualed it, interchanging edges and

vertices. I have found this algorithm on the internet and a particular website on which I found

it is cited in the bibliography. But the Python algorithm and data types to represent vases and

vertices as well as points was developed by me from scratch, the same can be said about dual

and truncate methods, not libraries were used for it.

This code allowed me to make a visualization program with a predefined geodesic

polyhedron.

Illustration (B2)

Here an empty field is shown. There are no creatures in this image. There are hexes and

pentagons here, the triangles you see subdivide hexes for better visualisation purposes, as well

as for the individual cell map mode (TBD).

A widely accepted definition of truncation would be: an operation in any dimension (our case

3) that cuts polytype vertices creating new facets in the place of each vertex. In our case the

operations were conducted on points, faces and edges files that helped to identify where “cuts

31

should be made”. Vertices were cut half distance between the center and the said vertice, from

both sides, keeping a half of previous edge lengths.

As for duelling fust like I said, vertices and faces switch places. Pairs of edges and pairs of

vertices behave accordingly.

On Illustration B1 one was most likely able to see the mapmodes label: it was introduced but

not defined, so let us fix this misunderstanding. Because our simulation is going to be

extremely complex and complicated we need to be able to see all the nuances of cellular

composition as well as to visualize some additional info about creatures' state of being, in

simple cellular automatons.

Like CGL per se there exists only 2 states, which are easy to depict, in some simulation there

exists 3, 4 or even 5 states which are also RGB depictable, but in our case we have much

more combinations (genome is massive) and so the need arises to somehow visualise all that

plentitude and diversity.

In order to do that I have decided to implement the mapmodes feature commonly used in

modern strategy games, which are faced with similar problems. We will have a few

mapmodes depicting different information about the cells, for example their life expectancy or

aggressiveness with color.

This would allow us to represent more information that we otherwise would have been able to

represent. This does now imply however that everything would be visualisable, we would

need to make some sacrifices or dimensionally reduce and aggregate the genome information.

To reflect on the visualizer imperfection however we would use save files for a more rigorous

analysis with better information extraction possibilities.

3.4​ Save File Handling

As discussed above, the point of save files is dual, firstly and primarily they were planned to

be used simply to be plugged into the visualisation tool and be parsed. Yet it turned out that

visualizing the entire information would prove to be an almost impossible task, so save files

32

secondary usage lies in the fact that they store the entire information about the simulation in

an easily accessible format.

We are able to separately open and parse them in a Jupyter notebook and use all available

Python libraries for data analytics (e.g., Pandas, NumPy and Matplotlib), to handle and create

graphs.

The structure of the save file is simple. It is essentially an array of Python dictionaries casted

to string. The dictionaries represent a graph, for each ID of each simulation cell the first

element is an array of neighbours, the tiles the said tile is neighbouring (5, 6). Thankfully,

unlike Java, there are no predefined sizes for an array and handling of this issue is automatic,

otherwise a shadow tile would need to be created like -1 to add six neighbours to the

pentagons. Afterwards there is creature data storage: every cell and its genome from which

we are able to parse the data that interests us during the analysis.

One potential limitation of these .json files, is that they weigh a lot and due to us requiring a

save file for every turn of every run (of course we can discard them, but we might need them

for historical analysis) it would be quite inefficient memory wise. A proposed solution to that

issue would be implementing a zipping algorithm, or using an existing one to zip save files in

the storage, that would converse the memory, but we will pay for this with growing

computational costs and greater code complexity (deemed in the end not worth it, since

memory costs are big, but bearable on commodity hardware).

Lastly regarding save files I would like to mention that there are sometimes bugs related to

parsing which arise with the inability of Python code to always recognize special characters

within a genome like { } therefore in a final version of the project genome is only represented

alphanumerically.

33

4.​ Methodology

We have reached an important milestone. Beforewards I mostly talked about various

theoretical approaches to the topic, outlining theory and its concepts as well as talking about

high level ideas, without going much into the results. Despite I have outlined the practical

implementation of the graphical part of the project as well as saves I still have not talked

about what results were yielded, what data was collected and how data was handled. When it

comes to the practical implementation all previous progress logs as well as all previously

written code related to the project would be in the Appendix, so I would not talk more about it

here. The goal of this section is to actually describe the experimentation conducted and

answer some of the most important aforementioned questions. In this section we would not

talk about the findings and analyze detected trends yet, we would only outline the toolset that

I am planning to use during the analysis. I consider it important because there are many

potential approaches to collect and interpret data, and whilst using all of them and picking the

best one is certainly a preferable action, it is regretfully by no means feasible. We are always

stuck choosing from a broad set of methods and only using the seemingly most adequate ones

- for example if we wanted to use prescriptive analysis the resulting output file would need to

be formatted in a way accepted by the majority of machine learning models (as a first step),

say formatted with integers and floats. But I am only planning using descriptive, diagnostic

and to an extent predictive analysis, since it is difficult and implausible to prescribe

something for a self-developing model. So far our goal is to only measure the development,

by the first five criterions outlined previously in Chapter 2 as well as to objectify them as

metrics and ensure that they are growing. This would mean success for us, and yes of course

further researching the model to notice deeper patterns and relationships is definitely

preferred, but it does way beyond the scope of this report. To use this model for future

endeavors a basis is to be constructed first. Of those five rules, the first three and fifth are

extremely straightforward since they can be measured just by looking at the simulation:

survivability is whether the creature has enough energy, complexity is about genome and

impactfulness is how much energy the creature released into the environment. The only rule

metric that causes problems is the complex trend of dynamic evolution, for it we would need

to work with savefiles over time and plot complexity as a function of time for many different

creatures, to avoid mistaking a rare anomaly for a trend.

34

4.1​ Data Collection

The principles which we abide by when collecting data are relatively simple. When starting a

simulation each turn we create a save, in which all the data about the current turn of the

simulation is saved, permitting us to get turns from to to , where stands for final 𝑆
0

𝑆
𝑁

𝑆
𝐹

𝑆
𝑁

state. These saves in turn are saved in separate folders, one folder per run, not to confuse the

same ’s of different simulation runs. 𝑆
𝐹

The data collected is the genome of the creature for every single hex on a sphere. As well as

information about connections of geodesic polyhedron faces with one another. For

computational cost efficiency we have decided to also separately save most important parts of

the genome, to avoid parsing it each time for mapmodes, as well as during the analysis.

As per the individual metrics the situation is as follows:

1.​ Survivability

Let us define a creature age as , in our case (where is the turn a creature has 𝐴 𝐴 = 𝑆
𝐷

− 𝑆
𝐵

𝐵

appeared on the map and the turn in which the creature perished). It is worth looking at the 𝐷

mean value of creatures life expectancy, at any particular moment as well as overtime, to see

for the adaptability. But the survivability of an individual creature is not simply its age. Some

creatures are short lived, by their genome so the creature life expectancy should also be taken

into account. Let us define the creature's life ratio as , where is the (𝐿𝑅) 𝐿𝑅 = 𝐴/𝐸𝐴 𝐸𝐴

expected age of the creature according to its genome. When the ratio is 1 or above we can

conclude that the creature performs relatively well, else we can conclude that the creature

lives less than expected or is being killed. The cause of death is also important, because if a

creature is dying of energy deficit it can imply evolutionary failure, whilst being eaten is more

chance dependent and maybe not as affirmative of a sign. In general that can be incorporated

into a formula simply as a factor. Hence we define survivability as , with 𝑆 = 𝐴/𝐸𝐴 · 𝐶𝐷 𝐶𝐷

being the cause of death. This could have been handled by SREDA block, but since it is done

outside of the simulation and the metrics are to be objectified from my point of view I will

just give cause of death some arbitrary values, which would reflect how successful

(unsuccessful) each outcome is, with death of old age being 1, death by killing being 0.75 and

35

death by lack of energy being 0.5. These values can be changed depending on the researcher’s

values, since survivability can be seen as a subjective metric.

2.​ Adaptability

Adaptability is in our case essentially the performance of survivability over time. How does a

creature perform over the course of its life? Since we are not interested in mixing local and

global changes, we at first would look at an individual creature with the same genome and see

how much food (energy) the creature is getting over time, in times of moderate changes of the

environment.

Later on globally we would look at how the mean and median survivability changes over time

as well as global energy consumption and depository by all the creatures. This data would be

stored separately from the visualizer, since it is only capable of opening, handling and dealing

with only one save at a time.

3.​ Complexness

Complexity, unlike the two previous characteristics, is going to be measured solely by looking

at the genome. It would be a maximum depth akin to the one of a “decision tree” of the

genome plus the average decision tree depth. That is needed to evaluate how complex the

creature is as a whole, and what is its most complex possible decision. Because the genome

segment might be as follows “if the cell above aggressiveness is above 0.5, move left”. But it

could also be “if the cell above aggressiveness is above 0.5 and my power below creatures

power, move to the side where there are least creatures.”. The tree depth is defined as a

number of conditions in each particular segment linked to the behavior of a creature.

4.​ Complexness dynamics

Nothing new, very similar to the previous point put over time. We would need to look at save

history and construct a plot of the measure defined above. It would allow us to see if globally

creatures as a whole and therefore a system have a trend towards self-development, or are

they limited by the environment and forced into degradation or stagnation. For example, there

exists some simple solution to continuously do good and adapt well and even at different

36

energy levels this “META” works discouraging the evolutions and breaks the system by

bringing it into almost sure equilibrium2.

5.​ Impactfulness

Simply as a measure of how much energy a creature is releasing into its environment. Inside

the SREDA block this release energy is handled and is sent to affect the energy generation

function on top of the noised sinusoid we talked about earlier.

These five metrics are later summed, as greater means better for all of them. Therefore a

continuous growth, or at least like perpetual periodic motion (cycles) means (would mean)

that we have completed our task of developing such a system successfully. We can tolerate

some temporary falls, since when dealing with stochastic motion and a lot of randomness and

complexity that often happens, we only care about overall positive trend, especially among

multiple attempts, failure of several runs would not be considered a project failure, such a

demonstration of such a development by even a fraction of the tested worlds (even just one,

but better more for replicability) would prove the possibility of such a simulation’s existence

and would definitively prove out point.

4.2​ Handling Replicability

Replicability in the context of our simulations does not mean the ability of the simulation to

demonstrate the same end result or behaviour continuously, multiple times in a row for all the

possible cases. Indeed this is not required, we are only interested in a small fraction of the

total cases to be successful, because we only need to prove a possibility of a certain

phenomena existing and in order to do that we are required to have a strong understanding of

what are we measuring, which we already have and what would be considered a successful set

of trials, whilst what would not.

A successful trial is, as specified before, a continuous long term growth of the five metric

agglomeration. Whilst a set of trials are going to be considered successful when among 𝑁 𝑋

2 When dealing with random variable (and in our case stochastic factors during sexual reproduction stages) we
can not talk about limit, instead we use concept of “almost sure limit”, extrapolated by me into the concept of
“almost sure equilibrium” where equilibrium is reached, unless something super improbable starts continuously
happening.

37

trials at least 1 demonstrate the desired behavior, of course the higher the ratio of successful

trials compared to the failed ones the better, but one is sufficient. The logic here is somewhat

similar to the reasoning behind Collatz conjecture: if we are able to find at least one example

of a number that never reaches 1, we would be able to proclaim it to be solved.

4.2.1​ On the notion of gambler's ruin in the context of cyber biology

In statistics a “Gambler’s ruin” is defined as a theorem that a gambler that plays a game with

a negative expected value will eventually go bankrupt regardless of their betting system.

Applying this concept to cyber biology we would be able to rephrase it in this manner:

We can hypothesise that certain rulesets of cellular automatons might create a system, where

the expected value of a development function on average is decreasing over time. That would

mean that no matter how well the simulation is performing from turn to turn , it is bound 0 𝑋

to fail. Since we only can project the simulation for the finite amount of turns we would never

be able to identify a “Gambler’s ruin scenario” neither by experimentation nor theoretically.

So we can only make an assumption, that if the simulation was running for long enough and

the average development has continuously and steadily grew, means that the ruleset does

permit a continuous growth, yet due to the concerns outlined and described above the proof

might never be completely rigorous, requiring greater replicability and more retesting for a

more prolonged time periods to increase a probability and strength of our hypothesis.

Earlier in our thesis we have managed to prove that a determined ruleset on a finite space with

a finite number of spaces is bound to be periodic with periodicity greater than 0 (Theorem 2).

This however does not apply to our simulation, due to the usage of stochastic factors. When it

comes, however, to almost sure convergence, we do not have a way to prevent it from

happening, except for the hope that SREDA and dynamic environment would make such an

equilibrium impossible.

There are concerns however that all possible systems of control which were used to break an

equilibrium would eventually enter an equilibrium with the system itself. The last counter

factor is the ability of a creature itself to influence the environment, because according to the

38

main hypothesis of my thesis this is meant to induce a complete cycle of a non-stop

self-development.

4.3​ Developer Tools and Methods for Data Analysis

Jupyter notebook

Is a very important base, supports interactive computing on multiple languages, in our case

we are interested in python and its libraries. I decided to use it due to its convenient format

and broad flexibility, as well as availability of it in the browser, together with the export to pdf

option. Most of the progress logs were completed in it.

Matplotlib and Seaborn

Very important python libraries, which I am using to construct graphs. Very versatile and

quick. Are able to work with databases and can show much more compared to the SUI

application.

Numpy

C-based library, which I am going to be using for quick operations on large data. Can deal

effectively with arrays and matrices, is quite useful despite vanilla Python offering quite a lot

of tools to perform calculations by itself.

Scikit learn

For any sort of predictive modeling. It is a little bit out of scope for our project, but it is so

potent and versatile, so I decided to occasionally use it anyway, to develop the prediction of

how the simulations are going to perform in the future.

Version control

Since most of these libraries would be used in Jupyter notebooks, data from which would be

later partially reused here, partially uploaded to Github repositories version control would not

play as crucial of a role. On Github you would still be able to find the conventional

requirements.txt, but they are not supposed to cause difficulties. As per simulation itself I am

mostly avoiding any non vanilla libraries, making the code more safe to run. It still requires

Python 3, preferable v3.12 to run well, however using the latest version is expected to work.

39

Lastly it is import to note that since the source code was modified and altered over long

periods of time the most up to date code documentation would be stored right within in as # or

“”” comment sections. The naming conventions I have decided to use would still be in

accordance with the architecture designs and pipelines shown in the second section, in order

to make understanding the code simpler to the user. In all other unspecified cases classical

pythonic naming conventions are used in Python code segments, whilst in Java I decided to

stick with the camel casing approach.

40

5.​ Findings and Results

5.1​ Preliminary Analysis

In this first section, we will not focus on operating the final prototype, but preliminary

analysis of picking correct types of environment and verifying architectural and project design

decisions (mainly concerning sexual vs. asexual reproduction types).

When moving between the theoretical concepts provided in the first two chapters towards the

practical implementation I have encountered a new set of problems and challenges, but took

significantly more time to solve than anticipated. In this section I am going to show off the

results of building a practical implementation of a genome which would be used in our model.

At first I constructed a simulation of a hypothetical genome for sexual and asexual

reproduction. Where in the first case the genome of an offspring is represented by a mixed

genome of parents and in the later the genome of an offspring is just a genome of a parent.

Later on, mutation would be implemented for both of these systems and we will see how its

rate is affecting the population.

Before introducing the environment I was viewing a genome just as a -length string of 𝑛

alphanumeric characters. For example “abcdefgh” where the adaptability would be judged by

the genome proximity to the “ideal” genome (an arbitrary defined string, before introduction

of the environment).

We would look at the different trends present in the simulation as we play around with the

various parameters and look at the different trends present in the simulation. Our particular

focus would be the adaptability of the simulation.

During the initial phases of testing the parameter , notably the length of the genome, was set 𝑛

to 50. It was long enough to offset potential stochastic fluctuations, but not too big to slow the

simulation down in the long run. Later on the genome length was expanded in order to match

the growing requirements faced.

41

Below are some graphics we constructed after running the simulation for 10,000 generations.

Mutation rate type A is when the total change in genome has a 5% chance of happening and

type B, when such chance is for an individual string.

Diagram (C1)

We can see that at a 5% chance to have a single change in a string it takes approximately

around 4000 generations to reach max adaptability. Afterwards adaptability does not

noticeably decline.

42

Diagram (C2)

We can see that when the mutation chances are reduced it takes longer for the population to

adapt to the current static environment. Note that the stability in the end is only due to the

environment being static, later on it would be subject to change.

Diagram (C3)

On this diagram we can see the continuation of trends from the last one. The adaptation to the

static environment is even slower, but still generally monotonously increasing.

43

Diagram (C4)

As expected, type B mutation takes effect much quicker, and has ultimately a higher rate even

at 1%, because of the expectation of a change in type A terminology would be

.5, hence way higher rate, and it would be even greater with a higher genome. 0. 01 · 50 = 0

Diagram (C5)

The adaptability is showing signs of continuous growth as mutation rate is growing.

Diagram (C6)

Here we can see that we overshot with parameterizing for mutation rate, it is so quick that

successful mutations simply do not last for a reasonably prolonged time period.

44

Now the results have changed significantly, but adding a degree of realism since mutations in

our simulations are now closer to the real ones. They are more stochastic and good

distributions are maintained, avoiding mutations of the same small size which would be

insufficient for our simulation.

At a very small probability of mutation we reach 50 adaptations pretty quickly as well, which

is understandable, since nothing about the simulation changed fundamentally. But at a high

mutation rate we can see that the population does not reach the ideal genome, since they

mutate too quickly. The problem from the last part when negative mutation possibilities

outweighed positive mutations possibilities is hitting stronger at a higher mutation rate.

Note that from now on we will be using our Type B mutation (that is, character based

mutation) because Type B allows for mutations like "aab" "ddb", while also maintaining a →

probabilistic distribution (that is, "aaa" "aab" is more likely than "aaa" "abb"). → →

Conversely, type A mutation is incapable of that.

Now let us look at and analyze earlier stages of type B mutation to see the evolution of mean

adaptability over the first 1000 and 100 generations respectively.

Diagram (C7) & Diagram (C8)

Here we are able to clearly see the striking revelation, what seemed to be the start of constant

stability was only the beginning, as we can see in longer run, it was due to the fact that

evolutionary changes are happening quite rapidly over the entire population: when a better

genome is discovered the majority of the population switches to it. Some small oscillations

can be and are explained by the constant continued mutation, the new mutated (unsuccessful)

45

creatures are born, but with a failed genome they die out affecting the mean adaptability only

temporarily.

On Diagram C7, as instead, we notice an interesting step-based trend. This is most likely

because of the fact that there are periods of stasis (when no new good mutations appear)

followed by periods of rapid development (where a more advanced species quickly - matter of

a few generations - overtakes the population). As we can see the asexual reproduction model

successfully shows itself to be capable of evolving and developing given a static environment.

Yet with more creatures their model begins experiencing problems. If we have two creatures

who both had different successful mutations parallely only one would win.

Note in case of sexual reproduction the mates are paired randomly among the members of the

surviving population. We can see the results of a sexual reproduction on Diagrams 9 and 10.

Diagram (9C) Diagram (10C)

In the short run the results are amazing for sexual reproduction. By generation 1000, asexual

adaptability was only around 18/50 whilst sexual reproduction already made it to 40/50

adaptability. Also the rise is now more gradual.

In the long term however sexual reproduction has slowed down. This is not as bad since in

real life the environment is dynamic and it is important to catch up to the change quickly

rather than idealizing one particular static setup.

46

Diagram (C11) Diagram (C12) Diagram (C13)

Adaptability with sexual vs asexual reproduction at 0.1, 0 and 2.5 mutation rate respectively.

Here we can see a curious phenomenon. Both creatures reproducing sexually and creatures

reproducing asexually start at the same footing, but whilst the asexuals only managed to

create their dominant gene as direct and unchanged successor of one of the initial generated

creatures, the sexually reproducing creatures managed to combine all the material they were

starting with developing a significantly more adaptive genome. Yet with no mutations the

evolution came to a halt. In Diagram 14, we can see the impact on the mutation rate on the

adaptability for sexual reproduction.

Diagram (C14) - comprehensive summary of varying mutation rates for sexual reproduction.

47

5.1.1​ On the Notion of Genders

As we can see in our simulation there is no genders everyone can mate with3. This makes

sense and begs a question why there are genders in real life for most of the animals, except for

some hermaphroditic species (e.g., Lumbricus earthworms).

The reason lies in the fact that it is expensive for creatures to hold a complete set of

reproductive organs. So specialisation appears, which later becomes gender. It allows for an

even quicker evolution since now mating selection is more quick and does not rely solely on

the environment, also it takes less energy and allows specialisation of genders.

5.1.2​ Strength of Natural Selection

In my project at the start there will be no genders, but my hope is that by the interaction with

the environment creatures would naturally evolve into having them. There would be many

"Construction pieces" in the final project which would result in many potentially interesting

possibilities.

During the early stages of the project we were normalizing adaptability, yet it might be

interesting to see what would happen if natural selection was more weakly/strongly inclined

towards survival of the fittest. Let us add yet another parameter to our model to check it out.

Diagram C15 : effect of normalisation on mean change of adaptability over time.

3 Like in the novel Brave New World by Aldous Huxley.

48

Without normalisation more fit creatures do not perform as well (e.g., values 21, 22, 23 and

24 are almost the same, whilst 1, 2, 3 and 4 are not: from a ratio point of view 1/4 = 0.25,

whereas 21/24 = 0.875).

Diagram C16: Introducing environmental dynamicity.

49

Now there is yet one more experiment I would like to do. In the underlying philosophy of my

project lies the concept of a dynamic environment. Let us see how creatures would behave if

suddenly the ideal environment would also change.

Diagram C17: Sexual reproduction in the dynamic environment

5.1.3​ Closing Remarks

During this section I have started working on practical implementation of the genome for my

simulation. I have created most of the methods that I will use in the future. Also I have

conducted some research with basic reproduction simulation, which allowed me to gain a

practical understanding of the rules of evolution.

In the next section I will actually determine and demonstrate how the genome would be

structured in its final form. Plus answer the questions of what and how it would operate in the

final project and show the results of running it.

5.2​ Complex Analysis

When the simulation was complete I decided to launch a 20 trials 10,000 turns long, sadly due

to computation complexity I later had to reduce the simulation time to 2,500 turns, yet there

50

are no limitations or errors besides time and CPU power that prevent us from running the

project for greater amounts of time. Please note that from now on I will be talking about the

current project in its final form. In the previous section I dedicated some time and space to

show off the result of preliminary research and early prototypes, but as I said from now on all

the statements and information would regard the latest versions of the project in its entirety,

whose latest version is accessible on Github4.

First of all it is important to note that many simulations ended up dying out before turn 100.

An estimated fraction over 100 trials is 37/100 or 37% these appear to be a large figures, yet it

is important to note that over the course of this trials we only started with two organisms, who

upon closer inspections turned out to have both failed genome, causing the simulation to fail,

by roughly around turn 60. However if the simulation did not fail over the course of the first

100 turns it appears unlikely to fail in the future, over my 10 long term (2500) runs no signs

of failure were detected. The complexity and development of the simulation did not show or

exhibit any traits of strong degradation, yet due to the factors we will discuss in this section

later we can not rule out a possibility of such a thing happening.

Over the course of this part of the report we will be focusing on two trials, both on Github:

one was medium-term (350 turns), another was long-term (2500 turns). In the future it might

be interesting to attempt to run 2500, but sadly due to the deadlines there was no time to run

this process a sufficient amount of times to be able to derive conclusions and have the ability

to generalize trends at such a long period. I will be referring to the 350 turn experiment as

trial 1 and 2500 turn one as trial 2. Every graph would have a caption specifying the

experiment, trial and rounds it belonged to. Assume linear scale is used, unless specified

otherwise.

4 Note that due to repository size and file size limitations instituted by Github I could not upload many saves as
not to go beyond the 1 GB total threshold. Some save files whose zips were heavier than 100mb were either not
included, or split into two parts. I have attached a comprehensive guide on how to remerge them on Github in the
ReadMe file. I would also like to say that some screenshots which I was not able to attach, due to the thesis
having a mandatory < 15 Mb limit are also located on Github in the “resized screenshots” folder.

51

5.2.1​ Visual Analysis

Diagram 5.1A

Here we can see the process of visual evaluation of the simulation. A second trial is open on

the turn 2400. The simulation is currently in development mapmode. The colors are

normalised from greyish to blue with blue being less developed cells and whitish more

developed. This screenshot is attached as a demonstration to show how the project is working.

Due to size constraints it is descaled and lost proportions during de-scalement, also it is a bit

unclear, the original program has a far better resolution. This screenshot is attached only as a

demonstration and as a proof of concept.

52

Diagram 5.1B

Now you can observe the energy distribution among the cells on the 200th of the second trial,

the brighter the cell is the stronger energy it has stored currently. Please note again that it is

min max normalised.

Diagram 5.1C

53

Here we look at the 1200th turn of the second trial of the simulation. Files are present and can

be viewed from Github in the exact same way. Uploading the file to demonstrate the fact that

the cells sometimes tend to form large colonial clusters and leave huge eras empty, this is

especially evident when we observe the planet from a high polar angle.

Diagram 5.1D

Last image showing very basic mapmode 1, switch to gamemode 0, if you are interested in

only observing an empty icosahedron (triangular tiles 6 per hex and 5 per pentagon).

5.2.2​ Visual Inspection Conclusions

We are able to see that over the development period in turns of clustering there exist few eras.

First era is the initial era when the creatures spread around the world and populated it. During

the first stages there exists a creature “pangea” , a giant cluster of creatures with no gaps from

which they spread. The pangea phase lasts up until roughly ⅓ of the planet is covered and

usually ends by turn 250. Then a second era comes. Creatures start to die out due to starvation

and old age. Holes appear in the pangea, and it collapses into few large clusters. The

colonisation of the remaining space continues during the rest of an era. By era 3 the entire

54

planet is fully colonised, there are major clusters sometimes diagonally interconnected to each

other. The structure does not visibly changed for a long time, yet occasionally there are major

strikes in stochasticity which occur in correlation to the transformation of developmental

quantity into a global qualitative overall change, when a significantly better genome appears

and overtakes the population, during that time there exists a long period of anarchy and after

the period of anarchy is over continental structure is restored but this time with new creatures.

It is similar to development spikes discovered during preliminary analysis and matches my

“steps” development theory I talked about earlier. Yet visual inspection of singular is not

enough to determine the global processes which happen under the hood. We are confident that

continuous development never stops, but without definitive data for all the saves it would be

simply impossible to tell.

Therefore I have made a separate Python script to concatenate all the save files into a single

python dataframe and to be able to analyze and study long term trends over time. I will show

the results below, but beforehand I would like to mention that what would be shown below is

only a small fraction of potential analysis that could be done on the data. For future it would

be possible to come back to it and study means and standard deviations of these statistics over

time as well as concatenate a 3D tensors of 250 saves into 4D tensors of average simulation

performance (separately or together with those who lived or died).

55

Diagram 5.1B

Average aggressiveness of the trial 1 simulation over the course of 300 turns. As we can see

during initial stages (1 era) the values greatly fluctuated due to many potential genome global

configurations competing for dominance. Later as the situation settled in place it started

growing significantly almost doubling, compared to start. Later it went on a slow decline.

This shows us that at first greater aggression is rewarded, but as creatures adapt and learn how

to protect themselves the aggressiveness is facing slow but persistent reduction. The

aggressiveness metric is the combination of specified DNA predisposition for aggressive

action as well as brain decision biases for aggression (developed over the course of the

simulation). Aggressiveness ranges from 0 to 1.2 in this simulation but theoretically can reach

up to 10.

56

Diagram 5.2B

Here we can see the self explanatory population count over time, for trial 2 with 2500 turns.

We can clearly see rapid exponential population growth in the first era, that is later reduced

and becomes more tending to oscillation, yet still overall present and positive. It is interesting

to note that the population dynamics are always very quick and sharp, there are often rapid

spikes of population changes. In a way it resembles a Weierstrass function, with small trends

going quickly, as more slow paced general population sinusoidal cycles exist and the super

macro trends concerning the entire simulation and being roughly logarithmic. The maximum

population is 1620, minimum 0. Such trends can not be explained by the energy function

alone, since trends demonstrated by it are radically different and do not resemble logarithmic

distribution (see empty_energy_capped_low.csv in simulation folder on Github).

57

Diagram 5.3B

This diagram depicts the complexity of the genome over the first 2500, the time if the

simulation is regretfully insufficient to be able to clearly see anysort of visible trends so far it

seems to be oscillating between 8 and 12. Genome complexity is measured by the size of

delta of brain activity learning: the smaller it is the less new data affect the creature brain,

implying that the creature already learned a lot. Also it is summed with the DNA complexity

metric, defined by the number of globally recurrent patterns in the individual genome.

58

Diagram 5.4B

This is an expanded average aggressiveness graph over time, this is a simulation of a different

trial with different starting genomes. Here the situation is quite different, because a higher

aggressiveness of 5.4 prevailed. This range turned out to be much more comfortable and the

average has not changed much. This just demonstrates how important it is to run multiple

trials, since the results and their convergence are so different for the same simulations. I was

able to identify an overall sinusoidal trend with surprisingly decreasing -amplitude meaning 𝑥

that the situation becomes more chaotic overtime, that is an indirect proof that the

development and macro processes not only did not reach equilibrium, but are on the contrary

speeding up. This is good since it brings us more towards successful completion of our goal.

Yet more time and experimentation is needed to turn this evidence into the direct one, or some

other metrics (more on this later).

59

Diagram 5.5B

This graph depicts an average stochasticity over 2500 turns of time. This metric shows how

strongly genomes are changing on average as compared to the last round.

We are able to see that there exist two very strong changes of eras at around turn 100 (when

pangea is collapsing into continents) and at the turn 2,100 where no visible trends apart from

slightly grown fragmentation of continents were visible.

60

Diagram 5.6B

Average fertility over time for creatures. Used to be calculated from DNA fertility

predisposition, attractiveness (to account for the period before enough children are made to

judge, later on defactored (from 10 to 0.001) and become negligible).

As we can see, besides the early “bifurcation” (unclearness) period the fertility rate has been

declining very slightly with up and down trends locally. Yet the fall is quite insignificant. It is

safe to say that fertility remained relatively constant over time. At 300 turns trial the

simulation was different as initial starting fertility was lower.

61

Diagram 5.7B

Is rigidness, strength of the creature, factor by which attack damage is countered, but not

counter attack. The counter attack strength is decided by the creature's strength, not rigidness.

This parameter was also stuck in the small comfortable range and did not noticeably change.

For reference, like for many other values here the rigidness parameter is 0 - 10 inclusive for 0

and exclusive for 10.

62

Diagram 5.8B

Is essentially the propensity to move. This graph (like the previous three ones) also do not

demonstrate interesting trends as the propensity was changing and fluctuating only within a

mere 5% of its total range, meaning that a convenient spot was found, which the actual

simulation was able to find a convenient niche, which no crisis were able to break as time

went by.

Diagram 5.9B

This is a very interesting diagram, since this time we can see clear trends. An energy cost is

how much a creature needs to spend per turn energywise to survive (and do nothing): action

dependent energy costs are SREDA-determined factor arrays which are applied to energy cost

to calculate a solid spending function, which is deducted from energy storage. Killing a

creature means that the task is unfulfillable or the energy is less than 0. There is no maximum

value for the energy cost, for sake of our simulation, since some perks have exponential

growth functions per additional level, meaning that some setups can cost 1000s and onwards.

Obviously there exists a theoretical maximum level, but in short and even medium turn it is

barely achievable. As we can see the behavior of the function is spiky; there are short periods

63

in which energy costs are high, and periods in which they are low. There are very limited

periods of tranquility, always a change is present. The temporal continent collapse is

hypothesised to be strongly correlated towards the spike in energy consumption function.

Since as colonies die more energy is needed to survive on your own. This can imply the

existence of colonial symbiosis, since if everyone would have lived by themselves no such

spikes would have been happening as colonies collapse. This means that there exists some

feeding infrastructure and that overtime cells unite (despite having to prewritten functionality

to do so) in colonies. The death / collapse of colonies can be hypothetically attributed (this

time not enough data to notice correlation) to the fact that predators find a way to break them

and when colonies are rebuilt they evolve a defence mechanism against this predator. This is

great, since it involves a continuous self-development cycle of both predators and colonists

and according to our model and continued energy consumption spikes this cycle is ongoing

and has trends of stopping even by the late 2000th. As we will later, see the overall

development is increasing, confirming my line of thought.

Diagramm 5.10B

This diagram is telling us the DNA propensity to store energy. Unlike previous data it consists

of two parts: first part is the said propensity which is set to 5 and another is the percentage of

64

fulfilment of energy storage of an individual cell (that is, how much power a cell has during a

given stage, on average). At first the values for it are around 0.75% (cells start with this power

when born) and then it fluctuates between 50% and 60% meaning that since they do not fall

below during famines. A famine among creatures also reduces the “Gini coefficient” of

energy distribution rapidly for the average to stay the same. A rich creature should be even

more full with energy whilst poorer creatures should stay at around 0. Example 0.5 + 0.5 =

0.5 average and 1 + 0 = 0 average. The fact can be explained by the fact that when colonies

collapse the colony member cells die from hunger (and release some energy as corpses upon

their death) whilst the predatory or parasitic creatures (breaking into colonies like a Trojan

horse) become extremely well fed.

Diagram 5.11B

A very important metric. One of the components of developmental function. Recalling from

the previous chapter, it is defined as cell life expectancy (defined as memory length, but is

essentially life expectancy since memory length starts at 0/1 and is augmented 1 each turn)

together with its energy reserve factor and recurrent DNA patterns. As we can see over time

the creature survivability increases rapidly (at start it is not really 0, but since all creatures

lived for 0 turn survivability formula yields 0). At a longer distance we see strong spiles at

65

turn 450, when era 2 changed to era 3 with entire places with living potential on the planet

colonised and one at 1750 preceding the early 2000s major crisis.

Diagram 5.12B

Adaptability is the measure of average longevity together with an average change of genome

per generation and an average change in intellect (intellectual biases per creature). It

demonstrates strong upward trends, which however slowed down by turn 1750 (times of last

survivability peak). This is quite interesting and a further running of simulation might shed a

light on it.

As you can see this metric is unbounded and has large values, so in calculation of the

development function it is multiplied by a very small factor, to make roughly similar power

gradation with the rest of the variables used.

66

Diagram 5.13B

This is a complicated average storage by the creature, an ordinary storage variable summed

with SREDA variables dedicated to interacting with the environment, particularly observing

the storage genome and modifying its factor parameters to prevent it from capping and

simulation from stagnating. Example if cap is 10 and it is reached the cap is unfactored to

. This graph permits us to see that SREDA has a strong fluctuating effect of the 10 · 2 = 0

storage of the genome, no apparent trends are visible (reduction maybe). This reduction can

be justified by the fact that since vanilla complexity never outgrowth 6 the SREDA and

environment reduce the potential energy storage cap by defactoring it, factoring other more

needed and useful perks for this era.

67

Diagram 5.14B

This graph represents dynamic complexity, a product of adaptability times corresponding

SREDA variables (sreda_f). Is not very interesting on its own. Its only usage is to underline

some trends which were previously not visible by comparing this graph to the adaptability. In

the places of high correlation the adaptability can not be explained by stochastics factors (less

of it can be).

And as the difference between this two appears the segment of adaptability becomes more

stochastically justified, as sreda_f is directly correlated to overall simulation noise level

presence detected (might be confounding with lowest (quickest) tier cycles in sinusoidal

function of many rapidly (pseudo Weierstrass type, (in reality all have derivative albeit

rapidly changing rara)) functions present fere).

68

Diagramm 5.15B.1

Diagramm 5.15B.1

This diagram measures the impact creatures have on the simulation’s environment via their

interactions with the SREDA block. We can see that 2100 there is a spike at around the same

time there was an adaptability spike on one of the graphs we have studied earlier. There is

also a spike at , but it is not correlated with any previous events. The diagram is 𝑥 = 1100

difficult to use and for further interpretation of this particular image a log scale would be

used:

69

Diagramm 5.15B.2

We ended up also getting rid of the top and button 0.1 percentile in order to get a getter view

of the data. The impact of creatures on the environment is constant, but the rate of such an

impact rapidly varies with the tendencies of very strong spikes. Unlike with adaptability we

were not able to visually see and observe the rapid changes in the rendered class when such

spike happened, yet it could be due to the fact that since environment has a large inertia these

changes take a long time to come to effect and the hit from spikes is either delayed, or

exercised over time increasing the stochasticity of the simulation in the long term

(impactfulness and stochasticity are 0.24 correlated linearly and an even better time delayed

nonlinear correlation might exists). Creating a tier 1 (quickest) cycle which does not follow a

direct pattern like a sinusoidal tier 2 cycle (med) and logarithmic tier 3 (longest) cycles do.

Now that we have described the data let us attach a few files from trial 1 to give a reader a

sense of a somewhat (slightly broader picture) as well as some material from uncategorized

other trials.

Diagram 5.AUX.1

Cell durability & rigitness over time. Resistance to being attacked. Growth over time.

70

Diagram 5.AUX.2

Cell storage complexity and corresponding SREDA value - fluctuates, stagnates, growth, falls

Diagram 5.AUX.3

Cell storage complexity derivative over time combined with memory information and

corresponding SREDA block values.

71

Diagram 5.AUX.4

Average impactfulness - same trend as with 2000 rounds, with strong outliers

Diagram 5.AUX.5

Final diagram for this section. Notice that the average development is growing.

We have managed to successfully show that the average development overtime is growing in

successful simulation and on average. More on that in the conclusion section.

72

5.3​ Potential Limitations and Confounding Factors

Now that I am done with the main segment of the thesis I would like to dedicate some space

to discussion concerning the potential limitations and confounding factors in the project. Just

like any real experiment there are some biases and imperfections during the execution. Firstly

and foremostly it is impossible to computationally simulate try randomness and therefore

random processes can only be pseudo mimicked. I have used python and java given vanilla

random libraries when I needed to get a random number quickly. And despite now being truly

random for our intents and purposes it would be more than enough.

5.3.1​ Limitations

A.​ A first major limitation of our project was the computational time. We were unable to

compute the simulation for trillions of turns, which could have been extremely

beneficial to understand the asymptotic convergence of such models. Such limitations

could have been bypassed by running a simulation on a more powerful computer or

using cloud computing services. A risk it produced lied in the fact that we had to

assume that the trends that were present during the time of a simulation would

continue without any sharp unexpected changes, which was proven to be wrong

during the initial testing phases. Asymptotically the algorithm computation times were

also frankly quite disappointing the code was taking a longer and longer time to

execute, it was unclear whether is it a with or with some small 𝑂 𝑛𝑘() 𝑘 > 1 𝑂 𝑘𝑛()
exponent: both are extremely slow in the long turn. But if we assume that the ruleset is

irreducible nothing can be done to significantly speed up the computations, at least on

their order. Some minor fixes would not change the global fundamental picture, only

give a temporary boost and allow the simulation to be computable with a fixed

computing resource for a finite number of steps longer.

B.​ The second major limitation of our project is the existence of a developmental

maximum: the desired success was determined to be an existence of continuously self

improving developmental function. But not only it can slow down, or fluctuate, what

is way worse is that there might exist some sort of developmental maximum, a best

configuration that no other could top, or a series of fluctuating best configurations

depending on the current environment. My hopes to counter this issue regarding

73

implementing dynamic creature environmental interaction, but such an interaction

might also end up being in a dynamic equilibrium killing the trial, all of them. A

potential fix of the issue is the SREDA block aimed at dynamically complicating the

environmental situation in order to allow for more and more advanced creatures.

Imagine a hypothetical situation where creatures live in a world of ”Flammarion

engraving”: they see the stars they want to reach, but as they do the stars turn out to be

a mere facade, halting the development of technology in such a system. Instead, the

SREDA block is supposed to detect a creature approaching the stars and generate

space instead of a facade. Broadly speaking, it is supposed to catch the “attention”

dedicated towards a particular segment of the created universe and attempt to make

such a segment more complicated, to create a solution to a question posed, which did

not have a solution prior. Creatures are supposed to pose “questions” and the

environment creates “answers”. Somewhat similar learning principle to the GAN

model, but this time there are no winners or losers, just a process of development.

5.3.1​ Confounding Factors

Factors that disrupted our projects functioning, potentially unresolved issues that did not

directly threaten my findings, but risked making my project more inefficient. Those factors

excluded some minor code inefficiencies that remained undetected and only focused on the

conceptual level and potential conceptual mistakes made in my project.

A.​ Issue number one is potential reducibility of a simulation. The overly complicated

ruleset I have created for my simulation, could potentially be reduced to a simpler

ruleset with same performance, but simpler rules. Due to the complex nature of

cellular automatons rulesets, especially when handling genetically modified ones, one

can create a gratuitously complicated model, that can be whitelist simplified keeping

the utility function behaving in the same way.

B.​ A second confounding issue lies in the fact that python has a floating point error and

our calculations both when it comes to graphics and to a large extent the simulation

itself are based on floats. The script that generates faces and vertices for future

rendering was also pythonic. This implies the existence of a negligibly small, at least

74

in the short term, but continuously growing mistake that threatens to create

unpredictable monotonously increasing errors that would be difficult to detect and that

would potentially hinder creature environment interaction and result in simulation

crashing in super long term. In the medium term however (what we covered in the

section above) those errors never showed themselves and therefore were practically

negligible, that's why they are here and not in the limitation segment.

C.​ A final confounding factor is unexpectedly cross language interaction. During the

project some code was written in java and some in python that created some

difficulties when the project was to be united in the single repository. Organisational

problems arose with compiling and executing code, primarily with the rendered, it

refused to render anything and broke down when I first attempted to run it on an alt

repository. Thankfully the majority of these issues were fixed in time, allowing me to

pursue other tasks that I considered important and worth solving. A methodology that

I used in the process involved using various testing methods, from manual testing

output in console with print commands towards using logger, info, error and critical to

understand what was going on. A big mistake was designing parts of the project as

separate elements from the start. This created an unpleasant situation in which large

chunks of code needed to be completely rewritten in order to make sure cross

coordination is set up. The python script that generated edges and vertices needed to

be completely remade from scratch along with some other aspects of simulation and

graphics render. I have also conducted additional research on the existing

implementation and 3D Lobachevsky geometry. The information I have found helped

me better understand the practical implementations of visualisation algorithms and

despite no code from other repositories being used, it was a great reference and

inspiration source.

Lastly I would like to mention, concluding practical section, that before moving on towards

final thesis conclusion it is important to clarify the following point, I have purposefully made

such a strong of an emphasis on potential flaws and limitations of the projects to outline some

space for future research - in the future it would be possible to know what parts of the project

need improvement and which do not.

75

However the matters may go concerning potential confounding factors. I did not in fact

encounter a real integer overflow or domain errors, despite running many simulations for a

medium time duration. Which makes me conclude that the overall quality of the code is

sufficiently adequate and is able to represent the simulation I wanted to represent initially.

5.4​ Findings Compilation

In this section I will demonstrate the most important findings from the complex analysis

section, that would provide crucial insights into the expected behaviour of an (an aggregated)

development function over time.

First of all I would like to post two graphs here. An aggregated development function from

trial 1 (300 turns) (repost from section 5.2) and an aggregated development function for trial 2

(2500 turns) then I will briefly talk about what this function is (focus more on 5.2) and

conclude the section.

Diagram 5.1C

Development over 300 turns. (Old metric, for new one //10)

76

Diagram 5.2C

Development over 2500 turns.

Development is an overall function defined in Chapter 2 and designed with the intention to

measure whether the simulation is developing or not. It is a combination of complexity and

adaptability of the cell with the environmental and SREDA factors, it includes the impact

creatures have on the environment.

In both cases we are seeing the continuous increase in development. And due to development

being an all encompassing complicated function capturing all individual aspects of creature -

environment interaction we can confidently be able to conclude our findings, we have

managed to create a simulation that was able to enter a continuous state of self-development.

We are yet to know where or not it would last forever (probably at some point it is bound to

stop.). But nevertheless the experiment is a success since the stopping point is so far away we

did not even reach it (some slowdown was visible, but the rate of it was slow).

The future energy SREDA block can be recalibrated in a way to allow real ML problems to be

substituted into the simulation. Given the rapid and consistent developmental (metric of

77

success) trends observed in these simulations, it is reasonable to confidently assume similar

positive outcomes could be feasibly implemented in practice, to some extent.

78

6.​ Conclusion

6.1​ Practical Applications
Since my degree is in “Management and Computer science”, I consider practical applications

to be a noteworthy part in my work, since besides doing fundamental research I want to also

illustrate the practical real life benefits this research can bring. First of all it is an obvious fact

that during the last 10 years advanced AI as a branch of machine learning has seen some rapid

development. A notable example being Open AI and its most prominent product Chat-GPT

were able to gain the first million users in a matter of days.

This means that there is a very strong demand for powerful AI models on the market. The

consumers expect the AI to be able to perform all sorts of tasks and perform them quickly.

Currently the AI is limited in its developmental speed, since when classical training methods

are used they are extremely power and energy consuming, take a long time and demonstrate

clear and strong diminishing marginal returns trends.

Implementing evolutionary based approaches might allow us to greatly reduce the power

investment required to train a decent AI model, a cycle of continuous self-development would

require much less maintenance as well. AIs are currently faced with a problem of finding new

data, whilst avoiding training on its own production for our approach it is not the case,

because the information produced by the AI would be interacting with the environment and

would not be creating “pollution” in further AI learning.

Such an AI can see a lot of potential usage in small startups which do not have the resources

of big corporations. Broadly speaking it would be enough for a small startup company to

define the environment and the most basic ruleset and start training the model, even on the

personal computer to get the results. One of the advantages of cellular automatons is that they

can yield an unconventional and unexpected result and make computations very efficiently,

without the need of creating a complicated algorithm. By computational theory cellular

automata can not be faster than classical algorithms (given that it is well designed), but the

79

creation of such a cellular automaton is in general much simpler and requires less expertise,

therefore giving this method a strong competitive advantage as compared to classical models.

6.2​ Possible Areas of Further Research

Regretfully due to the time constraints and infinite size of potential human knowledge I was

not able to cover/research all topics that I found considered to be interesting. Below I will

provide a general outline of interesting research questions I got during my work on the project

and will briefly outline their perspectives.

A.​ In this project I have proven that all bounded non-stochastic cellular automatons with

finite number of states are bound to be periodic, is the same proof possible for

unbounded ones, I was able to prove it for some special cases (like gliders in CGL)

but a general proof for all cellular automatons would have (if it is possible) a grand

applications in computing theory, since some cellular automatons are Turing complete.

There might also exist a link between this problem and the Busy beaver problem,

since they both deal with computing machines and their limits.

B.​ More efficient rendering algorithms. There must exist a way to efficiently render

special shapes like Goldberg's polyhedrons. Also studying 3D Lobachevsky geometry

and designing a custom rendering engine, which would work quickly and efficiently.

Is an interesting and rewarding challenge with some practical applications in gaming

graphics design segments of IT.

C.​ Customizing the code to solve classical ML problems, yes observing the evolution and

seeing system development increase as well as complexity is interesting and has future

potential practical implementation, but it would be quite important milestone to

actually apply this model to some classical ML tasks, like writing texts, making art

and generating music, or at least guessing credit score and making consumer behavior

predictions.

D.​ Lastly another interesting endeavour would be to run the existing simulation on a far

more powerful computer to see late trends. As we saw on diagrams C10 and C11, the

80

pseudo asymptotic trends can be deceitful and plausibly given more computation

power we could have received deeper insights on the simulation, on how it acts and

what happens in the long run. We would be able to more generally derive the

expectation of the developmental function, and see whether a hypothesis analogy of

”Gamblers ruins” (Section 3) exists for our (and other) rulesets.

6.3​ Closing Remarks

Now the time has come to bring the experiment to a close and summarize the outcomes of all

that has been undertaken. In the future it could be possible to continue researching in the

aforementioned directions, but for now in this part I am planning to only talk about what was

already completely researched and finished.

To reiterate I would like to restate the initial goal of our experiment. A creation of

continuously self-improving evolutionary based cellular automaton that would be able to

develop on its own. In the early sections we developed a theoretical basis and were able to

better express what we mean by a cellular automaton and how we define development. We

were able to derive a clear number metric, an agglomeration of them to be precise, that would

have an ability to accurately measure the development of a system at any given state of time.

Using our save analysis tools we were able to construct the developmental function over time

and heuristically, but performing multiple experiments with sufficiently large populations we

were able to estimate this function’s behavior. We considered an existence of at least a

fraction of successful simulations to be successful conclusion of our experiment, however I

still theoreticized about existence of potential cellular automaton ruin, a situation where under

every potential ruleset there would exist a scenario in which an expectation value of an

aggregated developmental function monotonically decreases overtime.

Such a scenario would imply that given a long enough time passing the overall development

would reach zero. This scenario stands for the situation when the stochastics factors are

turned on and are influencing a simulation, because otherwise as we have proven in Theorem

2 the simulation would become positively periodic (). But as we noticed in the 𝑝 > 0

81

limitations section we were unable to run the simulation for a time period prolonged enough

that the macrotrends depicted here would have had a noticeable impact on the simulation.

In tests we have run, we were able as expected to identify cases with the positive trend in

developmental function expected value over time. Those were only a fraction of the total

trials we have tested, but we managed to strengthen the initial hypothesis concerning the

existence of growing developmental functions, since the majority of failures lied in the first

100 steps of the simulation and as we went beyond that the amount of “ruined starts” rapidly

decreased. If we would assume that the frequency of “ruined” starts would perform in a

similar way, we can conclude in the long run the fraction of starts where developmental

function never goes beyond death threshold would be continuously declining, but would

never reach zero.

Therefore I would call the research a nice step forward to demonstrate the existence of a rule

set for which on a bounded cellular automaton with stochastic function there exists at least

one simulation with continuously growing developmental function. Plus we have not tested

all the rule sets and we can not rule out a possibility that another ruleset that applied to our

case would yield an even better average aggregate expected value function, that would be

growing faster, continuously.

82

Appendix

This appendix aims to provide locations and organisational structure of key files from the

github repository as well as their corresponding overview.

Project repositories used

1.

[Name]: Faces.json

[Description]: Preloaded information about the faces of the geodesic icosahedron.

[Link]: https://github.com/SKras2021/Bachelor-Thesis-Files-Skras

2.

[Name]: Vertices.json

[Description]: Array of coordinates of different vertices used by custom rendering engine as

reference points, the form of the shape meanwhile is defined by faces. (We render triangles)

[Link]: https://github.com/SKras2021/Bachelor-Thesis-Files-Skras

3.

[Name]: render_core

[Description]: Custom triangle based 3D rendering engine I use for my project, plus

icosahedron generation algorithm in math_operation.

[Link]: https://github.com/SKras2021/Bachelor-Thesis-Files-Skras

4.

[Name]: simulation

[Description]: A main simulation takes place here.

[Link]: https://github.com/SKras2021/Bachelor-Thesis-Files-Skras

5.

[Name]: saves

[Description]: A folder with some sample save files

[Link]: https://github.com/SKras2021/Bachelor-Thesis-Files-Skras

83

Other important notes

1.

[Name]: Project progress logs

[Description]: A folder containing all the intermediate reports sent to the supervisor over the

course of the academic year. Starting from the project announcement and ending with a

practical implementation log. Includes both architectural documentation as well as design

choices justification. Does not document discussions which took place during office hours

and emails. IMPORTANT : A LOT OF CODE IS STORED IN THESE NOTEBOOKS AND

IS NOT THE PART OF FINAL VERSION IN THE GITHUB REPOSITORY.

[Link]:

84

References

Books

1. Wolfram, Stephen. A New Kind of Science. Wolfram, 2002.

2. Wilson, John H., and Tim Hunt, editors. Molecular Biology of the Cell. Prob, 2002: A

Problems Approach / John Wilson & Tim Hunt. 4. ed, Garland, 2002.

3. McConnell, Steve. Code Complete: A Practical Handbook of Software Construction.

Nachdr., Microsoft Press, 2001.

4.Coxeter, H. S. M. Regular Polytopes. 3d ed, Dover Publications, 1973. (Chapter 8)

5.Cundy, Henry Martyn, and Arthur P. Rollett. Mathematical Models. 2. ed., Repr, Clarendon

Press, 1976.

Websites consulted

1. Stack overflow, Eddie Parker & Hkrish, mathematically producing Sphere shaped

hexagonal grid. November 23 2017. Accessed February 2025

[Link]:

https://stackoverflow.com/questions/46777626/mathematically-producing-sphere-shaped-hex

agonal-grid

2.Weisstein, Eric W. Dual Polyhedron. Accessed February 2025.

[Link]: https://mathworld.wolfram.com/DualPolyhedron.html

3. Weisstein, Eric W. Truncated Polyhedron. Accessed March 2025.

[Link]: https://mathworld.wolfram.com/TruncatedPolyhedron.html

85

https://stackoverflow.com/questions/46777626/mathematically-producing-sphere-shaped-hexagonal-grid
https://stackoverflow.com/questions/46777626/mathematically-producing-sphere-shaped-hexagonal-grid

4. Berto, Francesco, and Jacopo Tagliabue. ‘Cellular Automata’. The Stanford Encyclopedia

of Philosophy, edited by Edward N. Zalta and Uri Nodelman, Summer 2025, Metaphysics

Research Lab, Stanford University, 2025. Stanford Encyclopedia of Philosophy,

[Link]: https://plato.stanford.edu/archives/sum2025/entries/cellular-automata/.

5. Elgabry, Mariam, and Shane Johnson. ‘Cyber-Biological Convergence: A Systematic

Review and Future Outlook’. Frontiers in Bioengineering and Biotechnology, vol. 12, Sept.

2024. Frontiers,

[Link]: https://doi.org/10.3389/fbioe.2024.1456354.

6. Weisstein, Eric W. Cellular Automaton.

[Link]: https://mathworld.wolfram.com/CellularAutomaton.html. Accessed March 2025.

7. Sapin, Emmanuel, et al. ‘Research of a Cellular Automaton Simulating Logic Gates by

Evolutionary Algorithms’. Genetic Programming, edited by Conor Ryan et al., vol. 2610,

Springer Berlin Heidelberg, 2003, pp. 414–23. DOI.org (Crossref),

[Link]: https://doi.org/10.1007/3-540-36599-0_39.

8. Cellular Automata. Accessed 23 March 2025.

[Link]: https://natureofcode.com

Video and Multimedia materials used

Most of the videos are on English, even for those who are not a link to the chanel with

adequate english translations is present.

1.- YouTube. Accessed Fall 2025.

[Link]: https://www.youtube.com/watch?v=bTQjwh7hLxU

2.- YouTube. Accessed Fall 2025.

[Link]: https://www.youtube.com/watch?v=00_wpA3pwjM

3.- YouTube. Accessed 1 May 2025.

[Link]: https://www.youtube.com/watch?v=_tdGKfAyRhw.

86

4.- YouTube. Accessed 1 May 2025.

[Link]: https://www.youtube.com/watch?v=vhRxwRr77dk

5.- YouTube. Accessed 1 May 2025.

[Link]: https://www.youtube.com/watch?v=Zgb30ixhntg

6.- YouTube. Accessed Fall 2025.

[Link]: https://www.youtube.com/watch?v=6M4EgoHh608

7.- YouTube. Accessed March 2025.

[Link]: https://www.youtube.com/watch?v=FNNqLseQ94M

8.- YouTube. Accessed Fall 2025.

[Link]: https://www.youtube.com/watch?v=4VMk1VgdoCU

9.- YouTube. Accessed Fall 2025.

[Link]: https://www.youtube.com/watch?v=pzQUR6xuO8s

10.Simulfie hub - Youtube, accessed Fall 2025

[Link]: https://www.youtube.com/@wallcraft-video/videos

Images and Figures

1.https://math.stackexchange.com/questions/4598316/interesting-discovery-made-in-the-con

ways-game-of-life

2. Vitaly Kaurov, Starting 3D cellular automata

[Link]: https://stackoverflow.com/questions/12988881/how-to-start-with-cellular-automata

3.Daniel M. How to simulate 3D clouds (questions), used images

[Link]:

https://stackoverflow.com/questions/50848067/cellular-automata-to-simulate-2d-clouds

87

4.Diosan, Laura & Andreica, Anca & Enescu, Alina. (2017). The Use of Simple Cellular

Automata in Image Processing. Studia Universitatis Babeș-Bolyai Informatica. 62. 5-14.

10.24193/subbi.2017.1.01.

5.‘Julia Sets in Julia, Using Interact.Jl - I’d like to Get It Faster’. Julia Programming

Language, 4 Mar. 2020,

https://discourse.julialang.org/t/julia-sets-in-julia-using-interact-jl-id-like-to-get-it-faster/3553

3. (Julia sets were used both an inspiration, as well as during preliminary research)

6.Flammarion engraving. Author unknown. 1888. (Used as illustration)

Additional sources and Miscellaneous references

1.Brugger, Nils. Nbrugger-Tgm/JRender. 2021. 1 Jan. 2025. GitHub,

https://github.com/nbrugger-tgm/JRender. Viewed code for inspiration ideas for my own

custom engine.

2.Scanlon, Rob. Arscan/Hexasphere.Js. 2014. 20 April 2025, mod 20 May 2025. GitHub,

https://github.com/arscan/hexasphere.js.

3.Hexasphere.Js. https://www.robscanlon.com/hexasphere/. Accessed May 2025.

[ONLY USED AS REFERENCE]

4.‘CyberBiology’. VK, https://vk.com/public167044850. Accessed May 2025.

5.‘GeeksforGeeks’. GeeksforGeeks, https://www.geeksforgeeks.org/undefined. Accessed May

2025. Multiple articles about python and data science.

Some additional minor references which were not a part of the thesis proper and were only

used occasionally during creation of progress logs or preliminary simulation are double listed

both here, just in case and in the corresponding progress log files, since progress logs are

indirectly part of a thesis as well.

Spring 2025, Rome, Italy, Earth.

88

The end of the thesis work

89

	1.​Introduction
	2.​Theoretical Background
	2.1​Introduction to Cellular Automatons
	2.1.1​Discrete vs. Continuous Automatons
	2.1.2​Dimensionality of an Automaton
	2.1.3​Update Principles
	2.1.4​Multiple States
	2.1.5​On the Notion of Reducibility
	2.1.6​On Loops and Graphs

	2.2​Automaton Convergence
	2.3​Self-development in Context of Automatons
	2.4​Important Concepts

	3.​Study Design
	3.1​Introduction to Project Design
	3.1.1​General Description
	3.1.2​Implementation
	3.1.2.1​Environment
	3.1.2.2​Energy
	3.1.2.3​Reproduction
	Sexual vs. Asexual: reasonings
	Asexual reproduction details
	Sexual reproduction details
	Lifespan

	3.1.2.4​Simulation Order
	Approach 1
	Approach 2
	Approach 3

	3.1.2.5​Genome and Mutation
	Active genes
	Energy Management

	3.1.2.6​Observations on Simpler Systems

	3.2​Simulation Architecture
	3.2.1​Creature Architecture

	3.3​Data Visualisation Environment
	3.4​Save File Handling

	4.​Methodology
	4.1​Data Collection
	4.2​Handling Replicability
	4.2.1​On the notion of gambler's ruin in the context of cyber biology

	4.3​Developer Tools and Methods for Data Analysis

	5.​Findings and Results
	5.1​Preliminary Analysis
	5.1.1​On the Notion of Genders
	5.1.2​Strength of Natural Selection
	5.1.3​Closing Remarks

	5.2​Complex Analysis
	5.2.1​Visual Analysis
	5.2.2​Visual Inspection Conclusions

	5.3​Potential Limitations and Confounding Factors
	5.3.1​Limitations
	5.3.1​Confounding Factors

	5.4​Findings Compilation

	6.​Conclusion
	6.1​Practical Applications
	6.2​Possible Areas of Further Research
	6.3​Closing Remarks

	Appendix
	References

