LUISS

Corso di laurea in Strategic Management

Cattedra Digital Business Transformation

The Role of Artificial Intelligence and the
Internet of Things in Logistics 4.0: A Literature
Review

Prof. Luca Giustiniano Matr. 780331

RELATORE CANDIDATO

Anno Accademico 2024/2025



Table of Contents

Foreword: Motivation and Objectives
Structure of the Thesis
Introduction
Literature Review
1. Logistics Digital Transformation
1.1 Digital Transformation and its Role in Modern Logistics
1.2 Industry 4.0: Definition and Key Technologies
1.3 From Traditional Logistics to Logistics 4.0
2. Artificial Intelligence in Logistics 4.0
2.1 Definition and Key Features
2.2 Artificial Intelligence (Al) in Logistics
2.2.1 Fields of applications
2.2.1.1 Demand Forecasting
2.2.1.2 Route Optimization
2.2.1.3 Robotics
2.2.1.4 Computer Vision
2.2.1.5 Gen Al
3. Internet of Things in Logistics 4.0
3.1 Definition and Key Features
3.2 Internet of Things (IoT) in Logistics
3.2.1 Fields of applications
3.2.1.1 Smart transportation
3.2.1.2 Smart warehousing
3.2.1.3 Smart delivery
4. The Convergence of Al and IoT in Logistics 4.0
4.1 Al-1oT Integration: Enabling Smart and Adaptive Logistics

4.1.1 Digital twins for real-time simulation and optimization
4.1.2 AloT-driven Robotics

4.2 Challenges in Al and IoT Integration
4.2.1 Data privacy, security, and ethical concerns

4.2.2 Technological and infrastructural barriers



4.2.3 Workforce transition and reskilling
4.3 Cross-cutting applications of the AloT approach beyond logistics
4.3.1 Energy sector
4.3.2 Residential context
4.3.3 Healthcare sector
4.3.4 Smart city context

Conclusion



Foreword: Motivation and Objectives

In recent years, logistics has become a privileged laboratory for experimentation with Industry
4.0 technologies: the competitive pressure to guarantee reduced delivery times, end-to-end
visibility and lower emissions has met the maturation of Artificial Intelligence (Al) systems
and Internet of Things (IoT) networks capable of transforming dispersed data into real-time
operational decisions. Literature attests that machine-learning algorithms applied to
forecasting, computer vision and reinforcement learning can reduce logistics costs, contain
inventories and increase service levels. At the same time, RFID sensors, wearable devices and
LPWAN networks allow to monitor containers, warehouses and vehicles, cutting waste and
delays along the supply chain. Despite these results, research shows a notable fragmentation:
studies on Al and IoT often proceed on parallel tracks, while the convergence of the two
domains remains hindered by problems of data quality, interoperability, cybersecurity and
skills gaps. It is within this cognitive fracture that the motivation for this investigation lies.
Understanding in depth the specific contributions of Al and IoT, before evaluating their
synergy, is a necessary condition to avoid easy technological generalizations and to offer
companies and policy-makers truly applicable indications.

The thesis therefore aims to:

(1) critically reconstruct the evolution of Al and IoT in the context of Logistics 4.0, clarifying
their areas of effectiveness and infrastructural constraints;

(2) identify, through a systematic and interdisciplinary review of the scientific and professional
literature, the points of intersection between the two technologies that already generate value
today or that show the greatest potential in terms of scalability;

(3) mapping the main technical, organizational and regulatory barriers that hinder integrated
adoption.

The choice of a theoretical-analytical approach, based on a broad review of academic sources,
white papers and industry reports, allows to fill a double gap: on the one hand, providing an
organic and comparative framework of the two technologies considered individually; on the
other, clearly defining the perimeter within which their convergence can translate into a
smarter, more transparent and sustainable logistics ecosystem. Thus outlined, the research aims

to offer an original contribution to the scientific discussion.



Structure of the Thesis

The thesis opens with an Introduction that presents digital transformation as a driving force
capable of reshaping industrial models and rewriting the interaction between companies,
customers and citizens. In this scenario, the perimeters of the research are carefully defined,
offering the reader a clear and coherent reading grid that guides the development of the
subsequent chapters.

This premise is followed by a central body consisting of four chapters, conceived as a single
extensive literature review organized with a logical progression.

The first chapter reconstructs the digital transformation of logistics, relating the drivers of
speed, transparency and sustainability with the evolution of Industry 4.0 technologies and
showing how these drivers have reconfigured processes, business models and skill needs.

The second chapter focuses the analysis on Al: after having traced its evolution, it illustrates
the main application lines clarifying the benefits, limits and infrastructural requirements
highlighted by the most recent studies.

The third chapter is dedicated to IoT and delves into sensors, LPWAN/5G networks and edge-
cloud platforms that allow obtaining end-to-end visibility on physical flows, discussing use
cases in smart transportation, smart warechousing and smart delivery and focusing on
interoperability and security issues.

The fourth chapter represents the point of convergence of the previous two: taking up the results
on Al and 10T, it defines the AloT paradigm as the “digital nervous system” of the supply
chain, analyses the areas in which this synergy generates value and identifies the main barriers
to adoption, from data governance to the lack of specialist skills.

At the end of the path, the Conclusions section summarizes the original contributions of the
work, highlights its methodological limitations and suggests directions for future research. In
this way, the thesis accompanies the reader from the general framework of the transformations
in progress, through the in-depth analysis of the two leading technologies and their integration,

up to the practical implications and development prospects.



Introduction

Digital transformation has redefined the way we live and work, reshaping traditional industrial
structures and reinterpreting what it means to be a customer and a citizen (Berman et al., 2016).
Digital transformation is often defined by scholars as “the use of new digital technologies (..)
to enable major business improvements” (Fitzgerald et al., 2014, p. 1). This process is not based
on a single technology, rather, it involves significant changes driven by a “combination of
information, computing, communication, and connectivity technologies” (Bharadwa;j et al.,
2013, p. 471), i.e. “a fusion of advanced technologies” that are integrating physical and digital
systems (EC, 2018). At its core, digital transformation has the ultimate aim to create value, by
driving operational efficiency, improving customer experience, enhancing business models,
enabling strategic differentiation, ultimately leading to improved stakeholder relationships,
costs reduction and stronger competitive advantage (Morakanyane et al., 2017).

The last decade, characterized as “the digital age” (Hirt and Willmott, 2014), has fundamentally
changed the dynamics within industries. This evolution is largely driven by Industry 4.0, also
known as the Fourth Industrial Revolution, whose emergence triggered radical changes in the
global economic landscape, characterised by a deep integration of cutting-edge technologies,
especially in manufacturing and logistics. (Lu 2017; Ghobakhloo et al. 2021; Meindl et al.
2021; Zhang et al. 2021). As explained by Abdirad and Krishnan (2020), this phenomenon
involves the extensive introduction of ICT and its seamless connection with the Internet of
Things (IoT), services and data to enable real-time production. This evolution has resulted in
traditional machine-dominated manufacturing being replaced by digital manufacturing, in
which cyber-physical systems, Al and data analysis converge to create smart factories and
interconnected systems that improve automation and decision-making (Donald, 2024 et. al).
In this context of change, the concept of Industry 4.0 has been extended to the field of logistics
and supply chain management (LSCM) (Abdirad and Krishnan 2020; Kucukaltan et al. 2022;
Barata 2021) giving rise to the so-called Logistics 4.0 (or Smart Logistics). Logistics 4.0
introduces a radical change in how items are delivered, stored and transported (Khan et al.
2022; Derakhti et al., 2023; Rosario and Dias 2023; Da Silva et al. 2023). Through the use of
digital technologies such as advanced analytics, automated processes, robotics, IoT, Al and
cloud computing, LSCMs can potentially improve their operations in terms of efficiency,
visibility and responsiveness to better meet their customers’ needs. Successful Resource

Planning, Warehouse Management Systems, Transportation Management Systems, Intelligent



Transportation Systems, and Information Safety applications are required to operate logistics
4.0 in an effective and strong manner (Barreto et al. 2017).

The recent turning point in the digitisation of logistics operations stems more from the real-
time connectivity of assets: machines, vehicles and devices can now be monitored via sensor
technologies that capture all kinds of data in real time. In addition, operators can also provide
feedback information through mobile and wearable devices. This broad connectivity provides
(near) real-time visibility of all work activities. It all adds up to a kind of ‘digital control tower’,
analogous to the airport control tower, providing visual alerts that warn of stock shortages or
process bottlenecks before they occur. Using simple control algorithms, a course can be
corrected before potential problems even become real. Furthermore, being able to collect a vast
amount of data, the resulting high availability of historical data leads to the creation of
increasingly sophisticated algorithms that add further intelligence to the control rules. Indeed,
predictive analyses learn from historical data uncovering patterns and correlations that are not
obviously detectable by humans. Moreover, with a digital twin of physical logistics operations,
real-time analysis and optimisation can even prescribe decision-making, where users make
decisions based on what intelligent agents recommend (Merkert & Hoberg, 2023).

Based on the above, it is clear that IoT and Al are the two most influential technologies when
it comes to Logistics 4.0. IoT plays a crucial role by enabling sensor-based real-time tracking,
facilitating seamless connectivity between assets, warehouses, and transportation systems
(Roshid et al., 2024). These connected devices continuously collect vast amounts of data,
forming the foundation for Al-driven predictive analytics, which allows for anticipatory
decision-making and automated optimization of logistics flows (Ilin et al., 2019). Thus, the
integration of Al algorithms with IoT sensor networks empowers logistics providers to
enhance operational visibility, automate workflow adjustments, and implement digital twins
that simulate real-world scenarios for more accurate forecasting and process improvement
(Kocaoglu, 2024).

In light of this context, this thesis will focus primarily on exploring the synergy between Al
and IoT. By examining how these technologies interconnect to support real-time monitoring,
predictive analysis and decision-making processes, the aim of this thesis is to shed light on

their central role in driving the next wave of digital transformation in logistics.



Literature Review

1. Logistics Digital Transformation

1.1 Digital Transformation and its Role in Modern Logistics

Digital technologies are significantly transforming the functioning and organisation of
businesses. Organisations are constantly reformulating their business models in numerous
ways, mainly by exploiting the so-called “SMACIT”, which stands for Social media, Mobility,
Analytics, Cloud and Internet of Things (Ross et al., 2016). As a result, the role of digital
technologies and their applications is growing to the point where they are progressively
impacting organisational products, business processes, and even the personal dimension.
Companies that fail to integrate into a digital environment inevitably end up succumbing to so-
called “digital Darwinism”, in which only those who adapt quickly to technological trends
survive in the marketplace (Schwartz, 2001). Consequently, it is imperative to constantly
innovate in order to stay abreast of current potentials and trends, a process commonly referred
to as Digital Transformation (DT). A notable gap in the existing literature is the absence of a
commonly accepted definition of this concept. As Table 1 illustrates, various scholars have
formulated different conceptualisations, reflecting the multiple perspectives of this
phenomenon.

Author Definition

A process that aims to improve an entity by triggering significant changes to its
Vial, G. (2019) properties through combinations of information, computing, communication,
and connectivity technologies.

Van Veldhoven, Z., & The continuously increasing interaction between digital technologies. business,
Vanthienen, J. (2021) and society.

The use of new age digital technologies to enable major business improvements
Fitzgerald, M. (2013) (such as enhancing customer experience, streamlining operations or creating
new business models).

Digital transformation can be defined as integrating digital technology into all
Kraus et al. (2022) aspects and operations of an organization, which leads to infrastructural changes
in how the organization is operated and delivers value to its customers.

Digital transformation is concerned with the changes that digital technologies
Hess et al. (2016) can bring about in a company’s business model, products, processes and
organizational structure.

Digital transformation implies a profound change, particularly a structural
change, i.e., changes in organizations, processes, and business models in the

While Schiliro (2022) firms, and changes in consumer behavior, not just a digitalization of business
processes.

Digital transformation means a rethinking of how an organization uses
technology, people, and techniques in pursuit of new business models and

Boulton (2021) additional revenue streams, driven by changes in customer expectations around
products and services.

Table 1 - Digital Transformation definitions

Source: Author's personal elaboration



In this thesis, we will mainly refer to the definition proposed by Saldanha (2019), who describes
Digital Transformation, also called “Digital Transformation 2.0”, as the strategic integration of
emerging technologies such as Artificial Intelligence (Al), Machine Learning (ML), and the
Internet of Things (IoT). Through this integration, it is possible to simplify operations, extract
useful insights from data, and develop creative business models. Thus, the current digital
transformation pertains to the Fourth Industrial Revolution. Unlike previous phases of digital
transformation, which focused primarily on harnessing technology to achieve specific goals,
Digital Transformation 2.0 represents a more holistic change: it aligns technology with an
organisation’s core strategy and culture. Digital transformation, indeed, profoundly affects the
foundations of a company, starting with its organisational structure, which becomes more agile
and responsive (Lee & Edmondson, 2017). The aim is to reduce hierarchical rigidity and
internal divisions, favouring a more open model in which information and services can flow
freely within the organisation. Besides redefining the corporate structure, digitisation leads to
the emergence of new strategic roles, which stimulate innovation and facilitate change (Singh
et al., 2020). This process also has an impact on corporate culture, fostering a more risk-
oriented, collaborative and experimental mindset (Kane, 2019). Value creation processes also
change, with increasing integration of services into traditional business models (servitization),
a key element for competitive advantage in the long run (Kryvinska & Bickel, 2020; Linde et
al., 2021). Another central aspect concerns the use of business data, which becomes a strategic
asset for generating business value (Barrett et al., 2015). Finally, one of the most noticeable
effects of digital transformation is the change in the relationship between customers and the
company: interaction with services increasingly takes place through digital channels,
redefining the user experience and how products and information are accessed (Curi &
Casquino, 2022; Mangalaraj et al., 2021).

Despite the increasing focus on digital transformation, there is often confusion between related
terms with different meanings. Indeed, in academic literature and common language, the terms
Digitisation, Digitalisation and Digital Transformation are often used interchangeably,
generating ambiguity. However, each has a specific meaning and refers to different stages in
the process of adopting and integrating digital technologies within a company. Digitisation
refers to the conversion of analogue information into digital format (sequences of Os and 1s),
thus making it processable, storable and transmittable by computers (Maltaverne, 2017).
Digitalisation, on the other hand, concerns the use of digital technologies to modify and
optimise existing business processes (Unruh & Kiron, 2017). Finally, Digital Transformation

represents the broadest and most profound phase of change, in which digital technologies do



more than simply enhance processes, as they lead to the development of new business models.
As described by Maltaverne (2017), it is the design of “new ways of doing things that generate

new sources of value”.
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Figure 1 - Phases of Change

Source: Adapted from Kocaoglu, B. (2024). Logistics Information Systems: Digital Transformation and Supply Chain
Applications in the 4.0 Era. Springer, p. 37.

Over the past decade, this huge phenomenon has substantially altered the competitive
landscape of numerous industries, including that of logistics services. As defined by The
Economic Times (2024) “logistics involves the systematic management of acquiring, storing,
and transporting resources to their intended destinations”. In this industry, ensuring effective
operations management is crucial, especially in today's highly competitive global environment.
Moreover, with the advent of globalisation, the logistics industry has begun to face significant
challenges as demand is outstripping forecasts, driven by emerging technologies disrupting the
market (Muango et al., 2021). In order to remain competitive and foster growth, logistics
service providers are therefore challenged to redefine their value proposition for shippers and
customers by increasing operational efficiency, solving critical industry issues and delivering
an increasingly intelligent, fast and sustainable experience (DP-DHL, 2018; Gruchmann and
Seuring, 2018; Daugherty et al., 2019). From this perspective, technology assumes a decisive
role in distinguishing the value of logistics (Gunasekaran et al., 2017), as it is able to promote
innovations (Mathauer and Hofmann, 2019) capable of further raising efficiency and
responsiveness (Gunasekaran et al., 2017).

Digital transformation is redefining the transport and logistics (T&L) industry globally. It is
one of the main drivers of change, along with service excellence in B2B and B2C markets,
decarbonisation of operations according to ESG targets, and the need for constant growth in a
changing competitive environment. Traditionally perceived as a labour-intensive industry,
T&L is achieving significant improvements in productivity, efficiency and scalability through
the adoption of digital technologies (PwC, 2024). Digital transformation in this area is a
complex process, involving technological innovation, customer focus, operational efficiency,

regulatory compliance and cultural change as Fig.2 illustrates.



Technological « loT, Al, and Automation: route optimisation, process automation,
Advancements predictive maintenance, demand forecasting, reduce labour costs

Advanced analytics: informed decision-making, strategic planning,

T8l companies ara increasingly adopting optimise inventory levels, identify cost-saving opportunities

innovative technologies

Market and » Accelerating Deliveries and Real-time Tracking: optimise
Customer Demand logistics networks, enhance last-mile delivery capabilities
» Improving Customer Experience: personalised services,

Customer expectations are evolving and proactive communication, self-service options

challenging traditional modes of operation

| Operational » Cost Optimisation and Efficiency: digital tools for predictive

Excellence maintenance, warehouse automation, optimise resources

« System Integration and Modular Solutions: enhance agility,
scalability, adaptability, streamline processes, accelerate decision-
making

Cost reduction and operational efficiency
are critical for T&L companies

& Regulatory and Environmental Compliance: invest in eco-friendly technologies,
n Compliance optimise fuel consumption, reduce carbon footprint
« Automating Regulatory Compliance: mitigate the risk of non-

T&L companies are forced to comply with compliance, streamline reporting, adherence to evolving regulations

complex regulation and mitigate risks

Innovation and « Embracing Innovation: strategic partnerships, R&D investments,
Adaptability exploring new business models to stay competitive

+ Empowering Employees and Collaboration: providing training,
tools, support, continuous learning for organisational resilience

T&L companies need to drive innovation
and respond flexibly to market changes

Figure 2 - Key drivers for transformation

Source: PwC, 2024

Companies that strategically integrate these elements will not only successfully meet the
challenges but will also be able to seize new opportunities for growth and competitive
differentiation.

Logistics has always had customer satisfaction as its main objective and the profound changes
taking place are largely the result of the evolution of customer expectations, which continue to
transform, redefining the standards of the industry. As customers’ needs and wants evolve, the
industry must adapt and find ever more efficient and effective ways of operating. What
consumers prefer nowadays are convenience, control, automation, transparency and above all
a personalised experience. Technology has certainly influenced people’s new inclinations,
having significantly simplified our lives. It is now commonplace to browse online shops and
social media, as well as to use digital banking and video on demand. This is also evidenced by
generational differences. Note for instance generations Y and Z, located in the 1990s and later,
have grown up with a superior digital experience and in fact behave differently. Consequently,
in their professional life they expect to be offered the same things that they have come to
appreciate in their private life, which is why expectations regarding the customer experience
and professional tools must change accordingly (Wurst & Graf, 2021).

Digitalisation is transforming logistics and supply chain management, reducing costs, and
errors through automation. This approach consists of reproducing the physical world in digital

form, using tools such as optical character recognition (OCR) and the Internet of Things (IoT).
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The so-called digital twins, integrated with tangible reality, push forward the boundary of
automation, requiring the conversion of products and services into data, rules and algorithms.
Robotic process automation (RPA), artificial intelligence (Al), blockchain technologies and
smart contracts are the main enablers of this evolution. In the Fourth Industrial Revolution,
these innovations do not operate in isolation but are integrated into digital platforms. These
platforms act as ecosystems which aggregate information on digital identities, prices, services,
shipping locations and data generated by loT devices. Consequently, this leads to creating vast
volumes of data that require artificial intelligence tools for analysis and value extraction. The
new digital realities are gaining market share, threatening traditional suppliers who, if they do
not adapt, risk an increase in customer churn rate and a reduction in margins, which is
particularly critical in the SME segment. In parallel, companies from other sectors are entering
logistics, as shown by Amazon and Alibaba, which have progressively internalised the
management of shipments, developing their own logistics infrastructure, from warehouses to
transport and delivery networks. In some markets, these platforms already offer excess logistics
capacity to third parties, consolidating their role in the sector. The logistics landscape is
therefore evolving rapidly. Traditional carriers are focusing on direct sales and customer
contact, while shippers are adopting digital tools to become logistics operators. Start-ups are
introducing new business models, technology companies are establishing themselves as
logistics intermediaries and some operators are specialising in providing software solutions
(SaaS) or data analytics (AaaS). This transformation is redefining the business models and

competitive dynamics of the entire industry (Wurst & Graf, 2021).

1.2 Industry 4.0: Definition and Key Technologies

Industrialisation was the main force behind the changes in world history that began in the 19th
and 20th centuries and continue to shape the 21st century and our lives.

Industrial revolutions, from past to present, have been the result of the emergence of human
needs. Indeed, so far, man-made innovations have generated profound transformations that
have primarily impacted the functioning of the economy. From the invention of the steam
engine to digitally automated production, the First Industrial Revolution and subsequent
revolutions led to significant changes in the production process. As a result, increasingly
complex, automated and sustainable production systems have emerged (Paksoy et al., 2021).
It was the Frenchman Louis Guillaume Otto who first mentioned the concept of the “industrial
revolution” in a letter of 1799. Today, by this term we mainly refer to “a radical change in the

production activities, methods and presentations used to transform raw materials, manufactured
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goods and semi-finished products into the final commodity”, as S6zen and Mescio™ (2019)

define it.
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Figure 3 - An Overview of the Four Industrial Revolutions

Source: Paksoy, T., Kochan, C., & Ali, S. S. (Eds.). (2021). Logistics 4.0: Digital Transformation of Supply Chain
Management. CRC Press, p. 3.

The industrial revolutions developed in three waves. The first originated in Great Britain in the
1870s, later spreading to Western Europe and the United States. The second affected Russia,
Japan, parts of Eastern and Southern Europe, as well as Canada and Australia from the 1880s
onwards. The last wave began in the 1960s in the Pacific Rim, reaching Turkey, India, Brazil
and other parts of Latin America two decades later. Each phase of industrialisation rapidly
involved countries that were not yet industrialised, transforming their basic social and
economic structures.

The first three industrial revolutions took place over a period of almost 200 years. Industry 1.0
was initiated with the introduction of mechanical production facilities through the invention of
water and steam machines. In fact, starting with mechanical looms powered by the steam
engine in the late 1700s, textile production shifted from private homes to central factories,
leading to a sharp increase in productivity. Almost 100 years later, Ohio marked the beginning
of the second industrial revolution by using conveyor belts in the Cincinnati slaughterhouses.
This revolution was characterised by the introduction of mass production, induced by
electrification and the division of labour (Taylorism), i.e. the use of machinery powered by
electric and combustion engines, as well as the first examples of assembly lines (Paksoy et al.,
2021). The Third Industrial Revolution, also called digital revolution, then began to take shape

in the 1970s as a result of improvements in information technology and advanced electronics
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that enabled the automation of the industrial processes (Hermann et al. 2016). Modicon’s
introduction of the first programmable logic controller in 1969 was the turning point that made
digital programming in automation systems possible. This paradigm still holds the reins of
modern automation systems engineering, leading to highly flexible and efficient automation
systems (Drath and Horch 2014). Finally, Industry 4.0 has emerged. Industry 4.0 refers to the
integration of digital technologies into production processes, leading to smart factories and
interconnected systems. This paradigm exploits the use of cyber-physical systems (CPS), the
Internet of Things (IoT), Artificial Intelligence (Al) and data analytics to automate processes
and support decision-making (Donald et al., 2024). This is done through the extensive use of
information and communication technologies (ICT) linked to an environment of objects,
services and data, thus enabling real-time production. Increasing digitisation involves products,
value chains and business models, helping to improve operational efficiency, reduce costs and
increase productivity (Abdirad and Krishnan, 2020). Figure 4 shows how, in the context of
Industry 4.0, the integration of physical and digital systems can foster the creation of smart

factories.
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Figure 4 - Schematic of smart factories with general properties required in Industry 4.0.

Source: Ugur M. Dilberoglu et al. / Procedia Manufacturing 11 (2017 ) 545 — 554
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Industry 4.0 is a revolutionary advancement fuelled by nine technological pillars (See Fig. 5).
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Figure 5 - Fundamental Technologies of Industry 4.0

Source: Riifmann et al. 2015
Autonomous Robots

The use of industrial robots is not new and has existed for several decades. In the past, robots
used in industry were configured to perform repetitive and monotonous tasks, executing a
series of movements within pre-defined programmes. These robots were therefore not very
sophisticated: apart from safety functions, they did not have any intelligence systems. In other
words, these robots were only equipped with specific systems that locked the robot to avoid
incidents (The Boston Consulting Group, 2015). The latest generation of robots, defined
‘intelligent collaborative robots,” rely on sensors and artificial intelligence to provide flexible
and contextual responses, adapting to different situations and needs. Unlike traditional robots,
these robots possess a cognitive capacity that enables them to think and act autonomously,
learning from mistakes and minimising possible inaccuracies. (Lima et al., 2019). Moreover,
these robots redefine industrial automation through human-machine collaboration. This is not
a simple replacement of human labour, but a change in the skills required: less skilled operators
will be progressively replaced by augmented operators, capable of interacting with machines.
These robots integrate cutting-edge technologies (e.g. computer vision, geo-localisation, haptic
sensors, mechatronics, cloud robotics and artificial intelligence) which allow them to automate

physically demanding tasks such as lifting heavy loads, precision positioning and visual quality
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control, reducing effort and risks for workers (Ammari et al., 2018). This opens up an area of
cooperation between man and machine, where the role of the general worker is replaced by that
of a highly skilled operator, responsible for higher value-added tasks (Confartigianato, 2017).
Simulation

With the help of simulation software, a virtual representation of a physical object can be created
in order to comprehend its behaviour, forecast its performance, compare options, and ultimately
select the best one. By altering its variables, the virtual model can be used to simulate a series
of operations and determine how those changes will affect the system as a whole. In a
warehouse, for example, simulation allows the operational capacity of machines and the flow
of resources from inventory to be kept under control, facilitating more efficient utilisation and
encouraging the introduction of just-in-time systems. (CFI, 2015).

Horizontal and vertical system integration

Industry 4.0 requires deep integration of data and systems along the entire value chain, thus
enabling the transformation of companies into cohesive and automated entities (Bartodziej,
2017). We can distinguish between horizontal and vertical integration. Horizontal integration
concerns the coordinated management of the production chain, which facilitates the sharing of
information and resources between decentralised production sites and promotes global value
networks (Grosvenor, Liu & Qin, 2016). This approach improves competitiveness and
flexibility through collaboration between companies (Li et al., 2016). On the other hand,
vertical integration concerns product lifecycle management, linking hierarchical levels for a
continuous flow of information between production and management processes (Chukalov,
2017). Essential for smart factories based on cyber-physical systems and IoT technologies, it
enables the dynamic reconfiguration of processes (Ayala et al., 2018). The convergence of
these integrations is crucial for smart factories, as it supports coordinated production
management through advanced value networks and improves market adaptability and
responsiveness (Ganzarain, Ibarra & Igartua, 2018). The adoption of integrated strategies
increases productivity, resource efficiency and opens up new business models (Adamik, 2019).
Industrial Internet of Things

Underlying the development of Industry 4.0 is an intensive use of the Internet, which serves as
a central tool for information management. The very idea of the fourth industrial revolution is
based on the creation of an online communication channel capable of ensuring a continuous
two-way flow of data between humans and machines, but also between machines themselves
(Cooper & James, 2009). The term Internet of Things (IoT) refers to the network of physical

devices (‘things’) equipped with sensors, software and digital technologies, capable of
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connecting and communicating with each other using the Internet (Partners et al., 2015). When
the ‘things’ that are connected are industrial devices or systems used to support industrial
operations, then we are referring to the Industrial Internet of Things (IIoT). Examples of IIoT
can be industrial operations such as manufacturing, quality control, supply chain and logistics
(Arnold & Kiel, 2016). IIoT integrates information and communication technologies (ICT)
within the production environment, connecting various types of devices through the use of
sensors, so that they communicate with each other and with a centralised control unit. Indeed,
the very nature of this approach requires that data is first monitored and administered on an
IToT platform and then flowed to a cloud server that represents the central brain of the system.
In a production system, the data that can be collected from these sensors can be for example
heat, temperature, pressure, moisture level, vibration, friction and motion. Through the
continuous acquisition of this data in real time, statistical correlations with product
performance are established, providing a comprehensive view of every single aspect of the
system. [oT has a huge potential in smart factories, leading to reduced production costs,
enabling preventive maintenance and creating a safer working environment (Anastasiadis,
Lampropoulos & Siakas, 2019).

Cybersecurity

As products and production processes become increasingly connected and distributed, they
generate an ever-increasing flow of information that consequenlty exposes the company to the
risk of cyber attacks (The Boston Consulting Group, 2015). For this reason, it is essential to
ensure confidentiality, authenticity, integrity and privacy. Cybersecurity is an instrument that
provides protection from potential damage to hardware and software components and from
data breaches (Adamik, 2019). Therefore, it is crucial to create a reliable data management
infrastructure in order to ensure an optimal level of security and reliability of IT platforms. The
main goal of any cybersecurity-related operation is to safeguard data and strengthen the
security system (Buliga, Miiller, & Voigt, 2018). After that, such measures need to be shared
with institutions which establish security rules, and with final customers who must be informed
about potential risks and make sure their privacy is protected (Broberg et al., 2019). Protection
relies on encryption to authenticate information and secure transmission to guard against
eavesdropping. Cybersecurity includes threat detection, infrastructure protection, vulnerability
identification, real-time low-impact recovery, and the protection is done at three different
levels: user, cloud and production (Csik et al., 2016). Integrated measures consolidate corporate
security in a more robust manner, while partnerships with third parties and sharing of best

practices establish uniformity of standards.
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Cloud

As already mentioned several times, everything in Industry 4.0 is data-driven. Inevitably, this
requires the need for large channel capacities to process and store this data. In this sense, cloud
computing is crucial (Siagri, 2021). It is a virtualized platform that provides computing,
networking, storage and analysis capacity over the Internet for more efficiency, versatility and
capacity for scaling. Cloud computing is a mechanism for sharing and storing information. This
technology is characterised by the speed with which it operates, allowing administrators to save
data in the cloud and set up digital systems for process monitoring and control (Juan-Verdejo
and Surajbali 2016). It is composed of three elements: front-end that encompasses user access;
back-end that is exemplified by infrastructure of the provider; and network that ties all these
players together. There are three fundamental services that the user has access to: Software as
a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS). In the
context of manufacture, Cloud Manufacturing shows us a new paradigm of production
management in which digital and physical assets get pooled in the cloud to maximise the supply
chain. IoT technology makes smart resource allocation possible and automatic process control
easy to implement (Martinelli et al., 2021). Costs get minimized, infrastructure is simplified,
and ease of access to real-time information increases. Moreover, cloud computing facilitates
easy management of Big Data to manage large quantities of structured as well as unstructured
data. Indeed, it can be asserted that cloud computing and data analytics have become
indispensable tools to foster innovation and productivity in Industry 4.0 (Nuiez et al., 2017).
Additive Manufacturing

Conventional production techniques must be rethought in light of Industry 4.0’s requirement
for mass customisation. Because of this, Additive Manufacturing (AM) is an essential element
in this scenario. Unlike traditional manufacturing processes like milling and turning, which
produce products by removing material, or injection moulding, which produces products by
injecting materials into a mould (Rutkofsky & Banu, 2018), AM creates three-dimensional
solid objects by building a layer of materials on top of each other (Padmakumar, 2022).
Industrial companies are increasingly using this technology to move away from mass
production of standardised products towards smaller batches of customised and sophisticated
products with advanced attributes. (Dilberoglu et al, 2017).

Augmented Reality

Augmented reality (AR) is a technology that integrates digital information into the real
environment to enhance the user experience by projecting virtual objects into the physical

world (Paelke, 2014). AR enhances perception of the real world without intending to replace
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it, in contrast to Virtual Reality (VR), which creates an entirely artificial environment. An AR
system is characterised by three essential factors: integration between real and virtual objects,
real-time interactivity, and consistent alignment between the two (Azuma et al., 2001). AR is
widely used in the workplace, especially in human-machine cooperation, where it improves
integration in cyber-physical systems (Lee et al., 2015) by enabling animations and simulations
of products and processes. AR transforms workers into intelligent operators who can make
strategic decisions and solve problems more effectively, supporting vertical integration in
factories (Posada et al., 2015) and facilitating the transition to Industry 4.0 through the use of
visual computing (Sudharshan, 2020). According to Jung and Tom Dieck (2017), AR plays a
crucial role in this context, enabling employees to access company databases, providing
relevant information instantly and improving flexibility and operational efficiency.

Big Data and Analystics

Big data analysis is the collection, processing and interpretation of large volumes of data to
generate useful information to support business decision-making. This approach transforms
intangible resources into tangible value, making decisions more objective and based on data
rather than intuition or opinion. The data-driven decision-making process consists of three main
phases: data collection and observation (from internal and external sources), processing and
contextualisation to extract meaningful information, and application of the information to
generate strategic knowledge. The evolution of big data is closely linked to other pillars of
Industry 4.0, such as the Internet of Things (IoT), robotics and cloud computing. The
generation and structured organisation of data in the production environment makes it possible
to optimise processes, improve quality and increase service efficiency (Bagnoli et al., 2022).
The integration of data into decision-making is essential, as every piece of data generated
affects business activities, contributing to knowledge creation and strategy formulation (Chen
et al., 2015). In the new industrial environment, data analysis enables quick and efficient
responses to market fluctuations, improving the adaptability of companies. Without careful
analysis, decisions would result in longer response times and reduced effectiveness (Esmaeilian
etal., 2016). Consequently, strategic data management becomes a key element in creating value

and optimising production processes (Kagermann, 2015).

1.3 From Traditional Logistics to Logistics 4.0
The term logistics is derived from the Greek «Aoyikog» , meaning “which makes logical sense”.
Logistics has played a fundamental role in the expansion of empires and in the management of

supplies throughout human history. An example may be the figure of the logistician instituted
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by Julius Caesar, or the creation of special military departments due to the vital importance of
supply management during the First and Second World Wars. Only after the Second World
War did logistics become the subject of in-depth study and research, in order to affit
mathematically robust analytical and solution structures to logical principles. It was only after
World War II that logistics became the subject of in-depth study and research, in order to affit
mathematically robust analytical and solution structures to logical principles (Casadio Strozzi
& Sala, 2024). The pillars of logistics (transport, inventory management and storage) have long
been essential elements of industrial and economic activity. However, due to its fragmented
nature, consisting of numerous sub-functions and subsystems that are often managed
separately, it is only in the last 20-30 years that logistics has been recognised as an autonomous
function. Today, both academia and business realise the importance of taking a more integrated
and holistic approach to coordinating these different operations, to take into account their
interrelationships and interactions and to ensure the optimisation of the overall operation
(Rushton, Croucher, & Baker, 2022). The Chartered Institute of Logistics & Transport UK
(2019) defines logistics as “getting the Right product, in the Right quantity, in the Right
condition, at the Right place, at the Right time, to the Right customer, at the Right price”, that
is commonly known as “The Seven R’s of Logistics”. Another important definition of logistics
is the one given by the Council of Logistics Management, which defined logistics as “the part
of the supply chain process that plans, implements, and controls the efficient, effective flow
and storage of goods, services and related information from point of origin to point of
consumption in order to meet customers’ requirements”.

Logistics, according to the SCOR (Supply Chain Operation Reference) model, developed over
time by the Supply-Chain Council (a non-profit organisation founded in 1996), is represented
through a linear system involving the supplier-company-customer triad . This approach then
extends to suppliers of suppliers and customers of customers, providing a general reference for

the management of logistics activities (Figure 6) (Casadio Strozzi & Sala, 2024).
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Source: Supply Chain Council, 2008

In this scheme, each link in the chain (supplier, company, customer) is responsible for the same
types of activities, which are, however, managed in different ways and with different horizons
depending on the level of planning required and the actual role of each actor. Consequently,
suppliers and customers must be clear about their areas of intervention, albeit with a different
scope of governance. In particular:

e Procurement processes (source): they define the rules of engagement with suppliers
(quantity, frequency of deliveries, prices, payment methods, penalties, performance
indicators, etc.), as well as how goods are transferred, received, checked and stored.
This portion of the model can be referred to as inbound logistics.

e Production processes (make): these concern production planning, the realisation of
the product/service involved in the chain and, consequently, monitoring and evaluation
activities.

e Distribution processes (deliver): the company selects and uses internal or external
forwarding services to place the manufactured goods on the market, adopting an
appropriate distribution scheme to reach the target market. This section of the model
refers to outbound logistics.

e Return management processes (return): they have to be designed and managed with
particular attention to their peculiarities (return procedures, inspection, repair or
disposal), including support and follow-up activities, which need to be attended to
punctually.

As the SCOR model makes clear, logistics is split into inbound and outbound logistics.
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Figure 7 - Inbound and Outbound Logistics Activities

Source: Paksoy, T., Kochan, C., & Ali, S. S. (Eds.). (2021). Logistics 4.0: Digital Transformation of Supply Chain
Management.CRC Press, p. 17.

According to Porter (1985), inbound logistics refers to the relationship with suppliers and
includes all the activities necessary to receive and store raw materials or goods arriving within
the company e.g. consolidation of goods, choice of carrier and mode of transport,
warehousing and backhaul management. Outbound logistics, on the other hand, includes all
activities required to collect, store and distribute output from manufacturers to buyers, e.g.
network planning and management, order processing, vehicle scheduling and routing, materials
handling and warehousing of finished goods (Paksoy et al., 2021). Product characteristics are
the criterion that differentiates inbound from outbound logistics. The materials handled in
inbound logistics are raw materials or unfinished products, as opposed to outbound logistics
which only handles finished goods. Furthermore, due to higher production values and strict
customer satisfaction requirements, such as on-time delivery, outbound logistics requires more
complex processes than inbound logistics. Physical distribution is the area of business
management that deals with all material movements. It is usually associated with outbound
product movements, but actually extends to inbound product movements as well (Ballou 2007).
The activities that take place in a warehouse begin with receiving, where the unloading of
goods, document control, quality control and the possible modification of loading units take
place to make them suitable for storage. Next, we move on to warehousing, where the loading
units are assigned their location and physically located. Once the goods are stored, they may
need to be moved to the picking area. At this point, we proceed to order filling, which includes
picking, packing, order consolidation, completeness, accuracy and quality checks, and the
modification of loading units for shipment. Finally, we come to shipment, structured in the
grouping of the loading units by carrier and the loading of the means of transport (Casadio
Strozzi & Sala, 2024).

These are the basic characteristics of logistics. Over time, changing consumer preferences and

expectations, increasing globalisation, advances in communication technologies, the expansion
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of activities to be handled and the influence of digital innovations have radically altered the
way in which logistics operates.

If we consider the different industrial revolutions in chronological order, it is evident that each
evolution of the production sector has had parallel effects on logistics processes (Timm and
Lorig, 2015). In other words, the development of logistics closely follows industrial
development. It is no coincidence that the growth path of logistics (Figure 8) is divided into

four phases, just like the evolutionary process of industry (Galindo, 2016).
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Figure 8 - Development Process of Logistics

Source: Paksoy, T., Kochan, C., & Ali, S. S. (Eds.). (2021). Logistics 4.0: Digital Transformation of Supply Chain
Management.CRC Press, p. 21.

The first phase (Logistics 1.0) was initiated by the mechanisation of transport in the late 19th
and early 20th century. In fact, the first industrial revolution (Industry 1.0) characterised by the
industrialisation of the steam engine occurred in parallel with this period. At the time,
warehouses were conceived as rooms for finished products or raw materials, which were
handled and transported manually by people (lyigiin & Gorgiin, 2022). With these major
changes, human and animal power were essentially replaced with distribution by sea or rail
(Wang et al., 2016). Ships and trains equipped with steam engines became the main means of
transport for the movement of goods and containers, leading to a significant growth in transport
capacity, marking the beginning of the era of mass transport (Paksoy et al., 2021).

The second phase (Logistics 2.0) emerged in the 1960s with the automation of handling
systems. During this period, the spread of electricity and the introduction of materials such as

steel, copper and aluminium stimulated mass production techniques in the manufacturing
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industry, while automated systems for loading, unloading, storage and sorting gradually
replaced conventional warehouses. The presence of electricity in logistical processes made it
possible to automatically place and retrieve products from the shelves, facilitating the
replacement of manual forklifts with electric handling and transport vehicles (Wang et al.
2016). On the transport front, the advent of container ships redesigned cargo handling in ports,
marking a further acceleration towards mechanisation and automation of logistics activities
(Paksoy et al., 2021).

The third phase (Logistics 3.0) emerged in the 1980s with the spread of logistics management
systems. In fact, the integration of computers and information technology (IT) initiated the
third logistics evolution, leading to significant automation and systemisation of activities
(Paksoy et al., 2021). In this context, software such as the WMS (Warehouse Management
System) and the TMS (Transport Management System) have taken on a key role, capable of
more accurately planning incoming processes, managing supplier demand and optimising the
transport of the end product or raw materials (Galindo, 2016). In addition, this period is
characterised by the use of automatic moving belts or electric forklifts in internal handling
operations, while in some companies we find advanced robots that transport materials on
predetermined routes (lyigiin & Gérgiin, 2022).

The digital transformation of logistics processes, commonly referred to as ‘Logistics 4.0°,
marks a crucial shift away from the traditional, ‘hardware-oriented’ approach towards an
integrated, automated model based on IT platforms that exploit cyber-physical systems (CPS),
Internet of Things (IoT), Data Mining (DM), RFID, sensors, GPS and cloud computing. This
paradigm does not only innovate the technological infrastructure, but invests the entire
organisational and management structure of the supply chain, from goods transportation to
storage, distribution to packaging, and real-time tracking (Yilmaz and Duman, 2019; Timm
and Lorig, 2015). In parallel, the prospect of intensive use of connectivity and Industry 4.0
principles, such as interoperability, information transparency, technical assistance and
autonomous decision-making capacity (Horenberg, 2017), makes possible highly automated
and coordinated workflows, capable of adapting quickly to changing market needs. From this
perspective, the development of logistics 4.0 platforms offers a structured and ‘global’ response
to the growing complexity of goods and information flows (Ferndndez-Villacafias, 2019a).
New-generation logistics centres, known as ‘4.0 platforms’, take the form of intermodal hubs
in which the integration of different modes of transport (road, rail, maritime, air) takes place in
real time, exploiting advanced digital technologies and coordination based on shared data. This

perspective is part of the broader context of the so-called ‘Global Sustainable Logistics’, which
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aims to reconcile competitiveness and environmental, social and economic sustainability, in
line with the sustainable development objectives defined by the main international
organisations (Carter and Rogers 2008). Indeed, the wide spread of e-commerce and the need
to reduce costs, errors and environmental impact drive towards distributed, flexible and
connected value chains in open digital networks (Montreuil et al. 2010; Hofmann and Riisch
2017). Newly designed logistics platforms perform the function of operational centres where
transport, storage, distribution and ancillary services activities are concentrated, generating
competitive advantages for companies and surrounding territories (Ferndndez-Villacafias 2018;
GajsSek and Grzybowska 2016). Thanks to the sharing of technologies and infrastructures, such
hubs enable optimisation of physical and information flows, reduce handling costs and create
synergies between public and private operators. Their effectiveness is particularly evident in
supporting omnichannel and synchromodality strategies (Payne et al. 2017), where the choice
of the most efficient transport mode (road, rail or sea) is defined in real time, based on up-to-
date information on traffic, demand and environmental constraints. Moreover, the lean and
agile approach that characterises the most advanced supply chains is reinforced by the use of
Data Mining and Al techniques, which are crucial to forecast demand, plan inventories, and
coordinate production and distribution in order to reduce delays and inefficiencies (Ca glar
2014). In many cases, the evolution towards ‘Logistics Platforms 4.0’ grafts onto existing
infrastructural nodes - e.g. ports, freight villages and airports - gradually transforming them
into multifunctional hubs with high technological content (Mladenow et al. 2016). Particularly
relevant is the concept of the ‘aerotropolis’, i.e. a new model of urban development in which
the airport becomes the hub of an integrated system of logistical, technological and commercial
services, capillary connected to the surrounding economic fabric and international traffic
corridors (Fernandez-Villacafias 2019b; Kasarda 2019). By facilitating the rapid exchange of
people and goods, the aerotropolis is a candidate as a nerve centre for logistics 4.0 platforms,
thanks to the possibility of integrating air transport services with road and rail modes, reducing
delivery times and improving access to global markets. A further building block of this
transformation is “urban logistics’ (Boudoin et al. 2014; Rodrigue and Dablanc 2020), which
has the task of harmonising the distribution of loads in metropolitan contexts: on the one hand,
the growing demand for fast and personalised deliveries fuels urban traffic, on the other hand,
municipalities must protect the liveability of cities, reducing congestion, pollution and
inefficiencies (Lagorio et al. 2016). The realisation of urban sorting hubs (city hubs) - related
to 4.0 platforms - makes it possible to consolidate shipments and rationalise delivery routes,

perhaps using electric or environmentally friendly vehicles. Joint planning, based on advanced
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information systems and predictive algorithms, proves essential to balance the needs of users
and logistics companies (Fernandez-Villacafias 2019a; Stindt 2017). In this perspective,
logistics 4.0 platforms fully fit into the framework of smart cities and sustainable development
initiatives (Szymanska et al. 2017). The constant interconnection between devices and systems
- made possible by IoT and CPS - enables smart urban services (such as real-time traffic
management), while the massive generation and analysis of data (big data) support faster and
more accurate decisions. At the same time, the standardisation of communication protocols and
the sharing of information between public and private actors foster an intermodal ecosystem,
in which logistics nodes, transport means and infrastructures talk to each other, ensuring the
synchronisation of processes and a holistic view of the value chain (Ferndndez-Villacanas
2019b). In the future, a further evolution of this model could take the form of the ‘Physical
Internet’ (Montreuil et al. 2010), which prefigures an open and global logistics system, based
on standardised packaging formats and communication protocols, with the aim of minimising
inefficiencies and maximising sustainability. Ultimately, the emergence of Logistics 4.0 and
new logistics platforms, integrated with Industry 4.0, represents a coherent response to the
challenges of an increasingly competitive, variable and environmentally and socially sensitive
market (Hofmann and Riisch 2017). The adoption of cyber-physical systems, the use of
artificial intelligence algorithms and the synchronised planning of transport networks form the
basis for automated, high-precision decision-making processes (Timm and Lorig, 2015). The
ability to reduce costs and emissions while ensuring high standards of service becomes a key
factor for the competitiveness of companies and the sustainable development of territories.
These dynamics, enhanced by constant research and innovation, are already profoundly
transforming both business models and organisational culture, pushing towards a ‘software-
oriented’ logistics paradigm that, by combining operational efficiency and strategic vision,
responds in an integrated way to the needs of the supply chain and the community (Go¢men

and Erol 2018).

2. Artificial Intelligence in Logistics 4.0

Artificial Intelligence (AI) is now the center of gravity of Logistics 4.0. What was once a
substantially reactive supply chain becomes a proactive system, capable of anticipating peaks
in demand, dynamically orchestrating fleets and warehouses, identifying anomalies before they
result in failures and modulating flows in order to reduce energy consumption and emissions.
The most recent literature shows that, by integrating supervised machine learning for

forecasting, deep learning for computer vision and reinforcement learning for sequential
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resource management, companies can reduce forecasting errors, significantly improve
punctuality indicators, improve logistics costs by 15%, inventory levels by 35%, and service
levels by 65% (McKinsey, 2021). While Al enables hyper-performing logistics, it requires
clean data infrastructures, advanced analytical skills and governance models that balance
transparency, privacy and mitigation of decision-making biases. The challenges are clear: the
quality of data often fragmented between partners, the need for explainability of models to
comply with the new EU Regulation on Al, integration with legacy systems and, last but not
least, the retraining of workforce skills towards roles of interpretation and algorithmic
supervision. Yet the benefits far outweigh the initial costs: recent studies indicate that, thanks
to digital twins and edge-Al platforms capable of processing information directly on board
vehicles or sensors, it is possible to maintain operational continuity even in the absence of
stable connectivity and drastically reduce decision-making latencies. An era of autonomous
supply chains is thus emerging, in which logistics ecosystems do not simply react to events,
but predict and model them, integrating considerations of economic efficiency with long-term
ESG objectives. Starting from these premises, this chapter delves into the theoretical-
methodological framework of Al applied to logistics, analyses the main empirical evidence and
outlines the strategic implications for companies that intend to translate the predictive and

prescriptive power of data into a lasting, sustainable and measurable competitive advantage.

2.1 Definition and Key Features

Al is a branch of computer science that aims to create intelligent machines capable of
simulating human-like intelligence (Tang & Hai, 2021). It encompasses a diverse range of
techniques and approaches that enable machines to perceive, learn, reason, and make decisions.
It is a rather intangible and very complex concept. Broadly speaking, it can be conceived as a
scientific discipline that deals with a range of information technologies derived from the
processes by which humans perceive, process information and act on the outside world using
the human nervous system and body (Przegalinska, 2019). Al uses information derived from
various fields, such as biology, computer science, philosophy, logic and psychology, and has
already found application in several areas, such as natural language processing, speech
recognition, intelligent robots, automated demonstration of theorems and image processing
(Zhang & Lu, 2021). Its methodology makes it possible to transfer aspects of human behaviour
to machines and supports new forms of knowledge representation and systems capable of
handling information in a structured and efficient form. Being inherently multidisciplinary, Al

seeks to understand and perhaps replicate the enormous range of functions associated with the
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human intellect, thus moving towards an ever more advanced technology (Brachman & Henig,

1988).

Historical evolution:

e Phase 1 (1950-2010): The era of algorithmic innovations
In the first phase, from the early 1950s to the early 2000s, the limits and progress of Al
were strongly linked to innovation in algorithms (Wu et al., 2025). The theoretical roots go
back to the work of Turing (1950) and the Dartmouth Conference (1956), which defined
the goal of replicating human reasoning ability in machines. At the time, the lack of large
data sets and considerable computing power relegated Al systems to projects focused on
symbolic reasoning (e.g., expert systems such as DENDRAL or MYCIN) or early neural
networks (Hopfield 1982; Rumelhart et al. 1986). Despite interest in ‘connectionism’,
many initiatives stalled due to technical limitations - including unspecialised hardware and
small data sets - until work such as LeCun’s on convolutional networks for digit recognition
(LeCun et al. 1989) paved the way for ‘deep learning’.

e Phase 2 (2010-2024): Computing revolution and ‘renaissance’ of deep learning
Around 2012, Al underwent a major breakthrough when the availability of GPUs (Graphics
Processing Units) became the main driver of results (Wu et al., 2025). AlexNet!
(Krizhevsky et al. 2012) demonstrated how parallel GPU training of a deep network could
far surpass previous computer vision methods. This period was characterised by the idea
that ‘bigger is better’, as the growth of parameters in models and the extension of datasets
dramatically improved performance. Deep neural networks conquered areas such as vision
and natural language processing (Vaswani et al. 2017). The focus was on specialised
hardware (GPUs, TPUs) and massive datasets. In the mid-2010s, the emergence of deep
reinforcement learning made Al systems able to compete with humans in complex domains
(Silver et al. 2016).

e Phase 3 (2024 onwards): ‘data-centric’ paradigm
Subsequently, the focus began to shift from mere computational advances to data quality
and specialisation (Wu et al., 2025). The availability of clean, varied and contextual
information became the real factor for improvement. The so-called ‘data-centric AI’ (Ng
2021) highlights the importance of refined processes for acquiring and curating datasets,

reducing bias and expanding coverage. In parallel, reinforcement learning strategies have

! AlexNet, developed in 2012 by Alex Krizhevsky and Ilya Sutskever under the guidance of Geoffrey Hinton, was the
breakthrough that popularized deep learning for computer vision: its paper, cited in over 130,000 publications as of 2023,
decisively demonstrated the superiority of CNNs in automatic image analysis.
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moved towards the management of more realistic environments (car racing simulators, self-
driving simulators such as CARLA), while integration with robotics and control systems
has paved the way for a deeper Al presence in physical contexts.
According to Wu et al., (2025) each of these phases is not completely separate from the others,
but overlaps and complements each other, highlighting how the availability of algorithms,
computational power and specific data has been the real driving factor from time to time. The
shift from simple pattern recognisers to complex decision-making systems, up to autonomous
robots and, perhaps in the future, intelligences capable of redefining their own goals, underlines
the profound transformation taking place and opens up far-reaching ethical and regulatory
questions (Wu et al., 2025).
The historical evolution of Al, from the earliest symbolic and connectionist studies to the
current scenario dominated by deep learning, reinforcement learning and an increasing focus

on data quality, has laid the foundations for four distinct generations of Al:
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Source: Wu, J., You, H., & Du, J. (2024). Al generations: From Al 1.0 to AI 4.0. University of Florida.

e Al 1.0: Information Al
‘Information AI’ includes systems that excel in pattern recognition and data analysis, such
as computer vision methods (AlexNet) or language models based on relatively “superficial”
architectures. These solutions, consolidated by decades of research on neural networks and

statistical approaches (Wu et al., 2025), work well on static datasets, but lack true

autonomy.
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e Al 2.0: Agentic Al
The second generation, known as ‘Agentic AI’, emphasises the shift towards the ability to
make decisions in dynamic environments, such as automatic trading software or real-time
recommendation agents (Wu et al., 2025). Here, the impetus comes from reinforcement
learning and autonomous planning: systems do not merely classify information, but interact
with the (digital) environment and adapt their strategies. AlphaGo is an emblematic
example of this (Silver et al. 2016).

e Al 3.0: Physical Al
‘Physical A’ takes artificial intelligence beyond the purely virtual space by integrating it
into robots, autonomous vehicles and physical devices (Wu et al., 2025). The acquisition
of sensory data (cameras, LiIDAR, proximity sensors) and the need to act promptly in the
real world impose reliability and safety requirements. Examples include industrial
assembly robots, autonomous drones and self-driving vehicles (Levine et al. 2018). Here
the challenge lies in optimising computation and algorithms in the presence of noise,
uncertainties, energy limitations and human interaction.

e Al 4.0: Conscious Al
The fourth generation, which to date is highly speculative, hypothesises systems with target
self-management capabilities and, in an extreme form, even some form of ‘consciousness’
(Wu et al., 2025). Important topics include the necessity of strict “Al alignment” to
guarantee that Al objectives and values continue to be consistent with human ones (Russell,
2019) and philosophical discussions over the nature of consciousness. Although the
actualization of a “self-conscious” Al is yet hypothetical, the subject is pertinent to
comprehend potential future ramifications with regard to governance, ethics, and
accountability (Wu et al., 2025).

Al embraces many technologies, the two main ones being machine learning (ML) and deep

learning (DL). Nowadays, intelligent systems offering Al capabilities often depend on ML.

ML describes the ability of systems to obtain knowledge from training data of specific

problems to simulate the analytical model building technique and associated problem solving

(Kristian, 2018). Al and ML are becoming the main and best problem-solving methodologies

in various fields of industry and research, particularly due to the recent triumph of DL (Jordan

& Mitchell, 2015). DL is the subset of ML and ML is the subset of Al as can be seen in Figure

10. If a higher level of detail is desired, have a look at Figure 11.
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Figure 10 - AI components

Source: McKinsey & Company. (2024, April 3). What is Al (artificial intelligence)? [Illustration] (p.3).
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Machine learning (ML) is the idea of developing computer systems that are capable of
improving their performance autonomously through experience, ranking today as one of the
fastest growing technologies at the intersection of statistics and computer science, and
representing a central element of data science and Al. The extensive application of machine
learning algorithms in data-intensive environments indicates their relevance in many different

sectors, e.g., manufacturing, education, public safety, healthcare, marketing, and finance
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(Dietterich, 1997). These techniques are also crucial for handling next-generation problems
like natural language processing, robotic control, speech recognition, facial recognition,
character understanding, database exploration, gaming, and medical data analysis (Raj & Kos,
2022).

Deep Learning (DL) is a sub-category of ML. It is a technique for instructing computers to do
something that comes naturally to human beings, namely to understand by example. In DL, a
computer model performs classification tasks directly from text, sound or images. DL models
have the potential to sometimes even surpass human performance, being able to achieve greater
accuracy. Computer vision, data mining, supercomputers, fraud detection, natural language
processing, customer relationship management systems, human activity recognition and
autonomous vehicles (Raj & Kos, 2022) are all possible fields of application for DL
technology. Figure 12 presents the differences between the operating principles of ML and DL.
It shows that feature extraction and classification are two different steps in ML, whereas in DL

they occur together in one step.

Machine Learning

& &y 22273 Il

Input Feature extraction Classification Output
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N = O l

Input Feature extraction + Classification Output

Figure 12 - Difference between machine learning and deep learning

Source: Oppermann, A. (2019). What is deep learning and how does it work. Towards Data Science.

Artificial Neural Networks (ANNs) represent the fundamental algorithmic structure on which
deep learning is based. ANNSs represent a set of learning models inspired by the functioning of
the human brain, in which neurons (units) are interconnected by means of synaptic weights
(Rathore, 2016). The basic structure of ANNS is in fact based on the idea of elementary units
(neurons) organised into an input layer (input), one or more hidden layers and an output layer

(output), as illustrated by various control architectures (Filho, Cabral, & Soares, 1998).
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Source: Fernandez, C. M., Alves, J., Gaspar, P. D., Lima, T. M. & Silva, P. D. (2023). Innovative processes in smart
packaging: A systematic review. Journal of the Science of Food and Agriculture, 103(3), 986—1003.

Of the various types of ANNs, Perceptrons constitute the simplest and most historically
relevant form, having initiated the systematic study of artificial networks due to their inherent
classification and learning properties (Singh & Banerjee, 2019). Multilayer Perceptrons (or
‘feed-forward neural networks’) are distinguished by the propagation of information through
successive, loop-free layers; Recurrent Neural Networks (RNNs), on the other hand, include
recurrent connections that make them particularly effective in modelling sequential data;
Modular Neural Networks, which are rapidly expanding, adopt learning strategies and task
decomposition through specialised modules. Convolutional neural networks (CNNs) are
central to deep learning and are widely used in fields such as computer vision and natural
language processing. We find its applications in areas such as autonomous vehicles or facial
recognition systems (Li et al., 2021). Radial-based neural networks (RNNs), derived from
function approximation, have an excellent capacity for fast training and local response (Dash
et al., 2016). Finally, Long Short-Term Memory (LSTM), conceived as a variant of RNNss,
possess cells with multiple memory states and are exploited for a wide range of recognition,

prediction and sequence analysis tasks (Smagulova & James, 2019).

2.2 Artificial Intelligence (AI) in Logistics

Artificial Intelligence has become the reason for the revolution of many industries; among
them, the leading position belongs to logistics. Logistics, in the modern business world,
includes many activities and processes requiring urgent decisions and solving various problems

right on the spot. Al can predict outcomes and then optimize the processes. This potentially
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very powerful tool might be in the position to transform complex processes and standardize

them. Al models can actually learn from data and hence adapting it to specific business needs

becomes far easier for a company (Woschank, Rauch, & Zsifkovits, 2020).

In the rapidly evolving logistics landscape, Al plays a role as a process ‘transformer’,

providing new levels of efficiency and resilience. The motivations behind the need for

improvement are manifold:

L.

II.

I1I.

Increasing global complexity

Modern supply chains often extend on a global scale, involving a great number of
suppliers, distributors and customers. This makes flow management an extremely
complex task. In this scenario, Al offers tools capable of integrating different variables
(such as transport costs, delivery times and customs regulations) in real time to elaborate
dynamic and flexible plans. Several studies (Ejjami & Boussalham, 2024) show how
machine learning algorithms are able to integrate large volumes of data from the field (via
Internet of Things, sensors, GPS, etc.) to adapt shipping plans in response to unexpected
events or sudden changes in demand. Furthermore, some studies report that in case of
extraordinary events, Al’s predictive ability allows for a very quick switch to alternative
routes or secondary distribution centres, leading to an overall increase in system resilience
(Boute & Udenio, 2021). This flexibility is crucial in a global marketplace characterised
by volatility and uncertainty, as evidenced by the growth of geopolitical crises, extreme
weather phenomena and the rise of e-commerce (Ejjami & Boussalham, 2024). In
addition, AI models help to improve end-to-end traceability, a key factor in preventing
counterfeiting and inefficiencies, and in providing greater transparency to consumers
(Chen et al., 2021).

Increased competitive pressure and reduced margins

The exponential increase of online orders and the expectation of just-in-time deliveries
squeeze the operating margins of logistics companies (Belhadi et al., 2024). In today’s
environment, companies are faced with rising costs (fuel, maintenance) while having to
offer competitive rates and innovative services (e.g. same-day delivery). Through the use
of sophisticated predictive models applied to different time horizons, Al helps to reduce
the tensions arising from market competition.

Need for greater reactivity and continuous adaptation

Demand volatility and sudden changes in trends (e.g. regulatory changes, health crises,
sudden changes in consumer preferences) require responsive supply chains (Singh, 2023).

In this context, Al is certainly a tool that helps companies in the logistics sector to increase
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this responsiveness by enabling them to constantly process vast amounts of data (e.g.
sales, inventory, traffic and weather data) in order to be able to redefine delivery plans in

real time if necessary (Xia et al., 2020; Javaid et al., 2022).

2.2.1 Fields of application

The scientific and professional literature has highlighted how Al is successfully applied in
many areas of logistics. In specialized literature, it is now common to distinguish four Al
systems, each of which finds peculiar applications in the logistics field: supervised Al,
unsupervised Al, machine learning-based Al and reinforcement-based Al. Supervised Al is
based on labeled data and is particularly effective for predictive activities like demand
estimation, distribution route optimization or dynamic calculation of delivery times.
Unsupervised Al, on the contrary, operates on datasets without predefined labels and lends
itself to the recognition of hidden patterns. Clustering and dimensionality reduction techniques
are used, for example, to segment customers according to purchasing behavior or to identify
anomalies in warehouse flows. In a context characterized by increasing demand volatility, these
features allow to identify micro-trends that are difficult to detect with traditional methods,
favoring the customization of services and the improvement of operational efficiency
(Ramirez-Asis et al., 2022). Alongside these two paradigms, there is Al based on machine
learning in the broad sense, which acts as a methodological “glue”: regression algorithms,
classification, time series and ensemble methods are integrated into Warehouse Management
Systems (WMS), fleet management platforms and management dashboards to support tactical
and strategic decisions. Unlike classic deterministic models, machine learning is able to update
itself incrementally as new IoT data flows into corporate data lakes, ensuring an always up-to-
date view of the logistics network. Finally, reinforcement-based artificial intelligence stands
out for its ability to “learn by doing”: an agent explores the logistics environment (physical or
simulated) and receives rewards or penalties based on the results obtained (Ramirez-Asis et al.,
2022). This logic finds application, among other things, in the real-time control of autonomous
handling vehicles, in the dynamic definition of stock levels and in the multi-objective
optimization of the transport budget. The continuous feedback element, characteristic of
reinforcement learning, is valuable in complex scenarios where operating conditions change
rapidly as in the case of e-commerce distribution centers during seasonal peaks. The main
application areas of Al as a whole will be analyzed in detail later in the chapter. A detailed

breakdown can be seen in Figure 14.
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Below we delve into five key domains: Demand Forecasting, Route Optimization, Robotics,

Computer Vision and Gen Al

2.2.1.1 Demand Forecasting

Demand forecasting has always been one of the most critical activities for logistics
management, because it directly affects procurement decisions, inventory allocation,
production planning and transport choices. However, “classic” statistical methods, based on
historical series and the assumption of relatively stable markets, are increasingly less effective
in contexts characterized by short product life cycles, aggressive promotions and continuous
exogenous shocks (Begum et al., 2024). The digitalization of the supply chain and the
explosion of data from IoT sensors, e-commerce platforms and social media have therefore
favored the adoption of Al techniques capable of learning in real time from heterogeneous
sources and modeling highly non-linear relationships (Priore et al., 2018). Within the vast Al
panorama, supervised learning algorithms are the first piece applied to logistics. They range
from linear regression — which is still useful when the relationship between the independent
and dependent variable is substantially linear (Ye et al., 2014) — to ensemble models such as
Random Forest, which combine tens or hundreds of decision trees trained on different

subsamples of the dataset to reduce variance and bias, returning robust forecasts even in the
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presence of strong noise (Vairagade et al., 2019). Also boosting techniques, such as gradient
boosting machine, further improve precision by iteratively correcting the errors of the previous
model (Perera et al., 2019). Many case studies, particularly in retail and manufacturing, show
consistent reductions in forecast errors compared to both traditional methods and single
decision trees (Purnamasari et al., 2023). When seasonality is complex or demand is affected
by long latency periods, deep learning algorithms offer even superior performance. Recurrent
neural networks (RNN) and, above all, Long Short-Term Memory (LSTM) are able to
“memorize” long-term temporal dependencies and adapt to multidimensional datasets that
include meteorological variables, macroeconomic indicators and sentiment extracted from
social media (Sukolkit et al., 2024). Combining LSTMs with statistical models such as
ARIMA? resulted in the development and implementation of hybrid techniques. These
techniques are capable of capturing both linear and nonlinear components of time series,
significantly reducing the mean absolute percentage error (Perera et al., 2020). Along with
predictive models, unsupervised learning approaches such as k-means clustering are beneficial
for segmenting customers, channels, or product categories based on comparable demand
patterns (Mani et al., 2017). The combined adoption of segmentation and forecasting allows to
customize reordering parameters, improving the overall efficiency of the distribution network.
In scenarios where labeled data is scarce (typical of new markets or newly launched products)
semi-supervised approaches are gaining ground, exploiting a small subset of validated data to
guide the discovery of patterns in the large volume of unlabeled data (Abolghasemi et al.,
2015). Recent literature also emphasises the role of fuzzy logic® as a technique for modelling
uncertainty and common approximations in logistics processes (Chaowai & Chutima, 2024).
The combination of fuzzy rules with Al models allows for the incorporation of specialised
knowledge, while keeping the ability to learn from data. The result is a more flexible
framework that takes into account quality defects, delivery delays and lead time variability,
elements often overlooked by more “rigid” models. On the operational level, companies that
have implemented AI solutions for demand forecasting report tangible benefits: reduced

inventory levels, fewer stockouts, and more accurate planning of delivery routes (Diabat &

2 ARIMA (AutoRegressive Integrated Moving Average) is a statistical model for time series that combines three components:
autoregression (AR), which uses a finite number of past values; integration (I), which differencing the series to make it
stationary; and moving average (MA), which models the error as a linear combination of past errors.

3 Fuzzy logic extends classical Boolean logic by replacing the “true/false” values with a continuous interval between 0 and 1,
thus indicating the degree of truth of a statement. Through membership functions, linguistic rules of the type “IF ... THEN”
and a subsequent “defuzzification”, it translates qualitative concepts (for example “high demand” or “long lead-time”) into
numerical values that mathematical models can use to provide more realistic decisions that adhere to operational complexity.
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Deskoores, 2016). Thanks to [oT connectivity, forecasts can be updated virtually in real time:
sales data from cash registers, signals from beacons in the warehouse, or environmental
parameters collected by sensors along the cold chain flow into the models, which re-optimize
production and distribution logistics with very rapid feedback loops (Perera et al., 2019).
However, significant challenges remain. Data quality which is often heterogeneous in format,
frequency, and granularity, strongly affects model performance (Duan et al., 2019). The lack
of transparency in deep learning architectures generates resistance in sectors subject to
stringent auditability requirements, where the “black box” must be justified at a managerial
and regulatory level (Raghupathi & Raghupathi, 2014). Added to this are the significant costs
of hardware infrastructure, cloud, and specialized skills, which represent a particularly
burdensome obstacle for SMEs (Albergaria & Jabbour, 2020). Finally, ethical issues such as
bias in training data and privacy protection require adequate governance mechanisms (Zhang
et al., 2020). Despite these critical issues, the evolution of Al towards increasingly scalable
models leads to predict an expansion of their use in logistics. Integration with emerging
technologies such as edge computing will reduce latencies, enabling “at-the-edge” forecasts
and decisions directly on IoT devices. In parallel, the expansion of multi-modality datasets
(text, images, process signals) will provide further fertile ground for advanced algorithms
capable of capturing previously invisible nuances of demand. In this framework, Al does not
replace the strategic role of the logistics planner, but amplifies their ability to interpret complex

scenarios and act promptly across the entire supply network.

2.2.1.2 Route Optimization

Transportation route optimization is a strategic aspect in logistics management, as it heavily
impacts both operating costs and the level of service offered to customers In today’s context,
characterized by continuous demand variability, unpredictable weather phenomena and
increasing road congestion, traditional planning methods (such as deterministic approaches to
the “Travelling Salesman Problem™ and the “Vehicle Routing Problem™) highlight strong
limitations: in addition to requiring very high computation times, they are unable to
dynamically update the solutions (Vaka, 2024). Faced with this growing complexity, the recent
evolution of Al techniques, and in particular the use of large learning models (large Al models),

offers innovative perspectives to make the routing process more flexible, adaptive and precise

4 TSP is a classic optimization challenge that seeks to find the shortest possible route that visits a set of locations exactly once
and returns to the starting location.

> VRP is a generic name given to a whole class of problems concerning the optimal design of routes to be used by a fleet of
vehicles to serve a set of customers.
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(Ping et al., 2024). Machine learning (ML) applications are now the cornerstone of predictive
routing: algorithms such as gradient boosting, random forests and neural networks (including
RNNs) learn from historical data — traffic patterns, delivery windows, road network
morphology, weather variables — and anticipate bottlenecks before such events occur.A
delivery company can then schedule shipments in less crowded time slots or preemptively
change routes in the event of heavy rain, for example, resulting in improved punctuality and
reduced emissions. Experiments by multinational operators such as DHL and FedEx have
proved the practical success of this technology, having recorded significant reductions in delays
and operating costs thanks to continuously self-learning ML systems (Li, Zhuang, Yang, Lu,
& Xu, 2024). When environmental uncertainty increases, reinforcement learning (RL) models
extend forecasting capabilities with an online adaptation component. In a classic Markov
Decision Process® scheme, the “state” includes the vehicle’s current position, completed
stages, capacity constraints, and even traffic conditions or warehouse opening times
(Yarlagadda, 2024). In order to choose the action, that is the next destination, the Al agent
maximises a reward function that penalises wasted kilometres and delays and rewards fuel
efficiency and punctuality (Ejjami & Boussalham, 2024). A good example is UPS with
ORION. It is a platform which can learn from millions of simulations and update routes in near
real time, saving millions of miles traveled each year. Adopting multi-agent RL models similar
benefits can emerge. By coordinating entire fleets, these models ensure constrained time frames
are met in areas with extremely high delivery density while also removing bottlenecks at
sorting centres. When real-time data streams (such as those from IoT sensors) are included,
the power of ML and RL is further enhanced as this data is immediately translated into route
recalculations (Li, Zhuang, Yang, Lu, & Xu, 2024). Hybrid models — predictive in the long
term and reactive in the short term — thus allow strategic planning and tactical adaptability to
be combined, avoiding, for example, the simultaneous blocking of multiple vans in the same
area at risk of congestion. The use of intelligent maps enriched with details on one-way streets,
pedestrian zones or no-turn zones makes it easier to choose optimal loading zones and reduces
the time drivers spend looking for parking, especially in high-density contexts. The use of Al

in route optimisation goes beyond just figuring out the shortest path. In addition, it makes it

¢ A Markov Decision Process (MDP), used in Al and reinforcement learning, describes the agent-environment interaction as
a chain of states s, actions a, and rewards r: the agent, in state s, , selects an action a;, the environment returns a reward 7y,
and transitions to a new state s;,; according to a probability distribution P(s;,1| S, a;) that depends only on the current state
(Markov property). The goal is to find a policy that maximizes the expected sum of future rewards, i.e., the overall return of
the agent’s behaviour.
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possible to assign drivers and vehicles in the most efficient manner, reducing wasted kilometres
and matching loads to actual warehouse space availability. Moreover, there is a major
environmental impact: cutting the route traveled lowers CO: emissions and fuel costs,
supporting the sustainability and ESG goals that are becoming more and more important in
corporate policies (Ejjami & Boussalham, 2024). Empirical analyses show drops of 10—-15%
in total transportation costs and decreases of around 15% in average delivery times (Ping et al.,
2024). Anyway, this potential is not free from critical issues: the computational complexity and
the need for a huge amount of “clean” and constantly updated data constitute non-trivial
obstacles. Furthermore, the transparency of Al decisions and the management of possible
biases (for example, in the preferential assignment of a certain sorting center) remain open
questions. Nonetheless, the direction taken by the logistics industry is now clear: Al integrated
with IoT sensors and cloud data analytics platforms, represents the key to logistics 4.0. The
result is a more resilient, sustainable logistics ecosystem that can meet increasingly stringent

service standards (Li et al., 2024; Ping et al., 2024).

2.2.1.3 Robotics

The integration of robotics and Artificial Intelligence is generating a sea change in the
industrial and manufacturing field, rewriting traditional definitions of operational efficiency,
accuracy and safety (Khang, Hajimahmud et al., 2024). This is not just a technological
advancement, but a true paradigm shift with implications ranging from risk management and
complex decision-making processes to the automation of repetitive tasks. This transformation
is particularly evident in the logistics sector, where Al-enabled robots are revolutionizing
activities like order-picking, packaging, sorting and also last-mile delivery (Javaid et al., 2022).
In parallel, the explosion of e-commerce has significantly increased the volume of goods
transported on a daily basis, leading consumers to demand faster and more convenient
deliveries (Simic et al., 2023). The adoption of intelligent robots marks a turning point in
meeting the new challenging needs of customers. Indeed, it has been shown that autonomous
electric vehicles, for example, are reducing the need for manpower, enabling a 25-35% increase
in successfully completed daily deliveries alone, in the face of growing demand for advanced
decision-making processes for robotic navigation (Wang et al.,, 2018). Thanks to these
solutions, autonomous robots can predict delivery times of autonomous electric vehicles, thus
drastically reducing errors and delays (Simic et al., 2023). These recent developments
underscore the key role of Al in increasing trust in the use of robots, based on their ability to

make systems safer, more reliable and able to handle the high level of complexity inherent in
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operational environments (Kiangala & Wang, 2022). Traditionally, robots were considered as
simple machines resulting from mechanical or electronic engineering, with a “bottom-up”
approach that emphasised hardware and sensorimotor functions (Oliff et al., 2020). With the
advent of artificial intelligence systems, we have witnessed an expansion of robotic
capabilities. One example is the reduction of picking errors in warehouses, where the adoption
of radio frequency identification (RFID) has had a considerable impact on the process (Ceyhun,
2020). RFID tag embed unique identities which are read and transmitted via radio to a nearby
reader, enabling to localize and track with precision the movements of robots or the goods
position (Confidex, 2023). One notable example is Confidex, a company that has developed
chips that can resist to various chemicals, intense washing and high temperatures to make
automation compatible with the entire product life cycle (Confidex, 2023). However, there are
some critical issues. Tags can get damaged, and managing and updating search tables
(containing coordinates, routes or geographical positions) can be challenging (Oliff et al.,
2020). In the face of these limitations, computer vision (which will be discussed in detail
below), emerges as a valuable alternative or complement, acting as the main system for
navigation and cargo recognition (Dohrmann, Pitcher, & Kamdar, 2024). Al technologies that
form the core of modern robotic systems include machine learning, computer vision, and
natural language processing, each with its own strategic role. For what concerns machine
learning, supervised learning methods improve the ability of robots to predict and optimize
specific tasks, since training on labelled data allows them to provide precise indications on
correct actions or configurations (Yadav B.R., 2024). Equally important is also the
unsupervised learning, which allows to analyse large amounts of unlabelled data, identify
unexpected patterns or anomalies, thus leading robots to become more adaptive in facing such
unexpected circumstances (Dwivedi et al., 2019). Of particular significance is also the
reinforcement learning, allowing autonomous systems to make decisions according to feedback
from the environment, iteratively adjusting control strategy and playing a critical role for
navigation, object manipulation and solving complex problems in real time (Cioffi et al., 2020).
On the computer vision side, objects recognition and detection algorithms allow robots to
identify specific elements, classify them with precision and manage procedures like assembly
or sorting (Cioffi et al., 2020). Furthermore, pose estimation and tracking techniques allow to
evaluate of the orientation and position of objects in space, favouring an accurate manipulation
in sectors demanding high levels of accuracy. Because of these advances, applications of Al-

powered robotics extend to multiple fields:
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¢ In warehouses, these robots automate picking, packing and sorting operations, reducing the
use of manpower and increasing efficiency at the same time;
¢ In the transport of materials, the use of autonomous mobile robots, capable of adapting their
routes based on obstacles or changes, improves productivity in factories and warehouses;
e In delivery services, these devices can move in urban environments or in company
complexes to distribute goods directly to recipients, optimizing the route and minimizing
delays (Yadav B.R., 2024; Cioffi et al., 2020).
Al-driven control systems are the very basis of autonomous robots, as they enable them to
tackle complex tasks and adapt to variable and unpredictable operating conditions (Yadav A.B.,
2024). In defining such systems, a crucial aspect is represented by control architectures, which
establish how robots process information, plan their actions and perform specific operations
(Dwivedi et al., 2019). On the one hand, there are reactive approaches, which favour immediate
responses to sensory stimuli and are based on machine learning algorithms capable of rapidly
analysing previous experience, thus allowing them to react promptly to rapid changes in the
environment (Yadav A.B., 2024). On the other hand, there are deliberative approaches, which
involve more in-depth planning oriented towards the achievement of long-term goals, often
supported by techniques such as the use of decision trees and models based on symbolic
reasoning. In many cases, however, hybrid control structures are preferred, as they are capable
of combining the decision-making speed typical of reactive approaches with the analytical
capacity and long-term strategic projection typical of deliberative ones (Dwivedi et al., 2019).
Al plays a key role in this context, integrating real-time sensor data with high-level planning,
ensuring that the robotic agent can simultaneously handle both immediate contingency needs
and more strategic challenges. In terms of actual algorithms, a very important aspect is
represented by the methodologies designed to govern the physical movements of the robot and
regulate its interaction with the surrounding environment. PID (Proportional-Integral-
Derivative) controllers are a traditional solution, widely adopted for low-level control in tasks
such as maintaining speed, position or orientation. Although they are known for their simplicity
and effectiveness, they find a further evolution when they are combined with Al features that
allow the dynamic optimization of the parameters, in order to make them more robust in the
face of unexpected variations (Cioffi et al., 2020). A second important paradigm is represented
by Model Predictive Control (MPC), based on the principle of predicting the future states of
the system in a certain time horizon and deriving, for each interval, the optimal control action.

This prediction is performed in real time, allowing to respect constraints and guarantee results
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close to the optimal even in highly dynamic environments. The use of machine learning
techniques, in the form of neural network models or other prediction tools, also allows to
improve both the precision of the predictions and the speed with which the MPC solver is able
to operate (Yadav B.R., 2024). A third fundamental axis in the construction of advanced control
systems is Reinforcement Learning. With this technique, the robot does not simply follow
instructions or execute decisions made by a central planner, but actively interacts with the
environment, learning optimal control policies from feedback obtained in the form of rewards
or penalties. Algorithms such as Q-learning or policy gradient methods allow defining lines of
conduct that adapt to complex scenarios, including those characterized by uncertainty or
sudden changes. With the advent of Deep Reinforcement Learning (DRL), made possible by
deep neural networks, the ability to manage large state and action spaces has expanded,
favoring applications in which the robot must perform complex evaluations, such as path
planning in congested environments or the precise manipulation of objects with irregular edges
(Yadav B.R., 2024). In practice, designing an Al-based control system requires addressing
some cross-cutting challenges that affect the robustness and reliability of the robot (Dwivedi
et al., 2019). Among these, the need to ensure real-time processing, so as to process sensor
data, decide and act in a synchronized way even within very narrow time windows; to maintain
stable and disturbance-tolerant behavior, so that the system continues to operate reliably even
in the presence of noise, interference or imperfect data; and to be able to deal with unexpected
or extreme situations, such as unmapped obstacles or component failures, thanks to techniques
ranging from anomaly detection to online learning (Cioffi et al., 2020). The integration between
Al control architectures and algorithms, therefore, allows to significantly increase the
autonomy, precision and adaptability of robots, with important implications for their
applicability in varied and turbulent contexts. Looking ahead, these advances push the
boundaries of automation and robotic innovation, opening up scenarios where intelligent,
adaptive machines can work alongside humans with unprecedented levels of efficiency and

reliability (Yadav A. B., 2024).

2.2.1.4 Computer Vision

Nowadays, thanks to technological advances in 3D reconstruction, depth perception, and the
interpretation of dark and blurry images, computer vision offers a wide range of new supply
chain opportunities.

Al provides computers with the capability of “thinking”, while computer vision allows them

to “observe and understand”. Computer vision uses cameras to capture images or videos and
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then applies Al algorithms to analyse the data extracted from these digital contents.
Rudimentary visual Al systems are trained to simply distinguish one object from another. More
advanced versions of these systems, on the other hand, are able to track objects from multiple
viewpoints, learn autonomously and, in recent upgrades, make predictions through pattern
recognition. Computer vision trend developed in conjunction with advances in deep machine
learning, taking advantage of the increasing quality and decreasing cost of recording devices.
There are several factors driving the adoption of computer vision technology, including the
growing need for workflow automation and optimisation in several sectors (Dohrmann,

Pitcher, & Kamdar, 2024).
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In 2024, the global computer vision market was valued at over US$ 25.92 billion and is
projected to expand at a compound yearly growth rate of 15,96% by 2031, driven by ongoing
advancements in Al, vision systems, and computer processing (Statista, 2024). Computer
vision accuracy rates for identifying and classifying objects increased from 50% to 99% in less
than a decade. Moreover, further integration of Al, automated machine learning, edge
computing, Internet of Things, and other technologies will propel future adoption. Within the
next five years, computer vision will be widely used in logistics operations, and a lot of new
applications are probably going to appear. By enabling safer, more sustainable operations and
more automated, efficient procedures, this technology will support and promote future logistics

success (Dohrmann, Pitcher, & Kamdar, 2024).
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Computer vision systems develop their capabilities repeatedly analysing wide range of high
quality visual data. Through this iterative process, they learn to identify different images and
distinguish even the smallest variations. To this end, two different technologies are adopted:
deep learning and convolutional neural network. Deep learning uses algorithms and artificial
neural networks able to improve themselves to continuously extract new information from
visual input. On the other hand, convolutional neural network decomposes images into labelled
segments and applies mathematical operations to these segments to refine the accuracy of the
prediction over several iterations. In logistics contexts, these segmentation approaches can be
extended to instance-level techniques that differentiate one parcel or pallet from another, even
if they belong to the same category (Naumann et al., 2020).

Today computer vision systems are used in different ways. The most common application is
image classification: the system sees an image and predicts that it belongs to a certain class.
Another well-known application is object detection, also known as machine vision: the system
not only classifies an image but also takes note of its aspect (tabulation). Once an object has
been identified, it can be tracked: object tracking is often done through the use of sequential
images and videos. Yet another application of computer vision systems is content-based image
recovery to increase the precision of digital image search and recovery (Dohrmann, Pitcher, &

Kamdar, 2024). Figure 17 shows the various processes that computer vision images undergo.
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Figure 17 - Image Processing Stages in Computer Vision

Source: DHL Trend Research. Al-driven computer vision: A DHL perspective on the impact of computer vision in logistics.

Already today, computer vision is proving its worth in a vast range of applications that
transform everyday logistics operations:

e Health and Safety Applications

e People and Operations Applications

e Maintenance Applications

e Asset Management Applications

e Dimensioning Application

e Compliance Applications

e Shipment Localization: Automatic Sorting

Health and Safety Applications

Accident Prevention

Busy logistics facilities like warehouses, yards, and depots pose a serious risk to employees’
health and safety. Computer vision and Al technologies represent a valuable support tool for
reinforcing safety and security, as they allow the movements of people and vehicles to be
observed and analysed in real time. Speeding, moving in the wrong direction, parking in the
incorrect spot, and other violations can be detected by a computer vision system. In an attempt
to minimise risk and hazardous behaviour, it can also detect non-compliance in real time (e.g.,
when workers are not using walkways), and it can send out safety alerts for timely intervention.
This monitoring encourages proactive safety decisions, improves operational coordination and
enables timely corrective actions to reduce risks, creating a more protected workplace. A
significant example is the project launched by DHL: thanks to the Al-based solution for
detecting risk events, developed by the startup Protex Al, a proof-of-concept was created that

enables EHS (Environment, Health and Safety) teams to proactively intervene on safety. This
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initiative made it possible to transform the information obtained into concrete actions, with the
aim of reviewing work flows, raising operational safety standards and introducing targeted
corrective interventions (Dohrmann, Pitcher, & Kamdar, 2024).

Ergonomic Pose Improvement

Human Pose Estimation (HPE) is a technology that exploit computer vision to identify and
classify joints in the human body. It collects a series of coordinates for each joint, forming a
skeletal representation that describes a person’s posture and movements. This information is
essential for ergonomics, the discipline that studies the efficiency of people in the workplace.
For example, leaning forward can increase the risk of back injury. Likewise, twisting or turning
movements, improper lifting, and carrying excessive loads pose significant risks. An
interesting case is the one of TuMeke, a tech company that developed Al ergonomic risk
assessment platform using computer vision to detect incorrect postures: by recording and
analysing video potentially dangerous movements can be detected (such as lifting boxes) and
injuries prevented (Dohrmann, Pitcher, & Kamdar, 2024).

Protective Personal Equipment (PPE)

Employers are responsible for supplying Personal Protective Equipment (PPE) and ensuring
its proper use in the workplace. For example, safety helmets, eye protection, and specialized
clothing are common forms of PPE. However, simply wearing the correct equipment is not
enough: it must be used correctly. Using computer vision, Al systems can verify adherence to
safety procedures and even identify the reasons for non-compliance. These systems can be
trained to recognize various types of PPE in real time by analyzing video streams from
strategically positioned cameras, confirming that workers are both equipped with the
appropriate PPE and using it correctly. Additionally, they can detect defective or damaged PPE,
which represents a significant safety hazard. All this helps ensure compliance with safety
protocols and avoid accidents (Dohrmann, Pitcher, & Kamdar, 2024).

Driver Support

Computer vision can also be used to detect signs of fatigue in drivers of heavy goods vehicles
on long journeys. For example, thanks to cameras and machine learning algorithms, facial
recognition technology can detect lowered eyelids and changes in expression, signs that
indicate fatigue. In such cases, the system can suggest the driver to stop to have a break, and,
if necessary, it can also activate an alarm to warn other road users of a possible hazardous
situation. This technology is also able to check whether the seat belt is being worn correctly,
plus whether unauthorized accesses inside the vehicle is occurring. The latest and most

advanced computer vision systems can perform multiple tasks simultaneously. An example of
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this multitasking ability can be found in autonomous vehicles: the system identifies and
classifies more elements (e.g., pedestrians, other vehicles or obstacles) at the same time, tracks
their movements and makes decisions based on this information allowing for safe travel

throughout the entire journey (Dohrmann, Pitcher, & Kamdar, 2024).

People and Operations Applications

Heatmaps

Computer vision-based heat maps enable to accurately identify bottlenecks and areas of high
activity within the warehouse, using contactless and non-invasive methods both inside and
outside the facility. The analysis of video streams from surveillance cameras allows to measure
the frequency and duration of movements of people and vehicles, applying a color-coded
overlay. For example, a certain shade of red indicates high activity, while white signals a lack
of movement. This data helps managers to identify inefficiencies like overcrowded or, at the
opposite, underutilized sections, so as to optimize inventory and placement, increasing the
efficiency of operations overall. To assess the impact of the modifications, it is also possible to
compare heatmaps over time (Dohrmann, Pitcher, & Kamdar, 2024).

Head Counting

Warehouse managers must guarantee an adequate staffing to complete planned activities. Few
employees can cause delays, while having too many can lead to unnecessary costs. Moreover,
it is essential to respect the safety limits concerning the maximum permitted capacity. Manually
counting people in a defined area is tedious, repetitive, and a waste of time. For this reason,
computer vision systems are adopted to count both people and vehicles within logistics
facilities 24/7. This visual information allows managers to analyze the collected data and
determine the optimal number of operators needed to perform specific activities, always
ensuring safety requirements are met (Dohrmann, Pitcher, & Kamdar, 2024). In this regard, it
is worth mentioning AVID, a startup which created an Al software using surveillance cameras
that provides automatic detection and counting solutions. The software is also enriched by
demographic information like age and gender, useful to provide operational insights and
patterns for businesses.

Pick Path Optimization

It is essential that products in the warehouse are picked quickly, accurately and efficiently. In
fact, pickers must follow the best routes during their shift, since this activity represents a
relevant part of the overall operations. Thus, improving picking paths results in tangible

operational savings plus an increased customer satisfaction. While algorithms alone cannot

47



guarantee success in every situation, adopting computer vision increases the likelihood of
optimizing the route. Cameras video streams feed machine learning algorithms which identify
patterns and trends in the data, suggesting changes to the workflow. They can recommend to
repositioning equipment or supplies to reduce distance travelled, without compromising
picking efficiency for example. Moreover, this data may highlight the benefits of changing the
order of execution of certain activities: if a heatmap reveals a high intensity activity in a specific
warehouse area, this allows to analyse workflow in that area and intervene to eliminate any
potential bottleneck (Dohrmann, Pitcher, & Kamdar, 2024).

Access Control

In traditional camera surveillance, analyzing large volumes of footage requires human
intervention, while an intelligent surveillance system uses sophisticated algorithms for real-
time monitoring, analysis, and detection. Back-end Al systems process video very quickly,
providing detailed information that can improve security and reduce the possibility of theft. In
addition to serving as a basic visualization platform, a computer vision system can identify
unauthorized access or intrusions into restricted areas. By analyzing video streams, the system
can detect when someone enters a restricted area or crosses a virtual boundary. As a
consequence, the system immediately triggers an alarm to allow security personnel to take
timely action. In addition, another ability of the system is to detect patterns of routine activities,
thus facilitating the identification of anomalies like suspicious behavior or strange movements
in areas of interest (Dohrmann, Pitcher, & Kamdar, 2024).

Maintenance Applications

Predictive Maintenance

Computer vision technology allows to conduct a constant and accurate monitoring of logistics
assets, alerting the maintenance team before problems arise. Thanks to the analysis of data
collected from various types of equipment, it can predict when critical assets will require
intervention. In this way, managers can plan maintenance and repairs, thereby prolonging the
life of the assets and reducing the risk of damage (Dohrmann, Pitcher, & Kamdar, 2024).

Quality Inspection and Defect Identification

When a site moves thousands of items of various types, sizes and shapes every day, it becomes
difficult to spot a damaged package. However, if a box is wet, torn or deformed and the contents
are damaged, it affects brand image and customer satisfaction. When it comes to quality
inspection of shipments, it is essential to detect any damage as soon as possible (Dohrmann,
Pitcher, & Kamdar, 2024). Before the diffusion of computer vision technology, identifying

defects was a very demanding manual process that was subject to human error and required
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personnel to be constantly available. Today, computer vision can automatically identify
potential imperfections, errors, color inconsistencies, deformations, anomalies, malfunctions
and even signs of tampering with over 90% accuracy by comparing an object’s current shape
to its expected geometry (Noceti et al., 2018). This technology is a valuable support for Gemba
Walks in warehouses, allowing real-time monitoring of the condition of machinery and
structures during inspections, collecting and analysing data. It also allows for calculating repair
and damage costs, simplifying maintenance procedures thanks to integration with asset

management systems.

Figure 18 - Pallet Al: Defect Detection System for High-Speed Pallet Inspection

Source: IVISYS. (2024). PalletAl — Automated pallet inspection system.

For instance, Ivisys, a cutting-edge startup, has developed Pallet Al, an innovative solution for
identifying defects, specifically designed for rapid pallet inspection. Thanks to an advanced
neural network, the system uses pattern recognition techniques to process footage from
multiple cameras, detecting anomalies on 250-450 pallets per hour and thus boosting both

productivity and worker safety (IVISYS, 2024).

Asset Management Applications

Utilization & Capacity Assessment

Computer vision is extremely useful in capacity planning, as it can rapidly estimate how much
space is being utilized, reducing the guesswork often associated with human observation.

The technology can assess the overall volume inside trucks and containers and calculate the
available space before loading. For instance, by counting the number of items or verifying
whether a forklift’s load area is occupied, systems can immediately detect underfilled or
overflowing transportation containers (Ozgiir et al., 2016). With this data, the system can
determine the ideal placement of products to minimise wasted space. Furthermore,
measurements can be taken throughout the entire loading process, enabling real-time decisions

based on concrete data. Some approaches monitor how many parcels remain on a pallet,
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ensuring that resources are fully utilized and preventing partial shipments from leaving the
facility (Dorr et al., 2020). This results in time savings, greater efficiency, lower environmental
impact and reduced costs. Computer vision also supports the analysis of pallets and cages’
dimensions and orientation, ensuring proper positioning to optimize weight distribution and
increase efficiency (Dohrmann, Pitcher, & Kamdar, 2024). A good case to bring to attention is
that of a Danish start-up called Sentispec. It uses this technology to monitor every stage of

interaction with inventory, both in and out of the warehouse.
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Figure 19 - Sentipec Load Optimization Workflow
Source: Sentispec. (2024). Smart logistics solutions powered by Al and computer vision.
Instead of allowing partially filled trucks and containers to exit the facility, Sentispec Inspector
records fill levels daily, allowing the planning department to maximize overall loading
(Sentispec, 2024).

Asset Counting and Localization

Losing pallets, crates, carts, and other assets is a common problem in warehouses, and it costs
time and money to find, return, or replace them. By leveraging computer vision systems that
can automatically recognize and localize pallets, for instance via stereo cameras or RGB-D
sensors (Varga et al., 2015; Xiao et al., 2017), managers can count and track these resources in
real time, even in areas of the warehouse where the signal is weak and tracking sensors are not

working properly. Modern approaches frequently combine plane fitting, region-growing, and
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feature-based classification to isolate each asset from the warehouse floor (Molter & Fottner,
2018). Deep learning algorithms, such as those employing Faster R-CNN’ or Kalman filtering®
for temporal tracking, count objects detecting and classifying them in an image or video stream.
They identify key points and then repeat the analysis to count all occurrences of a given object,
further boosting accuracy by matching each detected object to an existing model and
continually updating its position (Mohamed et al., 2020; Molter & Fottner, 2019). Assets can
be recognized by type (roller crate, shelf, forklift) or by a unique identification code, valid for
both a single asset and multiple assets captured by the same camera. For localization, a multi-
target tracking system (multi-camera or multi-sensor setups) that uses the so-called “handshake
method” is particularly effective: when an asset leaves the field of view of one camera and
reappears in that of another, a backend algorithm analyzes these transitions to reconstruct its
path within the warehouse. This thus providing the basis for real-time, centimeter-level
georeferencing throughout the warehouse (Haanpaa et al., 2016). The computer vision platform
of Kibsi, a startup in the sector, is based precisely on the networks of cameras already present

to monitor assets and activity in the warehouse.
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Figure 20 - From Raw Footage to Real Insights With Kibsi

Source: Kibsi. (2024). Computer vision solutions for smart operations. Kibsi.

The assets can be georeferenced on a virtual map, allowing operators to locate them with an

accuracy of the order of a few centimetres (Kibsi, 2024).

7 Faster R-CNN (region-based convolutional neural network) is an object detection model that identifies objects in an image
and draws bounding boxes around them, while also classifying what those objects are.

8 The Kalman filter fuses a system model with noisy measurements (assumed to be Gaussian noise) to give, at each new
reading, the most probable estimate of its hidden state. It is used to estimate quantities that are not directly measurable, to
strengthen controllers and to identify model parameters.
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Fleet Management

Goods outside the warehouse can be monitored h24 by an integrated system that combines
computer vision with video surveillance. To allow only authorized vehicles to access the yard,
cameras recognize each truck and record the time of entry, exit, and number of daily trips. The
system also analyses vehicle usage, including periods of inactivity, helping to optimize fleet

management (Dohrmann, Pitcher, & Kamdar, 2024).

Dimensioning Application

Measuring the area or volume of an object before shipping is essential for optimally managing
storage capacity, handling, load utilization and freight transportation, as well as for correct
invoicing. This process also supports the updating of data that warehouse management systems
(WMS) rely on (Kucuk et al., 2019). Time is a crucial factor in dimensioning. Considering, for
example, the huge amount of packages of various sizes that DHL handles every day, often at
high speeds on conveyor belts: even a short delay in measuring can significantly slow down
the process. In addition, recognizing irregularly shaped packages is not only a matter of speed,
but also of more efficient use of materials and appropriate packaging. Thus, handling
irregularly shaped items adds complexity and calls for robust computer vision or sensor-fusion
strategies (Brylka et al., 2021). The dimensioning process automated using computer vision
lends itself to various solutions. For instance, DHL pioneered a gate-based scanning solution
using dual MS Kinect sensors, discretizing height maps to quickly compute total volume with
an error margin in the millimeter range (Kiickelhaus, 2013). Laotrakunchai et al. (2013),
instead, developed a smartphone-based method that merges accelerometer readings with
feature-matching on a pair of images to derive parcel dimensions, making the process more
portable. Likewise, fixed systems such as MetriXFreight from the German company Metrilus,
constantly monitors a predefined measurement area and detects the dimensions of an object if
it remains within that area for a certain period of time. Alternatively, the Californian company
Qboid offers a mobile dimensioning system based on portable terminals, equipped with 3D
color sensors and integrated software. This approach allows to automate the estimation of shape
and dimensions in a wider number of contexts than traditional systems (Sun et al., 2020).
Compliance Applications

Label Detection and Alignment

In the logistics context, computer vision plays a key role in the automation of Label Detection

and Alignment activities, enabling systematic and scalable control of packages along the entire
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supply chain. Transport labels act as “unique identifiers” of the shipment and, consequently,
are essential for the orderly management of goods flows and for compliance with safety and
traceability requirements (Mishra et al., 2019). In the case of food, beverage or pharmaceutical
products, any labelling errors (illegible expiration dates, missing ingredients, undeclared
allergens) generate additional costs and can lead to legal disputes. An artificial vision system,
integrated with loT sensors present in sorting centers, acquires images of the front and back of
the products before shipping, comparing each label with a reference model and verifying, when
necessary, the expiration date. If inconsistencies are detected (for example faded ink, misplaced
labels, falsified codes or incorrectly labeled items) the algorithm reports the anomaly in real
time: the package is isolated, relabeled and quickly reintroduced into the distribution flow,
reducing delays and minimizing damage to the company’s image (Dohrmann, Pitcher, &
Kamdar, 2024).

Barcode Scanning and OCR Capture

Automatic product identification is now based on a synergy between computer vision, barcode
reading and OCR, capable of replacing manual typing at critical points in the supply chain.
Traditional linear barcodes introduced in the 1980s have evolved into 2D symbologies, while
OCR converts printed or photographed texts into data that can be processed by management
systems. Research has shown that object detection models trained on synthetic datasets (Dorr
et al., 2019) or designed for unfavorable environmental conditions (Brylka et al., 2020) reach
levels of precision that are now compatible with warehouse operations. Lightweight
architectures’ such as those tested by Kamnardsiri et al. (2022) also guarantee low latencies,
an essential requirement on high-speed belts. This scientific evidence is confirmed in concrete
industrial applications. PepsiCo has adopted KoiReader’s Al platform, which can read labels
and barcodes at line pace even when they are partially covered, damaged or tilted. Similar
solutions are proposed by Banner, whose sensors decode poor-quality barcodes on reflective
surfaces, and by Belgian Zetes, which integrates gates equipped with cameras to photograph
complete pallets, simultaneously decode multiple labels and compare the data with shipping
orders. In case of missing or illegible codes, the system blocks the package and notifies the
operator in real time. Each operation is documented with dated images as an objective proof
for audit purposes (Dohrmann, Pitcher, & Kamdar, 2024). In short, the combination of

academic progress and market solutions demonstrates that automatic label reading is no longer

9 “Lightweight architectures” are neural networks that have few layers and a small number of parameters to calculate. In
practice, they “weigh” less on the processor and therefore produce a very fast response (latency of a few milliseconds).
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a frontier innovation, but a mature technology that reduces errors, accelerates flows and

generates valuable data for continuous optimization of the logistics chain.

Shipment Localization

Automatic Sorting

Before being sorted by type and delivery destination, packages must be identified. This visual
classification step can be too slow and tiring for staff, creating potential bottlenecks, which is
why automating these tasks is essential. Through artificial intelligence and machine learning,
it is possible to acquire images and positions of packages, envelopes, bags and other formats,
in order to precisely determine the orientation and positioning of each item. To speed up these
operations, automated camera-based sorting systems are adopted, which achieve the best
results when using high-quality 3D data. These systems recognize the unique characteristics of
each object, allowing automatic picking and vertical alignment. As the products flow on the
conveyor belt, they are uniformly separated, aligned and singulated (a process known as
“singulation”). The cameras acquire images of each item, which are then processed by Al-
based technologies. Once identified, the object is sent to the appropriate bin or directed to
another conveyor for further sorting. This computer vision system associates the captured
image with the sorting decision in real time, breaking down the process into three main stages:
converting the shot into a binary image, separating the object from the background, and finally,

recognition (Dohrmann, Pitcher, & Kamdar, 2024).

2.2.1.5 Gen Al

A Generative Artificial Intelligence (Gen AI) model is a particular machine learning
architecture capable of creating new data (text, images, audio or video) by drawing inspiration
from the patterns learned during the training phase, without limiting itself to copying the
original examples. These models, although having a highly expressive basic structure,
generally require a fine-tuning phase to be adapted to specific application domains, as occurs,
for example, in solutions dedicated to logistics. Deep neural networks are particularly suitable
for this purpose because, thanks to the flexibility of their architectures, they are able to model
different types of data — sequential, spatial or multimodal — with high effectiveness (Janiesch
et al. 2021; Kraus et al. 2020). Among the most widespread generative paradigms today, on
the one hand, we can distinguish Generative Adversarial Networks (GANs), which produce
visual and multimedia content through the competition between two adversarial networks, and,

on the other, transformer-based models, capable of exploiting large amounts of information
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found online to generate coherent texts. The latter family includes Generative Pre-trained
Transformers (GPT), which became known thanks to conversational applications such as
ChatGPT. Refinement with Reinforcement Learning from Human Feedback (RLHF)
techniques has further improved the quality of the responses produced, introducing a virtuous
cycle of evaluation and correction (Ziegler et al. 2019). When such models are integrated into
complex systems — for example, fleet management or warehouse automation platforms in the
logistics sector — it is necessary to consider infrastructural elements (scalability of distributed
computing), deployment elements (compatibility with heterogeneous environments and
devices) and usability elements (intuitive interfaces and recognition of user intent). The
continuous evolution of open-source versions increases the need to constantly monitor
performance, since unexpected decays can compromise the quality of the service (Chen et al.
2023). Furthermore, the limits deriving from the temporal cut-off of the training data — or from
the compression of the stored information (Chiang, 2023) — can be mitigated by connecting the
model to external databases or real-time retrieval systems, in order to guarantee updated
responses. Gen Al market reached a value of US § 37.87 billion in 2024 and it is expected to
grow at an annual growth rate (CAGR 2025-2031) of 36.99%, resulting in a market volume of
US$ 442.07bn by 2031 (Statista, 2024). Within the next three to five years, Gen Al is expected
to have an increasingly significant impact on the logistics industry, with large-scale
implementation expected in this sector involving both office and operational personnel. Despite
this, Gen Al is already demonstrating tangible value in logistics. Key application areas include:

e Content Creation

e Customer Experience Automation

e Al Assistants

e Transportation management

e Supply Chain Resilience

Content Creation

Gen Al enables the generation of text, images and also code scripts, opening up new
opportunities in the logistics sector. For example, it can automate the drafting of product
descriptions, inventory reports and customer service responses, simplifying internal
communication and increasing efficiency. Additionally, Gen AI can generate visual
representations of stored items or warehouse layouts, supporting inventory management.
Among its applications, also packaging design is included, designed to optimize space usage

and guarantee load protection. These graphical representations help accelerate the creation of
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prototypes of new packaging solutions. Not only, but Gen Al can also automate the writing of
data analysis scripts, refine route planning algorithms, and develop predictive models that
anticipate demand. This improves the quality of data-driven decisions and operational planning
(DHL, 2024). A concrete example of how Gen Al can be exploited to improve user experience
and business processes comes from Amazon. Amazon uses Gen Al to enhance and personalize
product recommendations and the creation of product descriptions with increasing precision,
thus offering a highly personalized shopping experience that meets the customer’s real needs.
First of all, thanks to a vast catalog of over 300 million items, the company can count on a
considerable amount of data relating to users’ search, navigation and purchasing behaviours
(Amazon, 2024). This information is analysed by a Large Language Model (LLM) learning
model, capable of highlighting the most important attributes for each consumer, such as
preferences in terms of materials, technical specifications or particular dietary needs (for
example, the search for gluten-free products) . The model generates more relevant product
descriptions, not limited to generic suggestions, by integrating crucial terms into texts and
titles: for example, if a customer types “gluten-free cereals™ after having often searched for
items related to a gluten-free diet, the system makes sure to position “gluten-free” in a highly
visible way in the descriptions and search results (Amazon, 2024). A similar example is shown
in Figure 21, where in this case the words frequently typed in various customer searches are
“for 2 people”.

Check each product page for other buying options. Price and other Check each product page for other buying options. Price and other
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Figure 21 - AI-Powered Product Title Optimization on Amazon

Source: Amazon. (2023). Using generative Al to make product search and discovery easier for customers. About Amazon.
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To support this process, a second model, called “LLM evaluator”, intervenes with the task of
checking the generated output and providing feedback in the event of omissions or information
that is not adequately personalized (Amazon, 2024). In this way, a virtuous circle of continuous
correction and improvement is established, in which Al is not only able to manage a high
volume of products, but is also able to “understand” what information to insert and how to
present it to satisfy the needs of the individual user more immediately. Deeply personalizing
the shopping experience not only speeds up the search for the desired product, but also helps
to bring out potentially interesting items that might otherwise escape the consumer’s attention.
On the other hand, Amazon uses the same technology to enhance its advertising tools, as
demonstrated by the recent “Video generator” and “Audio generator” solutions, offered in beta
to advertisers in the United States. These tools allow sellers to create high-quality videos and
multimedia content starting from a single shot or a single product image, thanks to the use of

image generation models, texts and even audio tracks (Amazon, 2024).
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like to create today?

Figure 22 - Amazon Ads' Al Creative Studio

Source: Amazon. (2024). Amazon Ads unveils generative Al video generator for advertisers. About Amazon.

With “Video generator”, for example, the algorithm combines the image of the product with
specific insights from the retail sector, creating a video in just a few minutes that emphasizes
the peculiarities of the item and makes its narration more immediate and engaging. This
integration between automatic analysis and Al-driven creativity offers sellers the possibility of
quickly updating their advertising content at no additional cost, so as to always stay in step
with market trends and consumer tastes (Amazon, 2024). Additionally, the “Live image”
feature allows for the introduction of short animations (such as smoke rising from a cup of
coffee) to animate campaigns, capture audience attention and improve engagement rates. This
is part of a broader innovation effort that aims to break down creative barriers and support
advertisers of all sizes in presenting their products in an engaging way, simplifying campaign
management while ensuring a more dynamic and satisfying shopping experience for users

(Amazon, 2024).
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Customer Experience Automation

Chatbot interfaces powered by generative Al can be used in a variety of ways to make supply
chains more customer-centric. This technology enables timely and appropriate responses to
user requests, leveraging popular communication channels (DHL, 2024). For example, a single
customer can receive a quick and targeted email, a phone call, or even an automatically
generated text message. In this sense, Gen Al helps improve the shopping experience and
increase customer satisfaction, for example offering personalized product recommendations,
based on users’ preferences and purchasing history as explained in the previous paragraph. In
addition, Gen Al can quickly review different types of unstructured comments and ratings,
such as online reviews or opinions expressed on social media. This way, when a certain number
of observations about a particular product emerge, Gen Al can integrate this information into
the development processes, facilitating updates and improvements in a short time (DHL, 2024).
A notable example once again is Amazon and the way it uses Gen Al to simplify the decision-

making process for buyers. The company offers a “review highlights” system that summarizes

the main opinions expressed by users in a short paragraph (Amazon, 2024).

Figure 23 - Al-Generated Review Highlights on Amazon

Source: Amazon. (2024). Amazon introduces Al-generated review highlights to help customers shop with confidence. About

Amazon.

In practice, the platform analyses the textual reviews of verified purchases, then it identifies
the recurring themes and opinions shared by multiple customers and automatically generates a
summary that highlights the strengths and weaknesses of a product. This tool, introduced in

2023, allows users to immediately view an overall overview of customer sentiment,
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distinguishing between positive, negative and neutral feedback thanks to the use of graphic
indicators such as the green check mark or the orange symbol (Amazon, 2024). This approach,
which combines data analysis and natural language technologies, allows quick access to
essential information, facilitating the choice of the product best suited to customers’ needs, and
helping to make the purchasing process more transparent and informed.

Al Assistants

The introduction of Al assistants (also called digital assistants or DAs) in the logistics sector is
revolutionizing the management of goods and information flows, offering new opportunities
to reduce the cognitive load of operators and accelerate distribution processes (Zheng et al.,
2024). In particular, these systems (which can take different forms, from text-based chatbots
to softbots capable of operating autonomously on information systems) foster a natural
interaction between humans and digital technologies, improving efficiency along the entire
supply chain (Li and Yang, 2021). For example, voice assistant platforms simplify order
processing and inventory status checking, allowing operators to obtain real-time updated data
simply through voice commands (Hsiao and Chang, 2019). Furthermore, thanks to the
integration with data analytics algorithms, DAs provide useful predictive analytics, such as
dynamic recalculation of delivery routes and optimization of inventory based on real demand.
Currently, not all large-scale Al assistants are suitable for the logistics sector: in fact, in
contexts such as DHL, we observe the use of assistants based on predictive analytics that, by
forecasting demand, optimizing inventory levels and anticipating possible supply chain
disruptions, support proactive decision-making and efficient resource allocation (DHL, 2024).
At the same time, the adoption of assistants for warehouse management allows to improve
stock positioning, automate picking and packing processes, monitor equipment maintenance
schedules and, in the back office, facilitate administrative, legal and financial activities by
screening long texts and summarizing key points. This allows, for example, faster response
times for the processing of contracts, confidentiality agreements and financial reports (DHL,
2024). In short, the strategic use of these tools now appears essential for companies that want
to take full advantage of the digitalization of logistics, as it allows for more agile management
of complex activities and increasingly fluid and productive human-machine collaboration. A
particularly innovative example is Amazon’s Project Amelia. The company recently launched
in beta this personal assistant based on Gen Al, specifically designed to support independent
sellers. Project Amelia is configured as a true digital sales expert, capable of providing
immediate and personalized answers to questions regarding product strategies, regulatory

compliance, advertising campaigns, sales forecasts and supply chain management. Sellers can
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interact with the assistant from any Seller Central page, obtaining updates on performance data,
trend analysis and even assistance in resolving operational issues, thus simplifying the day-to-

day management of their business (Amazon, 2024).

Ask Amelia (beta) Ask Amelia (beta)

How's my business
doing?

. Amelia

Here's an overview of your business
performance for August 2024.

Key metrics:

(+32% year-over-year)

« Strong units sold: 120K (+28%

year-over-year)

« Average selling price: $11.42 (+3%

year-over-year)

« Traffic: 3.4M page views (+73%

year-over-year)

« Feature offer percentage: 97.3%

« Ordered product sales: $1.3M (+0 bps year-over-year)

(+32% year-over-year) « Conversion rate: 3.5% (-123 bps

+ Strong units sold: 120K (+28% year-over-year)

year-over-year) Overall, your business is doing well with
impressive growth across key metrics
like sales, units, and traffic. While
conversion rate could be optimized, the
strong momentum positions you well
for the upcoming holiday season.

« Average selling price: $11.42 (+3%
year-over-year)

« Traffic: 3.4M page views (+73%
year-over-year)
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Figure 24 - Example of a conversation with Project Amelia, Amazon’s Al Business Assistant

Source: Amazon. (2024). Amazon introduces Project Amelia: A new frontier in generative Al assistants. About Amazon.

In particular, the system allows sellers to obtain concise and easy-to-understand information
from reliable sources, as well as quickly access critical metrics and reports, improving the
decision-making capacity of digital entrepreneurs. Project Amelia was developed using
Amazon Bedrock, a platform that offers scalable access to the latest Al models, combining
global knowledge with specific skills in the world of selling on Amazon. Over time, the
assistant is expected to acquire greater learning capacity, arriving not only to provide answers,
but also to anticipate the needs of sellers and to autonomously solve some problems (Amazon,
2024).

Changing perspective, it is important to observe how this type of technology is also
transforming the customer purchasing experience. Indeed, the introduction of conversational
Al assistants like Rufus represents a significant turning point for the customer shopping
experience. In this regard, Amazon developed Rufus, an Al assistant for customers (Amazon,
2024). It is a new tool designed to provide immediate and personalized answers to a wide
variety of questions about products and purchasing needs. Essentially, this assistant is a virtual
consultant that provides product-specific information like whether or not a coffee machine is

easy to clean on the basis of information that already exists within product sheets, customer
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reviews and community Q&As (Amazon, 2024). In addition, Rufus helps customers navigate
the various product options by offering accurate comparisons between different features, such

as the comparison between gas and wood-fired ovens or between trail and running shoes.
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Figure 25 - Example of how Amazon Rufus helps customers compare different products to guide their purchasing decisions

Source: Amazon. (2024). How to use Amazon Rufus, your new generative Al shopping assistant. About Amazon.

Another important aspect concerns the ability of this assistant to provide recommendations
based on contextual analysis. For instance, it is able to suggest a beach umbrella suitable for
the specific weather conditions of a given region, or to present the latest news and trends. Last
but not least, Rufus allows users to quickly access information relating to current and past
orders, facilitating the tracking of packages and making it easier to review previous

transactions, an element that can also be useful for planning future purchases (Amazon, 2024).
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Figure 26 - Example of Amazon Rufus providing order tracking and purchase history

Source: Amazon. (2024). How to use Amazon Rufus, your new generative Al shopping assistant. About Amazon.
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This type of assistant also has the ability to answer questions not strictly related to the purchase,
such as advice on what is needed to prepare a soufflé or organize a summer party. As a result,
this Al assistant offers customers an integrated support throughout the entire purchasing
process, helping to simplify the decision-making process and reduce research times (Amazon,
2024).

Transportation management

The use of Gen Al tools in the logistics sector is emerging as a highly relevant strategic lever

also for transport operations (Deloitte, 2024).
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Figure 27 — Key areas where Gen Al can streamline transportation management

Source: Deloitte (2024). Generative Al in transportation management

The challenges facing the sector include, among others, the impact of macroeconomic shocks
such as the COVID-19 pandemic and the need to offer a service that is always optimized in
terms of costs and delivery times (Hitchcock et al., 2024). In this context, the adoption of
GenAl can foster a more advanced approach to data management, allowing the collection,
analysis and synthesis of large volumes of information from heterogeneous sources. This
process is particularly useful for improving crucial procedures along the transport lifecycle,
such as onboarding carriers, verifying their credentials and analyzing sustainability or
reputation metrics in real time (Hitchcock et al., 2024). According to recent studies, Gen Al
will have the biggest short- and medium-term effects on automating carrier communications,
auditing transport invoices, and creating advanced reporting. These areas will provide

observable advantages in terms of operational efficiency, error reduction, and improved
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visibility of the entire logistics network (Deloitte, 2024). For example, Crowley (2024)
highlights how the use of machine learning algorithms facilitates autonomous verification of
invoices and real-time identification of anomalies, freeing up resources that can then be
dedicated to innovation and continuous improvement projects. Not to mention the fact that, as
already analyzed previously in this chapter, the adoption of GenAl in the transport sector is
progressively extending to key functions such as demand forecasting and route optimization
with a potential increase in service punctuality and a more rational use of the workforce
(Deloitte, 2024). In the longer term, as reported by Hitchcock et al. (2024), a scenario is
emerging in which transport fleets will evolve towards almost autonomous management,
thanks to Al systems that will communicate with each other, with the consequent need to
develop GenAl models designed from the outset for interoperability. Ultimately, the ability to
integrate generative solutions could represent a differentiating factor for companies that will
be able to develop an ecosystem based on accurate data, predictive analysis algorithms and
adequate technological infrastructures, so as to reap the benefits of more flexible and reactive
transport (Deloitte, 2024).

Supply Chain Resilience

In the current scenario, supply chain resilience (SCR) is still largely configured as a set of
reactive practices with a high dependency on human intervention. Many companies spend
numerous man-hours collecting, cleaning and analysing data, and then manually define the

main corrective actions (Parrott & Natarajan, 2024).
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Figure 28 - Supply Chain Resilience: The Current State

Source: Deloitte. (2024). Generative Al-powered supply chain resilience. Deloitte Business Operations Room Blog.
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As a result, the risk detection phase often suffers from the lack of an end-to-end vision, with
response methods that are not always timely or based on integrated information, especially in
complex supply chains with multiple levels of suppliers. The introduction of Gen Al tools,
however, tends to shift the focus towards a more “proactive and prescribed” model (Parrott &

Natarajan, 2024).
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Figure 29 - Supply Chain Resilience: The Future State powered by Gen-Al

Source: Deloitte. (2024). Generative Al-powered supply chain resilience. Deloitte Business Operations Room Blog.

Gen Al systems, in fact, are able to continuously scan global scenarios, synthesize large
amounts of data (internal and external to the company), as well as generate operational content
such as risk reports, mitigation plans and suggestions for redesigning production lines. A
crucial aspect is the possibility of automating a large part of the risk sensing and risk response
actions, enabling a form of “guided resilience” based on libraries of already tested solutions
that reduce decision-making times and dependence on individual human skills. For example,
Gen Al can detect anomalies in supply flows, anticipate the scarcity of critical materials or
identify possible geopolitical instabilities that impact supply chains, autonomously producing
intervention scenarios that have already been prioritized (Parrott & Natarajan, 2024). In the
future, these systems will have the ability to orchestrate a network of suppliers and partners
more dynamically, even activating continuity plans with almost autonomous interventions
(such as the diversion of shipments or alternative sourcing) in response to environmental or
market triggers. In this evolution, humans will remain an element of verification and
governance of processes (human-in-the-loop) but will be able to dedicate themselves more to

value-added activities rather than repetitive operations, ensuring that supply chain resilience
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becomes not only a short-term objective, but a real strategic factor of competitiveness (Parrott

& Natarajan, 2024).

3. Internet of Things (IoT) in Logistics 4.0

Technological progress is profoundly transforming the way people use information systems
both at work and in their free time. In particular, the Internet has revolutionized the
consumption and exchange of information, radically changing the ways in which individuals
interact. Thanks to continuous improvements in microprocessors, storage capacity, broadband
networks and sensor technologies, together with increasingly efficient solutions for energy
management, more and more areas of daily life are being computerized and connected to the
network. Today, the use of the Internet is no longer limited to access via traditional devices
such as computers or mobile phones but is progressively extending to everyday objects — such
as light bulbs, refrigerators and even means of transport — which become an integral part of an
interconnected ecosystem. For example, in 2023 the number of active Internet users exceeded
5 billion, corresponding to more than half of the world's population (Statista 2023a), while the
number of connected devices exceeded 11 billion in 2021, with forecasts indicating an increase
to approximately 30 billion by 2030 (Statista 2022a). In this scenario, the Internet of Things
(IoT) emerges as a paradigm in which communication occurs not only between humans or
between humans and machines, but also, and in an increasingly pervasive way, from machine
to machine (Machine-to-Machine communication), paving the way for new opportunities and

challenges in global interconnection.

3.1 Definition and key features

IoT Definition

IoT technology represents one of the most innovative and discussed paradigms of the latest

years. Despite its growing diffusion, there is no universally accepted definition of the term.
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Author Definition

“A global infrastructure for the information society, enabling
advanced services by interconnecting (physical and virtual) things
based on existing and evolving interoperable information and
communication technologies.”

International
Telecommunication
Union (2012, p. 1)

“The term “Internet-of-Things” is used as an umbrella keyword for
covering various aspects related to the extension of the Internet and

Miorandi et al. (2012,p. 1497) the Web into the physical realm, by means of the widespread
deployment of spatially distributed devices with embedded
identification, sensing and/or actuation capabilities.”

. “IoT refers to the networked interconnection of everyday objects,
Xia et al. (2012,p. 1101) which are often equipped with ubiquitous intelligenz.” o
“Interconnection of sensing and actuating devices providing the
ability to share information across platforms through a unified
framework, developing a common operating picture for enabling
innovative applications. This is achieved by seamless large scale
sensing, data analytics and information representation using cutting
edge ubiquitous sensing and cloud computing.”

Gubbi et al. (2013,p. 1648)

“We define the Internet of Things as sensors and actuators connected
McKinsey Global by networks to computing systems. These systems can monitor or
Institute (2015, p. 1) manage the health and actions of connected objects and machines.

Connected sensors can also monitor the natural world, people, and

Table 2 - Selected definitions of IoT

Source: Author's personal elaboration

In general, the IoT concept refers to a set of physical objects (or “things”) equipped with
sensors, actuators and connectivity capability that is able to collect data from the environment,
exchange information on the network and act in a (semi)autonomous way, often with minimal
or no human intervention. As previously stated in Chapter 1, when these “things” are industrial
devices or systems used to support industrial operations, we are talking about Industrial Internet
of Things (IloT). Mohanraj et al. (2019) described IoT as “the set of connections of physical
devices such as home appliances, vehicles and other items implanted with software, electronics,
actuators, sensors and connectivity to enable communication for the transfer of data”. The term
“Internet of Things” was coined by Kevin Ashton in 1999, during a presentation at Proctor &
Gamble. He described it as a system of interconnection between physical world and the Internet
through the use of RFID and pervasive sensor devices that observe and identify the real world
(Ashton, 2011). However, the concept of interconnectivity among smart devices came into
picture in early 1980s when a modified coke machine at Carnegie Mellon University, was
connected to the Internet to check and report the inventory for the availability of the drinks.

Ashton, founder of the Auto-ID Center at Massachusetts Institute of Technology (MIT), was
one of the first to intuit the potential of using RFID tag in the field of supply chain management

and to conceive a world in which everyday objects could communicate through the network.
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In fact, according to some scholars, IoT is nothing more than “the next evolution of the
Internet”, in which it is no longer just people who generate data online, but also things
(Kosmatos, Tselikas, & Boucouvalas, 2011).
The term “internet” immediately brings back to a global system of networks based on the
TCP/IP (Transmission Control Protocol/Internet Protocol) protocol, which connects billions of
devices worldwide (Nunberg, 2012). “Things”, on the other hand, can indicate any physical
entity, living and non-living: it ranges from electronic devices and intelligent equipment to
objects that we do not normally consider “technological”, such as food, clothes, art pieces, and
even monuments (Kosmatos, Tselikas, & Boucouvalas, 2011). In this context, what makes an
object part of the “loT world” is the ability to connect to the network and communicate
information.

IoT is distinguished by some key characteristics:

e Pervasive connectivity: the ability to connect objects of different nature, enabling not only
human-to-human but also human-to-things and, above all, things-to-things communication
(Aggarwal & Lal Das, 2012).

e Unique identification: each “thing” participating in the IoT has a specific identity, often
provided by RFID technologies or IP addresses, so that it can be recognized on the internet
(Alavi et al., 2018).

e Data collection and analysis: smart objects, equipped with sensors, capture data in real time
and transmit it to computing platforms (cloud) for advanced analysis (Graham & Haarstad,
2011).

e Automation: IoT enables processes that minimize human intervention. Devices react
quickly to environmental changes and coordinates themselves in a dynamic way.

e Interoperability: to enable devices from different manufacturers to communicate, it is
necessary to use common standards and open protocols, avoiding fragmentation.

These characteristics favour the birth of new application scenarios and give the IoT an

extremely broad and constantly evolving nature.

1loT enabling technologies

The enabling technologies (see Figure 30) of the 0T are the set of solutions that, together with
the Internet as a backbone, allow the integration of physical objects, people and systems into a

single connected ecosystem.
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Enabling

technologies Purposes Examples Standard challenges
Tagging Identify and track Active/passive RFID | Cost of tags are still
technologies individual physical tags considerably higher than
objects printed barcodes
Sensor Collect data about the | Temperature sensor, | Processing and making sense
technologies real world and proximity sensor, of the vast amounts of
augment human senses | GPS collected sensor data
Smart Provide processing Microprocessors With improved capabilities,
technologies capabilities to physical smart technologies require an
objects increasing amount of energy
Miniaturization | Shrink information Three nanometer As miniaturization continues,
technologies technology such that it | transistor it becomes increasingly
can fit into everyday | manufacturing difficult to produce
objects processes increasingly smaller things

Figure 30 - Summary of enabling technologies for the Internet of Things

Source: Sunyaev, A. (2024). Internet computing. Springer Nature Switzerland AG.

On the one hand, there are the so-called fagging technologies, which include optical

identification devices (such as common barcodes) and, above all, RFID (Radio Frequency

Identification). The latter uses radio waves to support computing devices in the identification,

tracking and control of an object, while integrating the collection of metadata in a reliable and

flexible way (Gupta & Quamara, 2020). In particular, RFID is a form of radio communication

based on electromagnetic or electrostatic coupling in the radio frequency portion of the

spectrum, designed to uniquely identify an object, an animal or a person (Zhu, Mukhopadhyay,

& Kurata, 2012).
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and protocols.

A typical RFID system is composed of two main components (Figure 31): the RFID Tag and

the RFID Reader. The RFID Tag is a microchip connected to an antenna that stores information
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and, when attached to an object, becomes its identifier. This coiled antenna transmits and
receives radio waves to communicate with the reader, and the tags themselves (also known as
transponders) can be active (battery-powered) or passive (powered by the reader when they are
within its range) (Jia, Feng, Fan, & Lei, 2012). The RFID Reader, on the other hand, uses radio
waves to communicate with the tag, obtain data and forward it to the external application, thus
functioning as a transmitter and receiver (transceiver). Although it generally costs more than
barcodes, RFID allows for much more granular monitoring and reading that does not require
line of sight, an advantageous feature in industrial or logistics contexts.

Together with tagging systems, loT makes extensive use of sensor technologies, i.e. sensors of
various types (movement, brightness, temperature, etc.) which, thanks to the progressive
reduction in costs and the possibility of forming wireless networks, are essential for collecting
data from the real world. These sensors can be combined with actuators (for example fire-
fighting systems), giving rise to WSAN (Wireless Sensor and Actuator Network), in which the
detected information is processed and can generate a physical reaction (Misra, 2017). Actuators
are mechanical or electromechanical devices capable of providing controlled movements or

positioning, using different power sources (electric, pneumatic, hydraulic) (Mouha, 2021).

Sensor Control center Actuator
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sensor detects detected value sends switched-off
unwanted signal to the command to and halt to
water content control center water pump deliver water

Figure 32 - Example of an actuator (pump water)

Source: Mouha, R. A. (2021). Internet of Things (IoT). Journal of Data Analysis and Information Processing, 9(2), 77-101.

They allow, for example, linear actuation with hydraulic cylinders or electric motors, or rotary
actuation with pneumatic systems, making possible applications that range from the movement
of large industrial equipment to the most common household devices. The pneumatic approach,
in particular, offers rapid response and great power, as demonstrated in the use of pumps and

compressors (Figure 32).
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The third component is smart technologies.
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Figure 33 - Sensor to actuator flow

Source: Sunyaev, A. (2024). Internet computing. Springer Nature Switzerland AG..

They introduce intelligence on board objects, moving part of the computational processing “to
the edge” (edge computing) to prevent the growing amount of data - coming from billions of
connected devices — from overloading central servers (Bassi et al. 2013; International
Telecommunication Union 2005).

Finally, progress in miniaturization technologies means that sensors, chips and batteries are so
small that they can be incorporated into almost any device (International Telecommunication
Union 2005). Without this miniaturization, the idea of a world in which hundreds of billions of
physical objects connect, communicate and act autonomously would not be feasible.

All these components therefore work together to form the backbone of the IoT, allowing us to
fully grasp the potential of an ecosystem of connected objects, capable of collecting and
transmitting data, as well as interacting flexibly with the physical environment and with human
users.

IloT architectures

The two simplest structures used to describe the architecture of the IoT are the three-layer and
the five-layer models.

The three fundamental layers of the three-layer model are: Perception Layer, Transmission
Layer and Application Layer. Each of them is organized into sublayers that reflect the different
functions performed (ITU-T, 2009).
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Layers Sub-layers Key Features Key Technologies

icati Handheld Devices,
L loT Applications . Cloud Computing, Middleware,
Application Layer Terminals and User .
Application Support Layer Interface M2M, Service Support Platform
Local & Wide Area Network Connectivity
Transmission Establishment and Internet, GPRS,
Layer Core Network Information Wi-Fi, Ad hoc Network

Access Network Transmission

Sensing, Identification,

. Actuation and
Perception Layer RFID, WSN, GPS, Bluetooth

Perception Nodes Communication
Technologies

Perception Network

Physical
Network Management and Trust Management
Information Security Management

Figure 34 - [oT architecture

Source: Gupta, B. B., & Quamara, M. (2018). An overview of Internet of Things (IoT): Architectural aspects, challenges,

and protocols.

This model has gradually established itself because the IoT integrates heterogeneous

technologies (such as WSN, RFID, M2M and low-power networks) and must respond to highly

differentiated applications, from the healthcare sector to smart cities, up to the manufacturing

industry. Below, a detailed overview of the three layers and their respective articulations.

Perception Layer — Also called “Device Layer”, “Sensory layer” or “Recognition Layer”,
the Perception Layer is the basis of the architecture. Its task is to detect data and perform
direct actions on the surrounding environment (Suo et al., 2012; Khan et al., 2012). This
area includes the perception nodes, which include physical devices such as temperature,
humidity, brightness sensors, RFID readers, controllers or actuators. These elements can
be organized in various topologies (mesh networks, Ad hoc environments, multi-hop
networks) to ensure scalability and rapid installation (Li, Da Xu, & Zhao, 2015). Sensors,
for example, monitor environmental or logistical parameters, while actuators perform
mechanical actions when certain conditions occur (such as the opening or closing of a
valve). Devices are often programmed to minimize energy consumption, activating only in
the presence of a significant event. Nanotechnology is also used, which allows microchips
to be miniaturized — in some cases embedded in objects — so that they can collect data
and react in an “intelligent” way with minimal human intervention. At the same time, the
Perception Network supports communication with the upper levels: it transmits the
information acquired by the perception nodes to the gateways and receives, in reverse, the

control commands intended for the actuators. This network can be wireless or wired and
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must guarantee data security and integrity before they pass to the next level (Alaba et al.,
2017).

Transmission Layer — The Transmission Layer (also called “Transportation Layer” or
“Network Layer”) connects the world of physical devices with the broader IT
infrastructure, making the flow of data between sensors/actuators and processing or storage
systems effective (Yan, Zhang, & Vasilakos, 2014). In practice, this layer acts as a bridge
between “intelligent” objects and platforms that analyse information or produce response
actions. Within it, further sub-layers are identified. The Access Network provides a
connectivity environment for the Perception Layer: these can be 2G/3G/4G-LTE networks,
Wi-Fi connections, ZigBee, Bluetooth Low Energy and even 5G solutions, which ensure
higher transmission speeds. The presence (or absence) of centralized base stations then
distinguishes centralized networks (such as Wi-Fi) from non-centralized environments (for
example, Ad hoc networks) (Li & Chen, 2011). The Core Network (Internet), which
represents the “backbone” of this architecture, transports data to end users or to other
network segments, offering routing, remote access and resource management services. The
Internet can be defined as a public, corporate, government, local (LAN) or geographic
(WAN) network (Alaba et al., 2017). Finally, there is the area of Local and Wide Area
Networks, which includes “traditional” LANs but also LPWANs (Low Power Wide Area
Networks), specifically designed for low-power devices (Raza et al., 2017).

Application Layer — At the top end of the IoT architecture is the Application Layer, which
is responsible for providing services to end users. It is in this layer that the data coming
from the Perception Layer, filtered and transmitted by the Transmission Layer, are
processed, integrated and transformed into valuable actions and information. The
Application Layer also governs the presentation of the results through usable interfaces
(e.g. mobile apps, dashboards, web portals) (Suo et al., 2012). Within it, it is usual to
distinguish between an Application Support Layer, focused on “intelligent” computing
(also with data recognition and filtering techniques) and middleware functions, and a
section dedicated to IoT Applications themselves (Jing et al., 2014). The middleware can
include Cloud Computing platforms or service-oriented architectures (SOA), which
facilitate scalability, quality of service (QoS) management and security (ITU-T, 2009). In
many contexts, Machine-to-Machine (M2M) models are implemented, thanks to which
devices communicate directly with each other, exchanging data on wired or wireless

networks, without constant user intervention (Suo et al. 2012; Iraji et al., 2017).
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The three-layer model extends to create the five-layer model, designed to respond to future

evolutions of the [oT paradigm (Muntjir et al. 2017).
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Figure 35 - Comparison of the three-layer and five-layer Internet of Things architectural models

Source: Sunyaev, A. (2024). Internet computing. Springer Nature.

This model integrates and refines the functions already highlighted in the three-layer model,
introducing two additional layers and dividing some responsibilities in a more specific way. In
particular, the five-layer model maintains the functions of the Perception Layer (lower layer),
which continues to collect data from the environment; the Transport Layer, which is
responsible for data transfer and is equivalent to the Network Layer of the three-layer model;
and the Application Layer, which provides application services to users. The main innovation
are the Processing Layer and Business Layer. Sometimes also called Middleware Layer, the
Processing Layer is responsible for storing, processing and interpreting large amounts of data
coming from the perception layer, using technologies such as databases and Cloud Computing
services. While the Business Layer, located at the top of the model, is responsible for the overall
management of the [oT system, including aspects such as the definition of business models and
the protection of user privacy (Zhang & Zhu, 2011).

In short, if on the one hand the three-layer model compactly encloses the fundamental idea of
IoT, the five-layer model allows a more detailed subdivision of the functions. This finer
articulation of the layers facilitates a more efficient and scalable management, thus responding
to the growing demands of complex applications and the evolution of technological scenarios.

Smart objects and smart devices

Internet-connected physical objects with embedded intelligence, often called smart things, play

a key role in IoT. These smart things can be grouped into two categories: smart devices and
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smart objects. Smart devices are portable electronic devices, usually owned and used by a
single individual, that allow access to a wide range of services locally or remotely (Poslad,
2011). Typical examples are smartphones, tablets, laptops and even smartwatches or smart
TVs, which are now widespread in everyday life thanks to the so-called “ubiquitous
computing” described by Weiser (1991). According to his vision, in fact, the history of human-
computer interaction has evolved from the time when many individuals shared a single
computer to the current era in which each person owns multiple personal devices, almost
always connected to the Internet. A key feature of modern smart devices, such as “tabs” (smart
watches and bracelets), “pads” (smartphones and tablets) and “boards” (large interactive
screens), is their ability to detect information about the surrounding environment, for example
through integrated sensors, and to adapt to the user's needs, using localization functions and
cloud services. This group also includes smaller and more specific solutions, such as the so-
called smart dusts—small miniature devices equipped with sensors and processing functions,
but without displays—that can be distributed over a large area to collect data on environmental
or operating parameters. Another example is smart skins, flexible electronic “skins” integrated
into fabrics, designed for applications in the medical and prosthetic fields (Benight et al. 2013).
In addition to smart devices, which are distinguished by their mainly “personal” and multi-
functional nature, there are also so-called smart objects. Unlike smart devices, smart objects
can be objects of any type, equipped with sensors, microprocessors and communication
interfaces to interact with other objects as well as with people (Kortuem et al. 2009). Consider,
for example, smart light bulbs that can self-adjust brightness based on the time of day, or smart
speakers such as Amazon Echo, Apple HomePod and Google Home, designed to “listen” and
respond to voice commands and interact autonomously with other home systems. The central
element of a smart object is its ability to collect data on the environment, process it, store it and
exchange information with the outside world, thanks to network interfaces and internal sensors
(Kortuem et al. 2009). Depending on the organizational context, these objects can acquire
“activity-aware” functionality, recording use and work activities, “policy-aware” functionality,
respecting specific business or legal rules, or “process-aware” functionality, providing support
to business processes and signaling how and when to intervene in the various production or
work phases (Kortuem et al. 2009). This differentiation highlights the greater conceptual
“breadth” of smart objects, which do not need to be portable or have a unique owner. For this
reason, the literature tends to frequently use the two terms interchangeably but also recognizes
the distinction between “personal devices” and “intelligent objects” anchored to the context or

to the application process of reference (Benight et al. 2013).
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3.2 Internet of Things (IoT) in Logistics

The logistics sector represents one of the most promising application contexts for IoT
technology (Da Xu et al., 2014; Zhou et al., 2012). The reasons for this potential reside in the
very nature of logistics, where millions of shipments are moved, tracked and stored every day
by a variety of actors and means (including machinery, vehicles and human operators). The
IoT, by allowing the connection of these physical assets and the analysis of the data they
produce, allows to optimize logistics processes in terms of efficiency, safety and quality of
service (Fagnant and Kockelman, 2015). In the logistics sector, the IoT creates an ecosystem
based on interconnected devices that produce and share information in real time along the entire
supply chain (DHL, 2024). Using sensors, microprocessors and wireless connectivity, it is
possible to constantly monitor the status of every logistics element: from containers in transit
to warehouse racks, moving vehicles and simple packaging (Aamer, 2018a; Trab et al., 2015).
The resulting benefits are better resource optimization, reduction of operation costs and the
creation of new personalized services. Having the possibility of finding detailed information
on the location of the items and their conditions, it is in fact possible to plan the physical flow
in an increasingly precise manner, reducing transit times and facilitating the response to
unexpected events (Mohanraj et al., 2019). Furthermore, the growing level of transparency and
visibility of the logistics chain triggered by the use of 10T leads to the reduction of waste and
downtime. All this contributes to the generation of a large amount of data that is collected by
IoT devices. This data can be analyzed thanks to data analysis systems and Al, generating
innovative services that respond in a personalized way to customer needs (PwC 2016; Akgul
2019). It is worth noting that many of the IoT devices — for example, sensors and actuators —
have already been in use for some time in the logistics sector (e.g. in handheld readers for the
digitalization of deliveries or in on-board sensors for monitoring truck performance). However,
today's evolution of the 10T, supported by the continuous reduction in the costs of components
(sensors, semiconductors), by more performing wireless networks and by increasingly
powerful computing solutions, promises to revolutionize the sector even more, extending the

application possibilities to previously unexplored levels (DHL, 2024).
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To better illustrate the structure of IoT in logistics, it is useful to refer to Figure 36, which offers
a pyramid representation of the IoT ecosystem (DHL, 2024). In this image, the lower levels
(“Assets and Objects” and “Sensors and Devices”) indicate the physical elements to be
connected. In this case for example we are talking about containers, pallets, shelves, vehicles
and sensing devices. Going up the pyramid, we encounter the network infrastructure and data
management platforms: these layers allow devices to communicate with each other and send
the information collected to central analysis systems. In the upper levels (“Analytics and
Applications” and “Solutions and Services”), data is processed, interpreted and transformed
into concrete solutions for operators, such as real-time monitoring dashboards, decision support
tools or automated services for warechouse management. This illustration highlights the need
for a well-defined technological “layering” to effectively connect assets and physical objects
with analysis systems and decision support tools. In other words, the process that transforms
raw sensor data into a value-added service requires a solid communication infrastructure and a

complex set of IT and application resources (Keller et al., 2011; Lozano-Perez, 2012).
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3.2.1 Fields of applications
3.2.1.1 Smart freight transportation

Shipment ID: H5800243
Location: HHDE_7F240
Temperature: 15°C
Humidity: 53%

Light: container opened for customs
Shock: no shock events detected

Engine sensor: 9R003
Status: serious malfunction detected
= Action: maintenance team alerted
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. Location: HHDE002-45-8
b} Tempera(urs: OK

I

! n = *“ "
Shipment ID: CR55024™ B 2 [ -
Location: HHDE 50331 5 — ‘1‘ = =

" Speed: 70km/H | ' Material damage likely Driver fatigue detected
SVETA: 20:30 04/05/15 |« Maintenance check scheduled » Pull over at next stop
- . ~3

Figure 37 — Example of smart freight transportation enabled by the Internet of Things (IoT)

Source: DHL & Cisco. (2015). Internet of Things in logistics: A collaborative report by DHL and Cisco on implications and

use cases for the logistics industry. DHL Trend Research.

Freight transportation is the physical flow of goods and cargo through ships, aircraft, trains or
vehicles. The industry is challenged by several issues, including wasted cargo capacity, loading
and unloading errors, low operational efficiency, and issues related to transportation safety and
cargo protection. In this context, the concept of “smart freight transportation” represents a
framework aimed at integrating ICT technologies into transportation infrastructure and cargo
itself, in order to alleviate these issues since it allows to make freight transportation not only
more efficient, but also safer and traceable in real time (Hidalgo Fort et al. 2018; Liu et al.
2019). One of the key pillars of “Smart Transportation” is the adoption of IoT technologies
capable of interacting with vehicles, containers and personnel involved, providing real-time
data and enabling faster and more reliable decision-making processes. Transport management
includes fleet supervision, vehicle condition monitoring and driver activity verification. The
application of IoT in this field mainly takes the form of vehicle cloud monitoring, i.e. the
integration of sensors and communication systems directly into means of transport, with the
possibility of constantly collecting information and transmitting it to devices connected to the
Internet (such as smartphones or tablets) (Manojlovi¢, 2019).

Traceability, monitoring and security
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One of the most significant contributions of 10T in the freight transport sector concerns the
increase in traceability (track and trace). A fundamental starting point in this sense is the use
of tools such as RFID, whose diffusion in freight transport allows for the precise identification
and tracking of both vehicles and goods. In particular, during transportation, RFID can collect
and track information about logistics resources during loading and unloading (Liu et al. 2019),
locate containers (Zhang, Lu, and Wang 2014), and manage customer order data (identity,
volume). Such data can then be used for vehicle configuration optimization and route planning,
as well as for vehicle routing optimization. In addition, RFID tags can include the so-called
Electronic Product Code (EPC), which is a code that contains product details and tracks the
entire transportation process (Zhang et al. 2019). RFID technologies can be integrated with
other complementary systems, such as GPS (Global Positioning System) and GIS (Geographic
Information System), to provide real-time location information, optimized navigation services
and constant monitoring (Liu et al. 2019; Cheung et al. 2008). GPS (based on the GNSS
network, Global Navigation Satellite System) is used to locate and track the vehicle in real
time, while the connection to the online application occurs via GPRS (General Packet Radio
Service). GIS, on the other hand, provides the spatial distribution of roads, the related
infrastructures, traffic conditions and an optimized navigation service. The data thus acquired
- position, direction, time, speed, consumption - are stored in the cloud, giving the possibility
of generating detailed reports on trips, management costs and load status (Manojlovi¢, 2019).
This continuous acquisition of information also allows for the creation of travel orders and real-
time control over the vehicle, provided that it is connected to the Internet. All of these things
are made possible, especially thanks to WSN as they allow for the real-time verification of the
status of the cargo, such as temperature, humidity or any unauthorized opening of containers
(Zhang et al. 2019). In particular, when transporting perishable goods, remote monitoring of
the internal temperature of the products with WSN is essential (Jedermann et al., 2014). In fact,
the perishability of goods is often related to the storage environment. Environmental sensors
collect temperature and respiration data (oxygen and carbon dioxide), monitoring the storage
environment of the goods during transport (Zhang et al. 2019). Such non-invasive
measurements are of crucial importance for food supply chains, where any deviation from
optimal parameters can result in deterioration of product quality and, consequently, significant

economic losses.
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Applications on different modes of transport

The application of IoT to “Smart Transportation” involves different modes of transport, with
specific characteristics in terms of traceability, safety and route optimization (Zhang, Lu, and
Wang 2014):

e Road transport: focuses on the management of the entire fleet of trucks or vans, aiming to
improve route efficiency, reduce fuel consumption and intervene promptly in case of
failures. The reading of RFID tags during loading and unloading phases, combined with
the use of sensors and GPS, facilitates the rational allocation of vehicles, with positive
effects in terms of fleet management (Cheung et al. 2008; Liu et al. 2019).

e Maritime transport: In addition to the now consolidated use of RFID for the unique
identification of containers and WSN for the non-invasive monitoring of temperature,
humidity and shocks, the IoT is evolving towards integrated platforms that connect the
entire fleet to a shared data ecosystem. The three-level architectural model — collection
node, edge gateway and cloud center — proposed by Plaza-Hernandez et al. (2021) allows
sensory flows (vibrations, consumption, emissions) to be processed locally and only
synthetic indicators to be transmitted to the cloud, reducing decision-making latency and
the use of satellite bandwidth. Route tracking, predictive maintenance and emission control
applications are grafted onto this infrastructure (think of commercial solutions such as
IoCurrents or Green Sea Guard), as well as telemedicine and well-being services for the
crew, which are essential given the often remote areas they operate in.

e Rail transport: using WSN it can be possible to timely monitor the status of the
infrastructure (tracks, bridges, switches), and consequently generate alerts in the event of
abnormal vibrations or breakdowns (Fraga-Lamas et al., 2017). This significantly increases
safety, as it identifies risk factors before they turn into major failures.

Despite the advantages, the literature reports the lack of studies aimed at investigating at a

strategic level the impact of [oT on the design of transport networks and on the choice of modes

(Zhang et al. 2019). This leaves room for possible future research aimed at exploring the

dynamics of integration between road, rail and maritime transport, relating technological

benefits to broader managerial decisions. A further obstacle is the fragmentation of IoT
solutions, often proprietary and not interoperable with each other. To overcome this limitation
and unify information from different modes of transportation in a single portal, specialized

companies such as Agheera have developed open platforms that can consolidate data from
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multiple telematics devices and different sensors. This way, a complete end-to-end overview
of the supply chain can be achieved (DHL & Cisco, 2015).

Evolution of monitoring and predictive tools

The potential of IoT in the Smart Transportation sector goes well beyond the simple passive
recording of the position and condition of the load. According to available analyses, monitoring
will become progressively faster, more predictive and secure, helping to minimize losses due
to theft or damage (DHL & Cisco, 2015). In fact, cargo theft continues to represent a significant
problem: Overall, cargo thefts in the U.S. in Q3 2023 increased by an unprecedented 59%
compared to Q3 2022, according to CargoNet. In 2024, the situation continued to worsen, with
CargoNet reporting a 27% year-over-year increase in cargo thefts, reaching a record 3,625 in

North America (Verisk, 2025).
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Figure 38 - CargoNet's 2024 Supply Chain Risk Trends

Source: Verisk. (2025). Cargo theft surges to record levels in 2024, Verisk CargoNet analysis reveals.

Such events, in addition to direct damage, lead to delays and additional costs for companies.
However, [oT can provide monitoring solutions focused on the single item, thanks to multi-
sensor tags that transmit information on position, environmental conditions and even the
opening of the package (a possible indicator of tampering). A significant example is
represented by SmartSensors, intelligent devices that detect temperature, humidity, shocks and
even possible exposure to light, as this could indicate the unauthorized opening of a container.
These systems then transmit everything to open platforms or clouds. These platforms integrate
different devices (vehicle telematics, on-board container sensors, etc.) into a single analysis

system, making real-time control possible on all goods in motion (DHL & Cisco, 2015). A
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direct consequence of this evolution is the creation of centralized dashboards, where
information about the position, residual load capacity, environmental data and vehicle
conditions are aggregated into a single control panel. At the same time, [oT offers opportunities
for optimization in fleet and asset management. Sensors installed on trucks, containers or cargo
units can provide data on the frequency of use of vehicles, any long stops and levels of residual
load capacity. This information feeds analytical platforms that facilitate the planning of the
most efficient routes, reduce fuel consumption and limit the kilometres travelled empty by
vehicles (DHL & Cisco, 2015).

Predictive maintenance and driver safety

In addition to load tracking, IoT offers great support in predictive maintenance of vehicles and
in collecting information on driving conditions (Sivaraj et al., 2021). Sensors placed in critical
points — such as shock absorbers, engines or refrigeration systems — allow for early
identification of any wear or failures (DHL & Cisco, 2015). This data is then transmitted to
analysis platforms that generate alerts and preventive maintenance requests, significantly
reducing vehicle downtime and increasing delivery reliability. In this context, OBD (On-Board
Diagnostics) technology collects technical parameters, for example on engine performance or
safety systems, and transmits them to a cloud platform where they can be analysed in detail.
The results are then sent in real time to the driver’s smartphone, allowing immediate
intervention in case of problems. A concrete example is the European project “MoDe”
(Maintenance on Demand), which - launched in 2012 in collaboration with Volvo, DHL and
other partners - led to the creation of an industrial vehicle capable of self-diagnosing and
proactively deciding whether and when to intervene on damaged components (DHL & Cisco,
2015). According to the data that emerged, this approach has shown an increase in vehicle
uptime of up to 30%, reducing the risk of unexpected failures that would compromise the entire
delivery chain.

Risk Management Along the Supply Chain

In an increasingly globalized context, transports must also deal with exogenous factors — such
as geopolitical instability, strikes, natural disasters — that can interrupt the normal circulation
of goods. IoT, integrated into advanced supply chain risk management tools, promotes

prevention and rapid response to such events (DHL & Cisco, 2015).
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Figure 39 - Resilience360 — a holistic risk management solution

Source: DHL. (n.d.). Resilience360: Turning a potential disruption into competitive advantage [PowerPoint presentation].
DHL Corporate Solutions & Innovation.

A notable case is Resilience360, a platform which provides a real-time view of all relevant
routes and infrastructures, cross-referencing alerts on strikes, port and airport closures or
adverse weather conditions. If the system detects a potential impact on a specific route, then it
can also suggest corrective actions like moving the load to a different carrier or redistributing

stocks across other logistics hubs.

3.2.1.2 Smart warehousing

The smart warehouse is nothing more than the strategic and technological evolution of
traditional warehouse. All this is made possible thanks to the integration of different
technologies, among which IoT is certainly one of the most impactful. The goal of this
transformation is to optimize the activities of receiving items, storage, inventory management,
picking and loading, creating a more agile, efficient and safe logistics system. The warehouse
becomes an “intelligent” environment in which machinery, shelves, products and operators
communicate with each other, generating real-time visibility and reducing errors and delays
along the supply chain. Traditionally, warehouse activities included receiving processes,
allocation of goods to shelves, picking to order and loading of means of transport. Such
activities, combined with a high variety of goods types and customer demands, have often led
to issues such as low operational efficiency, suboptimal space utilization, and inventory
management errors (Lee et al. 2018; Lim, Bahr, and Leung 2013). In this context, [oT offers

effective solutions to address these issues, exploiting distributed monitoring and sensing
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devices but also using automated systems that support the decision-making process. The ability
to connect objects (such as shelves, forklifts, pallets) and operators via sensors and RFID tags
allows the WMS (Warehouse Management System) to obtain real-time data on the status and
location of each entity in the warehouse. This leads to a reduction in decision delays and
facilitates rapid interventions in emergency situations such as urgent changes in picking

priorities for example (Trab et al. 2017).
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The fundamental components of [oT in the smart warehousing field are the following:

e RFID and automatic tracking

e WSN and environmental sensors

e Multi-agent systems and decentralized decision-making

e Wearable Sensors
RFID technology has been defined and explored earlier in this chapter, thus it is already known
that it is considered a key technology for automatic identification and tracking of goods and
warehouse assets (Garrido-Hidalgo et al. 2019). In particular, in this case RFID tags can be
applied to SKUs (Stock Keeping Units), pallets, or even the warehouse floor, in order to

generate data related to the type and quantity of goods, storage location, and storage conditions

(Jabbar et al. 2018; Giusti et al. 2019). RFID readers, equipped with antennas, can be placed at
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entrances, on shelves or on forklifts, allowing to identify in real time the status and position of
each item. This approach makes the warehouse “transparent” and reduces errors due to manual
input (Biswal, Jena-mani, and Kumar 2018; Giusti et al. 2019). Through precise localization,
resource allocation is speeded up and the efficiency of picking and loading operations is
improved (Yan et al. 2014). Furthermore, real-time tracking of forklifts and other material
handling equipment (MHE) can increase safety and speed in operations (Ballestin et al. 2013).
Wireless Sensor Networks (WSN) and environmental sensors also allow for the constant
monitoring of warehouse conditions. They are positioned in strategic locations and then
transmit data in real time to the WMS (De Venuto and Mezzina 2018). For example, sensors
installed on forklifts allow for the early detection of failures or non-optimal behavior of the
vehicles (Jabbar et al. 2018). If the system detects significant or anomalous variations, it sends
alarms. In this way predictive maintenance is enhanced and unexpected downtime is reduced
(Trab et al. 2017; Zhang, Zhao, and Qian 2017).

In parallel with the adoption of RFID and WSN technologies, the use of Wearable Sensors is
spreading, i.e. devices equipped with sensors to be worn on the body, capable of detecting
movements, physiological parameters or stress indicators (DHL, 2024).

Wearable sensors
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Figure 41 - Examples of wearable sensors for industry 4.0

Source: DHL. (2024). Logistics trend radar 7.0: Your guide to innovation in logistics.

These solutions range from bracelets and badges to smart glasses and smart clothing with
gyroscopes, accelerometers or integrated sensors. The adoption of wearable sensors is now at
the centre of security and process optimization strategies in the logistics and manufacturing
sectors (DHL, 2024). Recent studies highlight how these sensors represent a fundamental piece

in creating a “human-in-the-loop” paradigm, i.e. an ecosystem in which the human operator,
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strengthened by sensors, collaborates closely with machines and digital systems (Kong et al.,
2019).

The ecosystem of industrial wearable devices is divided into two large, often complementary,
families:

I.  Human interaction devices — smart glasses, smartwatches, rugged tablets or clip-on
displays. Their purpose is to convey contextualized information (pick lists, safety
warnings, assembly instructions) while minimizing manual interaction (Sawyer et al.
2014).

II. Data collection devices — ring scanners, smart gloves, RFID shoes or insoles,
UWB/BLE badges, sensorized clothing with accelerometers or gyroscopes. These
devices operate as distributed sensors that capture operational, biometric or localization
data, sending them in real time to information systems (Schmuntzsch et al. 2014).

The same task may require the combination of both categories: for example, a picker uses the
smart glasses to visualize the location of the product and at the same time the ring scanner to
record the picking.

In contrast to the “all-in-one” PDA (Personal Digital Assistant) — bulky, heavy and not very
ergonomic — the most effective approach in the industrial field involves a functionally

separated design.
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Source: Kong, X. T. R., Luo, H., Huang, G. Q., & Yang, X. (2019). Industrial wearable system: The human-centric
empowering technology in Industry 4.0. Journal of Intelligent Manufacturing, 30(6), 2853—2869.

This means that each device performs a specific function and is placed on the most suitable
part of the body (Lukowicz et al. 2004). Thus, the scanner can be integrated into a finger, the

localization module into a badge and the visual interface into a pair of glasses. The modularity
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of the accessories (strap, magnetic supports, clips) that can be confined and reconfigured allows

the same sensor to be adapted to different operating scenarios and different body types.
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Figure 43 - Multifunctional wearable scanning device with modular accessories

Source: Kong, X. T. R., Luo, H., Huang, G. Q., & Yang, X. (2019). Industrial wearable system: The human-centric
empowering technology in Industry 4.0. Journal of Intelligent Manufacturing, 30(6), 2853—2869.

The ring scanner illustrated in Figure 43 can, for example, transform from a barcode reader
with a “touch” gesture to an RFID reader with a “grip” gesture, simply by exchanging the
support (Lorenz et al. 2015).
From a human factor’s perspective, devices must:
e ensure hands-free operation during critical tasks (Lukowicz et al. 2004);
e use breathable and hypoallergenic materials in the parts in contact with the skin,
respecting hygiene requirements (Lorenz et al. 2015);
e integrate forms of non-invasive feedback (light vibrations, notification LEDs,
directional acoustic signals) to minimize cognitive load (Chao et al. 2016).
From operational stability point of view, these devices should have long battery life, stable
wireless connection, and resistance to environmental conditions. They should interface
seamlessly with ERP, MES, and WMS, and collect data directly from machinery and
production systems.
The use of wearable sensors in logistics focuses mainly on three areas:
I.  Worker localization: The ability to track the position of operators in real time enables

safety-related use cases, such as reporting incidents (person-down alert) or avoiding
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collisions with forklifts. For high-precision localization solutions, it is necessary to
invest in infrastructure such as ultra-wideband (UWB), but the choice of technology
(e.g. BLE, Wi-Fi or UWB) varies based on the required accuracy and transmission
speed. In some contexts, BLE (Bluetooth Low Energy) is preferable for lower costs, as
in the case of the startup Sonitor, which uses BLE or ultrasound to track the position of
operators and resources in real time, enabling applications such as geo-fencing and
automatic reporting of working times (DHL, 2024).

Process Intelligence: The analysis of data collected by wearable sensors allows
obtaining Process Intelligence. For example, DHL Supply Chain uses the Motion-
Mining® solution, developed by a German startup, to collect operational data (in
anonymized and GDPR-compliant form) using temporary wearables. This data, free
from observation bias, is processed to identify inefficiencies and improve processes. In
parallel, devices such as smart glasses or wearable scanners provide real-time insights
into productivity and potential bottlenecks (DHL, 2024).

Ergonomic Health: Musculoskeletal disorders (MSD) are among the main problems
related to the work environment in Europe. Wearable sensors can reduce risks by
analysing potentially dangerous postures and movements. Solutions such as Soter
Analytics or Kinetic vibrate or emit an acoustic signal when the operator makes
incorrect movements (e.g. inappropriate bending or dangerous twisting), contributing
to a gradual improvement in postural habits. In addition, devices such as smartwatches
and smart bracelets can monitor vital parameters (stress, fatigue), sending alerts in case
of anomalous values. However, these applications require maximum attention to
privacy protection: the data collected (e.g. health parameters) must be anonymized and

processed in compliance with data protection regulations (DHL, 2024).

The main challenges associated with the use of wearable devices in logistics therefore concern

the protection of personal data, infrastructure costs and the risk of overloading operators with

too many wearables. Proper technology selection and collaboration between vendors, HR

managers and workplace safety figures become essential for effective adoption.

To sum up, thanks to the integration of IoT and Wearable Sensors, smart warehouses obtain

numerous tangible benefits related to better inventory management, optimization of inbound

and outbound flows, efficient use of machinery and predictive maintenance, worker safety and

injury prevention, infrastructure monitoring and energy saving.

Better inventory management: Real-time traceability of stock, combined with constantly

updated data, prevents stock-outs and reduces the costs of overproduction or unused space.
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The data generated by RFID tags or sensors installed on goods and vehicles, in fact, flow
into the WMS, which precisely calculates the stock levels and their location (Biswal, Jena-
mani, and Kumar 2018; Giusti et al. 2019).

Optimization of inbound and outbound flows: The ability to automatically check the
contents and conditions of incoming pallets, thanks to wireless readers and cameras (to
detect any damage), speeds up check-in and the assignment of a location. In the outgoing
phase, each pallet is scanned and immediately compared with the order: this way the right
products are always shipped, errors are avoided, and the inventory is updated in real time
(Trab et al. 2017).

Efficient use of machinery and predictive maintenance: By keeping an eye on machinery
such as forklifts, conveyor belts and AGVs, it is possible to intervene immediately if a
vehicle is over- or under-utilized, improving efficiency and predictive maintenance.
Furthermore, by adding an analysis of parameters such as temperature, vibrations and
operating cycles, predictive maintenance can easily be activated, scheduling interventions
before failures occur (especially on handling machinery) or bottlenecks are created.
Worker safety and injury prevention: installing sensors and cameras on forklifts and racks
can detect hidden obstacles and dangers. Forklifts can be programmed to automatically
slow down when approaching intersections or when they detect a pedestrian (Industrial
Truck Association; U.S. Occupational Health and Safety Administration). In addition, the
use of pressure sensors helps avoid poorly distributed or excessive loads. Some systems,
such as Ravas’s “smart forks”, integrate scales and load centres, alerting the operator if
weight limits are exceeded or if the load is unbalanced. Preventing pallets from falling or
slipping can be entrusted to a set of sensors and cameras, capable of identifying imperfect
storage and sending alerts before accidents occur. Whereas on the human side, as already
stated, wearables monitor the physical condition of workers in real time preventing injuries
and ensuring rapid interventions (Buntak, Kovaci¢, & Mutavdzija, 2019; Wanganoo,
2020).

Infrastructure monitoring and energy saving: The integration of sensors also in the building
infrastructure (lighting, heating system, ventilation) allows for optimizing consumption.

This reduces energy costs and environmental impact (De Venuto and Mezzina 2018).

3.2.1.3 Smart Delivery

Differently from freight transportation—which involves the bulk transportation of goods

between locations, often for business-to-business transactions or moving inventory—the
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delivery focuses on the final stage of transportation: delivering individual packages or goods
to a specific customer's address. “Smart Delivery”, instead, refers to the set of practices and
technological solutions aimed at making the delivery process faster, safer and more accurate.
In particular, the integration of the IoT in delivery aims to solve several problems that affect
the current system, including operational inefficiencies, failed deliveries, theft of goods and the
deterioration of perishable products (Shi, Zhang, and Qu 2010; Fu et al. 2015). Thanks to the
connectivity and sensors typical of the IoT, tracking and monitoring of shipments become more
detailed, allowing to share and make interactive the information related to the delivery status.
Technologies such as RFID, environmental sensors, GPS devices, and wireless network
systems support the flow and sharing of data between different actors in the logistics chain. For
example, shared delivery or “joint delivery” takes advantage of the interconnection of physical
logistics resources, enabling significant improvements in delivery efficiency and resource
optimization (Wang et al. 2019). A crucial aspect for smart delivery is real-time traceability:
by installing sensors, RFID tags, or GPS devices on vehicles and equipping personnel with
mobile devices, it is possible to know the location of the courier and the goods both in outdoor
environments (thanks to GPS) and in indoor environments (via RFID) (Lin, Cheng, and Wang
2011). This level of visibility allows for providing updates to customers and for any route
recalculations or vehicle reassignments, for example in the event of accidents or unforeseen
events (Ngai et al. 2012). Security is another pillar of smart delivery. As in the case of smart
freight transport, also in the context of smart delivery, theft of goods is a crucial point to
manage (Yang, Luo, and Lu 2015), as well as incorrect deliveries (Fu et al. 2015). Thanks to
RFID identifiers and geofence mechanisms the control of these two phenomena becomes easier
and easier (Oliveira et al. 2025), while with sensors and wireless technologies the status of the
vehicle can be constantly monitored as well as the physical conditions of the driver, reporting
dangerous driving situations such as drowsiness (Kido and Nakamura 2016). There is no
shortage of applications for privacy protection: QR code technology, for example, allows both
to authenticate the courier and to protect the privacy of the end user (Gao et al. 2018).

Special attention should be paid to perishable products, as they require constant environmental
controls. Real-time monitoring and collection of parameters such as temperature and humidity
(Tsang et al. 2018) minimize waste and spoilage risks, with clear advantages for sectors such
as the food industry or pharmaceuticals (Trebar, Lotric, and Fonda 2015; Yang, Yang, and
Yang 2011). In this regard, a very important trend is that of smart packaging. Smart packaging
represents the evolution of traditional packaging solutions and plays a key role in smart

delivery. By integrating sensors into product packaging, it becomes possible to monitor product
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quality parameters both in real time and not. In addition to protecting the intrinsic
characteristics of the items, these devices collect additional information along the entire
logistics chain—such as origin, route, storage conditions, and final destination—significantly
enriching the available information framework (Poyatos-Racionero et al., 2018). The fact that
distributors and consumers can access this evidence increases transparency and security,
overcoming the limitations of traditional packaging. The result is more efficient management,
capable of containing waste of resources and product along the supply chain (Kalpana et al.,
2019). From an operational point of view, smart packaging solutions perform various
functions—from the detection and reporting of critical conditions, to the storage, traceability,
and transmission of data—Ilaying the foundations for optimization tools that improve the
overall reliability of logistics (Onwude et al., 2020).
Literature and major industry reports (DHL, 2024) distinguish three macro-categories:

I.  Active Packaging & Tracking

II.  Intelligent Packaging
II.  Modified Atmosphere Packaging (MAP)
Active packaging incorporates additives (e.g. antimicrobials or moisture absorbers) that extend
the shelf life of pharmaceutical or agri-food products, but requires maintaining strict thermal
control along the cold chain. The integration of IoT sensors and tracking devices allows
monitoring of temperature, impacts and overturning, activating notifications when safety
thresholds are exceeded. However, tracker batteries are classified as dangerous goods in air
transport, a circumstance that limits their use. On the other hand, disposable Bluetooth
solutions are less expensive, but generate e-waste and therefore pose sustainability issues
(DHL, 2024).
Defined as “packaging that senses and informs”, Intelligent Packaging monitors the internal
conditions of the product through time-temperature indicators (TTI), freshness sensors or RFID
tags (Poyatos-Racionero et al., 2018; Kalpana et al., 2019). Unlike active packaging, intelligent
packaging simply records and displays product information, while, as already explained above,
active packaging acts directly on the product to extend its shelf life (Soltani et al., 2021). A
case in point is the “Digital Shipping Label & Asset Tracker” by the startup Envio, which
combines an e-ink label with detectors for opening, falling or exceeding the temperature (DHL,
2024).
Modified Atmosphere Packaging (MAP), instead, is a fundamental tool for the management of
perishable or oxidation-sensitive goods. In this case, the internal atmosphere can be controlled

and modified by replacing oxygen with other gases (e.g. nitrogen) to extend the shelf life. For
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instance, the Covid-19 pandemic has shown how MAP is essential even in the context of the
pharmaceutical industry. In fact, even in the transport of vaccines, the temperature must be
strictly monitored to guarantee the preservation (DHL, 2024).

The different classifications are related to the technology used for packaging. Figure 44 shows

the classification of technologies used in intelligent (smart) packaging.

Intelligent
Packaging

Indicators: Sensors: Data Carriers:

Temperature Temperature RFID
Pressure Pressure Bar Code
pH pH QR Code
Humidity Optics Augmented
Gas Biosensors Reality
Humidity

\ / \ Gas / \ /

Figure 44 - Classification of smart packaging technologies

Source: Fernandez, C. M., Alves, J., Gaspar, P. D., Lima, T. M., & Silva, P. D. (2023). Innovative processes in smart
packaging: A systematic review. Journal of the Science of Food and Agriculture, 103(3), 986—1003.

Indicators are simple devices, often similar in appearance to a label or sticker, designed to
change appearance when the product is subjected to unsuitable conditions (Ahmed et al., 2018).
The principle on which they are based is almost always irreversible: once the color change has
occurred, the information remains “written” on the packaging and can be read at a glance by
anyone, without electronic tools (Otles & Sahyar, 2016).

The following are examples of indicators:

e Time-Temperature Indicators (TTI): they are devices that can be attached to primary,
secondary, and pallet packages. Inside this device there is a physical-chemical reagent
which accumulates the heat received over time. If the temperature has always remained
correct, the central circle remains clear; if the sum of all the small changes exceeds the
threshold, the colour fades towards blue or red. In practice, a TTI translates the thermal
history of an invisible risk (a change of a few degrees) into a visible signal (Miiller &
Schmid, 2019; Wang, Wu, & Cao, 2019).

e Freshness indicators: the focus is not on temperature but on metabolites, that is,
chemicals that bacteria or the product itself release during degradation. Some examples:
carbon dioxide for fruit and vegetables, biogenic amines for fish, hydrogen sulfide for

meat. A freshness indicator is a label which contains a reagent that reacts with one of
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these molecules to change colour so the consumer can understand if the product is still
safe without opening the package (Fernandez et al., 2023).

e Variable pH films with natural colorants: The composition of gases inside a package
reflects the state of conservation. Variations can depend on enzymatic or microbial
activity or on micro-leaks in the packaging (Miiller & Schmid, 2019). These changes
can be controlled with colour-sensitive films that monitor the pH (Alizadeh-Sani et al.,
2021). A natural pH-sensitive pigment, such as anthocyanins, is incorporated into a thin
plastic or bioplastic base. If the food becomes more acidic or alkaline, the pigment
changes colour, for example from red to blue. At that point, a glance is enough to know
if the food is still good, without opening the package. Since both the support and the
colorant are natural, the solution is compatible with packaging that must remain in
contact with food and can be disposed of as normal organic waste (Pourjavaher et al.,
2017).

The strength of the indicators lies in their immediate readability: they do not need batteries, do

not require a network connection and cost a few cents. The weakness is that they provide

“photographic” information: they say that the problem occurred, but not when, where or for

how long. When it is necessary to accurately reconstruct environmental history or forward data

in real time, electronic sensors come into play.

The typical architecture includes four sections:

e Receiver (or sensing part): the tip of the sensor, i.e. the material that physically comes into
contact with what is to be measured (temperature, humidity, gas).

e Transducer: transforms the physical or chemical variation (e.g. an increase in °C) into an
electrical signal.

e Signal processing: a small circuit that digitizes, filters and encodes the signal.

e Communication interface: the “megaphone” that sends the data outside, often via an RFID
antenna or integrated NFC module. If connected to the Internet, it turns into an IoT device
(Wang, Wu, & Cao, 2019).

Many sensors use button batteries because they are compact, but to reduce waste and facilitate

recycling, energy harvesting solutions are becoming more widespread — for example, a tiny

piezoelectric plate that converts the vibrations of the truck into micro-current sufficient to
power the device for the duration of the journey. Miniaturization is made possible by printed
electronics: the copper tracks of the circuits are “printed” as conductive inks on plastic films

(Wang, Wu, & Cao, 2019). This cuts copper waste, avoids manual assembly of components
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and reduces costs and thickness, so much so that the sensor can be inserted between two layers

of packaging and remain invisible to the naked eye. The downside is even lower mechanical

resistance than traditional circuits. Manufacturers must therefore calibrate film thickness and

flexibility to avoid breakage during handling (Fernandez et al., 2023).

To ensure that the information collected is useful for logistics, a means of transporting the data

1s needed. This is where data carriers come in:

Barcode and QR-code: the traditional barcode functions as a product plate but contains
little information and must be read in line of sight. The QR-code, on the other hand,
can store a text of several hundred characters: a warehouse worker or the consumer
himself, by scanning it with a smartphone, can access the nutritional information sheet,
disposal instructions or video recipes in a few seconds. If the QR is printed with
thermochromic inks, it can even be “covered” at low temperatures (therefore invisible
in the cold room) and “uncovered” when the package exceeds the critical threshold,
acting as an additional visual warning (Djurdjevic et al., 2019).

RFID: an RFID label contains a metal antenna and, in classic models, a microchip that
stores the ID. Radio frequency allows for remote reading without line of sight, so the
warehouse can inventory hundreds of packages as they pass under an automatic gate.
As already discussed, passive tags work without a battery and reach only a few meters
while active tags are internally powered, exceed tens of meters and support sensors, but
impact costs and disposal. Between these two solutions are semi-passive tags whose
battery serves only to power the internal circuit, while the transmission remains
stimulated by the external field, thus offering a compromise between autonomy, range
and cost (Bibi et al., 2017). Operating frequencies influence performance: LF (125 kHz)
penetrates liquids well but reads at a few centimetres; HF (13.56 MHz, the same as
contactless tickets) reaches about twenty centimetres; UHF (860-960 MHz) goes up to
4-8 m in optimal conditions; SHF (2.45 GHz) offers high throughput but is sensitive to
water, so it is used on dry pallets or clothing.

Chipless RFID: To reduce costs to under one euro cent, the chipless tag is being tested.
Here the logic is not contained in a circuit but “drawn” in the geometric shape of the
antenna, which reflects a sequence of frequency bands like a mirror that reflects
different colours. The reader “sees” these bands and translates them into a unique binary
code. Since there is no chip, only a plastic sheet coated with metallic ink is needed:

light, flexible, potentially recyclable with less impact. The challenges are the printing
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resolution (a small imperfection can change the code) and sensitivity to shocks and
bends, but the first prototypes show reliable readings within 2-3 m, enough for gate
controls in warehouses or depots (Fathi et al., 2020).
Bringing together indicators, sensors and data carriers means transforming the packaging into
a communication node that warns if the product is deteriorating, records when and where it
occurred and forwards the data to the company information system. This is explained very well
by Figure 45, which shows the logistics chain diagram of a food product, based on the
technology provided by the company Varcode.
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Figure 45 - Schematic design of the traceability system with the use of Smart Tag

Source: Fernandez, C. M., Alves, J., Gaspar, P. D., Lima, T. M., & Silva, P. D. (2023). Innovative processes in smart
packaging: A systematic review. Journal of the Science of Food and Agriculture, 103(3), 986—1003.

From the very beginning, the smart tag is activated and its registration takes place in real time
through computer systems that store all relevant information which can be analyzed in real
time. After the product is delivered, information can be obtained through interaction with the
end consumer who, by scanning the QR code, can access the website and fill out a survey on
the delivery conditions, such as safety, for example, and report possible problems, in addition
to building customer loyalty with bonuses and loyalty incentives (Varcode, 2021).

The constant measurement of the parameters also opens the way to predictive models: the
transport platforms cross-reference the sensor data with the planned route and send alerts if,
for example, the temperature exceeds the threshold value for a certain period of time or if the

vibrations indicate a shock that could have damaged the contents. The algorithm thus calculates
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the residual useful life (RSL) of the batch and, if necessary, modifies the delivery order to
reduce waste (Pal & Kant, 2020).
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(a) Verigo Pod Quality device. (b) System for estimating the remaining (c) Logistic control system based
life of the product. on product quality.

Figure 46 - Example of a smart packaging—based logistics system

Source: Verigo. (2019). POD Quality — Model PH1. Verigo.

The Verigo Pod Quality case demonstrates the practical impact: by monitoring the entire
journey of strawberry crates, it was observed that, by maintaining the temperature between 0
and 2°C, the average useful life remains around 9 days, while prolonged exposure to 10°C is
enough to reduce it to less than three, information that allows the fleet manager to give priority
to the most at-risk packages (Verigo, 2019; Innolabel, 2022). The operational benefits are
immediate: reduction in returns, optimisation of distribution routes, possibility of rapidly
isolating a batch in the event of a recall and, last but not least, availability of verifiable data for
environmental sustainability reports. The challenges instead concern the standardization of
formats, the recycling of electronic components and compliance with regulations on the air
transport of batteries, but the convergence of very low-cost passive sensors, low-power
communication networks and cloud platforms for predictive analysis indicates that smart
packaging will soon become an essential competitive requirement for truly transparent, safe
and zero-waste delivery.

In addition to the aspects related to traceability and safety, Smart Delivery aims to improve the
so-called “last mile delivery” (LMD). This is the final phase of delivery, which remains the
most expensive and unpredictable part of the entire logistics chain: up to 41% of transport costs
are attributable to the last kilometres that separate the distribution centre from the final recipient
(Wanganoo & Patil, 2020). The widespread integration of the IoT is progressively transforming
this bottleneck into a competitive advantage factor, thanks to connected devices that provide
real-time visibility, capillary traceability and new operating models. GPS sensors,
accelerometers, temperature and humidity detectors, placed on vehicles and packages,
continuously transmit granular data on the status of the shipment. This end-to-end visibility
allows to promptly identify delays, deviations or environmental conditions outside the

threshold, reducing losses and disputes and improving the quality of the service (Ivankova et
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al., 2020). In parallel, low-power communication networks (LPWANs), combined with edge
or cloud gateways, allow the management of millions of devices with low energy consumption,
an essential requirement for widespread coverage of urban territory. To address the problem of
failed deliveries, smart lockers are becoming more widespread — automated lockers equipped
with IoT sensors and electromechanical locks — that act as self-service collection points open
24 hours a day. The DHL Paketkasten, for example, is a container that can be installed in the
home: a micro-controller registers the opening of the door, measures the internal occupancy
using an ultrasound sensor and transmits the status to the central server; the courier thus
receives information in advance on the availability of the compartment, avoiding empty
passages and recalculating the route in real time (DHL, 2024). Parcelbox follows the same
logic but uses an RFID badge instead of a digital code for unlocking, ensuring compatibility
with the main delivery platforms (DHL, 2024). On the public front, many cities are
experimenting with condominium lockers with refrigerated cells, in which IoT thermal probes
maintain and track the temperature for sensitive food or medicines. Alongside lockers, plug-
and-play devices like Postybell transform the traditional mailbox into a connected node: an
infrared proximity sensor, powered by a long-life battery, recognizes the insertion of
correspondence and sends a push notification to the recipient’s app in a few seconds. The
advantage is twofold: the courier avoids delivery attempts if the compartment is full, while the
user can decide to collect the mail at the most appropriate time (DHL, 2024). IoT also enables
dynamic address reprogramming. Thanks to the controlled sharing of the smartphone’s
location, the logistics-distribution platform suggests alternative delivery points — an office, a
temporary home, an “en route” locker or even the doorman of a nearby building — calculating
in real time the drop-off point that minimizes distance, time and emission impact. This
paradigm, sometimes called address as a service, has already been tested by the American
service Shyp, where the same network of freelance drivers offered, via app, to collect
“unscheduled” packages in the immediate vicinity, transforming the last mile into a system of
on-demand micro-collections and micro-deliveries (DHL, 2024). On the autonomous delivery
front, IoT drone pilots further illustrate the potential of widespread connectivity. DroneTalk
(Chen et al., 2022) is an experimental platform developed at the University of Hong Kong: the
quadcopter integrates multi-band GPS, IMU attitude sensors, a forward-looking video camera
and an LTE-M modem. These modules send flight plans, battery status and weather
information every 500 ms to a ground station that processes the same data to enable micro-
route adjustments and precision landings on urban micro-hubs. In Arizona, the 3D4 system

(Eeshwaroju et al., 2020) focuses on “vertical” deliveries: the drone is equipped with
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ultrawideband (UWB) sensors for indoor positioning and a CAN-bus-controlled winch that
deposits packages up to the twentieth floor without the need to land on the roof. A LiDAR
sensor monitors the distance from the balcony, while the package is “hand-shaked” via RFID
tag to certify the delivery. In parallel, IoT sensors installed on electric vans, cargo bikes and
ground robots monitor in real time energy consumption, battery temperature and acceleration
patterns, enabling predictive maintenance and eco-driving strategies that, according to Xu et
al. (2022) and Arora et al. (2017), reduce energy consumption by 10 to 20%. In regulated
supply chains, the combination of IoT and blockchain seals the data collected by sensors,
ensuring integrity and non-repudiation for the benefit of producers, distributors and control
authorities (Markovic et al., 2020). The empirical results published so far indicate average
delivery times reduced by up to 25%, a reduction in empty kilometres driven and a significant
increase in customer satisfaction thanks to proactive notifications and flexible collection
options (Elvas et al., 2023). However, open challenges remain: the strong growth of the cyber
attack surface, the protection of personal data and the initial investment costs, particularly
relevant in emerging markets (Kafile and Mbhele, 2023). The adoption of zero-trust
architectures, end-to-end encryption protocols and interoperability standards therefore appears
essential. Ultimately, the [oT ecosystem gives last-mile delivery unprecedented transparency,
flexibility and reliability. From roadside sensors to connected lockers, from smart tags to
vertical drones, each node generates and shares information that, if properly orchestrated,
transforms the last mile from a critical point to a strategic element of logistics competitiveness

(Fu et al. 2015; Yang, Luo, and Lu 2015).

4 The Convergence of Al and IoT in Logistics 4.0

Although the integration between Al and IoT technologies has not been explored in detail in
the previous chapters, several ideas and references that emerged during the discussion have
nevertheless clearly suggested a complementarity between these two technologies. This belief,
deliberately disseminated throughout the thesis, will now be the subject of a specific analysis

and study.

4.1 AI-10T Integration: Enabling Smart and Adaptive Logistics

Combining Al and IoT gives rise to the so-called Artificial Intelligence of Things (AloT). This
is a rapidly evolving paradigm, destined to redefine the ways of managing and controlling
supply chains. Indeed, when these two technologies are combined together, devices can collect

and analyze data, then make decisions and act on that data autonomously (Nozari et al., 2021).
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This enables companies to leverage both technologies simultaneously and achieve a state of

transparent, agile and adaptable supply chain that can address even the most difficult challenges

Improve processes )

The new generation of
communication with users

more effectively.

( Data analysis
C Asset management
( Immersive app

Source: Nozari, H., Tavakkoli-Moghaddam, R., Rohaninejad, M., & Hanzalek, Z. (2023). Artificial Intelligence of Things

Industrial Automation)

Figure 47 - AloT Features Overview

(AloT): Strategies for a smart sustainable-resilient supply chain (Figure 1, p. 809). Proceedings of the Czech Technical

University in Prague, Industrial Informatics Department.

Figure 47 provides an effective representation of the distinctive features of AloT. On the one
hand, IoT provides one of the most valuable resources for contemporary logistics chains: the
continuous and real-time flow of data on the operating conditions of vehicles, warehouses and
goods in motion. As a result, the amount of data generated is significant in volume, plus it is
often heterogeneous and unstructured. This clearly makes manual management and direct
extraction of significant knowledge from this data, quite difficult. This is where Al comes in.

To transform this “ocean” of raw data into useful insights like “in two hours machine X will

need maintenance” or “demand for this product will increase by 20% in the next few days”, Al

algorithms are deployed to filter the information noise and select only the variables relevant to
the decision-making context. So, the two technologies not only coexist, but enhance each other.

In the common area, that is AloT, three main application areas emerge:

e Data analysis, for example the use of machine learning techniques to identify patterns and
anomalies in historical data series, supporting demand planning and route optimization;

e Asset management, which uses sensors and cloud platforms to monitor the health status of
vehicles and infrastructures and proactively initiate maintenance interventions;

e Immersive apps, such as the development of augmented and virtual reality interfaces that,
integrated with predictive models, assist operators and managers in making decisions in the
field.

On the benefits side, AloT enables continuous process improvement (reduction of downtime,

automation of workflows, dynamic reallocation of resources), introduces a new paradigm of

communication with users (smart notifications, personalized dashboards, conversational
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interfaces) and pushes industrial automation towards increasingly higher levels of autonomy,
up to collaborative robots and self-driving vehicles used in warehouse operations and last-mile
delivery (Nozari et al., 2023). In the transition from general principles to the logistics
dimension, AloT is configured as a true “digital nervous system” in which IoT sensors act as
peripheral receptors, capturing continuous environmental and operational stimuli, while Al act
as the “brain”, interpreting inputs, formulating predictions and orchestrating responses
autonomously or in collaboration with the human operator (Sun et al., 2020). Figure 48 shows

a clear representation of the process.
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Source: Nozari, H., Tavakkoli-Moghaddam, R., Rohaninejad, M., & Hanzalek, Z. (2023). Artificial Intelligence of Things
(AloT): Strategies for a smart sustainable-resilient supply chain (Figure 3, p. 814). Proceedings of the Czech Technical

University in Prague, Industrial Informatics Department.

Thanks to this synergy, connected devices are no longer limited to acting as mere transmitters
of data to a remote control center, but are evolving into “intelligent machines”: equipped with
autonomous perception capabilities and distributed decision making, they are able to intervene
directly on the field with minimal human intervention, accelerating response times and
significantly reducing error margins (Xiong et al., 2021).

When this synergy is not present, sensors scattered along supply chains, vehicles and
infrastructures collect heterogeneous big data and analysis remains post-event as data is
directed only to central systems. The grafting of Al algorithms close to the source (edge Al)
reverses the paradigm: lightweight neural networks, running on low-power microcontrollers,

anticipate the time-to-failure of an engine far enough in advance to trigger the supply of spare
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parts without stopping the line (Hou et al., 2023); a streaming-powered logistics digital twin
continuously simulates the state of warehouses and fleets, proposes or recalculates routes based
on congestion, weather and delivery constraints (Min, 2023). It is the device itself, therefore,
that decides to act, no longer the control center that interrogates millions of nodes. Three new
capabilities reside in this qualitative leap. First, the supply chain becomes self-synchronized:
each intelligent node adapts its behavior to the global state, updates it in turn, and coordinates
the entire network without going through a single direction (Nozari & Nahr, 2022). Second,
learning becomes continuous in situ. The models, trained in the field with federated logics,
adapt to changing layouts, volumes, or climatic conditions without interrupting operations.
Finally, decision-making delegation is distributed and graduated. The architecture decides in
real time which logics remain local to reduce latency, and which migrate to the cloud,
transforming the supply chain from reactive to anticipatory (Najafi et al., 2023). The added

value compared to the separate use of technologies emerges with particular evidence in the

following table:
Dimension IoT only Al only AloT
Real-time on-device
Data temporality Near-real-time (network latency) Batch on historical datasets inference
Fully distributed and
Decision granularity Centralised Centralised or hybrid analytics autonomous
Elastic: edge + cloud
Scalability bottleneck Limited by bandwidth Limited by HPC clusters capacity orchestration
Holistic optimisation of
Sustainability impact Environmental monitoring Isolated optimisations environmental, social and

economic KPIs

Table 3 - Comparative summary of IoT, Al and AloT

Source: Author's personal elaboration

Moreover, traceability is transformed into cognitive transparency:

L Each package, loading bay or vehicle becomes a node capable of contextualizing
information (position, temperature, delivery priority) and negotiating resources
with the rest of the network;

II. Shared ontological models allow heterogeneous devices to understand each other

without centralized semantic brokers (Nozari et al., 2022);

100



III.  Previously invisible KPIs (such as real-time carbon footprint or packaging reuse
cycles) become measurable again and have a retroactive effect on planning
objectives (Bloss, 2016).
There is no shortage of critical issues:

L The increase in the attack surface requires zero-trust architectures and secure

firmware right from the silicon;

1I. The coexistence of 5G, Wi-Fi 6/7 and mesh networks must be orchestrated to

balance computing power and energy consumption;

II.  The lack of skills requires the training of hybrid figures, AloT engineers.
However, once these issues have been addressed, the convergence between distributed
perception and Al provides a logistics capable of learning, deciding and acting almost at the
speed with which demand, environment and markets change.

In this context, the convergence between the IoT and Al allows to go beyond the simple
automation of single processes to build a real smart warehouse, in which physical resources
and computational resources operate as a single and self-adaptive system. An example of a

smart warehouse architecture is shown in figure 49.
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Figure 49 - Smart Warehouse Example
Source: Min, H. (2023). Smart warehousing as a wave of the future (Figure 1, p. 3). Logistics, 7(2), Article 30. MDPI.

At the core of this architecture is the Cyber-Physical System (CPS), which integrates sensors,
computing capacity and network to enable autonomous decisions based on information
collected from connected objects. Sensors, capable of emulating pressures, temperatures,

vibrations and other “human sensory modalities”, allow to detect infrastructural anomalies and
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to start predictive maintenance before failures or bottlenecks occur. The generated data are
processed locally or sent to on-demand cloud computing services, which guarantee scalability
and continuous software updates without downtime (Min, 2022a; Min, 2022b). Thanks to the
connectivity inherent to the IoT information flows propagate at low latency between supply
chain partners, improving synchronization and paving the way for extended machine-to-
machine collaboration (Faulds & Raju, 2019). The operational heart of the intelligent
warehouse is represented by an automated control platform composed of two complementary
modules: the automated inventory control, which automates cycle counting, traceability and
dynamic allocation of items by supporting AS/RS systems, and the automated picking control,
which reduces costs and picking errors (traditionally the most expensive phase of warehouse
activities) through voice or pick-to-light tools. Downstream, the Warehouse Management
System (WMS) consolidates all information in a single interface, offering end-to-end visibility
on flows and accelerating order processing. On the physical level, handling is managed by
cobots that can safely collaborate with operators and by AGVs that follow digital paths,
increasing accuracy and productivity without compromising flexibility. From the point of view
of value drivers, the literature identifies five main levers: internal IoT sensors that provide real-
time data, CPS integration that enhances M2M connectivity, edge computing that ensures
operational continuity even in remote sites, Al-based “servitization” strategies to customize
flows, and intelligent automation capable of autonomously diagnosing and correcting process
inefficiencies. These elements produce concrete benefits: reduction of inventory thanks to
greater visibility, prompt identification of bottlenecks and therefore shorter response time to
customers; increase in labor productivity through human-robot cooperation and seasonal peak-
shaving; higher return on assets for full use of equipment; better quality of service thanks to
continuous monitoring of performance and operating conditions (Min, 2023).

This conceptual framework prepares the ground for the analysis of the main application fields
in which the emerging properties of AloT find their most concrete manifestation: Digital Twins

and AloT-driven robotics.

4.1.1 Digital Twins in Logistics

In light of the power that comes from the integration between loT and Al, it is almost inevitable
to introduce the concept of Digital Twin (DT), as it represents one of the most advanced and
concrete expressions of this technological integration. DTs, in fact, represent a perfect meeting
point between the pervasive acquisition of data enabled by loT and the analytical and predictive

capabilities of Al. A definition that captures well this convergence is offered by Negri,
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Fumagalli and Macchi (2017) who describe the DT as “a form of cyber-physical device that
uses numerous loT sensors and produces a high-fidelity visual image of a physical asset. The
abundance of data obtained by the Digital Twins is then aggregated and analyzed using
machine learning algorithms to promote strategic and organizational decision-making”.
Another relevant definition is the one proposed by IBM (2022): “A4 digital twin is a virtual
representation of an object or system that spans its lifecycle, is updated from real-time data,
and uses simulation, machine learning, and reasoning to help decision-making”.

DTs are based on a structure divided into three fundamental levels, each of which plays a
crucial role in ensuring the effective functioning and fidelity of the virtual model compared to
the physical counterpart. The first level is the physical level, which includes all the real
information relating to the object or system represented. In this level, concrete data, operational
decisions, actions performed and any other element that characterizes the behavior and state of
the physical entity are collected. It is in this phase that reality is recorded as it is, laying the
foundations for an accurate and updated digital reproduction over time. The second level is
represented by the communication level, which has the task of ensuring that the information
collected in the physical world is transmitted, translated and made usable in the digital domain.
In this dimension, data transmission tools are placed, such as IoT networks, communication
protocols, information encoding and decoding systems. Through these tools, real data is
converted into machine-readable formats and, at the same time, the results processed in the
digital model can be converted back into operational actions to be implemented in the physical
system. Here quality and efficiency are essential to ensure synchrony and coherence between
the DT and the reality it represents. The third component is the digital layer, which combines
the simulation and computation techniques required to interpret the data provided, conduct
analysis and develop projections. The core of the DT’s intelligence is represented by this layer,
as it enables not only the replication of the physical object’s behaviour but also the prediction
of its future evolutions (Far & Rad, 2022; Lv, Qiao, Li, Yuan and Wang, 2022; Zheng, Lu and
Kiritsis, 2022). Figure 50 illustrates a conceptual model of how DTs interact with logistics and

supply chain systems across these three layers.
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Figure 50 - Conceptual model of Digital Twin integration in logistics and supply chain systems

Source: Le, T. V., & Fan, R. (2024). Digital twins for logistics and supply chain systems: Literature review, conceptual
framework, research potential, and practical challenges (Figure 6, p. 9). Computers & Industrial Engineering, 187, 109768.

The key features of DTs are:

1. Accurate mapping: DTs create a direct link between physical objects and their digital
counterparts, synchronising real-time and historical data for accurate representation

2. Real-time synchronization: Unlike traditional simulations, DTs are constantly updated
with real-time data from physical objects.

3. Networked and Distributed Modeling: They can represent multiple physical entities
across networks, including sensors, [oT devices and larger systems.

4. Intelligence: They use Al algorithms to be able to analyse and process large amounts of
data, thus optimising, predicting and supporting decision-making for physical systems.

5. Bidirectionality: DTs exchange real-time data with their corresponding physical objects,
providing feedback and optimisation.

The high complexity that characterizes DTs is largely compensated by the tangible advantages

that this technology makes possible. Thanks to a DT, it is in fact possible to supervise and

manage physical assets remotely, optimizing their use, reducing operating costs and automating

repetitive tasks subject to human error. In this way, resources — economic and personnel — are

freed up to be reallocated to activities with higher added value (Blomkvist & Ullemar

Loenbom, 2020). Pioneers who have implemented DTs in real contexts report substantial

benefits in three key areas:

e Higher quality of decisions, thanks to more complete and reliable data;

e Streamlining of daily processes, made possible by the real-time integration between the

physical and digital worlds;
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¢ Opening up to new business models, such as servitization or product-as-a-service formulas,

which were previously difficult to implement (Blomkvist & Ullemar Loenbom, 2020;

Uhlemann et al., 2017).
On an analytical level, a DT is able to collect information that eludes traditional methods. This
data, processed with advanced algorithms, feeds recommendations aimed at improving the
performance not only of the current asset, but also of its future design evolutions. The
descriptive value is expressed instead in the possibility of remotely viewing and monitoring
physical assets. For example this is very useful for visualizing the status of an asset in
dangerous or difficult-to-reach environments, such as offshore construction sites or remote
plants. This allows continuous monitoring even during extraordinary missions like long-range
transport (Blomkvist & Ullemar Loenbom, 2020). The predictive value emerges when
historical and operating data are analyzed in large volumes: DTs not only estimate the future
status of an asset, but proactively suggest corrective interventions or optimization opportunities
(Uhlemann et al., 2017). Looking ahead, this capability will fuel increasingly autonomous
systems, capable of making design and production decisions with a positive impact for both
internal staff and external stakeholders. Finally, the diagnostic value allows to quickly trace
the causes of an anomaly: the intersection of real-time data and historical series, analyzed with
machine learning techniques, facilitates the early diagnosis of malfunctions and the planning
of targeted interventions (Blomkvist & Ullemar Loenbom, 2020; Uhlemann et al., 2017).
Although DTs are not yet widespread in the logistics sector, many enabling technologies are
already mature (see Figure 51). In recent years, for example, the widespread adoption of
sensors has significantly increased the availability of real-time data, an essential prerequisite
for the future evolution of DTs (HaBe et al., 2019). In parallel, the sector has started a
progressive process of modernizing its digital infrastructures. In fact, there is a growing
adoption of open Application Programming Interfaces !° (APIs) strategies, which facilitate the
interoperability between different information systems and improve the exchange of data along
the entire value chain (Blomkvist & Ullemar Loenbom, 2020). In addition, many logistics
companies are migrating to cloud-based IT solutions, which lead to greater scalability and
flexibility. Another crucial element regards the adoption of machine learning techniques and
advanced data analysis, increasingly used by logistics companies to optimize their supply

chains and improve operational efficiency. Predictive data processing can, for example, help

10 APIs are building blocks designed to be reused by developers (eliminating the need to redo the programming from scratch)
that enable interaction between applications such as databases, networks, and IoT devices.
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anticipate bottlenecks, reduce equipment downtime and improve inventory management, all of

which are perfectly compatible with future DT integration (Camerer, 2018).
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Figure 51 - Technologies behind Digital Twins

Source: DHL Trend Research. (2019). Digital twins in logistics: A DHL perspective on the impact of digital twins on the
logistics industry (Figure 4, p. 7). DHL Customer Solutions & Innovation.

Finally, other technologies that can contribute to enriching the information assets needed to
build accurate and dynamic DTs are augmented reality, mixed reality, and virtual reality, for
which there is currently a growing interest in logistics processes. While IoT, cloud computing,
APIs, and Al provide the fundamental sensing and processing infrastructure required to
construct a DT, immersive technologies (augmented, mixed, and virtual reality) are used for
visualisation, either on a screen (2D) or in a physical space (3D), to make DTs real for users
(Yang, 2019; Omollo, 2019). In essence, although the large-scale use of DTs in logistics is still
in its early stages, the necessary technological infrastructure is already at an advanced stage of
development, paving the way for the full integration into industry operating models in the
coming years (DHL Trend Research, 2019). In order to provide a comprehensive overview of
their application, an analysis will now follow on how DTs manifest themselves and bring value
in several crucial areas of logistics, including:

e warehouse management

e transport operations

e across the entire supply chain

Digital Twins in the warehouse management
Warehouses and distribution centers are ideal environments to implement DTs, due to the

complexity of their structure and the high-intensity of the operations. The application of a DT
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allows to realistically simulate the movement of products, personnel and equipment within the
facility. By creating a virtual 3D model of the plant and integrating it with data from IoT-
connected warehouse platforms, in addition to inventory and operations data, it is possible to
reproduce the facility’s daily operations (DHL Trend Research, 2019). Looking at Figure 52,
the left side illustrates a DT of a warehouse, while, the right side shows a heat map generated

through the DT which highlights the areas of high worker and forklift intensity.
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Source: DHL Trend Research. (2019). Digital twins in logistics: A DHL perspective on the impact of digital twins on the
logistics industry (Figure 21, p. 23). DHL Customer Solutions & Innovation.

This approach brings several benefits: greater visibility into processes, more effective planning,
better use of space, more efficient management of operations and a reduction in energy
consumption and waste. In this sense, as already mentioned, DTs are proving to be extremely
effective tools for implementing predictive maintenance strategies. In an industrial context
where the costs due to unplanned downtime are particularly high, the ability to monitor the
status of assets in real time is essential. For instance, companies like Kraft Heinz, in
collaboration with Microsoft, have created DTs of their production sites with the aim of
reducing mechanical stops. Similarly, major logistics operators are developing digital replicas
of specific assets such as robots, forklifts and trucks, monitoring their wear and tear to prevent
failures. The adoption of DTs for predictive maintenance allows logistics service providers to
reduce up to 40% of reactive maintenance activities in a year, increasing productivity and
reducing costs (DHL, 2024). In spite of this, the potential of DTs is not limited to simple
monitoring: they can also have a significant impact on the design, management and
optimization of logistics facilities. During the design phase, DTs can support the definition of
the layout of new facilities, allowing companies to simulate the flows of goods, people and
handling equipment, thus optimising the spatial configuration according to specific operational

needs. During daily operations, DTs are continuously updated thanks to data collected by
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automation systems that are becoming increasingly widespread in modern warehouses. These
tools include inventory counting systems using drones, automated guided vehicles (AGVs),
goods-to-person systems for automated picking and automatic storage and retrieval equipment.
The interaction between DTs and these automated systems enables further optimisation of
operational performance (DHL Trend Research, 2019). Additionally, having detailed, 3D data
across the entire plant offers significant opportunities to improve workers’ productivity:
companies can develop virtual reality training tools that provide a safe, immersive environment
for learning operations, or introduce augmented reality picking systems based on wearable
devices. However, the ability of DTs to drive continuous improvement may be the most
convincing reasonto use them. Thanks to the systematic data collection, identifying
inefficiencies and waste in warehouse operations becomes very easy and before introducing
operational changes, managers can exploit simulation through the DTs to assess the potential
impact of the change (DHL Trend Research, 2019). Simulation is now one of the most effective
tools for the analysis and design of complex logistics systems. It allows testing the behavior of
the value chain in relation to multiple variables: throughput, costs, delivery reliability,
variability and risks. The main advantage lies in the possibility of evaluating future scenarios
and design options without having to intervene on the real physical system, thus avoiding
operational discontinuities or errors that are difficult to reverse. In particular, the use of
simulation models is crucial when dealing with large organizations, for which structural or
strategic changes imply high complexity and multiple interdependencies (Tannock et al.,
2007). Traditionally, the construction and application of simulation models follow discrete
approaches (discrete-event simulation), characterized by an iterative process, articulated in
multiple phases. However, in recent years, scientific literature has begun to pay increasing
attention to the automation of modeling processes, through the use of integrated and data-
driven models. In these approaches, the information describing the characteristics of the model
is stored in a structured way, often in relational databases such as SQL, or conveyed via XML
schemas, to be used directly by simulation software. When the necessary data comes from
existing sources, such as company ERP systems, the degree of automation increases further.
Information such as bills of materials (BOM), production capacities, processing times and
details relating to customers and suppliers can be extracted automatically, validating and
updating the simulation model in real time (Krenczyk & Bocewicz, 2015). Data-driven
modelling and simulation thus take on the role of decision-making tools, capable of supporting
the redesign of the supply chain according to real operating conditions. Data can be stored

locally or shared through collaborative portals (“collaboration hubs”), which encourage
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interaction between the different partners of an extended network. Through these systems, ERP
data are converted into formats compatible with simulation software, contributing to the
automatic creation of models. However, it is still necessary to provide for a continuous data
validation phase, in order to guarantee the reliability and consistency of the simulations
(Cozmiuc & Petrisor, 2018). From an operational point of view, there are two main
methodologies for building simulations: modular and data-driven. Modular simulations are
based on reusable templates, which represent generic elements of the system (e.g. a production
line, a warehouse, a loading point), managed through user-friendly graphical interfaces. Recent
studies have explored the integration of parameters related to reverse logistics and lean
manufacturing, in order to further specialize these models (Abideen et al., 2021).

The models that underpin data-driven simulations are completely parameterised and fed by
data that production departments gather on a daily basis, such as through MES (Manufacturing
Execution Systems) systems. The analysis of historical series allows to accurately estimate
process times, decision probabilities and variability of results, so as to build models in an
almost automatic way thanks to modular software components, programmable in SQL or
Python and easily reusable in different contexts (Goodall et al., 2019; Abideen et al., 2020).
Based on a solid literature review, some authors propose a framework that integrates real-time
data flows in the creation of digital twins: these twins reproduce the plant as it operates,
continuously updating themselves and maintaining a satisfactory level of accuracy (Rozanec
et al., 2021). In practice, the digital model does not limit itself to replicating the failures or
anomalies that may occur, but also incorporates the countermeasures adopted by human
operators. The observed behavior is recorded and becomes raw material for training machine
learning algorithms, to create a reinforced learning environment capable of proposing
increasingly effective decisions. Consequently, the digital twin evolves from a descriptive or
predictive tool to a prescriptive system: not only does it show “what is happening” or “what
could happen”, but it also suggests “what is best to do”, transforming operational choices from
reactive to proactive and opening up particularly promising prospects for logistics and for all
activities that depend on complex, dynamic and interconnected processes.

Digital twin in transport operations

In the field of logistics transport, DTs are built on the basis of continuous data collection made
possible by an extensive network of sensors installed on vehicles that monitor fundamental
variables (e.g. GPS position, acceleration, angular velocity, battery state of charge,
environmental conditions, component wear and specific operating parameters). When this data

is fed into a virtual model that is updated in real time, it is possible to reproduce the behavior
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of the vehicle in a simulated environment with high precision. A prominent example is that of
Li and Wang (2025), who created a platform to monitor, predict, and improve the operation of
autonomous vehicles used for the movement of goods.

The first step was to equip the real vehicles with a dense network of sensors — positioned on
the chassis, guidance systems and load units — capable of providing a detailed picture of the
operating conditions in real time. Based on the data collected, the authors divided the mission
cycle into four macro-states, each representing a specific moment in the logistics process:

e Waiting: the vehicle is stationary, for example queuing for loading or awaiting instructions;
e Loading: the vehicle is loading or unloading goods;

e Slowing: the vehicle slows down due to obstacles, traffic or particular operating conditions;
e Driving: the vehicle is moving towards the destination following a planned route.

To collect data useful for building the predictive model, the researchers had real vehicles run
numerous cycles of transport missions in a test environment.

During each mission, the vehicle acceleration was continuously detected along the three
Cartesian axes (X, Y, Z) and used to recognize and classify the four operational states identified
by Li and Wang (2025). The signals thus collected fed a LSTM (Long Short-Term Memory)
neural network model, particularly suitable for analyzing time series because it “memorizes”
the past evolution and improves the prediction of future behavior. To ensure the robustness of
the model, the authors applied cross-validation on data samples not seen in training and
carefully optimized the hyperparameters, reducing the risk of overfitting and favoring the
generalization capacity. After nine iterative cycles the network achieved an accuracy of 100%
in correctly identifying the four behavioral states and a Weighted Efficiency (WE) index also
equal to 100%. The result demonstrates how the integration between digital twins and advanced
deep learning, if rigorously designed, constitutes a very powerful tool for the predictive
management of autonomous fleets and for logistics optimization. On the operational level, a
DT allows to estimate in advance travel times, operating conditions and anomalous behaviors,
improving in real time the planning of routes, the assignment of loads and the use of resources.
It also offers the possibility of exploring “what-if” scenarios without taking risks (Mohamed et
al., 2017). A significant example is the work of Martinez-Gutiérrez et al. (2021), who simulated
and managed the behavior of autonomous vehicles (AGVs) in real industrial contexts by

modeling both the vehicles and the surrounding environment (walls, barriers and surfaces) with
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the ROS (Robot Operating System) !! framework and the Gazebo'? simulator, obtaining
extremely realistic reproductions validated on a physical AGV equipped with advanced sensors
both in a small laboratory and in a larger production area. In parallel, a complete DT of the
vehicle and the surrounding environment was built, simulated in Gazebo, in order to faithfully
replicate physical reality. Six distinct missions were planned for each scenario, in which the
AGYV had to move between predefined points representing workstations, following specific
routes and completing movement sequences. To confirm the simulation’s accuracy, the actual
execution time for each mission was measured and compared to the one projected by the DT.
The data showed a correspondence of over 97%, with peaks of 98.82% in the second scenario,
demonstrating that the virtual model is able to reproduce with high precision the behaviors of
the AGV in different operating environments.

Furthermore, DTs enable the coordinated management of multiple autonomous vehicles. In
practice, virtual models of different AGVs can be connected, thus allowing their movements
to be synchronized within the facility. This leads to an optimization of lane usage, the
elimination of the risk of collisions and more efficient traffic management. Such multi-vehicle
coordination would be very difficult to manage manually, which is why the adoption of
interconnected DTs is crucial in this respect (Martinez-Gutiérrez et al., 2021).

In terms of information management, integrating DTs with Manufacturing Execution Systems
(MES) creates a direct connection between operational data collected from vehicles and
production management systems, thus obtaining an integrated view of the material flow. AS a
consequence, this helps to optimize the synchronization between transport and production
processes and improve the traceability of shipments in real time (Negri et al., 2020).
Furthermore, the contribution of DTs in the areas of operational safety and environmental
sustainability is also significant. Thanks to continuous monitoring of vehicles, simulation of
routes and early identification of anomalies, it is possible to reduce the risk of accidents, energy
consumption and CO2 emissions. This protects not only the vehicles and goods, but above all
the personnel involved, making the entire supply chain more efficient and in line with the

environmental objectives of Industry 5.0 (Xu, Xu, & Li, 2018).

I ROS is an open-source framework for robotics software development. It provides tools, libraries, and conventions for
creating complex programs in a modular and scalable way.

12 Gazebo is an open-source simulator that allows you to create realistic 3D environments to test robots and autonomous
systems, replicating physical dynamics, sensors and interactions with the environment.
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Digital twin across the supply chain

DTs applied to supply chains represent one of the most promising innovations in the field of
contemporary logistics. They allow the entire flow of goods, from source to final destination,
to be digitally modelled, integrating transport systems, information systems, order management
and, last but not least, human intervention. If we consider that warehouses and distribution
centres represent only a small part of the global logistics infrastructure, it is clear that the
success of a system depends on the effective synchronization of ships, trucks, planes, IT
systems and human interactions. This systemic dimension is clearly evident in large logistics
hubs, such as cargo airports and container ports, where the multiplicity of actors involved
makes operational efficiency particularly complex. Such structures often suffer from poor
integration between information exchange systems, with offline processes that increase the risk
of errors, delays and inefficiencies (DHL Trend Research, 2019). A concrete example is the
project currently underway in Singapore, where the Maritime and Port Authority (MPA), in
collaboration with the National University of Singapore (NUS), launched the first Maritime
Digital Twin of the Port of Singapore on 24 March 2025. At the beginning, the scientific
leadership of the project was entrusted to Professor Lee Loo Hay, who highlighted how the
maturation of the technology is now made possible by the convergence of several factors:
simulation-based optimization, Industry 4.0 technologies, and the [oT, which in recent years
have found new impetus thanks to Al and its predictive capabilities. The ultimate ambition in
the field of logistics would be the creation of a DT of the entire network, capable of including

not only logistics resources, but also geophysical and infrastructural elements such as oceans,
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railways, highways, urban streets and, ideally, even final destinations represented by homes,

offices and industrial plants.

Digital twins in logistics n logistics, the ultimate
digital twin would be a model of an
entire supply chain network ,,

Figure 53 - A visionary example of the elements involved in a digital twin of an entire supply chain network
Source: DHL Trend Research. (2019). Digital twins in logistics: A DHL perspective on the impact of digital twins on the
logistics industry (Figure 23, p. 24). DHL Customer Solutions & Innovation.

Although such a model remains for the moment more of a vision than a concretely realizable
reality, it is essential to understand the evolutionary directions of the technology to fully grasp
its transformative potential. Within this context, one of the most relevant areas that benefits
from the introduction of DTs is supply chain visibility. Visibility is not only a matter of sharing
information, but a real strategic outcome of well-coordinated organizational practices,
involving people, processes and technologies. The ability to obtain, share and process in real
time reliable and updated information on the internal and external supply chain improves
planning, forecasting, coordination and implementation of orders (Lohmer et al., 2020).

Busse et al. (2017) show that digital twins can enhance four pillars of corporate visibility:
sensing, learning, coordination, and integration. Perception-based visibility concerns the ability
of the company to quickly and accurately obtain information on internal processes and the
external environment. In this field, DT is crucial: a widespread network of intelligent sensors
distributed along the logistics chain generates unprecedented data flows and, thanks to real-
time synchronization, interprets operational variations and promptly triggers reports to
management. This allows to promptly adjust supplies to actual demand, refine order planning,

and identify potential bottlenecks in the packaging and shipping phases in advance (Srinivasan
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& Swink, 2018; Fan et al., 2020). The second dimension, visibility through learning, concerns
the acquisition and absorption of knowledge from internal and external sources. DTs, thanks
to the ability to accumulate experiences, codify knowledge and articulate it in a shareable form,
can act as continuous learning platforms. They offer opportunities to better understand the
behaviour of suppliers, logistics carriers, and even critical phases of the product life cycle
revealing gaps or inefficiencies that would otherwise be invisible (Xu et al., 2019; Elmo &
Stead, 2020; Wang & Luo, 2021). Coordination-oriented visibility concerns the ability to
efficiently orchestrate supply chain activities, promoting operational alignment between the
various partners. In this context, digital twins become key decision-making tools: they allow
for the advance estimation of needs, testing alternative logistics routes, and discovering latent
vulnerabilities in current models. Their use therefore allows for the precise measurement of the
benefits of any reconfigurations and for the prevention of risks, strengthening the decision-
making readiness of the organization (Barricelli et al., 2020; Park, Son & Noh, 2020). Finally,
integration-oriented visibility focuses on the company's ability to accommodate and harmonize
new technologies and management methodologies, a process that digital twins facilitate by
acting as a bridge between heterogeneous systems and accelerating the adoption of innovative
solutions along the entire logistics network. The introduction of DTs favours the creation of a
shared identity within the supply chain, enabling an alignment mindset between actors and
processes. They enable in-depth analysis of vital processes, promoting transparency and
sharing of critical information. However, to achieve these results, it is necessary to ensure data
accuracy and minimize human errors, as well as strictly monitor access to information, to avoid
the unauthorized dissemination of sensitive data (Shahat et al., 2021, Guo et al., 2020).

Indeed, although DTs represent one of the most promising technologies for the digital
transformation of supply chains, their large-scale implementation is far from being without
difficulties. While on the one hand they enable unprecedented visibility, traceability and
predictive capabilities, on the other hand they pose numerous technical, organizational and
economic challenges. It is therefore essential to understand in detail the main barriers that
hinder their effective adoption, in order to address the required transformations in a strategic
and conscious way. One of the first critical issues lies in the need for training and cultural
change within organizations. Like any profound technological transformation, the introduction
of DTs requires workers to acquire new skills, not only technical, but also managerial. The
problem, however, does not only concern training, but a broader change in mentality and
operating practices. This includes fully comprehending the causes and motives for the change.

To fully exploit the advantages offered by DTs, it is necessary to redefine organizational
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models, decision-making processes and internal communication structures. The success of the
transformation therefore depends on the company’s ability to effectively manage change
management, inspiring its employees and ensuring a consistent and motivated transfer of
knowledge (Uhlemann et al., 2017). A second obstacle is linked to the accurate representation
of the physical system. Developing a DT that is a faithful and functional replica of the real
asset is particularly complex, especially in contexts in which the objects or processes to be
modeled are highly complex and subject to numerous variables (Modoni et al., 2019). In many
projects, technological and, above all, budget limitations require reducing the complexity of
the digital twin, with the risk of sacrificing part of the accuracy or functionality. The real
objective therefore becomes balancing the desired level of detail with the economic and
operational sustainability of the initiative (Blomkvist & Ullemar Loenbom, 2020). This
challenge is accompanied by the closely related challenge of data quality: a DT in fact relies
on continuous flows of data from distributed IoT networks, but severe operating conditions,
network latencies or unstable communications can generate incomplete, inconsistent or even
incorrect data. It is therefore essential to have reliable mechanisms for filtering, validating and
correcting data, in order to ensure that the digital twin can formulate reliable representations
and predictions (Uhlemann et al., 2017). A further significant limitation is represented by
implementation costs. Starting a digital twin platform requires a significant initial investment,
including software development, sensors, infrastructure for data collection and management,
as well as integration with systems already in use. If not carefully monitored, these expenses
can grow rapidly (Kritzinger et al., 2018). A rigorous cost-benefit analysis is therefore required:
in many cases, it is preferable to start with a “lean” DT, focused on a few strategic parameters,
rather than immediately aiming for a complete replication. From the early stages, it is also
necessary to carefully define which data to acquire, to reduce development and operating costs
in the long term. Another issue concerns the protection of intellectual property: the
effectiveness of a DT depends on the exchange of information between supply chain partners,
but when the data touches distinctive skills or critical processes, issues of ownership, security
and access control inevitably arise. Robust procedures for managing digital identity and usage
rights that balance operational transparency and confidentiality are therefore needed (Modoni
et al., 2019). Related to this is the issue of cybersecurity: digital twins, custodians of detailed
and sensitive information, are potential targets of cyber attacks and require protected
architectures, constant monitoring and adequate mitigation plans. A compromised DT not only
risks exposing confidential data, but could also generate damaging consequences on an

operational level, especially if connected in real time with physical assets. The protection of
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data and digital infrastructures, therefore, cannot be considered an accessory aspect, but must
be designed as a central element of the system architecture (Blomkvist et al., 2020).
Furthermore, the issue of interoperability deserves particular attention. Many companies,
especially small and medium-sized ones, do not have the necessary skills to develop advanced
DTs internally and are therefore forced to turn to external suppliers (Uhlemann et al., 2017).
This can lead to a strong dependence on technology vendors, with future difficulties in
replacing or updating the solutions adopted. The lack of universal standards for modelling and
data exchange exacerbates the problem by limiting scalability and integration across systems

(Blomkvist & Ullemar Loenbom, 2020).

In a nutshell the use of DTs in supply chains has significant potential benefits, but it also brings
an array of structural barriers that should not be overlooked. Companies interested in taking
this route must not only invest in technology, but also have clear strategies for change
management, security, data governance, and employee training. The full potential of DTs can

be realised only by addressing these difficulties in a systematic way.

4.1.2  AloT-driven Robotics

Another area that is experiencing unprecedented acceleration thanks to the integration of IoT
and Al is robotics. Although the importance of Al in the robotics has already been covered in
Chapter 2, the analysis proposed there has been intentionally kept on a general level. This is
because, in the current technological scenario, robotics can no longer be considered in isolation
as mere intelligent automation: today, it is increasingly configured as a connected ecosystem,
in which IoT plays a structural and essential role. The integration between Al and IoT therefore
does not represent a simple functional enrichment, but constitutes the very foundation of the
new generation of robotic systems used in the logistics sector. In fact, modern logistics robots
are no longer limited to “moving” or “manipulating” objects, but, thanks to this combination,
act as real intelligent agents within the supply chain. IoT allows them to perceive the
environment and maintain a constant connection with other devices, systems and digital
infrastructures. Al, on the other hand, allows robots to understand and interpret data on their
own, create predictive models, optimize paths, recognize objects and situations, and adapt their
actions accordingly (Grover & Ashraf, 2023; Dabic-Miletic, 2024). This phenomenon, called
“cognitive and connected robotics”, manifests itself in different solutions, each of which

combines Al and IoT in a particular way.
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In warehouse operations, robots are mostly employed in order processing, inventory
management, picking and dispatch operations. Starting from order processing, which is the first
crucial stage in warehouse operations, robots support activities such as checking the
correspondence between orders and invoices, verifying quantities, and picking items from
shelves for the subsequent packing phase. Sensors, cameras, and machine learning algorithms
allow them to move autonomously between the aisles, identify items, and handle them with
precision. Regarding the inventory management, robotics has established itself as an effective
response to the growing need to optimize spaces and reduce goods handling times. Internal
material transportation is typically handled using mobile robots such as Automated Guided
Vehicles (AGVs) and Autonomous Mobile Robots (AMRs). However, there are also more
complex systems such as automated storage and retrieval systems (AS/RS), which enable
complete automation of item storage and retrieval operations.

Finally, in the field of pickup and dispatch operations, robots help speed up and make the
process of picking and shipping items more reliable: being able to quickly identify items on
the shelves, they can pick them accurately and, in some cases, also take care of packing and
preparing them for shipping. Robotic sorting systems also organize items based on criteria like
the final destination or size, improving speed and accuracy in the dispatch phase (Sainath,
2025). In all these areas, the use of Al- and IoT-supported robots brings numerous benefits:
increased operational efficiency, reduced labor costs, greater accuracy in order management
and the possibility of operating 24 hours a day. In order to have safe and efficient operations,
however, the implementation of these solutions requires careful planning, integration with pre-

existing information systems, and frequent monitoring.

The analysis will focus on the following types of robots:
e Automated Guided Vehicles (AGVs)

e Autonomous Mobile Robots (AMRSs)

e Automated Storage and Retrieval Systems (AS/RS)
e Robotic Arms

e (Collaborative Robots (Cobots)

e Drones
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Automated Guided Vehicles (AGVs)

When talking about robotics applied to logistics, the first example that comes to mind is AGV
(Automated Guided Vehicle), autonomous vehicles that are now at home in warehouses and
factories but are far from “mature technology”: they continue to evolve in step with sensors,
artificial intelligence and increasingly refined navigation techniques. AGVs move without a
driver thanks to a mix of lasers, cameras, lidars, magnetic tape or floor markers and, above all,
control software that decides trajectories and maneuvers in real time (Sodiya et al., 2024). Their
history goes back a long way: the first prototypes, little more than towed carts that followed an
underground wire, were developed by Barrett Electronics in the mid-1950s (Dhaliwal, 2023).
Since then, technology has made great strides: we have gone from invisible UV markers to
laser navigation and, today, to three-dimensional vision, capable of “reading” the environment
with great accuracy (DHL, 2024). In the meantime, more compact and cost-effective models,
Automated Guided Carts or SmartCarts'?, have emerged, which extend the range of action of
AGVs in small and medium-sized companies. A crucial question is how to assign transport
missions. The classic “first come, first served” (FIFO) only works in simple scenarios; in
dynamic plants, however, algorithms inspired by well-known problems such as the Traveling
Salesman Problem or the Vehicle Routing Problem reduce downtime, limit empty trips and
make internal logistics more fluid (Oliveira et al., 2025). Techniques such as insertion
algorithms!* or the sweep method!® have proven to be particularly effective when demand is
constantly changing or production priorities are overturned from one moment to the next. The
“new generation” of AGVs communicates in real time with Warehouse Management Systems
(WMS): it receives orders, sends feedback on the status of missions, coordinates its path with
that of other robots and, thanks to the incorporated AI modules, recalculates routes,
intervention times and task assignments in a few milliseconds, cutting waste and errors (Sodiya

et al., 2024). This qualitative leap has paved the way for AMRs (Autonomous Mobile Robots),

13 AGCs are a cheaper version of AGV, particularly suitable for small and medium-sized companies that manage small-scale
material handling. They are based on magnetic tapes for guidance, which is a simpler and faster technology to install than laser
systems. They are ideal for point-to-point transport of loads between picking stations or within production plants (Dhaliwal,
2023).

14 An insertion algorithm is a generic term for any procedure that aims to insert a new element into a data structure while
keeping its properties intact (order, balance, unique key constraints, etc.).

15 The sweep method is a technique that “slides” an imaginary line over the data: as the line advances, it maintains and updates
only the elements it touches, allowing you to solve geometry problems (such as finding intersections or closest pairs) in an

orderly and efficient way.
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direct heirs of AGVs, which add an extra dose of intelligence and freedom of movement,
confirming the centrality and continuous evolution of these systems in the future of logistics.
In highly dynamic environments, predictive algorithms help anticipate congestion, adjust
logistics priorities, or balance workloads across different operating units. Furthermore, AGVs
aren’t just used for moving goods horizontally: they also handle tasks like automatically
loading and unloading racks and managing company waste (Liu, Tsang, & Lee, 2024). A
significant application is the use of autonomous pallet movers in high-intensity warehouses, as
in DHL’s warehouse automation program, where fleets of high-capacity AGVs are used to
move pallets up to 11 meters high, performing double-stacking and heavy-load handling tasks
(DHL, 2024).

Another key area of development is the use of AGVs in yard logistics, that in other words is
the automated movement of materials even in outdoor and more challenging environments.
Research has shown that AGVs can operate beyond indoor warehouses by being connected to
advanced Fleet Management Systems (FMS), which help them adapt to changing conditions
like weather and infrastructure limits (Ritzinger et al., 2025). In these outdoor settings, planning
the best routes and managing potential conflicts between vehicles becomes even more
important. To tackle these challenges, algorithms like Large Neighborhood Search are used to
solve pickup and delivery tasks while taking into account time constraints caused by traffic or
weather. This approach has proven effective during industrial tests carried out in large logistics
hubs. These outdoor applications open new perspectives for the adoption of AGVs on a large
scale in supporting integrated and resilient supply chains. Another important aspect concerns
the contribution of AGVs to the optimization of space inside warehouses. Precise handling
makes it possible to reduce the safety spaces normally needed for manual maneuvers, which
means more goods can be stored without compromising safety (Liu, Tsang, & Lee, 2024). In
addition, using electric AGVs with regenerative braking systems and energy-saving features
helps lower environmental impact by cutting harmful emissions and improving air quality
inside warehouses (DHL, 2024).

Even though AGVs offer clear benefits, their adoption comes with some important challenges.
The upfront costs (including not only vehicles but also management systems, infrastructure
adaptation and staff training) can be quite high (Dabic-Miletic, 2024). In addition, integrating
AGVs with existing systems needs careful planning to avoid compatibility problems. One risk
that is often overlooked is technological dependency: software failures, cyberattacks, or
coordination errors can bring logistics operations to a halt, making it essential to have strong

backup strategies in place (Dabic-Miletic, 2024). Then there are operational limitations that are
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strictly linked to the very nature of AGVs: while they excel at repetitive and well-structured
tasks, they are less adaptable in contexts where flexibility or complex decision-making
capabilities are required. Furthermore, not all AGVs can handle specific loads or adapt easily
to existing logistics infrastructures, making hybrid solutions or ad hoc customizations

necessary.

Autonomous Mobile Robots (AMRs)

In recent years, the integration of Autonomous Mobile Robots (AMRs) in industrial logistics
has seen significant development, driven by the need of manufacturing companies to increase
productivity and efficiency, also in response to the pressures of globalization and the objectives
of digital and environmental sustainability (Raamets et al., 2024). The use of AMRs is no
longer limited to production, but it is increasingly expanding into the warehouse sector,
radically changing traditional intralogistics models. Unlike AGVs, which follow fixed routes
or tracks, AMRs can make decisions on their own and don't need fixed infrastructure to
navigate (Sodiya et al., 2024). AMRs have made a quantum leap: more sensitive sensors, more
powerful hardware, and smarter Al algorithms allow them to move around crowded
warehouses and work side by side with people in complete safety, relieving them of repetitive
and tiring movements (Keith & La, 2024). When these AMRs are integrated with an advanced
WMS and optimized route strategies, the result is a leaner workflow: the robots cut out
unnecessary movements — the so-called “motion waste” of Lean thinking — and leave operators
time to focus on higher value-added activities.

AMRs play a key role in building reconfigurable factories, a concept closely connected to the
shift toward Industry 5.0 and, in the future, Industry 6.0. These systems make it possible to
quickly reassign logistics resources, adjusting transport capacity and functions based on
changes in demand or production setup (Raamets et al., 2024). The difference between modern
AMRs and traditional AGVs lies in the the way they make decisions: unlike AGVs, AMRs do
not rely on a rigid centralized control but autonomously plan their tasks and routes. This feature
makes the whole system more elastic and reselience, able to promptly react to unforeseen
events like congested areas, machinery breakdowns or changes in priorities (Raamets et al.,
2024). In traditional structures, material handling involved large margins of inefficiency:
operators had to walk long distances, resulting in increased fatigue and reduced productivity.
The use of AMRs in collaboration with human personnel instead allows for a redistribution of

tasks, with robots taking care of transport, while operators focus on higher value-added
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activities, such as picking difficult-to-handle or particularly delicate objects (Keith & La,
2024).

From a technological perspective, AMRs are integrated with a heterogeneous set of sensors
(2D/3D cameras, accelerometers, gyroscopes and LiDAR), which, fused together through
sensor fusion techniques, allows allows robots to build detailed maps of the space and to
localize themselves precisely, moving autonomously within the warehouse (De Silva et al.,
2018). Navigation systems such as Simultaneous Localization and Mapping (SLAM) are now
a standard practice to allow AMRs to operate in unknown and changing environments
(Singandhupe & La, 2019). In parallel, advances in computational hardware have made edge
processing of navigation data and real-time fleet management possible (Keith & La, 2024).
Efficient management of AMRs cannot ignore a close integration with corporate information

systems, as shown in Figure 54.
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Figure 54 - General framework of the AMR data exchange

Source: Raamets, T., Majak, J., Karjust, K., Mahmood, K., & Hermaste, A. (2024). Autonomous mobile robots for
production logistics: A process optimization model modification (Figure 4, p. 138). Proceedings of the Estonian Academy of
Sciences, 73(2), 134-141.

The overall data exchange framework between AMRs and corporate ERP consists of three
main layers: the mobile robot control system, Al-based path optimization, and operational
status analysis. The ERP system supplies essential information like production planning and
maintenance schedules, while the robot sends back detailed data on loading and unloading

times, battery charging times, operating times, completed routes, and the number of missions
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carried out. This information feeds into system-level efficiency analysis algorithms, supporting
continuous performance optimization and better decision-making.

Energy efficiency has also benefited from technological evolution: modern lithium-ion
batteries allow AMRs to have significant operating autonomy and short charging times,
although questions remain about the environmental impact of disposing of such batteries (Keith
& La, 2024). Innovative charging systems, such as wireless power transfer and intelligent
charge cycle management, allow AMRs to maintain high operational availability, even during
multi-shift operations.

Moving around safely is a big challenge for AMRs. In dynamic contexts like warehouses, they
have to keep updating their paths to avoid collisions with moving obstacles like carts, other
robots, or people. To do this, different methods have been created: from simple ones like bug
algorithms and vector field histograms, to newer ones that use Al techniques like deep
reinforcement learning, genetic algorithms, and swarm intelligence. Furthermore, hierarchical
models can be integrated into the decision-making process of AMRs: at the top level, the
mission is established (which nodes should be visited), while at the bottom level, the optimal
path to perform the mission efficiently is calculated.

In the management of robotic fleets, there is an increasing shift from centralized control
architectures to decentralized solutions. The first approaches, while offering an overview that
allows global optimization, suffer from two obvious limitations: a single malfunction can
paralyze the entire system and, as the number of units grows, scalability becomes problematic.
In decentralized models, however, each robot takes part in the decision-making process,
distributing the computational load, increasing resilience to unexpected events and adapting
more quickly to changes in flow or operational priorities. This evolution is accompanied by the
issue of human-robot collaboration. AMRs do not aim to replace operators, but to work
alongside them, combining the precision and strength of the robot with the human ability to
manage exceptions and complex judgments. Examples such as the Collaborative Human-Robot
Order Picking System (CHR-OPS) demonstrate this: by integrating batching, sequencing and
routing algorithms, these systems reduce waiting times, redistribute workloads in real time and
raise the bar of overall efficiency, making the most of the skills of both actors. The physical
design of the warehouse also plays a decisive role: unconventional layout solutions, such as
the fishbone layout, allow to reduce the distances traveled by 10—15% compared to traditional
rectilinear layouts, further improving the performance of the AMR system. The design of
spaces must therefore take into account the specific modes of movement and interaction of the

robots, favoring configurations that minimize congestion and non-optimal paths. Despite
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significant progress, several areas remain open for future research. In particular, there is a need
to deepen the decentralized management of order scheduling, the dynamic definition of
intervention zones to avoid congestion, and the integration of human factors in human-robot
collaboration models, aspects that are still little explored in the literature (Keith & La, 2024).
Automated Storage and Retrieval Systems (AS/RS)

Automated Storage and Retrieval Systems (AS/RS) consist of a variety of computer-controlled
systems designed to automate the loading, positioning and retrieval of goods from specific
areas within a warehouse. This automation is particularly useful in contexts characterized by

high volume turnover or by stringent needs to optimize the available space.
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Figure 55 - Step-by-step operation of an automated storage and retrieval system (AS/RS)

Source: Adapted by the author from Automated Storage and Retrieval Systems - How it works [Video], RINAC Engineering
Evolution, (2021).

Through robotic processes, AS/RS allow to reduce management costs, improve warehouse
organization, increase storage density (thanks to narrower aisles and higher racks) without
requiring physical expansions, and significantly reduce labor costs (Turner, 2020). From the
point of view of the economic sustainability of warehouse management systems (WMS),
AS/RS play a key role, improving the accuracy of inventory control, reducing errors and
promoting a faster rotation of high-moving products (Tostani et al., 2020; Fragapane et al.,
2021). They are particularly suited to the management of sensitive items, such as refrigerated

products for the food and pharmaceutical sectors, which require rigorous storage conditions.
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The AS/RS system is composed of cranes and automatic shuttles that run along predefined
aisles and vertical levels to deposit or retrieve load units, drastically reducing order fulfillment
times and improving inventory control (Banur et al., 2024). A relevant contribution is that of
Manzini, Gamberi and Regattieri (2006), who propose a multi-parametric dynamic model,
supported by interactive visual simulations, to evaluate the effect of different design and
operational choices on performance. Through thousands of “what-if” scenarios, the authors
demonstrate that class-based storage policies based on the Cube-per-Order Index (COI) cut
picking times and boost productivity: the right balance between storage location assignment,
order batching and mission routing is crucial to shorten the distances traveled by the shuttles
and reduce the average lead time. The design of an AS/RS, they emphasize, must take into
account parameters such as available area, aisle layout, vehicle capacity and parceling strategy,
to be analyzed with Design of Experiments techniques: among the most influential drivers
emerge the COI curve and the shuttle load capacity. Although the initial investment is
substantial and requires careful engineering, the benefits in terms of efficiency, precision,
operational flexibility and sustainability make the AS/RS a pillar of future intelligent and

resilient supply chains.

Robotic Arms

Robotic arms, thanks to their ability to perform repetitive tasks with extreme precision and
speed, are today one of the most promising technologies for the transformation of logistics
activities. They are provided with multiple degrees of freedom and can be equipped with
different types of end-effectors (such as grippers, suction cups or magnets) that allow them to
manipulate products, packaging and loads of various kinds with great dexterity (Sodiya et al.,
2024). In more complex contexts, where the position of objects is not predetermined, robotic
arms combine sensors and artificial vision systems supported by Al thus allowing real-time
visual recognition and more intelligent manipulation of objects (Dhaliwal, 2021).

From a mechanical point of view, robotic arms are divided into four main categories:

I. Cartesian (or gantry) robots, which operate on three linear axes X-Y-Z;

II. Cylindrical arms, based on movements around a cylindrical axis;

II1. Spherical (or polar) arms, which allow complete rotation movements in space;

IV. SCARA robots, particularly suitable for pick-and-place operations on a plane (Dhaliwal,
2021).

This classification highlights the great variety of possible applications, from the simple

movement of items to the management of more complex tasks such as assembly. Recently, a
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specific trend called Stationary Robotics has developed, which includes all those robots, often
in the shape of an arm, that operate from a fixed position: anchored to floors, ceilings or other
structures (DHL, 2024). Fixed robotic arms applications fall into two main categories:
collaborative applications, which involve direct interaction with human operators and require
additional risk assessments, and industrial applications, which involve heavy loads, long
operating distances, and high speeds, typically taking place in segregated and protected areas.
With the continued development of machine learning and perception technologies, an ever-
increasing integration between mobile and fixed robotic systems is expected, which is
particularly useful in an environment marked by labor shortages and volatile demand.

Robotic arms are being increasingly used in logistics to automate several key processes,
including shipment sorting, picking and placing, palletizing and depalletizing. The process of
sorting shipments is a highly repetitive task, thus it is very easy for human operators to lose
focus and make mistakes. This makes it particularly suitable for automation through robotic
arms. They use cameras and Al to classify packages based on predefined characteristics. This
reduces errors and rework costs.

Regarding the picking and placing process, manually separating and arranging packages is a
tedious and labour-intensive activity. Robotic arms coupled with advanced vision systems can
automate the induction of items onto conveyor belts, enhancing throughput and decreasing
reliance on the labour market. Palletizing and depalletizing operations benefit greatly from the
use of robotic arms. While uniform pallet handling has already been extensively automated,
mixed pallet solutions, which require more sophisticated Al to handle loads of various shapes
and weights, are rapidly maturing and are projected to gain broad implementation in the coming
years.

Despite the benefits brought by the use of robotic arms related to increased productivity,
reduced errors and greater operational safety, they also have some limitations that should not
be ignored. In particular, they usually are designed to handle packages of specific shapes and
may have difficulties in handling certain kinds of items. Furthermore, performance achieved
in the laboratory is not always successfully replicated in real-world operating conditions, due
to the complexity of warehouse flows. Furthermore, even with an increasing level of
automation, human supervision will still be required to manage robotic applications, making
full automation without human intervention unlikely in the near future (DHL, 2024).
Collaborative Robots (Cobots)

A key element in the evolution of smart logistics is represented by cobots (collaborative

robots), robotic devices designed to work side by side with human operators in shared
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environments. Cobots are profoundly different from traditional industrial robots: while the
latter usually operate in segregated spaces and perform repetitive tasks autonomously, cobots
are designed for safe and direct interaction with humans, thanks to advanced sensor systems
and Al (Abdullayev et al., 2024). Unlike traditional industrial robots, cobots perceive the
environment, interpret it in fractions of a second and continuously adapt their behavior. The
credit goes to the set of force sensors, high-resolution cameras and machine learning algorithms
that, by processing the collected data in real time, allow the cobot to deviate when it encounters
an obstacle, dose the force on delicate materials and minimize the risk of collisions (Bagnoli et
al., 2022). However, this contextual intelligence would be sterile without an interface that is
truly accessible to those who use it: intuitive graphic dashboards and guided procedures allow
even operators without specialist skills to reconfigure the system in a few minutes, with almost
no impact on downtime. For small and medium-sized enterprises — which cannot count on
dedicated teams of engineers —this ease of use represents a decisive competitive advantage
(Abdullayev et al., 2024).

In the logistics sector, cobots find application in many processes, such as automatic picking,
package selection and warehouse management. They are able to move safely even in complex
and constantly evolving environments. From the point of view of safety, which is a
fundamental aspect in human-robot interaction (HRI), cobots adopt advanced strategies to
avoid or limit accidental contacts.

Computational vision systems, force-torque sensors and predictive algorithms allow to
anticipate and prevent accidental collisions. When contact is unavoidable, mitigation
techniques are applied to reduce the impact energy and protect the physical integrity of the
operator. In addition, the growing attention to ergonomics in the workplace has prompted the
development of cobots designed not only to increase productivity, but also to reduce
biomechanical load and cognitive stress on operators. Human-robot collaboration, in fact,
allows the transfer of physically more demanding or repetitive tasks to cobots, freeing up
human resources for tasks with higher added value (Patil, Vasu, & Srinadh, 2023). However,
the presence of cobots also implies new challenges in terms of cognitive safety, since the
unpredictability of some robotic movements can generate mental stress in operators. For this
reason, the design of cobot interfaces and behaviors must take into account not only physical
risks, but also psychological and social aspects of the interaction. An important distinction
among cobots is based on the ways in which they collaborate with humans. We can distinguish
independent cobots, which operate in parallel with operators on distinct tasks but in the same

environment; simultaneous, in which cobots and operators work simultaneously on the same
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activity without time dependence; sequential, where activities are organized in a temporal
manner (first the robot, then the human, or vice versa); and finally supportive, where the
completion of a given task requires synergistic cooperation between cobot and operator (Patil,

Vasu, & Srinadh, 2023).
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The potential of cobots in logistics is not limited to warehouse management: they can increase
efficiency in loading and unloading operations, optimize packing and picking processes,
manage just-in-time workflows, support predictive maintenance thanks to the collection and
analysis of [oT data and also collaborate in the creation of highly customized solutions for last-
mile deliveries. The challenges associated with the implementation of cobots undoubtedly
include the need to develop increasingly intuitive and reliable interaction systems, capable of
adjusting to complex and constantly evolving operational situations. At the same time, the
relationship of trust between operators and robots is of fundamental importance, and it is a
point on which much work needs to be done, also supported by the definition of clear regulatory
standards that guarantee the safety and effectiveness of collaboration. The integration of
technologies such as edge computing, distributed machine learning and Industrial IoT opens
up very promising prospects: the cobots of the future will be increasingly autonomous,
intelligent and safe, ready to contribute to the creation of collaborative and resilient work

environments, in line with the principles of Industry 5.0.
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Drones

Drones, also called unmanned aerial vehicles (UAVs), are vehicles that operate autonomously,
or under remote control of a human operator, without a pilot or crew on board. They were born
mainly for military purposes, but then progressively extended their scope of application to
multiple civil sectors, including: environmental monitoring, emergency management, logistical
support, aerial photography and, more recently, warehouse and distribution operations
(Barmpounakis et al., 2016). The turning point in the commercial adoption of drones occurred
in 2016, when Amazon announced its first UAV delivery to a customer in England, paving the
way for a new era of logistics in which rapid and autonomous transport of goods becomes a
concrete possibility. Technological advances played a key role in making drones effective and
versatile tools in this field. Among the most significant recent advances are the integration of
advanced sensors, autonomous navigation systems based on GPS, LiDAR, radar and computer
vision algorithms, as well as new generations of solid-state batteries and hydrogen fuel cells
that improve autonomy and flight times. Modern drones are able to navigate even in
environments with signal interference, processing data from multiple sensory sources in real
time thanks to sensor fusion techniques developed by companies such as Teledyne Geospatial
(DHL, 2024). The combined use of Al and ML algorithms turned drones into autonomous
platforms capable of not only “seeing” the environment, but also of interpreting it, recognizing
and avoiding obstacles without the need for human intervention. At the same time, the
emergence of new technologies is opening up new operational scenarios. One example is
swarm intelligence, which is based on decentralized and self-organizing networks in which
fleets of drones cooperate in a coordinated manner. In logistics, these devices find application
in four key areas: inventory management, intralogistics, deliveries, and inspection or
surveillance missions. In inventory control, drones overcome the limitations of manual
methods—slow, expensive, and sometimes risky—by performing audits, cycle counts, package
localization, and buffer management in drastically reduced times. Companik et al. (2018)
underline how drones are now able to perform inventory audits, cycle counts, item localization
and reserve stock management much faster than traditional methods, while Varmus and Bosko
(2022) estimate a barcode scanning speed up to 119 times higher than a human operator. A
concrete example is represented by the study by Culus et al. (2018), which analyzes the case
of the NHS terminal in the port of Antwerp, where the use of pre-programmed drones enabled
the automation of the inventory process of steel bars, increasing both the efficiency and the
precision of the operations. Among the most recent developments are the adoption of QR codes

for product identification (Cristiani et al., 2020; Ali et al., 2021) and the use of advanced
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computer vision techniques for barcode extraction, based on algorithms such as the Harris
Corner Detector!® and the Hough Transform!’. As demonstrated by Jhunjhunwala et al. (2019),
these approaches have achieved satisfactory results even in complex contexts such as large
warehouses. A further development concerns the integration of RFID scanners with UAV
systems, which has allowed obtaining good performances in automatic inventory detection.

In the intralogistics field, drones started to emerge as an effective solution to speed up deliveries
within industrial plants as they facilitate the direct transportation of components, tools and
consumables to the production lines (Benarbia and Kyamakya, 2021). To mention some
studies, Cavalcante et al. (2017) developed a mission planning system specifically designed to
coordinate material picking and delivery activities between warehouses and production areas.
Other practical examples are the authorized flights of the DPD Group in France or the tests
conducted by Walmart in collaboration with Flytrex. All these examples demonstrate drones
potential to optimize internal material handling.

The so-called Drone Deliveries represent one of the most innovative frontiers in modern
logistics. Delivery drones are designed to cover different stages of transportation, from the first
mile to the middle mile, up to the last mile, with the aim of reducing delivery times and
improving the overall efficiency of the supply chain. Although the collective imagination
focuses mainly on the use of drones in the last mile, in current operational practice,
implementations are mainly focused on rural or poorly served areas, where the benefits in terms
of speed and accessibility are more evident (DHL, 2024). Among the most significant
developments is the design of cargo drones capable of carrying heavy loads, such as those made
by Sabrewing, Dronamics and Elroy Air which can move up to 376 kilograms. However,
despite recent regulatory advances, such as the Federal Aviation Administration (FAA)
authorizations for Beyond Visual Line of Sight (BVLOS) flights, the full adoption of drone
deliveries in urban settings remains, at least for now, limited by stringent regulations and
difficulties related to integration into existing airspace (DHL, 2024). We can expect that in the
coming years the growth of drone deliveries will be mainly limited to niche use cases, such as
the transport of critical medical supplies to remote areas, the movement of urgent materials
within large industrial complexes, or the management of deliveries in private contexts such as

campuses or isolated production plants. Despite technological advances, widespread adoption

16 The Harris Corner Detector is a computer vision algorithm that analyzes intensity variations in a small window of the image:
if these variations are high in all directions, the point is classified as a “corner”.
17 The Hough Transform is a feature extraction technique used in image analysis, computer vision, pattern recognition, and

digital image processing.
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of drones in urban areas continues to be hampered by safety concerns, complex management
of shared airspace, and population perception of risk (DHL, 2024). In spite of this, delivery
drones are emerging as a strategic solution to the growing pressure on logistics networks,
driven by the expansion of e-commerce and the need to rethink distribution models for greater
efficiency and sustainability.

Also for inspection and surveillance activities, the use of drones is proving to be particularly
useful. Silvagni et al. (2016) and Ali and Kaur (2022) report that they allow to safely inspect
roofs, shelves, walls and ceilings, reducing risks for personnel and improving the overall
efficiency of operations. The application of SLAM technology with 3D sensors and optical
scanners, such as the one developed by Virus and documented by Wawrla, Maghazei and
Netland (2019), allows to create high-precision three-dimensional maps and to localize the
drone inside the warehouse. This technology, which processes millions of pixels per second,
paves the way for continuous surveillance operations, structural monitoring and early detection
of damage or anomalies. Even in high-risk sectors such as the petrochemical sector or in the
surveillance of maritime infrastructures, drones are proving to be irreplaceable tools for
reducing operational risks (C-S Yang, 2019).

Despite the many advantages, the implementation of drones in logistics contexts still presents
significant critical issues. From a technological point of view, limitations persist in payload
capacity, battery life and autonomous navigation accuracy, especially in indoor environments
without GPS signal. Although the introduction of advanced technologies has contributed to
improving localization accuracy, the autonomy of drones used in indoor environments remains
generally limited to less than 30 minutes. Wired solutions can extend operating times, but at
the cost of reduced freedom of movement. From a regulatory point of view, as highlighted by
DHL (2024) and other recent studies, the still very restrictive regulations on the use of drones,
particularly in civil and urban environments, continue to represent a significant obstacle to their
diffusion. In addition to these critical issues, there are further challenges related to privacy
protection, security in the management of collected data and insurance issues related to possible

accidents, which contribute to slowing down large-scale adoption.

4.2 Challenges in Al and IoT Integration

4.2.1 Data privacy, security, and ethical concerns

In the logistics context, the widespread adoption of sensors, actuators and cloud-based
platforms transforms every package, means of transport or shelving into a continuous source

of data. This “connected pervasiveness” is the heart of the IoT, but, in parallel with the benefits

130



of efficiency and operational transparency, it introduces a complex range of issues relating to
confidentiality, security and ethics. Already within information and communication
technologies (ICT) it has been highlighted that the critical issues revolve around accessibility,
ownership and integrity of information. The IoT amplifies these critical issues because it puts
into circulation data generated autonomously by objects that, by their nature, are difficult for
the end user to monitor (Popescul & Georgescu, 2013). On the privacy side, the end-to-end
traceability of goods, essential to guarantee visibility of the supply chain, involves the
collection of metadata that allow inferring not only the position of a pallet, but also the work
shifts of operators, waiting times at customs or the reliability of a sub-carrier. Automatic
identification mechanisms, such as RFID, NFC or image recognition cameras, can trace
apparently innocuous events (for example, scanning a label at the warehouse gate) to specific
personal identities (Ziegeldorf et al., 2014). If such datasets are integrated with external
registers — such as drivers’ personal data or professional social networks — the risk of linkage
increases exponentially, compromising the subject’s ability to control their information.
Furthermore, distributed storage on edge gateways, mobile devices and cloud servers makes it
difficult to guarantee the definitive deletion of data when a device changes ownership,
configuring the problem of lifecycle transitions: a resold or decommissioned sensor may still
contain mission logs, GPS coordinates and environmental parameters related to previous
shipments. From a security point of view, the logistics ecosystem is a tempting target for cyber
attacks motivated both economically and geopolitically. The NotPetya incident that hit Maersk
in 2017, paralyzing port terminals and booking systems for several days, showed how malware
that can rapidly propagate between heterogeneous hosts can block global supply chains and
generate multi-million dollar losses. At the micro level, interference with a single actuator —
for example, the unauthorized opening of a refrigerated container — can deteriorate perishable
goods and affect the food safety of end consumers. The problem is exacerbated by the
convergence of IT and OT (Operational Technology)'®: late patches, never-changed default
passwords and unencrypted industrial protocols are the Achilles heel of many automated
warehouses. The ethical implications do not only concern data protection, but also the dignity

and autonomy of workers and customers. Real-time location systems (RTLS) promise to

18 Operational Technology is the set of hardware and software that directly monitor and control physical processes within
industrial plants, automated warehouses, transportation systems, energy distribution networks and, in general, all those
infrastructures where it is necessary to intervene “on the field” (for example with sensors and actuators). Unlike IT
(Information Technology), which focuses on data and business applications, OT governs valves, motors, robots, conveyor

belts and other operational equipment.
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optimize picker routes, but, if used without adequate protection, they can turn into tools of
micro-surveillance and psychological pressure. Similarly, behavioral profiling enabled by the
analysis of sensor and camera logs could influence performance evaluation or assignment
granting, generating implicit discrimination. The literature recalls that, in the IoT field, what
seem to be “purely” technical problems (authentication, encryption, key management) always
have an ethical-social dimension, because they determine who controls what, when and how
(NIST, 2018; Allhoff & Henschke, 2018). To address these challenges, privacy-by-design and
security-by-design practices must be integrated from the early stages of designing logistics
architectures. From a regulatory point of view, Regulation (EU) 2016/679 (GDPR) provides a
rigorous framework for the protection of personal data, imposing the principle of minimization
and the right to be forgotten also in machine-to-machine flows. On a technical level, the
adoption of standards such as ISO/IEC 27001, combined with threat modeling methodologies
specific to IoT, allows identifying exposure points and defining countermeasures proportionate
to the risk. End-to-end encryption, mutual authentication between nodes, secure firmware
updates and network segmentation are now essential best practices. Finally, emerging
approaches such as multilevel trust frameworks are added, which associate each device with a
dynamic reliability score based on tests of compliance and operating behavior (Sato et al.,
2016).

Further challenges concern the use of Al Ethics applied to Al in the logistics sector can no
longer be considered a simple technological corollary. In light of the most recent sector studies,
it constitutes an enabling condition for any truly sustainable digital transformation project. The
adoption of machine learning algorithms, predictive analysis systems and autonomous robotics
allows, on the one hand, to generate measurable efficiencies but, on the other, opens up a field
of action full of critical issues related to data privacy, cybersecurity, decision-making
transparency and socio-occupational impacts. In terms of confidentiality, the concentration of
sensitive information makes Al platforms a privileged target for malicious actors. The privacy-
preserving techniques, such as federated learning and homomorphic encryption show good
results in preserving information sovereignty, but they do not completely eliminate the risk of
data poisoning or exfiltration of model parameters, which are among the most cited threats in
international incident reports today (Adewale et al., 2025). European legislation adds a further
level of complexity: the combined provisions of GDPR and Al Act require periodic audits,
reference datasets without significant biases and human supervision for all applications
classified as “high risk” (European Commission, 2024). Algorithmic bias is the primary ethical

concern. Adewale et al. (2025) have shown that models trained on unbalanced datasets can
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penalize entire supply basins, worsening pre-existing inequalities and, in fact, reducing the
diversity of the supply-chain network. The European guidelines on trustworthy Al invite to
integrate explainability mechanisms right from the design phase, so as to clarify the logical
connection between inputs, intermediate features and the final decision. Such transparency is
not only a regulatory requirement, but also a lever of trust towards customers and partners:
without a shared understanding of the routing or inventory allocation logics, any operational
anomaly risks being read as “algorithm arbitrariness”. On the security side, the extension of
the attack surfaces caused by the interconnection of Al IoT and cloud has already emerged in
various news stories: from ransomware attacks that paralyze warehouse management systems
to sensor manipulations that divert automated vehicles onto unwanted routes. It must be
highlighted also the growing danger of adversarial attacks, in which imperceptible
perturbations in input data induce catastrophic errors in computer vision models (Adewale et
al., 2025). Mitigation requires a mix of secure-by-design, continuous robustness testing and the
implementation of end-to-end encryption protocols, as well as multifactorial access controls
and real-time monitoring based on Al-driven threat intelligence. Thus, Al requires multi-level
governance that integrates ethical guidelines, technical standards and clear legal
responsibilities along the entire supply chain. Experience shows that regulatory compliance
alone is not enough: a corporate culture of responsible innovation is needed, based on
independent audits, internal ethics committees and feedback platforms open to employees and

external stakeholders.

4.2.2 Technological and infrastructural barriers

The implementation of Al and IoT solutions the logistics context faces a series of technological
and infrastructural barriers that, if not recognized and managed in time, risk significantly
reducing the return on investment and compromising the operational continuity of the systems.
First of all, Al critically depends on the availability of large amounts of accurate, timely and
semantically uniform data; however, in warehouses and transport nodes, datasets are often
fragmented between heterogeneous management systems (ERP, WMS, TMS) and proprietary
IoT devices, generating inconsistencies that limit the accuracy of the models and impose a
theoretical performance threshold that rarely exceeds 75% accuracy (Gudivada et al., 2017).
Secondly, the high computational requirements of deep neural networks entail the need for
hardware infrastructures that cannot always be hosted on-premises for reasons of space, energy
consumption and cooling: the use of the cloud reduces the barrier to entry, but introduces

further critical issues related to network latency, scaling costs and data sovereignty, particularly
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relevant when (almost) real-time analyses are required for route optimization or inventory
rebalancing. A third barrier is represented by integration with legacy systems: many platforms
used in logistics have been designed according to monolithic logics and do not expose modern
APIs, forcing companies to develop ad hoc middleware that not only increase architectural
complexity, but also become points of failure in the event of uncoordinated updates
(Shrivastav, 2022). Added to this is the management of “model drift”: consumer demand,
delivery times and fuel costs represent dynamic variables that alter the distribution of input
data. Without automatic monitoring and retraining (MLOps) pipelines, models progressively
degrade, generating suboptimal decisions and undermining operator confidence (Nelson et al.,
2015).

Also in this sense, the critical issues of Al are intertwined with those of IoT. The first obstacle
concerns the hardware-software heterogeneity of the ecosystem: RFID sensors, NFC tags,
environmental data-loggers, edge gateways and cloud platforms come from different vendors
and speak distinct protocols. The absence of mature standards for data serialization and
automatic device discovery produces information silos that are difficult to integrate, with
inevitable costs of customization of APIs and development of translation middleware (Garrido-
Hidalgo et al., 2019; Cortés et al., 2015). This fragmentation is amplified when trying to
connect the new “smart” nodes to legacy systems (ERP, WMS, TMS) designed for intermittent
data flows and not for real-time streaming: the need for adapters and backward-compatibility
interfaces introduces latencies, points of failure and recurring maintenance costs
(Samaranayake et al., 2022). On the infrastructural level, network coverage is not
homogeneous nor guaranteed in all segments of the supply chain: warehouses located in remote
industrial areas, road sections in rural areas or ocean crossings suffer from discontinuous
connectivity. Consequently, devices must switch between low-power technologies (LPWAN)
and cellular networks with significant impacts on energy expenditure and battery life, already
limited by the miniaturization required for smart pallets and containers (Li & Li, 2017). The
cost of replacing or recharging devices, especially when we are talking about thousands of units
dispersed in multiple countries, has a heavy impact on TCO (Total Cost of Ownership) and
slows down the return on the initial investment, as highlighted by studies on post-pandemic
economic drivers (Ali et al., 2023). Data quality and continuity represent another critical
bottleneck. Sensors exposed to vibrations, thermal shocks or extreme humidity record
calibration drifts that compromise the fidelity of readings. This requires periodic recalibration
procedures and self-diagnostic systems that, if absent, degrade the reliability of decision-

making dashboards and trigger false alarms along the cold chain (Tsang et al., 2018). In
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parallel, the explosion of information volumes (high-velocity and high-variety) generates data
management challenges: robust pipelines are needed for edge filtering, packet compression and
encryption, as well as scalable data lakes that guarantee consistent metadata and versioning. In
the absence of a solid governance framework, the risk is a flood of non-contextualized “dark
data” that weighs on storage costs and complicates predictive analyses (Mashayekhy et al.,
2022; Hu, Al-Barakati, & Rani, 2022). Finally, the issue of infrastructural sustainability should
not be overlooked. The high turnover of low-cost sensors, often not designed for recovery or
recycling, generates e-waste flows that conflict with environmental responsibility policies and
circular supply chain objectives (Ding et al., 2023). The lack of operational guidelines on end-
of-life and disposal, combined with the difficulty of tracking components and materials
throughout the entire life cycle, undermines the coherence between the “green” narrative of
IoT and the daily practice of warehouses.

In summary, Al and IoT share four critical nodes that feed each other: data quality,
interoperability, and governance; computational capacity and network resilience; legacy
integration and lifecycle management of models and devices; total costs, cybersecurity, and
environmental impact. Removing these obstacles requires synergistic interventions: definition
of open standards and common semantics, investments in highly reliable 5G and LPWAN
networks, cloud-edge architectures that minimize latency and decentralize the computational
load, MLOps pipelines that automate model retraining and versioning, secure-by-design
devices with over-the-air firmware updates, and finally eco-design strategies that include
takeback, recycling, and extended producer responsibility from the outset. Only a holistic
approach, capable of holding these dimensions together, will allow companies to move from
pilot experiments to scaled implementations, transforming the promise of predictive,

transparent and sustainable logistics into a concrete operational reality.

4.2.3 Workforce transition and reskilling

The progressive adoption of Al and IoT solutions in logistics is profoundly reshaping the
professional profiles of the sector, making a systematic process of reskilling and upskilling
essential. On an individual level, literature highlights how the perception of self-efficacy and
the balance between work demands and resources outlined by the Job Demands-Resources
Model influence workers’ willingness to learn data analytics, basic programming and
maintenance of Al systems. However, the introduction of intelligent technologies does not only
involve new technical skills: the constant flow of real-time data requires critical judgment skills

and a renewed digital literacy to interpret often opaque algorithmic outputs, avoiding both
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automation blindness and distrust towards systems. At the team level, human-machine
collaboration transforms shifts and coordination mechanisms: operators must communicate
with decision-support interfaces and, at the same time, develop relational skills to manage more
interconnected and transparent processes, in which individual performances are continuously
monitored. From an organizational point of view, Al allows to outsource or automate repetitive
tasks, but generates demand for hybrid roles, like algorithm maintainers and data-driven
warehouse supervisors, which require flexible and modular training paths often based on
micro-credentialing and e-learning platforms. In this context, a strategic approach to change
management becomes crucial: job crafting programs and personalized career plans can mitigate
resistance to change, supporting intrinsic motivation and the perception of autonomy, key
elements for well-being and productivity in digitalized contexts (Klumpp & Ruiner, 2022).

The World Economic Forum’s Future of Jobs Report 2025 overturns the apocalyptic narrative
that has often accompanied automation: the percentage of “job disruption” will be significant
(22% of current roles will be redefined by 2030), but the net effect will be positive, with 170
million new jobs and 92 million positions moved, for a balance of +78 million job
opportunities. In terms of skills, however, the picture remains challenging: almost 40% of the
skills currently required will change and 59 out of 100 workers will need requalification or
updating courses by 2030; of these, 11 risk not receiving them, exposing over 120 million
people to potential layoffs. Employers are sensing the problem: 63% identify the skills gap as
the main obstacle to business transformation, while 77% plan upskilling programs, but 41%
predict headcount reductions due to automation (World Economic Forum, 2025). The fastest
growing skills profile confirms the two-faced nature of demand: on the one hand, technological
skills — Al, big data, cybersecurity, OT/IT networks —, on the other, cognitively intensive
human skills — analytical-creative thinking, collaboration, resilience, flexibility. The
hybridization of the two areas becomes the new currency of exchange on the labor market.
Logistics companies experience it on a daily basis: surveys conducted in mature economies
(UK, Germany, USA) indicate structural deficiencies in data science, industrial safety and
predictive maintenance, but also in soft skills such as complex problem solving and
intercultural communication. Similar evidence emerges from emerging countries: a survey of
logistics companies in Oman finds pronounced shortages in data analytics (68%), digital
marketing (52%), the ability to learn continuously and creativity/innovation (48%),
programming/coding (44%) and industrial cyber-security (48%). The same companies indicate
the reskilling of internal staff as their primary strategy (45%), followed by the outsourcing of

specialist functions (21%), while they recognize that the main obstacles are the lack of adequate
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training courses (40%) and the misalignment between academic curricula and industrial needs
(32%) (Benayoune et al., 2022).

In light of this evidence, a synergic action between companies, universities and policy-makers
is essential. On the academic side, it is necessary to rethink teaching in a modular and “blended”
way, integrating simulation laboratories, micro-credentials oriented to specific technologies
(e.g. IoT API management, logistics data modeling, predictive maintenance) and internships
co-designed with companies, so as to reduce the time-to-skill reported by studies (Benayoune
et al., 2022). Companies, for their part, must invest in knowledge-sharing platforms and
apprenticeship programs that allow workers to acquire medium-high level skills without
interrupting production activity — a need particularly felt in emerging contexts where the
availability of low-cost foreign labor can slow down technological adoption, but at the same
time limit the career paths of local workers. Finally, public policies must promote the creation
of national skill frameworks that dynamically map skills needs and incentivize experimentation
with new training models, reducing the “digital divide” which, if not addressed, risks widening
employment inequalities.

4.3 Cross-cutting applications of the AloT approach beyond logistics

IoT and Al are not simply an overlapping of technologies: rather, they represent the backbone
of a cybernetic ecosystem that transversally permeates a variety of sectors. The unifying
element is a continuous cycle — perception, connection, analysis, action — that allows previously
inert objects to transform into intelligent nodes, capable of generating data, learning hidden
correlations and intervening in the physical world. Below is an organic and in-depth discussion
of the main application areas, showing how the models developed in logistics constitute only

a small part of a much broader phenomenon.

4.3.1 Energy sector

The energy sector, characterized by capital-intensive assets with multi-decade life cycles and
a growing weight of intermittent renewable sources, is reconfiguring itself around the
convergence of IoT and Al, a synergy often referred to as the Energy Internet of Things (EIoT).
Distributed sensors (smart meters, substation RTUs, accelerometers, thermocouples and in-line
optical fibres) generate a continuous flow of data that, conveyed by NB-IoT, LTE-M or 5G
networks and pre-processed at the edge, feeds predictive machine-learning models running in
the cloud. These models, trained on meteorological variables, SCADA signals and historical
consumption series, enable a proactive balancing between supply and demand (DHL & Cisco,

2015). The experiment conducted by DeepMind with National Grid in the United Kingdom
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showed that forecasting demand 48 hours in advance and with an error margin of less than 10%
allows a 10% reduction in the need for rotating reserves, with consequent savings in fossil fuel
and lower emissions (Kreutzer & Sirrenberg, 2020). In parallel, the digital twin paradigm
extends the first-time-right approach already used in logistics to the world of generation and
transmission: hybrid thermo-fluid dynamic models with recurrent neural networks simulate the
wear of bearings and wind turbine blades in real time, scheduling maintenance only when the
risk indicator exceeds the optimal economic threshold. On the network front, line digital twins
(built by integrating LIDAR data, IR images and climate measurements) enable dynamic line
rating, allowing controlled overloads of up to 15% without violating thermal limits and
postponing investments in new transport capacity. In the distribution sector, domestic gateways
communicate with neighborhood aggregators through open protocols, enabling demand
response strategies based on deep-reinforcement-learning that modulate heat pumps and
electric vehicle charging. The same sensor-cloud infrastructure supports advanced predictive
maintenance practices in midstream plants: in the compressors of the Trans-Anatolian Pipeline,
anomaly-detection models, built with auto-encoders and LSTM networks, have cut unexpected
downtime and gas consumption (Nagaty, 2023). On the market level, the real-time availability
of granular data paves the way for Energy-as-a-Service models, peer-to-peer trading on
distributed ledgers and dynamic pricing based on smart contracts, with kilowatt hours
becoming tradable information flows (Perwej et al., 2019). Crucial challenges remain:
cybersecurity, made more complex by the enormous attack surface of millions of devices;
interoperability, which requires the adoption of open semantic schemes; the computational
sustainability of AI models, mitigated by hybrid cloud-edge architectures and serverless
techniques; finally, human capital, to be updated with cross-sector skills in data science,

electrical engineering and data governance (Khanna & Kaur, 2020).

4.3.2 Residential context

In the residential context, the [oT-Al combination is transforming the home into a cyber-
physical platform capable of learning habits, autonomously managing critical resources and
offering value-added services, overcoming the traditional home automation vision based on
static scenarios and proprietary protocols (Kreutzer & Sirrenberg, 2020). The core of the smart
home ecosystem is represented by a local gateway that coordinates the various devices present
in the home (sensors, actuators, connected appliances) and harmonizes their different
communication methods, channeling data towards management applications residing locally

or in the cloud (Perwej et al., 2019). Lightweight machine-learning models (TinyML) are run
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on these streams for on-device recognition of behavioral patterns: for example, the neural
network trained on the absorption profile of an oven distinguishes domestic cooking from a
potential fire, generating a local alert in less than 50 ms and reducing the perceived latency
compared to full-cloud solutions by about 80% (Nagaty, 2023). In many advanced domestic
solutions, where the home is modeled as a digital twin to track consumption, system
configuration and usage profile of household appliances in real time, the same flow of electrical
data, broken down with non-intrusive load monitoring techniques, allows the home's digital
twin to estimate the health status of household appliances and trigger smart replenishment
logics: the washing machine, when it recognizes an anomalous consumption of detergent, sends
an automatic order to the integrated e-retailer, inaugurating “consumable-as-a-service” models
already tested in industrial pay-per-use contracts (Khanna & Kaur, 2020). On the energy side,
the reinforcement learning algorithm incorporated in the smart thermostat optimizes the set-
point curve taking into account weather forecasts, TOU (Time-Of-Use) rates and heat pump
response times. In “prosumer” environments equipped with photovoltaics and batteries, the
digital twin calculates in real time the best charge/discharge strategy to maximize self-
consumption or provide balancing services to the local energy community through smart
contracts on the Energy Web blockchain. Artificial vision models, borrowed from logistics for
pallet recognition, power cashier-less functionality in condominium micro-markets: wide-
angle cameras cross-reference user IDs, postures and barcodes, assigning picks to a virtual cart.
On the shelf, computer vision identifies out-of-stock and compliance planograms, suggesting
predictive replenishments that reduced cart abandonment by 25% in pilot tests by a European
retailer (Dohrmann, Pitcher, & Kamdar, 2024). Similar CNN networks analyze the behavior of
lonely elderly people in real time: deviations in the walking pattern, detected by solid-state
lidars or millimeter-wave FMCW radars, activate a tele-assistance protocol that forwards end-
to-end encrypted video clips to caregivers, in compliance with the GDPR thanks to an
anonymization pipeline at the edge. From a socio-economic point of view, the introduction of
these solutions fuels new business models: “domestic well-being” subscription packages that
include sensors, predictive maintenance and pay-how-you-live insurance services;
condominium community clouds that sell flex-capacity to the DSO (Distribution System
Operator); data platforms that monetize anonymous insights for demand-side marketing.
However, widespread adoption depends on change management initiatives and the digital
maturity of users: longitudinal studies show that the learning curve of home automation
systems stabilizes after about six weeks, but that energy efficiency degrades if the algorithms

are not periodically recalibrated on lifestyle changes (Balta-Ozkan et al., 2013).
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4.3.3 Healthcare sector

In the healthcare domain, the integration between the IoT and Al is progressively redefining
the entire continuum of care (from prevention to diagnosis, from therapy to follow-up) thanks
to an ecosystem of wearable sensors, connected medical devices, edge-cloud platforms and
machine learning models trained on unprecedented amounts of data. Already today, real-time
monitoring of vital parameters through electrocardiographic patches, pulse oximeters or smart-
watches allows the translation of raw physiological signals into clinically relevant alerts. Al,
applied to these streams, identifies warning patterns of heart failure or hypoglycemia and
triggers proactive interventions that reduce rehospitalizations and visits to the emergency room.
The same “sense—think—act” paradigm enabled by edge computing finds application in high-
intensity care departments: local low-latency gateways aggregate endoscopic videos, high-
frequency EEG traces and data from infusion pumps, performing on-device inferences to detect
arrhythmias or hemodynamic drifts millisecond by millisecond, before the event degenerates.
The experience of Streams at the Royal Free London NHS Foundation Trust, where a mobile
app notifies critical changes in kidney function in a few seconds, has demonstrated the
possibility of compressing decision-making latencies and anticipating life-saving treatments
(Kreutzer & Sirrenberg, 2020). On the diagnostic side, convolutional neural networks trained
on millions of CT and MRI images achieve sensitivity superior to the human eye in identifying
breast micro-calcifications or lymph node metastases. The challenge is no longer computing
power, but the quality of the training data — to be ensured with multi-expert annotation pipelines
and bias mitigation techniques — and the regulatory certification of the models. Similarly, NLP
algorithms extract predictive insights from electronic clinical diaries, bridging the traditional
gap between structured data and narrative notes: in oncology settings, Al synthesizes
guidelines, clinical trials, and the patient’s molecular profile into personalized therapeutic
recommendations, replicating the function of the tumor board on a scale (Kreutzer &
Sirrenberg, 2020). At home, networks of environmental sensors integrated with telemedicine
extend care beyond the hospital walls. The IBM Elderly Care project, in partnership with
Malteser International, equips over 150 homes with motion sensors, water flow meters, and
thermal detectors capable of learning the elderly person's daily “rhythm”: deviations in
bathroom visits or night-time openings of the front door generate yellow or red notifications,
grading the urgency of the intervention (Bauer et al., 2018). In parallel, computer vision-based
tele-rehabilitation systems guide the execution of post-operative exercises and automatically
measure joint angles, reducing in-person sessions without compromising adherence to the

program. A line of research that has gained particular momentum in recent years concerns the
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use of digital twins to model selected portions — or the entire — human organism, with the aim
of placing a virtual counterpart alongside the physical patient, continuously updated by real-
world clinical data. Studies conducted by Siemens Healthineers have already demonstrated the
feasibility of a digital twin of the heart: starting from radiological images and
electrocardiographic tracings, a machine learning algorithm reconstructs the anatomy and
reproduces the electro-mechanical behavior of the myocardium, allowing the simulation of
failure scenarios and the in silico testing of the effectiveness of different therapeutic regimens.
The project, at the end of a six-year trial on one hundred patients with heart failure, has shown
that the model’s predictions tend to converge with the observed clinical outcomes, paving the
way for future applications in diagnosis and intervention planning (DHL Trend Research,
2023). Philips is following a similar path, developing its own cardiac twin and using the same
twin logic for devices: a single CT scanner can generate up to 800,000 log messages per day,
aggregated in the cloud and analyzed with predictive algorithms that anticipate failures and
enable proactive maintenance. On the biomedical research front, the European consortium
DigiTwins (118 academic centers and companies) is aiming for an even more ambitious goal:
creating a personalized digital twin for every citizen of the Union, so as to minimize prognosis
errors and off-target toxicity, which today are worth approximately 280 billion euros per year,

equal to 20% of European healthcare spending (DHL Trend Research, 2023).

4.3.4 Smart city context

Finally, the “smart city” paradigm arises from the need to govern urban complexity —

demographic, energetic, environmental — through a digital ecosystem that grafts sensor

networks, pervasive connectivity and Al algorithms onto infrastructures often designed for an
analogue world. In the consolidated vision, the smart city is divided into three macro-layers:

(1) a physical level, consisting of low-power IoT devices (air quality sensors, artificial
vision cameras, smart meters) located throughout the territory;

(i1) a communication level, which combines low-consumption wireless networks for short
distances with the latest generation mobile band, thus channeling data towards
processing points distributed within the urban fabric;

(iii)  acognitive level, where cloud-native platforms apply machine learning and digital twin
techniques to transform information flows into operational decisions (Nagaty, 2023).

An emblematic case comes from Darmstadt, where 272 intersections have been equipped with

high-definition cameras and over 2,000 traffic lights transmit more than a billion records to a

centralized data lake every day. Deep learning models analyze queues, average speeds and
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accident probabilities in (almost) real time, automatically adjusting traffic light plans and
sending predictive alarms to the traffic control center (Darmstadt, 2019). The result is a
documented reduction of 15% in travel times and emissions from congestion, with benefits
comparable to much more expensive infrastructure interventions. Smart-lighting systems
integrate LED lamps, motion sensors and edge gateways capable of varying light intensity
based on pedestrian traffic, weather conditions and the presence of events. The streetlight
network, powered by reinforcement learning algorithms, achieves energy savings of over 60%
compared to static regulation scenarios and acts as a backbone for the installation of additional
environmental sensors (noise, NO2, PM 2.5), generating new revenue streams for the municipal
administration. Low-power micro-sensory networks (LPWAN) continuously detect
temperature, humidity, concentration of fine dust and volatile organic compounds. The data,
geolocalized and enriched with meteorological information, feed spatial models that relate
urban morphology to the distribution of pollutants, allowing the impact of traffic calming or
urban forestry interventions to be assessed in advance. A smartphone application allows
citizens to view, in real time, maps indicating the air quality along the streets and to receive
suggestions on healthier alternative routes. Each user, by automatically or voluntarily sending
the environmental data collected by their device, thus becomes an active part of a widespread
detection network (crowdsensing). The principle is the same as that tested by ZenCity, where
reports from social media, phone calls to switchboards and information from urban sensors
flow into analytical dashboards that support the decisions of administrations (ZenCity, 2019).
Smart bins equipped with ultrasonic sensors measure the filling level and, via NB-IoT
networks, send the volumetric estimate to an optimization engine that recalculates the routes
of the collection vehicles on a daily basis: experiments in the EU show cuts in kilometers
traveled of up to 25% and a significant decrease in emissions (Perwej et al., 2019). A similar
scheme for the water network: pressure switches and acoustic meters correlate micro-drops in
pressure and vibration patterns, automatically identifying hidden leaks and scheduling
maintenance interventions according to risk-based asset management logics. The natural
evolution of these vertical subsystems is the construction of a digital twin of the city or
individual districts, i.e. a numerical model that integrates road topology, energy constraints,
building heritage and mobility flows. These platforms, born in the logistics sector to orchestrate
fleets of vehicles in real time, now allow policy makers to test “what-if”” scenarios — from the
introduction of low-emission zones to the planning of mass events or the management of
blackouts — without repercussions on the physical world. Pilot projects in Scandinavia show

that traffic-energy co-simulation allows to reduce the peak electricity demand from vehicle
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charging by up to 18%, thanks to demand-response strategies coordinated with intelligent

traffic lights (DHL Trend Research, 2023).
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Conclusion

The analysis carried out in this thesis demonstrated, first of all, that Al and the IoT today
represent the two technological cornerstones on which the transformation of logistics towards
the 4.0 paradigm rests. By examining first their separate contributions and then their potential
convergence, the literature highlights concrete benefits but also an evident fragmentation of
studies, a symptom of a maturity that is still uneven between application domains, industrial
sectors and geographical areas.

Four key results emerge from the systematization of the sources.

First, machine-learning algorithms already offer tangible advantages in activities with high
information content—multi-stage demand forecasts, dynamic route optimization, computer
vision for automated package management—provided they are fed by quality datasets and
decision-making processes capable of integrating their outputs.

Second, widespread sensors and LPWAN/5G networks have proven indispensable to generate
the necessary database: without granular tracking of assets, vehicles and environments, Al
remains deprived of the “information oxygen” that allows it to detect patterns and anomalies.
Third, the literature confirms that the two domains do not produce the maximum value when
operating in isolation: the real competitive lever lies in their integration (AloT) which allows
to orchestrate physical and digital flows in real time, enabling digital twin logics, predictive
maintenance and adaptive automation.

Fourth, despite the growing interest in AloT, transversal barriers persist: fragmentation of
interoperability standards, cybersecurity concerns, lack of clear data governance models and a

widespread skills gap involving analysts, network engineers and operations personnel.

On a theoretical level, this thesis provides an organic framework that fills the gap in knowledge
identified at the beginning: it compares, with homogeneous criteria, the evidence on Al and
IoT, positioning them along a continuum that goes from specific applications to the systemic
perspective of AloT. This synthesis, based on a systematic and interdisciplinary review of the
sources, allows us to overcome the overly rigid classifications that have so far limited the
dialogue between the two research communities and offers a coherent taxonomy of benefits,

constraints and open challenges.

From a methodological point of view, the work claims its exploratory and theoretical-analytical
nature: the absence of original empirical data reduces the risk of overlapping with case studies

already present in the literature but, at the same time, limits the scope of the conclusions to a
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level of abstraction that requires field verification. It is therefore appropriate that future

research focuses on three complementary directions:

(1) longitudinal empirical studies in companies that have started AloT projects, to measure
their real impact on costs, emissions and service levels;

(i1) comparative analyses between different sectors and regulatory contexts, useful for
identifying replicable best practices and enabling policies;

(iii)  investigations on human capital, aimed at understanding how skills and forms of

human-machine collaboration evolve in intelligent warehouses and distribution centers.

Ultimately, the joint examination of Al and IoT provides the image of logistics in transition:
still far from full digital maturity, but already oriented towards ecosystems capable of self-

adapting, anticipating disruptions and minimizing environmental impact.
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