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Foreword: Motivation and Objectives 
In recent years, logistics has become a privileged laboratory for experimentation with Industry 

4.0 technologies: the competitive pressure to guarantee reduced delivery times, end-to-end 

visibility and lower emissions has met the maturation of Artificial Intelligence (AI) systems 

and Internet of Things (IoT) networks capable of transforming dispersed data into real-time 

operational decisions. Literature attests that machine-learning algorithms applied to 

forecasting, computer vision and reinforcement learning can reduce logistics costs, contain 

inventories and increase service levels. At the same time, RFID sensors, wearable devices and 

LPWAN networks allow to monitor containers, warehouses and vehicles, cutting waste and 

delays along the supply chain. Despite these results, research shows a notable fragmentation: 

studies on AI and IoT often proceed on parallel tracks, while the convergence of the two 

domains remains hindered by problems of data quality, interoperability, cybersecurity and 

skills gaps. It is within this cognitive fracture that the motivation for this investigation lies. 

Understanding in depth the specific contributions of AI and IoT, before evaluating their 

synergy, is a necessary condition to avoid easy technological generalizations and to offer 

companies and policy-makers truly applicable indications.  

The thesis therefore aims to: 

(1) critically reconstruct the evolution of AI and IoT in the context of Logistics 4.0, clarifying 

their areas of effectiveness and infrastructural constraints; 

(2) identify, through a systematic and interdisciplinary review of the scientific and professional 

literature, the points of intersection between the two technologies that already generate value 

today or that show the greatest potential in terms of scalability; 

(3) mapping the main technical, organizational and regulatory barriers that hinder integrated 

adoption. 

The choice of a theoretical-analytical approach, based on a broad review of academic sources, 

white papers and industry reports, allows to fill a double gap: on the one hand, providing an 

organic and comparative framework of the two technologies considered individually; on the 

other, clearly defining the perimeter within which their convergence can translate into a 

smarter, more transparent and sustainable logistics ecosystem. Thus outlined, the research aims 

to offer an original contribution to the scientific discussion. 
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Structure of the Thesis 
The thesis opens with an Introduction that presents digital transformation as a driving force 

capable of reshaping industrial models and rewriting the interaction between companies, 

customers and citizens. In this scenario, the perimeters of the research are carefully defined, 

offering the reader a clear and coherent reading grid that guides the development of the 

subsequent chapters. 

This premise is followed by a central body consisting of four chapters, conceived as a single 

extensive literature review organized with a logical progression.  

The first chapter reconstructs the digital transformation of logistics, relating the drivers of 

speed, transparency and sustainability with the evolution of Industry 4.0 technologies and 

showing how these drivers have reconfigured processes, business models and skill needs.  

The second chapter focuses the analysis on AI: after having traced its evolution, it illustrates 

the main application lines clarifying the benefits, limits and infrastructural requirements 

highlighted by the most recent studies.  

The third chapter is dedicated to IoT and delves into sensors, LPWAN/5G networks and edge-

cloud platforms that allow obtaining end-to-end visibility on physical flows, discussing use 

cases in smart transportation, smart warehousing and smart delivery and focusing on 

interoperability and security issues.  

The fourth chapter represents the point of convergence of the previous two: taking up the results 

on AI and IoT, it defines the AIoT paradigm as the “digital nervous system” of the supply 

chain, analyses the areas in which this synergy generates value and identifies the main barriers 

to adoption, from data governance to the lack of specialist skills.  

At the end of the path, the Conclusions section summarizes the original contributions of the 

work, highlights its methodological limitations and suggests directions for future research. In 

this way, the thesis accompanies the reader from the general framework of the transformations 

in progress, through the in-depth analysis of the two leading technologies and their integration, 

up to the practical implications and development prospects. 
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Introduction 
Digital transformation has redefined the way we live and work, reshaping traditional industrial 

structures and reinterpreting what it means to be a customer and a citizen (Berman et al., 2016). 

Digital transformation is often defined by scholars as “the use of new digital technologies (..) 

to enable major business improvements” (Fitzgerald et al., 2014, p. 1). This process is not based 

on a single technology, rather, it involves significant changes driven by a “combination of 

information, computing, communication, and connectivity technologies” (Bharadwaj et al., 

2013, p. 471), i.e. “a fusion of advanced technologies” that are integrating physical and digital 

systems (EC, 2018). At its core, digital transformation has the ultimate aim to create value, by 

driving operational efficiency, improving customer experience, enhancing business models, 

enabling strategic differentiation, ultimately leading to improved stakeholder relationships, 

costs reduction and stronger competitive advantage (Morakanyane et al., 2017).  

The last decade, characterized as “the digital age” (Hirt and Willmott, 2014), has fundamentally 

changed the dynamics within industries. This evolution is largely driven by Industry 4.0, also 

known as the Fourth Industrial Revolution, whose emergence triggered radical changes in the 

global economic landscape, characterised by a deep integration of cutting-edge technologies, 

especially in manufacturing and logistics. (Lu 2017; Ghobakhloo et al. 2021; Meindl et al. 

2021; Zhang et al. 2021). As explained by Abdirad and Krishnan (2020), this phenomenon 

involves the extensive introduction of ICT and its seamless connection with the Internet of 

Things (IoT), services and data to enable real-time production. This evolution has resulted in 

traditional machine-dominated manufacturing being replaced by digital manufacturing, in 

which cyber-physical systems, AI and data analysis converge to create smart factories and 

interconnected systems that improve automation and decision-making (Donald, 2024 et. al). 

In this context of change, the concept of Industry 4.0 has been extended to the field of logistics 

and supply chain management (LSCM) (Abdirad and Krishnan 2020; Kucukaltan et al. 2022; 

Barata 2021) giving rise to the so-called Logistics 4.0 (or Smart Logistics). Logistics 4.0 

introduces a radical change in how items are delivered, stored and transported (Khan et al. 

2022; Derakhti et al., 2023; Rosário and Dias 2023; Da Silva et al. 2023). Through the use of 

digital technologies such as advanced analytics, automated processes, robotics, IoT, AI and 

cloud computing, LSCMs can potentially improve their operations in terms of efficiency, 

visibility and responsiveness to better meet their customers’ needs. Successful Resource 

Planning, Warehouse Management Systems, Transportation Management Systems, Intelligent 
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Transportation Systems, and Information Safety applications are required to operate logistics 

4.0 in an effective and strong manner (Barreto et al. 2017). 

The recent turning point in the digitisation of logistics operations stems more from the real-

time connectivity of assets: machines, vehicles and devices can now be monitored via sensor 

technologies that capture all kinds of data in real time. In addition, operators can also provide 

feedback information through mobile and wearable devices. This broad connectivity provides 

(near) real-time visibility of all work activities. It all adds up to a kind of  ‘digital control tower’, 

analogous to the airport control tower, providing visual alerts that warn of stock shortages or 

process bottlenecks before they occur. Using simple control algorithms, a course can be 

corrected before potential problems even become real. Furthermore, being able to collect a vast 

amount of data, the resulting high availability of historical data leads to the creation of 

increasingly sophisticated algorithms that add further intelligence to the control rules. Indeed, 

predictive analyses learn from historical data uncovering patterns and correlations that are not 

obviously detectable by humans. Moreover, with a digital twin of physical logistics operations, 

real-time analysis and optimisation can even prescribe decision-making, where users make 

decisions based on what intelligent agents recommend (Merkert & Hoberg, 2023). 

Based on the above, it is clear that IoT and AI are the two most influential technologies when 

it comes to Logistics 4.0. IoT plays a crucial role by enabling sensor-based real-time tracking, 

facilitating seamless connectivity between assets, warehouses, and transportation systems 

(Roshid et al., 2024). These connected devices continuously collect vast amounts of data, 

forming the foundation for AI-driven predictive analytics, which allows for anticipatory 

decision-making and automated optimization of logistics flows (Ilin et al., 2019). Thus, the 

integration of AI algorithms with IoT sensor networks empowers logistics providers to 

enhance operational visibility, automate workflow adjustments, and implement digital twins 

that simulate real-world scenarios for more accurate forecasting and process improvement 

(Kocaoglu, 2024).  

In light of this context, this thesis will focus primarily on exploring the synergy between AI 

and IoT. By examining how these technologies interconnect to support real-time monitoring, 

predictive analysis and decision-making processes, the aim of this thesis is to shed light on 

their central role in driving the next wave of digital transformation in logistics. 
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Literature Review 

1. Logistics Digital Transformation 
1.1 Digital Transformation and its Role in Modern Logistics 
Digital technologies are significantly transforming the functioning and organisation of 

businesses. Organisations are constantly reformulating their business models in numerous 

ways, mainly by exploiting the so-called “SMACIT”, which stands for Social media, Mobility, 

Analytics, Cloud and Internet of Things (Ross et al., 2016). As a result, the role of digital 

technologies and their applications is growing to the point where they are progressively 

impacting organisational products, business processes, and even the personal dimension. 

Companies that fail to integrate into a digital environment inevitably end up succumbing to so-

called “digital Darwinism”, in which only those who adapt quickly to technological trends 

survive in the marketplace (Schwartz, 2001). Consequently, it is imperative to constantly 

innovate in order to stay abreast of current potentials and trends, a process commonly referred 

to as Digital Transformation (DT). A notable gap in the existing literature is the absence of a 

commonly accepted definition of this concept. As Table 1 illustrates, various scholars have 

formulated different conceptualisations, reflecting the multiple perspectives of this 

phenomenon. 

 
Table 1 - Digital Transformation definitions  

Source: Author's personal elaboration 



 8 

In this thesis, we will mainly refer to the definition proposed by Saldanha (2019), who describes 

Digital Transformation, also called “Digital Transformation 2.0”, as the strategic integration of 

emerging technologies such as Artificial Intelligence (AI), Machine Learning (ML), and the 

Internet of Things (IoT). Through this integration, it is possible to simplify operations, extract 

useful insights from data, and develop creative business models. Thus, the current digital 

transformation pertains to the Fourth Industrial Revolution. Unlike previous phases of digital 

transformation, which focused primarily on harnessing technology to achieve specific goals, 

Digital Transformation 2.0 represents a more holistic change: it aligns technology with an 

organisation’s core strategy and culture. Digital transformation, indeed, profoundly affects the 

foundations of a company, starting with its organisational structure, which becomes more agile 

and responsive (Lee & Edmondson, 2017). The aim is to reduce hierarchical rigidity and 

internal divisions, favouring a more open model in which information and services can flow 

freely within the organisation. Besides redefining the corporate structure, digitisation leads to 

the emergence of new strategic roles, which stimulate innovation and facilitate change (Singh 

et al., 2020). This process also has an impact on corporate culture, fostering a more risk-

oriented, collaborative and experimental mindset (Kane, 2019). Value creation processes also 

change, with increasing integration of services into traditional business models (servitization), 

a key element for competitive advantage in the long run (Kryvinska & Bickel, 2020; Linde et 

al., 2021). Another central aspect concerns the use of business data, which becomes a strategic 

asset for generating business value (Barrett et al., 2015). Finally, one of the most noticeable 

effects of digital transformation is the change in the relationship between customers and the 

company: interaction with services increasingly takes place through digital channels, 

redefining the user experience and how products and information are accessed (Curi & 

Casquino, 2022; Mangalaraj et al., 2021).  

Despite the increasing focus on digital transformation, there is often confusion between related 

terms with different meanings. Indeed, in academic literature and common language, the terms 

Digitisation, Digitalisation and Digital Transformation are often used interchangeably, 

generating ambiguity. However, each has a specific meaning and refers to different stages in 

the process of adopting and integrating digital technologies within a company. Digitisation 

refers to the conversion of analogue information into digital format (sequences of 0s and 1s), 

thus making it processable, storable and transmittable by computers (Maltaverne, 2017). 

Digitalisation, on the other hand, concerns the use of digital technologies to modify and 

optimise existing business processes (Unruh & Kiron, 2017). Finally, Digital Transformation 

represents the broadest and most profound phase of change, in which digital technologies do 
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more than simply enhance processes, as they lead to the development of new business models. 

As described by Maltaverne (2017), it is the design of “new ways of doing things that generate 

new sources of value”. 

 
Figure 1 - Phases of Change 

Source: Adapted from Kocaoglu, B. (2024). Logistics Information Systems: Digital Transformation and Supply Chain 

Applications in the 4.0 Era. Springer, p. 37. 

Over the past decade, this huge phenomenon has substantially altered the competitive 

landscape of numerous industries, including that of logistics services.  As defined by The 

Economic Times (2024) “logistics involves the systematic management of acquiring, storing, 

and transporting resources to their intended destinations”. In this industry, ensuring effective 

operations management is crucial, especially in today's highly competitive global environment. 

Moreover, with the advent of globalisation, the logistics industry has begun to face significant 

challenges as demand is outstripping forecasts, driven by emerging technologies disrupting the 

market (Muango et al., 2021). In order to remain competitive and foster growth, logistics 

service providers are therefore challenged to redefine their value proposition for shippers and 

customers by increasing operational efficiency, solving critical industry issues and delivering 

an increasingly intelligent, fast and sustainable experience (DP-DHL, 2018; Gruchmann and 

Seuring, 2018; Daugherty et al., 2019). From this perspective, technology assumes a decisive 

role in distinguishing the value of logistics (Gunasekaran et al., 2017), as it is able to promote 

innovations (Mathauer and Hofmann, 2019) capable of further raising efficiency and 

responsiveness (Gunasekaran et al., 2017). 

Digital transformation is redefining the transport and logistics (T&L) industry globally. It is 

one of the main drivers of change, along with service excellence in B2B and B2C markets, 

decarbonisation of operations according to ESG targets, and the need for constant growth in a 

changing competitive environment. Traditionally perceived as a labour-intensive industry, 

T&L is achieving significant improvements in productivity, efficiency and scalability through 

the adoption of digital technologies (PwC, 2024). Digital transformation in this area is a 

complex process, involving technological innovation, customer focus, operational efficiency, 

regulatory compliance and cultural change as Fig.2 illustrates. 
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Figure 2 - Key drivers for transformation 

Source: PwC, 2024 

Companies that strategically integrate these elements will not only successfully meet the 

challenges but will also be able to seize new opportunities for growth and competitive 

differentiation. 

Logistics has always had customer satisfaction as its main objective and the profound changes 

taking place are largely the result of the evolution of customer expectations, which continue to 

transform, redefining the standards of the industry. As customers’ needs and wants evolve, the 

industry must adapt and find ever more efficient and effective ways of operating. What 

consumers prefer nowadays are convenience, control, automation, transparency and above all 

a personalised experience. Technology has certainly influenced people’s new inclinations, 

having significantly simplified our lives. It is now commonplace to browse online shops and 

social media, as well as to use digital banking and video on demand. This is also evidenced by 

generational differences. Note for instance generations Y and Z, located in the 1990s and later, 

have grown up with a superior digital experience and in fact behave differently. Consequently, 

in their professional life they expect to be offered the same things that they have come to 

appreciate in their private life, which is why expectations regarding the customer experience 

and professional tools must change accordingly (Wurst & Graf, 2021).   

Digitalisation is transforming logistics and supply chain management, reducing costs, and 

errors through automation. This approach consists of reproducing the physical world in digital 

form, using tools such as optical character recognition (OCR) and the Internet of Things (IoT). 
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The so-called digital twins, integrated with tangible reality, push forward the boundary of 

automation, requiring the conversion of products and services into data, rules and algorithms. 

Robotic process automation (RPA), artificial intelligence (AI), blockchain technologies and 

smart contracts are the main enablers of this evolution. In the Fourth Industrial Revolution, 

these innovations do not operate in isolation but are integrated into digital platforms. These 

platforms act as ecosystems which aggregate information on digital identities, prices, services, 

shipping locations and data generated by IoT devices. Consequently, this leads to creating vast 

volumes of data that require artificial intelligence tools for analysis and value extraction. The 

new digital realities are gaining market share, threatening traditional suppliers who, if they do 

not adapt, risk an increase in customer churn rate and a reduction in margins, which is 

particularly critical in the SME segment. In parallel, companies from other sectors are entering 

logistics, as shown by Amazon and Alibaba, which have progressively internalised the 

management of shipments, developing their own logistics infrastructure, from warehouses to 

transport and delivery networks. In some markets, these platforms already offer excess logistics 

capacity to third parties, consolidating their role in the sector. The logistics landscape is 

therefore evolving rapidly. Traditional carriers are focusing on direct sales and customer 

contact, while shippers are adopting digital tools to become logistics operators. Start-ups are 

introducing new business models, technology companies are establishing themselves as 

logistics intermediaries and some operators are specialising in providing software solutions 

(SaaS) or data analytics (AaaS). This transformation is redefining the business models and 

competitive dynamics of the entire industry (Wurst & Graf, 2021). 

1.2 Industry 4.0: Definition and Key Technologies 
Industrialisation was the main force behind the changes in world history that began in the 19th 

and 20th centuries and continue to shape the 21st century and our lives. 

Industrial revolutions, from past to present, have been the result of the emergence of human 

needs. Indeed, so far, man-made innovations have generated profound transformations that 

have primarily impacted the functioning of the economy. From the invention of the steam 

engine to digitally automated production, the First Industrial Revolution and subsequent 

revolutions led to significant changes in the production process. As a result, increasingly 

complex, automated and sustainable production systems have emerged (Paksoy et al., 2021). 

It was the Frenchman Louis Guillaume Otto who first mentioned the concept of the “industrial 

revolution” in a letter of 1799.  Today, by this term we mainly refer to “a radical change in the 

production activities, methods and presentations used to transform raw materials, manufactured 



 12 

goods and semi-finished products into the final commodity”, as Sözen and Mescio˘ (2019) 

define it.  

 
Figure 3 - An Overview of the Four Industrial Revolutions 

Source: Paksoy, T., Koçhan, Ç., & Ali, S. S. (Eds.). (2021). Logistics 4.0: Digital Transformation of Supply Chain 

Management. CRC Press, p. 3. 

The industrial revolutions developed in three waves. The first originated in Great Britain in the 

1870s, later spreading to Western Europe and the United States. The second affected Russia, 

Japan, parts of Eastern and Southern Europe, as well as Canada and Australia from the 1880s 

onwards. The last wave began in the 1960s in the Pacific Rim, reaching Turkey, India, Brazil 

and other parts of Latin America two decades later. Each phase of industrialisation rapidly 

involved countries that were not yet industrialised, transforming their basic social and 

economic structures.  

The first three industrial revolutions took place over a period of almost 200 years.  Industry 1.0 

was initiated with the introduction of mechanical production facilities through the invention of 

water and steam machines. In fact, starting with mechanical looms powered by the steam 

engine in the late 1700s, textile production shifted from private homes to central factories, 

leading to a sharp increase in productivity. Almost 100 years later, Ohio marked the beginning 

of the second industrial revolution by using conveyor belts in the Cincinnati slaughterhouses. 

This revolution was characterised by the introduction of mass production, induced by 

electrification and the division of labour (Taylorism), i.e. the use of machinery powered by 

electric and combustion engines, as well as the first examples of assembly lines (Paksoy et al., 

2021). The Third Industrial Revolution, also called digital revolution, then began to take shape 

in the 1970s as a result of improvements in information technology and advanced electronics 
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that enabled the automation of the industrial processes (Hermann et al. 2016). Modicon’s 

introduction of the first programmable logic controller in 1969 was the turning point that made 

digital programming in automation systems possible. This paradigm still holds the reins of 

modern automation systems engineering, leading to highly flexible and efficient automation 

systems (Drath and Horch 2014). Finally, Industry 4.0 has emerged. Industry 4.0 refers to the 

integration of digital technologies into production processes, leading to smart factories and 

interconnected systems. This paradigm exploits the use of cyber-physical systems (CPS), the 

Internet of Things (IoT), Artificial Intelligence (AI) and data analytics to automate processes 

and support decision-making (Donald et al., 2024). This is done through the extensive use of 

information and communication technologies (ICT) linked to an environment of objects, 

services and data, thus enabling real-time production. Increasing digitisation involves products, 

value chains and business models, helping to improve operational efficiency, reduce costs and 

increase productivity (Abdirad and Krishnan, 2020). Figure 4 shows how, in the context of 

Industry 4.0, the integration of physical and digital systems can foster the creation of smart 

factories. 

 
Figure 4 - Schematic of smart factories with general properties required in Industry 4.0. 

Source: Ugur M. Dilberoglu et al. / Procedia Manufacturing 11 ( 2017 ) 545 – 554 
 

 



 14 

 

Industry 4.0 is a revolutionary advancement fuelled by nine technological pillars (See Fig. 5). 

 
Figure 5 - Fundamental Technologies of Industry 4.0 

Source: Rüßmann et al. 2015 
Autonomous Robots 

The use of industrial robots is not new and has existed for several decades. In the past, robots 

used in industry were configured to perform repetitive and monotonous tasks, executing a 

series of movements within pre-defined programmes. These robots were therefore not very 

sophisticated: apart from safety functions, they did not have any intelligence systems. In other 

words, these robots were only equipped with specific systems that locked the robot to avoid 

incidents (The Boston Consulting Group, 2015). The latest generation of robots, defined 

‘intelligent collaborative robots,’ rely on sensors and artificial intelligence to provide flexible 

and contextual responses, adapting to different situations and needs. Unlike traditional robots, 

these robots possess a cognitive capacity that enables them to think and act autonomously, 

learning from mistakes and minimising possible inaccuracies. (Lima et al., 2019).  Moreover, 

these robots redefine industrial automation through human-machine collaboration. This is not 

a simple replacement of human labour, but a change in the skills required: less skilled operators 

will be progressively replaced by augmented operators, capable of interacting with machines. 

These robots integrate cutting-edge technologies (e.g. computer vision, geo-localisation, haptic 

sensors, mechatronics, cloud robotics and artificial intelligence) which allow them to automate 

physically demanding tasks such as lifting heavy loads, precision positioning and visual quality 
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control, reducing effort and risks for workers (Ammari et al., 2018). This opens up an area of 

cooperation between man and machine, where the role of the general worker is replaced by that 

of a highly skilled operator, responsible for higher value-added tasks (Confartigianato, 2017). 

Simulation 

With the help of simulation software, a virtual representation of a physical object can be created 

in order to comprehend its behaviour, forecast its performance, compare options, and ultimately 

select the best one. By altering its variables, the virtual model can be used to simulate a series 

of operations and determine how those changes will affect the system as a whole. In a 

warehouse, for example, simulation allows the operational capacity of machines and the flow 

of resources from inventory to be kept under control, facilitating more efficient utilisation and 

encouraging the introduction of just-in-time systems. (CFI, 2015). 

Horizontal and vertical system integration 

Industry 4.0 requires deep integration of data and systems along the entire value chain, thus 

enabling the transformation of companies into cohesive and automated entities (Bartodziej, 

2017). We can distinguish between horizontal and vertical integration. Horizontal integration 

concerns the coordinated management of the production chain, which facilitates the sharing of 

information and resources between decentralised production sites and promotes global value 

networks (Grosvenor, Liu & Qin, 2016). This approach improves competitiveness and 

flexibility through collaboration between companies (Li et al., 2016). On the other hand, 

vertical integration concerns product lifecycle management, linking hierarchical levels for a 

continuous flow of information between production and management processes (Chukalov, 

2017). Essential for smart factories based on cyber-physical systems and IoT technologies, it 

enables the dynamic reconfiguration of processes (Ayala et al., 2018). The convergence of 

these integrations is crucial for smart factories, as it supports coordinated production 

management through advanced value networks and improves market adaptability and 

responsiveness (Ganzarain, Ibarra & Igartua, 2018). The adoption of integrated strategies 

increases productivity, resource efficiency and opens up new business models (Adamik, 2019). 

Industrial Internet of Things 

Underlying the development of Industry 4.0 is an intensive use of the Internet, which serves as 

a central tool for information management. The very idea of the fourth industrial revolution is 

based on the creation of an online communication channel capable of ensuring a continuous 

two-way flow of data between humans and machines, but also between machines themselves 

(Cooper & James, 2009). The term Internet of Things (IoT) refers to the network of physical 

devices (‘things’) equipped with sensors, software and digital technologies, capable of 
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connecting and communicating with each other using the Internet (Partners et al., 2015). When 

the ‘things’ that are connected are industrial devices or systems used to support industrial 

operations, then we are referring to the Industrial Internet of Things (IIoT). Examples of IIoT 

can be industrial operations such as manufacturing, quality control, supply chain and logistics 

(Arnold & Kiel, 2016). IIoT integrates information and communication technologies (ICT) 

within the production environment, connecting various types of devices through the use of 

sensors, so that they communicate with each other and with a centralised control unit. Indeed, 

the very nature of this approach requires that data is first monitored and administered on an 

IIoT platform and then flowed to a cloud server that represents the central brain of the system. 

In a production system, the data that can be collected from these sensors can be for example 

heat, temperature, pressure, moisture level, vibration, friction and motion. Through the 

continuous acquisition of this data in real time, statistical correlations with product 

performance are established, providing a comprehensive view of every single aspect of the 

system. IoT has a huge potential in smart factories, leading to reduced production costs, 

enabling preventive maintenance and creating a safer working environment (Anastasiadis, 

Lampropoulos & Siakas, 2019). 

Cybersecurity 

As products and production processes become increasingly connected and distributed, they 

generate an ever-increasing flow of information that consequenlty exposes the company to the 

risk of cyber attacks (The Boston Consulting Group, 2015). For this reason, it is essential to 

ensure confidentiality, authenticity, integrity and privacy. Cybersecurity is an instrument that 

provides protection from potential damage to hardware and software components and from 

data breaches (Adamik, 2019). Therefore, it is crucial to create a reliable data management 

infrastructure in order to ensure an optimal level of security and reliability of IT platforms.  The 

main goal of any cybersecurity-related operation is to safeguard data and strengthen the 

security system (Buliga, Müller, & Voigt, 2018). After that, such measures need to be shared 

with institutions which establish security rules, and with final customers who must be informed 

about potential risks and make sure their privacy is protected (Broberg et al., 2019). Protection 

relies on encryption to authenticate information and secure transmission to guard against 

eavesdropping. Cybersecurity includes threat detection, infrastructure protection, vulnerability 

identification, real-time low-impact recovery, and the protection is done at three different 

levels: user, cloud and production (Csik et al., 2016). Integrated measures consolidate corporate 

security in a more robust manner, while partnerships with third parties and sharing of best 

practices establish uniformity of standards. 
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Cloud 

As already mentioned several times, everything in Industry 4.0 is data-driven. Inevitably, this 

requires the need for large channel capacities to process and store this data. In this sense, cloud 

computing is crucial (Siagri, 2021). It is a virtualized platform that provides computing, 

networking, storage and analysis capacity over the Internet for more efficiency, versatility and 

capacity for scaling. Cloud computing is a mechanism for sharing and storing information. This 

technology is characterised by the speed with which it operates, allowing administrators to save 

data in the cloud and set up digital systems for process monitoring and control (Juan-Verdejo 

and Surajbali 2016). It is composed of three elements: front-end that encompasses user access; 

back-end that is exemplified by infrastructure of the provider; and network that ties all these 

players together. There are three fundamental services that the user has access to: Software as 

a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS). In the 

context of manufacture, Cloud Manufacturing shows us a new paradigm of production 

management in which digital and physical assets get pooled in the cloud to maximise the supply 

chain. IoT technology makes smart resource allocation possible and automatic process control 

easy to implement (Martinelli et al., 2021). Costs get minimized, infrastructure is simplified, 

and ease of access to real-time information increases. Moreover, cloud computing facilitates 

easy management of Big Data to manage large quantities of structured as well as unstructured 

data. Indeed, it can be asserted that cloud computing and data analytics have become 

indispensable tools to foster innovation and productivity in Industry 4.0 (Nuñez et al., 2017). 

Additive Manufacturing 

Conventional production techniques must be rethought in light of Industry 4.0’s requirement 

for mass customisation. Because of this, Additive Manufacturing (AM) is an essential element 

in this scenario. Unlike traditional manufacturing processes like milling and turning, which 

produce products by removing material, or injection moulding, which produces products by 

injecting materials into a mould (Rutkofsky & Banu, 2018), AM creates three-dimensional 

solid objects by building a layer of materials on top of each other (Padmakumar, 2022). 

Industrial companies are increasingly using this technology to move away from mass 

production of standardised products towards smaller batches of customised and sophisticated 

products with advanced attributes. (Dilberoglu et al, 2017).  

Augmented Reality 

Augmented reality (AR) is a technology that integrates digital information into the real 

environment to enhance the user experience by projecting virtual objects into the physical 

world (Paelke, 2014). AR enhances perception of the real world without intending to replace 
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it, in contrast to Virtual Reality (VR), which creates an entirely artificial environment. An AR 

system is characterised by three essential factors: integration between real and virtual objects, 

real-time interactivity, and consistent alignment between the two (Azuma et al., 2001). AR is 

widely used in the workplace, especially in human-machine cooperation, where it improves 

integration in cyber-physical systems (Lee et al., 2015) by enabling animations and simulations 

of products and processes. AR transforms workers into intelligent operators who can make 

strategic decisions and solve problems more effectively, supporting vertical integration in 

factories (Posada et al., 2015) and facilitating the transition to Industry 4.0 through the use of 

visual computing (Sudharshan, 2020). According to Jung and Tom Dieck (2017), AR plays a 

crucial role in this context, enabling employees to access company databases, providing 

relevant information instantly and improving flexibility and operational efficiency. 

Big Data and Analystics 

Big data analysis is the collection, processing and interpretation of large volumes of data to 

generate useful information to support business decision-making. This approach transforms 

intangible resources into tangible value, making decisions more objective and based on data 

rather than intuition or opinion. The data-driven decision-making process consists of three main 

phases: data collection and observation (from internal and external sources), processing and 

contextualisation to extract meaningful information, and application of the information to 

generate strategic knowledge. The evolution of big data is closely linked to other pillars of 

Industry 4.0, such as the Internet of Things (IoT), robotics and cloud computing. The 

generation and structured organisation of data in the production environment makes it possible 

to optimise processes, improve quality and increase service efficiency (Bagnoli et al., 2022). 

The integration of data into decision-making is essential, as every piece of data generated 

affects business activities, contributing to knowledge creation and strategy formulation (Chen 

et al., 2015). In the new industrial environment, data analysis enables quick and efficient 

responses to market fluctuations, improving the adaptability of companies. Without careful 

analysis, decisions would result in longer response times and reduced effectiveness (Esmaeilian 

et al., 2016). Consequently, strategic data management becomes a key element in creating value 

and optimising production processes (Kagermann, 2015). 

1.3 From Traditional Logistics to Logistics 4.0 
The term logistics is derived from the Greek «λογικòς» , meaning “which makes logical sense”. 

Logistics has played a fundamental role in the expansion of empires and in the management of 

supplies throughout human history. An example may be the figure of the logistician instituted 
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by Julius Caesar, or the creation of special military departments due to the vital importance of 

supply management during the First and Second World Wars. Only after the Second World 

War did logistics become the subject of in-depth study and research, in order to affit 

mathematically robust analytical and solution structures to logical principles. It was only after 

World War II that logistics became the subject of in-depth study and research, in order to affit 

mathematically robust analytical and solution structures to logical principles (Casadio Strozzi 

& Sala, 2024). The pillars of logistics (transport, inventory management and storage) have long 

been essential elements of industrial and economic activity. However, due to its fragmented 

nature, consisting of numerous sub-functions and subsystems that are often managed 

separately, it is only in the last 20-30 years that logistics has been recognised as an autonomous 

function. Today, both academia and business realise the importance of taking a more integrated 

and holistic approach to coordinating these different operations, to take into account their 

interrelationships and interactions and to ensure the optimisation of the overall operation 

(Rushton, Croucher, & Baker, 2022). The Chartered Institute of Logistics & Transport UK 

(2019) defines logistics as “getting the Right product, in the Right quantity, in the Right 

condition, at the Right place, at the Right time, to the Right customer, at the Right price”, that 

is commonly known as “The Seven R’s of Logistics”. Another important definition of logistics 

is the one given by the Council of Logistics Management, which defined logistics as “the part 

of the supply chain process that plans, implements, and controls the efficient, effective flow 

and storage of goods, services and related information from point of origin to point of 

consumption in order to meet customers’ requirements”.  

Logistics, according to the SCOR (Supply Chain Operation Reference) model, developed over 

time by the Supply-Chain Council (a non-profit organisation founded in 1996), is represented 

through a linear system involving the supplier-company-customer triad . This approach then 

extends to suppliers of suppliers and customers of customers, providing a general reference for 

the management of logistics activities (Figure 6) (Casadio Strozzi & Sala, 2024). 
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Figure 6 - SCOR Model 

Source: Supply Chain Council, 2008 

In this scheme, each link in the chain (supplier, company, customer) is responsible for the same 

types of activities, which are, however, managed in different ways and with different horizons 

depending on the level of planning required and the actual role of each actor. Consequently, 

suppliers and customers must be clear about their areas of intervention, albeit with a different 

scope of governance. In particular: 

• Procurement processes (source): they define the rules of engagement with suppliers 

(quantity, frequency of deliveries, prices, payment methods, penalties, performance 

indicators, etc.), as well as how goods are transferred, received, checked and stored. 

This portion of the model can be referred to as inbound logistics. 

• Production processes (make): these concern production planning, the realisation of 

the product/service involved in the chain and, consequently, monitoring and evaluation 

activities. 

• Distribution processes (deliver): the company selects and uses internal or external 

forwarding services to place the manufactured goods on the market, adopting an 

appropriate distribution scheme to reach the target market. This section of the model 

refers to outbound logistics. 

• Return management processes (return): they have to be designed and managed with 

particular attention to their peculiarities (return procedures, inspection, repair or 

disposal), including support and follow-up activities, which need to be attended to 

punctually.  

As the SCOR model makes clear, logistics is split into inbound and outbound logistics. 



 21 

 
Figure 7 - Inbound and Outbound Logistics Activities 

Source: Paksoy, T., Koçhan, Ç., & Ali, S. S. (Eds.). (2021). Logistics 4.0: Digital Transformation of Supply Chain 

Management.CRC Press, p. 17. 

According to Porter (1985), inbound logistics refers to the relationship with suppliers and 

includes all the activities necessary to receive and store raw materials or goods arriving within 

the company e.g. consolidation of goods, choice of carrier and mode of transport, 

warehousing and backhaul management. Outbound logistics, on the other hand, includes all 

activities required to collect, store and distribute output from manufacturers to buyers, e.g. 

network planning and management, order processing, vehicle scheduling and routing, materials 

handling and warehousing of finished goods (Paksoy et al., 2021). Product characteristics are 

the criterion that differentiates inbound from outbound logistics. The materials handled in 

inbound logistics are raw materials or unfinished products, as opposed to outbound logistics 

which only handles finished goods. Furthermore, due to higher production values and strict 

customer satisfaction requirements, such as on-time delivery, outbound logistics requires more 

complex processes than inbound logistics. Physical distribution is the area of business 

management that deals with all material movements. It is usually associated with outbound 

product movements, but actually extends to inbound product movements as well (Ballou 2007). 

The activities that take place in a warehouse begin with receiving, where the unloading of 

goods, document control, quality control and the possible modification of loading units take 

place to make them suitable for storage. Next, we move on to warehousing, where the loading 

units are assigned their location and physically located. Once the goods are stored, they may 

need to be moved to the picking area. At this point, we proceed to order filling, which includes 

picking, packing, order consolidation, completeness, accuracy and quality checks, and the 

modification of loading units for shipment. Finally, we come to shipment, structured in the 

grouping of the loading units by carrier and the loading of the means of transport (Casadio 

Strozzi & Sala, 2024).   

These are the basic characteristics of logistics. Over time, changing consumer preferences and 

expectations, increasing globalisation, advances in communication technologies, the expansion 
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of activities to be handled and the influence of digital innovations have radically altered the 

way in which logistics operates. 

If we consider the different industrial revolutions in chronological order, it is evident that each 

evolution of the production sector has had parallel effects on logistics processes (Timm and 

Lorig, 2015). In other words, the development of logistics closely follows industrial 

development. It is no coincidence that the growth path of logistics (Figure 8) is divided into 

four phases, just like the evolutionary process of industry (Galindo, 2016). 

 
Figure 8 - Development Process of Logistics 

Source: Paksoy, T., Koçhan, Ç., & Ali, S. S. (Eds.). (2021). Logistics 4.0: Digital Transformation of Supply Chain 

Management.CRC Press, p. 21. 

The first phase (Logistics 1.0) was initiated by the mechanisation of transport in the late 19th 

and early 20th century. In fact, the first industrial revolution (Industry 1.0) characterised by the 

industrialisation of the steam engine occurred in parallel with this period. At the time, 

warehouses were conceived as rooms for finished products or raw materials, which were 

handled and transported manually by people (İyigün & Görçün, 2022). With these major 

changes, human and animal power were essentially replaced with distribution by sea or rail 

(Wang et al., 2016). Ships and trains equipped with steam engines became the main means of 

transport for the movement of goods and containers, leading to a significant growth in transport 

capacity, marking the beginning of the era of mass transport (Paksoy et al., 2021). 

The second phase (Logistics 2.0) emerged in the 1960s with the automation of handling 

systems. During this period, the spread of electricity and the introduction of materials such as 

steel, copper and aluminium stimulated mass production techniques in the manufacturing 
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industry, while automated systems for loading, unloading, storage and sorting gradually 

replaced conventional warehouses. The presence of electricity in logistical processes made it 

possible to automatically place and retrieve products from the shelves, facilitating the 

replacement of manual forklifts with electric handling and transport vehicles (Wang et al. 

2016). On the transport front, the advent of container ships redesigned cargo handling in ports, 

marking a further acceleration towards mechanisation and automation of logistics activities 

(Paksoy et al., 2021). 

The third phase (Logistics 3.0) emerged in the 1980s with the spread of logistics management 

systems. In fact, the integration of computers and information technology (IT) initiated the 

third logistics evolution, leading to significant automation and systemisation of activities 

(Paksoy et al., 2021). In this context, software such as the WMS (Warehouse Management 

System) and the TMS (Transport Management System) have taken on a key role, capable of 

more accurately planning incoming processes, managing supplier demand and optimising the 

transport of the end product or raw materials (Galindo, 2016). In addition, this period is 

characterised by the use of automatic moving belts or electric forklifts in internal handling 

operations, while in some companies we find advanced robots that transport materials on 

predetermined routes (İyigün & Görçün, 2022). 

The digital transformation of logistics processes, commonly referred to as ‘Logistics 4.0’, 

marks a crucial shift away from the traditional, ‘hardware-oriented’ approach towards an 

integrated, automated model based on IT platforms that exploit cyber-physical systems (CPS), 

Internet of Things (IoT), Data Mining (DM), RFID, sensors, GPS and cloud computing. This 

paradigm does not only innovate the technological infrastructure, but invests the entire 

organisational and management structure of the supply chain, from goods transportation to 

storage, distribution to packaging, and real-time tracking (Yilmaz and Duman, 2019; Timm 

and Lorig, 2015). In parallel, the prospect of intensive use of connectivity and Industry 4.0 

principles, such as interoperability, information transparency, technical assistance and 

autonomous decision-making capacity (Horenberg, 2017), makes possible highly automated 

and coordinated workflows, capable of adapting quickly to changing market needs. From this 

perspective, the development of logistics 4.0 platforms offers a structured and ‘global’ response 

to the growing complexity of goods and information flows (Fernández-Villacañas, 2019a). 

New-generation logistics centres, known as ‘4.0 platforms’, take the form of intermodal hubs 

in which the integration of different modes of transport (road, rail, maritime, air) takes place in 

real time, exploiting advanced digital technologies and coordination based on shared data. This 

perspective is part of the broader context of the so-called ‘Global Sustainable Logistics’, which 



 24 

aims to reconcile competitiveness and environmental, social and economic sustainability, in 

line with the sustainable development objectives defined by the main international 

organisations (Carter and Rogers 2008). Indeed, the wide spread of e-commerce and the need 

to reduce costs, errors and environmental impact drive towards distributed, flexible and 

connected value chains in open digital networks (Montreuil et al. 2010; Hofmann and Rüsch 

2017). Newly designed logistics platforms perform the function of operational centres where 

transport, storage, distribution and ancillary services activities are concentrated, generating 

competitive advantages for companies and surrounding territories (Fernández-Villacañas 2018; 

Gajšek and Grzybowska 2016). Thanks to the sharing of technologies and infrastructures, such 

hubs enable optimisation of physical and information flows, reduce handling costs and create 

synergies between public and private operators. Their effectiveness is particularly evident in 

supporting omnichannel and synchromodality strategies (Payne et al. 2017), where the choice 

of the most efficient transport mode  (road, rail or sea) is defined in real time, based on up-to-

date information on traffic, demand and environmental constraints. Moreover, the lean and 

agile approach that characterises the most advanced supply chains is reinforced by the use of 

Data Mining and AI techniques, which are crucial to forecast demand, plan inventories, and 

coordinate production and distribution in order to reduce delays and inefficiencies (Ça˘glar 

2014). In many cases, the evolution towards ‘Logistics Platforms 4.0’ grafts onto existing 

infrastructural nodes - e.g. ports, freight villages and airports - gradually transforming them 

into multifunctional hubs with high technological content (Mladenow et al. 2016). Particularly 

relevant is the concept of the ‘aerotropolis’, i.e. a new model of urban development in which 

the airport becomes the hub of an integrated system of logistical, technological and commercial 

services, capillary connected to the surrounding economic fabric and international traffic 

corridors (Fernández-Villacañas 2019b; Kasarda 2019). By facilitating the rapid exchange of 

people and goods, the aerotropolis is a candidate as a nerve centre for logistics 4.0 platforms, 

thanks to the possibility of integrating air transport services with road and rail modes, reducing 

delivery times and improving access to global markets. A further building block of this 

transformation is ‘urban logistics’ (Boudoin et al. 2014; Rodrigue and Dablanc 2020), which 

has the task of harmonising the distribution of loads in metropolitan contexts: on the one hand, 

the growing demand for fast and personalised deliveries fuels urban traffic, on the other hand, 

municipalities must protect the liveability of cities, reducing congestion, pollution and 

inefficiencies (Lagorio et al. 2016). The realisation of urban sorting hubs (city hubs) - related 

to 4.0 platforms - makes it possible to consolidate shipments and rationalise delivery routes, 

perhaps using electric or environmentally friendly vehicles. Joint planning, based on advanced 
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information systems and predictive algorithms, proves essential to balance the needs of users 

and logistics companies (Fernández-Villacañas 2019a; Stindt 2017). In this perspective, 

logistics 4.0 platforms fully fit into the framework of smart cities and sustainable development 

initiatives (Szymańska et al. 2017). The constant interconnection between devices and systems 

- made possible by IoT and CPS - enables smart urban services (such as real-time traffic 

management), while the massive generation and analysis of data (big data) support faster and 

more accurate decisions. At the same time, the standardisation of communication protocols and 

the sharing of information between public and private actors foster an intermodal ecosystem, 

in which logistics nodes, transport means and infrastructures talk to each other, ensuring the 

synchronisation of processes and a holistic view of the value chain (Fernández-Villacañas 

2019b). In the future, a further evolution of this model could take the form of the ‘Physical 

Internet’ (Montreuil et al. 2010), which prefigures an open and global logistics system, based 

on standardised packaging formats and communication protocols, with the aim of minimising 

inefficiencies and maximising sustainability. Ultimately, the emergence of Logistics 4.0 and 

new logistics platforms, integrated with Industry 4.0, represents a coherent response to the 

challenges of an increasingly competitive, variable and environmentally and socially sensitive 

market (Hofmann and Rüsch 2017). The adoption of cyber-physical systems, the use of 

artificial intelligence algorithms and the synchronised planning of transport networks form the 

basis for automated, high-precision decision-making processes (Timm and Lorig, 2015). The 

ability to reduce costs and emissions while ensuring high standards of service becomes a key 

factor for the competitiveness of companies and the sustainable development of territories. 

These dynamics, enhanced by constant research and innovation, are already profoundly 

transforming both business models and organisational culture, pushing towards a ‘software-

oriented’ logistics paradigm that, by combining operational efficiency and strategic vision, 

responds in an integrated way to the needs of the supply chain and the community (Göçmen 

and Erol 2018). 

2. Artificial Intelligence in Logistics 4.0  
Artificial Intelligence (AI) is now the center of gravity of Logistics 4.0. What was once a 

substantially reactive supply chain becomes a proactive system, capable of anticipating peaks 

in demand, dynamically orchestrating fleets and warehouses, identifying anomalies before they 

result in failures and modulating flows in order to reduce energy consumption and emissions. 

The most recent literature shows that, by integrating supervised machine learning for 

forecasting, deep learning for computer vision and reinforcement learning for sequential 
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resource management, companies can reduce forecasting errors, significantly improve 

punctuality indicators, improve logistics costs by 15%, inventory levels by 35%, and service 

levels by 65% (McKinsey, 2021).	While AI enables hyper-performing logistics, it requires 

clean data infrastructures, advanced analytical skills and governance models that balance 

transparency, privacy and mitigation of decision-making biases. The challenges are clear: the 

quality of data often fragmented between partners, the need for explainability of models to 

comply with the new EU Regulation on AI, integration with legacy systems and, last but not 

least, the retraining of workforce skills towards roles of interpretation and algorithmic 

supervision. Yet the benefits far outweigh the initial costs: recent studies indicate that, thanks 

to digital twins and edge-AI platforms capable of processing information directly on board 

vehicles or sensors, it is possible to maintain operational continuity even in the absence of 

stable connectivity and drastically reduce decision-making latencies. An era of autonomous 

supply chains is thus emerging, in which logistics ecosystems do not simply react to events, 

but predict and model them, integrating considerations of economic efficiency with long-term 

ESG objectives. Starting from these premises, this chapter delves into the theoretical-

methodological framework of AI applied to logistics, analyses the main empirical evidence and 

outlines the strategic implications for companies that intend to translate the predictive and 

prescriptive power of data into a lasting, sustainable and measurable competitive advantage. 

2.1 Definition and Key Features 

AI is a branch of computer science that aims to create intelligent machines capable of 

simulating human-like intelligence (Tang & Hai, 2021). It encompasses a diverse range of 

techniques and approaches that enable machines to perceive, learn, reason, and make decisions. 

It is a rather intangible and very complex concept. Broadly speaking, it can be conceived as a 

scientific discipline that deals with a range of information technologies derived from the 

processes by which humans perceive, process information and act on the outside world using 

the human nervous system and body (Przegalińska, 2019). AI uses information derived from 

various fields, such as biology, computer science, philosophy, logic and psychology, and has 

already found application in several areas, such as natural language processing, speech 

recognition, intelligent robots, automated demonstration of theorems and image processing 

(Zhang & Lu, 2021). Its methodology makes it possible to transfer aspects of human behaviour 

to machines and supports new forms of knowledge representation and systems capable of 

handling information in a structured and efficient form. Being inherently multidisciplinary, AI 

seeks to understand and perhaps replicate the enormous range of functions associated with the 
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human intellect, thus moving towards an ever more advanced technology (Brachman & Henig, 

1988).  

Historical evolution: 

• Phase 1 (1950-2010): The era of algorithmic innovations 

In the first phase, from the early 1950s to the early 2000s, the limits and progress of AI 

were strongly linked to innovation in algorithms (Wu et al., 2025). The theoretical roots go 

back to the work of Turing (1950) and the Dartmouth Conference (1956), which defined 

the goal of replicating human reasoning ability in machines. At the time, the lack of large 

data sets and considerable computing power relegated AI systems to projects focused on 

symbolic reasoning (e.g., expert systems such as DENDRAL or MYCIN) or early neural 

networks (Hopfield 1982; Rumelhart et al. 1986). Despite interest in ‘connectionism’, 

many initiatives stalled due to technical limitations - including unspecialised hardware and 

small data sets - until work such as LeCun’s on convolutional networks for digit recognition 

(LeCun et al. 1989) paved the way for ‘deep learning’. 

• Phase 2 (2010-2024): Computing revolution and ‘renaissance’ of deep learning  

Around 2012, AI underwent a major breakthrough when the availability of GPUs (Graphics 

Processing Units) became the main driver of results (Wu et al., 2025). AlexNet1 

(Krizhevsky et al. 2012) demonstrated how parallel GPU training of a deep network could 

far surpass previous computer vision methods. This period was characterised by the idea 

that ‘bigger is better’, as the growth of parameters in models and the extension of datasets 

dramatically improved performance. Deep neural networks conquered areas such as vision 

and natural language processing (Vaswani et al. 2017). The focus was on specialised 

hardware (GPUs, TPUs) and massive datasets. In the mid-2010s, the emergence of deep 

reinforcement learning made AI systems able to compete with humans in complex domains 

(Silver et al. 2016). 

• Phase 3 (2024 onwards): ‘data-centric’ paradigm 

Subsequently, the focus began to shift from mere computational advances to data quality 

and specialisation (Wu et al., 2025). The availability of clean, varied and contextual 

information became the real factor for improvement. The so-called ‘data-centric AI’ (Ng 

2021) highlights the importance of refined processes for acquiring and curating datasets, 

reducing bias and expanding coverage. In parallel, reinforcement learning strategies have 

 
1 AlexNet, developed in 2012 by Alex Krizhevsky and Ilya Sutskever under the guidance of Geoffrey Hinton, was the 
breakthrough that popularized deep learning for computer vision: its paper, cited in over 130,000 publications as of 2023, 
decisively demonstrated the superiority of CNNs in automatic image analysis. 
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moved towards the management of more realistic environments (car racing simulators, self-

driving simulators such as CARLA), while integration with robotics and control systems 

has paved the way for a deeper AI presence in physical contexts. 

According to Wu et al., (2025)  each of these phases is not completely separate from the others, 

but overlaps and complements each other, highlighting how the availability of algorithms, 

computational power and specific data has been the real driving factor from time to time. The 

shift from simple pattern recognisers to complex decision-making systems, up to autonomous 

robots and, perhaps in the future, intelligences capable of redefining their own goals, underlines 

the profound transformation taking place and opens up far-reaching ethical and regulatory 

questions (Wu et al., 2025).  

The historical evolution of AI, from the earliest symbolic and connectionist studies to the 

current scenario dominated by deep learning, reinforcement learning and an increasing focus 

on data quality,  has laid the foundations for four distinct generations of AI: 

 
Figure 9 - The evolution of AI Generations from AI 1.0 to AI 4.0 

Source: Wu, J., You, H., & Du, J. (2024). AI generations: From AI 1.0 to AI 4.0. University of Florida. 
 
 
• AI 1.0: Information AI 

‘Information AI’ includes systems that excel in pattern recognition and data analysis, such 

as computer vision methods (AlexNet) or language models based on relatively “superficial” 

architectures. These solutions, consolidated by decades of research on neural networks and 

statistical approaches (Wu et al., 2025), work well on static datasets, but lack true 

autonomy. 
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• AI 2.0: Agentic AI 

The second generation, known as ‘Agentic AI’, emphasises the shift towards the ability to 

make decisions in dynamic environments, such as automatic trading software or real-time 

recommendation agents (Wu et al., 2025). Here, the impetus comes from reinforcement 

learning and autonomous planning: systems do not merely classify information, but interact 

with the (digital) environment and adapt their strategies. AlphaGo is an emblematic 

example of this (Silver et al. 2016). 

• AI 3.0: Physical AI 

‘Physical AI’ takes artificial intelligence beyond the purely virtual space by integrating it 

into robots, autonomous vehicles and physical devices (Wu et al., 2025). The acquisition 

of sensory data (cameras, LiDAR, proximity sensors) and the need to act promptly in the 

real world impose reliability and safety requirements. Examples include industrial 

assembly robots, autonomous drones and self-driving vehicles (Levine et al. 2018). Here 

the challenge lies in optimising computation and algorithms in the presence of noise, 

uncertainties, energy limitations and human interaction. 

• AI 4.0: Conscious AI 

The fourth generation, which to date is highly speculative, hypothesises systems with target 

self-management capabilities and, in an extreme form, even some form of ‘consciousness’ 

(Wu et al., 2025). Important topics include the necessity of strict “AI alignment” to 

guarantee that AI objectives and values continue to be consistent with human ones (Russell, 

2019) and philosophical discussions over the nature of consciousness. Although the 

actualization of a “self-conscious” AI is yet hypothetical, the subject is pertinent to 

comprehend potential future ramifications with regard to governance, ethics, and 

accountability (Wu et al., 2025). 

AI embraces many technologies, the two main ones being machine learning (ML) and deep 

learning (DL). Nowadays, intelligent systems offering AI capabilities often depend on ML. 

ML describes the ability of systems to obtain knowledge from training data of specific 

problems to simulate the analytical model building technique and associated problem solving 

(Kristian, 2018). AI and ML are becoming the main and best problem-solving methodologies 

in various fields of industry and research, particularly due to the recent triumph of DL (Jordan 

& Mitchell, 2015). DL is the subset of ML and ML is the subset of AI, as can be seen in Figure 

10. If a higher level of detail is desired, have a look at Figure 11. 
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Figure 10 - AI components 

Source: McKinsey & Company. (2024, April 3). What is AI (artificial intelligence)? [Illustration] (p.3). 
 

 

Figure 11 - Building blocks of AI  

Source:Jeff Winter 

Machine learning (ML) is the idea of developing computer systems that are capable of 

improving their performance autonomously through experience, ranking today as one of the 

fastest growing technologies at the intersection of statistics and computer science, and 

representing a central element of data science and AI. The extensive application of machine 

learning algorithms in data-intensive environments indicates their relevance in many different 

sectors, e.g., manufacturing, education, public safety, healthcare, marketing, and finance 
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(Dietterich, 1997). These techniques are also crucial for handling next-generation problems 

like natural language processing, robotic control, speech recognition, facial recognition, 

character understanding, database exploration, gaming, and medical data analysis (Raj & Kos, 

2022). 

Deep Learning (DL) is a sub-category of ML. It is a technique for instructing computers to do 

something that comes naturally to human beings, namely to understand by example. In DL, a 

computer model performs classification tasks directly from text, sound or images. DL models 

have the potential to sometimes even surpass human performance, being able to achieve greater 

accuracy. Computer vision, data mining, supercomputers, fraud detection, natural language 

processing, customer relationship management systems, human activity recognition and 

autonomous vehicles (Raj & Kos, 2022) are all possible fields of application for DL 

technology. Figure 12 presents the differences between the operating principles of ML and DL. 

It shows that feature extraction and classification are two different steps in ML, whereas in DL 

they occur together in one step. 

 
Figure 12 - Difference between machine learning and deep learning 

Source: Oppermann, A. (2019). What is deep learning and how does it work. Towards Data Science. 

Artificial Neural Networks (ANNs) represent the fundamental algorithmic structure on which 

deep learning is based. ANNs represent a set of learning models inspired by the functioning of 

the human brain, in which neurons (units) are interconnected by means of synaptic weights 

(Rathore, 2016). The basic structure of ANNs is in fact based on the idea of elementary units 

(neurons) organised into an input layer (input), one or more hidden layers and an output layer 

(output), as illustrated by various control architectures (Filho, Cabral, & Soares, 1998). 
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Figure 13 - Major classification of artificial neural networks 

Source: Fernandez, C. M., Alves, J., Gaspar, P. D., Lima, T. M. & Silva, P. D. (2023). Innovative processes in smart 

packaging: A systematic review. Journal of the Science of Food and Agriculture, 103(3), 986–1003. 

Of the various types of ANNs, Perceptrons constitute the simplest and most historically 

relevant form, having initiated the systematic study of artificial networks due to their inherent 

classification and learning properties (Singh & Banerjee, 2019). Multilayer Perceptrons (or 

‘feed-forward neural networks’) are distinguished by the propagation of information through 

successive, loop-free layers; Recurrent Neural Networks (RNNs), on the other hand, include 

recurrent connections that make them particularly effective in modelling sequential data; 

Modular Neural Networks, which are rapidly expanding, adopt learning strategies and task 

decomposition through specialised modules. Convolutional neural networks (CNNs) are 

central to deep learning and are widely used in fields such as computer vision and natural 

language processing. We find its applications in areas such as autonomous vehicles or facial 

recognition systems (Li et al., 2021). Radial-based neural networks (RNNs), derived from 

function approximation, have an excellent capacity for fast training and local response (Dash 

et al., 2016). Finally, Long Short-Term Memory (LSTM), conceived as a variant of RNNs, 

possess cells with multiple memory states and are exploited for a wide range of recognition, 

prediction and sequence analysis tasks (Smagulova & James, 2019).   

2.2 Artificial Intelligence (AI) in Logistics 
Artificial Intelligence has become the reason for the revolution of many industries; among 

them, the leading position belongs to logistics. Logistics, in the modern business world, 

includes many activities and processes requiring urgent decisions and solving various problems 

right on the spot. AI can predict outcomes and then optimize the processes. This potentially 
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very powerful tool might be in the position to transform complex processes and standardize 

them. AI models can actually learn from data and hence adapting it to specific business needs 

becomes far easier for a company (Woschank, Rauch, & Zsifkovits, 2020).  

In the rapidly evolving logistics landscape, AI plays a role as a process ‘transformer’, 

providing new levels of efficiency and resilience. The motivations behind the need for 

improvement are manifold: 

I. Increasing global complexity 

Modern supply chains often extend on a global scale, involving a great number of 

suppliers, distributors and customers. This makes flow management an extremely 

complex task. In this scenario, AI offers tools capable of integrating different variables 

(such as transport costs, delivery times and customs regulations) in real time to elaborate 

dynamic and flexible plans.  Several studies (Ejjami & Boussalham, 2024) show how 

machine learning algorithms are able to integrate large volumes of data from the field (via 

Internet of Things, sensors, GPS, etc.) to adapt shipping plans in response to unexpected 

events or sudden changes in demand. Furthermore, some studies report that in case of 

extraordinary events, AI’s predictive ability allows for a very quick switch to alternative 

routes or secondary distribution centres, leading to an overall increase in system resilience 

(Boute & Udenio, 2021). This flexibility is crucial in a global marketplace characterised 

by volatility and uncertainty, as evidenced by the growth of geopolitical crises, extreme 

weather phenomena and the rise of e-commerce (Ejjami & Boussalham, 2024). In 

addition, AI models help to improve end-to-end traceability, a key factor in preventing 

counterfeiting and inefficiencies, and in providing greater transparency to consumers 

(Chen et al., 2021). 

II. Increased competitive pressure and reduced margins 

The exponential increase of online orders and the expectation of just-in-time deliveries 

squeeze the operating margins of logistics companies (Belhadi et al., 2024). In today’s 

environment, companies are faced with rising costs (fuel, maintenance) while having to 

offer competitive rates and innovative services (e.g. same-day delivery). Through the use 

of sophisticated predictive models applied to different time horizons, AI helps to reduce 

the tensions arising from market competition.  

III. Need for greater reactivity and continuous adaptation 

Demand volatility and sudden changes in trends (e.g. regulatory changes, health crises, 

sudden changes in consumer preferences) require responsive supply chains (Singh, 2023). 

In this context, AI is certainly a tool that helps companies in the logistics sector to increase 
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this responsiveness by enabling them to constantly process vast amounts of data (e.g. 

sales, inventory, traffic and weather data) in order to be able to redefine delivery plans in 

real time if necessary (Xia et al., 2020; Javaid et al., 2022). 

 

2.2.1 Fields of application  

The scientific and professional literature has highlighted how AI is successfully applied in 

many areas of logistics. In specialized literature, it is now common to distinguish four AI 

systems, each of which finds peculiar applications in the logistics field: supervised AI, 

unsupervised AI, machine learning-based AI and reinforcement-based AI. Supervised AI is 

based on labeled data and is particularly effective for predictive activities  like demand 

estimation, distribution route optimization or dynamic calculation of delivery times. 

Unsupervised AI, on the contrary, operates on datasets without predefined labels and lends 

itself to the recognition of hidden patterns. Clustering and dimensionality reduction techniques 

are used, for example, to segment customers according to purchasing behavior or to identify 

anomalies in warehouse flows. In a context characterized by increasing demand volatility, these 

features allow to identify micro-trends that are difficult to detect with traditional methods, 

favoring the customization of services and the improvement of operational efficiency 

(Ramirez-Asis et al., 2022). Alongside these two paradigms, there is AI based on machine 

learning in the broad sense, which acts as a methodological “glue”: regression algorithms, 

classification, time series and ensemble methods are integrated into Warehouse Management 

Systems (WMS), fleet management platforms and management dashboards to support tactical 

and strategic decisions. Unlike classic deterministic models, machine learning is able to update 

itself incrementally as new IoT data flows into corporate data lakes, ensuring an always up-to-

date view of the logistics network. Finally, reinforcement-based artificial intelligence stands 

out for its ability to “learn by doing”: an agent explores the logistics environment (physical or 

simulated) and receives rewards or penalties based on the results obtained (Ramirez-Asis et al., 

2022). This logic finds application, among other things, in the real-time control of autonomous 

handling vehicles, in the dynamic definition of stock levels and in the multi-objective 

optimization of the transport budget. The continuous feedback element, characteristic of 

reinforcement learning, is valuable in complex scenarios where operating conditions change 

rapidly as in the case of e-commerce distribution centers during seasonal peaks. The main 

application areas of AI as a whole will be analyzed in detail later in the chapter. A detailed 

breakdown can be seen in Figure 14. 
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Figure 14 - Use of the AI system in different parts of logistics 

Source: Boorová, B., Mijušković, V. M., Aćimović, S., & Đurđić, D. (2024). Application of artificial intelligence in Logistics 
4.0: DHL case study analysis. Economics of Enterprise, 29, 292–304. 

 
Below we delve into five key domains: Demand Forecasting, Route Optimization, Robotics, 

Computer Vision and Gen AI. 

2.2.1.1 Demand Forecasting 

Demand forecasting has always been one of the most critical activities for logistics 

management, because it directly affects procurement decisions, inventory allocation, 

production planning and transport choices. However, “classic” statistical methods, based on 

historical series and the assumption of relatively stable markets, are increasingly less effective 

in contexts characterized by short product life cycles, aggressive promotions and continuous 

exogenous shocks (Begum et al., 2024). The digitalization of the supply chain and the 

explosion of data from IoT sensors, e-commerce platforms and social media have therefore 

favored the adoption of AI techniques capable of learning in real time from heterogeneous 

sources and modeling highly non-linear relationships (Priore et al., 2018). Within the vast AI 

panorama, supervised learning algorithms are the first piece applied to logistics. They range 

from linear regression – which is still useful when the relationship between the independent 

and dependent variable is substantially linear (Ye et al., 2014) – to ensemble models such as 

Random Forest, which combine tens or hundreds of decision trees trained on different 

subsamples of the dataset to reduce variance and bias, returning robust forecasts even in the 
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presence of strong noise (Vairagade et al., 2019). Also boosting techniques, such as gradient 

boosting machine, further improve precision by iteratively correcting the errors of the previous 

model (Perera et al., 2019). Many case studies, particularly in retail and manufacturing, show 

consistent reductions in forecast errors compared to both traditional methods and single 

decision trees (Purnamasari et al., 2023). When seasonality is complex or demand is affected 

by long latency periods, deep learning algorithms offer even superior performance. Recurrent 

neural networks (RNN) and, above all, Long Short-Term Memory (LSTM) are able to 

“memorize” long-term temporal dependencies and adapt to multidimensional datasets that 

include meteorological variables, macroeconomic indicators and sentiment extracted from 

social media (Sukolkit et al., 2024). Combining LSTMs with statistical models such as 

ARIMA2 resulted in the development and implementation of hybrid techniques. These 

techniques are capable of capturing both linear and nonlinear components of time series, 

significantly reducing the mean absolute percentage error (Perera et al., 2020). Along with 

predictive models, unsupervised learning approaches such as k-means clustering are beneficial 

for segmenting customers, channels, or product categories based on comparable demand 

patterns (Mani et al., 2017). The combined adoption of segmentation and forecasting allows to 

customize reordering parameters, improving the overall efficiency of the distribution network. 

In scenarios where labeled data is scarce (typical of new markets or newly launched products) 

semi-supervised approaches are gaining ground, exploiting a small subset of validated data to 

guide the discovery of patterns in the large volume of unlabeled data (Abolghasemi et al., 

2015). Recent literature also emphasises the role of fuzzy logic3 as a technique for modelling 

uncertainty and common approximations in logistics processes (Chaowai & Chutima, 2024).  

The combination of fuzzy rules with AI models allows for the incorporation of specialised 

knowledge, while keeping the ability to learn from data. The result is a more flexible 

framework that takes into account quality defects, delivery delays and lead time variability, 

elements often overlooked by more “rigid” models. On the operational level, companies that 

have implemented AI solutions for demand forecasting report tangible benefits: reduced 

inventory levels, fewer stockouts, and more accurate planning of delivery routes (Diabat & 

 
2 ARIMA (AutoRegressive Integrated Moving Average) is a statistical model for time series that combines three components: 
autoregression (AR), which uses a finite number of past values; integration (I), which differencing the series to make it 
stationary; and moving average (MA), which models the error as a linear combination of past errors. 
 
3 Fuzzy logic extends classical Boolean logic by replacing the “true/false” values with a continuous interval between 0 and 1, 
thus indicating the degree of truth of a statement. Through membership functions, linguistic rules of the type “IF … THEN” 
and a subsequent “defuzzification”, it translates qualitative concepts (for example “high demand” or “long lead-time”) into 
numerical values that mathematical models can use to provide more realistic decisions that adhere to operational complexity. 
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Deskoores, 2016). Thanks to IoT connectivity, forecasts can be updated virtually in real time: 

sales data from cash registers, signals from beacons in the warehouse, or environmental 

parameters collected by sensors along the cold chain flow into the models, which re-optimize 

production and distribution logistics with very rapid feedback loops (Perera et al., 2019).  

However, significant challenges remain. Data quality which is often heterogeneous in format, 

frequency, and granularity, strongly affects model performance (Duan et al., 2019). The lack 

of transparency in deep learning architectures generates resistance in sectors subject to 

stringent auditability requirements, where the “black box” must be justified at a managerial 

and regulatory level (Raghupathi & Raghupathi, 2014). Added to this are the significant costs 

of hardware infrastructure, cloud, and specialized skills, which represent a particularly 

burdensome obstacle for SMEs (Albergaria & Jabbour, 2020). Finally, ethical issues such as 

bias in training data and privacy protection require adequate governance mechanisms (Zhang 

et al., 2020). Despite these critical issues, the evolution of AI towards increasingly scalable 

models leads to predict an expansion of their use in logistics. Integration with emerging 

technologies such as edge computing will reduce latencies, enabling “at-the-edge” forecasts 

and decisions directly on IoT devices. In parallel, the expansion of multi-modality datasets 

(text, images, process signals) will provide further fertile ground for advanced algorithms 

capable of capturing previously invisible nuances of demand. In this framework, AI does not 

replace the strategic role of the logistics planner, but amplifies their ability to interpret complex 

scenarios and act promptly across the entire supply network. 

2.2.1.2 Route Optimization 

Transportation route optimization is a strategic aspect in logistics management, as it heavily 

impacts both operating costs and the level of service offered to customers In today’s context, 

characterized by continuous demand variability, unpredictable weather phenomena and 

increasing road congestion, traditional planning methods (such as deterministic approaches to 

the “Travelling Salesman Problem”4 and the “Vehicle Routing Problem”5) highlight strong 

limitations: in addition to requiring very high computation times, they are unable to 

dynamically update the solutions (Vaka, 2024). Faced with this growing complexity, the recent 

evolution of AI techniques, and in particular the use of large learning models (large AI models), 

offers innovative perspectives to make the routing process more flexible, adaptive and precise 

 
4 TSP is a classic optimization challenge that seeks to find the shortest possible route that visits a set of locations exactly once 
and returns to the starting location. 
5 VRP is a generic name given to a whole class of problems concerning the optimal design of routes to be used by a fleet of 
vehicles to serve a set of customers.  
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(Ping et al., 2024).  Machine learning (ML) applications are now the cornerstone of predictive 

routing: algorithms such as gradient boosting, random forests and neural networks (including 

RNNs) learn from historical data – traffic patterns, delivery windows, road network 

morphology, weather variables – and anticipate bottlenecks before such events occur.A 

delivery company can then schedule shipments in less crowded time slots or preemptively 

change routes in the event of heavy rain, for example, resulting in improved punctuality and 

reduced emissions.  Experiments by multinational operators such as DHL and FedEx have 

proved the practical success of this technology, having recorded significant reductions in delays 

and operating costs thanks to continuously self-learning ML systems (Li, Zhuang, Yang, Lu, 

& Xu, 2024). When environmental uncertainty increases, reinforcement learning (RL) models 

extend forecasting capabilities with an online adaptation component. In a classic Markov 

Decision Process6 scheme, the “state” includes the vehicle’s current position, completed 

stages, capacity constraints, and even traffic conditions or warehouse opening times 

(Yarlagadda, 2024). In order to choose the action, that is the next destination, the AI agent 

maximises a reward function that penalises wasted kilometres and delays and rewards fuel 

efficiency and punctuality (Ejjami & Boussalham, 2024). A good example is UPS with 

ORION. It is a platform which can learn from millions of simulations and update routes in near 

real time, saving millions of miles traveled each year. Adopting multi-agent RL models similar 

benefits can emerge. By coordinating entire fleets, these models ensure constrained time frames 

are met in areas with extremely high delivery density while also removing bottlenecks at 

sorting centres.  When real-time data streams (such as those from IoT sensors) are included, 

the power of ML and RL is further enhanced as this data is immediately translated into route 

recalculations (Li, Zhuang, Yang, Lu, & Xu, 2024). Hybrid models – predictive in the long 

term and reactive in the short term – thus allow strategic planning and tactical adaptability to 

be combined, avoiding, for example, the simultaneous blocking of multiple vans in the same 

area at risk of congestion. The use of intelligent maps enriched with details on one-way streets, 

pedestrian zones or no-turn zones makes it easier to choose optimal loading zones and reduces 

the time drivers spend looking for parking, especially in high-density contexts. The use of AI 

in route optimisation goes beyond just figuring out the shortest path.  In addition, it makes it 

 
6 A Markov Decision Process (MDP), used in AI and reinforcement learning, describes the agent–environment interaction as 
a chain of states !, actions ", and rewards #: the agent, in state !! , selects an action "!, the environment returns a reward #!"# 
and transitions to a new state !!"#	according to a probability distribution %(!!"#|	!!, "!)	that depends only on the current state 
(Markov property). The goal is to find a policy that maximizes the expected sum of future rewards, i.e., the overall return of 
the agent’s behaviour. 
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possible to assign drivers and vehicles in the most efficient manner, reducing wasted kilometres 

and matching loads to actual warehouse space availability. Moreover, there is a major 

environmental impact: cutting the route traveled lowers CO₂ emissions and fuel costs, 

supporting the sustainability and ESG goals that are becoming more and more important in 

corporate policies (Ejjami & Boussalham, 2024). Empirical analyses show drops of 10–15% 

in total transportation costs and decreases of around 15% in average delivery times (Ping et al., 

2024). Anyway, this potential is not free from critical issues: the computational complexity and 

the need for a huge amount of “clean” and constantly updated data constitute non-trivial 

obstacles. Furthermore, the transparency of AI decisions and the management of possible 

biases (for example, in the preferential assignment of a certain sorting center) remain open 

questions. Nonetheless, the direction taken by the logistics industry is now clear: AI, integrated 

with IoT sensors and cloud data analytics platforms, represents the key to logistics 4.0. The 

result is a more resilient, sustainable logistics ecosystem that can meet increasingly stringent 

service standards (Li et al., 2024; Ping et al., 2024).  

2.2.1.3 Robotics 

The integration of robotics and Artificial Intelligence is generating a sea change in the 

industrial and manufacturing field, rewriting traditional definitions of operational efficiency, 

accuracy and safety (Khang, Hajimahmud et al., 2024). This is not just a technological 

advancement, but a true paradigm shift with implications ranging from risk management and 

complex decision-making processes to the automation of repetitive tasks. This transformation 

is particularly evident in the logistics sector, where AI-enabled robots are revolutionizing 

activities like order-picking, packaging, sorting and also last-mile delivery (Javaid et al., 2022).  

In parallel, the explosion of e-commerce has significantly increased the volume of goods 

transported on a daily basis, leading consumers to demand faster and more convenient 

deliveries (Simic et al., 2023). The adoption of intelligent robots marks a turning point in 

meeting the new challenging needs of customers. Indeed, it has been shown that autonomous 

electric vehicles, for example, are reducing the need for manpower, enabling a 25-35% increase 

in successfully completed daily deliveries alone, in the face of growing demand for advanced 

decision-making processes for robotic navigation (Wang et al., 2018). Thanks to these 

solutions, autonomous robots can predict delivery times of autonomous electric vehicles, thus 

drastically reducing errors and delays (Simic et al., 2023). These recent developments 

underscore the key role of AI in increasing trust in the use of robots, based on their ability to 

make systems safer, more reliable and able to handle the high level of complexity inherent in 
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operational environments (Kiangala & Wang, 2022). Traditionally, robots were considered as 

simple machines resulting from mechanical or electronic engineering, with a “bottom-up” 

approach that emphasised hardware and sensorimotor functions (Oliff et al., 2020). With the 

advent of artificial intelligence systems, we have witnessed an expansion of robotic 

capabilities. One example is the reduction of picking errors in warehouses, where the adoption 

of radio frequency identification (RFID) has had a considerable impact on the process (Ceyhun, 

2020). RFID tag embed unique identities which are read and transmitted via radio to a nearby 

reader, enabling to localize and track with precision the movements of robots or the goods 

position (Confidex, 2023). One notable example is Confidex, a company that has developed 

chips that can resist to various chemicals, intense washing and high temperatures to make 

automation compatible with the entire product life cycle (Confidex, 2023). However, there are 

some critical issues. Tags can get damaged, and managing and updating search tables 

(containing coordinates, routes or geographical positions) can be challenging (Oliff et al., 

2020). In the face of these limitations, computer vision (which will be discussed in detail 

below), emerges as a valuable alternative or complement, acting as the main system for 

navigation and cargo recognition (Dohrmann, Pitcher, & Kamdar, 2024). AI technologies that 

form the core of modern robotic systems include machine learning, computer vision, and 

natural language processing, each with its own strategic role. For what concerns machine 

learning, supervised learning methods improve the ability of robots to predict and optimize 

specific tasks, since training on labelled data allows them to provide precise indications on 

correct actions or configurations (Yadav B.R., 2024). Equally important is also the 

unsupervised learning, which allows to analyse large amounts of unlabelled data, identify 

unexpected patterns or anomalies, thus leading robots to become more adaptive in facing such 

unexpected circumstances (Dwivedi et al., 2019). Of particular significance is also the 

reinforcement learning, allowing autonomous systems to make decisions according to feedback 

from the environment, iteratively adjusting control strategy and playing a critical role for 

navigation, object manipulation and solving complex problems in real time (Cioffi et al., 2020). 

On the computer vision side, objects recognition and detection algorithms allow robots to 

identify specific elements, classify them with precision and manage procedures like assembly 

or sorting (Cioffi et al., 2020). Furthermore, pose estimation and tracking techniques allow to 

evaluate of the orientation and position of objects in space, favouring an accurate manipulation 

in sectors demanding high levels of accuracy. Because of these advances, applications of AI-

powered robotics extend to multiple fields: 
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• In warehouses, these robots automate picking, packing and sorting operations, reducing the 

use of manpower and increasing efficiency at the same time; 

• In the transport of materials, the use of autonomous mobile robots, capable of adapting their 

routes based on obstacles or changes, improves productivity in factories and warehouses; 

• In delivery services, these devices can move in urban environments or in company 

complexes to distribute goods directly to recipients, optimizing the route and minimizing 

delays (Yadav B.R., 2024; Cioffi et al., 2020). 

AI-driven control systems are the very basis of autonomous robots, as they enable them to 

tackle complex tasks and adapt to variable and unpredictable operating conditions (Yadav A.B., 

2024). In defining such systems, a crucial aspect is represented by control architectures, which 

establish how robots process information, plan their actions and perform specific operations 

(Dwivedi et al., 2019). On the one hand, there are reactive approaches, which favour immediate 

responses to sensory stimuli and are based on machine learning algorithms capable of rapidly 

analysing previous experience, thus allowing them to react promptly to rapid changes in the 

environment (Yadav A.B., 2024). On the other hand, there are deliberative approaches, which 

involve more in-depth planning oriented towards the achievement of long-term goals, often 

supported by techniques such as the use of decision trees and models based on symbolic 

reasoning. In many cases, however, hybrid control structures are preferred, as they are capable 

of combining the decision-making speed typical of reactive approaches with the analytical 

capacity and long-term strategic projection typical of deliberative ones (Dwivedi et al., 2019). 

AI plays a key role in this context, integrating real-time sensor data with high-level planning, 

ensuring that the robotic agent can simultaneously handle both immediate contingency needs 

and more strategic challenges. In terms of actual algorithms, a very important aspect is 

represented by the methodologies designed to govern the physical movements of the robot and 

regulate its interaction with the surrounding environment. PID (Proportional-Integral-

Derivative) controllers are a traditional solution, widely adopted for low-level control in tasks 

such as maintaining speed, position or orientation. Although they are known for their simplicity 

and effectiveness, they find a further evolution when they are combined with AI features that 

allow the dynamic optimization of the parameters, in order to make them more robust in the 

face of unexpected variations (Cioffi et al., 2020). A second important paradigm is represented 

by Model Predictive Control (MPC), based on the principle of predicting the future states of 

the system in a certain time horizon and deriving, for each interval, the optimal control action. 

This prediction is performed in real time, allowing to respect constraints and guarantee results 
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close to the optimal even in highly dynamic environments. The use of machine learning 

techniques, in the form of neural network models or other prediction tools, also allows to 

improve both the precision of the predictions and the speed with which the MPC solver is able 

to operate (Yadav B.R., 2024). A third fundamental axis in the construction of advanced control 

systems is Reinforcement Learning. With this technique, the robot does not simply follow 

instructions or execute decisions made by a central planner, but actively interacts with the 

environment, learning optimal control policies from feedback obtained in the form of rewards 

or penalties. Algorithms such as Q-learning or policy gradient methods allow defining lines of 

conduct that adapt to complex scenarios, including those characterized by uncertainty or 

sudden changes. With the advent of Deep Reinforcement Learning (DRL), made possible by 

deep neural networks, the ability to manage large state and action spaces has expanded, 

favoring applications in which the robot must perform complex evaluations, such as path 

planning in congested environments or the precise manipulation of objects with irregular edges 

(Yadav B.R., 2024). In practice, designing an AI-based control system requires addressing 

some cross-cutting challenges that affect the robustness and reliability of the robot (Dwivedi 

et al., 2019). Among these, the need to ensure real-time processing, so as to process sensor 

data, decide and act in a synchronized way even within very narrow time windows; to maintain 

stable and disturbance-tolerant behavior, so that the system continues to operate reliably even 

in the presence of noise, interference or imperfect data; and to be able to deal with unexpected 

or extreme situations, such as unmapped obstacles or component failures, thanks to techniques 

ranging from anomaly detection to online learning (Cioffi et al., 2020). The integration between 

AI control architectures and algorithms, therefore, allows to significantly increase the 

autonomy, precision and adaptability of robots, with important implications for their 

applicability in varied and turbulent contexts. Looking ahead, these advances push the 

boundaries of automation and robotic innovation, opening up scenarios where intelligent, 

adaptive machines can work alongside humans with unprecedented levels of efficiency and 

reliability (Yadav A. B., 2024). 

2.2.1.4 Computer Vision 

Nowadays, thanks to technological advances in 3D reconstruction, depth perception, and the 

interpretation of dark and blurry images, computer vision offers a wide range of new supply 

chain opportunities. 

AI provides computers with the capability of “thinking”, while computer vision allows them 

to “observe and understand”. Computer vision uses cameras to capture images or videos and 
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then applies AI algorithms to analyse the data extracted from these digital contents. 

Rudimentary visual AI systems are trained to simply distinguish one object from another. More 

advanced versions of these systems, on the other hand, are able to track objects from multiple 

viewpoints, learn autonomously and, in recent upgrades, make predictions through pattern 

recognition. Computer vision trend developed in conjunction with advances in deep machine 

learning, taking advantage of the increasing quality and decreasing cost of recording devices. 

There are several factors driving the adoption of computer vision technology, including the 

growing need for workflow automation and optimisation in several sectors (Dohrmann, 

Pitcher, & Kamdar, 2024).  

 
Figure 15 - Computer Vision Market Size Worldwide (in billion USD(US$)) 

Source: Statista. (2024). Computer Vision – Worldwide Market Outlook. Statista Market Insights. 
 
In 2024, the global computer vision market was valued at over US$ 25.92 billion and is 

projected to expand at a compound yearly growth rate of 15,96% by 2031, driven by ongoing 

advancements in AI, vision systems, and computer processing (Statista, 2024). Computer 

vision accuracy rates for identifying and classifying objects increased from 50% to 99% in less 

than a decade. Moreover, further integration of AI, automated machine learning, edge 

computing, Internet of Things, and other technologies will propel future adoption. Within the 

next five years, computer vision will be widely used in logistics operations, and a lot of new 

applications are probably going to appear.  By enabling safer, more sustainable operations and 

more automated, efficient procedures, this technology will support and promote future logistics 

success (Dohrmann, Pitcher, & Kamdar, 2024).  
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Figure 16 - Classification & segmentation of Computer Vision 

Source: DHL. (2024). Logistics trend radar 7.0: Your guide to innovation in logistics. 

 
Computer vision systems develop their capabilities repeatedly analysing wide range of high 

quality visual data. Through this iterative process, they learn to identify different images and 

distinguish even the smallest variations. To this end, two different technologies are adopted: 

deep learning and convolutional neural network. Deep learning uses algorithms and artificial 

neural networks able to improve themselves to continuously extract new information from 

visual input. On the other hand, convolutional neural network decomposes images into labelled 

segments and applies mathematical operations to these segments to refine the accuracy of the 

prediction over several iterations. In logistics contexts, these segmentation approaches can be 

extended to instance-level techniques that differentiate one parcel or pallet from another, even 

if they belong to the same category (Naumann et al., 2020). 

Today computer vision systems are used in different ways. The most common application is 

image classification: the system sees an image and predicts that it belongs to a certain class. 

Another well-known application is object detection, also known as machine vision: the system 

not only classifies an image but also takes note of its aspect (tabulation). Once an object has 

been identified, it can be tracked: object tracking is often done through the use of sequential 

images and videos. Yet another application of computer vision systems is content-based image 

recovery to increase the precision of digital image search and recovery (Dohrmann, Pitcher, & 

Kamdar, 2024). Figure 17 shows the various processes that computer vision images undergo. 
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Figure 17 - Image Processing Stages in Computer Vision 

Source: DHL Trend Research. AI-driven computer vision: A DHL perspective on the impact of computer vision in logistics.  

 

Already today, computer vision is proving its worth in a vast range of applications that 

transform everyday logistics operations: 

• Health and Safety Applications 

• People and Operations Applications 

• Maintenance Applications 

• Asset Management Applications 

• Dimensioning Application 

• Compliance Applications 

• Shipment Localization: Automatic Sorting 

Health and Safety Applications 
Accident Prevention 

Busy logistics facilities like warehouses, yards, and depots pose a serious risk to employees’ 

health and safety. Computer vision and AI technologies represent a valuable support tool for 

reinforcing safety and security, as they allow the movements of people and vehicles to be 

observed and analysed in real time. Speeding, moving in the wrong direction, parking in the 

incorrect spot, and other violations can be detected by a computer vision system.  In an attempt 

to minimise risk and hazardous behaviour, it can also detect non-compliance in real time (e.g., 

when workers are not using walkways), and it can send out safety alerts for timely intervention. 

This monitoring encourages proactive safety decisions, improves operational coordination and 

enables timely corrective actions to reduce risks, creating a more protected workplace. A 

significant example is the project launched by DHL: thanks to the AI-based solution for 

detecting risk events, developed by the startup Protex AI, a proof-of-concept was created that 

enables EHS (Environment, Health and Safety) teams to proactively intervene on safety. This 
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initiative made it possible to transform the information obtained into concrete actions, with the 

aim of reviewing work flows, raising operational safety standards and introducing targeted 

corrective interventions (Dohrmann, Pitcher, & Kamdar, 2024). 

Ergonomic Pose Improvement 

Human Pose Estimation (HPE) is a technology that exploit computer vision to identify and 

classify joints in the human body. It collects a series of coordinates for each joint, forming a 

skeletal representation that describes a person’s posture and movements. This information is 

essential for ergonomics, the discipline that studies the efficiency of people in the workplace. 

For example, leaning forward can increase the risk of back injury. Likewise, twisting or turning 

movements, improper lifting, and carrying excessive loads pose significant risks. An 

interesting case is the one of TuMeke, a tech company that developed AI ergonomic risk 

assessment platform using computer vision to detect incorrect postures: by recording and 

analysing video potentially dangerous movements can be detected (such as lifting boxes) and 

injuries prevented (Dohrmann, Pitcher, & Kamdar, 2024).  

Protective Personal Equipment (PPE) 

Employers are responsible for supplying Personal Protective Equipment (PPE) and ensuring 

its proper use in the workplace. For example, safety helmets, eye protection, and specialized 

clothing are common forms of PPE. However, simply wearing the correct equipment is not 

enough: it must be used correctly. Using computer vision, AI systems can verify adherence to 

safety procedures and even identify the reasons for non-compliance. These systems can be 

trained to recognize various types of PPE in real time by analyzing video streams from 

strategically positioned cameras, confirming that workers are both equipped with the 

appropriate PPE and using it correctly. Additionally, they can detect defective or damaged PPE, 

which represents a significant safety hazard. All this helps ensure compliance with safety 

protocols and avoid accidents (Dohrmann, Pitcher, & Kamdar, 2024). 

Driver Support 

Computer vision can also be used to detect signs of fatigue in drivers of heavy goods vehicles 

on long journeys. For example, thanks to cameras and machine learning algorithms, facial 

recognition technology can detect lowered eyelids and changes in expression, signs that 

indicate fatigue. In such cases, the system can suggest the driver to stop to have a break, and, 

if necessary, it can also activate an alarm to warn other road users of a possible hazardous 

situation. This technology is also able to check whether the seat belt is being worn correctly, 

plus whether unauthorized accesses inside the vehicle is occurring. The latest and most 

advanced computer vision systems can perform multiple tasks simultaneously. An example of 
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this multitasking ability can be found in autonomous vehicles: the system identifies and 

classifies more elements (e.g., pedestrians, other vehicles or obstacles) at the same time, tracks 

their movements and makes decisions based on this information allowing for safe travel 

throughout the entire journey (Dohrmann, Pitcher, & Kamdar, 2024). 

People and Operations Applications 
Heatmaps 

Computer vision-based heat maps enable to accurately identify bottlenecks and areas of high 

activity within the warehouse, using contactless and non-invasive methods both inside and 

outside the facility. The analysis of video streams from surveillance cameras allows to measure 

the frequency and duration of movements of people and vehicles, applying a color-coded 

overlay. For example, a certain shade of red indicates high activity, while white signals a lack 

of movement. This data helps managers to identify inefficiencies like overcrowded or, at the 

opposite, underutilized sections, so as to optimize inventory and placement, increasing the 

efficiency of operations overall. To assess the impact of the modifications, it is also possible to 

compare heatmaps over time (Dohrmann, Pitcher, & Kamdar, 2024).  

Head Counting 

Warehouse managers must guarantee an adequate staffing to complete planned activities. Few 

employees can cause delays, while having too many can lead to unnecessary costs. Moreover, 

it is essential to respect the safety limits concerning the maximum permitted capacity. Manually 

counting people in a defined area is tedious, repetitive, and a waste of time. For this reason, 

computer vision systems are adopted to count both people and vehicles within logistics 

facilities 24/7. This visual information allows managers to analyze the collected data and 

determine the optimal number of operators needed to perform specific activities, always 

ensuring safety requirements are met (Dohrmann, Pitcher, & Kamdar, 2024). In this regard, it 

is worth mentioning AVID, a startup which created an AI software using surveillance cameras 

that provides automatic detection and counting solutions. The software is also enriched by 

demographic information like age and gender, useful to provide operational insights and 

patterns for businesses. 

Pick Path Optimization 

It is essential that products in the warehouse are picked quickly, accurately and efficiently. In 

fact, pickers must follow the best routes during their shift, since this activity represents a 

relevant part of the overall operations. Thus, improving picking paths results in tangible 

operational savings plus an increased customer satisfaction. While algorithms alone cannot 
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guarantee success in every situation, adopting computer vision increases the likelihood of 

optimizing the route. Cameras video streams feed machine learning algorithms which identify 

patterns and trends in the data, suggesting changes to the workflow. They can recommend to 

repositioning equipment or supplies to reduce distance travelled, without compromising 

picking efficiency for example. Moreover, this data may highlight the benefits of changing the 

order of execution of certain activities: if a heatmap reveals a high intensity activity in a specific 

warehouse area, this allows to analyse workflow in that area and intervene to eliminate any 

potential bottleneck (Dohrmann, Pitcher, & Kamdar, 2024). 

Access Control 

In traditional camera surveillance, analyzing large volumes of footage requires human 

intervention, while an intelligent surveillance system uses sophisticated algorithms for real-

time monitoring, analysis, and detection. Back-end AI systems process video very quickly, 

providing detailed information that can improve security and reduce the possibility of theft. In 

addition to serving as a basic visualization platform, a computer vision system can identify 

unauthorized access or intrusions into restricted areas. By analyzing video streams, the system 

can detect when someone enters a restricted area or crosses a virtual boundary. As a 

consequence, the system immediately triggers an alarm to allow security personnel to take 

timely action. In addition, another ability of the system is to detect patterns of routine activities, 

thus facilitating the identification of anomalies like suspicious behavior or strange movements 

in areas of interest (Dohrmann, Pitcher, & Kamdar, 2024). 

Maintenance Applications 
Predictive Maintenance 

Computer vision technology allows to conduct a constant and accurate monitoring of logistics 

assets, alerting the maintenance team before problems arise. Thanks to the analysis of data 

collected from various types of equipment, it can predict when critical assets will require 

intervention. In this way, managers can plan maintenance and repairs, thereby prolonging the 

life of the assets and reducing the risk of damage (Dohrmann, Pitcher, & Kamdar, 2024). 

Quality Inspection and Defect Identification 

When a site moves thousands of items of various types, sizes and shapes every day, it becomes 

difficult to spot a damaged package. However, if a box is wet, torn or deformed and the contents 

are damaged, it affects brand image and customer satisfaction. When it comes to quality 

inspection of shipments, it is essential to detect any damage as soon as possible (Dohrmann, 

Pitcher, & Kamdar, 2024). Before the diffusion of computer vision technology, identifying 

defects was a very demanding manual process that was subject to human error and required 
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personnel to be constantly available. Today, computer vision can automatically identify 

potential imperfections, errors, color inconsistencies, deformations, anomalies, malfunctions 

and even signs of tampering with over 90% accuracy by comparing an object’s current shape 

to its expected geometry (Noceti et al., 2018). This technology is a valuable support for Gemba 

Walks in warehouses, allowing real-time monitoring of the condition of machinery and 

structures during inspections, collecting and analysing data. It also allows for calculating repair 

and damage costs, simplifying maintenance procedures thanks to integration with asset 

management systems.  

 
Figure 18 - Pallet AI: Defect Detection System for High-Speed Pallet Inspection 

Source: IVISYS. (2024). PalletAI – Automated pallet inspection system. 
 
For instance, Ivisys, a cutting-edge startup, has developed Pallet AI, an innovative solution for 

identifying defects, specifically designed for rapid pallet inspection. Thanks to an advanced 

neural network, the system uses pattern recognition techniques to process footage from 

multiple cameras, detecting anomalies on 250-450 pallets per hour and thus boosting both 

productivity and worker safety (IVISYS, 2024).  

Asset Management Applications 

Utilization & Capacity Assessment 

Computer vision is extremely useful in capacity planning, as it can rapidly estimate how much 

space is being utilized, reducing the guesswork often associated with human observation. 

The technology can assess the overall volume inside trucks and containers and calculate the 

available space before loading. For instance, by counting the number of items or verifying 

whether a forklift’s load area is occupied, systems can immediately detect underfilled or 

overflowing transportation containers (Özgür et al., 2016). With this data, the system can 

determine the ideal placement of products to minimise wasted space. Furthermore, 

measurements can be taken throughout the entire loading process, enabling real-time decisions 

based on concrete data. Some approaches monitor how many parcels remain on a pallet, 
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ensuring that resources are fully utilized and preventing partial shipments from leaving the 

facility (Dörr et al., 2020). This results in time savings, greater efficiency, lower environmental 

impact and reduced costs. Computer vision also supports the analysis of pallets and cages’ 

dimensions and orientation, ensuring proper positioning to optimize weight distribution and 

increase efficiency (Dohrmann, Pitcher, & Kamdar, 2024). A good case to bring to attention is 

that of a Danish start-up called Sentispec. It uses this technology to monitor every stage of 

interaction with inventory, both in and out of the warehouse.  

 
Figure 19 - Sentipec Load Optimization Workflow 

Source: Sentispec. (2024). Smart logistics solutions powered by AI and computer vision. 
 

Instead of allowing partially filled trucks and containers to exit the facility, Sentispec Inspector 

records fill levels daily, allowing the planning department to maximize overall loading 

(Sentispec, 2024).  

Asset Counting and Localization 

Losing pallets, crates, carts, and other assets is a common problem in warehouses, and it costs 

time and money to find, return, or replace them. By leveraging computer vision systems that 

can automatically recognize and localize pallets, for instance via stereo cameras or RGB-D 

sensors (Varga et al., 2015; Xiao et al., 2017), managers can count and track these resources in 

real time, even in areas of the warehouse where the signal is weak and tracking sensors are not 

working properly. Modern approaches frequently combine plane fitting, region-growing, and 
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feature-based classification to isolate each asset from the warehouse floor (Molter & Fottner, 

2018).  Deep learning algorithms, such as those employing Faster R-CNN7 or Kalman filtering8 

for temporal tracking, count objects detecting and classifying them in an image or video stream. 

They identify key points and then repeat the analysis to count all occurrences of a given object, 

further boosting accuracy by matching each detected object to an existing model and 

continually updating its position (Mohamed et al., 2020; Molter & Fottner, 2019). Assets can 

be recognized by type (roller crate, shelf, forklift) or by a unique identification code, valid for 

both a single asset and multiple assets captured by the same camera. For localization, a multi-

target tracking system (multi-camera or multi-sensor setups) that uses the so-called “handshake 

method” is particularly effective: when an asset leaves the field of view of one camera and 

reappears in that of another, a backend algorithm analyzes these transitions to reconstruct its 

path within the warehouse. This thus providing the basis for real-time, centimeter-level 

georeferencing throughout the warehouse (Haanpaa et al., 2016). The computer vision platform 

of Kibsi, a startup in the sector, is based precisely on the networks of cameras already present 

to monitor assets and activity in the warehouse.  

 
Figure 20 - From Raw Footage to Real Insights With Kibsi 

Source: Kibsi. (2024). Computer vision solutions for smart operations. Kibsi. 

The assets can be georeferenced on a virtual map, allowing operators to locate them with an 

accuracy of the order of a few centimetres (Kibsi, 2024). 

 

 
7 Faster R-CNN (region-based convolutional neural network) is an object detection model that identifies objects in an image 
and draws bounding boxes around them, while also classifying what those objects are.  
8 The Kalman filter fuses a system model with noisy measurements (assumed to be Gaussian noise) to give, at each new 
reading, the most probable estimate of its hidden state. It is used to estimate quantities that are not directly measurable, to 
strengthen controllers and to identify model parameters. 
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Fleet Management 

Goods outside the warehouse can be monitored h24 by an integrated system that combines 

computer vision with video surveillance. To allow only authorized vehicles to access the yard, 

cameras recognize each truck and record the time of entry, exit, and number of daily trips. The 

system also analyses vehicle usage, including periods of inactivity, helping to optimize fleet 

management (Dohrmann, Pitcher, & Kamdar, 2024). 

Dimensioning Application 
Measuring the area or volume of an object before shipping is essential for optimally managing 

storage capacity, handling, load utilization and freight transportation, as well as for correct 

invoicing. This process also supports the updating of data that warehouse management systems 

(WMS) rely on (Kucuk et al., 2019). Time is a crucial factor in dimensioning. Considering, for 

example, the huge amount of packages of various sizes that DHL handles every day, often at 

high speeds on conveyor belts: even a short delay in measuring can significantly slow down 

the process. In addition, recognizing irregularly shaped packages is not only a matter of speed, 

but also of more efficient use of materials and appropriate packaging. Thus, handling 

irregularly shaped items adds complexity and calls for robust computer vision or sensor-fusion 

strategies (Brylka et al., 2021). The dimensioning process automated using computer vision 

lends itself to various solutions. For instance, DHL pioneered a gate-based scanning solution 

using dual MS Kinect sensors, discretizing height maps to quickly compute total volume with 

an error margin in the millimeter range (Kückelhaus, 2013). Laotrakunchai et al. (2013), 

instead, developed a smartphone-based method that merges accelerometer readings with 

feature-matching on a pair of images to derive parcel dimensions, making the process more 

portable. Likewise, fixed systems such as MetriXFreight from the German company Metrilus, 

constantly monitors a predefined measurement area and detects the dimensions of an object if 

it remains within that area for a certain period of time. Alternatively, the Californian company 

Qboid offers a mobile dimensioning system based on portable terminals, equipped with 3D 

color sensors and integrated software. This approach allows to automate the estimation of shape 

and dimensions in a wider number of contexts than traditional systems (Sun et al., 2020).  

Compliance Applications 
Label Detection and Alignment 

In the logistics context, computer vision plays a key role in the automation of Label Detection 

and Alignment activities, enabling systematic and scalable control of packages along the entire 
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supply chain. Transport labels act as “unique identifiers” of the shipment and, consequently, 

are essential for the orderly management of goods flows and for compliance with safety and 

traceability requirements (Mishra et al., 2019). In the case of food, beverage or pharmaceutical 

products, any labelling errors (illegible expiration dates, missing ingredients, undeclared 

allergens) generate additional costs and can lead to legal disputes. An artificial vision system, 

integrated with IoT sensors present in sorting centers, acquires images of the front and back of 

the products before shipping, comparing each label with a reference model and verifying, when 

necessary, the expiration date. If inconsistencies are detected (for example faded ink, misplaced 

labels, falsified codes or incorrectly labeled items) the algorithm reports the anomaly in real 

time: the package is isolated, relabeled and quickly reintroduced into the distribution flow, 

reducing delays and minimizing damage to the company’s image (Dohrmann, Pitcher, & 

Kamdar, 2024). 

Barcode Scanning and OCR Capture 

Automatic product identification is now based on a synergy between computer vision, barcode 

reading and OCR, capable of replacing manual typing at critical points in the supply chain. 

Traditional linear barcodes introduced in the 1980s have evolved into 2D symbologies, while 

OCR converts printed or photographed texts into data that can be processed by management 

systems. Research has shown that object detection models trained on synthetic datasets (Dörr 

et al., 2019) or designed for unfavorable environmental conditions (Brylka et al., 2020) reach 

levels of precision that are now compatible with warehouse operations. Lightweight 

architectures9 such as those tested by Kamnardsiri et al. (2022) also guarantee low latencies, 

an essential requirement on high-speed belts. This scientific evidence is confirmed in concrete 

industrial applications. PepsiCo has adopted KoiReader’s AI platform, which can read labels 

and barcodes at line pace even when they are partially covered, damaged or tilted. Similar 

solutions are proposed by Banner, whose sensors decode poor-quality barcodes on reflective 

surfaces, and by Belgian Zetes, which integrates gates equipped with cameras to photograph 

complete pallets, simultaneously decode multiple labels and compare the data with shipping 

orders. In case of missing or illegible codes, the system blocks the package and notifies the 

operator in real time. Each operation is documented with dated images as an objective proof 

for audit purposes (Dohrmann, Pitcher, & Kamdar, 2024). In short, the combination of 

academic progress and market solutions demonstrates that automatic label reading is no longer 

 
9 “Lightweight architectures” are neural networks that have few layers and a small number of parameters to calculate. In 
practice, they “weigh” less on the processor and therefore produce a very fast response (latency of a few milliseconds). 
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a frontier innovation, but a mature technology that reduces errors, accelerates flows and 

generates valuable data for continuous optimization of the logistics chain. 

Shipment Localization 

Automatic Sorting 

Before being sorted by type and delivery destination, packages must be identified. This visual 

classification step can be too slow and tiring for staff, creating potential bottlenecks, which is 

why automating these tasks is essential. Through artificial intelligence and machine learning, 

it is possible to acquire images and positions of packages, envelopes, bags and other formats, 

in order to precisely determine the orientation and positioning of each item. To speed up these 

operations, automated camera-based sorting systems are adopted, which achieve the best 

results when using high-quality 3D data. These systems recognize the unique characteristics of 

each object, allowing automatic picking and vertical alignment. As the products flow on the 

conveyor belt, they are uniformly separated, aligned and singulated (a process known as 

“singulation”). The cameras acquire images of each item, which are then processed by AI-

based technologies. Once identified, the object is sent to the appropriate bin or directed to 

another conveyor for further sorting. This computer vision system associates the captured 

image with the sorting decision in real time, breaking down the process into three main stages: 

converting the shot into a binary image, separating the object from the background, and finally, 

recognition (Dohrmann, Pitcher, & Kamdar, 2024). 

2.2.1.5 Gen AI 

A Generative Artificial Intelligence (Gen AI) model is a particular machine learning 

architecture capable of creating new data (text, images, audio or video) by drawing inspiration 

from the patterns learned during the training phase, without limiting itself to copying the 

original examples. These models, although having a highly expressive basic structure, 

generally require a fine-tuning phase to be adapted to specific application domains, as occurs, 

for example, in solutions dedicated to logistics. Deep neural networks are particularly suitable 

for this purpose because, thanks to the flexibility of their architectures, they are able to model 

different types of data – sequential, spatial or multimodal – with high effectiveness (Janiesch 

et al. 2021; Kraus et al. 2020). Among the most widespread generative paradigms today, on 

the one hand, we can distinguish Generative Adversarial Networks (GANs), which produce 

visual and multimedia content through the competition between two adversarial networks, and, 

on the other, transformer-based models, capable of exploiting large amounts of information 
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found online to generate coherent texts. The latter family includes Generative Pre-trained 

Transformers (GPT), which became known thanks to conversational applications such as 

ChatGPT. Refinement with Reinforcement Learning from Human Feedback (RLHF) 

techniques has further improved the quality of the responses produced, introducing a virtuous 

cycle of evaluation and correction (Ziegler et al. 2019). When such models are integrated into 

complex systems – for example, fleet management or warehouse automation platforms in the 

logistics sector – it is necessary to consider infrastructural elements (scalability of distributed 

computing), deployment elements (compatibility with heterogeneous environments and 

devices) and usability elements (intuitive interfaces and recognition of user intent). The 

continuous evolution of open-source versions increases the need to constantly monitor 

performance, since unexpected decays can compromise the quality of the service (Chen et al. 

2023). Furthermore, the limits deriving from the temporal cut-off of the training data – or from 

the compression of the stored information (Chiang, 2023) – can be mitigated by connecting the 

model to external databases or real-time retrieval systems, in order to guarantee updated 

responses. Gen AI market reached a value of US $ 37.87 billion in 2024 and it is expected to 

grow at an annual growth rate (CAGR 2025-2031) of 36.99%, resulting in a market volume of 

US$ 442.07bn by 2031 (Statista, 2024). Within the next three to five years, Gen AI is expected 

to have an increasingly significant impact on the logistics industry, with large-scale 

implementation expected in this sector involving both office and operational personnel. Despite 

this, Gen AI is already demonstrating tangible value in logistics. Key application areas include: 

• Content Creation 

• Customer Experience Automation 

• AI Assistants 

• Transportation management 

• Supply Chain Resilience 

Content Creation 

Gen AI enables the generation of text, images and also code scripts, opening up new 

opportunities in the logistics sector. For example, it can automate the drafting of product 

descriptions, inventory reports and customer service responses, simplifying internal 

communication and increasing efficiency. Additionally, Gen AI can generate visual 

representations of stored items or warehouse layouts, supporting inventory management. 

Among its applications, also packaging design is included, designed to optimize space usage 

and guarantee load protection. These graphical representations help accelerate the creation of 
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prototypes of new packaging solutions. Not only, but Gen AI can also automate the writing of 

data analysis scripts, refine route planning algorithms, and develop predictive models that 

anticipate demand. This improves the quality of data-driven decisions and operational planning 

(DHL, 2024). A concrete example of how Gen AI can be exploited to improve user experience 

and business processes comes from Amazon. Amazon uses Gen AI to enhance and personalize 

product recommendations and the creation of product descriptions with increasing precision, 

thus offering a highly personalized shopping experience that meets the customer’s real needs. 

First of all, thanks to a vast catalog of over 300 million items, the company can count on a 

considerable amount of data relating to users’ search, navigation and purchasing behaviours 

(Amazon, 2024). This information is analysed by a Large Language Model (LLM) learning 

model, capable of highlighting the most important attributes for each consumer, such as 

preferences in terms of materials, technical specifications or particular dietary needs (for 

example, the search for gluten-free products) . The model generates more relevant product 

descriptions, not limited to generic suggestions, by integrating crucial terms into texts and 

titles: for example, if a customer types “gluten-free cereals” after having often searched for 

items related to a gluten-free diet, the system makes sure to position “gluten-free” in a highly 

visible way in the descriptions and search results (Amazon, 2024). A similar example is shown 

in Figure 21, where in this case the words frequently typed in various customer searches are 

“for 2 people”. 

 
Figure 21 - AI-Powered Product Title Optimization on Amazon 

Source: Amazon. (2023). Using generative AI to make product search and discovery easier for customers. About Amazon. 
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To support this process, a second model, called “LLM evaluator”, intervenes with the task of 

checking the generated output and providing feedback in the event of omissions or information 

that is not adequately personalized (Amazon, 2024). In this way, a virtuous circle of continuous 

correction and improvement is established, in which AI is not only able to manage a high 

volume of products, but is also able to “understand” what information to insert and how to 

present it to satisfy the needs of the individual user more immediately. Deeply personalizing 

the shopping experience not only speeds up the search for the desired product, but also helps 

to bring out potentially interesting items that might otherwise escape the consumer’s attention.  

On the other hand, Amazon uses the same technology to enhance its advertising tools, as 

demonstrated by the recent “Video generator” and “Audio generator” solutions, offered in beta 

to advertisers in the United States. These tools allow sellers to create high-quality videos and 

multimedia content starting from a single shot or a single product image, thanks to the use of 

image generation models, texts and even audio tracks (Amazon, 2024).  

 
Figure 22 - Amazon Ads' AI Creative Studio 

Source: Amazon. (2024). Amazon Ads unveils generative AI video generator for advertisers. About Amazon. 

With “Video generator”, for example, the algorithm combines the image of the product with 

specific insights from the retail sector, creating a video in just a few minutes that emphasizes 

the peculiarities of the item and makes its narration more immediate and engaging. This 

integration between automatic analysis and AI-driven creativity offers sellers the possibility of 

quickly updating their advertising content at no additional cost, so as to always stay in step 

with market trends and consumer tastes (Amazon, 2024). Additionally, the “Live image” 

feature allows for the introduction of short animations (such as smoke rising from a cup of 

coffee) to animate campaigns, capture audience attention and improve engagement rates. This 

is part of a broader innovation effort that aims to break down creative barriers and support 

advertisers of all sizes in presenting their products in an engaging way, simplifying campaign 

management while ensuring a more dynamic and satisfying shopping experience for users 

(Amazon, 2024).  
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Customer Experience Automation 

Chatbot interfaces powered by generative AI can be used in a variety of ways to make supply 

chains more customer-centric. This technology enables timely and appropriate responses to 

user requests, leveraging popular communication channels (DHL, 2024). For example, a single 

customer can receive a quick and targeted email, a phone call, or even an automatically 

generated text message. In this sense, Gen AI helps improve the shopping experience and 

increase customer satisfaction, for example offering personalized product recommendations, 

based on users’ preferences and purchasing history as explained in the previous paragraph. In 

addition, Gen AI can quickly review different types of unstructured comments and ratings, 

such as online reviews or opinions expressed on social media. This way, when a certain number 

of observations about a particular product emerge, Gen AI can integrate this information into 

the development processes, facilitating updates and improvements in a short time (DHL, 2024).  

A notable example once again is Amazon  and the way it uses Gen AI to simplify the decision-

making process for buyers. The company offers a “review highlights” system that summarizes 

the main opinions expressed by users in a short paragraph (Amazon, 2024).  

 
Figure 23 - AI-Generated Review Highlights on Amazon 

Source: Amazon. (2024). Amazon introduces AI-generated review highlights to help customers shop with confidence. About 

Amazon. 

In practice, the platform analyses the textual reviews of verified purchases, then it identifies 

the recurring themes and opinions shared by multiple customers and automatically generates a 

summary that highlights the strengths and weaknesses of a product. This tool, introduced in 

2023, allows users to immediately view an overall overview of customer sentiment, 
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distinguishing between positive, negative and neutral feedback thanks to the use of graphic 

indicators such as the green check mark or the orange symbol (Amazon, 2024). This approach, 

which combines data analysis and natural language technologies, allows quick access to 

essential information, facilitating the choice of the product best suited to customers’ needs, and 

helping to make the purchasing process more transparent and informed. 

AI Assistants 

The introduction of AI assistants (also called digital assistants or DAs) in the logistics sector is 

revolutionizing the management of goods and information flows, offering new opportunities 

to reduce the cognitive load of operators and accelerate distribution processes (Zheng et al., 

2024). In particular, these systems (which can take different forms, from text-based chatbots 

to softbots capable of operating autonomously on information systems) foster a natural 

interaction between humans and digital technologies, improving efficiency along the entire 

supply chain (Li and Yang, 2021). For example, voice assistant platforms simplify order 

processing and inventory status checking, allowing operators to obtain real-time updated data 

simply through voice commands (Hsiao and Chang, 2019). Furthermore, thanks to the 

integration with data analytics algorithms, DAs provide useful predictive analytics, such as 

dynamic recalculation of delivery routes and optimization of inventory based on real demand. 

Currently, not all large-scale AI assistants are suitable for the logistics sector: in fact, in 

contexts such as DHL, we observe the use of assistants based on predictive analytics that, by 

forecasting demand, optimizing inventory levels and anticipating possible supply chain 

disruptions, support proactive decision-making and efficient resource allocation (DHL, 2024). 

At the same time, the adoption of assistants for warehouse management allows to improve 

stock positioning, automate picking and packing processes, monitor equipment maintenance 

schedules and, in the back office, facilitate administrative, legal and financial activities by 

screening long texts and summarizing key points. This allows, for example, faster response 

times for the processing of contracts, confidentiality agreements and financial reports (DHL, 

2024). In short, the strategic use of these tools now appears essential for companies that want 

to take full advantage of the digitalization of logistics, as it allows for more agile management 

of complex activities and increasingly fluid and productive human-machine collaboration. A 

particularly innovative example is Amazon’s Project Amelia. The company recently launched 

in beta this personal assistant based on Gen AI, specifically designed to support independent 

sellers. Project Amelia is configured as a true digital sales expert, capable of providing 

immediate and personalized answers to questions regarding product strategies, regulatory 

compliance, advertising campaigns, sales forecasts and supply chain management. Sellers can 
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interact with the assistant from any Seller Central page, obtaining updates on performance data, 

trend analysis and even assistance in resolving operational issues, thus simplifying the day-to-

day management of their business (Amazon, 2024).  

 
Figure 24 - Example of a conversation with Project Amelia, Amazon’s AI Business Assistant 

Source: Amazon. (2024). Amazon introduces Project Amelia: A new frontier in generative AI assistants. About Amazon. 

In particular, the system allows sellers to obtain concise and easy-to-understand information 

from reliable sources, as well as quickly access critical metrics and reports, improving the 

decision-making capacity of digital entrepreneurs. Project Amelia was developed using 

Amazon Bedrock, a platform that offers scalable access to the latest AI models, combining 

global knowledge with specific skills in the world of selling on Amazon. Over time, the 

assistant is expected to acquire greater learning capacity, arriving not only to provide answers, 

but also to anticipate the needs of sellers and to autonomously solve some problems (Amazon, 

2024).  

Changing perspective, it is important to observe how this type of technology is also 

transforming the customer purchasing experience. Indeed, the introduction of conversational 

AI assistants like Rufus represents a significant turning point for the customer shopping 

experience. In this regard, Amazon developed Rufus, an AI assistant for customers (Amazon, 

2024). It is a new tool designed to provide immediate and personalized answers to a wide 

variety of questions about products and purchasing needs. Essentially, this assistant is a virtual 

consultant that provides product-specific information like whether or not a coffee machine is 

easy to clean on the basis of information that already exists within product sheets, customer 
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reviews and community Q&As (Amazon, 2024). In addition, Rufus helps customers navigate 

the various product options by offering accurate comparisons between different features, such 

as the comparison between gas and wood-fired ovens or between trail and running shoes. 

 
Figure 25 - Example of how Amazon Rufus helps customers compare different products to guide their purchasing decisions 

Source: Amazon. (2024). How to use Amazon Rufus, your new generative AI shopping assistant. About Amazon. 

Another important aspect concerns the ability of this assistant to provide recommendations 

based on contextual analysis. For instance, it is able to suggest a beach umbrella suitable for 

the specific weather conditions of a given region, or to present the latest news and trends. Last 

but not least, Rufus allows users to quickly access information relating to current and past 

orders, facilitating the tracking of packages and making it easier to review previous 

transactions, an element that can also be useful for planning future purchases (Amazon, 2024).  

 
Figure 26 - Example of Amazon Rufus providing order tracking and purchase history 

Source: Amazon. (2024). How to use Amazon Rufus, your new generative AI shopping assistant. About Amazon. 
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This type of assistant also has the ability to answer questions not strictly related to the purchase, 

such as advice on what is needed to prepare a soufflé or organize a summer party. As a result, 

this AI assistant offers customers an integrated support throughout the entire purchasing 

process, helping to simplify the decision-making process and reduce research times (Amazon, 

2024). 

Transportation management 

The use of Gen AI tools in the logistics sector is emerging as a highly relevant strategic lever 

also for transport operations (Deloitte, 2024).  

 
Figure 27 – Key areas where Gen AI can streamline transportation management 

Source: Deloitte (2024). Generative AI in transportation management 

The challenges facing the sector include, among others, the impact of macroeconomic shocks 

such as the COVID-19 pandemic and the need to offer a service that is always optimized in 

terms of costs and delivery times (Hitchcock et al., 2024). In this context, the adoption of 

GenAI can foster a more advanced approach to data management, allowing the collection, 

analysis and synthesis of large volumes of information from heterogeneous sources. This 

process is particularly useful for improving crucial procedures along the transport lifecycle, 

such as onboarding carriers, verifying their credentials and analyzing sustainability or 

reputation metrics in real time (Hitchcock et al., 2024). According to recent studies, Gen AI 

will have the biggest short- and medium-term effects on automating carrier communications, 

auditing transport invoices, and creating advanced reporting. These areas will provide 

observable advantages in terms of operational efficiency, error reduction, and improved 
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visibility of the entire logistics network (Deloitte, 2024). For example, Crowley (2024) 

highlights how the use of machine learning algorithms facilitates autonomous verification of 

invoices and real-time identification of anomalies, freeing up resources that can then be 

dedicated to innovation and continuous improvement projects. Not to mention the fact that, as 

already analyzed previously in this chapter, the adoption of GenAI in the transport sector is 

progressively extending to key functions such as demand forecasting and route optimization 

with a potential increase in service punctuality and a more rational use of the workforce 

(Deloitte, 2024). In the longer term, as reported by Hitchcock et al. (2024), a scenario is 

emerging in which transport fleets will evolve towards almost autonomous management, 

thanks to AI systems that will communicate with each other, with the consequent need to 

develop GenAI models designed from the outset for interoperability. Ultimately, the ability to 

integrate generative solutions could represent a differentiating factor for companies that will 

be able to develop an ecosystem based on accurate data, predictive analysis algorithms and 

adequate technological infrastructures, so as to reap the benefits of more flexible and reactive 

transport (Deloitte, 2024). 

Supply Chain Resilience 

In the current scenario, supply chain resilience (SCR) is still largely configured as a set of 

reactive practices with a high dependency on human intervention. Many companies spend 

numerous man-hours collecting, cleaning and analysing data, and then manually define the 

main corrective actions (Parrott & Natarajan, 2024).  

 

Figure 28 - Supply Chain Resilience: The Current State 

Source: Deloitte. (2024). Generative AI-powered supply chain resilience. Deloitte Business Operations Room Blog. 
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As a result, the risk detection phase often suffers from the lack of an end-to-end vision, with 

response methods that are not always timely or based on integrated information, especially in 

complex supply chains with multiple levels of suppliers. The introduction of Gen AI tools, 

however, tends to shift the focus towards a more “proactive and prescribed” model (Parrott & 

Natarajan, 2024).  

 

Figure 29 - Supply Chain Resilience: The Future State powered by Gen-AI 

Source: Deloitte. (2024). Generative AI-powered supply chain resilience. Deloitte Business Operations Room Blog. 

Gen AI systems, in fact, are able to continuously scan global scenarios, synthesize large 

amounts of data (internal and external to the company), as well as generate operational content 

such as risk reports, mitigation plans and suggestions for redesigning production lines. A 

crucial aspect is the possibility of automating a large part of the risk sensing and risk response 

actions, enabling a form of “guided resilience” based on libraries of already tested solutions 

that reduce decision-making times and dependence on individual human skills. For example, 

Gen AI can detect anomalies in supply flows, anticipate the scarcity of critical materials or 

identify possible geopolitical instabilities that impact supply chains, autonomously producing 

intervention scenarios that have already been prioritized (Parrott & Natarajan, 2024). In the 

future, these systems will have the ability to orchestrate a network of suppliers and partners 

more dynamically, even activating continuity plans with almost autonomous interventions 

(such as the diversion of shipments or alternative sourcing) in response to environmental or 

market triggers. In this evolution, humans will remain an element of verification and 

governance of processes (human-in-the-loop) but will be able to dedicate themselves more to 

value-added activities rather than repetitive operations, ensuring that supply chain resilience 
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becomes not only a short-term objective, but a real strategic factor of competitiveness (Parrott 

& Natarajan, 2024). 

3. Internet of Things (IoT) in Logistics 4.0 
Technological progress is profoundly transforming the way people use information systems 

both at work and in their free time. In particular, the Internet has revolutionized the 

consumption and exchange of information, radically changing the ways in which individuals 

interact. Thanks to continuous improvements in microprocessors, storage capacity, broadband 

networks and sensor technologies, together with increasingly efficient solutions for energy 

management, more and more areas of daily life are being computerized and connected to the 

network. Today, the use of the Internet is no longer limited to access via traditional devices 

such as computers or mobile phones but is progressively extending to everyday objects – such 

as light bulbs, refrigerators and even means of transport – which become an integral part of an 

interconnected ecosystem. For example, in 2023 the number of active Internet users exceeded 

5 billion, corresponding to more than half of the world's population (Statista 2023a), while the 

number of connected devices exceeded 11 billion in 2021, with forecasts indicating an increase 

to approximately 30 billion by 2030 (Statista 2022a). In this scenario, the Internet of Things 

(IoT) emerges as a paradigm in which communication occurs not only between humans or 

between humans and machines, but also, and in an increasingly pervasive way, from machine 

to machine (Machine-to-Machine communication), paving the way for new opportunities and 

challenges in global interconnection. 

3.1 Definition and key features 
IoT Definition 

IoT technology represents one of the most innovative and discussed paradigms of the latest 

years. Despite its growing diffusion, there is no universally accepted definition of the term. 
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Table 2 - Selected definitions of IoT 

Source: Author's personal elaboration 

In general, the IoT concept refers to a set of physical objects (or “things”) equipped with 

sensors, actuators and connectivity capability that is able to collect data from the environment, 

exchange information on the network and act in a (semi)autonomous way, often with minimal 

or no human intervention. As previously stated in Chapter 1, when these “things” are industrial 

devices or systems used to support industrial operations, we are talking about Industrial Internet 

of Things (IIoT). Mohanraj et al. (2019) described IoT as “the set of connections of physical 

devices such as home appliances, vehicles and other items implanted with software, electronics, 

actuators, sensors and connectivity to enable communication for the transfer of data”. The term 

“Internet of Things” was coined by Kevin Ashton in 1999, during a presentation at Proctor & 

Gamble. He described it as a system of interconnection between physical world and the Internet 

through the use of RFID and pervasive sensor devices that observe and identify the real world 

(Ashton, 2011). However, the concept of interconnectivity among smart devices came into 

picture in early 1980s when a modified coke machine at Carnegie Mellon University, was 

connected to the Internet to check and report the inventory for the availability of the drinks.  

Ashton, founder of the Auto-ID Center at Massachusetts Institute of Technology (MIT), was 

one of the first to intuit the potential of using RFID tag in the field of supply chain management 

and to conceive a world in which everyday objects could communicate through the network. 
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In fact, according to some scholars, IoT is nothing more than “the next evolution of the 

Internet”, in which it is no longer just people who generate data online, but also things 

(Kosmatos, Tselikas, & Boucouvalas, 2011).   

The term “internet” immediately brings back to a global system of networks based on the 

TCP/IP (Transmission Control Protocol/Internet Protocol) protocol, which connects billions of 

devices worldwide (Nunberg, 2012). “Things”, on the other hand, can indicate any physical 

entity, living and non-living: it ranges from electronic devices and intelligent equipment to 

objects that we do not normally consider “technological”, such as food, clothes, art pieces, and 

even monuments (Kosmatos, Tselikas, & Boucouvalas, 2011). In this context, what makes an 

object part of the “IoT world” is the ability to connect to the network and communicate 

information. 

IoT is distinguished by some key characteristics: 

• Pervasive connectivity: the ability to connect objects of different nature, enabling not only 

human-to-human but also human-to-things and, above all, things-to-things communication 

(Aggarwal & Lal Das, 2012). 

• Unique identification: each “thing” participating in the IoT has a specific identity, often 

provided by RFID technologies or IP addresses, so that it can be recognized on the internet 

(Alavi et al., 2018). 

• Data collection and analysis: smart objects, equipped with sensors, capture data in real time 

and transmit it to computing platforms (cloud) for advanced analysis (Graham & Haarstad, 

2011). 

• Automation: IoT enables processes that minimize human intervention. Devices react 

quickly to environmental changes and coordinates themselves in a dynamic way. 

• Interoperability: to enable devices from different manufacturers to communicate, it is 

necessary to use common standards and open protocols, avoiding fragmentation. 

These characteristics favour the birth of new application scenarios and give the IoT an 

extremely broad and constantly evolving nature. 

IoT enabling technologies 

The enabling technologies (see Figure 30) of the IoT are the set of solutions that, together with 

the Internet as a backbone, allow the integration of physical objects, people and systems into a 

single connected ecosystem.  



 68 

 
Figure 30 - Summary of enabling technologies for the Internet of Things 

Source: Sunyaev, A. (2024). Internet computing. Springer Nature Switzerland AG. 

On the one hand, there are the so-called tagging technologies, which include optical 

identification devices (such as common barcodes) and, above all, RFID (Radio Frequency 

Identification). The latter uses radio waves to support computing devices in the identification, 

tracking and control of an object, while integrating the collection of metadata in a reliable and 

flexible way (Gupta & Quamara, 2020). In particular, RFID is a form of radio communication 

based on electromagnetic or electrostatic coupling in the radio frequency portion of the 

spectrum, designed to uniquely identify an object, an animal or a person (Zhu, Mukhopadhyay, 

& Kurata, 2012).  

 
Figure 31 - A typical RFID system 

Source: Gupta, B. B., & Quamara, M. (2020). An overview of Internet of Things (IoT): Architectural aspects, challenges, 
and protocols. 

A typical RFID system is composed of two main components (Figure 31): the RFID Tag and 

the RFID Reader. The RFID Tag is a microchip connected to an antenna that stores information 
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and, when attached to an object, becomes its identifier. This coiled antenna transmits and 

receives radio waves to communicate with the reader, and the tags themselves (also known as 

transponders) can be active (battery-powered) or passive (powered by the reader when they are 

within its range) (Jia, Feng, Fan, & Lei, 2012). The RFID Reader, on the other hand, uses radio 

waves to communicate with the tag, obtain data and forward it to the external application, thus 

functioning as a transmitter and receiver (transceiver). Although it generally costs more than 

barcodes, RFID allows for much more granular monitoring and reading that does not require 

line of sight, an advantageous feature in industrial or logistics contexts.  

Together with tagging systems, IoT makes extensive use of sensor technologies, i.e. sensors of 

various types (movement, brightness, temperature, etc.) which, thanks to the progressive 

reduction in costs and the possibility of forming wireless networks, are essential for collecting 

data from the real world. These sensors can be combined with actuators (for example fire-

fighting systems), giving rise to WSAN (Wireless Sensor and Actuator Network), in which the 

detected information is processed and can generate a physical reaction (Misra, 2017). Actuators 

are mechanical or electromechanical devices capable of providing controlled movements or 

positioning, using different power sources (electric, pneumatic, hydraulic) (Mouha, 2021).   

 
Figure 32 - Example of an actuator (pump water) 

Source: Mouha, R. A. (2021). Internet of Things (IoT). Journal of Data Analysis and Information Processing, 9(2), 77–101. 

They allow, for example, linear actuation with hydraulic cylinders or electric motors, or rotary 

actuation with pneumatic systems, making possible applications that range from the movement 

of large industrial equipment to the most common household devices. The pneumatic approach, 

in particular, offers rapid response and great power, as demonstrated in the use of pumps and 

compressors (Figure 32).  
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The third component is smart technologies.  

 
Figure 33 - Sensor to actuator flow 

Source: Sunyaev, A. (2024). Internet computing. Springer Nature Switzerland AG.. 

They introduce intelligence on board objects, moving part of the computational processing “to 

the edge” (edge computing) to prevent the growing amount of data - coming from billions of 

connected devices – from overloading central servers (Bassi et al. 2013; International 

Telecommunication Union 2005).  

Finally, progress in miniaturization technologies means that sensors, chips and batteries are so 

small that they can be incorporated into almost any device (International Telecommunication 

Union 2005). Without this miniaturization, the idea of a world in which hundreds of billions of 

physical objects connect, communicate and act autonomously would not be feasible.  

All these components therefore work together to form the backbone of the IoT, allowing us to 

fully grasp the potential of an ecosystem of connected objects, capable of collecting and 

transmitting data, as well as interacting flexibly with the physical environment and with human 

users. 

IoT architectures 

The two simplest structures used to describe the architecture of the IoT are the three-layer and 

the five-layer models. 

The three fundamental layers of the three-layer model are: Perception Layer, Transmission 

Layer and Application Layer. Each of them is organized into sublayers that reflect the different 

functions performed (ITU-T, 2009).  
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Figure 34 - IoT architecture 

Source: Gupta, B. B., & Quamara, M. (2018). An overview of Internet of Things (IoT): Architectural aspects, challenges, 

and protocols. 

This model has gradually established itself because the IoT integrates heterogeneous 

technologies (such as WSN, RFID, M2M and low-power networks) and must respond to highly 

differentiated applications, from the healthcare sector to smart cities, up to the manufacturing 

industry. Below, a detailed overview of the three layers and their respective articulations. 

• Perception Layer – Also called “Device Layer”, “Sensory layer” or “Recognition Layer”, 

the Perception Layer is the basis of the architecture. Its task is to detect data and perform 

direct actions on the surrounding environment (Suo et al., 2012; Khan et al., 2012). This 

area includes the perception nodes, which include physical devices such as temperature, 

humidity, brightness sensors, RFID readers, controllers or actuators. These elements can 

be organized in various topologies (mesh networks, Ad hoc environments, multi-hop 

networks) to ensure scalability and rapid installation (Li, Da Xu, & Zhao, 2015). Sensors, 

for example, monitor environmental or logistical parameters, while actuators perform 

mechanical actions when certain conditions occur (such as the opening or closing of a 

valve). Devices are often programmed to minimize energy consumption, activating only in 

the presence of a significant event. Nanotechnology is also used, which allows microchips 

to be miniaturized — in some cases embedded in objects — so that they can collect data 

and react in an “intelligent” way with minimal human intervention. At the same time, the 

Perception Network supports communication with the upper levels: it transmits the 

information acquired by the perception nodes to the gateways and receives, in reverse, the 

control commands intended for the actuators. This network can be wireless or wired and 
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must guarantee data security and integrity before they pass to the next level (Alaba et al., 

2017). 

• Transmission Layer – The Transmission Layer (also called “Transportation Layer” or 

“Network Layer”) connects the world of physical devices with the broader IT 

infrastructure, making the flow of data between sensors/actuators and processing or storage 

systems effective (Yan, Zhang, & Vasilakos, 2014). In practice, this layer acts as a bridge 

between “intelligent” objects and platforms that analyse information or produce response 

actions. Within it, further sub-layers are identified. The Access Network provides a 

connectivity environment for the Perception Layer: these can be 2G/3G/4G-LTE networks, 

Wi-Fi connections, ZigBee, Bluetooth Low Energy and even 5G solutions, which ensure 

higher transmission speeds. The presence (or absence) of centralized base stations then 

distinguishes centralized networks (such as Wi-Fi) from non-centralized environments (for 

example, Ad hoc networks) (Li & Chen, 2011). The Core Network (Internet), which 

represents the “backbone” of this architecture, transports data to end users or to other 

network segments, offering routing, remote access and resource management services. The 

Internet can be defined as a public, corporate, government, local (LAN) or geographic 

(WAN) network (Alaba et al., 2017). Finally, there is the area of Local and Wide Area 

Networks, which includes “traditional” LANs but also LPWANs (Low Power Wide Area 

Networks), specifically designed for low-power devices (Raza et al., 2017). 

• Application Layer – At the top end of the IoT architecture is the Application Layer, which 

is responsible for providing services to end users. It is in this layer that the data coming 

from the Perception Layer, filtered and transmitted by the Transmission Layer, are 

processed, integrated and transformed into valuable actions and information. The 

Application Layer also governs the presentation of the results through usable interfaces 

(e.g. mobile apps, dashboards, web portals) (Suo et al., 2012). Within it, it is usual to 

distinguish between an Application Support Layer, focused on “intelligent” computing 

(also with data recognition and filtering techniques) and middleware functions, and a 

section dedicated to IoT Applications themselves (Jing et al., 2014). The middleware can 

include Cloud Computing platforms or service-oriented architectures (SOA), which 

facilitate scalability, quality of service (QoS) management and security (ITU-T, 2009). In 

many contexts, Machine-to-Machine (M2M) models are implemented, thanks to which 

devices communicate directly with each other, exchanging data on wired or wireless 

networks, without constant user intervention (Suo et al. 2012; Iraji et al., 2017).  



 73 

The three-layer model extends to create the five-layer model, designed to respond to future 

evolutions of the IoT paradigm (Muntjir et al. 2017).  

 
Figure 35 - Comparison of the three-layer and five-layer Internet of Things architectural models 

Source: Sunyaev, A. (2024). Internet computing. Springer Nature.  

This model integrates and refines the functions already highlighted in the three-layer model, 

introducing two additional layers and dividing some responsibilities in a more specific way. In 

particular, the five-layer model maintains the functions of the Perception Layer (lower layer), 

which continues to collect data from the environment; the Transport Layer, which is 

responsible for data transfer and is equivalent to the Network Layer of the three-layer model; 

and the Application Layer, which provides application services to users. The main innovation 

are the Processing Layer and Business Layer. Sometimes also called Middleware Layer, the 

Processing Layer is responsible for storing, processing and interpreting large amounts of data 

coming from the perception layer, using technologies such as databases and Cloud Computing 

services. While the Business Layer, located at the top of the model, is responsible for the overall 

management of the IoT system, including aspects such as the definition of business models and 

the protection of user privacy (Zhang & Zhu, 2011).		
In short, if on the one hand the three-layer model compactly encloses the fundamental idea of 

IoT, the five-layer model allows a more detailed subdivision of the functions. This finer 

articulation of the layers facilitates a more efficient and scalable management, thus responding 

to the growing demands of complex applications and the evolution of technological scenarios. 

Smart objects and smart devices 

Internet-connected physical objects with embedded intelligence, often called smart things, play 

a key role in IoT. These smart things can be grouped into two categories: smart devices and 
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smart objects. Smart devices are portable electronic devices, usually owned and used by a 

single individual, that allow access to a wide range of services locally or remotely (Poslad, 

2011). Typical examples are smartphones, tablets, laptops and even smartwatches or smart 

TVs, which are now widespread in everyday life thanks to the so-called “ubiquitous 

computing” described by Weiser (1991). According to his vision, in fact, the history of human-

computer interaction has evolved from the time when many individuals shared a single 

computer to the current era in which each person owns multiple personal devices, almost 

always connected to the Internet. A key feature of modern smart devices, such as “tabs” (smart 

watches and bracelets), “pads” (smartphones and tablets) and “boards” (large interactive 

screens), is their ability to detect information about the surrounding environment, for example 

through integrated sensors, and to adapt to the user's needs, using localization functions and 

cloud services. This group also includes smaller and more specific solutions, such as the so-

called smart dusts—small miniature devices equipped with sensors and processing functions, 

but without displays—that can be distributed over a large area to collect data on environmental 

or operating parameters. Another example is smart skins, flexible electronic “skins” integrated 

into fabrics, designed for applications in the medical and prosthetic fields (Benight et al. 2013). 

In addition to smart devices, which are distinguished by their mainly “personal” and multi-

functional nature, there are also so-called smart objects. Unlike smart devices, smart objects 

can be objects of any type, equipped with sensors, microprocessors and communication 

interfaces to interact with other objects as well as with people (Kortuem et al. 2009). Consider, 

for example, smart light bulbs that can self-adjust brightness based on the time of day, or smart 

speakers such as Amazon Echo, Apple HomePod and Google Home, designed to “listen” and 

respond to voice commands and interact autonomously with other home systems. The central 

element of a smart object is its ability to collect data on the environment, process it, store it and 

exchange information with the outside world, thanks to network interfaces and internal sensors 

(Kortuem et al. 2009). Depending on the organizational context, these objects can acquire 

“activity-aware” functionality, recording use and work activities, “policy-aware” functionality, 

respecting specific business or legal rules, or “process-aware” functionality, providing support 

to business processes and signaling how and when to intervene in the various production or 

work phases (Kortuem et al. 2009). This differentiation highlights the greater conceptual 

“breadth” of smart objects, which do not need to be portable or have a unique owner. For this 

reason, the literature tends to frequently use the two terms interchangeably but also recognizes 

the distinction between “personal devices” and “intelligent objects” anchored to the context or 

to the application process of reference (Benight et al. 2013). 
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3.2 Internet of Things (IoT) in Logistics 
The logistics sector represents one of the most promising application contexts for IoT 

technology (Da Xu et al., 2014; Zhou et al., 2012). The reasons for this potential reside in the 

very nature of logistics, where millions of shipments are moved, tracked and stored every day 

by a variety of actors and means (including machinery, vehicles and human operators). The 

IoT, by allowing the connection of these physical assets and the analysis of the data they 

produce, allows to optimize logistics processes in terms of efficiency, safety and quality of 

service (Fagnant and Kockelman, 2015). In the logistics sector, the IoT creates an ecosystem 

based on interconnected devices that produce and share information in real time along the entire 

supply chain (DHL, 2024). Using sensors, microprocessors and wireless connectivity, it is 

possible to constantly monitor the status of every logistics element: from containers in transit 

to warehouse racks, moving vehicles and simple packaging (Aamer, 2018a; Trab et al., 2015). 

The resulting benefits are better resource optimization, reduction of operation costs and the 

creation of new personalized services. Having the possibility of finding detailed information 

on the location of the items and their conditions, it is in fact possible to plan the physical flow 

in an increasingly precise manner, reducing transit times and facilitating the response to 

unexpected events (Mohanraj et al., 2019). Furthermore, the growing level of transparency and 

visibility of the logistics chain triggered by the use of IoT leads to the reduction of waste and 

downtime. All this contributes to the generation of a large amount of data that is collected by 

IoT devices. This data can be analyzed thanks to data analysis systems and AI, generating 

innovative services that respond in a personalized way to customer needs (PwC 2016; Akgul 

2019). It is worth noting that many of the IoT devices – for example, sensors and actuators – 

have already been in use for some time in the logistics sector (e.g. in handheld readers for the 

digitalization of deliveries or in on-board sensors for monitoring truck performance). However, 

today's evolution of the IoT, supported by the continuous reduction in the costs of components 

(sensors, semiconductors), by more performing wireless networks and by increasingly 

powerful computing solutions, promises to revolutionize the sector even more, extending the 

application possibilities to previously unexplored levels (DHL, 2024). 
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Figure 36 - The IoT Ecosystem 

Source: DHL, 2024 
 

To better illustrate the structure of IoT in logistics, it is useful to refer to Figure 36, which offers 

a pyramid representation of the IoT ecosystem (DHL, 2024). In this image, the lower levels 

(“Assets and Objects” and “Sensors and Devices”) indicate the physical elements to be 

connected. In this case for example we are talking about containers, pallets, shelves, vehicles 

and sensing devices. Going up the pyramid, we encounter the network infrastructure and data 

management platforms: these layers allow devices to communicate with each other and send 

the information collected to central analysis systems. In the upper levels (“Analytics and 

Applications” and “Solutions and Services”), data is processed, interpreted and transformed 

into concrete solutions for operators, such as real-time monitoring dashboards, decision support 

tools or automated services for warehouse management. This illustration highlights the need 

for a well-defined technological “layering” to effectively connect assets and physical objects 

with analysis systems and decision support tools. In other words, the process that transforms 

raw sensor data into a value-added service requires a solid communication infrastructure and a 

complex set of IT and application resources (Keller et al., 2011; Lozano-Perez, 2012). 
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3.2.1 Fields of applications 
3.2.1.1 Smart freight transportation 

 
Figure 37 – Example of smart freight transportation enabled by the Internet of Things (IoT) 

Source: DHL & Cisco. (2015). Internet of Things in logistics: A collaborative report by DHL and Cisco on implications and 

use cases for the logistics industry. DHL Trend Research. 

Freight transportation is the physical flow of goods and cargo through ships, aircraft, trains or 

vehicles. The industry is challenged by several issues, including wasted cargo capacity, loading 

and unloading errors, low operational efficiency, and issues related to transportation safety and 

cargo protection. In this context, the concept of “smart freight transportation” represents a 

framework aimed at integrating ICT technologies into transportation infrastructure and cargo 

itself, in order to alleviate these issues since it allows to make freight transportation not only 

more efficient, but also safer and traceable in real time (Hidalgo Fort et al. 2018; Liu et al. 

2019). One of the key pillars of “Smart Transportation” is the adoption of IoT technologies 

capable of interacting with vehicles, containers and personnel involved, providing real-time 

data and enabling faster and more reliable decision-making processes. Transport management 

includes fleet supervision, vehicle condition monitoring and driver activity verification. The 

application of IoT in this field mainly takes the form of vehicle cloud monitoring, i.e. the 

integration of sensors and communication systems directly into means of transport, with the 

possibility of constantly collecting information and transmitting it to devices connected to the 

Internet (such as smartphones or tablets) (Manojlović, 2019). 

Traceability, monitoring and security 
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One of the most significant contributions of IoT in the freight transport sector concerns the 

increase in traceability (track and trace). A fundamental starting point in this sense is the use 

of tools such as RFID, whose diffusion in freight transport allows for the precise identification 

and tracking of both vehicles and goods. In particular, during transportation, RFID can collect 

and track information about logistics resources during loading and unloading (Liu et al. 2019), 

locate containers (Zhang, Lu, and Wang 2014), and manage customer order data (identity, 

volume). Such data can then be used for vehicle configuration optimization and route planning, 

as well as for vehicle routing optimization. In addition, RFID tags can include the so-called 

Electronic Product Code (EPC), which is a code that contains product details and tracks the 

entire transportation process (Zhang et al. 2019). RFID technologies can be integrated with 

other complementary systems, such as GPS (Global Positioning System) and GIS (Geographic 

Information System), to provide real-time location information, optimized navigation services 

and constant monitoring (Liu et al. 2019; Cheung et al. 2008). GPS (based on the GNSS 

network, Global Navigation Satellite System) is used to locate and track the vehicle in real 

time, while the connection to the online application occurs via GPRS (General Packet Radio 

Service). GIS, on the other hand, provides the spatial distribution of roads, the related 

infrastructures, traffic conditions and an optimized navigation service. The data thus acquired 

- position, direction, time, speed, consumption - are stored in the cloud, giving the possibility 

of generating detailed reports on trips, management costs and load status (Manojlović, 2019). 

This continuous acquisition of information also allows for the creation of travel orders and real-

time control over the vehicle, provided that it is connected to the Internet. All of these things 

are made possible, especially thanks to WSN as they allow for the real-time verification of the 

status of the cargo, such as temperature, humidity or any unauthorized opening of containers 

(Zhang et al. 2019). In particular, when transporting perishable goods, remote monitoring of 

the internal temperature of the products with WSN is essential (Jedermann et al., 2014). In fact, 

the perishability of goods is often related to the storage environment. Environmental sensors 

collect temperature and respiration data (oxygen and carbon dioxide), monitoring the storage 

environment of the goods during transport (Zhang et al. 2019). Such non-invasive 

measurements are of crucial importance for food supply chains, where any deviation from 

optimal parameters can result in deterioration of product quality and, consequently, significant 

economic losses. 
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Applications on different modes of transport 

The application of IoT to “Smart Transportation” involves different modes of transport, with 

specific characteristics in terms of traceability, safety and route optimization (Zhang, Lu, and 

Wang 2014): 

• Road transport: focuses on the management of the entire fleet of trucks or vans, aiming to 

improve route efficiency, reduce fuel consumption and intervene promptly in case of 

failures. The reading of RFID tags during loading and unloading phases, combined with 

the use of sensors and GPS, facilitates the rational allocation of vehicles, with positive 

effects in terms of fleet management (Cheung et al. 2008; Liu et al. 2019). 

• Maritime transport: In addition to the now consolidated use of RFID for the unique 

identification of containers and WSN for the non-invasive monitoring of temperature, 

humidity and shocks, the IoT is evolving towards integrated platforms that connect the 

entire fleet to a shared data ecosystem. The three-level architectural model — collection 

node, edge gateway and cloud center — proposed by Plaza-Hernández et al. (2021) allows 

sensory flows (vibrations, consumption, emissions) to be processed locally and only 

synthetic indicators to be transmitted to the cloud, reducing decision-making latency and 

the use of satellite bandwidth. Route tracking, predictive maintenance and emission control 

applications are grafted onto this infrastructure (think of commercial solutions such as 

IoCurrents or Green Sea Guard), as well as telemedicine and well-being services for the 

crew, which are essential given the often remote areas they operate in. 

• Rail transport: using WSN it can be possible to timely monitor the status of the 

infrastructure (tracks, bridges, switches), and consequently generate alerts in the event of 

abnormal vibrations or breakdowns (Fraga-Lamas et al., 2017). This significantly increases 

safety, as it identifies risk factors before they turn into major failures. 

Despite the advantages, the literature reports the lack of studies aimed at investigating at a 

strategic level the impact of IoT on the design of transport networks and on the choice of modes 

(Zhang et al. 2019). This leaves room for possible future research aimed at exploring the 

dynamics of integration between road, rail and maritime transport, relating technological 

benefits to broader managerial decisions. A further obstacle is the fragmentation of IoT 

solutions, often proprietary and not interoperable with each other. To overcome this limitation 

and unify information from different modes of transportation in a single portal, specialized 

companies such as Agheera have developed open platforms that can consolidate data from 
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multiple telematics devices and different sensors. This way, a complete end-to-end overview 

of the supply chain can be achieved (DHL & Cisco, 2015). 

Evolution of monitoring and predictive tools 

The potential of IoT in the Smart Transportation sector goes well beyond the simple passive 

recording of the position and condition of the load. According to available analyses, monitoring 

will become progressively faster, more predictive and secure, helping to minimize losses due 

to theft or damage (DHL & Cisco, 2015). In fact, cargo theft continues to represent a significant 

problem: Overall, cargo thefts in the U.S. in Q3 2023 increased by an unprecedented 59% 

compared to Q3 2022, according to CargoNet. In 2024, the situation continued to worsen, with 

CargoNet reporting a 27% year-over-year increase in cargo thefts, reaching a record 3,625 in 

North America (Verisk, 2025).  

 
Figure 38 - CargoNet's 2024 Supply Chain Risk Trends 

Source: Verisk. (2025). Cargo theft surges to record levels in 2024, Verisk CargoNet analysis reveals. 

Such events, in addition to direct damage, lead to delays and additional costs for companies. 

However, IoT can provide monitoring solutions focused on the single item, thanks to multi-

sensor tags that transmit information on position, environmental conditions and even the 

opening of the package (a possible indicator of tampering). A significant example is 

represented by SmartSensors, intelligent devices that detect temperature, humidity, shocks and 

even possible exposure to light, as this could indicate the unauthorized opening of a container. 

These systems then transmit everything to open platforms or clouds. These platforms integrate 

different devices (vehicle telematics, on-board container sensors, etc.) into a single analysis 

system, making real-time control possible on all goods in motion (DHL & Cisco, 2015). A 
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direct consequence of this evolution is the creation of centralized dashboards, where 

information about the position, residual load capacity, environmental data and vehicle 

conditions are aggregated into a single control panel. At the same time, IoT offers opportunities 

for optimization in fleet and asset management. Sensors installed on trucks, containers or cargo 

units can provide data on the frequency of use of vehicles, any long stops and levels of residual 

load capacity. This information feeds analytical platforms that facilitate the planning of the 

most efficient routes, reduce fuel consumption and limit the kilometres travelled empty by 

vehicles (DHL & Cisco, 2015). 

Predictive maintenance and driver safety 

In addition to load tracking, IoT offers great support in predictive maintenance of vehicles and 

in collecting information on driving conditions (Sivaraj et al., 2021). Sensors placed in critical 

points – such as shock absorbers, engines or refrigeration systems – allow for early 

identification of any wear or failures (DHL & Cisco, 2015). This data is then transmitted to 

analysis platforms that generate alerts and preventive maintenance requests, significantly 

reducing vehicle downtime and increasing delivery reliability. In this context, OBD (On-Board 

Diagnostics) technology collects technical parameters, for example on engine performance or 

safety systems, and transmits them to a cloud platform where they can be analysed in detail. 

The results are then sent in real time to the driver’s smartphone, allowing immediate 

intervention in case of problems. A concrete example is the European project “MoDe” 

(Maintenance on Demand), which - launched in 2012 in collaboration with Volvo, DHL and 

other partners - led to the creation of an industrial vehicle capable of self-diagnosing and 

proactively deciding whether and when to intervene on damaged components (DHL & Cisco, 

2015). According to the data that emerged, this approach has shown an increase in vehicle 

uptime of up to 30%, reducing the risk of unexpected failures that would compromise the entire 

delivery chain. 

Risk Management Along the Supply Chain 

In an increasingly globalized context, transports must also deal with exogenous factors – such 

as geopolitical instability, strikes, natural disasters – that can interrupt the normal circulation 

of goods. IoT, integrated into advanced supply chain risk management tools, promotes 

prevention and rapid response to such events (DHL & Cisco, 2015).  
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Figure 39 - Resilience360 – a holistic risk management solution 

Source: DHL. (n.d.). Resilience360: Turning a potential disruption into competitive advantage [PowerPoint presentation]. 
DHL Corporate Solutions & Innovation.  

 

A notable case is Resilience360, a platform which provides a real-time view of all relevant 

routes and infrastructures, cross-referencing alerts on strikes, port and airport closures or 

adverse weather conditions. If the system detects a potential impact on a specific route, then it 

can also suggest corrective actions like moving the load to a different carrier or redistributing 

stocks across other logistics hubs. 

3.2.1.2 Smart warehousing 

The smart warehouse is nothing more than the strategic and technological evolution of 

traditional warehouse. All this is made possible thanks to the integration of different 

technologies, among which IoT is certainly one of the most impactful. The goal of this 

transformation is to optimize the activities of receiving items, storage, inventory management, 

picking and loading, creating a more agile, efficient and safe logistics system. The warehouse 

becomes an “intelligent” environment in which machinery, shelves, products and operators 

communicate with each other, generating real-time visibility and reducing errors and delays 

along the supply chain. Traditionally, warehouse activities included receiving processes, 

allocation of goods to shelves, picking to order and loading of means of transport. Such 

activities, combined with a high variety of goods types and customer demands, have often led 

to issues such as low operational efficiency, suboptimal space utilization, and inventory 

management errors (Lee et al. 2018; Lim, Bahr, and Leung 2013). In this context, IoT offers 

effective solutions to address these issues, exploiting distributed monitoring and sensing 
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devices but also using automated systems that support the decision-making process. The ability 

to connect objects (such as shelves, forklifts, pallets) and operators via sensors and RFID tags 

allows the WMS (Warehouse Management System) to obtain real-time data on the status and 

location of each entity in the warehouse. This leads to a reduction in decision delays and 

facilitates rapid interventions in emergency situations such as urgent changes in picking 

priorities for example (Trab et al. 2017). 

 
Figure 40 - Smart warehouse with integrated IoT technologies 

Source: DHL & Cisco. (2015). Internet of Things in logistics: A collaborative report by DHL and Cisco on implications and 
use cases for the logistics industry. DHL Trend Research. 

 

The fundamental components of IoT in the smart warehousing field are the following: 

• RFID and automatic tracking 

• WSN and environmental sensors 

• Multi-agent systems and decentralized decision-making 

• Wearable Sensors 

RFID technology has been defined and explored earlier in this chapter, thus it is already known 

that it is considered a key technology for automatic identification and tracking of goods and 

warehouse assets (Garrido-Hidalgo et al. 2019). In particular, in this case RFID tags can be 

applied to SKUs (Stock Keeping Units), pallets, or even the warehouse floor, in order to 

generate data related to the type and quantity of goods, storage location, and storage conditions 

(Jabbar et al. 2018; Giusti et al. 2019). RFID readers, equipped with antennas, can be placed at 
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entrances, on shelves or on forklifts, allowing to identify in real time the status and position of 

each item. This approach makes the warehouse “transparent” and reduces errors due to manual 

input (Biswal, Jena-mani, and Kumar 2018; Giusti et al. 2019). Through precise localization, 

resource allocation is speeded up and the efficiency of picking and loading operations is 

improved (Yan et al. 2014). Furthermore, real-time tracking of forklifts and other material 

handling equipment (MHE) can increase safety and speed in operations (Ballestín et al. 2013).  

Wireless Sensor Networks (WSN) and environmental sensors also allow for the constant 

monitoring of warehouse conditions. They are positioned in strategic locations and then 

transmit data in real time to the WMS (De Venuto and Mezzina 2018). For example, sensors 

installed on forklifts allow for the early detection of failures or non-optimal behavior of the 

vehicles (Jabbar et al. 2018). If the system detects significant or anomalous variations, it sends 

alarms. In this way predictive maintenance is enhanced and unexpected downtime is reduced 

(Trab et al. 2017; Zhang, Zhao, and Qian 2017). 

In parallel with the adoption of RFID and WSN technologies, the use of Wearable Sensors is 

spreading, i.e. devices equipped with sensors to be worn on the body, capable of detecting 

movements, physiological parameters or stress indicators (DHL, 2024).  

 
Figure 41 - Examples of wearable sensors for industry 4.0 

Source: DHL. (2024). Logistics trend radar 7.0: Your guide to innovation in logistics. 

These solutions range from bracelets and badges to smart glasses and smart clothing with 

gyroscopes, accelerometers or integrated sensors. The adoption of wearable sensors is now at 

the centre of security and process optimization strategies in the logistics and manufacturing 

sectors (DHL, 2024). Recent studies highlight how these sensors represent a fundamental piece 

in creating a “human-in-the-loop” paradigm, i.e. an ecosystem in which the human operator, 
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strengthened by sensors, collaborates closely with machines and digital systems (Kong et al., 

2019). 

The ecosystem of industrial wearable devices is divided into two large, often complementary, 

families: 

I. Human interaction devices – smart glasses, smartwatches, rugged tablets or clip-on 

displays. Their purpose is to convey contextualized information (pick lists, safety 

warnings, assembly instructions) while minimizing manual interaction (Sawyer et al. 

2014). 

II. Data collection devices – ring scanners, smart gloves, RFID shoes or insoles, 

UWB/BLE badges, sensorized clothing with accelerometers or gyroscopes. These 

devices operate as distributed sensors that capture operational, biometric or localization 

data, sending them in real time to information systems (Schmuntzsch et al. 2014). 

The same task may require the combination of both categories: for example, a picker uses the 

smart glasses to visualize the location of the product and at the same time the ring scanner to 

record the picking. 

In contrast to the “all-in-one” PDA (Personal Digital Assistant) – bulky, heavy and not very 

ergonomic – the most effective approach in the industrial field involves a functionally 

separated design.  

 
Figure 42- Functional separated design of industrial wearable system 

Source: Kong, X. T. R., Luo, H., Huang, G. Q., & Yang, X. (2019). Industrial wearable system: The human-centric 

empowering technology in Industry 4.0. Journal of Intelligent Manufacturing, 30(6), 2853–2869. 

This means that each device performs a specific function and is placed on the most suitable 

part of the body (Lukowicz et al. 2004). Thus, the scanner can be integrated into a finger, the 

localization module into a badge and the visual interface into a pair of glasses. The modularity 
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of the accessories (strap, magnetic supports, clips) that can be confined and reconfigured allows 

the same sensor to be adapted to different operating scenarios and different body types.  

 
Figure 43 - Multifunctional wearable scanning device with modular accessories 

Source: Kong, X. T. R., Luo, H., Huang, G. Q., & Yang, X. (2019). Industrial wearable system: The human-centric 

empowering technology in Industry 4.0. Journal of Intelligent Manufacturing, 30(6), 2853–2869. 

The ring scanner illustrated in Figure 43 can, for example, transform from a barcode reader 

with a “touch” gesture to an RFID reader with a “grip” gesture, simply by exchanging the 

support (Lorenz et al. 2015). 

From a human factor’s perspective, devices must: 

• ensure hands-free operation during critical tasks (Lukowicz et al. 2004); 

• use breathable and hypoallergenic materials in the parts in contact with the skin, 

respecting hygiene requirements (Lorenz et al. 2015); 

• integrate forms of non-invasive feedback (light vibrations, notification LEDs, 

directional acoustic signals) to minimize cognitive load (Chao et al. 2016). 

From operational stability point of view, these devices should have long battery life, stable 

wireless connection, and resistance to environmental conditions. They should interface 

seamlessly with ERP, MES, and WMS, and collect data directly from machinery and 

production systems. 

The use of wearable sensors in logistics focuses mainly on three areas: 

I. Worker localization: The ability to track the position of operators in real time enables 

safety-related use cases, such as reporting incidents (person-down alert) or avoiding 
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collisions with forklifts. For high-precision localization solutions, it is necessary to 

invest in infrastructure such as ultra-wideband (UWB), but the choice of technology 

(e.g. BLE, Wi-Fi or UWB) varies based on the required accuracy and transmission 

speed. In some contexts, BLE (Bluetooth Low Energy) is preferable for lower costs, as 

in the case of the startup Sonitor, which uses BLE or ultrasound to track the position of 

operators and resources in real time, enabling applications such as geo-fencing and 

automatic reporting of working times (DHL, 2024). 

II. Process Intelligence: The analysis of data collected by wearable sensors allows 

obtaining Process Intelligence. For example, DHL Supply Chain uses the Motion-

Mining® solution, developed by a German startup, to collect operational data (in 

anonymized and GDPR-compliant form) using temporary wearables. This data, free 

from observation bias, is processed to identify inefficiencies and improve processes. In 

parallel, devices such as smart glasses or wearable scanners provide real-time insights 

into productivity and potential bottlenecks (DHL, 2024).  

III. Ergonomic Health: Musculoskeletal disorders (MSD) are among the main problems 

related to the work environment in Europe. Wearable sensors can reduce risks by 

analysing potentially dangerous postures and movements. Solutions such as Soter 

Analytics or Kinetic vibrate or emit an acoustic signal when the operator makes 

incorrect movements (e.g. inappropriate bending or dangerous twisting), contributing 

to a gradual improvement in postural habits. In addition, devices such as smartwatches 

and smart bracelets can monitor vital parameters (stress, fatigue), sending alerts in case 

of anomalous values. However, these applications require maximum attention to 

privacy protection: the data collected (e.g. health parameters) must be anonymized and 

processed in compliance with data protection regulations (DHL, 2024).  

The main challenges associated with the use of wearable devices in logistics therefore concern 

the protection of personal data, infrastructure costs and the risk of overloading operators with 

too many wearables. Proper technology selection and collaboration between vendors, HR 

managers and workplace safety figures become essential for effective adoption. 

To sum up, thanks to the integration of IoT and Wearable Sensors, smart warehouses obtain 

numerous tangible benefits related to better inventory management, optimization of inbound 

and outbound flows, efficient use of machinery and predictive maintenance, worker safety and 

injury prevention, infrastructure monitoring and energy saving. 

- Better inventory management: Real-time traceability of stock, combined with constantly 

updated data, prevents stock-outs and reduces the costs of overproduction or unused space. 
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The data generated by RFID tags or sensors installed on goods and vehicles, in fact, flow 

into the WMS, which precisely calculates the stock levels and their location (Biswal, Jena-

mani, and Kumar 2018; Giusti et al. 2019). 

- Optimization of inbound and outbound flows: The ability to automatically check the 

contents and conditions of incoming pallets, thanks to wireless readers and cameras (to 

detect any damage), speeds up check-in and the assignment of a location. In the outgoing 

phase, each pallet is scanned and immediately compared with the order: this way the right 

products are always shipped, errors are avoided, and the inventory is updated in real time 

(Trab et al. 2017).  

- Efficient use of machinery and predictive maintenance: By keeping an eye on machinery 

such as forklifts, conveyor belts and AGVs, it is possible to intervene immediately if a 

vehicle is over- or under-utilized, improving efficiency and predictive maintenance. 

Furthermore, by adding an analysis of parameters such as temperature, vibrations and 

operating cycles, predictive maintenance can easily be activated, scheduling interventions 

before failures occur (especially on handling machinery) or bottlenecks are created. 

- Worker safety and injury prevention: installing sensors and cameras on forklifts and racks 

can detect hidden obstacles and dangers. Forklifts can be programmed to automatically 

slow down when approaching intersections or when they detect a pedestrian (Industrial 

Truck Association; U.S. Occupational Health and Safety Administration). In addition, the 

use of pressure sensors helps avoid poorly distributed or excessive loads. Some systems, 

such as Ravas’s “smart forks”, integrate scales and load centres, alerting the operator if 

weight limits are exceeded or if the load is unbalanced. Preventing pallets from falling or 

slipping can be entrusted to a set of sensors and cameras, capable of identifying imperfect 

storage and sending alerts before accidents occur. Whereas on the human side, as already 

stated, wearables monitor the physical condition of workers in real time preventing injuries 

and ensuring rapid interventions (Buntak, Kovačić, & Mutavdžija, 2019; Wanganoo, 

2020). 

- Infrastructure monitoring and energy saving: The integration of sensors also in the building 

infrastructure (lighting, heating system, ventilation) allows for optimizing consumption. 

This reduces energy costs and environmental impact (De Venuto and Mezzina 2018). 

 

3.2.1.3 Smart Delivery 

Differently from freight transportation—which involves the bulk transportation of goods 

between locations, often for business-to-business transactions or moving inventory—the 
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delivery focuses on the final stage of transportation: delivering individual packages or goods 

to a specific customer's address. “Smart Delivery”, instead, refers to the set of practices and 

technological solutions aimed at making the delivery process faster, safer and more accurate. 

In particular, the integration of the IoT in delivery aims to solve several problems that affect 

the current system, including operational inefficiencies, failed deliveries, theft of goods and the 

deterioration of perishable products (Shi, Zhang, and Qu 2010; Fu et al. 2015). Thanks to the 

connectivity and sensors typical of the IoT, tracking and monitoring of shipments become more 

detailed, allowing to share and make interactive the information related to the delivery status. 

Technologies such as RFID, environmental sensors, GPS devices, and wireless network 

systems support the flow and sharing of data between different actors in the logistics chain. For 

example, shared delivery or “joint delivery” takes advantage of the interconnection of physical 

logistics resources, enabling significant improvements in delivery efficiency and resource 

optimization (Wang et al. 2019). A crucial aspect for smart delivery is real-time traceability: 

by installing sensors, RFID tags, or GPS devices on vehicles and equipping personnel with 

mobile devices, it is possible to know the location of the courier and the goods both in outdoor 

environments (thanks to GPS) and in indoor environments (via RFID) (Lin, Cheng, and Wang 

2011). This level of visibility allows for providing updates to customers and for any route 

recalculations or vehicle reassignments, for example in the event of accidents or unforeseen 

events (Ngai et al. 2012). Security is another pillar of smart delivery. As in the case of smart 

freight transport, also in the context of smart delivery, theft of goods is a crucial point to 

manage (Yang, Luo, and Lu 2015), as well as incorrect deliveries (Fu et al. 2015). Thanks to 

RFID identifiers and geofence mechanisms the control of these two phenomena becomes easier 

and easier (Oliveira et al. 2025), while with sensors and wireless technologies the status of the 

vehicle can be constantly monitored as well as the physical conditions of the driver, reporting 

dangerous driving situations such as drowsiness (Kido and Nakamura 2016). There is no 

shortage of applications for privacy protection: QR code technology, for example, allows both 

to authenticate the courier and to protect the privacy of the end user (Gao et al. 2018).  

Special attention should be paid to perishable products, as they require constant environmental 

controls. Real-time monitoring and collection of parameters such as temperature and humidity 

(Tsang et al. 2018) minimize waste and spoilage risks, with clear advantages for sectors such 

as the food industry or pharmaceuticals (Trebar, Lotric, and Fonda 2015; Yang, Yang, and 

Yang 2011). In this regard, a very important trend is that of smart packaging. Smart packaging 

represents the evolution of traditional packaging solutions and plays a key role in smart 

delivery. By integrating sensors into product packaging, it becomes possible to monitor product 
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quality parameters both in real time and not. In addition to protecting the intrinsic 

characteristics of the items, these devices collect additional information along the entire 

logistics chain—such as origin, route, storage conditions, and final destination—significantly 

enriching the available information framework (Poyatos-Racionero et al., 2018). The fact that 

distributors and consumers can access this evidence increases transparency and security, 

overcoming the limitations of traditional packaging. The result is more efficient management, 

capable of containing waste of resources and product along the supply chain (Kalpana et al., 

2019). From an operational point of view, smart packaging solutions perform various 

functions—from the detection and reporting of critical conditions, to the storage, traceability, 

and transmission of data—laying the foundations for optimization tools that improve the 

overall reliability of logistics (Onwude et al., 2020). 

Literature and major industry reports (DHL, 2024) distinguish three macro-categories: 

I. Active Packaging & Tracking 

II. Intelligent Packaging 

III. Modified Atmosphere Packaging (MAP) 

Active packaging incorporates additives (e.g. antimicrobials or moisture absorbers) that extend 

the shelf life of pharmaceutical or agri-food products, but requires maintaining strict thermal 

control along the cold chain. The integration of IoT sensors and tracking devices allows 

monitoring of temperature, impacts and overturning, activating notifications when safety 

thresholds are exceeded. However, tracker batteries are classified as dangerous goods in air 

transport, a circumstance that limits their use. On the other hand, disposable Bluetooth 

solutions are less expensive, but generate e-waste and therefore pose sustainability issues 

(DHL, 2024). 

Defined as “packaging that senses and informs”, Intelligent Packaging monitors the internal 

conditions of the product through time-temperature indicators (TTI), freshness sensors or RFID 

tags (Poyatos-Racionero et al., 2018; Kalpana et al., 2019). Unlike active packaging, intelligent 

packaging simply records and displays product information, while, as already explained above, 

active packaging acts directly on the product to extend its shelf life (Soltani et al., 2021). A 

case in point is the “Digital Shipping Label & Asset Tracker” by the startup Envio, which 

combines an e-ink label with detectors for opening, falling or exceeding the temperature (DHL, 

2024).  

Modified Atmosphere Packaging (MAP), instead, is a fundamental tool for the management of 

perishable or oxidation-sensitive goods. In this case, the internal atmosphere can be controlled 

and modified by replacing oxygen with other gases (e.g. nitrogen) to extend the shelf life. For 
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instance, the Covid-19 pandemic has shown how MAP is essential even in the context of the 

pharmaceutical industry. In fact, even in the transport of vaccines, the temperature must be 

strictly monitored to guarantee the preservation (DHL, 2024). 

The different classifications are related to the technology used for packaging. Figure 44 shows 

the classification of technologies used in intelligent (smart) packaging. 

 
Figure 44 - Classification of smart packaging technologies 

Source: Fernandez, C. M., Alves, J., Gaspar, P. D., Lima, T. M., & Silva, P. D. (2023). Innovative processes in smart 

packaging: A systematic review. Journal of the Science of Food and Agriculture, 103(3), 986–1003. 

Indicators are simple devices, often similar in appearance to a label or sticker, designed to 

change appearance when the product is subjected to unsuitable conditions (Ahmed et al., 2018). 

The principle on which they are based is almost always irreversible: once the color change has 

occurred, the information remains “written” on the packaging and can be read at a glance by 

anyone, without electronic tools (Otles & Sahyar, 2016). 

The following are examples of indicators: 

• Time-Temperature Indicators (TTI): they are devices that can be attached to primary, 

secondary, and pallet packages. Inside this device there is a physical-chemical reagent 

which accumulates the heat received over time. If the temperature has always remained 

correct, the central circle remains clear; if the sum of all the small changes exceeds the 

threshold, the colour fades towards blue or red. In practice, a TTI translates the thermal 

history of an invisible risk (a change of a few degrees) into a visible signal (Müller & 

Schmid, 2019; Wang, Wu, & Cao, 2019). 

• Freshness indicators: the focus is not on temperature but on metabolites, that is, 

chemicals that bacteria or the product itself release during degradation. Some examples: 

carbon dioxide for fruit and vegetables, biogenic amines for fish, hydrogen sulfide for 

meat. A freshness indicator is a label which contains a reagent that reacts with one of 
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these molecules to change colour so the consumer can understand if the product is still 

safe without opening the package (Fernandez et al., 2023). 

• Variable pH films with natural colorants: The composition of gases inside a package 

reflects the state of conservation. Variations can depend on enzymatic or microbial 

activity or on micro-leaks in the packaging (Müller & Schmid, 2019). These changes 

can be controlled with colour-sensitive films that monitor the pH (Alizadeh-Sani et al., 

2021). A natural pH-sensitive pigment, such as anthocyanins, is incorporated into a thin 

plastic or bioplastic base. If the food becomes more acidic or alkaline, the pigment 

changes colour, for example from red to blue. At that point, a glance is enough to know 

if the food is still good, without opening the package. Since both the support and the 

colorant are natural, the solution is compatible with packaging that must remain in 

contact with food and can be disposed of as normal organic waste (Pourjavaher et al., 

2017). 

The strength of the indicators lies in their immediate readability: they do not need batteries, do 

not require a network connection and cost a few cents. The weakness is that they provide 

“photographic” information: they say that the problem occurred, but not when, where or for 

how long. When it is necessary to accurately reconstruct environmental history or forward data 

in real time, electronic sensors come into play.  

The typical architecture includes four sections: 

• Receiver (or sensing part): the tip of the sensor, i.e. the material that physically comes into 

contact with what is to be measured (temperature, humidity, gas). 

• Transducer: transforms the physical or chemical variation (e.g. an increase in °C) into an 

electrical signal. 

• Signal processing: a small circuit that digitizes, filters and encodes the signal. 

• Communication interface: the “megaphone” that sends the data outside, often via an RFID 

antenna or integrated NFC module. If connected to the Internet, it turns into an IoT device 

(Wang, Wu, & Cao, 2019). 

Many sensors use button batteries because they are compact, but to reduce waste and facilitate 

recycling, energy harvesting solutions are becoming more widespread – for example, a tiny 

piezoelectric plate that converts the vibrations of the truck into micro-current sufficient to 

power the device for the duration of the journey. Miniaturization is made possible by printed 

electronics: the copper tracks of the circuits are “printed” as conductive inks on plastic films 

(Wang, Wu, & Cao, 2019). This cuts copper waste, avoids manual assembly of components 
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and reduces costs and thickness, so much so that the sensor can be inserted between two layers 

of packaging and remain invisible to the naked eye. The downside is even lower mechanical 

resistance than traditional circuits. Manufacturers must therefore calibrate film thickness and 

flexibility to avoid breakage during handling (Fernandez et al., 2023). 

To ensure that the information collected is useful for logistics, a means of transporting the data 

is needed. This is where data carriers come in: 

• Barcode and QR-code: the traditional barcode functions as a product plate but contains 

little information and must be read in line of sight. The QR-code, on the other hand, 

can store a text of several hundred characters: a warehouse worker or the consumer 

himself, by scanning it with a smartphone, can access the nutritional information sheet, 

disposal instructions or video recipes in a few seconds. If the QR is printed with 

thermochromic inks, it can even be “covered” at low temperatures (therefore invisible 

in the cold room) and “uncovered” when the package exceeds the critical threshold, 

acting as an additional visual warning (Djurdjevic et al., 2019). 

• RFID: an RFID label contains a metal antenna and, in classic models, a microchip that 

stores the ID. Radio frequency allows for remote reading without line of sight, so the 

warehouse can inventory hundreds of packages as they pass under an automatic gate. 

As already discussed, passive tags work without a battery and reach only a few meters 

while active tags are internally powered, exceed tens of meters and support sensors, but 

impact costs and disposal. Between these two solutions are semi-passive tags whose 

battery serves only to power the internal circuit, while the transmission remains 

stimulated by the external field, thus offering a compromise between autonomy, range 

and cost (Bibi et al., 2017). Operating frequencies influence performance: LF (125 kHz) 

penetrates liquids well but reads at a few centimetres; HF (13.56 MHz, the same as 

contactless tickets) reaches about twenty centimetres; UHF (860-960 MHz) goes up to 

4-8 m in optimal conditions; SHF (2.45 GHz) offers high throughput but is sensitive to 

water, so it is used on dry pallets or clothing. 

• Chipless RFID: To reduce costs to under one euro cent, the chipless tag is being tested. 

Here the logic is not contained in a circuit but “drawn” in the geometric shape of the 

antenna, which reflects a sequence of frequency bands like a mirror that reflects 

different colours. The reader “sees” these bands and translates them into a unique binary 

code. Since there is no chip, only a plastic sheet coated with metallic ink is needed: 

light, flexible, potentially recyclable with less impact. The challenges are the printing 
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resolution (a small imperfection can change the code) and sensitivity to shocks and 

bends, but the first prototypes show reliable readings within 2-3 m, enough for gate 

controls in warehouses or depots (Fathi et al., 2020). 

Bringing together indicators, sensors and data carriers means transforming the packaging into 

a communication node that warns if the product is deteriorating, records when and where it 

occurred and forwards the data to the company information system. This is explained very well 

by Figure 45, which shows the logistics chain diagram of a food product, based on the 

technology provided by the company Varcode. 

 
Figure 45 - Schematic design of the traceability system with the use of Smart Tag 

Source: Fernandez, C. M., Alves, J., Gaspar, P. D., Lima, T. M., & Silva, P. D. (2023). Innovative processes in smart 

packaging: A systematic review. Journal of the Science of Food and Agriculture, 103(3), 986–1003. 

From the very beginning, the smart tag is activated and its registration takes place in real time 

through computer systems that store all relevant information which can be analyzed in real 

time. After the product is delivered, information can be obtained through interaction with the 

end consumer who, by scanning the QR code, can access the website and fill out a survey on 

the delivery conditions, such as safety, for example, and report possible problems, in addition 

to building customer loyalty with bonuses and loyalty incentives (Varcode, 2021). 

The constant measurement of the parameters also opens the way to predictive models: the 

transport platforms cross-reference the sensor data with the planned route and send alerts if, 

for example, the temperature exceeds the threshold value for a certain period of time or if the 

vibrations indicate a shock that could have damaged the contents. The algorithm thus calculates 



 95 

the residual useful life (RSL) of the batch and, if necessary, modifies the delivery order to 

reduce waste (Pal & Kant, 2020).  

 
Figure 46 - Example of a smart packaging–based logistics system 

Source: Verigo. (2019). POD Quality – Model PH1. Verigo. 

The Verigo Pod Quality case demonstrates the practical impact: by monitoring the entire 

journey of strawberry crates, it was observed that, by maintaining the temperature between 0 

and 2°C, the average useful life remains around 9 days, while prolonged exposure to 10°C is 

enough to reduce it to less than three, information that allows the fleet manager to give priority 

to the most at-risk packages (Verigo, 2019; Innolabel, 2022). The operational benefits are 

immediate: reduction in returns, optimisation of distribution routes, possibility of rapidly 

isolating a batch in the event of a recall and, last but not least, availability of verifiable data for 

environmental sustainability reports. The challenges instead concern the standardization of 

formats, the recycling of electronic components and compliance with regulations on the air 

transport of batteries, but the convergence of very low-cost passive sensors, low-power 

communication networks and cloud platforms for predictive analysis indicates that smart 

packaging will soon become an essential competitive requirement for truly transparent, safe 

and zero-waste delivery. 

In addition to the aspects related to traceability and safety, Smart Delivery aims to improve the 

so-called “last mile delivery” (LMD). This is the final phase of delivery, which remains the 

most expensive and unpredictable part of the entire logistics chain: up to 41% of transport costs 

are attributable to the last kilometres that separate the distribution centre from the final recipient 

(Wanganoo & Patil, 2020). The widespread integration of the IoT is progressively transforming 

this bottleneck into a competitive advantage factor, thanks to connected devices that provide 

real-time visibility, capillary traceability and new operating models. GPS sensors, 

accelerometers, temperature and humidity detectors, placed on vehicles and packages, 

continuously transmit granular data on the status of the shipment. This end-to-end visibility 

allows to promptly identify delays, deviations or environmental conditions outside the 

threshold, reducing losses and disputes and improving the quality of the service (Ivankova et 
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al., 2020). In parallel, low-power communication networks (LPWANs), combined with edge 

or cloud gateways, allow the management of millions of devices with low energy consumption, 

an essential requirement for widespread coverage of urban territory. To address the problem of 

failed deliveries, smart lockers are becoming more widespread – automated lockers equipped 

with IoT sensors and electromechanical locks – that act as self-service collection points open 

24 hours a day. The DHL Paketkasten, for example, is a container that can be installed in the 

home: a micro-controller registers the opening of the door, measures the internal occupancy 

using an ultrasound sensor and transmits the status to the central server; the courier thus 

receives information in advance on the availability of the compartment, avoiding empty 

passages and recalculating the route in real time (DHL, 2024). Parcelbox follows the same 

logic but uses an RFID badge instead of a digital code for unlocking, ensuring compatibility 

with the main delivery platforms (DHL, 2024). On the public front, many cities are 

experimenting with condominium lockers with refrigerated cells, in which IoT thermal probes 

maintain and track the temperature for sensitive food or medicines. Alongside lockers, plug-

and-play devices like Postybell transform the traditional mailbox into a connected node: an 

infrared proximity sensor, powered by a long-life battery, recognizes the insertion of 

correspondence and sends a push notification to the recipient’s app in a few seconds. The 

advantage is twofold: the courier avoids delivery attempts if the compartment is full, while the 

user can decide to collect the mail at the most appropriate time (DHL, 2024). IoT also enables 

dynamic address reprogramming. Thanks to the controlled sharing of the smartphone’s 

location, the logistics-distribution platform suggests alternative delivery points – an office, a 

temporary home, an “en route” locker or even the doorman of a nearby building – calculating 

in real time the drop-off point that minimizes distance, time and emission impact. This 

paradigm, sometimes called address as a service, has already been tested by the American 

service Shyp, where the same network of freelance drivers offered, via app, to collect 

“unscheduled” packages in the immediate vicinity, transforming the last mile into a system of 

on-demand micro-collections and micro-deliveries (DHL, 2024). On the autonomous delivery 

front, IoT drone pilots further illustrate the potential of widespread connectivity. DroneTalk 

(Chen et al., 2022) is an experimental platform developed at the University of Hong Kong: the 

quadcopter integrates multi-band GPS, IMU attitude sensors, a forward-looking video camera 

and an LTE-M modem. These modules send flight plans, battery status and weather 

information every 500 ms to a ground station that processes the same data to enable micro-

route adjustments and precision landings on urban micro-hubs. In Arizona, the 3D4 system 

(Eeshwaroju et al., 2020) focuses on “vertical” deliveries: the drone is equipped with 
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ultrawideband (UWB) sensors for indoor positioning and a CAN-bus-controlled winch that 

deposits packages up to the twentieth floor without the need to land on the roof. A LiDAR 

sensor monitors the distance from the balcony, while the package is “hand-shaked” via RFID 

tag to certify the delivery. In parallel, IoT sensors installed on electric vans, cargo bikes and 

ground robots monitor in real time energy consumption, battery temperature and acceleration 

patterns, enabling predictive maintenance and eco-driving strategies that, according to Xu et 

al. (2022) and Arora et al. (2017), reduce energy consumption by 10 to 20%. In regulated 

supply chains, the combination of IoT and blockchain seals the data collected by sensors, 

ensuring integrity and non-repudiation for the benefit of producers, distributors and control 

authorities (Markovic et al., 2020). The empirical results published so far indicate average 

delivery times reduced by up to 25%, a reduction in empty kilometres driven and a significant 

increase in customer satisfaction thanks to proactive notifications and flexible collection 

options (Elvas et al., 2023). However, open challenges remain: the strong growth of the cyber 

attack surface, the protection of personal data and the initial investment costs, particularly 

relevant in emerging markets (Kafile and Mbhele, 2023). The adoption of zero-trust 

architectures, end-to-end encryption protocols and interoperability standards therefore appears 

essential. Ultimately, the IoT ecosystem gives last-mile delivery unprecedented transparency, 

flexibility and reliability. From roadside sensors to connected lockers, from smart tags to 

vertical drones, each node generates and shares information that, if properly orchestrated, 

transforms the last mile from a critical point to a strategic element of logistics competitiveness 

(Fu et al. 2015; Yang, Luo, and Lu 2015). 

4 The Convergence of AI and IoT in Logistics 4.0 
Although the integration between AI and IoT technologies has not been explored in detail in 

the previous chapters, several ideas and references that emerged during the discussion have 

nevertheless clearly suggested a complementarity between these two technologies. This belief, 

deliberately disseminated throughout the thesis, will now be the subject of a specific analysis 

and study.  

4.1 AI-IoT Integration: Enabling Smart and Adaptive Logistics 
Combining AI and IoT gives rise to the so-called Artificial Intelligence of Things (AIoT). This 

is a rapidly evolving paradigm, destined to redefine the ways of managing and controlling 

supply chains. Indeed, when these two technologies are combined together, devices can collect 

and analyze data, then make decisions and act on that data autonomously (Nozari et al., 2021). 
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This enables companies to leverage both technologies simultaneously and achieve a state of 

transparent, agile and adaptable supply chain that can address even the most difficult challenges 

more effectively.  

 
Figure 47 - AIoT Features Overview 

Source: Nozari, H., Tavakkoli-Moghaddam, R., Rohaninejad, M., & Hanzalek, Z. (2023). Artificial Intelligence of Things 

(AIoT): Strategies for a smart sustainable-resilient supply chain (Figure 1, p. 809). Proceedings of the Czech Technical 

University in Prague, Industrial Informatics Department. 

Figure 47 provides an effective representation of the distinctive features of AIoT. On the one 

hand, IoT provides one of the most valuable resources for contemporary logistics chains: the 

continuous and real-time flow of data on the operating conditions of vehicles, warehouses and 

goods in motion. As a result, the amount of data generated is significant in volume, plus it is 

often heterogeneous and unstructured. This clearly makes manual management and direct 

extraction of significant knowledge from this data, quite difficult. This is where AI comes in. 

To transform this “ocean” of raw data into useful insights like “in two hours machine X will 

need maintenance” or “demand for this product will increase by 20% in the next few days”, AI 

algorithms are deployed to filter the information noise and select only the variables relevant to 

the decision-making context. So, the two technologies not only coexist, but enhance each other. 

In the common area, that is AIoT, three main application areas emerge: 

• Data analysis, for example the use of machine learning techniques to identify patterns and 

anomalies in historical data series, supporting demand planning and route optimization; 

• Asset management, which uses sensors and cloud platforms to monitor the health status of 

vehicles and infrastructures and proactively initiate maintenance interventions; 

• Immersive apps, such as the development of augmented and virtual reality interfaces that, 

integrated with predictive models, assist operators and managers in making decisions in the 

field. 

On the benefits side, AIoT enables continuous process improvement (reduction of downtime, 

automation of workflows, dynamic reallocation of resources), introduces a new paradigm of 

communication with users (smart notifications, personalized dashboards, conversational 
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interfaces) and pushes industrial automation towards increasingly higher levels of autonomy, 

up to collaborative robots and self-driving vehicles used in warehouse operations and last-mile 

delivery (Nozari et al., 2023). In the transition from general principles to the logistics 

dimension, AIoT is configured as a true “digital nervous system” in which IoT sensors act as 

peripheral receptors, capturing continuous environmental and operational stimuli, while AI act 

as the “brain”, interpreting inputs, formulating predictions and orchestrating responses 

autonomously or in collaboration with the human operator (Sun et al., 2020). Figure 48 shows 

a clear representation of the process.  

 
Figure 48 - AIoT Framework for Smart Supply Chain Management 

Source: Nozari, H., Tavakkoli-Moghaddam, R., Rohaninejad, M., & Hanzalek, Z. (2023). Artificial Intelligence of Things 

(AIoT): Strategies for a smart sustainable-resilient supply chain (Figure 3, p. 814). Proceedings of the Czech Technical 

University in Prague, Industrial Informatics Department. 

Thanks to this synergy, connected devices are no longer limited to acting as mere transmitters 

of data to a remote control center, but are evolving into “intelligent machines”: equipped with 

autonomous perception capabilities and distributed decision making, they are able to intervene 

directly on the field with minimal human intervention, accelerating response times and 

significantly reducing error margins (Xiong et al., 2021). 

When this synergy is not present, sensors scattered along supply chains, vehicles and 

infrastructures collect heterogeneous big data and analysis remains post-event as data is 

directed only to central systems. The grafting of AI algorithms close to the source (edge AI) 

reverses the paradigm: lightweight neural networks, running on low-power microcontrollers, 

anticipate the time-to-failure of an engine far enough in advance to trigger the supply of spare 
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parts without stopping the line (Hou et al., 2023); a streaming-powered logistics digital twin 

continuously simulates the state of warehouses and fleets, proposes or recalculates routes based 

on congestion, weather and delivery constraints (Min, 2023). It is the device itself, therefore, 

that decides to act, no longer the control center that interrogates millions of nodes. Three new 

capabilities reside in this qualitative leap. First, the supply chain becomes self-synchronized: 

each intelligent node adapts its behavior to the global state, updates it in turn, and coordinates 

the entire network without going through a single direction (Nozari & Nahr, 2022). Second, 

learning becomes continuous in situ. The models, trained in the field with federated logics, 

adapt to changing layouts, volumes, or climatic conditions without interrupting operations. 

Finally, decision-making delegation is distributed and graduated. The architecture decides in 

real time which logics remain local to reduce latency, and which migrate to the cloud, 

transforming the supply chain from reactive to anticipatory (Najafi et al., 2023). The added 

value compared to the separate use of technologies emerges with particular evidence in the 

following table: 

 
Table 3 - Comparative summary of IoT, AI and AIoT 

Source: Author's personal elaboration 

Moreover, traceability is transformed into cognitive transparency:  

I. Each package, loading bay or vehicle becomes a node capable of contextualizing 

information (position, temperature, delivery priority) and negotiating resources 

with the rest of the network; 

II. Shared ontological models allow heterogeneous devices to understand each other 

without centralized semantic brokers (Nozari et al., 2022); 
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III. Previously invisible KPIs (such as real-time carbon footprint or packaging reuse 

cycles) become measurable again and have a retroactive effect on planning 

objectives (Bloss, 2016).  

There is no shortage of critical issues:  

I. The increase in the attack surface requires zero-trust architectures and secure 

firmware right from the silicon;  

II. The coexistence of 5G, Wi-Fi 6/7 and mesh networks must be orchestrated to 

balance computing power and energy consumption;  

III. The lack of skills requires the training of hybrid figures, AIoT engineers.  

However, once these issues have been addressed, the convergence between distributed 

perception and AI provides a logistics capable of learning, deciding and acting almost at the 

speed with which demand, environment and markets change.  

In this context, the convergence between the IoT and AI allows to go beyond the simple 

automation of single processes to build a real smart warehouse, in which physical resources 

and computational resources operate as a single and self-adaptive system. An example of a 

smart warehouse architecture is shown in figure 49.  

 
Figure 49 - Smart Warehouse Example 

Source: Min, H. (2023). Smart warehousing as a wave of the future (Figure 1, p. 3). Logistics, 7(2), Article 30. MDPI. 

At the core of this architecture is the Cyber-Physical System (CPS), which integrates sensors, 

computing capacity and network to enable autonomous decisions based on information 

collected from connected objects. Sensors, capable of emulating pressures, temperatures, 

vibrations and other “human sensory modalities”, allow to detect infrastructural anomalies and 
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to start predictive maintenance before failures or bottlenecks occur. The generated data are 

processed locally or sent to on-demand cloud computing services, which guarantee scalability 

and continuous software updates without downtime (Min, 2022a; Min, 2022b). Thanks to the 

connectivity inherent to the IoT information flows propagate at low latency between supply 

chain partners, improving synchronization and paving the way for extended machine-to-

machine collaboration (Faulds & Raju, 2019). The operational heart of the intelligent 

warehouse is represented by an automated control platform composed of two complementary 

modules: the automated inventory control, which automates cycle counting, traceability and 

dynamic allocation of items by supporting AS/RS systems, and the automated picking control, 

which reduces costs and picking errors (traditionally the most expensive phase of warehouse 

activities) through voice or pick-to-light tools. Downstream, the Warehouse Management 

System (WMS) consolidates all information in a single interface, offering end-to-end visibility 

on flows and accelerating order processing. On the physical level, handling is managed by 

cobots that can safely collaborate with operators and by AGVs that follow digital paths, 

increasing accuracy and productivity without compromising flexibility. From the point of view 

of value drivers, the literature identifies five main levers: internal IoT sensors that provide real-

time data, CPS integration that enhances M2M connectivity, edge computing that ensures 

operational continuity even in remote sites, AI-based “servitization” strategies to customize 

flows, and intelligent automation capable of autonomously diagnosing and correcting process 

inefficiencies. These elements produce concrete benefits: reduction of inventory thanks to 

greater visibility, prompt identification of bottlenecks and therefore shorter response time to 

customers; increase in labor productivity through human-robot cooperation and seasonal peak-

shaving; higher return on assets for full use of equipment; better quality of service thanks to 

continuous monitoring of performance and operating conditions (Min, 2023). 

This conceptual framework prepares the ground for the analysis of the main application fields 

in which the emerging properties of AIoT find their most concrete manifestation: Digital Twins 

and AIoT-driven robotics. 

4.1.1 Digital Twins in Logistics 

In light of the power that comes from the integration between IoT and AI, it is almost inevitable 

to introduce the concept of Digital Twin (DT), as it represents one of the most advanced and 

concrete expressions of this technological integration. DTs, in fact, represent a perfect meeting 

point between the pervasive acquisition of data enabled by IoT and the analytical and predictive 

capabilities of AI. A definition that captures well this convergence is offered by Negri, 
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Fumagalli and Macchi (2017) who describe the DT as “a form of cyber-physical device that 

uses numerous IoT sensors and produces a high-fidelity visual image of a physical asset. The 

abundance of data obtained by the Digital Twins is then aggregated and analyzed using 

machine learning algorithms to promote strategic and organizational decision-making”. 

Another relevant definition is the one proposed by IBM (2022): “A digital twin is a virtual 

representation of an object or system that spans its lifecycle, is updated from real-time data, 

and uses simulation, machine learning, and reasoning to help decision-making”.  

DTs are based on a structure divided into three fundamental levels, each of which plays a 

crucial role in ensuring the effective functioning and fidelity of the virtual model compared to 

the physical counterpart. The first level is the physical level, which includes all the real 

information relating to the object or system represented. In this level, concrete data, operational 

decisions, actions performed and any other element that characterizes the behavior and state of 

the physical entity are collected. It is in this phase that reality is recorded as it is, laying the 

foundations for an accurate and updated digital reproduction over time. The second level is 

represented by the communication level, which has the task of ensuring that the information 

collected in the physical world is transmitted, translated and made usable in the digital domain. 

In this dimension, data transmission tools are placed, such as IoT networks, communication 

protocols, information encoding and decoding systems. Through these tools, real data is 

converted into machine-readable formats and, at the same time, the results processed in the 

digital model can be converted back into operational actions to be implemented in the physical 

system. Here quality and efficiency are essential to ensure synchrony and coherence between 

the DT and the reality it represents.  The third component is the digital layer, which combines 

the simulation and computation techniques required to interpret the data provided, conduct 

analysis and develop projections. The core of the DT’s intelligence is represented by this layer, 

as it enables not only the replication of the physical object’s behaviour but also the prediction 

of its future evolutions (Far & Rad, 2022; Lv, Qiao, Li, Yuan and Wang, 2022; Zheng, Lu and 

Kiritsis, 2022). Figure 50 illustrates a conceptual model of how DTs interact with logistics and 

supply chain systems across these three layers.  
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Figure 50 - Conceptual model of Digital Twin integration in logistics and supply chain systems 

Source: Le, T. V., & Fan, R. (2024). Digital twins for logistics and supply chain systems: Literature review, conceptual 

framework, research potential, and practical challenges (Figure 6, p. 9). Computers & Industrial Engineering, 187, 109768. 

The key features of DTs are: 

1. Accurate mapping: DTs create a direct link between physical objects and their digital 

counterparts, synchronising real-time and historical data for accurate representation 

2. Real-time synchronization: Unlike traditional simulations, DTs are constantly updated 

with real-time data from physical objects. 

3. Networked and Distributed Modeling: They can represent multiple physical entities 

across networks, including sensors, IoT devices and larger systems.  

4. Intelligence: They use AI algorithms to be able to analyse and process large amounts of 

data, thus optimising, predicting and supporting decision-making for physical systems. 

5. Bidirectionality: DTs exchange real-time data with their corresponding physical objects, 

providing feedback and optimisation. 

The high complexity that characterizes DTs is largely compensated by the tangible advantages 

that this technology makes possible. Thanks to a DT, it is in fact possible to supervise and 

manage physical assets remotely, optimizing their use, reducing operating costs and automating 

repetitive tasks subject to human error. In this way, resources – economic and personnel – are 

freed up to be reallocated to activities with higher added value (Blomkvist & Ullemar 

Loenbom, 2020). Pioneers who have implemented DTs in real contexts report substantial 

benefits in three key areas: 

• Higher quality of decisions, thanks to more complete and reliable data; 

• Streamlining of daily processes, made possible by the real-time integration between the 

physical and digital worlds; 
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• Opening up to new business models, such as servitization or product-as-a-service formulas, 

which were previously difficult to implement (Blomkvist & Ullemar Loenbom, 2020; 

Uhlemann et al., 2017). 

On an analytical level, a DT is able to collect information that eludes traditional methods. This 

data, processed with advanced algorithms, feeds recommendations aimed at improving the 

performance not only of the current asset, but also of its future design evolutions. The 

descriptive value is expressed instead in the possibility of remotely viewing and monitoring 

physical assets. For example this is very useful for visualizing the status of an asset in 

dangerous or difficult-to-reach environments, such as offshore construction sites or remote 

plants. This allows continuous monitoring even during extraordinary missions like long-range 

transport (Blomkvist & Ullemar Loenbom, 2020). The predictive value emerges when 

historical and operating data are analyzed in large volumes: DTs not only estimate the future 

status of an asset, but proactively suggest corrective interventions or optimization opportunities 

(Uhlemann et al., 2017). Looking ahead, this capability will fuel increasingly autonomous 

systems, capable of making design and production decisions with a positive impact for both 

internal staff and external stakeholders. Finally, the diagnostic value allows to quickly trace 

the causes of an anomaly: the intersection of real-time data and historical series, analyzed with 

machine learning techniques, facilitates the early diagnosis of malfunctions and the planning 

of targeted interventions (Blomkvist & Ullemar Loenbom, 2020; Uhlemann et al., 2017). 

Although DTs are not yet widespread in the logistics sector, many enabling technologies are 

already mature (see Figure 51). In recent years, for example, the widespread adoption of 

sensors has significantly increased the availability of real-time data, an essential prerequisite 

for the future evolution of DTs (Haße et al., 2019). In parallel, the sector has started a 

progressive process of modernizing its digital infrastructures. In fact, there is a growing 

adoption of open Application Programming Interfaces 10 (APIs) strategies, which facilitate the 

interoperability between different information systems and improve the exchange of data along 

the entire value chain (Blomkvist & Ullemar Loenbom, 2020). In addition, many logistics 

companies are migrating to cloud-based IT solutions, which lead to greater scalability and 

flexibility. Another crucial element regards the adoption of machine learning techniques and 

advanced data analysis, increasingly used by logistics companies to optimize their supply 

chains and improve operational efficiency. Predictive data processing can, for example, help 

 
10 APIs are building blocks designed to be reused by developers (eliminating the need to redo the programming from scratch) 
that enable interaction between applications such as databases, networks, and IoT devices. 
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anticipate bottlenecks, reduce equipment downtime and improve inventory management, all of 

which are perfectly compatible with future DT integration (Camerer, 2018).  

 
Figure 51 - Technologies behind Digital Twins 

Source: DHL Trend Research. (2019). Digital twins in logistics: A DHL perspective on the impact of digital twins on the 

logistics industry (Figure 4, p. 7). DHL Customer Solutions & Innovation. 

Finally, other technologies that can contribute to enriching the information assets needed to 

build accurate and dynamic DTs are augmented reality, mixed reality, and virtual reality, for 

which there is currently a growing interest in logistics processes. While IoT, cloud computing, 

APIs, and AI provide the fundamental sensing and processing infrastructure required to 

construct a DT, immersive technologies (augmented, mixed, and virtual reality) are used for 

visualisation, either on a screen (2D) or in a physical space (3D), to make DTs real for users 

(Yang, 2019; Omollo, 2019). In essence, although the large-scale use of DTs in logistics is still 

in its early stages, the necessary technological infrastructure is already at an advanced stage of 

development, paving the way for the full integration into industry operating models in the 

coming years (DHL Trend Research, 2019). In order to provide a comprehensive overview of 

their application, an analysis will now follow on how DTs manifest themselves and bring  value 

in several crucial areas of logistics, including: 

• warehouse management 

• transport operations  

• across the entire supply chain 

Digital Twins in the warehouse management 

Warehouses and distribution centers are ideal environments to implement DTs, due to the 

complexity of their structure and the high-intensity of the operations. The application of a DT 
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allows to realistically simulate the movement of products, personnel and equipment within the 

facility. By creating a virtual 3D model of the plant and integrating it with data from IoT-

connected warehouse platforms, in addition to inventory and operations data, it is possible to 

reproduce the facility’s daily operations (DHL Trend Research, 2019). Looking at Figure 52, 

the left side illustrates a DT of a warehouse, while, the right side shows a heat map generated 

through the DT which highlights the areas of high worker and forklift intensity. 

  
Figure 52 - Application of Digital Twins in Warehouse Logistics 

Source: DHL Trend Research. (2019). Digital twins in logistics: A DHL perspective on the impact of digital twins on the 

logistics industry (Figure 21, p. 23). DHL Customer Solutions & Innovation. 

This approach brings several benefits: greater visibility into processes, more effective planning, 

better use of space, more efficient management of operations and a reduction in energy 

consumption and waste. In this sense, as already mentioned, DTs are proving to be extremely 

effective tools for implementing predictive maintenance strategies. In an industrial context 

where the costs due to unplanned downtime are particularly high, the ability to monitor the 

status of assets in real time is essential. For instance, companies like Kraft Heinz, in 

collaboration with Microsoft, have created DTs of their production sites with the aim of 

reducing mechanical stops. Similarly, major logistics operators are developing digital replicas 

of specific assets such as robots, forklifts and trucks, monitoring their wear and tear to prevent 

failures. The adoption of DTs for predictive maintenance allows logistics service providers to 

reduce up to 40% of reactive maintenance activities in a year, increasing productivity and 

reducing costs (DHL, 2024). In spite of this, the potential of DTs is not limited to simple 

monitoring: they can also have a significant impact on the design, management and 

optimization of logistics facilities. During the design phase, DTs can support the definition of 

the layout of new facilities, allowing companies to simulate the flows of goods, people and 

handling equipment, thus optimising the spatial configuration according to specific operational 

needs. During daily operations, DTs are continuously updated thanks to data collected by 
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automation systems that are becoming increasingly widespread in modern warehouses. These 

tools include inventory counting systems using drones, automated guided vehicles (AGVs), 

goods-to-person systems for automated picking and automatic storage and retrieval equipment. 

The interaction between DTs and these automated systems enables further optimisation of 

operational performance (DHL Trend Research, 2019). Additionally, having detailed, 3D data 

across the entire plant offers significant opportunities to improve workers’ productivity: 

companies can develop virtual reality training tools that provide a safe, immersive environment 

for learning operations, or introduce augmented reality picking systems based on wearable 

devices. However, the ability of DTs to drive continuous improvement may be the most 

convincing reason to use them. Thanks to the systematic data collection, identifying 

inefficiencies and waste in warehouse operations becomes very easy and before introducing 

operational changes, managers can exploit simulation through the DTs to assess the potential 

impact of the change (DHL Trend Research, 2019). Simulation is now one of the most effective 

tools for the analysis and design of complex logistics systems. It allows testing the behavior of 

the value chain in relation to multiple variables: throughput, costs, delivery reliability, 

variability and risks. The main advantage lies in the possibility of evaluating future scenarios 

and design options without having to intervene on the real physical system, thus avoiding 

operational discontinuities or errors that are difficult to reverse. In particular, the use of 

simulation models is crucial when dealing with large organizations, for which structural or 

strategic changes imply high complexity and multiple interdependencies (Tannock et al., 

2007). Traditionally, the construction and application of simulation models follow discrete 

approaches (discrete-event simulation), characterized by an iterative process, articulated in 

multiple phases. However, in recent years, scientific literature has begun to pay increasing 

attention to the automation of modeling processes, through the use of integrated and data-

driven models. In these approaches, the information describing the characteristics of the model 

is stored in a structured way, often in relational databases such as SQL, or conveyed via XML 

schemas, to be used directly by simulation software. When the necessary data comes from 

existing sources, such as company ERP systems, the degree of automation increases further. 

Information such as bills of materials (BOM), production capacities, processing times and 

details relating to customers and suppliers can be extracted automatically, validating and 

updating the simulation model in real time (Krenczyk & Bocewicz, 2015). Data-driven 

modelling and simulation thus take on the role of decision-making tools, capable of supporting 

the redesign of the supply chain according to real operating conditions. Data can be stored 

locally or shared through collaborative portals (“collaboration hubs”), which encourage 
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interaction between the different partners of an extended network. Through these systems, ERP 

data are converted into formats compatible with simulation software, contributing to the 

automatic creation of models. However, it is still necessary to provide for a continuous data 

validation phase, in order to guarantee the reliability and consistency of the simulations 

(Cozmiuc & Petrisor, 2018). From an operational point of view, there are two main 

methodologies for building simulations: modular and data-driven. Modular simulations are 

based on reusable templates, which represent generic elements of the system (e.g. a production 

line, a warehouse, a loading point), managed through user-friendly graphical interfaces. Recent 

studies have explored the integration of parameters related to reverse logistics and lean 

manufacturing, in order to further specialize these models (Abideen et al., 2021).  

The models that underpin data-driven simulations are completely parameterised and fed by 

data that production departments gather on a daily basis, such as through MES (Manufacturing 

Execution Systems) systems. The analysis of historical series allows to accurately estimate 

process times, decision probabilities and variability of results, so as to build models in an 

almost automatic way thanks to modular software components, programmable in SQL or 

Python and easily reusable in different contexts (Goodall et al., 2019; Abideen et al., 2020). 

Based on a solid literature review, some authors propose a framework that integrates real-time 

data flows in the creation of digital twins: these twins reproduce the plant as it operates, 

continuously updating themselves and maintaining a satisfactory level of accuracy (Rožanec 

et al., 2021). In practice, the digital model does not limit itself to replicating the failures or 

anomalies that may occur, but also incorporates the countermeasures adopted by human 

operators. The observed behavior is recorded and becomes raw material for training machine 

learning algorithms, to create a reinforced learning environment capable of proposing 

increasingly effective decisions. Consequently, the digital twin evolves from a descriptive or 

predictive tool to a prescriptive system: not only does it show “what is happening” or “what 

could happen”, but it also suggests “what is best to do”, transforming operational choices from 

reactive to proactive and opening up particularly promising prospects for logistics and for all 

activities that depend on complex, dynamic and interconnected processes. 

Digital twin in transport operations 

In the field of logistics transport, DTs are built on the basis of continuous data collection made 

possible by an extensive network of sensors installed on vehicles that monitor fundamental 

variables (e.g. GPS position, acceleration, angular velocity, battery state of charge, 

environmental conditions, component wear and specific operating parameters). When this data 

is fed into a virtual model that is updated in real time, it is possible to reproduce the behavior 
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of the vehicle in a simulated environment with high precision. A prominent example is that of 

Li and Wang (2025), who created a platform to monitor, predict, and improve the operation of 

autonomous vehicles used for the movement of goods.  

The first step was to equip the real vehicles with a dense network of sensors – positioned on 

the chassis, guidance systems and load units – capable of providing a detailed picture of the 

operating conditions in real time. Based on the data collected, the authors divided the mission 

cycle into four macro-states, each representing a specific moment in the logistics process: 

• Waiting: the vehicle is stationary, for example queuing for loading or awaiting instructions; 

• Loading: the vehicle is loading or unloading goods; 

• Slowing: the vehicle slows down due to obstacles, traffic or particular operating conditions; 

• Driving: the vehicle is moving towards the destination following a planned route. 

To collect data useful for building the predictive model, the researchers had real vehicles run 

numerous cycles of transport missions in a test environment.  

During each mission, the vehicle acceleration was continuously detected along the three 

Cartesian axes (X, Y, Z) and used to recognize and classify the four operational states identified 

by Li and Wang (2025). The signals thus collected fed a LSTM (Long Short-Term Memory) 

neural network model, particularly suitable for analyzing time series because it “memorizes” 

the past evolution and improves the prediction of future behavior. To ensure the robustness of 

the model, the authors applied cross-validation on data samples not seen in training and 

carefully optimized the hyperparameters, reducing the risk of overfitting and favoring the 

generalization capacity. After nine iterative cycles the network achieved an accuracy of 100% 

in correctly identifying the four behavioral states and a Weighted Efficiency (WE) index also 

equal to 100%. The result demonstrates how the integration between digital twins and advanced 

deep learning, if rigorously designed, constitutes a very powerful tool for the predictive 

management of autonomous fleets and for logistics optimization. On the operational level, a 

DT allows to estimate in advance travel times, operating conditions and anomalous behaviors, 

improving in real time the planning of routes, the assignment of loads and the use of resources. 

It also offers the possibility of exploring “what-if” scenarios without taking risks (Mohamed et 

al., 2017). A significant example is the work of Martínez-Gutiérrez et al. (2021), who simulated 

and managed the behavior of autonomous vehicles (AGVs) in real industrial contexts by 

modeling both the vehicles and the surrounding environment (walls, barriers and surfaces) with 
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the ROS (Robot Operating System) 11 framework and the Gazebo12 simulator, obtaining 

extremely realistic reproductions validated on a physical AGV equipped with advanced sensors 

both in a small laboratory and in a larger production area. In parallel, a complete DT of the 

vehicle and the surrounding environment was built, simulated in Gazebo, in order to faithfully 

replicate physical reality. Six distinct missions were planned for each scenario, in which the 

AGV had to move between predefined points representing workstations, following specific 

routes and completing movement sequences. To confirm the simulation’s accuracy, the actual 

execution time for each mission was measured and compared to the one projected by the DT. 

The data showed a correspondence of over 97%, with peaks of 98.82% in the second scenario, 

demonstrating that the virtual model is able to reproduce with high precision the behaviors of 

the AGV in different operating environments. 

Furthermore, DTs enable the coordinated management of multiple autonomous vehicles. In 

practice, virtual models of different AGVs can be connected, thus allowing their movements 

to be synchronized within the facility. This leads to an optimization of lane usage, the 

elimination of the risk of collisions and more efficient traffic management. Such multi-vehicle 

coordination would be very difficult to manage manually, which is why the adoption of 

interconnected DTs is crucial in this respect (Martínez-Gutiérrez et al., 2021).  

In terms of information management, integrating DTs with Manufacturing Execution Systems 

(MES) creates a direct connection between operational data collected from vehicles and 

production management systems, thus obtaining an integrated view of the material flow. AS a 

consequence, this helps to optimize the synchronization between transport and production 

processes and improve the traceability of shipments in real time (Negri et al., 2020). 

Furthermore, the contribution of DTs in the areas of operational safety and environmental 

sustainability is also significant. Thanks to continuous monitoring of vehicles, simulation of 

routes and early identification of anomalies, it is possible to reduce the risk of accidents, energy 

consumption and CO2 emissions. This protects not only the vehicles and goods, but above all 

the personnel involved, making the entire supply chain more efficient and in line with the 

environmental objectives of Industry 5.0 (Xu, Xu, & Li, 2018). 

 

 
11 ROS is an open-source framework for robotics software development. It provides tools, libraries, and conventions for 
creating complex programs in a modular and scalable way. 
 
12 Gazebo is an open-source simulator that allows you to create realistic 3D environments to test robots and autonomous 
systems, replicating physical dynamics, sensors and interactions with the environment. 
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Digital twin across the supply chain 

DTs applied to supply chains represent one of the most promising innovations in the field of 

contemporary logistics. They allow the entire flow of goods, from source to final destination, 

to be digitally modelled, integrating transport systems, information systems, order management 

and, last but not least, human intervention. If we consider that warehouses and distribution 

centres represent only a small part of the global logistics infrastructure, it is clear that the 

success of a system depends on the effective synchronization of ships, trucks, planes, IT 

systems and human interactions. This systemic dimension is clearly evident in large logistics 

hubs, such as cargo airports and container ports, where the multiplicity of actors involved 

makes operational efficiency particularly complex. Such structures often suffer from poor 

integration between information exchange systems, with offline processes that increase the risk 

of errors, delays and inefficiencies (DHL Trend Research, 2019). A concrete example is the 

project currently underway in Singapore, where the Maritime and Port Authority (MPA), in 

collaboration with the National University of Singapore (NUS), launched the first Maritime 

Digital Twin of the Port of Singapore on 24 March 2025. At the beginning, the scientific 

leadership of the project was entrusted to Professor Lee Loo Hay, who highlighted how the 

maturation of the technology is now made possible by the convergence of several factors: 

simulation-based optimization, Industry 4.0 technologies, and the IoT, which in recent years 

have found new impetus thanks to AI and its predictive capabilities. The ultimate ambition in 

the field of logistics would be the creation of a DT of the entire network, capable of including 

not only logistics resources, but also geophysical and infrastructural elements such as oceans, 
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railways, highways, urban streets and, ideally, even final destinations represented by homes, 

offices and industrial plants. 

 
Figure 53 - A visionary example of the elements involved in a digital twin of an entire supply chain network 

Source: DHL Trend Research. (2019). Digital twins in logistics: A DHL perspective on the impact of digital twins on the 

logistics industry (Figure 23, p. 24). DHL Customer Solutions & Innovation. 

Although such a model remains for the moment more of a vision than a concretely realizable 

reality, it is essential to understand the evolutionary directions of the technology to fully grasp 

its transformative potential. Within this context, one of the most relevant areas that benefits 

from the introduction of DTs is supply chain visibility. Visibility is not only a matter of sharing 

information, but a real strategic outcome of well-coordinated organizational practices, 

involving people, processes and technologies. The ability to obtain, share and process in real 

time reliable and updated information on the internal and external supply chain improves 

planning, forecasting, coordination and implementation of orders (Lohmer et al., 2020).  

Busse et al. (2017) show that digital twins can enhance four pillars of corporate visibility: 

sensing, learning, coordination, and integration. Perception-based visibility concerns the ability 

of the company to quickly and accurately obtain information on internal processes and the 

external environment. In this field, DT is crucial: a widespread network of intelligent sensors 

distributed along the logistics chain generates unprecedented data flows and, thanks to real-

time synchronization, interprets operational variations and promptly triggers reports to 

management. This allows to promptly adjust supplies to actual demand, refine order planning, 

and identify potential bottlenecks in the packaging and shipping phases in advance (Srinivasan 
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& Swink, 2018; Fan et al., 2020). The second dimension, visibility through learning, concerns 

the acquisition and absorption of knowledge from internal and external sources. DTs, thanks 

to the ability to accumulate experiences, codify knowledge and articulate it in a shareable form, 

can act as continuous learning platforms. They offer opportunities to better understand the 

behaviour of suppliers, logistics carriers, and even critical phases of the product life cycle 

revealing gaps or inefficiencies that would otherwise be invisible (Xu et al., 2019; Elmo & 

Stead, 2020; Wang & Luo, 2021). Coordination-oriented visibility concerns the ability to 

efficiently orchestrate supply chain activities, promoting operational alignment between the 

various partners. In this context, digital twins become key decision-making tools: they allow 

for the advance estimation of needs, testing alternative logistics routes, and discovering latent 

vulnerabilities in current models. Their use therefore allows for the precise measurement of the 

benefits of any reconfigurations and for the prevention of risks, strengthening the decision-

making readiness of the organization (Barricelli et al., 2020; Park, Son & Noh, 2020). Finally, 

integration-oriented visibility focuses on the company's ability to accommodate and harmonize 

new technologies and management methodologies, a process that digital twins facilitate by 

acting as a bridge between heterogeneous systems and accelerating the adoption of innovative 

solutions along the entire logistics network. The introduction of DTs favours the creation of a 

shared identity within the supply chain, enabling an alignment mindset between actors and 

processes. They enable in-depth analysis of vital processes, promoting transparency and 

sharing of critical information. However, to achieve these results, it is necessary to ensure data 

accuracy and minimize human errors, as well as strictly monitor access to information, to avoid 

the unauthorized dissemination of sensitive data (Shahat et al., 2021, Guo et al., 2020). 

Indeed, although DTs represent one of the most promising technologies for the digital 

transformation of supply chains, their large-scale implementation is far from being without 

difficulties. While on the one hand they enable unprecedented visibility, traceability and 

predictive capabilities, on the other hand they pose numerous technical, organizational and 

economic challenges. It is therefore essential to understand in detail the main barriers that 

hinder their effective adoption, in order to address the required transformations in a strategic 

and conscious way. One of the first critical issues lies in the need for training and cultural 

change within organizations. Like any profound technological transformation, the introduction 

of DTs requires workers to acquire new skills, not only technical, but also managerial. The 

problem, however, does not only concern training, but a broader change in mentality and 

operating practices. This includes fully comprehending the causes and motives for the change. 

To fully exploit the advantages offered by DTs, it is necessary to redefine organizational 
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models, decision-making processes and internal communication structures. The success of the 

transformation therefore depends on the company’s ability to effectively manage change 

management, inspiring its employees and ensuring a consistent and motivated transfer of 

knowledge (Uhlemann et al., 2017). A second obstacle is linked to the accurate representation 

of the physical system. Developing a DT that is a faithful and functional replica of the real 

asset is particularly complex, especially in contexts in which the objects or processes to be 

modeled are highly complex and subject to numerous variables (Modoni et al., 2019).  In many 

projects, technological and, above all, budget limitations require reducing the complexity of 

the digital twin, with the risk of sacrificing part of the accuracy or functionality. The real 

objective therefore becomes balancing the desired level of detail with the economic and 

operational sustainability of the initiative (Blomkvist & Ullemar Loenbom, 2020). This 

challenge is accompanied by the closely related challenge of data quality: a DT in fact relies 

on continuous flows of data from distributed IoT networks, but severe operating conditions, 

network latencies or unstable communications can generate incomplete, inconsistent or even 

incorrect data. It is therefore essential to have reliable mechanisms for filtering, validating and 

correcting data, in order to ensure that the digital twin can formulate reliable representations 

and predictions (Uhlemann et al., 2017). A further significant limitation is represented by 

implementation costs. Starting a digital twin platform requires a significant initial investment, 

including software development, sensors, infrastructure for data collection and management, 

as well as integration with systems already in use. If not carefully monitored, these expenses 

can grow rapidly (Kritzinger et al., 2018). A rigorous cost-benefit analysis is therefore required: 

in many cases, it is preferable to start with a “lean” DT, focused on a few strategic parameters, 

rather than immediately aiming for a complete replication. From the early stages, it is also 

necessary to carefully define which data to acquire, to reduce development and operating costs 

in the long term. Another issue concerns the protection of intellectual property: the 

effectiveness of a DT depends on the exchange of information between supply chain partners, 

but when the data touches distinctive skills or critical processes, issues of ownership, security 

and access control inevitably arise. Robust procedures for managing digital identity and usage 

rights that balance operational transparency and confidentiality are therefore needed (Modoni 

et al., 2019). Related to this is the issue of cybersecurity: digital twins, custodians of detailed 

and sensitive information, are potential targets of cyber attacks and require protected 

architectures, constant monitoring and adequate mitigation plans. A compromised DT not only 

risks exposing confidential data, but could also generate damaging consequences on an 

operational level, especially if connected in real time with physical assets. The protection of 
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data and digital infrastructures, therefore, cannot be considered an accessory aspect, but must 

be designed as a central element of the system architecture (Blomkvist et al., 2020). 

Furthermore, the issue of interoperability deserves particular attention. Many companies, 

especially small and medium-sized ones, do not have the necessary skills to develop advanced 

DTs internally and are therefore forced to turn to external suppliers (Uhlemann et al., 2017). 

This can lead to a strong dependence on technology vendors, with future difficulties in 

replacing or updating the solutions adopted. The lack of universal standards for modelling and 

data exchange exacerbates the problem by limiting scalability and integration across systems 

(Blomkvist & Ullemar Loenbom, 2020).   

In a nutshell the use of DTs in supply chains has significant potential benefits, but it also brings 

an array of structural barriers that should not be overlooked. Companies interested in taking 

this route must not only invest in technology, but also have clear strategies for change 

management, security, data governance, and employee training. The full potential of DTs can 

be realised only by addressing these difficulties in a systematic way. 

4.1.2 AIoT-driven Robotics 

Another area that is experiencing unprecedented acceleration thanks to the integration of IoT 

and AI is robotics. Although the importance of AI in the robotics has already been covered in 

Chapter 2, the analysis proposed there has been intentionally kept on a general level. This is 

because, in the current technological scenario, robotics can no longer be considered in isolation 

as mere intelligent automation: today, it is increasingly configured as a connected ecosystem, 

in which IoT plays a structural and essential role. The integration between AI and IoT therefore 

does not represent a simple functional enrichment, but constitutes the very foundation of the 

new generation of robotic systems used in the logistics sector. In fact, modern logistics robots 

are no longer limited to “moving” or “manipulating” objects, but, thanks to this combination, 

act as real intelligent agents within the supply chain. IoT allows them to perceive the 

environment and maintain a constant connection with other devices, systems and digital 

infrastructures. AI, on the other hand, allows robots to understand and interpret data on their 

own, create predictive models, optimize paths, recognize objects and situations, and adapt their 

actions accordingly (Grover & Ashraf, 2023; Dabic-Miletic, 2024). This phenomenon, called 

“cognitive and connected robotics”, manifests itself in different solutions, each of which 

combines AI and IoT in a particular way.   
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In warehouse operations, robots are mostly employed in order processing, inventory 

management, picking and dispatch operations. Starting from order processing, which is the first 

crucial stage in warehouse operations, robots support activities such as checking the 

correspondence between orders and invoices, verifying quantities, and picking items from 

shelves for the subsequent packing phase. Sensors, cameras, and machine learning algorithms 

allow them to move autonomously between the aisles, identify items, and handle them with 

precision. Regarding the inventory management, robotics has established itself as an effective 

response to the growing need to optimize spaces and reduce goods handling times. Internal 

material transportation is typically handled using mobile robots such as Automated Guided 

Vehicles (AGVs) and Autonomous Mobile Robots (AMRs). However, there are also more 

complex systems such as automated storage and retrieval systems (AS/RS), which enable 

complete automation of item storage and retrieval operations. 

Finally, in the field of pickup and dispatch operations, robots help speed up and make the 

process of picking and shipping items more reliable: being able to quickly identify items on 

the shelves, they can pick them accurately and, in some cases, also take care of packing and 

preparing them for shipping. Robotic sorting systems also organize items based on criteria like 

the final destination or size, improving speed and accuracy in the dispatch phase (Sainath, 

2025). In all these areas, the use of AI- and IoT-supported robots brings numerous benefits: 

increased operational efficiency, reduced labor costs, greater accuracy in order management 

and the possibility of operating 24 hours a day. In order to have safe and efficient operations, 

however, the implementation of these solutions requires careful planning, integration with pre-

existing information systems, and frequent monitoring.   

 

The analysis will focus on the following types of robots: 

• Automated Guided Vehicles (AGVs) 

• Autonomous Mobile Robots (AMRs) 

• Automated Storage and Retrieval Systems (AS/RS) 

• Robotic Arms 

• Collaborative Robots (Cobots) 

• Drones 
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Automated Guided Vehicles (AGVs) 

When talking about robotics applied to logistics, the first example that comes to mind is AGV 

(Automated Guided Vehicle), autonomous vehicles that are now at home in warehouses and 

factories but are far from “mature technology”: they continue to evolve in step with sensors, 

artificial intelligence and increasingly refined navigation techniques. AGVs move without a 

driver thanks to a mix of lasers, cameras, lidars, magnetic tape or floor markers and, above all, 

control software that decides trajectories and maneuvers in real time (Sodiya et al., 2024). Their 

history goes back a long way: the first prototypes, little more than towed carts that followed an 

underground wire, were developed by Barrett Electronics in the mid-1950s (Dhaliwal, 2023). 

Since then, technology has made great strides: we have gone from invisible UV markers to 

laser navigation and, today, to three-dimensional vision, capable of “reading” the environment 

with great accuracy (DHL, 2024). In the meantime, more compact and cost-effective models, 

Automated Guided Carts or SmartCarts13, have emerged, which extend the range of action of 

AGVs in small and medium-sized companies. A crucial question is how to assign transport 

missions. The classic “first come, first served” (FIFO) only works in simple scenarios; in 

dynamic plants, however, algorithms inspired by well-known problems such as the Traveling 

Salesman Problem or the Vehicle Routing Problem reduce downtime, limit empty trips and 

make internal logistics more fluid (Oliveira et al., 2025). Techniques such as insertion 

algorithms14 or the sweep method15 have proven to be particularly effective when demand is 

constantly changing or production priorities are overturned from one moment to the next. The 

“new generation” of AGVs communicates in real time with Warehouse Management Systems 

(WMS): it receives orders, sends feedback on the status of missions, coordinates its path with 

that of other robots and, thanks to the incorporated AI modules, recalculates routes, 

intervention times and task assignments in a few milliseconds, cutting waste and errors (Sodiya 

et al., 2024). This qualitative leap has paved the way for AMRs (Autonomous Mobile Robots), 

 
13 AGCs are a cheaper version of AGV, particularly suitable for small and medium-sized companies that manage small-scale 

material handling. They are based on magnetic tapes for guidance, which is a simpler and faster technology to install than laser 

systems. They are ideal for point-to-point transport of loads between picking stations or within production plants (Dhaliwal, 

2023). 
14 An insertion algorithm is a generic term for any procedure that aims to insert a new element into a data structure while 

keeping its properties intact (order, balance, unique key constraints, etc.). 
15 The sweep method is a technique that “slides” an imaginary line over the data: as the line advances, it maintains and updates 

only the elements it touches, allowing you to solve geometry problems (such as finding intersections or closest pairs) in an 

orderly and efficient way. 
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direct heirs of AGVs, which add an extra dose of intelligence and freedom of movement, 

confirming the centrality and continuous evolution of these systems in the future of logistics. 

In highly dynamic environments, predictive algorithms help anticipate congestion, adjust 

logistics priorities, or balance workloads across different operating units. Furthermore, AGVs 

aren’t just used for moving goods horizontally: they also handle tasks like automatically 

loading and unloading racks and managing company waste (Liu, Tsang, & Lee, 2024). A 

significant application is the use of autonomous pallet movers in high-intensity warehouses, as 

in DHL’s warehouse automation program, where fleets of high-capacity AGVs are used to 

move pallets up to 11 meters high, performing double-stacking and heavy-load handling tasks 

(DHL, 2024). 

Another key area of development is the use of AGVs in yard logistics, that in other words is 

the automated movement of materials even in outdoor and more challenging environments. 

Research has shown that AGVs can operate beyond indoor warehouses by being connected to 

advanced Fleet Management Systems (FMS), which help them adapt to changing conditions 

like weather and infrastructure limits (Ritzinger et al., 2025). In these outdoor settings, planning 

the best routes and managing potential conflicts between vehicles becomes even more 

important. To tackle these challenges, algorithms like Large Neighborhood Search are used to 

solve pickup and delivery tasks while taking into account time constraints caused by traffic or 

weather. This approach has proven effective during industrial tests carried out in large logistics 

hubs. These outdoor applications open new perspectives for the adoption of AGVs on a large 

scale in supporting integrated and resilient supply chains. Another important aspect concerns 

the contribution of AGVs to the optimization of space inside warehouses. Precise handling 

makes it possible to reduce the safety spaces normally needed for manual maneuvers, which 

means more goods can be stored without compromising safety (Liu, Tsang, & Lee, 2024). In 

addition, using electric AGVs with regenerative braking systems and energy-saving features 

helps lower environmental impact by cutting harmful emissions and improving air quality 

inside warehouses (DHL, 2024). 

Even though AGVs offer clear benefits, their adoption comes with some important challenges. 

The upfront costs (including not only vehicles but also management systems, infrastructure 

adaptation and staff training) can be quite high (Dabic-Miletic, 2024). In addition, integrating 

AGVs with existing systems needs careful planning to avoid compatibility problems. One risk 

that is often overlooked is technological dependency: software failures, cyberattacks, or 

coordination errors can bring logistics operations to a halt, making it essential to have strong 

backup strategies in place (Dabic-Miletic, 2024). Then there are operational limitations that are 
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strictly linked to the very nature of AGVs: while they excel at repetitive and well-structured 

tasks, they are less adaptable in contexts where flexibility or complex decision-making 

capabilities are required. Furthermore, not all AGVs can handle specific loads or adapt easily 

to existing logistics infrastructures, making hybrid solutions or ad hoc customizations 

necessary. 

Autonomous Mobile Robots (AMRs) 

In recent years, the integration of Autonomous Mobile Robots (AMRs) in industrial logistics 

has seen significant development, driven by the need of manufacturing companies to increase 

productivity and efficiency, also in response to the pressures of globalization and the objectives 

of digital and environmental sustainability (Raamets et al., 2024). The use of AMRs is no 

longer limited to production, but it is increasingly expanding into the warehouse sector, 

radically changing traditional intralogistics models. Unlike AGVs, which follow fixed routes 

or tracks, AMRs can make decisions on their own and don't need fixed infrastructure to 

navigate (Sodiya et al., 2024). AMRs have made a quantum leap: more sensitive sensors, more 

powerful hardware, and smarter AI algorithms allow them to move around crowded 

warehouses and work side by side with people in complete safety, relieving them of repetitive 

and tiring movements (Keith & La, 2024). When these AMRs are integrated with an advanced 

WMS and optimized route strategies, the result is a leaner workflow: the robots cut out 

unnecessary movements – the so-called “motion waste” of Lean thinking – and leave operators 

time to focus on higher value-added activities. 

AMRs play a key role in building reconfigurable factories, a concept closely connected to the 

shift toward Industry 5.0 and, in the future, Industry 6.0. These systems make it possible to 

quickly reassign logistics resources, adjusting transport capacity and functions based on 

changes in demand or production setup (Raamets et al., 2024). The difference between modern 

AMRs and traditional AGVs lies in the the way they make decisions: unlike AGVs, AMRs do 

not rely on a rigid centralized control but autonomously plan their tasks and routes. This feature 

makes the whole system more elastic and reselience, able to promptly react to unforeseen 

events like congested areas, machinery breakdowns or changes in priorities (Raamets et al., 

2024). In traditional structures, material handling involved large margins of inefficiency: 

operators had to walk long distances, resulting in increased fatigue and reduced productivity. 

The use of AMRs in collaboration with human personnel instead allows for a redistribution of 

tasks, with robots taking care of transport, while operators focus on higher value-added 
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activities, such as picking difficult-to-handle or particularly delicate objects (Keith & La, 

2024). 

From a technological perspective, AMRs are integrated with a heterogeneous set of sensors 

(2D/3D cameras, accelerometers, gyroscopes and LiDAR), which, fused together through 

sensor fusion techniques, allows allows robots to build detailed maps of the space and to 

localize themselves precisely, moving autonomously within the warehouse (De Silva et al., 

2018). Navigation systems such as Simultaneous Localization and Mapping (SLAM) are now 

a standard practice to allow AMRs to operate in unknown and changing environments 

(Singandhupe & La, 2019). In parallel, advances in computational hardware have made edge 

processing of navigation data and real-time fleet management possible (Keith & La, 2024).  

Efficient management of AMRs cannot ignore a close integration with corporate information 

systems, as shown in Figure 54. 

 
Figure 54 -  General framework of the AMR data exchange 

Source: Raamets, T., Majak, J., Karjust, K., Mahmood, K., & Hermaste, A. (2024). Autonomous mobile robots for 

production logistics: A process optimization model modification (Figure 4, p. 138). Proceedings of the Estonian Academy of 

Sciences, 73(2), 134–141. 

The overall data exchange framework between AMRs and corporate ERP consists of three 

main layers: the mobile robot control system, AI-based path optimization, and operational 

status analysis. The ERP system supplies essential information like production planning and 

maintenance schedules, while the robot sends back detailed data on loading and unloading 

times, battery charging times, operating times, completed routes, and the number of missions 
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carried out. This information feeds into system-level efficiency analysis algorithms, supporting 

continuous performance optimization and better decision-making. 

Energy efficiency has also benefited from technological evolution: modern lithium-ion 

batteries allow AMRs to have significant operating autonomy and short charging times, 

although questions remain about the environmental impact of disposing of such batteries (Keith 

& La, 2024). Innovative charging systems, such as wireless power transfer and intelligent 

charge cycle management, allow AMRs to maintain high operational availability, even during 

multi-shift operations. 

Moving around safely is a big challenge for AMRs. In dynamic contexts like warehouses, they 

have to keep updating their paths to avoid collisions with moving obstacles like carts, other 

robots, or people. To do this, different methods have been created: from simple ones like bug 

algorithms and vector field histograms, to newer ones that use AI techniques like deep 

reinforcement learning, genetic algorithms, and swarm intelligence. Furthermore, hierarchical 

models can be integrated into the decision-making process of AMRs: at the top level, the 

mission is established (which nodes should be visited), while at the bottom level, the optimal 

path to perform the mission efficiently is calculated.  

In the management of robotic fleets, there is an increasing shift from centralized control 

architectures to decentralized solutions. The first approaches, while offering an overview that 

allows global optimization, suffer from two obvious limitations: a single malfunction can 

paralyze the entire system and, as the number of units grows, scalability becomes problematic. 

In decentralized models, however, each robot takes part in the decision-making process, 

distributing the computational load, increasing resilience to unexpected events and adapting 

more quickly to changes in flow or operational priorities. This evolution is accompanied by the 

issue of human-robot collaboration. AMRs do not aim to replace operators, but to work 

alongside them, combining the precision and strength of the robot with the human ability to 

manage exceptions and complex judgments. Examples such as the Collaborative Human-Robot 

Order Picking System (CHR-OPS) demonstrate this: by integrating batching, sequencing and 

routing algorithms, these systems reduce waiting times, redistribute workloads in real time and 

raise the bar of overall efficiency, making the most of the skills of both actors. The physical 

design of the warehouse also plays a decisive role: unconventional layout solutions, such as 

the fishbone layout, allow to reduce the distances traveled by 10–15% compared to traditional 

rectilinear layouts, further improving the performance of the AMR system. The design of 

spaces must therefore take into account the specific modes of movement and interaction of the 

robots, favoring configurations that minimize congestion and non-optimal paths. Despite 
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significant progress, several areas remain open for future research. In particular, there is a need 

to deepen the decentralized management of order scheduling, the dynamic definition of 

intervention zones to avoid congestion, and the integration of human factors in human-robot 

collaboration models, aspects that are still little explored in the literature (Keith & La, 2024). 

Automated Storage and Retrieval Systems (AS/RS) 

Automated Storage and Retrieval Systems (AS/RS) consist of a variety of computer-controlled 

systems designed to automate the loading, positioning and retrieval of goods from specific 

areas within a warehouse. This automation is particularly useful in contexts characterized by 

high volume turnover or by stringent needs to optimize the available space.  

 
Figure 55 - Step-by-step operation of an automated storage and retrieval system (AS/RS) 

Source: Adapted by the author from Automated Storage and Retrieval Systems - How it works [Video], RINAC Engineering 

Evolution, (2021). 

Through robotic processes, AS/RS allow to reduce management costs, improve warehouse 

organization, increase storage density (thanks to narrower aisles and higher racks) without 

requiring physical expansions, and significantly reduce labor costs (Turner, 2020). From the 

point of view of the economic sustainability of warehouse management systems (WMS), 

AS/RS play a key role, improving the accuracy of inventory control, reducing errors and 

promoting a faster rotation of high-moving products (Tostani et al., 2020; Fragapane et al., 

2021).  They are particularly suited to the management of sensitive items, such as refrigerated 

products for the food and pharmaceutical sectors, which require rigorous storage conditions.  
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The AS/RS system is composed of cranes and automatic shuttles that run along predefined 

aisles and vertical levels to deposit or retrieve load units, drastically reducing order fulfillment 

times and improving inventory control (Banur et al., 2024). A relevant contribution is that of 

Manzini, Gamberi and Regattieri (2006), who propose a multi-parametric dynamic model, 

supported by interactive visual simulations, to evaluate the effect of different design and 

operational choices on performance. Through thousands of “what-if” scenarios, the authors 

demonstrate that class-based storage policies based on the Cube-per-Order Index (COI) cut 

picking times and boost productivity: the right balance between storage location assignment, 

order batching and mission routing is crucial to shorten the distances traveled by the shuttles 

and reduce the average lead time. The design of an AS/RS, they emphasize, must take into 

account parameters such as available area, aisle layout, vehicle capacity and parceling strategy, 

to be analyzed with Design of Experiments techniques: among the most influential drivers 

emerge the COI curve and the shuttle load capacity. Although the initial investment is 

substantial and requires careful engineering, the benefits in terms of efficiency, precision, 

operational flexibility and sustainability make the AS/RS a pillar of future intelligent and 

resilient supply chains. 

Robotic Arms 

Robotic arms, thanks to their ability to perform repetitive tasks with extreme precision and 

speed, are today one of the most promising technologies for the transformation of logistics 

activities. They are provided with multiple degrees of freedom and can be equipped with 

different types of end-effectors (such as grippers, suction cups or magnets) that allow them to 

manipulate products, packaging and loads of various kinds with great dexterity (Sodiya et al., 

2024). In more complex contexts, where the position of objects is not predetermined, robotic 

arms combine sensors and artificial vision systems supported by AI, thus allowing real-time 

visual recognition and more intelligent manipulation of objects (Dhaliwal, 2021). 

From a mechanical point of view, robotic arms are divided into four main categories: 

I. Cartesian (or gantry) robots, which operate on three linear axes X-Y-Z; 

II. Cylindrical arms, based on movements around a cylindrical axis; 

III. Spherical (or polar) arms, which allow complete rotation movements in space; 

IV. SCARA robots, particularly suitable for pick-and-place operations on a plane (Dhaliwal, 

2021). 

This classification highlights the great variety of possible applications, from the simple 

movement of items to the management of more complex tasks such as assembly. Recently, a 
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specific trend called Stationary Robotics has developed, which includes all those robots, often 

in the shape of an arm, that operate from a fixed position: anchored to floors, ceilings or other 

structures (DHL, 2024). Fixed robotic arms applications fall into two main categories: 

collaborative applications, which involve direct interaction with human operators and require 

additional risk assessments, and industrial applications, which involve heavy loads, long 

operating distances, and high speeds, typically taking place in segregated and protected areas. 

With the continued development of machine learning and perception technologies, an ever-

increasing integration between mobile and fixed robotic systems is expected, which is 

particularly useful in an environment marked by labor shortages and volatile demand. 

Robotic arms are being increasingly used in logistics to automate several key processes, 

including shipment sorting, picking and placing, palletizing and depalletizing. The process of 

sorting shipments is a highly repetitive task, thus it is very easy for human operators to lose 

focus and make mistakes. This makes it particularly suitable for automation through robotic 

arms. They use cameras and AI to classify packages based on predefined characteristics. This 

reduces errors and rework costs. 

Regarding the picking and placing process, manually separating and arranging packages is a 

tedious and labour-intensive activity.  Robotic arms coupled with advanced vision systems can 

automate the induction of items onto conveyor belts, enhancing throughput and decreasing 

reliance on the labour market. Palletizing and depalletizing operations benefit greatly from the 

use of robotic arms. While uniform pallet handling has already been extensively automated, 

mixed pallet solutions, which require more sophisticated AI to handle loads of various shapes 

and weights, are rapidly maturing and are projected to gain broad implementation in the coming 

years. 

Despite the benefits brought by the use of robotic arms related to increased productivity, 

reduced errors and greater operational safety, they also have some limitations that should not 

be ignored. In particular, they usually are designed to handle packages of specific shapes and 

may have difficulties in handling certain kinds of items. Furthermore, performance achieved 

in the laboratory is not always successfully replicated in real-world operating conditions, due 

to the complexity of warehouse flows. Furthermore, even with an increasing level of 

automation, human supervision will still be required to manage robotic applications, making 

full automation without human intervention unlikely in the near future (DHL, 2024). 

Collaborative Robots (Cobots) 

A key element in the evolution of smart logistics is represented by cobots (collaborative 

robots), robotic devices designed to work side by side with human operators in shared 



 126 

environments. Cobots are profoundly different from traditional industrial robots: while the 

latter usually operate in segregated spaces and perform repetitive tasks autonomously, cobots 

are designed for safe and direct interaction with humans, thanks to advanced sensor systems 

and AI (Abdullayev et al., 2024). Unlike traditional industrial robots, cobots perceive the 

environment, interpret it in fractions of a second and continuously adapt their behavior. The 

credit goes to the set of force sensors, high-resolution cameras and machine learning algorithms 

that, by processing the collected data in real time, allow the cobot to deviate when it encounters 

an obstacle, dose the force on delicate materials and minimize the risk of collisions (Bagnoli et 

al., 2022). However, this contextual intelligence would be sterile without an interface that is 

truly accessible to those who use it: intuitive graphic dashboards and guided procedures allow 

even operators without specialist skills to reconfigure the system in a few minutes, with almost 

no impact on downtime. For small and medium-sized enterprises – which cannot count on 

dedicated teams of engineers –this ease of use represents a decisive competitive advantage 

(Abdullayev et al., 2024). 

In the logistics sector, cobots find application in many processes, such as automatic picking, 

package selection and warehouse management. They are able to move safely even in complex 

and constantly evolving environments. From the point of view of safety, which is a 

fundamental aspect in human-robot interaction (HRI), cobots adopt advanced strategies to 

avoid or limit accidental contacts. 

Computational vision systems, force-torque sensors and predictive algorithms allow to 

anticipate and prevent accidental collisions. When contact is unavoidable, mitigation 

techniques are applied to reduce the impact energy and protect the physical integrity of the 

operator. In addition, the growing attention to ergonomics in the workplace has prompted the 

development of cobots designed not only to increase productivity, but also to reduce 

biomechanical load and cognitive stress on operators. Human-robot collaboration, in fact, 

allows the transfer of physically more demanding or repetitive tasks to cobots, freeing up 

human resources for tasks with higher added value (Patil, Vasu, & Srinadh, 2023). However, 

the presence of cobots also implies new challenges in terms of cognitive safety, since the 

unpredictability of some robotic movements can generate mental stress in operators. For this 

reason, the design of cobot interfaces and behaviors must take into account not only physical 

risks, but also psychological and social aspects of the interaction. An important distinction 

among cobots is based on the ways in which they collaborate with humans. We can distinguish 

independent cobots, which operate in parallel with operators on distinct tasks but in the same 

environment; simultaneous, in which cobots and operators work simultaneously on the same 
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activity without time dependence; sequential, where activities are organized in a temporal 

manner (first the robot, then the human, or vice versa); and finally supportive, where the 

completion of a given task requires synergistic cooperation between cobot and operator (Patil, 

Vasu, & Srinadh, 2023).  

 
Figure 56 - Types of human–robot relationship 

Source: Burden, A. G., Amayo Caldwell, G., & Guertler, M. R. (2022). Towards human–

robot collaboration in construction: Current cobot trends and forecasts (Figure 1, p. 211). Construction Robotics, 6, 209–

220. Springer Nature Switzerland AG. 

The potential of cobots in logistics is not limited to warehouse management: they can increase 

efficiency in loading and unloading operations, optimize packing and picking processes, 

manage just-in-time workflows, support predictive maintenance thanks to the collection and 

analysis of IoT data and also collaborate in the creation of highly customized solutions for last-

mile deliveries. The challenges associated with the implementation of cobots undoubtedly 

include the need to develop increasingly intuitive and reliable interaction systems, capable of 

adjusting to complex and constantly evolving operational situations. At the same time, the 

relationship of trust between operators and robots is of fundamental importance, and it is a 

point on which much work needs to be done, also supported by the definition of clear regulatory 

standards that guarantee the safety and effectiveness of collaboration. The integration of 

technologies such as edge computing, distributed machine learning and Industrial IoT opens 

up very promising prospects: the cobots of the future will be increasingly autonomous, 

intelligent and safe, ready to contribute to the creation of collaborative and resilient work 

environments, in line with the principles of Industry 5.0. 

 

 



 128 

Drones 

Drones, also called unmanned aerial vehicles (UAVs), are vehicles that operate autonomously, 

or under remote control of a human operator, without a pilot or crew on board. They were born 

mainly for military purposes, but then progressively extended their scope of application to 

multiple civil sectors, including: environmental monitoring, emergency management, logistical 

support, aerial photography and, more recently, warehouse and distribution operations 

(Barmpounakis et al., 2016). The turning point in the commercial adoption of drones occurred 

in 2016, when Amazon announced its first UAV delivery to a customer in England, paving the 

way for a new era of logistics in which rapid and autonomous transport of goods becomes a 

concrete possibility. Technological advances played a key role in making drones effective and 

versatile tools in this field. Among the most significant recent advances are the integration of 

advanced sensors, autonomous navigation systems based on GPS, LiDAR, radar and computer 

vision algorithms, as well as new generations of solid-state batteries and hydrogen fuel cells 

that improve autonomy and flight times. Modern drones are able to navigate even in 

environments with signal interference, processing data from multiple sensory sources in real 

time thanks to sensor fusion techniques developed by companies such as Teledyne Geospatial 

(DHL, 2024).  The combined use of AI and ML algorithms turned drones into autonomous 

platforms capable of not only “seeing” the environment, but also of interpreting it, recognizing 

and avoiding obstacles without the need for human intervention. At the same time, the 

emergence of new technologies is opening up new operational scenarios. One example is 

swarm intelligence, which is based on decentralized and self-organizing networks in which 

fleets of drones cooperate in a coordinated manner. In logistics, these devices find application 

in four key areas: inventory management, intralogistics, deliveries, and inspection or 

surveillance missions. In inventory control, drones overcome the limitations of manual 

methods—slow, expensive, and sometimes risky—by performing audits, cycle counts, package 

localization, and buffer management in drastically reduced times. Companik et al. (2018) 

underline how drones are now able to perform inventory audits, cycle counts, item localization 

and reserve stock management much faster than traditional methods, while Varmus and Bosko 

(2022) estimate a barcode scanning speed up to 119 times higher than a human operator. A 

concrete example is represented by the study by Culus et al. (2018), which analyzes the case 

of the NHS terminal in the port of Antwerp, where the use of pre-programmed drones enabled 

the automation of the inventory process of steel bars, increasing both the efficiency and the 

precision of the operations. Among the most recent developments are the adoption of QR codes 

for product identification (Cristiani et al., 2020; Ali et al., 2021) and the use of advanced 
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computer vision techniques for barcode extraction, based on algorithms such as the Harris 

Corner Detector16 and the Hough Transform17.  As demonstrated by Jhunjhunwala et al. (2019), 

these approaches have achieved satisfactory results even in complex contexts such as large 

warehouses. A further development concerns the integration of RFID scanners with UAV 

systems, which has allowed obtaining good performances in automatic inventory detection.  

In the intralogistics field, drones started to emerge as an effective solution to speed up deliveries 

within industrial plants as they facilitate the direct transportation of components, tools and 

consumables to the production lines (Benarbia and Kyamakya, 2021). To mention some 

studies, Cavalcante et al. (2017) developed a mission planning system specifically designed to 

coordinate material picking and delivery activities between warehouses and production areas. 

Other practical examples are the authorized flights of the DPD Group in France or the tests 

conducted by Walmart in collaboration with Flytrex. All these examples demonstrate drones 

potential to optimize internal material handling.  

The so-called Drone Deliveries represent one of the most innovative frontiers in modern 

logistics. Delivery drones are designed to cover different stages of transportation, from the first 

mile to the middle mile, up to the last mile, with the aim of reducing delivery times and 

improving the overall efficiency of the supply chain. Although the collective imagination 

focuses mainly on the use of drones in the last mile, in current operational practice, 

implementations are mainly focused on rural or poorly served areas, where the benefits in terms 

of speed and accessibility are more evident (DHL, 2024). Among the most significant 

developments is the design of cargo drones capable of carrying heavy loads, such as those made 

by Sabrewing, Dronamics and Elroy Air which can move up to 376 kilograms. However, 

despite recent regulatory advances, such as the Federal Aviation Administration (FAA) 

authorizations for Beyond Visual Line of Sight (BVLOS) flights, the full adoption of drone 

deliveries in urban settings remains, at least for now, limited by stringent regulations and 

difficulties related to integration into existing airspace (DHL, 2024). We can expect that in the 

coming years the growth of drone deliveries will be mainly limited to niche use cases, such as 

the transport of critical medical supplies to remote areas, the movement of urgent materials 

within large industrial complexes, or the management of deliveries in private contexts such as 

campuses or isolated production plants. Despite technological advances, widespread adoption 

 
16 The Harris Corner Detector is a computer vision algorithm that analyzes intensity variations in a small window of the image: 

if these variations are high in all directions, the point is classified as a “corner”. 
17 The Hough Transform is a feature extraction technique used in image analysis, computer vision, pattern recognition, and 

digital image processing. 
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of drones in urban areas continues to be hampered by safety concerns, complex management 

of shared airspace, and population perception of risk (DHL, 2024). In spite of this, delivery 

drones are emerging as a strategic solution to the growing pressure on logistics networks, 

driven by the expansion of e-commerce and the need to rethink distribution models for greater 

efficiency and sustainability.  

Also for inspection and surveillance activities, the use of drones is proving to be particularly 

useful. Silvagni et al. (2016) and Ali and Kaur (2022) report that they allow to safely inspect 

roofs, shelves, walls and ceilings, reducing risks for personnel and improving the overall 

efficiency of operations. The application of SLAM technology with 3D sensors and optical 

scanners, such as the one developed by Virus and documented by Wawrla, Maghazei and 

Netland (2019), allows to create high-precision three-dimensional maps and to localize the 

drone inside the warehouse. This technology, which processes millions of pixels per second, 

paves the way for continuous surveillance operations, structural monitoring and early detection 

of damage or anomalies. Even in high-risk sectors such as the petrochemical sector or in the 

surveillance of maritime infrastructures, drones are proving to be irreplaceable tools for 

reducing operational risks (C-S Yang, 2019). 

Despite the many advantages, the implementation of drones in logistics contexts still presents 

significant critical issues. From a technological point of view, limitations persist in payload 

capacity, battery life and autonomous navigation accuracy, especially in indoor environments 

without GPS signal. Although the introduction of advanced technologies has contributed to 

improving localization accuracy, the autonomy of drones used in indoor environments remains 

generally limited to less than 30 minutes. Wired solutions can extend operating times, but at 

the cost of reduced freedom of movement. From a regulatory point of view, as highlighted by 

DHL (2024) and other recent studies, the still very restrictive regulations on the use of drones, 

particularly in civil and urban environments, continue to represent a significant obstacle to their 

diffusion. In addition to these critical issues, there are further challenges related to privacy 

protection, security in the management of collected data and insurance issues related to possible 

accidents, which contribute to slowing down large-scale adoption. 

4.2 Challenges in AI and IoT Integration 
4.2.1 Data privacy, security, and ethical concerns 

In the logistics context, the widespread adoption of sensors, actuators and cloud-based 

platforms transforms every package, means of transport or shelving into a continuous source 

of data. This “connected pervasiveness” is the heart of the IoT, but, in parallel with the benefits 
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of efficiency and operational transparency, it introduces a complex range of issues relating to 

confidentiality, security and ethics. Already within information and communication 

technologies (ICT) it has been highlighted that the critical issues revolve around accessibility, 

ownership and integrity of information. The IoT amplifies these critical issues because it puts 

into circulation data generated autonomously by objects that, by their nature, are difficult for 

the end user to monitor (Popescul & Georgescu, 2013). On the privacy side, the end-to-end 

traceability of goods, essential to guarantee visibility of the supply chain, involves the 

collection of metadata that allow inferring not only the position of a pallet, but also the work 

shifts of operators, waiting times at customs or the reliability of a sub-carrier. Automatic 

identification mechanisms, such as RFID, NFC or image recognition cameras, can trace 

apparently innocuous events (for example, scanning a label at the warehouse gate) to specific 

personal identities (Ziegeldorf et al., 2014). If such datasets are integrated with external 

registers – such as drivers’ personal data or professional social networks – the risk of linkage 

increases exponentially, compromising the subject’s ability to control their information. 

Furthermore, distributed storage on edge gateways, mobile devices and cloud servers makes it 

difficult to guarantee the definitive deletion of data when a device changes ownership, 

configuring the problem of lifecycle transitions: a resold or decommissioned sensor may still 

contain mission logs, GPS coordinates and environmental parameters related to previous 

shipments. From a security point of view, the logistics ecosystem is a tempting target for cyber 

attacks motivated both economically and geopolitically. The NotPetya incident that hit Maersk 

in 2017, paralyzing port terminals and booking systems for several days, showed how malware 

that can rapidly propagate between heterogeneous hosts can block global supply chains and 

generate multi-million dollar losses. At the micro level, interference with a single actuator – 

for example, the unauthorized opening of a refrigerated container – can deteriorate perishable 

goods and affect the food safety of end consumers. The problem is exacerbated by the 

convergence of IT and OT (Operational Technology)18: late patches, never-changed default 

passwords and unencrypted industrial protocols are the Achilles heel of many automated 

warehouses. The ethical implications do not only concern data protection, but also the dignity 

and autonomy of workers and customers. Real-time location systems (RTLS) promise to 

 
18 Operational Technology is the set of hardware and software that directly monitor and control physical processes within 

industrial plants, automated warehouses, transportation systems, energy distribution networks and, in general, all those 

infrastructures where it is necessary to intervene “on the field” (for example with sensors and actuators). Unlike IT 

(Information Technology), which focuses on data and business applications, OT governs valves, motors, robots, conveyor 

belts and other operational equipment. 
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optimize picker routes, but, if used without adequate protection, they can turn into tools of 

micro-surveillance and psychological pressure. Similarly, behavioral profiling enabled by the 

analysis of sensor and camera logs could influence performance evaluation or assignment 

granting, generating implicit discrimination. The literature recalls that, in the IoT field, what 

seem to be “purely” technical problems (authentication, encryption, key management) always 

have an ethical-social dimension, because they determine who controls what, when and how 

(NIST, 2018; Allhoff & Henschke, 2018). To address these challenges, privacy-by-design and 

security-by-design practices must be integrated from the early stages of designing logistics 

architectures. From a regulatory point of view, Regulation (EU) 2016/679 (GDPR) provides a 

rigorous framework for the protection of personal data, imposing the principle of minimization 

and the right to be forgotten also in machine-to-machine flows. On a technical level, the 

adoption of standards such as ISO/IEC 27001, combined with threat modeling methodologies 

specific to IoT, allows identifying exposure points and defining countermeasures proportionate 

to the risk. End-to-end encryption, mutual authentication between nodes, secure firmware 

updates and network segmentation are now essential best practices. Finally, emerging 

approaches such as multilevel trust frameworks are added, which associate each device with a 

dynamic reliability score based on tests of compliance and operating behavior (Sato et al., 

2016).  

Further challenges concern the use of AI. Ethics applied to AI in the logistics sector can no 

longer be considered a simple technological corollary. In light of the most recent sector studies, 

it constitutes an enabling condition for any truly sustainable digital transformation project. The 

adoption of machine learning algorithms, predictive analysis systems and autonomous robotics 

allows, on the one hand, to generate measurable efficiencies but, on the other, opens up a field 

of action full of critical issues related to data privacy, cybersecurity, decision-making 

transparency and socio-occupational impacts. In terms of confidentiality, the concentration of 

sensitive information makes AI platforms a privileged target for malicious actors. The privacy-

preserving techniques, such as federated learning and homomorphic encryption show good 

results in preserving information sovereignty, but they do not completely eliminate the risk of 

data poisoning or exfiltration of model parameters, which are among the most cited threats in 

international incident reports today (Adewale et al., 2025). European legislation adds a further 

level of complexity: the combined provisions of GDPR and AI Act require periodic audits, 

reference datasets without significant biases and human supervision for all applications 

classified as “high risk” (European Commission, 2024). Algorithmic bias is the primary ethical 

concern. Adewale et al. (2025) have shown that models trained on unbalanced datasets can 
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penalize entire supply basins, worsening pre-existing inequalities and, in fact, reducing the 

diversity of the supply-chain network. The European guidelines on trustworthy AI invite to 

integrate explainability mechanisms right from the design phase, so as to clarify the logical 

connection between inputs, intermediate features and the final decision. Such transparency is 

not only a regulatory requirement, but also a lever of trust towards customers and partners: 

without a shared understanding of the routing or inventory allocation logics, any operational 

anomaly risks being read as “algorithm arbitrariness”. On the security side, the extension of 

the attack surfaces caused by the interconnection of AI, IoT and cloud has already emerged in 

various news stories: from ransomware attacks that paralyze warehouse management systems 

to sensor manipulations that divert automated vehicles onto unwanted routes. It must be 

highlighted also the growing danger of adversarial attacks, in which imperceptible 

perturbations in input data induce catastrophic errors in computer vision models (Adewale et 

al., 2025). Mitigation requires a mix of secure-by-design, continuous robustness testing and the 

implementation of end-to-end encryption protocols, as well as multifactorial access controls 

and real-time monitoring based on AI-driven threat intelligence. Thus, AI requires multi-level 

governance that integrates ethical guidelines, technical standards and clear legal 

responsibilities along the entire supply chain. Experience shows that regulatory compliance 

alone is not enough: a corporate culture of responsible innovation is needed, based on 

independent audits, internal ethics committees and feedback platforms open to employees and 

external stakeholders. 

4.2.2 Technological and infrastructural barriers 

The implementation of AI and IoT solutions the logistics context faces a series of technological 

and infrastructural barriers that, if not recognized and managed in time, risk significantly 

reducing the return on investment and compromising the operational continuity of the systems. 

First of all, AI critically depends on the availability of large amounts of accurate, timely and 

semantically uniform data; however, in warehouses and transport nodes, datasets are often 

fragmented between heterogeneous management systems (ERP, WMS, TMS) and proprietary 

IoT devices, generating inconsistencies that limit the accuracy of the models and impose a 

theoretical performance threshold that rarely exceeds 75% accuracy (Gudivada et al., 2017). 

Secondly, the high computational requirements of deep neural networks entail the need for 

hardware infrastructures that cannot always be hosted on-premises for reasons of space, energy 

consumption and cooling: the use of the cloud reduces the barrier to entry, but introduces 

further critical issues related to network latency, scaling costs and data sovereignty, particularly 
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relevant when (almost) real-time analyses are required for route optimization or inventory 

rebalancing. A third barrier is represented by integration with legacy systems: many platforms 

used in logistics have been designed according to monolithic logics and do not expose modern 

APIs, forcing companies to develop ad hoc middleware that not only increase architectural 

complexity, but also become points of failure in the event of uncoordinated updates 

(Shrivastav, 2022). Added to this is the management of “model drift”: consumer demand, 

delivery times and fuel costs represent dynamic variables that alter the distribution of input 

data. Without automatic monitoring and retraining (MLOps) pipelines, models progressively 

degrade, generating suboptimal decisions and undermining operator confidence (Nelson et al., 

2015).  

Also in this sense, the critical issues of AI are intertwined with those of IoT. The first obstacle 

concerns the hardware-software heterogeneity of the ecosystem: RFID sensors, NFC tags, 

environmental data-loggers, edge gateways and cloud platforms come from different vendors 

and speak distinct protocols. The absence of mature standards for data serialization and 

automatic device discovery produces information silos that are difficult to integrate, with 

inevitable costs of customization of APIs and development of translation middleware (Garrido-

Hidalgo et al., 2019; Cortés et al., 2015). This fragmentation is amplified when trying to 

connect the new “smart” nodes to legacy systems (ERP, WMS, TMS) designed for intermittent 

data flows and not for real-time streaming: the need for adapters and backward-compatibility 

interfaces introduces latencies, points of failure and recurring maintenance costs 

(Samaranayake et al., 2022). On the infrastructural level, network coverage is not 

homogeneous nor guaranteed in all segments of the supply chain: warehouses located in remote 

industrial areas, road sections in rural areas or ocean crossings suffer from discontinuous 

connectivity. Consequently, devices must switch between low-power technologies (LPWAN) 

and cellular networks with significant impacts on energy expenditure and battery life, already 

limited by the miniaturization required for smart pallets and containers (Li & Li, 2017). The 

cost of replacing or recharging devices, especially when we are talking about thousands of units 

dispersed in multiple countries, has a heavy impact on TCO (Total Cost of Ownership) and 

slows down the return on the initial investment, as highlighted by studies on post-pandemic 

economic drivers (Ali et al., 2023). Data quality and continuity represent another critical 

bottleneck. Sensors exposed to vibrations, thermal shocks or extreme humidity record 

calibration drifts that compromise the fidelity of readings. This requires periodic recalibration 

procedures and self-diagnostic systems that, if absent, degrade the reliability of decision-

making dashboards and trigger false alarms along the cold chain (Tsang et al., 2018). In 



 135 

parallel, the explosion of information volumes (high-velocity and high-variety) generates data 

management challenges: robust pipelines are needed for edge filtering, packet compression and 

encryption, as well as scalable data lakes that guarantee consistent metadata and versioning. In 

the absence of a solid governance framework, the risk is a flood of non-contextualized “dark 

data” that weighs on storage costs and complicates predictive analyses (Mashayekhy et al., 

2022; Hu, Al-Barakati, & Rani, 2022). Finally, the issue of infrastructural sustainability should 

not be overlooked. The high turnover of low-cost sensors, often not designed for recovery or 

recycling, generates e-waste flows that conflict with environmental responsibility policies and 

circular supply chain objectives (Ding et al., 2023). The lack of operational guidelines on end-

of-life and disposal, combined with the difficulty of tracking components and materials 

throughout the entire life cycle, undermines the coherence between the “green” narrative of 

IoT and the daily practice of warehouses. 

In summary, AI and IoT share four critical nodes that feed each other: data quality, 

interoperability, and governance; computational capacity and network resilience; legacy 

integration and lifecycle management of models and devices; total costs, cybersecurity, and 

environmental impact. Removing these obstacles requires synergistic interventions: definition 

of open standards and common semantics, investments in highly reliable 5G and LPWAN 

networks, cloud-edge architectures that minimize latency and decentralize the computational 

load, MLOps pipelines that automate model retraining and versioning, secure-by-design 

devices with over-the-air firmware updates, and finally eco-design strategies that include 

takeback, recycling, and extended producer responsibility from the outset. Only a holistic 

approach, capable of holding these dimensions together, will allow companies to move from 

pilot experiments to scaled implementations, transforming the promise of predictive, 

transparent and sustainable logistics into a concrete operational reality. 

4.2.3 Workforce transition and reskilling 

The progressive adoption of AI and IoT solutions in logistics is profoundly reshaping the 

professional profiles of the sector, making a systematic process of reskilling and upskilling 

essential. On an individual level, literature highlights how the perception of self-efficacy and 

the balance between work demands and resources outlined by the Job Demands-Resources 

Model influence workers’ willingness to learn data analytics, basic programming and 

maintenance of AI systems. However, the introduction of intelligent technologies does not only 

involve new technical skills: the constant flow of real-time data requires critical judgment skills 

and a renewed digital literacy to interpret often opaque algorithmic outputs, avoiding both 
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automation blindness and distrust towards systems. At the team level, human-machine 

collaboration transforms shifts and coordination mechanisms: operators must communicate 

with decision-support interfaces and, at the same time, develop relational skills to manage more 

interconnected and transparent processes, in which individual performances are continuously 

monitored. From an organizational point of view, AI allows to outsource or automate repetitive 

tasks, but generates demand for hybrid roles, like algorithm maintainers and data-driven 

warehouse supervisors, which require flexible and modular training paths often based on 

micro-credentialing and e-learning platforms. In this context, a strategic approach to change 

management becomes crucial: job crafting programs and personalized career plans can mitigate 

resistance to change, supporting intrinsic motivation and the perception of autonomy, key 

elements for well-being and productivity in digitalized contexts (Klumpp & Ruiner, 2022). 

The World Economic Forum’s Future of Jobs Report 2025 overturns the apocalyptic narrative 

that has often accompanied automation: the percentage of “job disruption” will be significant 

(22% of current roles will be redefined by 2030), but the net effect will be positive, with 170 

million new jobs and 92 million positions moved, for a balance of +78 million job 

opportunities. In terms of skills, however, the picture remains challenging: almost 40% of the 

skills currently required will change and 59 out of 100 workers will need requalification or 

updating courses by 2030; of these, 11 risk not receiving them, exposing over 120 million 

people to potential layoffs. Employers are sensing the problem: 63% identify the skills gap as 

the main obstacle to business transformation, while 77% plan upskilling programs, but 41% 

predict headcount reductions due to automation (World Economic Forum, 2025). The fastest 

growing skills profile confirms the two-faced nature of demand: on the one hand, technological 

skills – AI, big data, cybersecurity, OT/IT networks –, on the other, cognitively intensive 

human skills – analytical-creative thinking, collaboration, resilience, flexibility. The 

hybridization of the two areas becomes the new currency of exchange on the labor market. 

Logistics companies experience it on a daily basis: surveys conducted in mature economies 

(UK, Germany, USA) indicate structural deficiencies in data science, industrial safety and 

predictive maintenance, but also in soft skills such as complex problem solving and 

intercultural communication. Similar evidence emerges from emerging countries: a survey of 

logistics companies in Oman finds pronounced shortages in data analytics (68%), digital 

marketing (52%), the ability to learn continuously and creativity/innovation (48%), 

programming/coding (44%) and industrial cyber-security (48%). The same companies indicate 

the reskilling of internal staff as their primary strategy (45%), followed by the outsourcing of 

specialist functions (21%), while they recognize that the main obstacles are the lack of adequate 



 137 

training courses (40%) and the misalignment between academic curricula and industrial needs 

(32%) (Benayoune et al., 2022). 

In light of this evidence, a synergic action between companies, universities and policy-makers 

is essential. On the academic side, it is necessary to rethink teaching in a modular and “blended” 

way, integrating simulation laboratories, micro-credentials oriented to specific technologies 

(e.g. IoT API management, logistics data modeling, predictive maintenance) and internships 

co-designed with companies, so as to reduce the time-to-skill reported by studies (Benayoune 

et al., 2022). Companies, for their part, must invest in knowledge-sharing platforms and 

apprenticeship programs that allow workers to acquire medium-high level skills without 

interrupting production activity – a need particularly felt in emerging contexts where the 

availability of low-cost foreign labor can slow down technological adoption, but at the same 

time limit the career paths of local workers. Finally, public policies must promote the creation 

of national skill frameworks that dynamically map skills needs and incentivize experimentation 

with new training models, reducing the “digital divide” which, if not addressed, risks widening 

employment inequalities. 

4.3 Cross-cutting applications of the AIoT approach beyond logistics 
IoT and AI are not simply an overlapping of technologies: rather, they represent the backbone 

of a cybernetic ecosystem that transversally permeates a variety of sectors. The unifying 

element is a continuous cycle – perception, connection, analysis, action – that allows previously 

inert objects to transform into intelligent nodes, capable of generating data, learning hidden 

correlations and intervening in the physical world. Below is an organic and in-depth discussion 

of the main application areas, showing how the models developed in logistics constitute only 

a small part of a much broader phenomenon.  

4.3.1 Energy sector 

The energy sector, characterized by capital-intensive assets with multi-decade life cycles and 

a growing weight of intermittent renewable sources, is reconfiguring itself around the 

convergence of IoT and AI, a synergy often referred to as the Energy Internet of Things (EIoT). 

Distributed sensors (smart meters, substation RTUs, accelerometers, thermocouples and in-line 

optical fibres) generate a continuous flow of data that, conveyed by NB-IoT, LTE-M or 5G 

networks and pre-processed at the edge, feeds predictive machine-learning models running in 

the cloud. These models, trained on meteorological variables, SCADA signals and historical 

consumption series, enable a proactive balancing between supply and demand (DHL & Cisco, 

2015). The experiment conducted by DeepMind with National Grid in the United Kingdom 
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showed that forecasting demand 48 hours in advance and with an error margin of less than 10% 

allows a 10% reduction in the need for rotating reserves, with consequent savings in fossil fuel 

and lower emissions (Kreutzer & Sirrenberg, 2020). In parallel, the digital twin paradigm 

extends the first-time-right approach already used in logistics to the world of generation and 

transmission: hybrid thermo-fluid dynamic models with recurrent neural networks simulate the 

wear of bearings and wind turbine blades in real time, scheduling maintenance only when the 

risk indicator exceeds the optimal economic threshold. On the network front, line digital twins 

(built by integrating LIDAR data, IR images and climate measurements) enable dynamic line 

rating, allowing controlled overloads of up to 15% without violating thermal limits and 

postponing investments in new transport capacity. In the distribution sector, domestic gateways 

communicate with neighborhood aggregators through open protocols, enabling demand 

response strategies based on deep-reinforcement-learning that modulate heat pumps and 

electric vehicle charging. The same sensor-cloud infrastructure supports advanced predictive 

maintenance practices in midstream plants: in the compressors of the Trans-Anatolian Pipeline, 

anomaly-detection models, built with auto-encoders and LSTM networks, have cut unexpected 

downtime and gas consumption (Nagaty, 2023). On the market level, the real-time availability 

of granular data paves the way for Energy-as-a-Service models, peer-to-peer trading on 

distributed ledgers and dynamic pricing based on smart contracts, with kilowatt hours 

becoming tradable information flows (Perwej et al., 2019). Crucial challenges remain: 

cybersecurity, made more complex by the enormous attack surface of millions of devices; 

interoperability, which requires the adoption of open semantic schemes; the computational 

sustainability of AI models, mitigated by hybrid cloud-edge architectures and serverless 

techniques; finally, human capital, to be updated with cross-sector skills in data science, 

electrical engineering and data governance (Khanna & Kaur, 2020). 

4.3.2 Residential context 

In the residential context, the IoT-AI combination is transforming the home into a cyber-

physical platform capable of learning habits, autonomously managing critical resources and 

offering value-added services, overcoming the traditional home automation vision based on 

static scenarios and proprietary protocols (Kreutzer & Sirrenberg, 2020). The core of the smart 

home ecosystem is represented by a local gateway that coordinates the various devices present 

in the home (sensors, actuators, connected appliances) and harmonizes their different 

communication methods, channeling data towards management applications residing locally 

or in the cloud (Perwej et al., 2019). Lightweight machine-learning models (TinyML) are run 
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on these streams for on-device recognition of behavioral patterns: for example, the neural 

network trained on the absorption profile of an oven distinguishes domestic cooking from a 

potential fire, generating a local alert in less than 50 ms and reducing the perceived latency 

compared to full-cloud solutions by about 80% (Nagaty, 2023). In many advanced domestic 

solutions, where the home is modeled as a digital twin to track consumption, system 

configuration and usage profile of household appliances in real time, the same flow of electrical 

data, broken down with non-intrusive load monitoring techniques, allows the home's digital 

twin to estimate the health status of household appliances and trigger smart replenishment 

logics: the washing machine, when it recognizes an anomalous consumption of detergent, sends 

an automatic order to the integrated e-retailer, inaugurating “consumable-as-a-service” models 

already tested in industrial pay-per-use contracts (Khanna & Kaur, 2020). On the energy side, 

the reinforcement learning algorithm incorporated in the smart thermostat optimizes the set-

point curve taking into account weather forecasts, TOU (Time-Of-Use) rates and heat pump 

response times. In “prosumer” environments equipped with photovoltaics and batteries, the 

digital twin calculates in real time the best charge/discharge strategy to maximize self-

consumption or provide balancing services to the local energy community through smart 

contracts on the Energy Web blockchain. Artificial vision models, borrowed from logistics for 

pallet recognition, power cashier-less functionality in condominium micro-markets: wide-

angle cameras cross-reference user IDs, postures and barcodes, assigning picks to a virtual cart. 

On the shelf, computer vision identifies out-of-stock and compliance planograms, suggesting 

predictive replenishments that reduced cart abandonment by 25% in pilot tests by a European 

retailer (Dohrmann, Pitcher, & Kamdar, 2024). Similar CNN networks analyze the behavior of 

lonely elderly people in real time: deviations in the walking pattern, detected by solid-state 

lidars or millimeter-wave FMCW radars, activate a tele-assistance protocol that forwards end-

to-end encrypted video clips to caregivers, in compliance with the GDPR thanks to an 

anonymization pipeline at the edge. From a socio-economic point of view, the introduction of 

these solutions fuels new business models: “domestic well-being” subscription packages that 

include sensors, predictive maintenance and pay-how-you-live insurance services; 

condominium community clouds that sell flex-capacity to the DSO (Distribution System 

Operator); data platforms that monetize anonymous insights for demand-side marketing. 

However, widespread adoption depends on change management initiatives and the digital 

maturity of users: longitudinal studies show that the learning curve of home automation 

systems stabilizes after about six weeks, but that energy efficiency degrades if the algorithms 

are not periodically recalibrated on lifestyle changes (Balta-Ozkan et al., 2013). 
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4.3.3 Healthcare sector 

In the healthcare domain, the integration between the IoT and AI is progressively redefining 

the entire continuum of care  (from prevention to diagnosis, from therapy to follow-up) thanks 

to an ecosystem of wearable sensors, connected medical devices, edge-cloud platforms and 

machine learning models trained on unprecedented amounts of data. Already today, real-time 

monitoring of vital parameters through electrocardiographic patches, pulse oximeters or smart-

watches allows the translation of raw physiological signals into clinically relevant alerts. AI, 

applied to these streams, identifies warning patterns of heart failure or hypoglycemia and 

triggers proactive interventions that reduce rehospitalizations and visits to the emergency room. 

The same “sense–think–act” paradigm enabled by edge computing finds application in high-

intensity care departments: local low-latency gateways aggregate endoscopic videos, high-

frequency EEG traces and data from infusion pumps, performing on-device inferences to detect 

arrhythmias or hemodynamic drifts millisecond by millisecond, before the event degenerates. 

The experience of Streams at the Royal Free London NHS Foundation Trust, where a mobile 

app notifies critical changes in kidney function in a few seconds, has demonstrated the 

possibility of compressing decision-making latencies and anticipating life-saving treatments 

(Kreutzer & Sirrenberg, 2020). On the diagnostic side, convolutional neural networks trained 

on millions of CT and MRI images achieve sensitivity superior to the human eye in identifying 

breast micro-calcifications or lymph node metastases. The challenge is no longer computing 

power, but the quality of the training data – to be ensured with multi-expert annotation pipelines 

and bias mitigation techniques – and the regulatory certification of the models. Similarly, NLP 

algorithms extract predictive insights from electronic clinical diaries, bridging the traditional 

gap between structured data and narrative notes: in oncology settings, AI synthesizes 

guidelines, clinical trials, and the patient’s molecular profile into personalized therapeutic 

recommendations, replicating the function of the tumor board on a scale (Kreutzer & 

Sirrenberg, 2020). At home, networks of environmental sensors integrated with telemedicine 

extend care beyond the hospital walls. The IBM Elderly Care project, in partnership with 

Malteser International, equips over 150 homes with motion sensors, water flow meters, and 

thermal detectors capable of learning the elderly person's daily “rhythm”: deviations in 

bathroom visits or night-time openings of the front door generate yellow or red notifications, 

grading the urgency of the intervention (Bauer et al., 2018). In parallel, computer vision-based 

tele-rehabilitation systems guide the execution of post-operative exercises and automatically 

measure joint angles, reducing in-person sessions without compromising adherence to the 

program. A line of research that has gained particular momentum in recent years concerns the 
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use of digital twins to model selected portions – or the entire – human organism, with the aim 

of placing a virtual counterpart alongside the physical patient, continuously updated by real-

world clinical data. Studies conducted by Siemens Healthineers have already demonstrated the 

feasibility of a digital twin of the heart: starting from radiological images and 

electrocardiographic tracings, a machine learning algorithm reconstructs the anatomy and 

reproduces the electro-mechanical behavior of the myocardium, allowing the simulation of 

failure scenarios and the in silico testing of the effectiveness of different therapeutic regimens. 

The project, at the end of a six-year trial on one hundred patients with heart failure, has shown 

that the model’s predictions tend to converge with the observed clinical outcomes, paving the 

way for future applications in diagnosis and intervention planning (DHL Trend Research, 

2023). Philips is following a similar path, developing its own cardiac twin and using the same 

twin logic for devices: a single CT scanner can generate up to 800,000 log messages per day, 

aggregated in the cloud and analyzed with predictive algorithms that anticipate failures and 

enable proactive maintenance. On the biomedical research front, the European consortium 

DigiTwins (118 academic centers and companies) is aiming for an even more ambitious goal: 

creating a personalized digital twin for every citizen of the Union, so as to minimize prognosis 

errors and off-target toxicity, which today are worth approximately 280 billion euros per year, 

equal to 20% of European healthcare spending (DHL Trend Research, 2023). 

4.3.4 Smart city context 

Finally, the “smart city” paradigm arises from the need to govern urban complexity – 

demographic, energetic, environmental – through a digital ecosystem that grafts sensor 

networks, pervasive connectivity and AI algorithms onto infrastructures often designed for an 

analogue world. In the consolidated vision, the smart city is divided into three macro-layers: 

(i) a physical level, consisting of low-power IoT devices (air quality sensors, artificial 

vision cameras, smart meters) located throughout the territory;  

(ii) a communication level, which combines low-consumption wireless networks for short 

distances with the latest generation mobile band, thus channeling data towards 

processing points distributed within the urban fabric;  

(iii) a cognitive level, where cloud-native platforms apply machine learning and digital twin 

techniques to transform information flows into operational decisions (Nagaty, 2023). 

An emblematic case comes from Darmstadt, where 272 intersections have been equipped with 

high-definition cameras and over 2,000 traffic lights transmit more than a billion records to a 

centralized data lake every day. Deep learning models analyze queues, average speeds and 
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accident probabilities in (almost) real time, automatically adjusting traffic light plans and 

sending predictive alarms to the traffic control center (Darmstadt, 2019). The result is a 

documented reduction of 15% in travel times and emissions from congestion, with benefits 

comparable to much more expensive infrastructure interventions. Smart-lighting systems 

integrate LED lamps, motion sensors and edge gateways capable of varying light intensity 

based on pedestrian traffic, weather conditions and the presence of events. The streetlight 

network, powered by reinforcement learning algorithms, achieves energy savings of over 60% 

compared to static regulation scenarios and acts as a backbone for the installation of additional 

environmental sensors (noise, NO₂, PM 2.5), generating new revenue streams for the municipal 

administration. Low-power micro-sensory networks (LPWAN) continuously detect 

temperature, humidity, concentration of fine dust and volatile organic compounds. The data, 

geolocalized and enriched with meteorological information, feed spatial models that relate 

urban morphology to the distribution of pollutants, allowing the impact of traffic calming or 

urban forestry interventions to be assessed in advance. A smartphone application allows 

citizens to view, in real time, maps indicating the air quality along the streets and to receive 

suggestions on healthier alternative routes. Each user, by automatically or voluntarily sending 

the environmental data collected by their device, thus becomes an active part of a widespread 

detection network (crowdsensing). The principle is the same as that tested by ZenCity, where 

reports from social media, phone calls to switchboards and information from urban sensors 

flow into analytical dashboards that support the decisions of administrations (ZenCity, 2019). 

Smart bins equipped with ultrasonic sensors measure the filling level and, via NB-IoT 

networks, send the volumetric estimate to an optimization engine that recalculates the routes 

of the collection vehicles on a daily basis: experiments in the EU show cuts in kilometers 

traveled of up to 25% and a significant decrease in emissions (Perwej et al., 2019). A similar 

scheme for the water network: pressure switches and acoustic meters correlate micro-drops in 

pressure and vibration patterns, automatically identifying hidden leaks and scheduling 

maintenance interventions according to risk-based asset management logics. The natural 

evolution of these vertical subsystems is the construction of a digital twin of the city or 

individual districts, i.e. a numerical model that integrates road topology, energy constraints, 

building heritage and mobility flows. These platforms, born in the logistics sector to orchestrate 

fleets of vehicles in real time, now allow policy makers to test “what-if” scenarios – from the 

introduction of low-emission zones to the planning of mass events or the management of 

blackouts – without repercussions on the physical world. Pilot projects in Scandinavia show 

that traffic-energy co-simulation allows to reduce the peak electricity demand from vehicle 
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charging by up to 18%, thanks to demand-response strategies coordinated with intelligent 

traffic lights (DHL Trend Research, 2023). 
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Conclusion 
The analysis carried out in this thesis demonstrated, first of all, that AI and the IoT today 

represent the two technological cornerstones on which the transformation of logistics towards 

the 4.0 paradigm rests. By examining first their separate contributions and then their potential 

convergence, the literature highlights concrete benefits but also an evident fragmentation of 

studies, a symptom of a maturity that is still uneven between application domains, industrial 

sectors and geographical areas. 

Four key results emerge from the systematization of the sources.  

First, machine-learning algorithms already offer tangible advantages in activities with high 

information content—multi-stage demand forecasts, dynamic route optimization, computer 

vision for automated package management—provided they are fed by quality datasets and 

decision-making processes capable of integrating their outputs.  

Second, widespread sensors and LPWAN/5G networks have proven indispensable to generate 

the necessary database: without granular tracking of assets, vehicles and environments, AI 

remains deprived of the “information oxygen” that allows it to detect patterns and anomalies. 

Third, the literature confirms that the two domains do not produce the maximum value when 

operating in isolation: the real competitive lever lies in their integration (AIoT) which allows 

to orchestrate physical and digital flows in real time, enabling digital twin logics, predictive 

maintenance and adaptive automation. 

Fourth, despite the growing interest in AIoT, transversal barriers persist: fragmentation of 

interoperability standards, cybersecurity concerns, lack of clear data governance models and a 

widespread skills gap involving analysts, network engineers and operations personnel. 

On a theoretical level, this thesis provides an organic framework that fills the gap in knowledge 

identified at the beginning: it compares, with homogeneous criteria, the evidence on AI and 

IoT, positioning them along a continuum that goes from specific applications to the systemic 

perspective of AIoT. This synthesis, based on a systematic and interdisciplinary review of the 

sources, allows us to overcome the overly rigid classifications that have so far limited the 

dialogue between the two research communities and offers a coherent taxonomy of benefits, 

constraints and open challenges. 

From a methodological point of view, the work claims its exploratory and theoretical-analytical 

nature: the absence of original empirical data reduces the risk of overlapping with case studies 

already present in the literature but, at the same time, limits the scope of the conclusions to a 
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level of abstraction that requires field verification. It is therefore appropriate that future 

research focuses on three complementary directions:  

(i) longitudinal empirical studies in companies that have started AIoT projects, to measure 

their real impact on costs, emissions and service levels;  

(ii) comparative analyses between different sectors and regulatory contexts, useful for 

identifying replicable best practices and enabling policies;  

(iii) investigations on human capital, aimed at understanding how skills and forms of 

human-machine collaboration evolve in intelligent warehouses and distribution centers. 

Ultimately, the joint examination of AI and IoT provides the image of logistics in transition: 

still far from full digital maturity, but already oriented towards ecosystems capable of self-

adapting, anticipating disruptions and minimizing environmental impact. 
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