LUISS

Corso di laurea in Economics and Finance
Major in Finance

Cattedra; Financial Economics

Rare Disasters: a Model to capture
Implications, Peculiarities, and Policy Insights.

Prof. Nicola Borri Prof. Giacomo Morelli

RELATORE CORRELATORE

Nicolo Mastroianni, 790481

CANDIDATO

Anno Accademico: 2024/2025






A chi mi ha insegnato la felicita



ii



Abstract

This thesis rigorously investigates macroeconomic and financial implications of rare disasters
using a sophisticated Dynamic Stochastic General Equilibrium (DSGE) model enriched by
Epstein-Zin recursive preferences. In an increasingly interconnected global economy, frequently
exposed to severe shocks, such as wars, financial crises, and pandemics, the study differentiates
between disaster types, capturing distinct impacts on first and second moments of macroeco-
nomic quantities, asset prices, and risk premia.

Drawing on foundational studies by Rietz (1988), Barro (2006, 2009), and Gourio (2012),
this research introduces heterogeneity in disaster shocks, calibrated through extensive empirical
analysis of historical data (1900-2024). The model incorporates stochastic variations in
disaster severity, persistence, and probability, effectively reproducing macro-financial dynamics
like countercyclical risk premia and precautionary saving behaviors. It addresses longstanding
puzzles in economics, such as the equity premium puzzle and volatility clustering in asset prices,
while accurately modeling significant economic downturns associated with disasters.

Moreover, the thesis evaluates targeted economic policies aimed at mitigating catastrophic
impacts. By simulating policy interventions: structural preparedness for wars, regulatory
frameworks for financial crises, and balanced fiscal-health strategies for pandemics, it quan-
tifies their effectiveness in reducing volatility and enhancing resilience.

The findings highlight considerable heterogeneity in disaster impacts, underscoring the need
for differentiated policy responses. This study contributes not only theoretical advancements
but also practical, policy-relevant insights, guiding stabilization strategies amid extreme uncer-

tainty.
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Introduction

In a world interconnected as never before, traveling at a speed that would not have been
imagined attainable and sustainable in the past, it is necessary to incorporate the risk of rare
events into the vision and evaluation of experts in every subject. Nowadays, society is suddenly
faced with two wars on Europe’s doorstep (the Russian-Ukrainian conflict and the Israeli-
Palestinian conflict) and the impacts of climate change, where nature is beginning to present
its bill after centuries of reckless and short-sighted exploitation. All this just after recovering
from a global pandemic. It is therefore immediately apparent that these three examples are
paradigms of the fact that the system in which humanity finds itself living faces the unexpected
with a frequency that is no longer negligible or ignorable; just as it is easy to understand that
the correct evaluation and incorporation of the risk of these phenomena is decisive for the
preservation and progress of this system itself.

Economics is at the forefront of this mission, being the science that is responsible for adapting

increasingly evolved, varied and numerous needs to an increasingly scarce pool of resources.

As Nassim Taleb famously observed in The Black Swan 1], modern society suffers from
an illusion of predictability: we build systems, forecasts, and policies based on what we think
we know, systematically underestimating the role of uncertainty. Rare disasters, by definition,
escape the boundaries of historical data and conventional modeling. They are outliers that

redefine what is possible, until they happen, at which point they seem inevitable in hindsight.
The Russian-Ukrainian conflict, the COVID-19 pandemic, and climate-induced catastrophes

are not just isolated incidents; they are black swans in disguise, events that seem unique only
until one realizes how limited and backward-looking our predictive frameworks have become.

We often mistake the map for the territory, assuming linearity in a non-linear world. The goal
is not just to prevent rare disasters, but to build economic systems capable of withstanding and
even benefiting from them. It is increasingly necessary to evolve a system that is antifragile,
that must accept volatility as a feature, not a bug, designing institutions that do not merely

survive rare events, but evolve through them.

It would be almost self-evident to look for some reference to convince the reader of the
seriousness of phenomena that can be classified as rare disasters, since it is intrinsic in the real
and financial impact they entail, and which everyone becomes a direct witness. Suffice it to say
that their burden is reflected in the scientific definition attributed to him from the beginning
of their study: the first scientific source that has framed them was the work of Barro, defining

them as events involving a decrease of at least 15% in real @ per capita [§].
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INTRODUCTION

From then on, many distinguished scientists have committed themselves to incorporate the
risk of rare disasters into their models in order to be able to price it or assess its impacts on
the financial and real economy. Among them stands out the work of Gourio (2012)[Bg], who
through a DSGE model managed to generate an empirically reasonable connection between rare
disaster risk premium and output or investment. However, almost all of the most important
studies on the subject have introduced the risk of rare disasters in order to solve, at least in
part, long-standing problems such as the equity premium puzzle and the risk free rate, thus
modeling disasters in aggregate without differentiating their impacts depending on their type.
An initial suggestion for developing this research idea comes from the work of Gabaix (2012),
who introduces the concept of asset resilience, which measures an asset’s ability to maintain
its value during a disaster [35]. Although Gabaix does not explicitly distinguish between dif-
ferent types of disasters, his model suggests that investors’ perceptions of resilience may vary
depending on the nature of the disaster, implying that different catastrophic events could have
distinct impacts on asset prices. It is, therefore, within these boundaries that the first research
question guiding this thesis will be posed: to understand the differences between the impacts
of different types of rare disasters on macro-financial variables and asset prices.

From the modelling of impacts, and the concept of resilience, comes directly the second
objective of this study: to understand how different economic policies can best combat the
gigantic impacts of disasters. Cantelmo (2022), to cite a recent example in literature, explores
the impact of rare disasters on the natural interest rate and macroeconomic conditions. Using
a non-linear New-Keynesian model, it simulates scenarios in which the risk of natural disasters
negatively affects the natural interest rate and inflation[23]. The results suggest that, in the
presence of such risks, central banks may have to adjust their monetary policies to stabilize the
economy.

In order to fill these research gaps as clearly and efficiently as possible, this work will be
based on the implementation of a Dynamic Stochastic General Equilibrium (DSGE) model,
which is considered better than a Real Business Cycle model, as it allows for a more accurate
treatment of time-varying risk, which is a fundamental assumption for this thesis. The model
incorporates permanent and transitory shocks to productivity as well as capital destruction
shocks, which are only active in a state of disaster, with probability p;, following an [AR(T)

process in logarithms. The general equilibrium is described by an Euler condition of the type:
E, [MtJrl : Rtlil} =1,

where the stochastic discount factor reflects the intertemporal structure of recursive preferences
and risk aversion related to disaster probability. The solution of the model is obtained by non-

linear numerical methods. Intermediate objectives include:

1. Estimating macro-financial effects specific to each type of disaster;
2. Quantifying the response of real variables and asset prices to changes in py;

3. Simulating the comparative effectiveness of economic policies in mitigating adverse effects.



The main contribution of the paper is therefore twofold: on the one hand, to provide a
theoretical microfoundation useful to explain the heterogeneity of economic impacts of rare
disasters; on the other hand, to assess how targeted policy instruments can reduce the risk
premium and improve macroeconomic resilience, offering relevant implications for the design
of stabilization policies in extreme risk contexts.

In the following chapters, therefore, the work will be concretized: first of all, by reviewing the
most important contributions from the literature on which the study of this type of phenomena
is based; then proceed to the configuration and implementation of the mathematical model
that will produce the results that will be carefully evaluated, compared with the literature and
interpreted. Finally, they themselves will be used to draw the main conclusions of the study,

with suggestions for improvement and future research.



Chapter 1

Literature Review

1.1 From Rietz’s idea to Barro’s empirical measurements

The first trace of the insight into the importance of rare disaster risk in the possible solution to
the equity risk premium problem can be found in the work of Rietz (1988). His model represents
an evolution of the Arrow-Debreu economy proposed by Mehra and Prescott (1985) [b9], an
evolution that is able to capture the impacts of crashes without distorting the assumptions
of the original model (the economy is still a finite state version of Lucas’ (1978) model [5§]
and still has a Debreu competitive equilibrium with non-stationary consumption levels. There
are no frictions and no closed market), was able to explain both the high risk premia and the

low risk-free returns [68]. In mathematical terms, the economic agent finds itself maximizing

l—«
Eo {Z;’io ok Cf_a], with the novelty of introducing a third state into the consumption growth
process, a state that possesses low probability m, but strong negative impact: z3 = 6(1 +

p), with @ < 1. The Markovian transition matrix for the three states is:

1—-6—m 0 T
) 1—-d—7m «
0

Q

1
2

N =

Where state 3 (crash) cannot recur consecutively, making the risk more plausible and persistent

over time. This leads to the determination of equity pricing through the first-order condition:
pie i) = B iy * [p°laje, §) + jc]
J

proving a realistic equity risk premium (6-7%) with plausible parameters relating risk adversion
and time preference.

From this brilliant introduction follows the work of Barro (2006), considered the founding
work of all literature on the topic. He considers correct the general reasoning behind Rietz’s
model, but states that the major reason for skepticism about Rietz’s argument is the belief

that it depends on counterfactually high probabilities and sizes of economic disasters. For this
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1.1. FROM RIETZ’S IDEA TO BARRO’S EMPIRICAL MEASUREMENTS

reason he measured the frequencies and sizes of every economic disaster occurred during the
twentieth century, suggesting a disaster annual probability of 1.5-2 % with a decline in GDP
per capita ranging from 15 to 64 percent. Another step forward in this study is from a model
of disaster as a discrete, exogenous state, to one as a continuous Poisson shock; in addition, the
paper assesses the impact on assets by also considering default on risk-free securities. Barro
follows Lucas’ (1978) representative-agent, fruit-tree model of asset pricing with exogenous,

stochastic production, in which:
o Consumption equals Output of fruit (Cy = A,);
e Markets are complete, with competitive prices;

» Preferences are isoelastic (with v > 1)

The representative consumer maximizes a time-additive utility function

00 tc’tlf'y
pu— _p —_—
U(C)) = Eo VO et Wdt]

while Output of fruits follows
log Ayy1 = log Ay + g + w1 + v
where uyy1 ~ N(0, 0%) are normal (Brownian) shocks and v,y rare disaster with:
v =0 with probability e™?
Vi1 = log(1 —b) with probability 1 — e™?

p and b are respectively the Poisson rate and severity of rare disasters. This leads to equity

price under this model:
Pl = Ay empi=0#0= 5000 [ 4 (1 — ) [(1— b)=]]
that can be expressed in expected log returns (conditioned to dt — 0) as:

log B[R] = p+79 — ;7(1 +7)0® +p- [E[(1—b)'7"] - 1]

The expected risk-free can be obtained as:

log E[R] = p+ 75 — ;7(1 +7)0? +p- (1—q)- [E[(1-b)7"]—1]

= with premium: E[R] — E[R’] =~ y0® + p - (disaster curvature)

With this configuration, Barro confirms Rietz’s idea: rare disasters explain equity premium

puzzle, but his approach becomes quantitative and calibratable, linking historical distributions
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CHAPTER 1. LITERATURE REVIEW

of disasters with asset pricing. It is precisely this feature that makes this study so important
as a basis for subsequent literature.

The same author, in a later study (Barro 2009) [9], incorporates aspects related to the
parametrization of asset prices and the assessment of welfare cost of consumption uncertainty
into the framework of the 2006 model. The first notable development refers to the change in
the type of utility function to an Epstein-Zin-Weil () function [31] in order to obtain:

o A risk aversion greater than 1 (v > 1, necessary to explain equity premia without gener-

ating counterfactual previsions;

o An Elasticity of Intertemporal Substitution greater than unit (I ES > 1), being able to

explain asset prices dynamics in a more realistic way.

Overcoming the isoelastic utility structure allows the model to avoid two counterfactual
predictions typical of the power utility: an increase in aggregate uncertainty that leads to
an increase in the price-dividend ratio and higher expected growth that reduces the price-
dividend ratio. With EZW preferences and > 1, Barro shows instead that an increase
in uncertainty reduces the value of shares, in line with empirical evidence. One of the most
conceptually relevant extensions introduced by Barro (2009) to the original 2006 framework
is the explicit quantification of the welfare costs associated with the existence of the risk of
rare economic disasters. In particular, the author proposes to measure, in terms of equivalent
output, how much a society would be willing to sacrifice each year in order to completely
eliminate the uncertainty generated by catastrophic events, such as wars, extreme financial
crises or pandemics. The approach followed is consistent with the principle, already emphasized
by Alvarez and Jermann (2004),that any assessment of the effect of a shock on aggregate
utility must be consistent with its assessment by the financial markets [3]. In the context of
the Epstein-Zin-Weil preference model, the present value of the productive asset, expressed
as a price/dividend ratio, is influenced by the presence of disaster risk through the following

relationship:

‘1/ — gt — ;7(1 +0)0” +p[E[(1=)'] - 1+ E[]]

From this formulation, Barro calculates the equivalent cost in terms of output to eliminate
the risk of disaster. The quantity that measures this compensatory change is the ratio of output

in a hypothetical economy without disasters to that observed in the economy with disasters,

y*_<v)119
y  \yx

where V* refers to the ideal economy with null disaster probability. Barro estimates that the

given by:

economy would be willing to give up about 24% of its GDP each year in order to eliminate disas-
ter risk, whereas removing only the volatility component,represented by the standard deviation,
would entail a welfare cost equivalent to an annual loss of only 1.6% of GDP. This difference,

robust even to parametric variation, highlights how disaster risk has a disproportionately high
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1.2. TIME-VARYING SEVERITY AND PROBABILITY

impact on welfare compared to mere business cycle volatility, overturning previously accepted
conclusions, such as that of Lucas (1987), that the cost of the business cycle is negligible. This
result is fundamental to the objectives of the study in this thesis as it allows us to assess the
economic importance of policies aimed at reducing the probability or severity of systemic disas-
ters. Preventive interventions, financial regulation, geopolitical stabilization and public health
strategies can, in the light of the model, generate extremely relevant welfare benefits even if
disasters remain rare events, precisely because their expected impact is amplified by agents’

strong risk aversion.

1.2 Time-varying severity and probability

One of the most innovative theoretical contributions to the literature on rare disasters is
the work of Xavier Gabaix (2012), who introduces a framework capable of simultaneously

addressing and solving ten historical “puzzles” in the field of asset pricing, including:

—_

. the equity premium puzzle;

2. the risk-free rate puzzle;

3. excess volatility;

4. the predictability of stock returns;

5. the anomalous behavior of out-of-the-money options;

The central innovation is the transition from a model in which the severity of disasters is
constant (as in Barro 2006) to an environment in which it is stochastic and time-varying, thus
generating risk premia that are also time-varying. This extension allows the model to generate
realistic dynamics for asset prices and returns, explaining the volatility of price-dividend ratios,
the cross-sectional predictability of returns, and the behavior of options and rate curves [35].
Gabaix starts from an endowment economy with an isoelastic expected utility and pricing kernel
expressible as

-5 .
M, e no disaster

M, e °B,/} disaster

The innovative feature is definitely the introduction of an intrinsic resilience to each asset,
defined as
Hi,t = Dt Ef) [B;F’YIE,tJrl - 1}

where Fj;q € [0,1] the dividend recovery rate of asset i in the event of a disaster. This
formulation makes it possible to distinguish between assets that are more or less exposed to tail
shocks, and introduces a key element: cross-sectional heterogeneity in disaster response. H; 1

dynamics are modeled by a linearity-generating process which provides closed-form analytical
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CHAPTER 1. LITERATURE REVIEW

solutions for asset prices. The Price of a dividend-paying stock is given by

D; —h
Py =D (1 N 6)
J— 6 K3

and can be approximated for short time intervals as:

Dit [A{it . D
P,=—11 ’ th 0, =0—¢° —In(1+ H;

The expected return, conditional on the absence of disasters, becomes:
Tit=0—H;; = Equity premium = p, EP [Bfl(l - Fi,tﬂ)}

The @ ratio is thus negatively correlated with the perception of disaster risk, generating
predictability of returns and excess volatility. In the model, a disaster leads to a positive
jump in expected inflation, penalizing long-dated bonds, allowing it to be shown that if the
nominal risk premium is stochastic, the rate curve has a positive slope and forward rates
are predictable, explaining puzzles such as Fama-Bliss (1987) [32]. Using a calibration with
v=1,p=3.36% and E[B] = 0.66 produces:

Equity premium around 6.5%

Risk free rate around 1%

P /D Ratio volatility in line with USA historical data

Bond spread volatility coherent with bond behavior

Option prices consistent with volatility smirk

This model integrates systemic and idiosyncratic risk in a single linear scheme, opening the
way for analysis with multi-asset data, options and nominal instruments.

In the same year, the work of Gourio (2012) also represents one of the most significant
advances in the literature on rare disasters, as it manages to integrate real macroeconomics
(business cycle) with asset pricing (risk premia) in a coherent manner, within a single DSGE
framework [38]. Unlike previous contributions, notably Barro (2006, 2009) and Gabaix (2012),
Gourio’s model innovates on both theoretical and quantitative levels, introducing disaster risk
in a production economy with optimizing agents, physical capital, and recursive preferences
a la Epstein-Zin. Gourio builds a complete model with endogenous capital and labor
accumulation. This allows us to analyze how variations in disaster risk simultaneously impact
the dynamics of capital, investment and employment, as well as risk premia and asset prices.
This consistency makes it possible to empirically reproduce the correlation between asset prices
and real variables, such as price-to-book ratio and investment, which other models fail to do.
While Barro (2006) considers instantaneous and permanent disasters, Gourio instead models

disasters as events that:



1.3. VOLATILITY AND EXCHANGE RATES

« last several periods, with a certain persistence ¢;
« Combine permanent and transitory shocks to productivity (6; and ¢;);
o destroy physical or qualitative capital (&), producing realistic effects on the cycle.

With regard to the time-varying aspect, in the case of Gourio(2012) it is the probability of
disaster that is time-varying, following an AR(1) process with mean and variance calibrated
to historical data, allowing the model to generate counter-cyclical risk premia, in accordance
with empirical results. It also shows that an exogenous increase in disaster risk, even without

realization generates:
o fall in investment, employment and output;
 increase in risk premium and fall in stock prices;
o fall in risk-free rates due to increased precautionary savings.

This result is achieved without the need for shocks to total factor productivity, and perfectly
simulates macro developments during panic phases such as the 2008-2009 crisis. These listed
aspects are the reason why this model was chosen as the skeleton for the study of this thesis,
with the aim of highlighting the differences in the implications of various types of disaster and
the consequent policy assessments: It is sufficiently parsimonious for quantitative analysis, but
also rich enough to distinguish the effect of transitory and permanent shocks, to introduce

differences between wars, pandemics, financial crises and to simulate relevant policy scenarios.

1.3 Volatility and exchange rates

In her contribution, Jessica Wachter(2013) proposes a refined extension of the rare disas-
ter risk model, in which the probability of economic disaster evolves over time according to
a stochastic process, offering a unified explanation for the equity premium puzzle, excessive
stock market volatility and the predictability of stock returns. This approach overcomes the
limitations of static models, which, while being able to justify a high risk premium, cannot
replicate the empirical variability of stock returns nor their predictability. The probability of
disaster follows a Cox-Ingersoll-Ross () process, which ensures stationarity and positivity
73]

A\ = KA = N)dE + axy/ \dV)

The model generates an endogenous increase in equity volatility as \; increases, consistent
with empirical evidence on the counter-cyclical behavior of volatility and the Sharpe ratio.
Equity volatility intensity is an increasing and concave function of the probability of disaster.
In addition, it succeeds in explaining the maturity structure of the equity premium, showing
that even short-term equities incorporate a significant premium, in line with market data.

In the joint contribution by Farhi and Gabaix (2016), the authors extend the rare disaster

framework to the international context, exploring the macro-financial implications that such



CHAPTER 1. LITERATURE REVIEW

extreme events generate on the currency market. The work represents one of the first theoret-
ical formalizations in which disaster risk is country-specific and can simultaneously justify the
existence of currency risk premia, excessive exchange rate volatility, and the so-called forward
premium puzzle [33]. Unlike the original model of Gabaix (2012), which focuses on equities
in a closed economy, this version introduces a two-country environment, with representative
consumers, nominal exchange rates, and imperfectly correlated disaster risks. The innovative
aspect is that, even in the absence of realized disasters, the mere divergence in risk perceptions

between the two countries generates:
» variations in nominal exchange rates;
e risk premiums on currencies;
» persistent distortions in forward yields.

The nominal exchange rate S; between the currencies of two countries, Home (H) and Foreign

(F), reflects differences in expected disaster risks:

g Pyy (CH,t> (FFt>
= ot = x|t
Pry Cry Frry

where F;, is the risk-adjusted real exchange rate, which incorporates potential disaster-related

jumps in country i. When pH > pF, country H shows a weaker currency and higher forward
yields: this replicates the forward premium puzzle. The model predicts that the premium
required by investors to hold foreign currency is positively correlated with local disaster risk
and negatively correlated with the foreign country’s exposure to disasters. Thus, cross-market
consistency is generated between currency risk, bond spreads and equity premiums. Moreover
allows differentiating the behavior of assets exposed to global disasters from those with domestic

risk: currencies become a key tool to diversify tail risk.

1.4 A new method for estimating disaster probability

In the joint contribution by Robert J. Barro and Gordon Y. Liao published in the Journal
of Financial Economics in 2021, the authors propose a new approach to estimate the objective
probability of rare disasters using option price data, in particular far-out-of-the-money options.
The work integrates disaster risk theory with an option pricing formula derived from recursive
preferences [12]. As shown by the previous contributions reviewed, this one also starts from an
utility framework. The relative price of a far-out-of-the-money European put II, with short

maturity 7" and strike price eP;, is calculated as follows

put a
B oz

I = — 1+a—y
P (a—=7y)(1+a—7)

-pl - e

where

10



1.4. A NEW METHOD FOR ESTIMATING DISASTER PROBABILITY

p is the disaster probability;

« is the tail exponent of severity distribution;

2o is the minimum threshold for severity;

v the risk aversion coefficient.

The authors assume that the severity of economic disasters follows a Pareto distribution:
f(2) = az8z7 09 2> 20> 1

this choice is consistent with the empirical evidence collected in Barro and Jin (2011) [10], and
is crucial for option pricing analysis, as it allows for an accurate description of the effect of thick
tails on the premium demanded by investors. The model is extended to include the possibility
that p, follows a stochastic process, subject to sudden shocks. In such a case, the option price
includes two components: one related to the risk of realized disaster and one to the possibility

that the perception of risk increases abruptly during the life of the option:
Il =Te'to [mpt + ngqe"‘*_"‘]

where ¢ is the probability of a sudden increase in p;, and o* is the tail parameter for changes
in p;. Applying the formula to data on put options on the S&P500 and six other stock indices
(UK, Eurozone, Germany, Japan, Sweden, Switzerland), the authors estimate a time series of
the objective probability of p, disaster consistent with major historical events. The approach
shows that option prices contain predictive information on macroeconomic tail risk: high values
of p; anticipate a higher probability of negative growth in real GDP. The method also proves
to be robust using data and across different maturities and exercises.

11



Chapter 2

Methods

2.1 The Model

The model framework starts from an agent with recursive preferences (Epstein & Zein 1989)

_ e 1
V.= (U + BE(VY) 1‘”)1 _y

where utility follows the classical Cobb-Douglas form, consistent with balanced growth:
Ut = U(Ct, Nt) = Ct(l — Nt)u

while v is the risk aversion coefficient, and v is inversely related to IES. To be precise, IES is
7 with Y=1—(1+v)(1—v)and IES > 1 when ¢ < 1 [70].
The output function of firms is also of the Cobb-Douglas type [26]:

Yy = Kf(2N))' ™
where the productivity z; is formed by two components:
1. z,: permanent productivity;

2. zp; transitory productivity;

such that
log z; = log 2, + log 2.

The accumulation path of capital is described by:

I
K= (1-0)K, + qﬁ(Kt)Kt
t

where ¢ is an increasing and concave function, which curvature captures physical adjustment

costs. The resource constraint is:
Ct + It - Yt

12



2.1. THE MODEL

In order to be able to further schematize the narrative of the model, two case studies will be

divided, depending on whether or not the rare disaster is realized.

2.1.1 Normal times

The permanent component of productivity evolves according to a random walk with drift,

log zpt = log zpt—1 + 1 + €,
where ¢, is the normal small shock introduced by the real business cycle theory [55]: € X
N(0,02%), while the transitory component reverts to 0 as p < 1: logz.;, = p,logz,;1. This

means that an economy without disaster in recent past will have log z,; ~ 0.

2.1.2 Disaster occurrence

In this framework, rare disaster is modeled as a combination of a productivity shock and
a “depreciation shock” to the capital stock, that can happen each period with probability p,
and once the economy has entered in a state of disaster, can remain there next period with

probability ¢q. Capital accumulation during disasters follows:

I
Kt+1 = <(1 — 5)Kt + ¢ <t> Kt> €£t+1

K
with the depreciation shock & .4 KN (Mg — %O’?, 052). Since data clearly shows that disasters
occur over several years, then preceding partial recoveries, instead being instantaneous and
permanent as treated by past studies, it is clear that they can be a shock to the permanent
and transitory component of . The permanent productivity is affected by a factor 6, *
N (1o — 302,03):

log zp: = log zp1—1 + pt + &4 + 0;.

Same rules for the transitory shock ¢, S A/ (uw — 302, aé) such that:

log 2,y = p.log 2,41 + ¢y — 0y

These parameters make it possible to describe a U-shape pattern for productivity, which un-
dergoes a short-term shock and then returns with speed described by p, to its long-term impact.
It may also happen that the long-term effects of disasters are positive, this phenomenon may be
due to political and economic reactions to the disaster and can be formalized mathematically
by the normal distribution of the long-term shock.

Another innovative feature of the model is that the probability of entering the disaster state

is time-varying. It is a Markov chain that roughly follows an AR(1) process:

log(pr) = pplog(pi—1) + (1 — pp) log p + €t
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while €7 % A(0, o)

2.1.3 Model summary and assumptions

Given the information introduced above, it is possible to summarize the model as follows:

1, in disaster state
0, without disaster

log 2,1 = log 2,11 + pt + € + 46, (2.2)
log 2.+ = p.log 2,11 + (¢t — Or) e, (2.3)
I
Kt = (1= 0)K+ 0 (50 ) 1) enveen, (2.4)
¢
Pr(zi1 =1 |2, =1) =max(q,p), and Pr(ry =1|2,=0)=p. (2.5)

While in the neoclassical treatment rare disasters are configured by a reduction in TFP
or by capital destruction, this model tries to reconcile both assumptions. Numerous studies,
including that of Kehoe and Prescott (2007) [50], highlight the crucial role of total factor
productivity during more pronounced economic downturns. Although the underlying causes of
TFP fluctuations remain partly poorly understood, large and persistent declines in this variable
can be traced back to ineffective public policies, such as overly burdensome tax regimes or trade
restrictions, or to dysfunctions in the financial system that undermine the efficient allocation
of capital.

In the context of wars or epidemic disasters, the physical destruction of capital is a tangible
consequence. However, in periods of economic depression, it is more appropriate to interpret
this concept in qualitative terms. In these cases, it is not so much a deterioration of phys-
ical capital, but rather a loss of intangible capital, such as relational value with customers
and employees, that may be lost as a result of prolonged crises. Moreover, such events are
frequently accompanied by increasing volatility at the microeconomic level and intense real-
location processes, which may render certain specialized capital assets obsolete or unusable.
Finally, situations of expropriation or nationalization may generate effects similar to capital

destruction, when capital is taken away from its previous users and used inefficiently.

The theoretical framework outlined in the previous section highlights two essential com-
ponents that underpin the model’s dynamics. First, disaster episodes are characterized by
elevated marginal utility of consumption. Second, capital tends to yield low realized returns
when such adverse events occur. These features align well with empirical observations and are
consistent with economic intuition. Within a neoclassical setting, a sharp decline in total fac-
tor productivity serves as the most straightforward mechanism to capture the first effect, while
modeling a shock to capital depreciation effectively accounts for the second. Nevertheless, the
core implications of the model are expected to remain robust even under alternative structural

specification.
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2.1.4 Equilibrium

The model has 3 condition that characterize the equilibrium

Ci+1; =Yy (2.6)

UN(Ct,Nt) I/Ct }/t
_ - =W, = (1 - a)—: 2.7
UC(Ot,Nt) 1 _Nt t ( a)Nt’ ( )
Ey (MyaRE,) = 1. (2.8)

The first equation is the resource constraint, while the second is the standard labor market
condition and the third is the Euler condition with @ M+, is the marginal rate of substitution

of the household, with recursive preferences:

Cm)w (1 - Nm)“w”’ Vi
Ci - N, =

Mt+1 = ﬁ ( =
E, (Vi7)

>

and the return on capital:

E Q' (Iti) Ky - Ky

Kit1

— Jipn
RtIfH = ext+1§t+1¢/ ( I ) (1 0+ ¢ (Kt+1) +a Yii Iy ) '

that follows (Hayashi 1982), adjusted for & [43] [49].

2.1.5 Recursive formulation

The theoretical framework of the model includes five distinct state variables, namely: the
capital stock K, permanent and transitory technological factors z, and z,, respectively, the
disaster probability p, and the disaster occurrence state = € {0,1}. The system is influenced
by three primary stochastic disturbances: the disaster occurrence indicator in the subsequent
period 2’ € {0, 1}, an updated disaster probability p’, and a minor technology shock €. Condi-
tional upon a disaster event x = 1, three additional random factors characterize the magnitude
of the disaster: ¢/, 60", and &'.

Let V(K, zp, zr, p, ) denote the representative household’s value function. Given the ho-
mogeneity embedded in the utility specification, production function, and capital adjustment
cost structure, coupled with the permanent component of productivity z, evolving as a random

walk, the model allows for a simplification of the value function into the following expression:

V(K, Zpy Zry Py ZU) = Zpg<ka Zry Dy ‘T)

where k = £ and the function ¢ satisfies

)
Zp

g(k, 2D, x)lﬂ/} _ ma]%( U(C, N)lfw + ﬁE (e(lf'y)(qus/er/a/)g(k/’ z;,p’, x/)lfy) —

1=
~
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with constraints:
c+i=kzN)

, 0=k +o (1)K

k - 6M+€/+I/9/

In this equation, ¢ = % and 1 = i represent consumption and investment normalized by the
permanent component of technology, and the expectation operator accounts for uncertainty over
future realizations of 2/ ,p/, €, ¢, 8, and £’. Employing this normalization significantly simplifies
the analysis by yielding analytical tractability and facilitating computational implementation.
Specifically, it ensures the stationarity of the normalized capital stock k, and reduces the

dimensionality of the state space, thereby streamlining the numerical evaluation of the model.

2.1.6 Asset Prices

Given the stochastic discount factor M;, 4, it is relatively straightforward to determine asset
prices within this economic framework. However, the empirical interpretation requires addi-
tional considerations, particularly regarding interest rates and equity valuations. Specifically,
the theoretical price of a one-period real risk-free bond is expressed by the conditional ex-
pectation Fy(M;,1). Nevertheless, identifying a real-world counterpart to this asset can be
problematic, given that even sovereign bonds may default under disaster scenarios. Consistent
with Barro’s (2006) framework, this default scenario is modeled by assuming that during a
disaster, sovereign bonds repay only a fraction r < 1 of their nominal value.

Therefore, the one-period government bond (or Treasury bill) price becomes:

Qi = Ey [My1 (14 w440 (r — 1))]

The term structure for government bond prices with maturity n is subsequently derived through

the following standard recursive relationship:

Qn,t =k [Mt+1 (1 + $t+1(7" - 1)) Qn—l,t—H] , with Qo,t =1

implicitly assuming that disasters proportionally impact bonds across all maturities equally.
Shifting attention to equity valuation, consider first the market value of the aggregate capital
stock, denoted by P;. This market valuation must satisfy the standard asset-pricing equation
given by:
Py = Ey [Myy1 (Dig1 + Pry1)]

The term Dy, representing the dividend or net payout distributed by the representative firm,
is defined as the firm’s total output Y; minus labor compensation w;/N; and investment expen-

ditures I;:

D, =Y, —wN, — I

This expression captures the residual cash flow available to equity holders after accounting for
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operational and capital costs. The asset return is then:

(Pit1 + Diya)

R =
t+1 P,

One notable issue of this model is the fact that the volatility of profits in the model equals
the volatility of output: this leads to a difference between the riskiness of cash flows observed
in the data and those implied by the model (volatile and procyclical). The former turn out
to be more risky. This study offers a solution by incorporating leverage in the model: each
period, the firm issues 10-Year bonds in a proportion ( to its capital stock, that default in case
of a disaster with a recovery rate r. < r. The leverage incorporated in the model should be
interpreted not only as financial, but also as operating leverage, in accordance with (Abel 1999),
(Bansal and Yaron 2004), and (Watcher 2013) [[] [7], [73]. Given that the Modigliani and Miller
theorem applies in this framework, leverage affects the model exclusively by altering the payout
structure and consequently influencing the characteristics of equity returns. This implies that
all other conclusions and results derived from the analysis remain robust and unaffected by the

inclusion of leverage [61].

2.1.7 Types of disasters and policy effects

In order to incorporate the objectives of the present study into this framework, specifically to
identify the peculiarities of the impacts of individual disaster types and policy effects, a number
of variables were adapted and transformed in line with the objectives.

First of all, the aggregate probability of disaster is the sum of the probabilities of the

individual types of disaster: wars, financial crises and epidemics:

3
p= th
=1

then the variable ¢, representing the probability of remaining in the disaster state given its
occurrence in the previous period, was adjusted. Specifically, it is the weighted average of the

individual probabilities, weighted on the empirical frequencies of occurrence:

3
q= Z(W i Qi)
i=1

Obviously, the variables that have been manipulated the most to reflect the impacts are the
shocks on the permanent and transient probability components. The shock and volatility values
of the different disaster types were calculated empirically as shown in the next chapter, and
then aggregated using a calibration factor consistent with the theorized U-shape in the model,
to assess impacts and recoveries.

In order to assess the impacts of policies, it was decided to simulate the model for each
of the three types of disaster, then make a valuation considering impacts on quantities, asset

returns and transmission mechanisms of the impacts themselves.
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Chapter 3

Results

3.1 Calibration

3.1.1 Parameter Values

Table 3.1: Parameter Values for the Benchmark Model

Capital share « 0.34 | Mean permanent shock Lo —0.006
Depreciation rate ) 0.02 | Std. dev. permanent shock oy 0.091
Leisure preference v 2.33 | Mean transitory shock I —0.052
Discount factor I3 0.999 | Std. dev. transitory shock o, 0.041
Adjustment cost n 1.5 Persistence of productivity  p, 0.71
Trend growth of TFP W 0.007 | Persistence of disaster state ¢ 0.919
Std. dev. of TFP shock 0.  0.011 | Persistence of log(p) Pp 0.90
Elasticity of substitution 1/t 2 Std. dev. of log(p) fﬁ p 2.80
P
Risk aversion ~ 4.25 | Average prob. of disaster 0.72

Calibration parameters are listed in Table @ and each variable is expressed in quarterly
values.

Capital share, Depreciation rate, Leisure preference and Discount factor («,d, v, 3) are ex-
tracted from the Real Business Cycle literature, more specifically (Prescott 1986) for a, (Cooley
and Prescott 1995) for §, (King et al. 1988) for § and (Hansen 1985) for v [65] [27] [51] [42].
The TEFP parameters (4 and o.) were derived empirically from the trend rate of total factor
productivity calculated by the Bureau of Labor Statistics in a dataset from January 1947 to
December 2024. Capital adjustment costs are modeled using a standard quadratic specification,

defined as:

o) = — (e —5—p)’

where 7 is calibrated to match the observed volatility in investment dynamics, based on USA
total market capitalization. The coefficient of relative risk aversion, denoted by 7, is set to 4.25
to replicate the empirical mean of the equity premium.

The intertemporal elasticity of substitution (IES) in consumption is fixed at 2. This choice
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is crucial because an IES greater than one is necessary for the model to generate a decline
in investment in response to rising disaster risk, which in turn drives countercyclical variation
in risk premia, an empirical regularity. A lower IES would lead to counterfactual predictions.
It is worth noting that the appropriate magnitude of the IES remains the subject of ongoing
academic debate.

The most delicate part of the calibration was undoubtedly the choice of shock parameters
(mean and standard deviation) for the distributions of the permanent and transitory compo-
nents. The strategy was to build a historical disaster dataset for the OECD nations from the
available data of the Penn World Table and Maddison Project Dabase, with particular reference
to the latest versions (10.01 and 2023) [34], [20]. Using the definition formalized by Barro in
2006, I first subset the GDP per capita from 1900 to 2024 for the 38 nations of the organi-
zation; then I identified for each state the episodes with a drop greater than 15% multi-year
and yearly, accurately verifying the cause in order to categorize the occurrences of disasters
and 3 macro-categories (Wars, Epidemics and Financial Crises). With these criteria, it was
decided to construct an additional summary dataset (reported in Table ) identifying the
reference country, the years of the disaster, the total and average annual impact together with
the assigned category

Table 3.2: Rare Disasters Impact Dataset

Country Years Total Impact Duration Annual Impact Category

AUS 1914-1918 -0.1121 5 -0.022420 War
AUS 1927-1931 -0.2371 5 -0.047420 Financial
AUS 1944-1946 -0.1513 3 -0.050433 War
AUT 1913-1919 -0.4121 7 -0.058871 War
AUT 1930-1933 -0.2558 4 -0.063950 Financial
AUT 1945 -0.5845 1 -0.584500 War
BEL 1917-1918 -0.3245 2 -0.162250 War
BEL 1929-1932 -0.1073 4 -0.026825 Financial
BEL 1940-1943 -0.2642 4 -0.066050 War
CAN 1918-1921 -0.3399 4 -0.084975 Epidemic
CAN 1929-1933 -0.4037 5 -0.080740 Financial
CHE 1913-1915 -0.1053 3 -0.035100 War
CHE 1917-1919 -0.1738 3 -0.057933 Epidemic
CHE 1921 -0.1853 1 -0.185300 Financial
CHE 1940-1943 -0.1260 4 -0.031500 War
CHL 1914-1921 -0.1976 8 -0.024700 War
CHL 1930-1932 -0.5851 3 -0.195033 Financial
CHL 1947-1949 -0.0171 3 -0.005700 War
CHL 1972-1975 -0.2505 4 -0.062625 War
CHL 1982-1983 -0.1932 2 -0.096600 Financial

Continuation in the next page
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Table 3.2 — Continuation of previous page

Country Years Total Impact Duration Annual Impact Category
CHL 2019-2020 -0.0897 2 -0.044850 Epidemic
COL 2020 -0.0902 1 -0.090200 Epidemic
CZE 1991 -0.1025 1 -0.102500 Financial
DEU 1914-1915 -0.2138 2 -0.106900 War
DEU 1919 -0.1331 1 -0.133100 War
DEU 1923 -0.1746 1 -0.174600 Financial
DEU 1929-1932 -0.1889 4 -0.047225 Financial
DEU 1945-1946 -0.7669 2 -0.383450 War
DNK 1915-1921 -0.0563 7 -0.008043 War
DNK 1940-1941 -0.2523 2 -0.126150 War

ESP 1930-1931 -0.0948 2 -0.047400 Financial
ESP 1936-1938 -0.3286 3 -0.109533 War

ESP 2020 -0.1179 1 -0.117900 Epidemic
EST 1990-1994 -0.4182 5 -0.083640 War
EST 2008-2009 -0.2261 2 -0.113050 Financial
EST 2020 -0.0086 1 -0.008600 Epidemic
FIN 1914-1918 -0.4040 5 -0.080800 War

FIN 1939-1940 -0.1056 2 -0.052800 War

FIN 1990-1993 -0.1176 4 -0.029400 Financial
FRA 1917-1918 -0.3355 2 -0.167750 War
FRA 1930-1932 -0.1685 3 -0.056167 Financial
FRA 1940-1944 -0.6308 5 -0.126160 War
FRA 2020 -0.0811 1 -0.081100 Epidemic
GBR 1917-1921 -0.2364 5 -0.047280 Epidemic
GBR 1944-1947 -0.1559 4 -0.038975 War
GBR 2020 -0.1141 1 -0.114100 Epidemic
GRC 1900-1901 -0.1489 2 -0.074450 Financial
GRC 1912-1913 -0.4313 2 -0.215650 War
GRC 1915-1917 -0.5159 3 -0.171967 War
GRC 1919 -0.1088 1 -0.108800 War
GRC 1938-1945 -0.9978 8 -0.124725 War
GRC 2009-2013 -0.2501 5 -0.050020 Financial
GRC 2020 -0.0881 1 -0.088100 Epidemic
HUN 1920 -0.1854 1 -0.185400 War
HUN 1930-1932 -0.1192 3 -0.039733 Financial
HUN 1946 -0.3726 1 -0.372600 War
HUN 1989-1992 -0.1945 4 -0.048625 Financial
IRL 2008-2009 -0.0969 2 -0.048450 Financial
ISL 1914-1918 -0.2417 5 -0.048340 War

Continuation in the next page
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Table 3.2 — Continuation of previous page

Country Years Total Impact Duration Annual Impact Category
ISL 1920 -0.1520 1 -0.152000 Epidemic
ISL 1948-1951 -0.1303 4 -0.032575 War

ISL 2008-2010 -0.1214 3 -0.040467 Financial
ISL 2019-2020 -0.0916 2 -0.045800 Epidemic
ITA 1914-1915 -0.1050 2 -0.052500 War

ITA 1940-1945 -0.5724 6 -0.095400 War

ITA 2020 -0.0853 1 -0.085300 Epidemic
JPN 1930-1931 -0.0943 2 -0.047150 Financial
JPN 1942-1947 -0.5390 6 -0.089833 War
KOR 1938-1939 -0.2028 2 -0.101400 War
KOR 1942-1946 -0.6514 5 -0.130280 War
KOR 1950-1951 -0.1679 2 -0.083950 War
KOR 1998 -0.0680 1 -0.068000 Financial
LTU 1989-1994 -0.5916 6 -0.098600 War
LTU 2009 -0.1387 1 -0.138700 Financial
LUX 1975 -0.0759 1 -0.075900 Financial
LUX 2008-2009 -0.0988 2 -0.049400 Financial
LVA 1991-1993 -0.5486 3 -0.182867 War

LVA 2008-2010 -0.1941 3 -0.064700 Financial
MEX 1910-1913 -0.1104 4 -0.027600 War
MEX 1927-1932 -0.3546 6 -0.059100 Financial
MEX 2019-2020 -0.1070 2 -0.053500 Epidemic
NLD 1914-1918 -0.1811 5 -0.036220 War
NLD 1929-1934 -0.1703 6 -0.028383 Financial
NLD 1940-1944 -0.6496 5 -0.129920 War
NOR 1917-1921 -0.1043 5 -0.020860 Epidemic
NOR 1931 -0.0837 1 -0.083700 Financial
NOR 1940-1944 -0.2055 5 -0.041100 War

NZL 1908-1909 -0.1081 2 -0.054050 Financial
NZL 1912-1918 -0.1102 7 -0.015743 War

NZL 1921-1922 -0.1470 2 -0.073500 Epidemic
NZL 1926-1927 -0.1183 2 -0.059150 Financial
NZL 1930-1932 -0.1883 3 -0.062767 Financial
NZL 1948-1951 -0.0020 4 -0.000500 War

POL 1930-1933 -0.2754 4 -0.068850 Financial
POL 1979-1982 -0.1415 4 -0.035375 Financial
POL 1989-1991 -0.1830 3 -0.061000 Financial
PRT 1928 -0.1081 1 -0.108100 Financial
PRT 1935-1936 -0.1519 2 -0.075950 War

Continuation in the next page
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Table 3.2 — Continuation of previous page

Country Years Total Impact Duration Annual Impact Category
PRT 2020 -0.0840 1 -0.084000 Epidemic
SVK 1990-1992 -0.2430 3 -0.081000 Financial
SVN 1987-1992 -0.3006 6 -0.050100 War
SVN 2009-2013 -0.1263 5 -0.025260 Financial
SWE 1917-1918 -0.1367 2 -0.068350 War
SWE 1940-1941 -0.1048 2 -0.052400 War
TUR 1918 -0.4352 1 -0.435200 War
TUR 1927 -0.0970 1 -0.097000 Financial
TUR 1940-1945 -0.4430 6 -0.073833 War
TUR 2001 -0.0801 1 -0.080100 Financial
USA 1907-1908 -0.1009 2 -0.050450 Financial
USA 1914 -0.1001 1 -0.100100 War
USA 1930-1933 -0.3725 4 -0.093125 Financial
USA 1945-1947 -0.1656 3 -0.055200 War

From this data, it is possible to guess the distribution of rare disasters for the selected pool of
nations, but it should be added that Israel did not have any disasters in the specified time frame.
The two components: a permanent shock 6 and a transitory shock ¢ are calibrated to reproduce the
observed path of real GDP per capita during historical episodes of large contraction with the objective
of constructing an internally consistent aggregate benchmark. Given annual log GDP per capita data
Yyt for country ¢ and year ¢, each disaster is defined as a contiguous set of years {tg,to +1,...,%1}
during which output exhibits a significant and sustained contraction. For each event, we define a

five-year pre-disaster window {t_s,...,t_1} and fit a linear trend:
gl;rend :O("_ﬁt’ te {t*57"'7t71}

where «, S are obtained via regression.
The observed log GDP per capita y; is then decomposed into deviations from this pre-disaster
trend. Let ty and t; be the first and last years of the disaster. The permanent shock 6 is defined as

the long-run deviation of output from its pre-disaster trend at the end of the disaster window:

0; =y, — G
The transitory shock ¢ is inferred as the residual deviation at the onset of the event that is not
captured by the long-run loss:

trend
i =Yt — Gy — 0

This identification ensures that 8 captures the permanent component, while ¢ captures the short-
run overshooting at impact. Both are computed in natural logarithms.

Since the model is solved at quarterly frequency, the shocks must be rescaled accordingly. The
raw estimates 6;, ¢; are based on cumulative log deviations over the entire event duration and are

originally expressed on an annual basis. To ensure numerical consistency and comparability with
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existing literature, the raw values are divided by 10 (to convert from percent to log points) and

normalized as follows:

1 0; 1 0;

”9—4'%0}’ 09—2'5“1[10]
_ ¢i:| B {@]
,ud)—E |:10 , O'¢—Std 10

Note that p4 and o4 are not rescaled to quarterly frequency, since in the model the transitory shock
is drawn from a discrete distribution with immediate and temporary effect.

To construct a benchmark distribution for the aggregate disaster risk economy, we define an ”All”
category that reflects the empirical distribution across all disaster events in the dataset. This is not
computed as a weighted average of the type-specific parameters (wars, financial crises, epidemics), but

directly estimated from the entire sample. The resulting moments are:
ppt = —0.0060, o =0.0091

pgt = —0.0523,  oh!' =0.1179

The values for ug’u and UQH are in line with the calibration adopted in Gourio (2012), and ensure

that the aggregate disaster dynamics are consistent with standard macroeconomic implications of large
shocks. Following Gourio (2008), the distribution of ¢ is modeled as a truncated normal distribution
with support on negative values only. This implies that the effective mean and standard deviation

used in the simulations differ from the raw parameters. For instance, for the benchmark calibration

raw

He
mately —0.0523 and a standard deviation of approximately 0.0041 after truncation and normalization

= —0.0523 and o™ = 0.1179, the truncated distribution yields an effective mean of approxi-

of probabilities. For each disaster type k € {Epidemic, Financial, War}, we estimate type-specific pa-
rameters ,ulg, 05, u’(;, O'(IZ using the same procedure. These are then scaled proportionally to preserve the
aggregate benchmark. That is, if the type-specific means are ﬁlg , we apply a common multiplicative
factor A such that:

where 7, denotes the empirical frequency of type k in the dataset. A similar scaling is applied for 05 ,
and for ¢.

This approach ensures internal coherence across scenarios, maintains empirical heterogeneity be-
tween disaster types, and preserves the aggregate behavior necessary to match long-run macroeconomic

dynamics observed in the data and in the benchmark model. The calibrated parameters are shown in

Table B.4.

Table 3.3: Calibrated Parameters of Permanent and Transitory Disaster Shocks

Disaster Type o oy 7% o

Epidemic —0.0030 0.0042 —0.0199 0.0500
Financial —0.0053 0.0063 —0.0441 0.0722
War —0.0075 0.0107 —0.0692 0.1500

All (Aggregate) —0.0060 0.0091 —0.0523 0.1179
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Table 3.4: Pre- and Post-Truncation Parameters of Transitory Disaster Shocks (¢)

Disaster Type Pre-truncation Post-truncation Gap

e o u?f Uf Ap Ao
Epidemic —0.0199 0.0500 —0.0327 0.0203 +0.0128 —0.0297
Financial —0.0441 0.0722 —0.0441 0.0254  0.0000 —0.0468
War —0.0692 0.1500 —0.0635 0.0528 40.0057 —0.0972
All —0.0523 0.1179 —0.0555 0.0415 —0.0032 —0.0764

Table @ reports both the pre-truncation parameters used to generate the discrete grid for ¢, and

the corresponding effective moments after truncation. The discrepancy illustrates how even a sym-
metric grid yields a left-skewed, concentrated distribution due to the removal of positive outcomes.
This step is essential to replicate the behavior of Gourio’s model, where transitory shocks are assumed
to generate only downward deviations in GDP per capita.
In modeling the stochastic structure of rare disasters, two key parameters are the unconditional quar-
terly probability of disaster onset, denoted p, and the probability of remaining in the disaster regime
once it begins, denoted ¢. These parameters govern the timing and duration of disaster shocks in the
DSGE model.

For each disaster type k € {Epidemic, Financial, War}, the parameter pj is estimated as the
empirical frequency of disaster onsets relative to the total number of country-quarters in the sample.
The persistence parameter ¢ is computed from the average observed duration dj, of disaster events of

type k, under the assumption that disaster durations follow a geometric distribution. Specifically:

_dk—l
qr = dr

The unconditional probability of entering a disaster regime of type k, pi, and the conditional
probability of remaining in it, ¢z, are then combined across types using empirical frequencies 7y,
defined as the share of each disaster type in the total number of observed events. The aggregate

parameters are computed as:

pM=>"mope, MM =DM a
k k

Table 3.5: Calibrated Disaster Onset and Persistence Probabilities

Disaster Type 7 (Frequency) Di qr Di * T

Epidemic 0.1518 0.00109 0.875 0.000165
Financial 0.3750 0.00270 0.912 0.001012
War 0.4732 0.00341 0.933 0.001614
All (Aggregate) 1.0000 0.00720  0.919  0.007200

The results of Table @ indicate that, at the aggregate level, the quarterly probability of entering
a disaster is p™' = 0.0072, while the probability of remaining in the disaster state once it occurs

is ¢™' = 0.919, consistent with the benchmark calibration in Gourio (2012) and in the assumptions
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that the disaster probability does not change over time samples. These parameters ensure a realistic
frequency and duration of disaster shocks in the simulated economy, while preserving heterogeneity
across disaster types.

To maintain parsimony in the model, an initial simplifying assumption is made whereby capital
destruction shocks & are equated to permanent productivity shocks 6, i.e., & = 6, . Although a
more general specification allowing capital destruction to depend on both TFP component is concep-
tually plausible, it offers limited additional explanatory power. The qualitative behavior of the model
remains valid, provided there exists a strong correlation between capital destruction and permanent
productivity shocks. Despite the rich dynamic structure introduced by the disaster process and its
associated parameters, the calibration is tightly anchored by a challenging empirical target: the entire
path of consumption dynamics following a disaster event. As illustrated in Figure @, the model
succeeds in reproducing the mean response of consumption, and further, it approximately captures
the cross-sample variance around that average. Additionally, it can be easy to demonstrate that the
model’s predictions extend reasonably to variables beyond consumption. A second pivotal aspect of

the calibration concerns the persistence and volatility of the disaster probability process, as defined in
log(pt) = pplog(p—1) + (1 — pp)logp + &f

While empirical studies such as Berkman, Jacobsen, and Lee (2011) provide evidence of time-
varying disaster risk [[L7], pinning down the parameters governing its dynamics a priori is inherently
difficult. Accordingly, the unconditional standard deviation of disaster probability innovations is
selected to approximately replicate the observed volatility in equity returns. In line with Barro (2006),
the government bond recovery rate r is modeled as being correlated with the magnitude of the disaster
shock. In the event of a default, sovereign debt incurs a loss equal to 20% of the capital destruction,
while corporate debt suffers a 38% loss. The issuance intensity parameter ¢ is calibrated to 0.018,
implying that firms issue new debt each quarter amounting to 1.8% of the market value of their
total assets. This setup yields an average leverage ratio of approximately 50%, which is necessary for
the model to replicate the magnitude of equity market crashes historically observed during disaster
episodes. Although observed financial leverage in the data tends to be closer to 30%, the model adopts
a broader interpretation of leverage. This encompasses not only financial obligations but also implicit
exposure channels, such as the sensitivity of dividends and corporate profits to aggregate shocks,a

perspective supported by empirical findings in Longstaff and Piazzesi (2004) [57].

3.2 Disaster realization with aggregate model

Figure @ compares the model-implied path of consumption (blue line) following a disaster shock
to empirical data estimates (red line), using cumulative impact relative to baseline as the metric of
interest. The horizontal axis reports years since the occurrence of the disaster, while the vertical axis
measures the cumulative deviation in consumption.

The model accurately captures the key empirical feature of disasters: a sharp and immediate
decline in consumption. Specifically, the model predicts an initial contraction of approximately 15%
in cumulative terms, closely aligned with the data. The trough occurs around year 5, after which

consumption begins a slow recovery. This dynamic mirrors the empirical trajectory, both qualitatively
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Figure 3.1: Impulse Response Function of Consumption to a Disaster Realization: Model versus
Data

and quantitatively.

While the model slightly underpredicts the recovery speed, particularly between years 5 and 15,
the overall path is well aligned with the observed data, especially in the long-run convergence to a
persistent but attenuated consumption loss. Notably, the long-run cumulative loss remains around
15-16%, consistent with historical post-disaster trajectories.

This strong fit is particularly noteworthy given that the model was calibrated using a limited set of
moments. The match supports the specification of rare disasters with persistent effects on capital and
productivity as a plausible explanation for observed macroeconomic dynamics. Moreover, it validates
the assumptions regarding the intertemporal elasticity of substitution and the calibration of disaster
risk processes, which jointly drive the propagation mechanism of consumption shocks in the model.

Figure @ displays the model’s quantitative dynamics in response to a realized disaster shock. The
top panel ("Quantities”) illustrates the percentage deviations from the balanced growth path ()
for five key variables: investment ¢, output y, consumption ¢, hours worked n, and productivity z.
The bottom panel ("Returns”) reports quarterly percentage returns respectively for government bonds
(T-Bills) and equity.

Investment exhibits the sharpest contraction, exceeding 40% on impact, which is consistent with
the empirical observation that investment is the most volatile macroeconomic aggregate during crises

as discovered in the work of Bloom (2009) [L8]. This reflects two reinforcing mechanisms:
1. The negative productivity shock, which lowers the marginal product of capital;

2. A significant rise in perceived risk, which increases the required rate of return, thus raising the

effective user cost of capital as in Gourio (2012) and Angeletos (2007) [4].
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Figure 3.2: Response of macroeconomic quantities and asset returns to a typical disaster in the
aggregate model

Output declines by over 30%, driven by simultaneous contractions in labor input and capital us-
age. This mirrors Great Depression-like dynamics, where total factor productivity and capital quality
deteriorated in tandem, leading to a collapse in output (Kehoe and Prescott, 2007). Consumption
falls less sharply than investment (until 25% on impact), which aligns with permanent income logic.
Households smooth consumption over time, absorbing part of the shock by reducing savings and re-
allocating expenditure. The muted decline also reflects lower elasticity of intertemporal substitution
relative to investment’s sensitivity to capital risk. Labor input declines, but the fall is clearly moderate
compared to capital and output, consistent with models where the income effect on labor supply partly
offsets the substitution effect. The observed productivity path follows a U-shaped dynamic, reflect-
ing the model’s dual-shock structure: a persistent negative permanent shock # and a mean-reverting
transitory component ¢, consistent with Barro et al. (2011)’s empirical findings on disaster episodes.
Equity returns experience a dramatic collapse in the period of the disaster, with a drop of approxi-

mately 50%. This reflects the combination of

1. A sharp fall in the expected present value of future dividends due to declining productivity and

capital;
2. A jump in the equity risk premium due to heightened macroeconomic uncertainty.

These results are consistent with documented equity market collapses during historical crises (Barro
and Ursida, 2008) [13].

Notably, a strong positive spike in equity returns occurs around after quarter 10, coinciding with
the end of the disaster episode. This represents the market’s reaction to the abrupt reduction in
disaster risk, driving a revaluation of future cash flows and a compression in risk premia. This
recovery overshoot is also observed empirically following major macro-financial shocks (Gabaix, 2012).
Government bond returns (T-Bill) exhibit a mild decline during the disaster period, reflecting a flight
to safety and increased demand for low-risk assets. The model incorporates partial default during

disasters (as in Barro, 2006), but the relative safety of government bonds persists, yielding modestly
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positive returns. This dynamic is consistent with empirical findings that long-term sovereign debt
often performs well during systemic downturns, even when default risk is non-zero (Krishnamurthy
and Vissing-Jorgensen, 2012) [54]. This disaster path supports Gourio’s central hypothesis: time-
varying disaster risk introduces both first-moment and second-moment effects, depressing investment
and output even in the absence of observed changes in total factor productivity. Importantly, the

model’s ability to replicate:
e Depth and persistence of the recessionary drives;
« Volatility and cyclicality of equity returns

demonstrates that rare disaster risk can generate quantitatively realistic business cycles endogenously
linked to asset prices. Furthermore, the sharp divergence between equity and bond returns reinforces
the empirical regularity of countercyclical risk premia (Lettau and Ludvigson, 2010) [56]. In line with
Gourio (2012), these results suggest that models with recursive preferences and time-varying disaster

probabilities provide a powerful lens to understand macro-financial interactions.

3.3 Temporary increase in Disaster Probability with ag-
gregate model

Figure @ illustrates an important experiment of the study: the impulse response of macroeconomic
aggregates and asset prices to a transitory increase in the perceived probability of a rare disaster. The
three-panel layout separates the evolution of disaster probability (top), the responses of key economic
quantities (middle), and the asset return implications (bottom), all measured relative to the balanced
growth path (BGP).

At time zero, the economy experiences an exogenous surge in the perceived probability of disaster,
jumping from the baseline probability to a peak of 6% per quarter. This increase gradually decays
back to the steady-state level, reflecting a persistent but temporary belief shock governed by a mean-
reverting stochastic process. Such shocks capture real-world episodes of elevated macro-financial
uncertainty (e.g., geopolitical crises or financial instability), where the likelihood of extreme outcomes
is reassessed by agents.

Investment exhibits the most pronounced reaction, declining by over 6% on impact. This contrac-
tion reflects a sharp increase in the effective cost of capital. Firms interpret the heightened disaster
probability as a deterioration in the risk-return profile of physical investment. The forward-looking
nature of firms leads them to curtail capital accumulation, consistent with models of precautionary
behavior under uncertainty. Aggregate output and labor input decline modestly. Output follows
the drop in investment, but the reaction is more muted due to the smoother adjustment of labor.
The reduction in hours worked is driven by a combination of lower expected marginal productivity
and increased household aversion to supplying labor under high-risk scenarios. This response pattern
mirrors empirical findings in uncertainty shock literature Interestingly, consumption rises slightly on
impact. While counterintuitive, this result is theoretically consistent with intertemporal substitution
effects. Faced with increased uncertainty and reduced expected returns to investment, households
optimally reduce precautionary savings and reallocate resources toward present consumption. This

effect is transitory and fades as the risk subsides. A similar short-run rise in consumption in response
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Figure 3.3: Impulse Response Function to a temporary increase in Disaster Probability
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to risk shocks is also observed in models with Epstein-Zin preferences and high intertemporal elas-
ticity of substitution (Bansal and Yaron, 2004). Productivity remains flat, confirming that the shock
is purely informational and does not directly affect the production technology. This is essential to
isolate the role of risk perception in driving macroeconomic dynamics, separate from fundamentals.

Equity prices experience a sharp decline, with quarterly returns plunging by over 20%. This
immediate drop is driven by both a downward revision in expected future dividends (due to lower
investment and output) and a sharp increase in the equity risk premium. The rise in disaster risk
makes equities less attractive relative to safe assets. The path of equity returns gradually recovers
in line with the decaying risk perception. These dynamics are consistent with the empirical behavior
of stock markets during risk-off episodes, such as during the Global Financial Crisis or pandemic
onset (Barro and Ursua, 2008; Gabaix, 2012). Returns on short-term government bonds (T-Bills)
decline mildly and temporarily. The increased demand for safe assets under elevated risk compresses
yields, producing modest capital gains on existing bonds. This response is typical of “flight-to-safety”
dynamics, wherein investors reallocate portfolios toward assets perceived as default-resilient. The
partial government bond default mechanism built into the model moderates this effect but does not
fully eliminate it, in line with real-world evidence that even sovereign debt retains relative safety
during crises.

This simulation confirms a key result emphasized in Gourio (2012): an increase in disaster risk,
even in the absence of any realized fundamental shock, can generate recession-like dynamics through
endogenous changes in behavior. The contraction in investment and output, coupled with the sharp re-
pricing of equity, illustrates how agents internalize higher risk into their intertemporal and intersectoral
choices. Notably, these dynamics arise without any change in observed productivity or technology,
demonstrating that changes in expectations about tail risk are sufficient to drive both real and financial
fluctuations. This has important implications for understanding business cycles as episodes of belief-
driven volatility, consistent with the growing literature on uncertainty shocks and rare disasters (Basu
and Bundick, 2017) [15]. The countercyclical nature of the equity premium and the procyclicality of
T-Bill returns, both endogenously generated by the model, align well with empirical findings (Lettau
and Ludvigson, 2010). Additionally, the temporary but persistent nature of the shock illustrates
how belief shocks can generate medium-run deviations from trend, a feature observed in post-crisis
recoveries.

To conclude, figure @ demonstrates the power of disaster-risk models to explain not only asset
pricing anomalies but also business cycle fluctuations arising from changes in perceived, rather than
realized, macroeconomic risk. The model’s responses are consistent with historical episodes of height-
ened uncertainty and offer a unified framework to interpret both real and financial dynamics under

risk-sensitive preferences and incomplete insurance.

3.4 First and Second Moments of Quantities and Asset

Returns

This section evaluates the model’s performance in replicating key statistical properties of macroeco-

nomic aggregates and asset returns, focusing on their first and second unconditional moments. Tables
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Table 3.6: Business Cycle Statistics for Consumption, Investment, Output, and Employment

oY) o(C) o) o(N) pcy PLY PNY

1 Data

2 No disasters
3 Constant p

4 Benchmark

112 091 236 129 069 061 081
(0.19) (0.22) (0.14) (0.27) (0.10) (0.05) (0.05)
091 053 1.66 027 099 1.00  0.99
(0.04) (0.03) (0.08) (0.01) (0.00) (0.00) (0.01)
091 052 1.70 028 099 1.00  0.99
(0.05) (0.03) (0.09) (0.02) (0.00) (0.00) (0.01)
094 061 227 049 068 091  0.78
(0.05) (0.06) (0.33) (0.11) (0.16) (0.03) (0.05)

Notes: All series are in growth rate. Standard errors in parentheses. Data 1947:1-2023:1V.

Table 3.7: Financial Statistics

E(Ry) E(Ry) E(R.—Ry) o(Rf) o(Ry) o(R.— Ry)

1 Data 0.09 0.10 2.09 0.84 0.82 8.20
(0.05) (0.05) (0.46) (0.05) (0.05) (0.37)

2 No disasters  0.68 0.68 0.07 0.06 0.06 1.11
(0.03) (0.03) (0.07) (0.01) (0.01) (0.07)

3 Constant p 0.12 0.27 1.86 0.06 0.06 0.75
(0.03) (0.03) (0.02) (0.01) (0.01) (0.04)

4 Benchmark 0.35 0.44 1.76 0.80 0.60 6.20
(0.21) (0.16) (0.32) (0.43) (0.32) (1.43)

Notes: Mean and standard deviation of the risk-free, T-bill, and equity excess return.
Standard errors in parentheses. Data 1947:1-2023:1V.
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@ and @ summarize business cycle and financial statistics computed from quarterly U.S. data
(1947:1-2023:1V) and compare them to various versions of the model.

The model successfully captures several stylized facts regarding the volatility and co-movement
of output, consumption, investment, and employment. Empirically, investment is significantly more
volatile than output, with a standard deviation of 2.36 against 1.12 for GDP, while consumption is
relatively smoother at 0.91. The benchmark model replicates this ranking reasonably well, generating
volatilities of 2.27 for investment, 0.94 for output, and 0.61 for consumption, closely matching the em-
pirical ratios. In particular, the model attributes the high volatility of investment to firms’ endogenous
response to fluctuations in disaster risk, an effect absent in standard RBC frameworks. Compared to
the “No disasters” or “Constant pp” specifications, which generate a compressed investment volatil-
ity (1.66 and 1.70, respectively), the full model achieves higher dispersion due to the endogenous
amplification from time-varying risk. Co-movements between macroeconomic variables are also well
replicated. The correlation between consumption and output (0.69 in the data) remains the same in
the model (0.68, reflecting the strong intertemporal smoothing inherent in recursive preferences. The
correlation between employment and output is 0.78 in the benchmark case, closely approximating the
data (0.81), indicating that labor dynamics are effectively mediated by disaster risk-induced changes
in capital accumulation and demand for labor.

Turning to asset pricing implications, the benchmark model improves upon traditional models
in reproducing the mean and volatility of excess returns. In the data, the average excess return on
equity is approximately 2.09% per quarter, with a standard deviation of 8.20%. The benchmark
model generates an equity premium of 1.76%, a close match, though it slightly underpredicts the
volatility (6.20%). This shortfall reflects the well-known challenge of matching asset return volatility
in production economies without invoking high leverage or additional frictions (Jermann, 1998; Boldrin
et. al, 2001) [44], [19].

By contrast, the “No disasters” variant produces negligible equity risk premia (0.07%), confirming
that variation in aggregate risk is critical to account for observed returns. Likewise, the volatility of
risk-free ([€}) returns is well captured: 0.80% in the model. Importantly, the model avoids the excessive
smoothness of interest rates typical in RBC settings by introducing stochastic disaster probabilities
that generate time-varying discount factors and precautionary motives.

These results suggest that incorporating time-varying disaster risk significantly improves the
model’s ability to reconcile real and financial data, especially in terms of matching both average
returns and their dispersion. As in Barro (2006) and Gourio (2012), a small probability of large eco-
nomic losses introduces a convex risk adjustment that raises the equity premium without distorting
average investment or consumption paths too severely. Moreover, the model reproduces a counter-
cyclical equity premium, in line with evidence from Lettau and Ludvigson (2010), where increased
risk aversion in downturns translates into higher required compensation for holding risky assets. The
comovement between macro quantities and expected returns thus emerges endogenously and robustly,
confirming the central role of rare disaster risk in shaping the joint behavior of business cycles and

asset prices.
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Figure 3.4: Cross-Covariogram of (One-Sided Filtered) GDP and Excess Stock Returns in the
Data, RBC and Aggregate Model

3.5 Relations between Asset Prices and Macroeconomic

Quantities

3.5.1 Countercyclicality of Risk Premia

One of the most robust empirical facts in asset pricing is that risk premia exhibit strong counter-
cyclical behavior: expected returns on risky assets tend to increase in recessions and decline during
expansions. This pattern has been dramatically illustrated during recent episodes of financial distress,
in which the yield on corporate bonds and equities rose sharply, while yields on government securities
simultaneously dropped, a manifestation of heightened risk aversion and a flight to safety. Impor-
tantly, this dynamic is not unique to crisis episodes, but appears to be a recurrent feature of U.S.
recessions throughout the postwar period. Standard DSGE models, however, typically fail to replicate
this feature. Their inability to generate endogenous variation in risk premia stems from the absence of
a mechanism that links macroeconomic conditions to the stochastic discount factor in a quantitatively
meaningful way. In models with expected utility and low risk aversion, asset prices move primarily in

response to changes in consumption growth, with little room for time-varying expected returns. To
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formally assess the model’s performance on this front, we compute the covariance between detrended

GDP (7:) and future excess returns on equity, defined as
Cov(fs, Ry x — R,{Jrk) for k=—12,..,+12.

This statistic, reported in Figure @, is chosen because it captures the direction and magnitude of
the interaction between output and expected returns in both model and data. Unlike correlations,
covariances retain the scale of the underlying fluctuations, which is essential for quantifying asset
pricing implications.

In the data (blue line), the covariance is positive for negative values of k, indicating that excess
returns tend to lead GDP. This pattern is commonly interpreted as evidence that financial markets
anticipate future economic conditions, potentially reflecting forward-looking information, time-to-build
frictions, or slow adjustment mechanisms in the real economy. Notably, this lead-lag structure is not
purely a byproduct of risk: even the RBC model without disaster risk (green line) reproduces this
pattern to some extent, as higher returns are associated with positive productivity shocks, which
precede above-trend output.

However, the more informative part of the figure lies in the right half (positive k), where we examine
whether low output today predicts high future excess returns, that is, whether risk premia rise during
downturns. Here, the benchmark model (red line) successfully generates the correct negative covariance
between current output and future expected returns. This reflects the model’s core mechanism: an
increase in perceived disaster risk simultaneously lowers GDP (through reduced investment) and raises
the marginal utility of consumption, thus pushing up the required return on risky assets.

By contrast, the RBC model shows virtually no variation in expected returns, and hence, the
covariance remains close to zero. This limitation extends to most standard DSGE frameworks unless
they incorporate non-standard preferences (e.g., Epstein-Zin utility) or external habit, both of which
attempt to generate countercyclical risk premia through preference-based channels (Bansal and Yaron,
2004; Campbell and Cochrane, 1999) [21].

Importantly, the benchmark model links this mechanism not only to asset prices but also to
investment behavior. When risk premia are elevated, firms face a higher user cost of capital, which
discourages capital accumulation even when the risk-free rate is low. This helps explain the empirical
puzzle of weak investment responses to low interest rates in periods of heightened uncertainty, such
as during the post-2008 recovery. The model thus provides a structural rationale for why expected
returns may rise precisely when economic conditions deteriorate, validating the endogeneity of risk as
a key macro-financial force.

The GDP series used in this exercise is detrended via the one-sided Baxter-King filter (Baxter and
King, 1999) [16], which avoids look-ahead bias and ensures that the measured comovement reflects
contemporaneous expectations rather than future realizations of output. This methodological choice

allows the model to be evaluated on the same empirical footing as the data.

3.5.2 Volatility, VIX and GDP

A growing body of empirical evidence has established a negative causal link between uncertainty
and real economic activity. In a widely cited contribution, Bloom (2009) uses a reduced-form

framework to demonstrate that innovations to the m index, interpreted as shocks to macroeconomic
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Figure 3.5: Impulse Response of GDP to a shock to VIX in a Bivariate VAR, in the Data and
in the Aggregate model
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uncertainty, generate significant and persistent declines in output. The VIX, constructed from S&P
500 index option prices, is often regarded as a high-frequency proxy for expected volatility under the
risk-neutral measure, and is used extensively in both academic and policy applications to monitor

market stress.

In this model-based experiment, we replicate Bloom’s identification strategy by computing the
impulse response of output to a volatility shock, using model-simulated data and a structural VAR
approach. Specifically, we feed a one-standard-deviation increase in the time-varying disaster proba-
bility pp into the model, which acts as the underlying risk state variable, and compute the resulting
output response. This approach is consistent with the theoretical interpretation of the VIX as a
forward-looking measure of perceived tail risk, which in our framework is nearly one-to-one with

changes in pp, as in Gourio (2012).
The impulse response function () is presented in Figure @ In the data (blue line), GDP

declines sharply in the first two quarters following the volatility shock and then gradually recovers,
exhibiting a persistent deviation from trend. This response is broadly in line with prior estimates
obtained using VARs with Cholesky decompositions and four lags (Jurado et al., 2015) [47]. The
initial decline in output reflects precautionary behavior by firms, including reductions in investment
and hiring.

The benchmark model (red line) matches the amplitude of the initial GDP contraction quite closely.
Output falls sharply on impact due to an increase in disaster probability, which raises marginal utility
and suppresses investment. However, the model’s recovery dynamics differ from the data: GDP
returns to trend relatively quickly, as the adjustment is nearly instantaneous. This difference stems
from the model’s frictionless environment, where capital reallocations are not subject to time-to-build
or irreversible investment constraints. Introducing such frictions could likely improve the model’s fit
in this dimension (Arellano et al., 2019) [p].

As expected, the standard RBC model fails to generate any output response to a volatility shock,
as the implied volatility of returns remains effectively constant across time. In this setup, without time-
varying risk or a mechanism linking perceived uncertainty to economic behavior, the model lacks both
a theoretical and quantitative counterpart to the VIX. In terms of measurement, the model-implied

VIX is defined as the conditional volatility of returns under the risk-neutral measure

VIX; = \/Et (M1 RE ) (Et[Mt+1Rt+1]>2
Et[Mi11] Et[Mp41]

For comparison, the physical volatility of returns (@) is defined as

VOL, = /E; [R2,,] — (Ei[Ri1))>

In the benchmark model, both VIX and VOL respond primarily to fluctuations in p. Hence, an
increase in perceived disaster probability translates directly into an increase in market volatility and
a contraction in output.

This experiment illustrates that the model captures the key feature of volatility shocks, namely,
their real effects, while providing a structural microfoundation for movements in VIX. The impulse
response in Figure @ supports the view that the VIX is not merely a reflection of realized volatility,

but a forward-looking indicator of macroeconomic risk, consistent with Pastor and Veronesi (2012)
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Figure 3.6: Cross-Covariogram of Investment and Price to Book Ratio in the Data, RBC and
Aggregate model

[64].

3.5.3 Investment and Asset Prices

One of the enduring challenges in macro-finance is to reconcile the strong empirical link between
investment and stock market valuations with the weak propagation mechanism predicted by standard
neoclassical models. According to the traditional Q-theory of investment (Tobin, 1969; Hayashi,
1982) [@], investment should respond positively to increases in the market value of installed capital.
While this theory correctly predicts the sign of the relationship, the magnitude observed in the data
often implies implausibly large adjustment cost parameters when implemented within standard RBC

frameworks (Cummins et al., 2006) [@]

In this model, however, the introduction of time-varying disaster risk creates a stronger and more

realistic connection between the price of capital and investment, even with modest adjustment frictions.
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Figure @ reports the cross-covariogram:

P .
~; = Cov <it,log (Kt” )) for j =—12,...,+12.

t+j

where 7; is log investment and % is the log price-to-capital ratio, both filtered using a one-sided @
filter to remove trends and avoid look-ahead bias. This statistic captures the dynamic relation between
capital valuation and subsequent investment activity, a central test of Q-theory and of the model’s
ability to capture forward-looking behavior.

In the data (blue line), the covariance is clearly positive and sharply peaked around j = 0,
confirming that investment tends to follow increases in market valuations. This pattern is consistent
with the interpretation that the price-to-capital ratio contains information about expected marginal
returns, and that firms react by adjusting their investment decisions accordingly.

The benchmark model (red line) replicates both the magnitude and the shape of this empirical
relationship remarkably well. The cross-covariogram shows a distinct peak at j = 0, flanked by a
decline at both leads and lags. This pattern arises because disaster risk induces time variation in
expected returns: when risk declines, the valuation of capital rises, leading firms to invest more.
The valuation channel thus acts as an intertemporal signal, aligning model dynamics with observed
investment behavior.

By contrast, the RBC model (green line) fails to produce any substantial comovement. In that set-
ting, asset prices are driven almost exclusively by TFP shocks, which—though they influence output—
have only a muted impact on asset valuations. As a result, the model generates a flat and attenuated
covariance, inconsistent with the strength of the empirical relation.

Notably, while the benchmark model replicates the overall magnitude of link between stock market
and investment, it misses the slight lead of valuations observed in the data. This limitation likely
reflects the absence of frictions such as time-to-build or investment gestation lags, which tend to shift
the response of investment forward in time (Christiano et al., 2005) [25]. Incorporating such frictions
could improve the timing match without altering the underlying mechanism.

Overall, the model demonstrates that risk-based asset valuation can act as an effective transmission
channel to real investment, reinforcing the view that the financial market contains leading information

about firms’ future capital formation decisions.

3.5.4 Additional Asset Pricing Implications

The model offers a coherent explanation for several asset pricing regularities beyond those directly
related to equity returns and macroeconomic quantities. These implications emerge naturally from
the interaction between time-varying disaster risk, consumption smoothing behavior, and the pricing
of long-duration cash flows.

A first result concerns the behavior of the price-dividend (P/D) ratio. In the model, this ratio
(13 with a standard deviation of 0.21) reflects both the expected path of future dividends and the
stochastic discount factor. As disaster risk rises, investors demand higher compensation for bearing
equity risk, leading to a contraction in asset prices relative to current payouts. Consequently, the
model endogenously generates a time-varying P/D ratio that responds to shifts in risk perceptions.

The implied volatility of the log P/D ratio is broadly consistent with empirical evidence, suggesting
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that the model captures both the level and the persistence of valuation fluctuations. This is important

given the empirical finding that the log P/D ratio forecasts long-horizon returns (Cochrane, 2008).

Second, the model aligns with the notion that expected equity returns are predictable using valu-

ation ratios. Formally, excess returns on equities satisfy the regression specification:
b

Ry ik — R{—>t+k =a+p- D, + Etrk

Under rational expectations and a stochastic discount factor sensitive to macroeconomic risk, this
regression delivers a positive slope coefficient, indicating that low P/D ratios are followed by high
expected returns. This reflects the countercyclical nature of risk premia and is consistent with the
model’s dynamics. Moreover, the forecasting power of the P/D ratio applies to both total and excess

returns, a feature supported by empirical asset pricing studies (Lettau and Ludvigson, 2001).

Third, the model offers insight into the pricing of a consumption claim: a hypothetical asset that
pays the representative agent’s aggregate consumption. Because aggregate consumption is smoother
and less volatile than corporate dividends, the associated risk premium is lower. This result aligns
with the findings of Lustig, Van Nieuwerburgh, and Verdelhan (2010), who document that claims to
aggregate consumption trade at high prices precisely because they offer superior hedging properties
relative to equity. In the model, the consumption claim serves as a proxy for the marginal utility-
weighted pricing kernel, which fluctuates with perceived disaster risk, but less violently than the return

on dividends.

Fourth, the model’s treatment of consumption dynamics also helps explain a long-standing asset
pricing puzzle: the low estimated intertemporal elasticity of substitution (IES) in consumption. When
model-simulated data are used to estimate the IES via standard regressions of consumption growth on
the risk-free rate, the coeflicient is biased downward due to the omission of changes in precautionary
saving motives. Specifically, variations in the probability of disaster, which are correlated with interest
rates, affect consumption growth through a channel not captured by the Euler equation under certainty.
This finding is consistent with Hall (1988), who estimates very low IES values in postwar US data. It
suggests that precautionary behavior, induced by rare disaster risk, can rationalize empirical estimates

that seem inconsistent with standard preferences.

A fifth implication pertains to the term structure of interest rates. The model generates a
downward-sloping average yield curve, with a negative term premium on long-term bonds. This
outcome arises because an increase in disaster probability lowers the expected future marginal utility
of consumption, increasing the demand for safe, long-duration assets. Since the model assumes default
risk applies uniformly across maturities, the negative term premium is not driven by differences in
credit risk but rather by the hedging value of long-term bonds. In periods of elevated uncertainty,
these assets serve as a store of value, pushing up their prices and lowering yields. This logic mirrors
the empirical evidence that long-term government bonds hedge macroeconomic risk and offer lower

average returns (Campbell et. al, 2009) [22].

Lastly, the model provides a framework to understand corporate bond spreads, as developed
in Gourio (2013) [37]. The endogenous variation in disaster probability influences both the default
likelihood and the risk premium demanded by investors, generating spreads that respond endogenously
to the macro-financial environment. Although this mechanism is not explicitly quantified in the current

implementation, it highlights the model’s potential to unify explanations of equity, government, and
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corporate bond pricing within a single risk-based structure.

3.6 Differences in impact between the various types of

Rare Disaster

This section will present the key findings of this study: the differences in impact on macroeconomic

variables and asset returns between the 3 types of rare disasters presented above:
1. Wars
2. Financial crises
3. Pandemics

The strategy was to replicate the model presented in the previous chapter, but to simulate it for

each individual type, using specific probabilities and impacts instead of in aggregate form.

3.6.1 Realization impact on Macroeconomic Variables
Consumption Response

The first key dimension to consider is the response of aggregate consumption. As shown in Figure
@, all types of disasters induce a negative shock to consumption on impact, but the magnitude and
persistence of the decline differ substantially across categories.

Wars generate the largest and most persistent contraction in consumption. Following a war-type
disaster, the cumulative decline in consumption exceeds 25% relative to the pre-disaster trend. The
decline deepens steadily over the first five years and only partially recovers thereafter. This pattern is
consistent with the empirical observation that wars cause severe and long-lasting disruptions in both
production capacity and household confidence (Barro and Urstia, 2009).

Financial crises also lead to a significant contraction in consumption (15%), but the impact is
less severe than that of wars. The immediate fall is sharp, reflecting the destruction of wealth and
tightening of credit conditions, but the recovery begins earlier and is more sustained. This is in line
with historical analyses of major financial panics, where although consumption is curtailed significantly,
it tends to rebound faster once liquidity is restored.

Pandemics, by contrast, cause the mildest reduction in consumption (6%). The initial drop is
modest and the subsequent trajectory exhibits a quicker return towards the baseline trend. This likely
reflects the fact that pandemics, while disruptive to labor supply and certain sectors, do not destroy
physical capital and often trigger compensatory fiscal and monetary responses aimed at stabilizing
household incomes (Jorda, Singh, and Taylor, 2022) [46].

The heterogeneity in consumption responses underscores the importance of the nature of the dis-
aster: shocks that directly impair the productive capital stock or financial system have more profound

and persistent effects on household spending patterns.
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Investment Response

Turning to investment, the differences between disaster types are even more pronounced (Figure
@) Investment is highly sensitive to forward-looking expectations and risk perceptions, making it a
critical margin through which disaster shocks propagate.

Following a war, investment experiences the steepest and most persistent decline, falling by more
than 25% relative to trend. The IRF shows a sharp initial collapse, with no meaningful recovery
even after two decades. This severe response reflects both the destruction of existing capital stock
and a dramatic increase in uncertainty about future returns, consistent with the notion that wars
fundamentally reshape economic structures and institutions (Cerra and Saxena, 2008) [24].

In the case of a financial crisis, investment falls sharply on impact (18%), but begins to recover
within a few years. The initial contraction is driven by the tightening of credit and increased cost
of capital, in line with theoretical predictions of financial accelerator models (Bernanke, Gertler,
and Gilchrist, 1998) [36]. The partial recovery suggests that financial systems, while fragile, can be
gradually repaired through policy interventions and market self-correction.

Pandemics generate the smallest disruption to investment. Although there is an initial contraction
reflecting heightened uncertainty and temporary shutdowns, the recovery is faster and more complete.
This outcome is intuitive: since pandemics tend to have temporary effects on labor supply rather than
capital destruction, the expected profitability of investment projects remains more intact compared
to wars or banking collapses.

Thus, investment responses differentiate sharply according to whether the disaster primarily affects

physical capital (wars), financial capital (crises), or labor supply (pandemics).

Employment Response

Employment dynamics also exhibit distinctive patterns following different disasters, as seen in Figure
@. The IRFs suggest that although all types of disasters reduce employment initially, the medium-
term adjustments vary.

After a war, employment first declines sharply (2%) but then rebounds relatively strongly over
the next five to ten years. This recovery likely reflects reconstruction efforts and post-war rebuilding
activities, which historically generate surges in labor demand. Nonetheless, the recovery is incomplete,
indicating long-term scarring effects on the labor market.

Financial crises generate a V-shaped pattern: an initial sharp contraction (1.7%) in employment
followed by a more gradual and partial recovery. Labor markets take time to adjust due to frictions
such as matching inefficiencies and skills mismatches (Diamond, 2011) [30]. The persistence of higher
unemployment rates after financial crises is well-documented in empirical work (Jorda, Schularick,
and Taylor, 2013) [45].

Pandemics have a distinct employment trajectory: while the initial impact on employment is
negative (1/%), the recovery is faster compared to wars and financial crises. However, the rebound
is less pronounced in magnitude, suggesting that although labor demand returns, it does not fully
restore pre-disaster employment levels. This could reflect structural shifts in labor markets induced
by health crises, such as changes in the sectoral composition of demand.

Overall, the employment responses corroborate the view that the transmission of shocks to labor

markets depends crucially on the underlying nature and persistence of the disaster.
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Employment Response to Different Types of Disasters
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Output Response to Different Types of Disasters
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Output Response

Finally, the IRFs for aggregate output (Figure ) synthesize the broader macroeconomic conse-
quences of different disaster types.

Wars induce the deepest and most prolonged contraction in output (26%), consistent with the
destruction of productive capacity, displacement of labor, and erosion of institutional stability. The
cumulative output loss remains large even twenty years after the shock, indicating persistent negative
effects on potential output.

Financial crises generate substantial output losses as well (15%), though the magnitude is smaller
than that of wars. The output gap narrows over time but does not fully close, reflecting the difficulty
in re-establishing financial intermediation and restoring investment. This aligns with empirical find-
ings that financial recessions have longer-lasting output effects than normal business cycle downturns
(Reinhart and Rogoff, 2014) [@]

Pandemics cause the mildest contraction in output (6%). Although the initial dip is visible,
output tends to recover relatively quickly as public health measures are relaxed and normal economic
activities resume. Nonetheless, the fact that output does not immediately return to its pre-disaster
path suggests that pandemics can still have medium-term scarring effects, especially through changes

in productivity and sectoral shifts (Barro, Urstia, and Weng, 2020) [@]
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Figure 3.11: Response of Macroeconomic Quantities and Asset Returns to a war realization

In sum, the model highlights that the long-run macroeconomic impact of disasters depends criti-
cally on their nature: wars cause destruction that is difficult to reverse, financial crises damage inter-
mediation channels and amplify uncertainty, and pandemics primarily disrupt labor and consumption

patterns in a more transitory fashion.

3.6.2 Dynamics and Returns

This chapter systematically analyzes the dynamic macroeconomic and financial consequences trig-
gered by different classes of rare disasters: financial crises, pandemics, and wars. Using the model’s
simulated impulse response functions (IRFs), I study the joint evolution of quantities and returns fol-
lowing the occurrence of each event. This disaggregated approach allows for a detailed understanding
of the specific mechanisms through which each type of disaster propagates through the economy. Each

subsection focuses separately on the macro-financial adjustments induced by a given disaster type.

Wars

Wars are modeled as catastrophic events that simultaneously destroy physical capital, impair labor
supply, and elevate economic uncertainty. Figure presents the impulse responses to a war shock.
The macroeconomic consequences of wars are the most severe among the disaster types considered.

Investment collapses by more than 30% from trend within the first few quarters, highlighting the
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Figure 3.12: Response of Macroeconomic Quantities and Asset Returns to a financial crisis
realization

destruction of productive assets and the adverse expectations about future profitability. Output and
consumption experience similarly deep contractions, with output falling close to 25% relative to its
pre-disaster trajectory. These results are consistent with historical accounts of wartime economies,
where mobilization efforts, destruction of infrastructure, and resource misallocation lead to large drops

in aggregate activity (Barro and Ursta, 2009).

Employment initially declines but eventually rebounds sharply as reconstruction efforts commence.

The labor market overshoots temporarily, consistent with post-war booms in rebuilding efforts.

From a financial perspective, equity returns undergo a massive negative swing at the onset of the
disaster, followed by a dramatic rebound several quarters later. This V-shaped pattern is consistent
with extreme repricing of risk at the beginning of the conflict, and the gradual reassessment of growth

prospects once uncertainty diminishes (Gourio, 2012).

T-bill returns remain relatively flat, although a slight increase is observed as demand for safe assets

rises. However, the dislocation is less pronounced than in the equity market.

Overall, wars exert the deepest and longest, lasting negative effects on macroeconomic aggregates
and create extreme volatility in asset prices, reaffirming their status as the most destructive type of

disaster in the model.
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Financial Crisis

Financial crises are characterized in the model by an abrupt destruction of financial wealth and an
increase in borrowing costs. The top panel of Figure illustrates the behavior of key macroeconomic
quantities following the realization of a financial crisis shock.

Aggregate investment (i), output (y), and consumption (c) all contract sharply on impact, with
investment being the most sensitive component. Investment declines by approximately 20% relative to
the balanced growth path within a few quarters, reflecting the dramatic deterioration in firms’ access
to external finance. This pattern is consistent with empirical evidence from post-crisis periods, where
deleveraging and credit rationing severely dampen capital expenditures (Dell’Ariccia, Detragiache,
and Rajan, 2008) [29].

Consumption and output also experience significant but less dramatic declines. The contraction
in consumption mirrors the destruction of household wealth and precautionary saving behavior in
response to elevated uncertainty (Mian and Sufi, 2014) [60]. Output declines as aggregate demand
falls and production adjusts accordingly.

Interestingly, employment (n) displays a more muted reaction relative to investment, suggesting
that financial crises disproportionately affect capital-intensive sectors.

The bottom panel depicts returns: equity returns exhibit a sharp negative spike at the crisis onset,
followed by a substantial positive rebound after several quarters. The T-bill rate remains relatively
stable, reflecting a flight-to-safety phenomenon where short-term government securities are in high
demand (Krishnamurthy and Vissing-Jorgensen, 2012).

Overall, the model captures the key stylized facts associated with financial crises: a deep and
persistent contraction in investment and output, a substantial increase in risk premia, and a temporary

dislocation in asset markets.

Pandemics

Pandemics introduce disruptions to labor supply and consumer confidence, but do not involve direct
destruction of capital or financial infrastructure. The dynamics following a pandemic shock are plotted
in Figure .

Compared to financial crises, the macroeconomic impact of pandemics is more moderate. Invest-
ment, output, and consumption decline on impact but to a significantly lesser extent. Investment
shows a mild contraction, reflecting firms’ caution in undertaking new projects amid temporary shut-
downs and health-related uncertainty. However, the speed of recovery is faster: by approximately
15 quarters after the shock, macroeconomic quantities are converging back toward their pre-disaster
trends.

This pattern mirrors historical evidence from past pandemics, such as the 1918 influenza and
COVID-19 episodes, where economic activity, although severely disrupted in the short run, tends to
recover relatively swiftly once public health conditions stabilize (Jorda, Singh, and Taylor, 2022).

Employment dynamics are less favorable compared to consumption and output. The IRF suggests
that after an initial rebound, employment does not fully return to its previous trend, consistent with
the idea that pandemics may induce structural shifts in labor markets, such as increased automation
or reallocation across sectors.

In financial markets, equity returns display a negative jump at the time of the shock, reflecting
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increased uncertainty. However, unlike in financial crises, the magnitude of the shock to returns
is smaller, and the recovery is faster. T-bill returns remain virtually unchanged, suggesting that
pandemic-related risk is less systematically priced into safe assets compared to financial risk.

Thus, the model captures the main features of pandemic recessions: moderate real effects, partial

but incomplete labor market recovery, and relatively swift financial stabilization.

3.6.3 Moments of Quantities and Returns

In this section, I analyze the ability of the model to replicate the first and second moments of
key macroeconomic aggregates and asset returns following different types of disaster events: wars,
financial crises, and pandemics. By separately evaluating the volatility and comovements of output,
consumption, investment, and employment, alongside risk-free rates, equity returns, and excess re-

turns, I assess the degree of realism of the simulated economies under each disaster scenario. Table

Table 3.8: Business Cycle Statistics by Disaster for Output, Consumption, Investment, and
Employment

oY) oC) o) o(N) pcy PLY PN)Y

1 War 0.91 0.53 1.68 0.29 0.98 0.99 0.96
(0.05) (0.03) (0.09) (0.02) (0.01) (0.00) (0.01)
2 Financial Crisis  0.90 0.53 1.67 0.28 0.98 0.99 0.97
(0.04) (0.03) (0.09) (0.02) (0.01) (0.00) (0.01)
3 Pandemic 0.90 0.53 1.66 0.27 0.99 1.00 0.99
(0.05) (0.03) (0.09) (0.01) (0.00) (0.00) (0.01)

Notes: All series are in growth rates. Standard errors in parentheses. Data 1947:1 - 2023:1V.

Table 3.9: Financial Statistics by Disaster: Risk-Free Rate, Equity Return, and Excess Return

E(Rf) E(Rb) E(Re—Rb) U(Rf) O'(Rb) O'(Re—Rb)

1 War 0.51 0.54 0.79 0.41 0.33 3.76
(0.11)  (0.09) (0.18) (0.23) (0.19) (1.07)
2 Financial Crisis  0.64 0.66 0.21 0.14 0.11 1.46
(0.04) (0.04) (0.08) (0.07) (0.04) (0.23)
3 Pandemic 0.67 0.68 0.07 0.06 0.06 1.11

(0.03) (0.03)  (0.08)  (0.01) (0.01)  (0.07)

Notes: Mean and standard deviation of the risk-free rate, equity return, and equity excess
return. Standard errors in parentheses. Data 1947:1 - 2023:1V.

@ summarizes the standard deviations and contemporaneous correlations of output (Y), consump-
tion (C), investment (I), and employment (N) across the three types of disasters. Standard errors are
reported in parentheses.
Across all disaster types, the model captures some key stylized facts of macroeconomic volatility.
First, investment exhibits the highest volatility among all quantities, consistent with empirical
observations that investment is the most procyclical and volatile component of GDP (Greenwood,

Hercowitz, and Krusell, 2000) [39]. Specifically:
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¢ In the case of wars, the standard deviation of investment reaches 1.68, indicating large swings
in capital expenditures, likely due to the destruction of the capital stock and the uncertainty

about future growth prospects;

o Financial crises lead to slightly lower investment volatility (1.67), reflecting disruptions in fi-

nancial intermediation and credit rationing effects;

o Pandemics exhibit the smallest investment volatility (1.66), consistent with the notion that
these events primarily affect labor markets and consumption rather than physical capital accu-

mulation.

Second, output and consumption volatility decrease progressively from wars to pandemics. For
instance, output volatility is 0.91 following wars, 0.90 in financial crises, and 0.90 during pandemics,
while consumption volatility is markedly lower at around 0.53 in all three cases. This reflects the
different nature of shocks: wars and crises induce broader disruptions, while pandemics’ effects are
more contained.

Third, employment displays relatively low volatility compared to other aggregates, particularly
in financial crises and pandemics (0.28 and 0.27, respectively). This muted response is consistent
with empirical evidence that labor markets adjust more sluggishly, due to frictions such as search and
matching constraints (Mortensen and Pissarides, 1994) [62].

Contemporaneous correlations between output and other variables are extremely high in all sce-

narios:

e The correlation between output and consumption exceeds 0.98 across all disaster types;

e The correlation between output and investment approaches 1.00, reflecting the tight comovement

between these two aggregates;

e The correlation between output and employment is above 0.96 in all cases.

These results underscore that despite heterogeneity in volatility levels, the underlying cyclical
comovements of macro variables remain robust across different types of disasters.

The second set of moments concerns asset pricing statistics, described in Table @: the average
and standard deviation of the risk-free rate (Rf), equity return (Rb), and equity excess return (Re-Rb).

The model successfully reproduces some important qualitative features observed in financial mar-
kets during and after disaster events.

First, the mean risk-free rate varies substantially across disaster types:

o After wars, the mean risk-free return is relatively low at 0.51 percent per quarter, reflecting

high precautionary savings and low demand for risky assets (Barro, 2006);
e In financial crises, the risk-free rate rises moderately to 0.64 percent;

e Following pandemics, it increases further to 0.67 percent, suggesting that pandemic shocks,
being perceived as less catastrophic, induce less precautionary saving and therefore higher real

interest rates.
Second, the equity premium (excess return of equities over the risk-free rate) differs dramatically:
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o After wars, the equity premium is exceptionally large at 0.79 percent per quarter, consistent

with the heightened perceived disaster risk priced into equity markets;

o After financial crises, the equity premium shrinks to 0.21 percent, reflecting partial restabiliza-

tion of risk perceptions;

« Following pandemics, the equity premium becomes negligible at 0.07 percent, in line with the

limited increase in macroeconomic uncertainty.

This hierarchy of risk premia echoes empirical evidence that major wars are associated with per-
sistent increases in risk aversion and equity risk premia, while pandemics have more transitory effects
on asset prices (Gourio, 2012; Barro et al., 2020).

Third, regarding return volatilities:

o The standard deviation of the equity excess return is very high after wars (3.76 percent), mod-

erate after financial crises (1.46 percent), and lowest after pandemics (1.11 percent);

« Risk-free rate volatility declines across scenarios, from 0.41 (wars) to 0.06 (pandemics), reflecting

the stabilization of monetary conditions as disaster severity decreases.

Overall, the model captures the fact that larger and more destructive disasters induce greater
financial volatility and higher compensation for risk.
The analysis of first and second moments shows that the model matches many broad stylized facts

about macroeconomic and financial dynamics following disasters. However, some limitations remain.

e Investment volatility is relatively high across all scenarios, potentially overstating the respon-

siveness of firms to rare disaster shocks;

o Risk-free rates appear somewhat elevated in the case of pandemics compared to historical ev-
idence suggesting a more moderate rise in safe asset yields during health crises (Jorda, Singh,
and Taylor, 2022);

e The model abstracts from inflation dynamics and government interventions, which might reduce

some of the observed volatilities in actual data.

Nonetheless, the calibration successfully distinguishes between the macroeconomic and financial
consequences of different disaster types, offering a promising framework to study risk, business cycles,

and asset prices in environments subject to rare but catastrophic shocks.

3.7 Policy Implications of Different Rare Disasters

The empirical analysis of the distinct macroeconomic impacts resulting from rare disasters: wars,
financial crises, and pandemics, offers profound insights for policy formulation. Based on the calibrated
DSGE model presented, we can observe significant heterogeneity across disaster types, necessitating
targeted and nuanced policy interventions to mitigate adverse effects effectively, instead of treating
rare disaster as an aggregate homogeneous phenomenon.

This section will discuss the most effective types of policy for each type of disaster, based on the

empirical results of the model and the theoretical implications of disasters. The various peculiarities
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will then be analyzed, emphasizing the differences in order to justify an ad hoc treatment of impacts

for each type.

3.7.1 Wars: Strengthening Economic Resilience through Structural

Preparedness

Empirical results consistently show that wars entail severe, lasting damages characterized by pro-
nounced physical capital destruction and deep, sustained productivity losses. Specifically, our cali-
brated parameters indicate substantial permanent productivity shocks coupled with elevated volatility
(ng = -0.0075, o9 = 0.0107) and significant transitory disruptions ( pe= -0.0692).

Policy effectiveness in war scenarios hinges critically on preventive and structural strategies rather
than purely responsive macroeconomic stimulus. Effective measures include strategic investment in
robust infrastructure, diversification of critical supply chains, and maintaining adequate physical and
strategic reserves. These policies mitigate capital destruction and enhance long-term recovery. Con-
versely, standard monetary easing and fiscal stimuli demonstrate limited effectiveness due to their

inability to directly address underlying capital and productivity losses.

This view is consistent with the findings of Barro (2009), who emphasizes the outsized welfare
costs of disaster risk and highlights the importance of preventive structural measures in mitigating
long-term damages. Similarly, Gabaix (2012) introduces asset resilience, reinforcing the necessity for

structural robustness to maintain asset values in the face of catastrophic shocks.

3.7.2 Financial Crises: Active Stabilization Policies and Regulatory

Frameworks

Financial crises predominantly manifest through severe liquidity constraints and transient yet sub-
stantial productivity downturns (pg = -0.0053, ps = -0.0441). These results highlight their intrinsically

financial nature, driven by credit crunches, asset price collapses, and confidence shocks.

In such contexts, active macroeconomic stabilization policies prove particularly effective. Our
simulations underline the critical role of liquidity provisions by central banks, financial regulation
enhancement, and targeted fiscal interventions designed to support demand and maintain employ-
ment. Financial market stabilization, bank recapitalization, and prudential regulation significantly
reduce volatility and accelerate economic recovery. Conversely, policies narrowly focused on struc-
tural productivity enhancement without financial stabilization measures fail to achieve immediate
crisis mitigation.

The conclusions align closely with Gourio (2012), who highlights the importance of countercycli-
cal risk premia and liquidity stabilization measures during financial crises. Furthermore, Farhi and
Gabaix (2016) underscore that addressing liquidity and credit disruptions directly enhances the effec-

tiveness of policy measures during financial crises, supporting our recommendation of robust regulatory

frameworks.
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3.7.3 Pandemics: Balancing Immediate Fiscal Support with Public

Health Investments

Pandemics, uniquely characterized by high transitory disruptions but relatively lower permanent
shocks (pg = -0.0030, pgy = -0.0199), require a dual policy approach combining immediate economic
support with substantial public health investments.

The empirical results support aggressive, short-term fiscal measures, including direct transfers
and temporary unemployment subsidies, as highly effective in cushioning immediate economic shocks.
Moreover, significant investment in healthcare infrastructure, early-warning systems, and vaccine de-
velopment yields exceptionally high returns by rapidly restoring consumer and investor confidence.
Standard monetary policy easing alone is insufficient in pandemic scenarios, where recovery is intrin-
sically linked to public health outcomes rather than purely economic confidence.

This recommendation finds support in recent literature by Cantelmo (2022), who emphasizes the
necessity for integrated health and economic policies, demonstrating how robust public health systems
significantly reduce economic disruption. Wachter (2013) also contributes to this argument by showing
how proactive investments and preparedness strategies reduce uncertainty and volatility, thus fostering

quicker recoveries.

3.7.4 Comparative Analysis and Justification of Policy Differentia-
tion

The differential policy effectiveness across these disaster types emerges naturally from their intrin-
sic characteristics captured by our calibrated model. Wars produce extensive and enduring capital
destruction, rendering immediate economic stimuli less effective compared to structural prepared-
ness. Financial crises, however, with their shorter-term liquidity-driven disruptions, respond strongly
to rapid monetary and fiscal interventions aimed at restoring market functioning. Pandemics, due
to their predominantly transitory nature linked directly to health outcomes, necessitate rapid fiscal
support paired with long-term public health infrastructure investments.

The calibrated DSGE framework thus justifies a differentiated policy approach tailored to disaster-
specific characteristics. Policymakers should internalize these differences, focusing on building robust
structural preparedness for war risks, proactive financial market regulations for financial crises, and
comprehensive public health infrastructure and rapid fiscal responses for pandemics.

In conclusion, the explicit acknowledgment and incorporation of disaster-specific dynamics into
macroeconomic models significantly enhance policy effectiveness. Such nuanced understanding is in-
dispensable in fostering economic systems that are not merely resilient but actively antifragile, thriving
through informed anticipation and targeted preparedness. As emphasized by Taleb (2007), economies
must aim not merely at survival but at improvement from disruptions, incorporating antifragility into

their structural and policy frameworks.
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Chapter 4

Robustness and Extensions

4.1 Comovement and Consumption Response

An important robustness consideration concerns the immediate response of macroeconomic aggre-
gates to an increase in disaster risk. In the benchmark model, a rise in the probability of a disaster
results in a contemporaneous decline in investment, output, and employment, while consumption ini-
tially rises. This seemingly counterintuitive outcome stems from the intrinsic equivalence between
shocks to disaster risk and preference shocks affecting the intertemporal Euler equation. As high-
lighted by Barro and King (1984) [[11], when an economy experiences a pure preference shock, the
labor demand schedule remains unchanged, thus precluding a positive instantaneous comovement

between consumption and employment.

In the presence of a pure preference shock, the marginal cost increases, leading to a temporary
rise in the real wage without an immediate contraction in employment. This lack of contemporaneous
comovement between consumption and employment is not unique to the disaster risk framework but
is shared by a broad class of models where preference or risk shocks dominate business cycle dynamics
(Smets and Wouters, 2003; King and Rebelo, 1999 ) [69] [62]. Nevertheless, the model successfully
replicates the medium-run comovement observed in empirical studies: following a rise in disaster risk,

consumption, investment, and output decline persistently and jointly.

To improve the model’s contemporaneous comovement properties, recent extensions have intro-
duced complementarities between consumption and hours worked. Following Hall (2011) [41], prefer-
ences are modified to include a complementarity term between consumption C; and labor supply NV,

resulting in the following preferences:

Ctlfa 1—o prlte Nt1+¢ 1—y =
Vi T XCTN a4 6 (Vi)

The middle term, featuring the interaction between consumption and labor, mechanically forces em-
ployment and consumption to move more synchronously. Various microfoundations can justify this
structure, ranging from household production models (Aguiar and Hurst, 2005) [2] to hand-to-mouth

behavior in heterogeneous agent economies.

Furthermore, to capture countercyclical movements in markups, a reduced form is assumed where

the marginal utility cost parameter x depends inversely on detrended output y, i.e., x = x(y;) with
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X'(y:) < 0 . Consequently, the labor demand condition is modified to:

(1) (Zf%t)a x(z» -

This specification implies that in booms (high y;), markups shrink, wages rise, and labor demand is
relatively higher, reinforcing the procyclicality of employment and consumption.

Incorporating such features would bring the model’s short-run predictions closer to empirical ev-
idence, particularly during large economic shocks. Additionally, financial frictions (Kiyotaki and
Moore, 1997) [b3] and nominal rigidities (Christiano, et al., 2005) [25]could further amplify and syn-
chronize the response of macroeconomic aggregates.

Finally, the nature of the disaster: war, financial crisis, or pandemic, affects the extent and
dynamics of comovement. Wars typically involve physical destruction of capital and dislocation of
labor markets, while pandemics predominantly impact labor supply and consumer behavior, possibly
yielding different short-run comovement structures (Kalemi et al., 2020) [48]. Introducing active
policy responses, such as fiscal stimulus or monetary accommodation, would mitigate the negative
co-movements and could even generate positive contemporaneous responses, depending on the design

and timing of interventions.

4.2 Modeling Disasters

Another critical dimension of robustness relates to the specification of disasters themselves. In
the benchmark model, disasters entail simultaneous shocks to both the permanent and transitory
components of productivity, as well as to the capital stock. This structure is informed by empirical
studies (Nakamura et. al, 2013)[63] showing that major disasters tend to depress both the productive
capacity and the efficient allocation of resources over both short and long horizons.

Alternative specifications are feasible and carry important implications for macroeconomic and
financial outcomes. Modeling disasters as pure permanent shocks to productivity, in the spirit of Barro
(2006), would emphasize long-term output losses and lower rates of capital accumulation. Conversely,
representing disasters purely as capital destruction events (e.g., due to wars or natural disasters) would
focus attention on immediate reductions in the capital stock, with potentially faster recoveries as new
investment rebuilds lost infrastructure (Cerra and Saxena, 2008).

The specific nature of the disaster affects both the amplitude and the persistence of macroeconomic

and asset price responses. In particular:

o Wars, with substantial capital destruction and labor dislocation, would generate deep and pro-

longed recessions, elevated risk premia, and sharp declines in asset valuations;

e Financial crises, primarily impairing financial intermediation, would generate large investment
contractions but potentially milder long-run productivity effects, depending on the severity of

credit frictions;

e Pandemics, affecting labor supply and consumption patterns, might produce shallower output

drops but more sectorally heterogeneous impacts, with less pronounced capital stock destruction.

Moreover, the inclusion of explicit policy reactions—such as monetary easing, fiscal stimulus,

or government guarantees, would considerably alter the model’s predictions. For instance, if fiscal
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authorities implement countercyclical spending programs in response to pandemics, the consumption
decline could be much smaller, and risk premia might not rise as sharply. In contrast, in the absence
of effective interventions during financial crises, the amplification mechanisms could lead to deeper
and more persistent recessions (Reinhart and Rogoff, 2009) [67].

Finally, it is worth noting that disaster specifications assuming endogenous responses: for exam-
ple, where agents adjust their behavior based on perceived changes in disaster risk (e.g., increasing
precautionary savings or repricing assets more aggressively), could further magnify the feedback loops
between disaster shocks and macro-financial outcomes (Gabaix, 2012).

In conclusion, while the baseline model’s disaster structure is sufficiently rich to capture key empir-
ical patterns, exploring alternative specifications and integrating policy responses would broaden the
model’s applicability and shed light on important asymmetries across different types of rare economic

disasters.

4.3 Sensitivity Analysis

This section evaluates the robustness of the model by exploring how variations in key structural
parameters influence the business cycle moments and asset pricing implications. Tables @ and @
report the sensitivity analysis for a range of alternative parameter values, compared to the benchmark

calibration and the empirical data.

Table 4.1: Sensitivity Analysis: Business Cycle Statistics

oY) o(C) o) o(N) pcy PLY PNY

1 Data 1.12 0.91 2.36 1.29 0.69 0.61 0.81
(0.14) (0.23) (0.15) (0.29) (0.10) (0.05) (0.05)
2 Benchmark 0.94 0.61 2.27 0.49 0.67 0.91 0.78

(0.05) (0.06) (0.34) (0.11) (0.16) (0.03) (0.05)
3 Sample with disasters  0.94 0.61 227 049 0.67 091 0.78
(0.05) (0.06) (0.34) (0.11) (0.16) (0.03) (0.05)

41/ =15 091 059 1.93 038 082 093  0.80
(0.05) (0.04) (0.20) (0.06) (0.09) (0.03) (0.06)
5y=1/0=05 091 054 1.76 031 094 098 091
(0.05) (0.03) (0.11) (0.03) (0.04) (0.01) (0.04)
61p=v=2 082 063 132 017 098 097 0.85
(0.04) (0.03) (0.07) (0.02) (0.02) (0.02) (0.08)
7 pp =038 093 060 215 045 072 092  0.79
(0.05) (0.05) (0.25) (0.08) (0.12) (0.03) (0.05)
80,=17 093 058 204 042 078 093 081

(0.05) (0.04) (0.20) (0.06) (0.09) (0.02) (0.04)

Notes: All series are in growth rate. Standard errors in parentheses.

Table EI presents the standard deviations and correlations of key macroeconomic variables. In
the data, GDP, consumption, investment, and employment display standard deviations of 1.12, 0.91,
2.36, and 1.29 percent, respectively, with relatively high correlations between consumption and output

(pc,y = 0.69), investment and output (pry = 0.61), and employment and output (pn,y = 0.81).
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Table 4.2: Sensitivity Analysis: Financial Statistics

E(ry) E(rm—rs) o(rg) o(rm—ry)

1 Data 0.09 2.09 0.84 8.13
(0.05)  (0.46)  (0.05)  (0.38)
2 Benchmark 0.35 1.76 0.80 6.20
(0.21)  (0.32)  (0.43)  (1.43)
3 Sample with disasters  0.35 1.76 0.80 6.20
(0.21)  (0.32)  (0.43)  (1.43)
41/ =15 0.38 1.78 0.82 6.40
(0.22)  (0.31)  (0.42)  (1.46)
5y=1/1=05 0.62 0.29 0.29 2.16
(0.08)  (0.12)  (0.18)  (0.63)
6 =y=2 0.85 0.54 0.36 2.69
(0.11)  (0.15)  (0.22)  (0.80)
7pp=0.8 0.34 1.80 0.96 6.52
(0.18)  (0.25)  (0.39)  (1.50)
80,=17 0.25 1.80 0.65 4.78

(0.19)  (0.25)  (0.25)  (0.80)

Notes: Mean and standard deviation of the risk-free rate and equity excess returns. Standard
errors in parentheses.

The benchmark model reproduces the volatility of output reasonably well (o(Y) = 0.94), al-
though it slightly underestimates the volatility of consumption and employment, and matches closely
the volatility of investment. Correlations are also broadly consistent, albeit somewhat higher than
observed, particularly for p;y and pny.

Varying risk aversion and intertemporal elasticity of substitution parameters reveals predictable
patterns. Lowering the intertemporal elasticity of substitution (1 /@ZAJ = 1.5) slightly reduces output
volatility but maintains strong comovement between quantities. Conversely, increasing risk aversion
(v=1 /ﬁ = 0.5) substantially increases comovement, with correlations exceeding 0.9 for all pairs,
suggesting that heightened risk sensitivity promotes synchronization among macro variables.

In contrast, imposing a high elasticity of intertemporal substitution (@ZA) =~ = 2) results in a no-
ticeable drop in the volatility of all variables, especially employment (o(/N) = 0.17), while maintaining
very high comovement between output and other aggregates. This configuration reflects an economy
with smoother consumption-savings choices and dampened business cycle fluctuations, in line with
standard DSGE insights (Hall, 1988) [40].

Adjusting the persistence of the disaster probability process (p, = 0.8) or increasing the volatility of
disaster risk (o, = 1.7) generates variations that largely preserve the benchmark properties, although
o(I) and o(N) are marginally affected, indicating the limited direct impact of these parameters on
real fluctuations under the model calibration.

Turning to asset pricing implications, Table @ documents how model moments match empirical
regularities. In the data, the mean risk-free rate is 0.09 percent per quarter, while the equity pre-
mium averages 2.09 percent, with corresponding standard deviations of 0.84 percent and 8.13 percent,
respectively.

The benchmark model slightly overpredicts the mean risk-free rate (0.35 percent) but matches
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well the equity premium (1.76 percent) and its volatility (6.20 percent). Sample variations including
disasters do not significantly alter these moments, supporting the robustness of the baseline asset
pricing implications.

Sensitivity to preference parameters shows sharper effects. Lowering 1/ @ to 1.5 has minimal im-
pact, while increasing both 1/3 and v to 2 substantially boosts the mean risk-free rate (0.85 percent) and
reduces the equity premium to 0.54 percent, consistent with intuition: higher willingness to substitute
intertemporally mitigates precautionary savings demand, dampening excess returns (Campbell and
Viceira, 2002).

Interestingly, increasing the volatility of disaster risk (o, = 1.7) sustains a high equity premium
(1.80 percent) despite a lower risk-free rate (0.25 percent), aligning with the mechanism proposed by
rare disaster models (Barro, 2006), where disaster risk shocks drive a wedge between safe and risky
returns.

Overall, the model proves capable of replicating key moments under a range of plausible alterna-
tive calibrations, reinforcing the core mechanism: time-varying disaster risk generates simultaneously

realistic business cycle fluctuations and asset pricing moments.
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Conclusions

Having fully and comprehensively presented the empirical and theoretical results of the present
study, it is possible to outline its conclusions, in which the fundamental contributions of the present
study are stated, along with answers of the research questions, limitations, and insights for further
research.

First, the introduction of a differentiated treatment of disaster risk depending on the type of
disaster by calibrating the DSGE model to empirical data on Wars, Financial Crises, and Pandemics
made it possible to understand differences in the impact and dynamics of disasters on macroeconomic
variables and asset prices. In this way, the heterogeneity that was consequentially found was used to
frame a set of efficient policies to be able to respond most effectively and to mitigate the effects of
each type of disaster.

In addition, the study’s key contribution of incorporating the peculiarities of individual event types
rather than treating rare disaster risk as a single undifferentiated entity, can be seen as a novelty in the
scientific literature related to the reference topic, thus representing a step in the direction suggested
by the limitations of the reference papers, such as Gourio (2012).

Moreover, by aggregating these differences in the benchmark model, it was possible to obtain
results consistent with the empirical data, improving the fit of the model on macroeconomic variables
and consequently on asset prices, while preserving the dynamics of impact of productivity shocks
caused by rare disasters.

The empirical consistency of the relationships between macroeconomic quantities and asset prices
is guaranteed by the fact that risk premiums are endogenously counter-cyclical, influencing investments
in a mechanism almost never incorporated by previous models.

The data shown, together with the results on the second moments of macroeconomic variables and
asset prices, imply that not only the events of disasters, but also the fluctuations in their risk directly
affect business cycles, Confirming the intuitions of previous literature, but improving its specificity
and adherence to the diversity of risks of each type of disaster.

The model construction typology has proved useful to be easily implemented with new assump-
tions and features, as shown in the section on robustness and extensions, this is a key attribute for
incorporating into the future elements that may represent a further step forward in the study of this
type of phenomena. In particular, the opportunity to model different policy equations for each type
of disaster makes the model suitable for quantitatively simulating their effects; the same applies to
private choices. Both are important features in order to make the system better suited to respond to

disaster risk while preserving welfare.

60



Appendix A

Disaster Dynamics

A.1 Disaster dynamics for other calibrations

This section investigates the sensitivity of model implications to alternative assumptions regarding
the specification of disaster dynamics. The goal is to understand how key business cycle statistics
and asset pricing moments change when removing certain components of the benchmark formulation,
specifically: the transitory productivity shock, and the doubling of the initial productivity drop upon
disaster realization. These alternative calibrations are evaluated against the baseline, using the same
parametrization for permanent productivity shocks, ensuring comparability of long-run behavior.

Table @ reports standard deviations and correlations of key macroeconomic aggregates, while
Table @ displays mean returns and volatilities of risk-free and risky assets. The benchmark model
offers a relatively balanced match between data and simulated statistics: it delivers a standard devia-
tion of output of 0.94, with investment volatility at 2.27, and realistic consumption-output correlation
(p = 0.67). Financially, it features a sizable equity premium (1.76%) with reasonable return volatility
(6.20%).

Removing the transitory component of the shock amplifies all real volatilities, with investment be-
coming highly volatile (o(I) = 3.65), but weakens the co-movement between consumption and output
(p = 0.10). This suggests that without the temporary disruption, agents internalize the permanent
shift in fundamentals, leading to a stronger precautionary response that decouples consumption from
the business cycle. Interestingly, the equity premium increases slightly (1.90%) but at the cost of
decreased macro coherence.

On the other hand, the specification without the doubling, which keeps risk aversion constant
over the disaster event, delivers a more muted response in investment (o(I) = 2.79) and preserves
moderate correlation between output and consumption (p = 0.45). The equity premium rises to
2.25%, driven by the absence of countercyclical shifts in marginal utility. However, the model loses
some macro discipline, with consumption volatility too high (¢(C) = 0.70) and inconsistent with
observed consumption smoothing behavior in post-disaster recoveries (Barro, 2009).

Figures @, EI, and @ compare the model-generated and empirical impulse response functions
(IRFs) of consumption after a disaster shock across the three calibrations.

In the benchmark model (Figure @), the consumption response exhibits a sharp initial con-
traction, consistent with disaster realizations, followed by a slow and incomplete recovery over the

subsequent decades. The model tracks the empirical path closely, capturing both the magnitude and
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Table A.1: Alternative Calibrations: Business Cycle Statistics

oY) o(C) o(I) o(N) pcy PLY PNY
1 Data .12 091 2.36 1.29  0.69  0.61 0.81
(0.14) (0.23) (0.15) (0.29) (0.10) (0.05) (0.05)
2 Benchmark 0.94 0.61 2.27 0.49 0.67 0.91 0.78
(0.05) (0.06) (0.34) (0.11) (0.16) (0.03) (0.05)
3 No ¢ Doubling 099 070 279 065 045 0.8 0.75
(0.07) (0.09) (0.55) (0.16) (0.22) (0.03) (0.04)
4 No Transitory Shock  0.99 0.79 3.65 0.87 0.10 0.86 0.76
(0.09) (0.13) (0.83) (0.20) (0.24) (0.02) (0.04)

Notes: Standard deviations and correlations for output, consumption, investment, and
employment under alternative calibrations. All series are in growth rates. Standard errors in

parentheses.
Table A.2: Alternative Calibrations: Financial Statistics
E(Ry;) E(R.—Ry) o(Rp) o(Re—Ry) o(Re) o(R)
1 Data 0.09 2.09 0.84 8.13 - —
(0.05) (0.46) (0.05) (0.38) - -
2 Benchmark 0.35 1.76 0.80 6.20 0.60  0.44
(0.21) (0.32)  (0.43)  (1.43) - -
3 No 9 Doubling 0.40 2.25 0.54 9.01 0.42 0.46
(0.14) (0.22) (0.23) (0.80) - -
4 No Transitory Shock  0.42 1.90 0.49 6.91 0.35 048
(0.12) (0.30) (0.25) (1.61) - -

Notes: Means and standard deviations for risk-free rates, excess returns, and bond returns

across calibrations. Standard errors in parentheses.
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Figure A.1: Response of consumption to a disaster realization, in the data and in the model
without transitory productivity shocks.

the hump-shaped adjustment phase. The consumption decline peaks around —20%, with persistent
deviation from trend, in line with the findings of Nakamura et al. (2013).

Removing the transitory shock (Figure @) introduces a distinct misalignment. The model now
predicts a significantly milder consumption drop (initially positive), followed by a monotonic decline.
This pattern is inconsistent with empirical IRFs, which typically exhibit a quick negative jump re-
flecting precautionary adjustments. The absence of a short-run component prevents the model from
capturing the rapid behavioral shifts seen after historical disasters.

In contrast, the model without doubling (Figure @) exhibits sluggish response dynamics. The
consumption drop is overly smoothed and persistent, failing to replicate the rapid trough seen in the
data. This suggests that constant risk aversion attenuates the precautionary saving motive, flattening
the marginal utility adjustments that are key to explaining high asset returns and swift consumption

drops in response to rare events.
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Figure A.2: Response of consumption to a disaster realization, in the data and in the model
without a twice larger productivity shock on impact.
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Appendix B

Computational Method and Data

B.1 Computational Method

In this section is explained the computational methods that leads to the results of this thesis.
The model is solved using projection methods because of the large state space [6]. Equilibrium is
characterized through the recursive formulation of the two policy functions, consumption ¢(k, p, z, x),

employment N (k, p, z,, z) and the value function g(k, p, z,, x); resulting in three first-order conditions:

(1 _ O[)Z,,l,_a ( k )Oz — UC(k,p, Z’I‘ax) ,
N(kvpazrax) 1_N(kapa Z'raw)
E(M(k,p, 2, 20,0, ¢, )R (k,p, 2, 20, &', 0, 2) ) = 1,

where E indicates an expectation over the five shocks: E,/ o ¢/ ¢ 2, and:

M(k7p> Zr x;pla 5/7 01’ 90/3 .iU/> = B <6M+€'+9'$/>_’Y
(dﬁmﬁéwﬂ)w
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11— N(k‘,,pl’ Z;, .Z'/) v(1-v)
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where k' is derived from the law of motion:

z'6’ . .
r_ N AN A A N ((1—5)k+2(k,p,zr,x))_((1—5)k+z(k,p,zr,x))
k —k(k,p,zr,x,p,s,x,e,go)— 6H+5,+$/0, - €M+€l ’

and

log z;. = log 2, + 2’ (¢’ — ¢'),

with output and investment in the form:

y(k,p, Zr, x) =k (ZTN(k',p, me))l_a )

i(kvpv 2 x) = y(kap’ Zh-r) - C(k?,% ZT,CC),

as well as the law of motion for discrete variables (x and p). Also the 3 functions c(k,p, z, ),

N(k,p, zr,x) and g(k,p, zr,x) is expressed as a tensor product of Chebychev polynomials:

N N,

C(k, p7 27"7 .’L’) == Z Z ai,j,p,xﬂ(k)z—jj(z'f'%

i=1j=1

where T;() denotes the i-th Chebyshev polynomial of the first kind, adjusted to have a domain [k,k]
for k and [1-x,1+x] for z,, with coefficients « j p , that has to be determined. Thus a two-dimensional

Chebycev polynomial can be seen as an approximation of each discrete value of p and x, ¢(.,p, ., ).

The 3 first order conditions are evaluated at the Nodes of Chebychev polinomial for each value of
probability and disaster state in order to find the coefficients for ¢, N and g. This leads to a square

system of 3NN, x 2N, equations, that can be solved using a quasi-Newton algorithm.

In order to deal easily with convergence, the strategy was to start with small values for Ny; N.; Np,
same for risk aversion parameter, and progressively increase these parameters, using as initial guess the
previous solution. This allows to solve the model for at least N, =7, N, = 4 and N, = 7. Expanding
the number of points beyond this does not significally alter the solution, the specific choiche was
N.=5, N, =3 and N, = 6.

Once the policy functions are found, asset prices are readily calculated by the expression of stochas-
tic discount factor and the expectations over all the shocks. More precisely, we can calculate the

investment return using

_ It

K, & (II(t::) K1 Ky

and long-term bond prices are calculated by iterating on the standard recursion (approximating them

as function of states with Chebycev polynomials). Hence the levered equity return can be constructed.

To conclude, VIX is calculated using the formula of the main text; for the sake of simplicity, the
equity return used in this formulation is calculated assuming that firms adjusting their leverage to
keep it constant each period. Approximation accuracy is guaranteed by the very strong correlation

between this equity returns and the benchmark model equity return.
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B.2 Data Sources

The moments of @ and @ are calculated using standard US data sources, for the sample 1947q1
2023q4. Consumption is nondurable plus services, investment is nonresidential fixed investment, and
output is GDP, all from the NIPA Table 1.1.3. Hours is nonfarm business hours from the BLS
productivity program (through FRED: HOABNS). The return data is from Ken French’s webpage:
monthly benchmark factors, aggregated to quarterly frequency, and deflated by the CPI (CPIAUCSL
through FRED)). TFP is computed as output divided by labor to the power 2/3 and capital to the
power 1/3. Capital is from the fixed asset tables, and is linearly interpolated within the year. To be
consistent with Bloom (2009), volatility is derived on the 1963q1-2023q4 sample. Every computation
and plot was programmed in MATLAB
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