ABSTRACT

In the world of financial markets each day bullish and bearish investors determine
with their trading activity in opposite directions the equilibrium price at which a
security is exchanged. This dynamic interaction generally determines a fair market
price under the standard law of supply and demand.

However, the presence of concerted trading activity can significantly distort this
equilibrium, leading traders to experience higher than optimal execution costs.

A practical example of this phenomenon is the case of an institutional
investor executing orders of large volume for a single security. Due to the
substantial size of these trades, the price of the security may exert a direct and
noticeable impact, especially in illiquid markets, where the market impact on the
security price tends to persist over time.

The effectiveness of a trading strategy hinges on its adaptability to competitive
market conditions, particularly distinguishing between liquid and illiquid market
environments. In this context, the need for a tailored order execution strategy for
each scenario becomes essential to reduce market impact.

Therefore, the primary objective of this thesis is to address the problem of optimal
trading strategies under competition, aiming to achieve the most cost-efficient
trading strategy for each market condition.

In the first chapter a mathematical framework developed by mathematician and
hedge fund manager Neil A. Chriss will be presented and analyzed in detail.

The second chapter will delve into standard trading approaches such as moving
averages and the volume weighted average price VWAP, the latter is commonly
used as a benchmark by institutional investors for order execution.

The third chapter, the core of this thesis, will analyze and evaluate for cost
efficiency the optimal trading strategies obtained by the Chriss model and by the
VWAP approach in both liquid and illiquid scenarios.

The VWAP will be performed both by Monte Carlo simulation method and by using
historical data, on daily trading volumes and prices for US equity securities,
obtained from the Bloomberg Terminal.

All the research part, necessary to obtain these results, that are pivotal of this work,
was done using the software R-Studio.

(The coding and programming .R-files can be provided, upon request)
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1. Introduction of the Chriss model

1.1 Preliminaries

Notation: Traders are indicated with capital letters A,B,C.....etc. instead trading

strategies are indicated with lowercase letters a,b,c........ etc.

. da .. . .
a= T the first derivative of the trading strategy w.r.t time

d2a

a= 2z the second derivative of the trading strategy w.r.t time

Definition of a Trading strategy:
A trading strategy x(t) is a C? (continuous and twice differentiable) function of time,
that describes the units of stocks held by a trader at each time t, between the starting

time t = 0 to the end time t = 1.

There are several important types of trading strategies and here is non-exhaustive

list for a strategy x(t):

* Liquidation: Strategies for which x(0) > 0 and x(1) =0, in other words a strategy
that starts with a positive quantity of stock and ends with none.

* Position-building: Strategies for which x(0) = 0 and x(1) > 0.

* Unit: When a trader seeks to acquire a single unit of stock, A = 1.

* A-Scaled: Position-building strategies whose rate of trading is scaled by a

constant A > 1 at each time t € [0,1].
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Figure 1: Example of a trading strategy y(t) = t



Note that scaled trading strategies represent strategies that have the "shape" of unit

position strategies, but which are scaled at each time t by a fixed constant A > 1.

y() = A ?z Ab(t)

This means that for a A-scaled strategy b(t), its trajectory is A - b(t), while its shape
is given by b(t).

Definition of a Trading Trajectory:
A trading trajectory is the path that a trading strategy takes from the starting time
x(0) to the end time x(1). It can be graphed on a two-dimensional space and can

assume different shapes.

There are three basic shapes all of which have constant sign of second derivative:

*  Risk-neutral: Strategies for which X(t) = 0 for all t € [0,1] this represents a
straight line of the form x(t) = x(0) + At. Given the starting condition x(0) =
0, then a risk neutral A-Scaled trading strategy is of the form x(t) = 0 + At for

some A > 0. This can be referred as a passive order execution benchmark.

* Risk-averse: Strategies for which X(t) > 0 for all t € [0,1] this is a convex curve.

For example, the function x(?) = At2passing through the interval t € [0,1]

» FEager: Strategies for which %(t) <0 for all t € [0,1] this is a concave curve.

For example, the function x(?) = AVt passing through the interval t € [0,1]
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Figure 2: A visual representation of the three trading trajectories for risk
preferences. The blue line is a 45° sloped line x(t) = t, with A = 1 it is considered
the risk neutral passive execution benchmark. Both eager (red curve) and risk-
averse (green curve) belong to the family of functions x(t) = t* with 0 < a < land
par for the eager (concave curve); while o > land par for the risk-averse (convex
curve).

*  Bucket: bucket strategies acquire more than their target quantity immediately
after the start time and then sell down to their target quantity as close to the

completion time as possible.

* Barbell: a barbell strategy buys a portion of its target quantity at the very start

of trading and the remaining amount very close to the end of trading.
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Figure 3: Example of bucket and barbell strategies.

1.2 Market impact

In financial markets, asset prices are influenced by the continuous interaction of
market participants placing trading orders. Formally, the trading activity can be

divided into two broad categories:

e Noise Trading: This represents background trading activity by a large number
of participants. It is assumed to occur persistently and randomly, with no net

impact on the price of the asset.



o Concerted Trading: This refers to trading by one or more agents in a deliberate
and directional manner (e.g., continuously buying or selling over a short time

window), which is expected to move the price in the direction of trading.

Building on this clear differentiation between noise trading and concerted trading,
the core challenge faced when implementing an optimal trading strategy in a

competitive setting can be introduced.

Definition of Market impact:

The price deviation directly caused by trading activity that influences
both execution costs and overall market dynamics. This phenomenon arises not
only in illiquid environments but also in highly liquid and competitive markets,
where factors such as trading speed, order size, and informational asymmetries can

significantly amplify its effects.

The main components of the market impact:

Definition of Temporary Market Impact:

It is the immediate price deviation caused by a trader’s execution rate at a given
point in time. It affects the execution price only momentarily and does not
persist beyond the instant of the trade. Therefore, it is only a short run phenomenon,
the asset’s price will revert back to its long run mean equilibrium level.

Economic Interpretation: Temporary impact reflects the premium paid for
immediacy in execution, the liquidity premium.

Without Competition (Trader A only): Let a(t) be the trading rate of trader A at
time t. Then the instantaneous temporary cost is proportional to a(t) and
Temporary Cost for trader A = a?(t)

With Competition (Trader A and Trader B trading concurrently): Let b'(t) be the
trading rate of trader B. Then the instantaneous temporary cost for trader A

becomes: Temporary Cost for trader A = [a(t) + b(t)] a(t)

Definition of Permanent Market Impact:

It is the lasting long run price movement caused by the cumulative trading activity
over time. It reflects the sustained pressure that trading places on the market, and it
persists as long as the position is being built.
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Economic Interpretation: Permanent impact represents the market’s adjustment
to persistent demand or supply changes.

Without Competition: Let a(t) be the cumulative position of trader A at time t.
Then the instantaneous permanent cost is proportional to a(t) and

Permanent Cost for trader A = a(t) a(t)

With Competition: Let b(t) be the cumulative position of trader B. Then the
instantaneous permanent cost for trader A becomes:

Permanent Cost for trader A = [a(t)+ b(t)] a(t)

After defining the precise mathematical expressions for the market impact cost
components, both in competition and in absence of it; it is important to understand
from a practical perspective, what are the main real world scenarios in which market
impact could play a significant role. Two distinct scenarios come to light; yet,
despite their contrasting nature, both are characterized by a pronounced market

impact on the asset’s price driven by trading activity.

Scenario: 1 Institutional Investor Trading

An institutional investor trading alarge quantity of a given asset may
significantly affect its price. This can occur in an illiquid market, such as certain
segments of the blockchain space where large trades may encounter wide bid-ask
spreads and limited volume on the order book. For example, executing a large
position in a lesser-known cryptocurrency can significantly and persistently impact
its price, irrespective of underlying fundamentals.

Alternatively, even within aliquid market, an institutional trader may target
an illiquid asset, such as a thinly traded corporate bond or an equity with low float.
The attempt to exit a large position rapidly as in the case of a dumping can have a
disproportionate and lasting impact on the asset market price, distorting it far from
any fair value benchmark.

In both cases, the concentration of trading activity whether due to market structure
or supply dominance produces both permanent and temporary market impact,

necessitating sophisticated trading strategies to minimize execution costs and

slippage.



Scenario: 2 Coordinated Retail Trading and Behavioral Dynamics

In contrast to institutional dominance, large-scale market impact can also result
from the coordinated actions of numerous small traders. These behaviors are
often studied within the framework of Behavioral Finance, which examines how
psychological and social forces influence trading decisions. Two primary examples

of coordinated retail behavior include:

Flight to Safety: During periods of macroeconomic uncertainty or crisis,
investors collectively abandon risky assets in favor of perceived "safe havens"
such as U.S. Treasury bonds or gold. A clear example occurred in March 2020,
as the outbreak of COVID-19 triggered panic selling in equity markets and a
simultaneous surge in demand for Treasuries. Though no single trader moved
the market, the aggregated reaction of many small players caused significant
asset price shifts.

Sentiment Trading: This occurs when investor behavior is driven by emotion,
crowd psychology, or viral social media narratives rather than fundamental
analysis. A notable case is the GameStop (GME) short squeeze in early 2021.
Coordinated through social platforms like Twitter-WallStreetBets, retail
investors collectively bought shares and call options, driving the price from
under $20 to nearly $500 in a matter of weeks. Causing short-positioned hedge
fund Melvin Capital to lose over $6.8 billion and require a $2.75 billion bailout
credit from Citadel. This episode outstandingly remarks how sentiment driven
coordination can generate extreme market impact, rivaling or even

exceeding that of large institutional trades.

These examples underscore that market impact is not solely a function of single
trade size, but also oftiming, coordination, market structure, and investor
psychology. Understanding in detail both temporary and permanent components of
the market impact is therefore critical when designing optimal trading strategies,
particularly when trading in highly competitive or unstable environments. In such
scenarios, each trader must navigate not only the effects of their own trades but also
the interactive impact caused by the actions of others. The goal is to minimize the
total cost of trading compared to a hypothetical unperturbed price path i.e.,

the price that would have prevailed in the absence of concerted trading.
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1.3 Total cost functions & Sensitivity

Recall the mathematical expressions introduced in section 1.2 for the market impact
components for trader A, competing with trader B we have:

Temporary Cost for trader A = [a(t) + b(t)] a(t)

Permanent Cost for trader A = [a(t)+ b(t)] a(t)

Starting from these expressions, it is finally possible to derive a unique
mathematical expression for the total cost of trading which incorporates both the
temporary and permanent market impact components, under the influence of the

predominant k-regime, in competition.

Instantaneous Total Cost of Trading for trader A in competition with trader B:

ﬂ[am +b(t)] a<t>}+ k\[a(t)+ b(t)] a(t) }

Permanent
component

Temporary
component

With £ called market impact coefficient: £ > 0 always, more details on this key

coefficient will be explained in the next section: 1.4 K-regimes.

The same reasoning holds for trader B, the Instantaneous Total Cost of Trading for
trader B is proportional to:

[a(t) + b(t)] b(t) + k [a(t)+ b(H)] b(t)

Focusing on the temporary market impact component, it is useful to understand the
impact that the trading direction of A and B, sign of first derivatives w.r.t. time

a(t)and b(t) have on the temporary component of the total cost function of A:

A action | B action | A sign | A + B sign | A Impact Sign | A Impact
Abuy | Bbuy |a>0 [a+b>0 | (a+ba>0 | Cost
A sell B sell a<0 |a+b<0 | (a+ba<0 | Profit
A sell Bbuy |[a<0 |a+b>0 | (@+ba>0 | Cost
Abuy | Bsell a>0 |a+b<0 | (a+ba<0 | Profit

Impact of Actions on Sign




Then, the average cost of trading for the trading window that starts at t = 0 and ends
at t = 1, for trader A in competition with trader B, will be the integral of the
instantaneous total cost of trading expression. Assuming both traders use a unit

trading strategy:
1
Average Total cost = f[c'l(t) + b(®©] a(t) + k[a(t) + b(t)] a(t) at
0

If instead trader B uses a A-scaled strategy, having A > 0 then the expression is

modified as in the next expression:

Average Total cost for trader A: Ca

1

Clax; by ;1) = j [d,(t) + A, (O] (D) + Kk [, (1) + Ab,(D)] dy () de

0

The same reasoning holds for trader B, Average Total cost for trader B: Cg
1

C(by; ay; ke; 1) = j [d,(t) + Ab,(D] () + k [@: (D) + Aby(D)] by(t) dt

0

Considering now S as the set of all trading strategies which follow the mathematical

properties described before.
S={a:[0,1] =R | a(0) =0,a(1) =1,d exist} c C {[0,1]}

Now assuming to assign the set S with a probability measure m, then the expected

cost of trading for trader A with respect to the measure m as:

E[C]S]=fbA€SC (ay; by; k; )dm (@)

- fb dm f [dr (D) + Ab,(D)] da(t) + k [an(t) + Ab,(D)] dr(t) dt

)\ES

With: by = @then dm(@) = dm (b))
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And the corresponding variance:

Var[C|S] = E[C2|S] - E[C|S]?

Therefore, since total costs can be modeled as a random variable, it can be useful
to perform a sensitivity analysis on the average total cost expressions. This will give
insights on how structurally total costs reacts to changes in & (market impact) and A

(size)

. , dC(a; b, A\ k)
Sensitivity of trader A total cost of trading for A = — o
. ) dC(a; b, A k)
Sensitivity of trader A total cost of trading for k = —ax
L . dC(b; a, A k)
Sensitivity of trader B total cost of trading for A = —
. , dC(b;a, A k)
Sensitivity of trader B total cost of trading for k = —a
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The following results, summarized on tables 1 and 2, are taken from Neil A. Chriss’

Research Paper titled “Optimal Position-Building Strategies in Competition”

A K Temp Impact | Perm Impact | Total Impact | Total Diff
51 0.1 2.01 0.10 2.10

5 | 0.075 2.00 0.07 2.08 -1.28%

51 05 2.17 0.43 2.61

5 | 0.375 2.10 0.34 2.44 -6.60%

5 1 2.69 0.74 3.43

51 0.75 2.39 0.60 2.99 -12.68%
5 9 14.52 0.28 14.79

5| 3.75 9.97 0.73 10.70 -27.68%
51 25 84.99 -4.99 79.99

5 | 18.75 63.66 -3.71 59.96 -25.05%
5 | 100 340.00 -20.00 320.00

51| 75 255.00 -15.00 240.00 -25.00%

Table 1: Pairs of market impact costs for the linear unit strategy a(t), in two-trader
equilibrium strategies for A = 5 and various « values. Each pair of rows shows the
temporary, permanent and total market impact costs for strategy a(t) that differ only
in a 25% shift in the value of .

A k | Temp Impact | Perm Impact | Total Impact | Total Diff
25 | 0.1 2.22 0.09 2.30

25 | 0.075 2.12 0.07 2.19 -4.96%
25| 05 71.43 0.15 758

25 | 0.375 5.06 0.18 5.24 -30.90%
25 1 23.42 -0.36 23.06

25 | 0.75 14.14 -0.02 14.12 -38.75%
25| 5 388.63 -19.57 369.00

25 | 3.75 248.94 -11.94 236.99 -35.78%
25| 25 2459.70 -130.96 2328.80

25 | 18.75 1841.70 -98.02 1743.70 -25.12%
25 | 100 9841.30 -524.00 9317.30

25| 75 7381.00 -393.00 6988.00 -25.00%

Table 2: Pairs of market impact costs for the linear unit strategy a(t), in two-trader
equilibrium strategies for A = 25 and various x values. Each pair of rows shows the
temporary, permanent and total market impact costs for strategy a(t) that differ only
in a 25% shift in the value of .
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These results lead to several important conclusions. In both tables, as predicted by
theory, an increase in the market impact coefficient & results in higher total costs.
However, the total difference in each groups tends to stabilize to a -25% for large
levels of k. This is a significant empirical finding: it indicates that when market
impact becomes more pronounced (i.e., at high & values), the Chriss optimization
model is able to effectively stabilize average total trading costs arising from market
impact and order size.

In other words, the Chriss model's total cost structure exhibits lower sensitivity
to estimation errors in k£ when operating in a high k-regime. This suggests a
form of robustness in more illiquid markets or in other high market impact

scenarios.

Moreover, when analyzing subsets within the same & level for example for £ =
(0.375,0.5) but with different trade sizes A (i.e., A = 5 in table 1 versus A = 25 in
table 2), the percentage difference in total costs becomes significantly larger for the
higher trading size. Specifically, the cost difference is -30.90% forA = 25,
compared to just -6.60% for A = 5.

This confirms that the model’s sensitivity to errors in the market impact
parameter k increases with order size A. However, this increased sensitivity is
primarily observed in low k-regimes; as previously discussed, the Chriss model

demonstrates greater cost stability and reduced sensitivity under high k-regimes.
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1.4 K-regimes

Introduction

A significant portion of the analysis in this thesis focuses on the structure of the
cost functions introduced earlier and their influence on the form of optimal trading
strategies under competitive conditions. Central to this investigation is the
parameter &, which appears in the Chriss model total trading cost expressions and

governs the relative weight of permanent versus temporary market impact.

The k coefficient encapsulates the proportion of execution cost attributable
to permanent market impact, as opposed to temporary impact.

It emerges as a critical parameter in the optimization framework for trading in
competition. Notably, in the context of optimal execution problems against a
passive risk neutral trader, in other words those without competition, permanent
impact is considered negligible or irrelevant and thus omitted from the optimization
process altogether. A mathematical proof of this assertion will be presented later on

in section 1.5 Passive vs Active optimization.

However, when multiple active traders are simultaneously building positions in the
same asset, the role of permanent market impact becomes not only relevant
but central to strategic decision-making.

In order to understand its influence more clearly, it is useful to introduce the concept
of k-regimes, which classify the market environment based on the dominance
of temporary or permanent impact in the total cost function.

These regimes provide an intuitive and formal lens through which to interpret how

variations in k, shape optimal trading behavior.
Definition of k-regimes

K-regimes describe how the cumulative trading cost is distributed between its

temporary and permanent components:

14



e  When k<1, particularly in the limit where 0 < k£ << 1, the total trading cost
is dominated by the temporary market impact component. In such
settings, traders prioritize minimizing the costs associated with aggressive
execution, the instantaneous price pressure caused by rapid trading. As a
result, optimal strategies tend to resemble a risk-neutral execution paths,
spreading the volume of trades more evenly over the trading window.
and paying less attention to the future price trajectory caused by

accumulated position.

e Conversely, when k£ > 1, and especially when £ >> 1, the cost structure
becomes dominated by permanent market impact. In this regime, the
trader’s concern shifts toward the long-term consequences of their own and
their competitors’ cumulative order flow. Since each additional unit traded
contributes to a persistent long-lasting shift in price, it becomes
strategically advantageous to trade ahead of others, “First mover
advantage” executing larger volumes earlier to avoid adverse price moves
caused by aggregate demand. The resulting trading profiles are
characteristically eager, front-loaded, and exhibit a more pronounced

deviation from the risk-neutral baseline.

This crucial distinction between k-regimes not only completes the Chriss
framework modeling capability for optimal trading execution in competitive
contexts; but also emphasizes how the balance between temporary and
permanent impact fundamentally alters the incentives driving a trader
behavior. The shape and efficiency of a trading strategy are tightly linked to the
prevailing k-regime, and optimizing accordingly can yield substantial cost savings
over naive or benchmark-based approaches, especially under the previously

described scenarios number 1 and 2
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1.5 Passive vs Active optimization

Introduction

In this section the mechanism of the optimization process under the Chriss model
will be presented. Moreover, this section will start with the simple two-trader
equilibrium without competition, then it will arrive at the most complex case which
is the multi-trader equilibrium in competition.

Ther main idea behind the Chriss optimization model is to find the strategy
which minimizes the total cost of trading, driven by both temporary and

permanent market impact components.

Two-trader Chriss model optimization without competition

In this situation two traders A and B are trading without considering the impact that
the other trader’ orders will have on the asset price. Therefore, both traders assume
that the market impact is only caused by their own trading activity and that the
opponent party trading activity is negligible in terms of market impact.

This situation can also be called passive optimization problem, since the optimal
trading solution is obtained against risk neutral trading strategy (unitary A = 1 or A-
scaled A > 1), a passive benchmark.

Moreover, with its trading activity the large institutional investor is expected to
impact the price of the asset mainly through the temporary cost component, in a
liquid market.

Recalling the mathematical expressions for the market impact components, under
no competition, from section 1.2

Permanent Cost for trader A = a(t) a(t)

Temporary Cost for trader A = a?(t)
It will now be proven mathematically that, under the Chriss model

optimization process applied to this passive scenario, the permanent cost

component of the market impact vanishes.
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Statement:

Given the set of all eligible trading strategies, set of possible solutions:

S={a:[0,1] > R|a(0) = 0,a(1) = 1, d exist}

{ ming s of {La} = min {a?(t) + k a(t) a(t) + A o a?(t)}
s.t.a(0)=0and a(1) =1

The Chriss model optimization applied to a passive scenario has as solution a € S,

the trading strategies of the form:

__ sinh(ot) = . _
a(t) = Sinh(o) ' withc =V o

Proof:

Instantaneous total cost of trading for trader A, called also Loss function:
La=a?(t) + ka(t) a(t) + A o2 a?(t)

Where: A 6 a?(t) is accounting for the risk aversion preference, it is a component
depending directly on the volatility of the asset an on the size component A.

From an economical perspective it represents the risk of holding the asset, due to
price movements, during the trading window.

At this point the target of the Chriss optimization model will be to minimize the
loss function Lo with boundary conditions a(0) = 0 and a(1) = 1, which ensure that

trading must occur.

When averaging using the integral expression of the instantaneous total cost of

trading it becomes:

Ming s of ([ Ly} = min ([ a>(®) + ka(t) a(t) + Ao? d2(t) dt}
{ sta(0)=0and a(l)=1
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In order to efficiently solve this, instead of computing directly the integral
expression, it is useful to use a fundamental tool in the calculus of variations for

constrained optimization problems:

The Euler-Lagrange formula:

da dt

dL, d <dLA>
da

Then by computing the necessary derivatives:

dl, ,
E = ka(t) +2Aoc a(t)
dLy, _

E = 2a(t) + ka(t)

d (dL, iy :
7)) = 2400 + ka®

Applying Euler-Lagrange equation:

ka(t) + 21 o%a(t) — [2d(t) + ka(t)] = 0
ke®) + 21 o?a(t) — 2d(t) — ka(®) = 0
)\ c?a(t) —Zd(t) = 0
i(t) —Ac?a(t) =0

The permanent cost component of the market impact has disappeared, proving
that in a passive optimization process under the Chriss model, or equivalently
under no competition, a trader must focus only on the temporary cost

component of the market impact.

d(t) —Ac?a(t) =0
{ s.t.a(0)=0and a(l) =1

18



Optimal trading strategy under Chriss model for a two-trader passive scenario:

inh
a(t) = % : with 6 = VA o'; where: sinh(hyperbolic sin) =

ea(t) _pa(t)

2

Since this optimization problem starts with the assumption of no competition, each
trader thinks that the other trader’s orders will not have an effect on price, therefore
market impact is only due to the temporary component of their own trading activity,

depending highly on the total size A.

In this situation the optimal trading strategy is to deploy a A-scaled risk-averse
trading trajectory which has d(t) > 0 for all t. It is a convex set of solutions

depending on the parameter of risk aversion: volatility o

1.0 1

0.8 4

0.6 1

0.4 4

0.0 1

0.0 0.2 0.4 0.6 0.8 10

Figure 4: A graphical representation of the A-scaled risk-averse trading trajectories
As o (volatility) increases, the trajectories become more convex moving away to
the right of the red dashed line, which is representing the benchmark risk neutral
trading trajectory.
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Two-trader Chriss model optimization with asymmetric competition

In this situation, both trader A and trader B are executing trades on the same stock
within the same trading window, with trader B employing a A-scaled strategy.
However, there exists a competitive asymmetry: trader B is a passive market
participant who can adopt any form of A-scaled trading strategy whether risk-
averse, risk-neutral, or risk-seeking.

Moreover, trader B lacks any information regarding trader A’s execution activity.
Once a specific A-scaled strategy is selected, it remains fixed for the entire trading
window without any adaptive adjustments.

Consequently, B is trading passively with respect to A.

Conversely, trader A is an active participant who, upon acquiring information about
B’s trading activity, adjusts their strategy accordingly by employing a best-response

optimization approach.

From a financial perspective, this scenario mirrors a competitive dynamic between
institutional market participants, where one trader possesses an informational
advantage over the other.

Setting aside the illegal practice of insider trading, a comparable real-world parallel
emerges in the distinction between mutual funds and hedge funds.

Mutual funds and hedge funds differ significantly in terms of the flexibility of their
investment mandates and more broadly, the regulatory frameworks governing their
disclosure requirements, particularly concerning their investment strategies.
Mutual funds, designed to cater to retail investors, are subject to stringent
regulations aimed at protecting this category of investors. On the other hand, hedge
funds are structured for sophisticated investors and, as a result, are permitted to
implement high-return speculative strategies without being legally required to
disclose them publicly.

This discrepancy in mandate flexibility and consequently in the ability to
rapidly adjust investment strategies, can create a competitive advantage for
hedge funds over mutual funds when both entities are competing for the same

asset at the same time.
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The mathematical optimization problem of the Chriss model becomes in this case:

ming.s {[a(t) + Ab®O]a(t) + k [a(t) + Ab(D)] a(t)}
s.t. a(0) =0, b(0) =0, a(1) = 1

Applying the Euler-Lagrange equation:

2d(t) + Ab(t) + katt) + kAb(t) — katf) = 0

A :
a(t) = =5 [5() + kb()]
At this point of the optimization, trader A will use the information advantage and

substitute for b(t), b(t) and h(t) the appropriate expression.

There could be three possible cases:
1. B employs a A-scaled risk averse trading strategy, which has b(t) >0
2. Bemploys a A-scaled risk neutral trading strategy, which has b(t) =0

3. B employs a A-scaled risk seeking trading strategy, which has h(t) < 0

Let’s see the final expressions once all the substitutions are done:

e For case 1 B risk averse, the optimal best response trading strategy of A is:
__sinh(ct) k cosh(ct)
q(t) B sinh(o) o cosh(ot)
A A A
a® = -54@® +{1+5140 - g1}t +5 a©

e For case 2 B risk neutral, the optimal best response trading strategy of A is:

(t) = (1 + Ak) t? + }\kt

“wEETY 4

e For case 2 B risk seeking, the optimal best response trading strategy of A is:

e MleMA—k) —teMA—k +2) + A D[k —A+t(A—k +2)]}
2(e™*—1)

a(t) =

At_
b(t) = = 1_11 A-scaled eager trading strategy of B

e
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It is useful to analyze graphically each case:
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Figure 5: These figures represent the trading trajectories of case 1 in a low k-regime,
k ranging from 0.05 to 0.25, for different increasing levels of A, y =t is the risk
neutral passive benchmark.
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Figure 6: These figures represent the trading trajectories of case 1 in a high -
regime, k ranging from 2 to 10, for different increasing levels of A, y =t is the risk

neutral passive benchmark.
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From both figures clearly the best response trading strategy of trader A, optimized
using the Chriss model, has the trajectory of an eager strategy for which d(t) <0 for
all t, mathematically a(t) it’s always a concave function of time.

From a financial perspective A knows that B is trading using a risk averse trading
strategies and anticipates it. The larger &, the more significant will be the market
impact of both traders’ orders on the asset’s price, therefore the more eager will be
the trading strategy of A, buying large volumes to get ahead of B before the price

of the asset increases too much.

Figure 7: The following figures represent the trading trajectories of case 2. for k
ranging from 0.05 to 25, while keeping A constant. Where trader B is always using
a risk neutral trading strategy, in fact the dashed line representing the passive
benchmark y =t coincides with the trading trajectories b(t).

A=5,k=0.05

08
06
04

Also in this case, trader A best response to trader B is to trade aggressively using
an eager trading trajectory, which is increasingly eager as the scenario enters in a
high k-regime.

Moreover, for both cases:

e B trading using a risk averse trading strategy

¢ B trading using a risk neutral trading strategy
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A best response under the Chriss model for the two-trader optimization with
asymmetric competition can be generalized to deploy always an eager trading

strategy which must be directly proportional to k.

Figure 8: The following figures represent the trading trajectories of case 3, k ranging
from 0.1 to 25 while A ranging from 1 to 25, y =t is the risk neutral passive
benchmark.
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When B uses a b(t) eager trading strategy the best response of A can’t be
generalized as in the previous two cases but rather depends on highly on the single
scenarios simulated. For scenarios in which there is a small market impact
coefficient £ < 1 and where the impact of the eager trader B is low A =1, trader A
optimal trading trajectory is to be risk averse. As A T= b(t) will mainly influence
the instantaneous total cost function, then the best response of A will be to short
sell initially and buy once the price has dropped, toward the ending of the trading
window. When instead A faces an extremely high k-regime, with k> 2.5 ; A < 10,
the optimal strategy is to be more eager than trader B, buying more volume than
necessary and selling it once the price has increased, primarily due to the impact of

k on the instantaneous total cost function.
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As also AT, it counterbalances the effect of an high k-regime and A in some cases,
(when k£ = 1) deploys as best response, a trading strategy which is risk neutral, for

example in scenarios: k=A=10and k=A =25
Two-traders Chriss model optimization under perfect competition

In this situation, both trader A and trader B are executing trades on the same stock
within the same trading window and both traders are actively optimizing their
trading strategies with respect to each other. Trader B uses a A-scaled trading
strategy while A is using a unitary one.

Moreover, there are no information asymmetries among them. In this scenario an
important concept from Game Theory can be introduced, the so called Nash
equilibrium:

Definition of Two traders joint equilibrium (Nash equilibrium)

Let A and B traders with strategies a(t) and b(t).

Let @(t) be the best response to b(t) and b(t) be the best response to a(t).

Then A and B are in equilibrium if and only if:

a(t) = a(t) and b(t) = b(t)

Therefore, the Chriss model must be used to solve a joint optimization problem, to

arrive at the Nash Equilibrium.
min {La and L}
s.t. a(0)=0,b(0)=0,a(1)=1,b(1)=1
which becomes:
{la® + Ab®]a) + k[a®) + AbD] a(D)}
{[at) + Ab(®]Ab®) + k [a(t) + Ab(H)] Ab(b)}
s.t.a(0)=0,b(0)=0,a(1)=1,b(1)=1

min

By applying the Euler-Lagrange equation, it is obtained the following ODE system:

{ a(t) = —%(B(t) + kb(t))

R Y .
b(t) = 5 (a(t) + ka(t))
With boundary conditions: a(0) =0, b(0) =0, a(1)=1,b(1) =1
25



Before deriving the final closed formula equilibrium solutions for the ODE system,

under the Chriss model, it is useful to analyze two extreme cases:

1) Market impact is driven only by the temporary cost component:

ODE becomes:

. __l
b(t)= o\

{d(t) = —% b(t)

By applying the boundary conditions, the following equilibrium optimal solution

are obtained:
a(t)=t
b(t) = t

Therefore, in the absence of the permanent market impact component, both traders
will focus on minimizing total cost of trading at each pint in time. The best way to
achieve this is to spread the trading volume equally across the whole duration of

the trading window.

2) Market impact is driven only by the permanent cost component:

{ La(t) = k[(a(t) + Ab(D)]a(t)
Lg(t) = k[(a(t) + Ab(D]AL(L)

Applying the Euler-Lagrange formula:
{ ka(t) + kAb(t) = 0
kA a(t) + kA2b(t) = 0

Dividing by £ the first equation and by kA the second one, the system reduces to the
single equation:

a(t) + Ab(t) =0
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By integrating both sides of the equation for some integration constant C, it

becomes:

a(t) = —Ab(t) + C

Given the boundary conditions: a(0) =0, b(0) =0, a(1)=1,b(1) =1

substituting for t =0

a(0) = —Ab(0)+C=0=0+C =C=0

substituting for t = 1, knowing the integrating constant C = 0

a(l)=-A()=1=-A1)=>A= -1

which is not possible by construction of the Chriss model, A must always be positive
A > 0! Therefore, the Chriss model optimization process in this case leads to no

solution.

By studying the limit as k — +oo of the original, it is possible to comprehend the

behavior of the Chriss model in extremely high k-regimes.

Figure 9: Representing the optimal trading trajectories for a(t) and b(t), for a joint
optimization problem under high k-regimes. k ranging from 10 to 500, while A is
kept constant at 5.
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In this extreme high k& scenarios, under a perfectly symmetric competition,
trader A deploys a bucket shaped trading strategies while trader B, as best

response to A, uses a barbel shaped trading strategies.
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Intuitively the unit trader A prefers to get ahead of trader B, buying a volume bigger

than the one needed mostly at the beginning of the trading window and then selling

the excessive volume at the end of it. Instead, trader B that can trade for a A-scaled

factor, prefers to partially buy a certain volume of its position at the beginning and

then waiting to the very end of the trading window to cover the remaining volume.

The closed formula expression, solution of the two-traders Chriss model

optimization under perfect competition are the following:

(1 . e-%‘) (—e~/3 (€3 + €23+ 1) A +1) + (A — D)e¥ + (A — 1)e™* + (A — 1)e~t)

2(ex —1)

(1 . e—%) (e"/3 (€3 + €23 +1) A +1) + (A — 1)e¥ + (A —1)e™* + (A — 1)e~t)

2(e"—1)A

Figure 10: Plots of the optimal trading trajectories for the two-traders Chriss model
optimization under perfect competition, k& ranging from 0.05 to 75, while A is kept
constant to 5. y =t is the risk neutral passive benchmark.
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As kT trader A uses an increasingly eager strategy, that at k= 75 resembles a bucket
one. Instead, B starts with a risk neutral strategy for low k-regime scenarios that for
k =1 becomes risk averse, as k continues to increase the risk averse strategy
becomes a barbel shaped trading strategy, spreading the position building activity

at the extremes of the trading window.
Multi-traders Chriss model optimization under perfect competition

If there are n+1 unit traders Aq,......... ,An+1 all trading in perfect competition, the

instantaneous total cost function or loss function for trader A; becomes:
n n
L) = &(® ) 4O +ka® ) 4 ®
j Jj

With the following minimization problem:

min {L;(t)} = min { a;(©) ¥} a; (t) + ka;(£) X} a; (©)}
{ s.t. ai(0)=0,ai(1)=1,a;=a;forall i

Applying the Euler-Lagrange equation:

a;(t) = —%(Z7¢ifij + kY7 a;);a(0)=0,a(1)=1,ai=ajforalli

This is the multi-trader symmetric equilibrium equation. If all n+1 traders will trade
identical optimal strategies in equilibrium by solving this equation simultaneously

for all traders by setting A = n:

AK Ak,
er+z (1—3 m)
a(t) = v
er+z — 1
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By studying the limit as n— +oo it is equivalent to let the size parameter of the

Chriss model A— +oo in that case Ak — k then the limit becomes:

a;(t) =

A+2

k _ pk(1-t)

ek —1

e

Figure 11: Plots of the optimal trading trajectories for the multi-traders Chriss
model optimization under perfect competition, & ranging from 0.05 to 500, for
different levels of A. The red dashed line represents the risk neutral passive

benchmark.
k=0.05 k=025 k=05
x(t, n) x(t, n) x(t, n)
1.0 1.0
08 - A=10 08 - A=10 - A=10
06 — A=50 06 — A=50 ~— A=50
04 — A=250 | | — A=250 — A=250
02 0.2
t t t
00 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08 10
k=1 k=5 k=10
x(t,n) x(t, n) x(t, n)
- A=10 - A=10 = A=10
~— A=50 ~— A=50 ~— A=50
— A =250 — A=250 — A=250
t ! t g t
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
k=50 k=100 k =500
x(t,n) x(t, n) x(t, n)
10 7 1.0 7 1.0 7
08 -~ A=10 08 - A=10 08 — A=10
0.6 ~— A=50 06 ~— A=50 06 ~— A=50
ur — A=250 | [ .7 — A=250 | |%4] .7 — A=250
02 . 0.2 . 02 .’
t t t
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

30




From the plots it can be seen clearly that for low k-regimes, where the temporary
market impact cost component dominates, the optimal trading strategy for trader A;
is to follow a risk neutral trading trajectory. As k increases entering inside an high
k-regime, where the permanent market impact component dominates the temporary
one, the optimal strategy of trader A; is to deploy an eager trading strategy that

increases in a direct proportionality relation with the parameters k£ and A.

However, when comparing the limit case scenario with both high & and A, the shape
of the trading strategy doesn’t resemble the bucket of the limit case seen previously

under the two-traders Chriss model optimization in symmetric competition.

This result is key to understand that treating a two-traders equilibrium scenario with
a large A, for the A-scaled trader (B), as equal to the scenario with multiple unit
traders, thinking that the size parameter will be split among them, is incorrect and
will lead to different optimal trading strategies.

Moreover, trader A; before choosing between a two-traders or a multi-traders
perfect symmetric optimization process, must know if in the market there is

one large adversary or if there are many smaller one.
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1.6 Chriss model with volatility

In this section an extension of the two-traders Chriss model optimization under
perfect competition will be presented. From section 1.3 under the two-trader passive
optimization the instantaneous cost function was modified to account also for the
volatility of the asset ¢. As in that case the volatility represents the risk of holding
the asset, due to price movements, during the trading window.

Therefore, the extended the two-traders Chriss model optimization under perfect

competition will be the following problem:

. {{[d(t) + Ab(®] a(®) + k[a(®) + Ab®)] a(t) + &, 0%a?}
min
{la@® + A®Ab® + k [al®) + Ab(DIAL(D) + &, 0*b?}
s.t. a(0) =0, b(0)=0,a(l)=1,b(1) =1

Where:
& o%a® and & o°b? are the mathematical expressions accounting for the
asset volatility inside the loss function also called instantaneous total cost
function. In particular £ and &, are the trader-specific risk preference

coefficients.

By applying the Euler-Lagrange formula:

{ 2d(t) + Ab(t) + kb — 2¢ c?a(t) = 0

a(t) + 24b(t) + ka — z%ozb(t) =0
Which reduces to the second order ODE system:

{ a(t) = =5 (b(®) + kb(D)) + &, c?a(t)

b(6) = — = (d(®) + ka(D) + 2 ?b(6)

With boundary conditions: a(0) =0, b(0) =0, a(1)=1,b(1) =1
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Figure 12: Plots of the optimal trading trajectories for the two-traders Chriss model
optimization under perfect competition, including risk preferences and c.
k and M are kept constant at 5, ¢ is kept constant at 2 while § , &, are changing.

t t t

§,,=15, =15, 0=2 £,=10, £,=10, 0=2 £,=50, £,=50, 0=2
25; « 25¢ - 25¢
20 20 20
e i > i = i
8 15 < =) (279 < =) (210 < —a()
% 1.0 o 10 ] % 1.0 9
s © — ) 'os/ L — by OS_J B
0.0 0.0 0.0 !
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
t t t
£,=10, §=15, 0=2 £a,=50, £5=15, 0=2 £,200, £,=1.5, 0=2
25 1 1 2.5¢
20 20
2 i 2 i e i
15 = = <= —a) (219 = —a
€10 3 3 €10 3
05 < — b(Y) < — by OSA < — bl
0o 0.0 .
00 02 04 06 08 10 00 02 04 06 08 10
t t t
£4,=1.5, =10, 0=2 §,,=15, =50, =2 £a=1.5, =200, =2
257 ] 257 1 257
20 20 20
= 0 - 0 = 0
515 Lo a(t) |5 15 < —at) [ 15 < — at)
210 g €10 g £10 g
05 © bl | s o bM) | %gs © = b(Y)
0.0 0.0 ' 0.0 !
00 02 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 10

From the first row: { = & trader A and trader B have the same level of risk-
aversion and are increasing from 1.5 to 50, all the other parameters are kept at a
constant level (¢ =2 and k= A =5). Trader A deploys an eager trading strategy until

&, grows too much.

From the second row: & > & , trader A has greater risk aversion than trader B
with & is increasing from 10 to 200 while &, is kept constant at 1.5 all the other

parameters are kept at a constant level (¢ =2 and k= A =5). In this case trader A is

more conservative and as optimal trading strategy deploys a risk-averse trajectory,

as can be seen in the central and last plots (2NP row; 2NP and 3RP columns).

From the third row: & < & , trader B has greater risk aversion than trader A; &, is

increasing from 10 to 200 while & is kept constant at 1.5, all the other parameters
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are kept at a constant level (¢ =2 and k= A = 5) In this case trader B uses a roughly

risk-neutral strategy while A trades a very eager strategy.

The main result is that when including inside the Chriss model the trader
personal risk preferences parameter &; and the asset volatility o , a trader does
not engage in significant overbuying (meaning deploying an eager shaped
trading strategy) unless the opponent party is significantly more risk-averse

than him.
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1.7 Summary of main theoretical results

In this first chapter of this master’s degree in finance thesis, the Chriss model
developed in the research paper titled: Optimal Position-Building Strategies in
Competition by Neil A. Chriss was rigorously presented and extensively analyzed
in each subcase; exploring its results both under a mathematical perspective but also
from a financial one.

An important concept to keep in mind as this work proceeds is the structure of the
instantaneous cost function, which is made by both the temporary and permanent
market impacts components governed by the k-parameter, which tells in what k-
regime the model is optimizing.

The goal of each optimization problem is always the same: minimize the
instantaneous total cost function, at least theoretically. Perhaps, as this work
proceeds, it will be explained as in practice, it is only possible to minimize the
average total cost function (the integral of the instantaneous total cost function,
presented in details in section 1.3). It is not possible to work and compute integrals
with continuous time, time needs to be discretized in very small time steps At.

As At—0, the discrete time steps approach an infinitesimal variation dt, i.e.,

lim At =dt
At—0

However, this does not mean that the theory is unfeasible to use in real life, it just
needs to be approximated using the correct procedure in full compliance with the

theoretical framework of Chriss.

From the Chriss model theoretical model, some “axioms” can be derived, the most

important ones are:

e From the sensitivity analysis carried out in section 1.3 it is clear that the
Chriss model's total cost structure exhibits lower estimation errors for
the parameter kK when operating in a high k-regime. This suggests a
form of robustness of the model when used in more illiquid markets or

in all the other high market impact scenarios, high k-regime.

e In a case in which the temporary market impact component dominates

the permanent one, (if 0 < k <<1) the optimal trading strategy will have
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the shape of a risk neutral trading trajectory. Intuitively a trader wants

to minimize the total cost function that in this case depends only on the

temporary market impact, therefore it must be optimized at each time t

because there is no persistence in the asset price shift.

Then in general, the optimal choice would be to spread the trading volume

as even as possible during the entire trading window.

In a case in which the permanent market impact component is predominant,

(if £ >> 1) the optimal trading strategy will have in general the shape of a

risk seeking eager trading trajectory.

However, for this case some distinction must be made:

a)

b)

In a passive two-traders optimization framework the
permanent market impact disappears (as mathematically proven
at the beginning of section 1.5). Moreover, only the personal
temporary market impact component, which depends directly on
size parameter A, and the personal risk aversion preferences matter

in this scenario.

When the optimization problem is derived for a two-traders
asymmetric competition scenario, the trader which has more
information regarding the opponent party trading strategy, will
always have an advantage when minimizing its total cost
function. In particular: when trader B is trading using a risk neutral
or risk averse strategy, the best response of trader A will be to
deploy an eager strategy directly proportional to k. If instead trader
B uses an eager strategy, trader A best response can’t be generalized

and depends on the specific scenario.

When the optimal problem is derived from the perfect
competition, the solution of the problem represents the Nash
equilibrium. The limit case in which £ — +oo (high k-regime)

leads to the following optimal trading strategies: Trader B (A-
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scaled) deploys as best response to trader A a barbel shaped
trading strategy, while trader A best response to trader B will

be to deploy a bucket shaped trading trajectory.

When comparing this limit case scenario (with both high k£ and A)
between the two-trader and the multi-traders equilibriums, the
shape of the multi-traders optimal trading strategy doesn’t
resemble the bucket of the two-traders under perfect competition.
This result is key to understand that treating a two-traders equilibrium
scenario with a large A, for the A-scaled trader (B), as equal to the
scenario with multiple unit traders, thinking that the size parameter will
be split among them, is incorrect and will lead to different optimal
trading strategies.

Therefore, a trader must know if in the market there is one large
adversary or if there are many smaller one, before choosing to
carry out a two-traders or a multi-traders perfect symmetric

optimization process.

When including inside the Chriss optimization process, for a two-
trader symmetric competition scenario, the trader personal risk
preferences parameter &; and the asset volatility c. A trader does
not engage in significant overbuying (meaning deploying an eager
shaped trading strategy) unless the opponent party is significantly
more risk-averse than him:

Aj uses an eager trading strategy for which a;(t) <0 for all t

If and only if = &; << §;
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2. Standard trading approaches & Benchmarks

Introduction

The principal aim of this thesis is to find the most efficient order execution
methodology (the one that minimizes the total cost function), tailored to the specific
scenario (liquid or illiquid) in which trading occurs.

This chapter will focus on analyzing standard trading approaches, that rely on a
simpler mathematical framework, when compared to the sophisticated Chriss
optimization model. Nevertheless, standard trading approaches like moving
averages and the volume weighted average price VWAP, have been a corner stone
for disciplines like technical analysis and algorithmic trading.

Having said that, it is outside the scope of this thesis to discuss whether technical
analysis signals can be used to make profitable investment decisions. Moreover,
arguments like technical vs fundamental analysis will not be touched in this work.
Again, the main target here is to find the most cost-efficient execution approaches
when trading in different scenarios.

However, tools from technical analysis and algorithmic trading can be used in order
to reach this target and possibly provide a benchmark for the performance

evaluation of the Chriss model that will be the focus of the next chapter.

2.1 Simple moving averages

In the field of financial econometrics and quantitative trading, the moving
average (MA) represents one of the most fundamental and widely utilized tools in
the analysis of time series data, particularly in the study of security prices. Its
simplicity, combined with its dynamical interpretive power, makes it an essential
component in both academic research and practical trading strategies.

The origins of moving averages in finance can be traced back to the early 20th
century, when analysts and traders began using average price levels to discern
market trends. One of the earliest adopters of the method was Charles H. Dow,
whose writings laid the foundation for modern technical analysis. However, it was
not until the mid-20th century, with the advent of computational tools and the

formalization of technical analysis frameworks, that moving averages gained
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widespread academic and professional adoption. With the development of modern
portfolio theory and the efficient market hypothesis (EMH) in the 1960s and 1970s,
moving averages initially faced criticism from academics who questioned the
predictive power of past price data. Nevertheless, empirical studies particularly
those exploring momentum effects, mean reversion, and algorithmic trading
strategies have continued to demonstrate that moving averages can, under certain
market conditions, offer valuable insights into price dynamics and investor

behavior.

Definition of moving average (MA)

A moving average is a statistical calculation that smooths a time series by averaging
a subset of data points typically closing prices over a defined period. The average
“moves” because it continuously recalculates as new data becomes available,
thereby adjusting dynamically to the latest information.

There are several types of moving averages, with the most common being
the Simple Moving Average (SMA), which assigns equal weight to each
observation within the period, and the Exponential Moving Average (EMA),
which can be set to give more weight to recent data or to past observations in order
to respond more dynamically to price changes.

Mathematically, for a time series of prices Py fort=1, ...... ,n the simple moving

average over n periods is defined as:

1n—1
SMAt ES Ez Pt—i
i=0

In contrast, the exponential moving average incorporates a smoothing factor a, such

that:

EMA; = aP; + (1 — a)EMA,_; ; where: a = Z

n+1

The factor a is the weighting factor between the last period EMA..1 and the current

. . . 2
price P.. Asn—>+o0o = lim a= lim — =0
n—+ow n—+owon+l

The larger the period considered, the smaller the smoothing factor, this means
that less weight is given to recent prices P; and more weight is retained by the last
period EMA.i. Moreover, the EMA becomes less sensitive to recent price changes,

behaving more like a long-term moving average, reacting slowly to new data. This
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is almost equivalent to a very long Simple Moving Average (SMA) but with a key
difference: the EMA never fully "forgets" the past, whereas the SMA drops older
data entirely once it falls out of the fixed window. This property allows EMA to
have a “memory” of past prices that decays exponentially, this is very useful to

detect only major, persistent trends, avoiding noise.

On the Bloomberg Terminal, the three commonly used moving averages that

appear by default on charts and in technical analysis functions are:

1. Simple Moving Average (SMA) Short-term, usually: SMA (50)
Period (trading window): 50 trading days (~2.5 month)
Purpose: Captures short-term price trends; often used by traders for recent
momentum.

2. Simple Moving Average (SMA) Medium-term, usually: SMA (100)
Period (trading window): 100 trading days (~5 months)
Purpose: Filters out short-term noise; used to identify intermediate trend
direction.

3. Simple Moving Average (SMA) Long-term, usually: SMA (200)
Period (trading window): 200 trading days (~10 months)

Purpose: Identifies long-term trends and major support/resistance levels.

XBTUSD BGN Curncy 96) Actions ~ G #BTV 4471: XBT w/ 50-DMA

03/25/2020]=I 05/20/2021 =4RSP | ocal CCY | °
1D 30 1M 6M VYD [1Y 5Y Max Daily ¥ I~ #i +  Table Add Data « # Edit Chart & %

Track Annotate News Zoom
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Figure 13: A screenshot of the three standard moving averages of the Bloomberg
terminal for the Bitcoin (XBT) against the US Dollar (USD).

Moving averages are a cornerstone of technical analysis, a discipline predicated on
the notion that historical price patterns and trading volumes can provide predictive
insight into future price movements. MAs can be used as trend-following
indicators and support/resistance levels, making them a dual-purpose tool for
market participants. A moving average effectively acts as a smoothing function,
filtering out short-term price fluctuations or “noise” to reveal the underlying
trend. When prices remain consistently above a moving average, it typically
indicates an upward trend, while sustained movement below the average
suggests a downward trend. Furthermore, the slope of the moving average itself
provides information about the momentum and strength of the prevailing price

trend.

In practice, moving averages generate actionable trading signals through various

mechanisms, the most common of which include:

e Crossovers: One of the most well-known strategies is the “moving average
crossover,” where a shorter-term MA (e.g., 21-day) crosses above or below
a longer-term MA (e.g., 50-day or 200-day). A bullish crossover (also
known as a "golden cross") occurs when the short-term MA crosses above
the long-term MA, suggesting upward momentum. Conversely, a bearish

crossover ("death cross") signals potential downward pressure.

e Price-to-MA Crosses: When the market price crosses above a moving
average, it may signal a buy opportunity, while a move below the average

can indicate a sell opportunity or weakening support.

e Support and Resistance: Moving averages often act as dynamic support or
resistance levels, particularly in trending markets. Institutional traders
frequently monitor key MAs (such as the 50-day and 200-day) to anticipate

potential reversal zones or breakout points.
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These signals, while simplistic in structure, are widely used due to their intuitive
appeal and ability to be enhanced through algorithmic frameworks or combined
with other technical indicators such as Relative Strength Index (RSI), Bollinger
Bands, or MACD.

In summary, moving averages offer a foundational yet powerful mechanism for
smoothing price data and identifying underlying trends, making them widely used
in both discretionary and algorithmic trading contexts. While inherently simple in
construction, their adaptive nature and ability to produce trading signals through
crossovers or trend identification have made them enduring tools in market practice.
However, despite their widespread use, moving averages are not without
limitations. They are inherently lagging indicators, meaning they reflect past price
action and may respond slowly to sudden market reversals or volatility shocks. The
choice of period length also significantly influences their effectiveness; shorter
periods offer quicker responses but are prone to false signals, while longer periods
are more stable but may react too slowly for active trading.

For the aim of this thesis, moving averages are not evaluated for their predictive
capability or investment profitability per se, but rather as a baseline methodology
for trade execution under cost efficiency. While moving averages effectively
capture price dynamics and are widely adopted in liquid market environments, their
use as a benchmark for evaluating optimization-based execution strategies, such as
the Chriss model, presents certain limitations. At first glance, moving averages may
appear as suitable candidates for such benchmarking, given that the total cost
function in the Chriss framework is inherently sensitive to price evolution, which
is affected by both the temporary and permanent market impact components.
However, moving averages do not incorporate a critical component required
for accurate cost assessment in optimal execution models: the traded volume.
Since the effectiveness of a trading strategy under the Chriss model depends
not only on price trajectories but also on the size and timing of executed orders,
any benchmark must reflect both price and volume. Consequently, while
moving averages can serve as a preliminary reference for price aligned
strategies, they are insufficient as standalone benchmarks for evaluating the
trading execution cost efficiency of the Chriss model. Therefore, a more

complex approach is needed to pursue this task.
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2.2 VWAP approach

In modern market microstructure and algorithmic execution, the Volume Weighted
Average Price (VWAP) stands as one of the most widely implemented benchmarks
for institutional trading. Unlike moving averages, which rely solely on price
information, VWAP integrates both price and volume data, thereby offering a
more comprehensive and exhaustive representation of the market activity. This dual
dependency enables VWAP to better approximate the real average transaction
price over a given period, thus allowing for more refined execution cost evaluation.
The evolution of VWAP as an execution benchmark can be traced back to the
increased automation of trading during the 1980s and 1990s. As institutional
investors sought to minimize the market impact of large orders and align execution
performance with average market prices, VWAP emerged as a preferred strategy.
It quickly became a standard for post-trade cost analysis and subsequently evolved
into a basis for algorithmic execution models, especially for passive or
participation-based trading strategies. Its widespread adoption was further
catalyzed by the increased availability of high-frequency market data and the
demand for execution transparency under regulatory frameworks such as MiFID II

in Europe and Reg NMS in the United States.

Definition of the volume weighted average price VWAP
The VWAP approach, captures the average price at which a security is traded
throughout a given time interval, weighted by the total traded volume.

Mathematically, the VWAP for a trading interval is defined as:

t

t P V.
VWAP, = 5 ——

i=1Vi

Where:

P; is the trade price of the security at time interval ( 1)

e Viis the volume traded at that price P; during the interval (i)

e tis the current time interval for the sum, starting at (i = 1) ending at (i =t)
o If the VWAP is computed for the entire trading session, which is

composed of a total of n intervals, then the sum is executed setting t =n
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This formulation ensures that trades executed at higher volumes exert
proportionally greater influence on the final value of VWAP, making it inherently
sensitive to both price dynamics and liquidity conditions. Unlike simple or
exponential moving averages, which treat all prices (or recent prices) with equal or
decaying weight, VWAP dynamically reflects where the majority of trading

activity is concentrated throughout the session.

From a practical perspective, VWAP is often used in two distinct but
complementary ways: as a benchmark and as a trading strategy, known as the

VWAP execution algorithm approach.

As a benchmark, institutional traders compare the average execution price of their
orders against the VWARP to evaluate whether they traded “better” or “worse” than
the market average. Executing below the VWAP for a buy order (or above for

a sell order) typically implies favorable execution performance.

As a trading strategy, the VWAP execution algorithm approach aims to
distribute order flow proportionally throughout the entire trading session,
matching the expected market volume curve (also known as the volume
profile). Specifically, the algorithm aims to execute buy or sell orders at prices that
are close to the n interval VWAP, for each time interval in the entire trading
session. The main idea is that the total execution price should be as close as possible
to the average price weighted by volume during the trading session.

In order to implement this strategy, the algorithm breaks down the order into
smaller, time-based portions and then executes these portions according to the
expected trading volume at each time point. This "expected market volume
curve' is essentially the volume profile, which shows how the volume of trades
is typically distributed throughout the day. In practice, the VWAP algorithm
tries to execute orders in proportion to this volume distribution, executing
larger portions of the order when the market volume is expected to be high,
and smaller portions when volume is low.

This approach is especially effective in liquid markets, where there is ample
volume throughout the trading session. In such markets, the algorithm can

smoothly match the pace of the market, without significantly moving the price
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or encountering slippage. The liquidity ensures that the smaller trades executed
by the algorithm can be absorbed without disrupting the market or drastically
changing the price.

In summary, the VWAP execution strategy is about passively participating in
the market by aligning with its natural volume flow, which helps to avoid
drawing attention to large orders or causing unnecessary price fluctuations. It
works well when there is sufficient trading volume to absorb the passive

participation throughout the day.

On the Bloomberg Terminal, the VWAP can be visualized in multiple ways. It
appears as a time-series line overlaid on price charts (function: VWAP<GO>) and
is available for both real-time and historical analysis. Additionally, the Execution
Quality Analysis (EQA) tool enables traders to benchmark individual or grouped
trades against VWAP to quantify slippage and assess trading desk performance.
Bloomberg computes intraday VWAP using tick-by-tick trade data, ensuring
accuracy across various timeframes.

From a signal generation perspective, the VWAP line serves multiple roles:

Price Relative to VWAP: Traders often consider prices above the VWAP as a sign
of bullish sentiment (overvaluation in the short term), while prices below VWAP

may suggest bearishness or undervaluation.
Mean Reversion: Since VWAP reflects the average traded price, short-term
deviations from it are often interpreted as temporary inefficiencies, leading to

reversion trades.

Support and Resistance: Similar to moving averages, VWAP may act as a dynamic

support or resistance level, particularly during intraday trading.
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Figure 14: An execution performance evaluation carried out with the Bloomberg
terminal, the VWAP (green vertical line) represents the mean of the VWAP;
distribution for each time interval t during the entire trading session.

Despite its versatility, VWAP is not devoid of limitations. It assumes that past
intraday volume patterns are a good predictor of current liquidity, which may not
hold true during volatile or news-driven sessions. Moreover, in illiquid markets or
for large block orders, VW AP strategies may result in adverse selection or increased
opportunity costs due to slow execution.

Nonetheless, VWAP’s integration of both price levels and execution
volume renders it especially suitable as a benchmark for optimal execution
frameworks, such as the Chriss model. Given that the Chriss model seeks to
minimize a total cost function dependent on market impact (a function of both
traded volume and price trajectory), VWAP offers a natural benchmark against
which cost efficiency execution can be evaluated. Unlike moving averages, which
abstract away order size, VWAP mirrors the execution environment more
faithfully, capturing both the intensity of trading and prevailing market

prices.
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2.3 Summary of main differences

t .
SMA, = 2¥m1p,_ vs VWAP, = Z=PiVi
n &l 0

i=1Vi

From a financial perspective, the key distinction between Moving Averages (MAs)
and the Volume Weighted Average Price (VWAP) lies in their treatment of price
and volume dynamics. MAs are primarily used for identifying price trends but do
not incorporate volume, which is a crucial factor in determining execution costs.
This limitation is especially problematic in illiquid markets, where volume and
trade frequency can significantly influence price trajectories. Furthermore, MAs are
inherently lagging indicators, relying on a fixed window of historical prices that
may not fully capture sudden market shifts.

In contrast, VWAP integrates both price and volume, offering a more accurate
representation of the average price at which a security is traded over a specified
period. Since VWAP is tied to transaction volumes, it provides a more precise
picture of how price dynamics unfold within the context of market liquidity. This
makes VWAP particularly valuable for evaluating trade execution under both liquid
and illiquid scenarios.

The inclusion of volume in VWAP further enhances its ability to reflect the true
cost of execution. In real-world trading, larger orders tend to create greater market
impact, and VWARP adjusts for this by giving more weight to trades with higher
volumes. This feature makes VWAP a more realistic benchmark for assessing
execution strategies, particularly in the context of large block orders or
strategies aimed at minimizing market impact.

The Chriss model, which seeks to minimize total execution costs through
optimized order flow, is sensitive to both price changes and trade volume. It
explicitly accounts for the temporary and permanent market impact of order
execution, highlighting the importance of liquidity and timing in minimizing overall
trading costs. In this context, MAs, while valuable for understanding general
price trends, fail to capture the volume component that directly impacts
execution costs, particularly in the case of large trades. Therefore, using MAs
as a benchmark for the Chriss model could lead to misleading conclusions about

the true cost of trade execution. Conversely, VWAP, which incorporates both
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price and volume, offers a comprehensive view of market dynamics. Given that
the Chriss model aims to minimize execution costs by considering the
interaction between price and market impact, VWAP serves as a more
appropriate benchmark. It reflects both price fluctuations and trade size, making
it an ideal reference for evaluating strategies designed to minimize market impact,
especially in liquid or semi-liquid markets.

In conclusion, while Moving Averages provide a useful tool for analyzing price
trends, they do not capture the critical volume aspect essential to the Chriss model’s
cost function. VWAP’s dual reliance on price and volume makes it a far more
suitable benchmark for assessing optimal execution strategies that aim to

minimize market impact.

2.4 VWAP Total cost function for k-regimes

For the aim of this thesis in finding the most efficient order execution methodology,
fitted for the specific market scenario (illiquid and liquid). A total cost performance
comparative evaluation between the Chriss optimization model and the VWAP
execution algorithm approach must be carried out. In order to pursue this final
objective, the VWARP total cost function must be formulated in a way that can be
effectively comparable with the mathematical expression conceptualized by Neil
A. Chriss for his optimization model. In particular, the VWAP instantaneous total
cost function must also depend on the k& parameter of the Chriss model.

The generalized VWAP instantaneous total cost function, restructured to

incorporate the Chriss model’s market impact parameter k, is defined as:

/AP = (W) + kv(©)v(t)
Where:

e (v(t))?is the temporary market impact at time t

e v(t)v(t) is the permanent market impact component at time t

b () = dVWAP; .

. is the VWARP execution rate at time t
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As already done in Chapter 1 section 1.3 for the Chriss model, the instantaneous

total cost function is integrated from O to 1, then the average total cost function is:

1. dVWAP -
Cowap = ?Z[ (T"')2 + kz dVWAP, - dAVWAP, |
s=1

Crwae = [ 10+ | 9 (s)ds o (0] de
0 0

t. . :
The term f oV (s)ds is the cumulative volumeup to timet. The double

summation in the second term reflects how prior trades influence the cost of future
executions, aligning this VWAP formulation with the theoretical structure of
dynamic market impact present in the Chriss model which is equivalent to

v(t). Therefore, the integral expression can be simplified and becomes:

1

Cowap = jo 5 (0)? + kv(D) - D(D)]dt

This mathematical expression effectively models the cumulative market impact of
executed volume over time, while at the same time accounting for the fitted leading
k-regime of the scenario. In particular, the cost function of the VWAP approach has
a double dependence on both the temporary market impact component (first term)
and the permanent market impact component (second term) weighted by the market
impact coefficient .

Recalling multi-traders optimization scenario:

If there are n+1 unit traders Aq,......... ,An+1 all trading in perfect competition, the

instantaneous total cost function or loss function for trader A becomes:

L) = &(® ) 4O +ka® ) 4 ®
J J

Here, a; (t) represents the trading rate of trader i, while a;(t) is the cumulative

quantity traded inside the market during the trading window. The first term reflects

49



the temporary cost due to simultaneous executions (liquidity competition), while
the second term, scaled by k, models the permanent impact due to accumulated

execution pressure on the market.

Since this scenario assumes a perfect symmetric competition among all the n
traders, then the Chriss structurally assumes that each trader uses a symmetric unit

trading strategy:

1
f a;(t)dt =1 forall j
0

if all use the same strategy a(t), since it’s under perfect competition then:

n+1

z a; (t) = (n + 1a(t)

j=1

n+1

z g (t) = (n + Da(t)

j=1
Then the average total cost function (or loss function) for trader A; will be:
Li(®) = a(t) - (n + 1)a(t) + ka(t) - (n + Da(t)

That becomes:

L1(8) = (n + D[a(t)* + xa(t)a(t)]
Then by taking the integral from 0 to 1, the average total cost function is obtained:
1 1
Comriss = | 1a(®de = @+ 1) [ [6 (07 + ka - ao)t
0 0
And by normalizing dividing by (n+1), the following final expression is obtained:

Conriss = j [G ()% + ka(t) - a(O)]dt
0
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Conpiss = j G ()% + ka(t) - a(H)]dt
0

Cowap = jo 5 (0)? + kv(D) - D(D)]dt

Comparing the VWAP average total cost function and the one of the Chriss model,
It is evident that the VWAP approach is simpler and passive, relying on historical
average volumes, therefore lacking the sophisticated scenario adaptability of the
Chriss minimization cost procedure. Moreover, the VWARP is not derived under an
equilibrium condition like the result of the Chriss multi-traders optimization, in
perfect symmetric competition. Nevertheless, by embedding the x parameter into
the VWARP cost function, it is possible to achieve the target of deriving a meaningful
benchmarking method, that can be used to effectively evaluate the cost efficiency
of the Chriss model under different simulated scenarios.

From a theoretical perspective in liquid markets, where price impact is minimal and
competition is less of a concern, the VWAP trading approach may be proven to be
the most cost-efficient due to its simplicity and alignment with the market volume
profile. In contrast, in illiquid or high-volatility environments, the Chriss model
should exhibit a superior performance, thanks to its natural adaptability by
explicitly optimizing trading in real-time, minimizing the total cost function under
both temporary and permanent market impact components, through a dynamical
mathematical framework, that accounts for size and leading k-regime.

In the following chapter a comparative cost efficiency evaluation of these two
trading methodologies, that will be implemented in practice using the R-Studio
software, will provide the empirical evidence to support this master’s degree in
Finance thesis’ main objective: identifying the most efficient trading strategy (the
one that minimizes the total cost function) tailored to the specific scenario (liquid

or illiquid) in which trading occurs.
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3. Performance analysis for cost efficiency

The following chapter constitutes the core of this master’s degree in Finance thesis.
Indeed, it finally addresses the primary objective of this work: identifying the most
cost-efficient trading strategies tailored to specific market conditions.

In the previous chapter, a valid benchmark for cost efficiency comparison and
performance analysis was identified through the VWAP trading algorithm.

In line with this objective, the VWAP approach and the Chriss model will be
implemented and compared with a focus on cost efficiency, in full compliance with
the theoretical framework established in the earlier sections of this thesis.

The tool used to conduct this analysis is R-Studio, an integrated development
environment (IDE) specifically designed for the R programming language, widely
adopted in statistics, data analysis, and quantitative finance.

It is important to recall a key insight already highlighted by their theoretical
frameworks: namely, given the different structures of the cost functions and more
broadly the fundamental distinct nature between the Chriss optimization model and
the VWARP approach, their performance is expected to vary significantly depending
on the specific market scenario in which they are applied.

This theoretical distinction is further reinforced by earlier analysis in the thesis.
As shown in the sensitivity analysis in Section 1.3, the Chriss model demonstrates
greater robustness in illiquid market scenarios those characterized by a high value
of the parameter k. Its cost structure is less sensitive to estimation errors in such
environments, making it more reliable when the market impact is significant.

On the other hand, the VWAP algorithm, which spreads execution in line with
volume distribution, performs best in liquid markets. In these conditions, abundant
market volume allows the algorithm to execute smoothly with minimal price
disruption and slippage.

In summary, these theoretical insights suggest that the Chriss model is more
effective in illiquid scenarios, whereas the VWAP approach performs better in
highly liquid ones. The central aim of this chapter is to investigate whether
these theoretical expectations are confirmed by empirical evidence, and to

assess the statistical significance of the observed results.
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3.1 Cost functions time discretization

The instantaneous total cost functions and their integrated expressions, which
represents the average total cost functions, all belong to the family of C? functions
(C? means continuous and twice differentiable). This level of smoothness is
essential for deriving analytical results within the continuous time theoretical
framework.

However, practical implementation of these models, particularly in computational
environments such as R-Studio, requires a shift from continuous to discrete time.
Since such software environments do not work directly with continuous variables
or functions, time discretization becomes necessary to simulate and evaluate
trading strategies numerically.

The discretization method employed in this thesis involves dividing the total trading

horizon T into N equally spaced intervals of length where:
T
At = N> to= 0, ti= At, tn= NAt=T;

in general, for an i-interval ti =1 At fori=0, 1,...... , N

This transforms the continuous cost function into a stepwise approximation,
allowing cumulative costs to be estimated using discrete values.

As At—0, the discrete time steps approach an infinitesimal increment dt, i.e.,

lim At =dt
At—0

bridging the discrete approximation with the continuous-time formulation used in
the theoretical frameworks of optimal trading strategies.

A useful way to visualize this process is through the use of Riemann sums, where
the area under the curve of a continuous cost function is approximated by the sum
of the areas of rectangles.

For the purpose of this thesis, each rectangle represents the average cost of a
discrete time interval and mathematically speaking is referred to as a Riemann
rectangle. The smaller the time step, the smaller the base of the Riemann rectangle,
leading to a more precise approximation of the continuous time theoretical
framework.

The software R-Studio is able to perform these summations calculations, using a

very small discretization time step At = dt, leading to consistent and precise results.
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Figure 15: Both figures visualize the approximation of continuous time thanks to
its discretization. The first figure shows a quite large time step At for the Riemann
sums, therefore it is not a very good approximation. Instead, the second figure uses

a very small time step At, leading to a more precise approximation of the continuous
time.

This discretized framework not only makes numerical summation feasible for
computational purposes but also aligns the theoretical models with real-world

trading, where as a matter of fact, decisions are made at discrete time intervals.
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Position

3.2 Liquid vs Illiquid scenarios with Monte Carlo method

The first step in a comparative analysis between the Chriss model’s optimization
process and the VWAP algorithmic approach for trading execution is to test whether
their respective trading trajectories differ with statistical significance under both
liquid and illiquid market scenarios.

Therefore, using the software R-Studio the Chriss model optimization procedure
was implemented for the case of multi-traders under perfect competition; for the
liquid market scenario the model parameters were set to k= 0.1 and A = 1 while for
the illiquid market scenario parameters were set to k =5 and A = 10.

Instead, the VWAP algorithm approach was simulated using the Monte Carlo
method, using a standard normal distribution with standard deviation ¢ = 0.02,
needed to introduce a random noise factor, typical for any Monte Carlo Simulation.
Monte Carlo simulations were set to run 100 times.

The following figure shows the trading trajectories obtained for both frameworks.

Trading Trajectories Comparison: Chriss Equilibrium vs Simulated VWAP

Common Traders (Liquid Market) Institutional Traders (llliquid Market)

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75
Time

colour === Trader A (Chriss) == VWAP Execution
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Figure 16: R-Plots of trading trajectories for both liquid and illiquid market
environments. The Chriss model trading trajectories (red lines) were built following
the theoretical optimization process for the case of multi-traders under perfect
competition while the VWAP (black dashed lines) were simulated using the Monte
Carlo method.

It is clear from the figures that the Chriss optimization process is more flexible
and adapts better to different market conditions when compared to the
VWAP, which instead appears to be more stable showing rather risk averse
trading trajectories for both simulated scenarios.

This is not surprising, in fact as expected from the theory, the Chriss optimization
model is an active execution approach that highly depends on the environment in
which it is operating in. Moreover, both trading strategies are of the eager type
especially in the case of illiquid environment or equivalently (institutional trader
trading large quantities).

The final step in this preliminary comparison of the two methodologies trading
trajectories is to seek for statistical significance. A standard t-test would work if
both trading outcomes were assumed to be normally distributed. While this is true
for the VWAP, which has its trading trajectories distributed as a standard normal
with standard deviation ¢ =0.02, it could not be assumed that also the Chriss model
trading trajectories follow a standard normal distribution.

Therefore, to pursue a more robust comparison, that does not rely on the assumption
of normality, the Kolmogorov—Smirnov (K-S) test is employed. This non-
parametric test is particularly well suited for this analysis, as it compares the entire
empirical distribution functions of the two datasets without requiring any
assumptions about their underlying distributions. Given that the Chriss model
generates trading trajectories that are shaped by dynamic optimization in response
to varying market impact and liquidity conditions, its output distribution may
exhibit skewness, kurtosis, or other non-Gaussian features. The K-S test is thus
preferable to the standard t-test, which is limited to comparing means under the
assumption of normality and equal variances.

Therefore, by applying the Kolmogorov—Smirnov test, it is possible to
rigorously determine whether the differences in trading trajectories between
the Chriss model and VWAP are statistically significant across different
market scenarios, capturing both the magnitude and distributional shape of

the outcomes.
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The following lines show the R-Studio printouts of the K-S results for both liquid

and illiquid market scenarios:

--- Trading Trajectories Comparison for Common Traders (Liquid Market) ---
Kolmogorov-Smirnov Test (Trader A vs VWAP): p-value = 0.0158141
Kolmogorov-Smirnov Test (Trader B vs VWAP): p-value = 0.0158141

Linear Regression (Trader A ~ VWAP) Beta: ©0.975422

Linear Regression (Trader B ~ VWAP) Beta: 0.975422

Trader A significantly diverges from VWAP.

Trader B significantly diverges from VWAP.

--- Trading Trajectories Comparison for Institutional Traders (Illiquid Market) ---
Kolmogorov-Smirnov Test (Trader A vs VWAP): p-value = 2.68708e-33
Kolmogorov-Smirnov Test (Trader B vs VWAP): p-value = 0.006302223

Linear Regression (Trader A ~ VWAP) Beta: 0.9298428

Linear Regression (Trader B ~ VWAP) Beta: 0.9656463

Trader A significantly diverges from VWAP.

Trader B significantly diverges from VWAP.

As shown by the results of the Kolmogorov Smirnov test, the trading
trajectories produced by the Chriss model and the VWAP algorithm differ
with statistical significance across both market scenarios. Particularly for the
illiquid environment, where the test p-values are considerably lower than those
observed in the liquid case, the K-S test result is confirmed at all confidence
levels. This outcome confirms that the choice between the Chriss model and
VWAP for execution purposes leads to materially different trading paths, as
expected from their distinct theoretical foundations and wunderlying

assumptions.

Given this divergence, attention naturally shifts to a more fundamental issue
namely, the question of which methodology offers greater cost efficiency under
different market conditions. Specifically, it becomes necessary to evaluate which
approach is more advantageous in liquid markets and which proves superior in
illiquid environments. In order to address this, a comparative performance analysis

based on the cost functions embedded in each model must be undertaken.
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For this purpose, as already explained in sections: 1.3 (for the Chriss model cost

functions), 2.4 (for the VWAP) and 3.1(Time discretization)
The procedure is the following:

1) The instantaneous total cost functions also known as loss functions are
derived, which reflect both the temporary and permeant market impact
components. Both components are governed by the k parameter.

2) By integrating these expressions, for the trading interval from 0
starting time) to 1 (closing time), the average total cost functions are
obtained for both trading execution approaches.

3) Finally, to perform in practice the integral summation, time will be
discretized in very small discrete time steps At—0, ensuring good

accuracy (fine Riemann summation methodology).

The following figures show the comparative dynamic cost evolution, between the
Chriss model optimization, for the case of multi-traders symmetric equilibrium, and
the Monte Carlo simulated VWAP algorithm, during a trading window.

For the liquid scenario parameters were set to k= 0.1 and A = 1 while for the illiquid
market scenario parameters were set to k=5 and A = 10.

Monte Carlo simulations were set to 100 times. The number of traders was fixed.
It is important to notice that both Chriss model and VWARP cost functions are deeply
depending on the parameter k, which is responsible to determine the equilibrium

between the temporary and permanent market impact components as time evolves.

Conriss = j [G ()% + ka(t) - a(O)]dt
0

1

Cowap = jo [5 ()2 + kv(D) - 5()]d
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Cumulative Cost

Cumulative Cost Over Time: Chriss vs VWAP

Common Traders (Liquid Market) Institutional Traders (llliquid Market)
150
100
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0
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Time

colour === Chriss Model === \/WAP Execution

Figure 17: R-Plots of the average cost functions dynamic time evolution under both
liquid and illiquid market scenarios. The Chriss model average total cost functions
(red lines) were derived following the theoretical optimization process for the case
of multi-traders under perfect competition while the VWAP average total cost
functions (black dashed lines) were simulated using the Monte Carlo method, 100
times. N (number of traders) = 10

From the figure on the left, it is evident that when operating in a liquid market
environment, the VWAP algorithm proves to be the most cost-efficient execution
strategy. Indeed, as illustrated in the figure, the dashed black line depicting the
average total cost evolution of the VWAP over time, is always below the red line
representing the Chriss model average total cost time evolution.

Therefore, it is possible to conclude that in a liquid scenario the VWAP
execution approach leads to lower costs in terms of both temporary and
permanent market impact.

This picture changes significantly when analyzing the figure on the right.

Under an illiquid market environment, both cost functions initially rise at a similar
rate. Nevertheless, around time t = 0.25, the advantage of the Chriss model’s
flexibility begins to emerge: its average total cost curve starts to decline, whereas

the VWAP cost continues to rise until the end of the trading window.
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From this empirical evidence, it is possible to conclude that when operating in
an illiquid scenario the Chriss model optimization execution methodology has
lower costs in terms of both temporary and permanent market impact.

The following R-table shows the mean values of both Chriss model and VWAP

total costs under both liquid and illiquid market environments.

Mean Chriss Mean VWAP

Market Scenario Cost Cost
Common Traders (Liquid 84.813175 66.26729
Market)
Institutional Traders (llliquid 8.491506 66.26729
Market)

Looking at the means, the difference between average total cost of the two
approaches is noticeable, especially for the illiquid market scenario, where the
Chriss optimization procedure clearly dominates the VWAP in terms of cost
efficiency.

For completeness the results obtained using the same methodology but for N

(number of traders) = 100 are also reported below.

Cumulative Cost Over Time: Chriss vs VWAP

Common Traders (Liquid Market) Institutional Traders (llliquid Market)
8000

6000

4000

Cumulative Cost

2000

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.0(
Time

colour === Chriss Model == VWAP Execution
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Figure 18: R-Plots of the average cost functions dynamic time evolution under both
liquid and illiquid market scenarios. The Chriss model average total cost functions
(red lines) were derived following the theoretical optimization process for the case
of multi-traders under perfect competition while the VWAP average total cost
functions (black dashed lines) were simulated using the Monte Carlo method, 100
times. N (number of traders) = 100

Figure 17 (N = 10) and Figure 18 (N = 100) display nearly identical visual patterns,
with both showing similar shapes in the average total cost functions for the two
methods, despite the expected differences in cost magnitudes, given by the

difference in total traders an therefore total traded volumes.

Mean Chriss Mean VWAP

Market Scenario Cost Cost
Common Traders (Liquid 4240.6588 3336.164
Market)
Institutional Traders (llliquid 424.5753 3336.164
Market)

The two tables show different values from the N =10 and the N = 100 cases, as
expect by the difference in total traded volumes. However, when analyzing the
difference between the mean of the total cost function of the Chriss model and
the one of the VWAP, the conclusion is exactly the same: The Chriss model is
the best at cost efficiency when deployed in an illiquid scenario.

In this analysis the number of traders was kept constant, in the first case N = 10
and in the second case to N = 100 with a dynamical comparative cost evaluation for

each time step inside the interval starting at t = 0 and ending at t = 1.

At this point to have a more robust and complete analysis, it could be useful to
simulate both liquid and illiquid market scenarios, keeping time at a fixed time
interval and computing the limit as the number of traders increases,

approaching infinity.
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Average Cost

3.3 Limit case study as N traders — + o

The following figure shows the limit case scenarios for both the Chriss model
optimization and the VWAP approach. In this case N represents the number of
traders and goes to infinity. The time is fixed to a closed interval, i.e. (0, 1)
therefore, this is not a dynamic, as in the previous section, but rather a static cost
efficiency performance evaluation. Here the average total cost functions are
analyzed at a given time horizon across different market densities.

The following figure shows a comparative cost efficiency performance evaluation
between the Chriss model optimization, for the case of multi-traders symmetric
equilibrium, and the Monte Carlo simulated VWAP algorithm, focusing on
different market sizes, given by the increasing N T = N— + o0

For the liquid scenario parameters were set to to £ = 0.1 and A = 1 while for the
illiquid market scenario parameters were set to k=5 and A = 10.

Monte Carlo simulations were set to 100 times. In this case the time interval is fixed,

the number of traders was varying approaching infinite.

Cost Evolution as N Increases

Common Traders (Liquid Market) Institutional Traders (llliquid Market)
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Figure 18: R-Plots of the average cost functions under both liquid and illiquid
market scenarios. The Chriss model average total cost functions (red lines) were
derived following the theoretical optimization process for the case of multi-traders
under perfect competition while the VWAP average total cost functions (black
dashed lines) were simulated using the Monte Carlo method, N — + oo where N is
the number of traders.

When analyzing these limit case scenarios, the result does not change. Chriss
model average total costs are always above the ones of the VWAP in the case of
liquid market environment (left figure) and are always below the ones of the VWAP
in the case of illiquid market environment (right figure). Confirming the findings
of the previous section’s comparative dynamical cost efficiency performance

evaluation:

e Chriss model is better in terms of cost efficiency when deployed in an

illiquid market environment.

e VWAP algorithmic approach is better in terms of cost efficiency

when deployed in a liquid market environment.

At this stage, the primary objective set forth in this thesis has been successfully
achieved through the application of advanced methodologies, fully aligned
with the theoretical fundamentals of both trading execution strategies.
Nonetheless, while not strictly essential to the core analysis, a valuable extension
of this work could involve the comparison of the average total cost functions based
on historical data rather than relying solely on Monte Carlo simulations for the
VWAP approach. Such an addition would enrich the empirical robustness of the
findings and offer further insights into the practical applicability of VWAP under
real-market conditions.

The next section focuses on this using real life trading data obtained from the

Bloomberg terminal to construct the VWAP execution methodology.
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3.4 Liquid vs Illiquid scenarios with Historical data

In this section an R-Studio code was developed to firstly compute the VWAP
approach total costs using real life trading data, obtained from the Bloomberg
terminal. Then carry out a comparative dynamic cost efficiency performance
evaluation between the constructed VWAP based on historical data and the Chriss
optimization model. These data include the most influent traded volumes in the
Apple stock during the trading day of the 19™ February 2025 in the Nasdagq.

The Chriss model optimization was set to operate in a highly liquid market
environment, as both the security Apple stock and market Nasdaq are very liquid
ones. In particular, the model’s parameters for the numerical optimization were set
as the following: k=0.1,A=1

The following figures represent the obtained average total cost functions, as time

evolves, for both VWAP with historical data and Chriss model equilibrium.

Chriss Model Cost Evolution

150

100

Cumulative Cost

50

0.00 0.25 0.50 0.75 1.00
Time

Figure 19: R-Plot of the average cost function under a highly liquid market scenario.
The Chriss model average total cost function (red line) was derived following the
theoretical optimization process for the case of multi-traders under perfect
competition. The green dashed line represents the sample mean of each total cost
incurred during the trading window.
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VWAP Execution Cost Evolution
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Figure 20: R-Plot of the average cost function for the daily volume trading data
obtained from the Bloomberg terminal for the Apple stock on the 19™ February
2025 in the Nasdaq.The VWAP algorithm was applied to this data. The VWAP
average total cost function dynamical evolution (black line).The green dashed line
represents the sample mean of each total cost incurred during the trading window.

From both figures but also from the data shown in the table below, it could be seen
that a trader, trading in the Apple stock on the Nasdaq market during the trading
day of the 19™ February 2025, would incur on average lower trading costs,
considering both the temporary and the permanent market impacts components, by
using the VWARP algorithm as order execution method. This is not surprising as
both the traded security and the market in which trading occurs are highly liquid
ones. Therefore, once again confirming the superiority in terms of cost
efficiency of the VWAP algorithmic order execution approach in liquid market

environments.
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Table: VWAP vs Chriss Cost Comparison Over Time

| timel VWAP_Cost_Dynamic| Chriss_Cost
|- et e 2
.0000000 | .00748891 .000000|

| 0 (] (]

| 0.01010101 0.00725911 3.9638801
| 0.02020201 0.0068493 | 7.852364 |
| 0.03030301 0.00662011 11.666844 |
| 0.04040401 0.0059327 | 15.408597 |
| ©0.0505051| 0.0060276| 19.079083 |
| 0.0606061| 0.00612291 22.679587|
| 0.07070711 0.0064434| 26.211403|
| ©0.08080811 0.0069806 | 29.675800|
| 0.09090911 0.00768751 33.074022|
| 0.10101011 0.0081726| 36.407294|
| ©.11111111 0.0093515| 39.676816|
| 0.12121211 0.00967351 42.883767 1
| ©.13131311 0.010061101 46.029306 |
| 0.14141411 0.01105811 49.114569|
| ©.1515152] 0.01077701 52.140673|
| @0.1616162| 0.01042721 55.108712|
| 0.17171721 0.0101004 | 58.019764|
| 0.18181821 0.00950381 60.874884|
| ©.1919192| 0.0089797 | 63.6751091
| 0.20202021 0.0088274| 66.421458|
| 0.21212121 0.0083847| 69.1149311
| @.22222221 0.00802401| 71.756508|
| @.23232321 0.00724291 74.347155|
| 0.24242421 0.0064247 | 76.887816|
| 0.2525253] 0.0056357 | 79.379421|
| 0.2626263| 0.0042696 | 81.822881|
| 0.27272731 0.00277121 84.219093 |
| 0.28282831 0.00173141 86.568935|

Kolmogorov-Smirnov Test Results for Grouped Time Intervals:
> print(ks_results, row.names = FALSE)

Group Cost_Difference Statistic P_Value
1 41.27461 0.96 7.910729%e-13
2 104 .76409 1.00 1.582146e-14
3 143.54459 1.00 1.582146e-14
4 166.99460 1.00 1.582146e-14

The K-S test p-values confirm the statistical significance of the result founded
in this comparative dynamic cost efficiency performance evaluation between
the constructed VWAP based on historical data and the Chriss optimization

model.
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Conclusions

This master’s thesis in Finance addresses the challenge of identifying cost efficient
trading execution strategies under competitive conditions in both liquid and illiquid
market environments. The objective was to determine the most effective
methodology for minimizing execution costs in each scenario.

In the first chapter a mathematical framework developed by mathematician and
hedge fund manager Neil A. Chriss was presented and analyzed in detail.

The theoretical mathematical optimization approach presented by Chriss is
sophisticated showing high robustness and great adaptability to different market
conditions. Nevertheless, the model remains easy to understand and interpret,
relying on a limited set of parameters and boundary conditions for reaching an
optimal solution, that minimizes the total cost for order execution.

Chapter two introduced the Volume Weighted Average Price (VWAP), a widely
used and relatively simple algorithmic trading benchmark. VWAP executes orders
based on historical price and volume data and is frequently employed by
institutional investors due to its transparency and ease of implementation.

In the third chapter, the core of this thesis, the Chriss model and the VWAP were
set to compete against each other, carrying out a comparative performance analysis
focused on cost efficiency in each market scenario.

The comparative analysis accurately recreated the Chriss optimization model
procedure and compared it to the VWAP approach, both dynamically (fixed market
size and evolving time intervals) and statically (fixed time interval and increasing
market sizes). The VWAP was performed both by Monte Carlo simulation method
and by using historical data, on daily trading volumes and prices for US equity
securities, obtained from the Bloomberg Terminal.

The results of this thesis research show that the Chriss model outperforms
VWAP in terms of cost efficiency within illiquid markets, whereas VWAP
proves more cost efficient in liquid market environments.

All simulations, empirical analyses and statistical tests were carried out using the

R-Studio software.
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Annex

The original code provided by Neil A. Chriss’ in his Research Paper titled “Optimal
Position-Building Strategies in Competition”. In this case the following code in
Wolfram Mathematica is used to solve the two-traders symmetric equilibrium in for

the Chriss model including volatility and traders’ risk preferences as in section 1.6.

(* Define constants #)
A =5;
k = 53
o = 0.5; (¥ Increased wvalue for effect *)
(* Define the system of differential equations *)
solveSystem[&,_, &_] := Module[{eqns, bcs, sol, aSol, bSol},
eqns = {
a”[t] == -(A/2) (b"[t] + & b'[t]) + & o alt],
b”[t] == -(1/(2 X)) (2"[t] + & a'[t]) + (&/X*) o° blt]
3
bcs {af[0] == 0, a[1] == 1, b[0] == 0, b[1] == 1};

sol DSolve [{eqns, becs}, {altl, b[tl}, tl;
{alt] /. sol[[1]11, blt] /. sol[[1]11}
U8

(¥ Define the grid of & and & values, multiplied by 3 *)
xiValues = {

{{1.5, 1.5}, {10, 10}, {50, 503},

{{10, 1.5}, {50, 1.5}, {200, 1.5}},

{{1.5, 10}, {1.5, 50}, {1.5, 200}}
};

(*# Generate the 3z3 grid of plots *)
gridPlots = Grid[Tablel[
Module [{aSol, bSol, & = xiValues[[i, j, 111, & = xiValues[[i, j, 211},
{aSol, DbSol} = solveSysteml[&, &1J;
Plot [{aSol, bSoll}, {t, 0, 1},
PlotLegends -> {"a(t)", "b(t)"},
PlotStyle -> {Blue, Red},
Frame -> True,

FrameLabel -> {{"a(t), b(t)", "k=" <> ToStringlk] <>
", A=" <> ToStringl[Al}, {"t", "\(\xi_a=\)" <> ToStringl[&] <>
", \(\xi_b=\)" <> ToStringl[&] <> ", o=" <> ToStringlol}},

PlotRange -> {{0, 1},{0, 2.5}}]
1, {i, 1, 3}, {j, 1, 3}], Frame -> All
U8

(* Display the grid of plots #)
gridPlots
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