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ABSTRACT 
 
 

In the world of financial markets each day bullish and bearish investors determine 

with their trading activity in opposite directions the equilibrium price at which a 

security is exchanged. This dynamic interaction generally determines a fair market 

price under the standard law of supply and demand. 

However, the presence of concerted trading activity can significantly distort this 

equilibrium, leading traders to experience higher than optimal execution costs.  

A practical example of this phenomenon is the case of an institutional 

investor executing orders of large volume for a single security. Due to the 

substantial size of these trades, the price of the security may exert a direct and 

noticeable impact, especially in illiquid markets, where the market impact on the 

security price tends to persist over time.  

The effectiveness of a trading strategy hinges on its adaptability to competitive 

market conditions, particularly distinguishing between liquid and illiquid market 

environments. In this context, the need for a tailored order execution strategy for 

each scenario becomes essential to reduce market impact. 

Therefore, the primary objective of this thesis is to address the problem of optimal 

trading strategies under competition, aiming to achieve the most cost-efficient 

trading strategy for each market condition. 

In the first chapter a mathematical framework developed by mathematician and 

hedge fund manager Neil A. Chriss will be presented and analyzed in detail. 

The second chapter will delve into standard trading approaches such as moving 

averages and the volume weighted average price VWAP, the latter is commonly 

used as a benchmark by institutional investors for order execution. 

The third chapter, the core of this thesis, will analyze and evaluate for cost 

efficiency the optimal trading strategies obtained by the Chriss model and by the 

VWAP approach in both liquid and illiquid scenarios. 

The VWAP will be performed both by Monte Carlo simulation method and by using 

historical data, on daily trading volumes and prices for US equity securities, 

obtained from the Bloomberg Terminal. 

All the research part, necessary to obtain these results, that are pivotal of this work, 

was done using the software R-Studio.  

(The coding and programming .R-files can be provided, upon request) 
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1. Introduction of the Chriss model 
 

1.1 Preliminaries 

 

Notation: Traders are indicated with capital letters A,B,C…..etc. instead trading 

strategies are indicated with lowercase letters a,b,c……..etc. 

𝑎̇ = !"
!#

  the first derivative of the trading strategy w.r.t time 

𝑎̈	= !
!"
!#!

 the second derivative of the trading strategy w.r.t time 

 

Definition of a Trading strategy: 

A trading strategy x(t) is a C2 (continuous and twice differentiable) function of time, 

that describes the units of stocks held by a trader at each time t, between the starting 

time t = 0 to the end time t = 1. 

 

There are several important types of trading strategies and here is non-exhaustive 

list for a strategy x(t): 

 

• Liquidation: Strategies for which x(0) > 0 and x(1) = 0, in other words a strategy 

that starts with a positive quantity of stock and ends with none.  

• Position-building: Strategies for which x(0) = 0 and x(1) > 0. 

• Unit: When a trader seeks to acquire a single unit of stock, λ = 1. 

• λ-Scaled: Position-building strategies whose rate of trading is scaled by a 

constant λ > 1 at each time t Î [0,1]. 

 
 

Figure 1: Example of a trading strategy y(t) = t2  
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Note that scaled trading strategies represent strategies that have the "shape" of unit 

position strategies, but which are scaled at each time t by a fixed constant λ > 1. 

𝑦(𝑡) = 	λ	
𝑦(𝑡)
λ	 = 		λ	b(t) 

This means that for a λ-scaled strategy b(t), its trajectory is λ · b(t), while its shape 

is given by b(t).  

Definition of a Trading Trajectory: 

A trading trajectory is the path that a trading strategy takes from the starting time 

x(0) to the end time x(1). It can be graphed on a two-dimensional space and can 

assume different shapes. 

 

There are three basic shapes all of which have constant sign of second derivative:  

 

• Risk-neutral: Strategies for which 𝑥̈(t) = 0 for all t Î [0,1] this represents a 

straight line of the form 𝑥(𝑡) = 𝑥(0) + λt. Given the starting condition x(0) = 

0, then a risk neutral λ-Scaled trading strategy is of the form 𝑥(𝑡) = 	0 + λt for 

some λ > 0. This can be referred as a passive order execution benchmark. 

• Risk-averse: Strategies for which 𝑥̈(t) > 0 for all t Î [0,1] this is a convex curve. 

For example, the function x(t) = λ𝑡!passing through the interval t Î [0,1] 

• Eager: Strategies for which 𝑥̈(t) < 0 for all t Î [0,1] this is a concave curve. 

For example, the function x(t) = λ√𝑡 passing through the interval t Î [0,1] 
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Figure 2: A visual representation of the three trading trajectories for risk 
preferences. The blue line is a 45o sloped line x(t) = t, with λ = 1 it is considered 
the risk neutral passive execution benchmark. Both eager (red curve) and risk-
averse (green curve) belong to the family of functions x(t) = ta with 0 < a < 1and 
par for the eager (concave curve); while a > 1and par for the risk-averse (convex 
curve). 

 

• Bucket: bucket strategies acquire more than their target quantity immediately 

after the start time and then sell down to their target quantity as close to the 

completion time as possible. 

• Barbell: a barbell strategy buys a portion of its target quantity at the very start 

of trading and the remaining amount very close to the end of trading.  

 

 
 

Figure 3: Example of bucket and barbell strategies. 

 

 

1.2 Market impact 

 

In financial markets, asset prices are influenced by the continuous interaction of 

market participants placing trading orders. Formally, the trading activity can be 

divided into two broad categories: 

 

• Noise Trading: This represents background trading activity by a large number 

of participants. It is assumed to occur persistently and randomly, with no net 

impact on the price of the asset. 
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• Concerted Trading: This refers to trading by one or more agents in a deliberate 

and directional manner (e.g., continuously buying or selling over a short time 

window), which is expected to move the price in the direction of trading. 

 

Building on this clear differentiation between noise trading and concerted trading, 

the core challenge faced when implementing an optimal trading strategy in a 

competitive setting can be introduced.  

 

Definition of Market impact:  

The price deviation directly caused by trading activity that influences 

both execution costs and overall market dynamics. This phenomenon arises not 

only in illiquid environments but also in highly liquid and competitive markets, 

where factors such as trading speed, order size, and informational asymmetries can 

significantly amplify its effects. 

 

The main components of the market impact: 

Definition of Temporary Market Impact:  

It is the immediate price deviation caused by a trader’s execution rate at a given 

point in time. It affects the execution price only momentarily and does not 

persist beyond the instant of the trade. Therefore, it is only a short run phenomenon, 

the asset’s price will revert back to its long run mean equilibrium level. 

Economic Interpretation: Temporary impact reflects the premium paid for 

immediacy in execution, the liquidity premium. 

Without Competition (Trader A only): Let 𝑎̇(t)	be the trading rate of trader A at 

time t. Then the instantaneous temporary cost is proportional to 𝑎̇(t) and  

Temporary Cost for trader A = 𝒂̇𝟐(t) 

With Competition (Trader A and Trader B trading concurrently): Let b˙(t) be the 

trading rate of trader B. Then the instantaneous temporary cost for trader A 

becomes: Temporary Cost for trader A = [𝒂̇(t) + 𝒃̇(t)] 𝒂̇(t) 

 

Definition of Permanent Market Impact: 

It is the lasting long run price movement caused by the cumulative trading activity 

over time. It reflects the sustained pressure that trading places on the market, and it 

persists as long as the position is being built. 
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Economic Interpretation: Permanent impact represents the market’s adjustment 

to persistent demand or supply changes. 

Without Competition: Let a(t) be the cumulative position of trader A at time t. 

Then the instantaneous permanent cost is proportional to a(t) and  

Permanent Cost for trader A = a(t) 𝒂̇(t) 

With Competition: Let b(t) be the cumulative position of trader B. Then the 

instantaneous permanent cost for trader A becomes: 

Permanent Cost for trader A = [a(t)+ b(t)] 𝒂̇(t) 

After defining the precise mathematical expressions for the market impact cost 

components, both in competition and in absence of it; it is important to understand 

from a practical perspective, what are the main real world scenarios in which market 

impact could play a significant role. Two distinct scenarios come to light; yet, 

despite their contrasting nature, both are characterized by a pronounced market 

impact on the asset’s price driven by trading activity. 

 

 

Scenario: 1 Institutional Investor Trading 

 

An institutional investor trading a large quantity of a given asset may 

significantly affect its price. This can occur in an illiquid market, such as certain 

segments of the blockchain space where large trades may encounter wide bid-ask 

spreads and limited volume on the order book.	For example, executing a large 

position in a lesser-known cryptocurrency can significantly and persistently impact 

its price, irrespective of underlying fundamentals.  

Alternatively, even within a liquid market, an institutional trader may target 

an illiquid asset, such as a thinly traded corporate bond or an equity with low float. 

The attempt to exit a large position rapidly as in the case of a dumping can have a 

disproportionate and lasting impact on the asset market price, distorting it far from 

any fair value benchmark.  

In both cases, the concentration of trading activity whether due to market structure 

or supply dominance produces both permanent and temporary market impact, 

necessitating sophisticated trading strategies to minimize execution costs and 

slippage. 
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Scenario: 2 Coordinated Retail Trading and Behavioral Dynamics 

 

In contrast to institutional dominance, large-scale market impact can also result 

from the coordinated actions of numerous small traders. These behaviors are 

often studied within the framework of Behavioral Finance, which examines how 

psychological and social forces influence trading decisions. Two primary examples 

of coordinated retail behavior include: 

• Flight to Safety: During periods of macroeconomic uncertainty or crisis, 

investors collectively abandon risky assets in favor of perceived "safe havens" 

such as U.S. Treasury bonds or gold. A clear example occurred in March 2020, 

as the outbreak of COVID-19 triggered panic selling in equity markets and a 

simultaneous surge in demand for Treasuries. Though no single trader moved 

the market, the aggregated reaction of many small players caused significant 

asset price shifts. 

• Sentiment Trading: This occurs when investor behavior is driven by emotion, 

crowd psychology, or viral social media narratives rather than fundamental 

analysis. A notable case is the GameStop (GME) short squeeze in early 2021. 

Coordinated through social platforms like Twitter-WallStreetBets, retail 

investors collectively bought shares and call options, driving the price from 

under $20 to nearly $500 in a matter of weeks. Causing short-positioned hedge 

fund Melvin Capital to lose over $6.8 billion and require a $2.75 billion bailout 

credit from Citadel. This episode outstandingly remarks how sentiment driven 

coordination can generate extreme market impact, rivaling or even 

exceeding that of large institutional trades. 

These examples underscore that market impact is not solely a function of single 

trade size, but also of timing, coordination, market structure, and investor 

psychology. Understanding in detail both temporary and permanent components of 

the market impact is therefore critical when designing optimal trading strategies, 

particularly when trading in highly competitive or unstable environments. In such 

scenarios, each trader must navigate not only the effects of their own trades but also 

the interactive impact caused by the actions of others. The goal is to minimize the 

total cost of trading compared to a hypothetical unperturbed price path i.e., 

the price that would have prevailed in the absence of concerted trading. 
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1.3 Total cost functions & Sensitivity 

Recall the mathematical expressions introduced in section 1.2 for the market impact 

components for trader A, competing with trader B we have: 

Temporary Cost for trader A = [𝑎̇(t) + 𝑏̇(t)] 𝑎̇(t) 

Permanent Cost for trader A = [a(t)+ b(t)] 𝑎̇(t) 

Starting from these expressions, it is finally possible to derive a unique 

mathematical expression for the total cost of trading which incorporates both the 

temporary and permanent market impact components, under the influence of the 

predominant k-regime, in competition. 

 

Instantaneous Total Cost of Trading for trader A in competition with trader B: 

µ [𝑎̇(t) + 𝑏̇(t)] 𝑎̇(t) + k [a(t)+ b(t)] 𝑎̇(t) 

 
 

 

 

 
With k called market impact coefficient: k > 0 always, more details on this key 

coefficient will be explained in the next section: 1.4 K-regimes. 

 

The same reasoning holds for trader B, the Instantaneous Total Cost of Trading for 

trader B is proportional to: 

[𝑎̇(t) + 𝑏̇(t)] 𝑏̇(t) + k [a(t)+ b(t)] 𝑏̇(t) 

Focusing on the temporary market impact component, it is useful to understand the 

impact that the trading direction of A and B, sign of first derivatives w.r.t. time 

𝑎̇(𝑡)and	𝑏̇(𝑡) have on the temporary component of the total cost function of A: 

 

Temporary 
component 

Permanent 
component 
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Then, the average cost of trading for the trading window that starts at t = 0 and ends 

at t = 1, for trader A in competition with trader B, will be the integral of the 

instantaneous total cost of trading expression. Assuming both traders use a unit 

trading strategy: 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑇𝑜𝑡𝑎𝑙	𝑐𝑜𝑠𝑡 = 	D[𝑎̇(t) 	+	 𝑏̇(t)]	𝑎̇(t) 	+ 	𝑘	[a(t) + 	b(t)]	𝑎̇(t)
#

$

𝑑𝑡 

 

If instead trader B uses a λ-scaled strategy, having λ > 0 then the expression is 

modified as in the next expression: 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑇𝑜𝑡𝑎𝑙	𝑐𝑜𝑠𝑡	𝑓𝑜𝑟	𝑡𝑟𝑎𝑑𝑒𝑟	𝐴: CA 

C(𝑎λ; 𝑏λ; 𝑘; λ) = 1[𝑎λ̇(t) 	+ 	λ𝑏λ̇(t)]	𝑎λ̇(t) 	+ 	𝑘	[𝑎λ(t) +	λ𝑏λ(t)]	𝑎λ̇(t)
1

0

𝑑𝑡 

 

The same reasoning holds for trader B, 𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑇𝑜𝑡𝑎𝑙	𝑐𝑜𝑠𝑡	𝑓𝑜𝑟	𝑡𝑟𝑎𝑑𝑒𝑟	𝐵: CB 

C(𝑏λ; 𝑎λ; 𝑘; λ) = 1[𝑎λ̇(t) 	+ 	λ𝑏λ̇(t)]	𝑏λ̇(t) 	+ 	𝑘	[𝑎λ(t) +	λ𝑏λ(t)]	𝑏λ̇(t)
1

0

𝑑𝑡 

 

Considering now S as the set of all trading strategies which follow the mathematical 

properties described before. 

 

S = {𝑎: [0,1]	®	𝑅	|	𝑎(0) = 0, 𝑎(1) = 1, 𝑎	̈ 𝑒𝑥𝑖𝑠𝑡} Í C2 {[0,1]} 

 

Now assuming to assign the set S with a probability measure m, then the expected 

cost of trading for trader A with respect to the measure m as: 

E[C|S] = ∫ 𝐶	(𝑎$; 𝑏$; 𝑘; λ)𝑑𝑚%"Î	'
 (v) 

= D
𝑏λÎ	𝑆

		D[𝑎(̇(t) 	+ 	λ𝑏(̇(t)]	𝑎(̇(t) 	+ 	𝑘	[𝑎((t) +	λ𝑏((t)]	𝑎(̇(t)
#

$

𝑑𝑡 

 

With: 𝑏( = 	v	then	𝑑𝑚(v) = 𝑑𝑚	(𝑏() 

 

 dm	
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And the corresponding variance:  

 

Var[C|S] = E[C2|S] - E[C|S]2 

 

 

Therefore, since total costs can be modeled as a random variable, it can be useful 

to perform a sensitivity analysis on the average total cost expressions. This will give 

insights on how structurally total costs reacts to changes in k (market impact) and λ 

(size) 

 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	𝑜𝑓	𝑡𝑟𝑎𝑑𝑒𝑟	𝐴	𝑡𝑜𝑡𝑎𝑙	𝑐𝑜𝑠𝑡	𝑜𝑓	𝑡𝑟𝑎𝑑𝑖𝑛𝑔	𝑓𝑜𝑟	λ = 		
𝑑𝐶(𝑎; 𝑏, λ, 𝑘)

𝑑λ  

 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	𝑜𝑓	𝑡𝑟𝑎𝑑𝑒𝑟	𝐴	𝑡𝑜𝑡𝑎𝑙	𝑐𝑜𝑠𝑡	𝑜𝑓	𝑡𝑟𝑎𝑑𝑖𝑛𝑔	𝑓𝑜𝑟	𝑘 = 		
𝑑𝐶(𝑎; 𝑏, λ, 𝑘)

𝑑k  

 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	𝑜𝑓	𝑡𝑟𝑎𝑑𝑒𝑟	𝐵	𝑡𝑜𝑡𝑎𝑙	𝑐𝑜𝑠𝑡	𝑜𝑓	𝑡𝑟𝑎𝑑𝑖𝑛𝑔	𝑓𝑜𝑟	λ = 		
𝑑𝐶(𝑏; 𝑎, λ, 𝑘)

𝑑λ  

 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	𝑜𝑓	𝑡𝑟𝑎𝑑𝑒𝑟	𝐵	𝑡𝑜𝑡𝑎𝑙	𝑐𝑜𝑠𝑡	𝑜𝑓	𝑡𝑟𝑎𝑑𝑖𝑛𝑔	𝑓𝑜𝑟	𝑘 = 		
𝑑𝐶(𝑏; 𝑎, 𝜆, 𝑘)

𝑑𝑘
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The following results, summarized on tables 1 and 2, are taken from Neil A. Chriss’ 

Research Paper titled “Optimal Position-Building Strategies in Competition” 

 

 
 
 

Table 1: Pairs of market impact costs for the linear unit strategy a(t), in two-trader 
equilibrium strategies for λ = 5 and various κ values. Each pair of rows shows the 
temporary, permanent and total market impact costs for strategy a(t) that differ only 
in a 25% shift in the value of κ. 
 
 

 
 
 

Table 2: Pairs of market impact costs for the linear unit strategy a(t), in two-trader 
equilibrium strategies for λ = 25 and various κ values. Each pair of rows shows the 
temporary, permanent and total market impact costs for strategy a(t) that differ only 
in a 25% shift in the value of κ. 
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These results lead to several important conclusions. In both tables, as predicted by 

theory, an increase in the market impact coefficient k results in higher total costs. 

However, the total difference in each groups tends to stabilize to a -25% for large 

levels of k. This is a significant empirical finding: it indicates that when market 

impact becomes more pronounced (i.e., at high k values), the Chriss optimization 

model is able to effectively stabilize average total trading costs arising from market 

impact and order size. 

In other words, the Chriss model's total cost structure exhibits lower sensitivity 

to estimation errors in k when operating in a high k-regime. This suggests a 

form of robustness in more illiquid markets or in other high market impact 

scenarios. 

 

Moreover, when analyzing subsets within the same k level for example for k = 

(0.375,0.5) but with different trade sizes λ (i.e., λ = 5 in table 1 versus λ = 25 in 

table 2), the percentage difference in total costs becomes significantly larger for the 

higher trading size. Specifically, the cost difference is -30.90% for λ = 25, 

compared to just -6.60% for λ = 5. 

This confirms that the model’s sensitivity to errors in the market impact 

parameter k increases with order size λ. However, this increased sensitivity is 

primarily observed in low k-regimes; as previously discussed, the Chriss model 

demonstrates greater cost stability and reduced sensitivity under high k-regimes. 
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1.4 K-regimes 

 

Introduction 

 

A significant portion of the analysis in this thesis focuses on the structure of the 

cost functions introduced earlier and their influence on the form of optimal trading 

strategies under competitive conditions. Central to this investigation is the 

parameter k, which appears in the Chriss model total trading cost expressions and 

governs the relative weight of permanent versus temporary market impact. 

 

The k coefficient encapsulates the proportion of execution cost attributable 

to permanent market impact, as opposed to temporary impact.  

It emerges as a critical parameter in the optimization framework for trading in 

competition. Notably, in the context of optimal execution problems against a 

passive risk neutral trader, in other words those without competition, permanent 

impact is considered negligible or irrelevant and thus omitted from the optimization 

process altogether. A mathematical proof of this assertion will be presented later on 

in section 1.5 Passive vs Active optimization. 

 

However, when multiple active traders are simultaneously building positions in the 

same asset, the role of permanent market impact becomes not only relevant 

but central to strategic decision-making. 

In order to understand its influence more clearly, it is useful to introduce the concept 

of k-regimes, which classify the market environment based on the dominance 

of temporary or permanent impact in the total cost function.  

These regimes provide an intuitive and formal lens through which to interpret how 

variations in k, shape optimal trading behavior. 

 

Definition of k-regimes 

K-regimes describe how the cumulative trading cost is distributed between its 

temporary and permanent components: 
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• When k < 1, particularly in the limit where 0 <	k << 1, the total trading cost 

is dominated by the temporary market impact component. In such 

settings, traders prioritize minimizing the costs associated with aggressive 

execution, the instantaneous price pressure caused by rapid trading. As a 

result, optimal strategies tend to resemble a risk-neutral execution paths, 

spreading the volume of trades more evenly over the trading window. 

and paying less attention to the future price trajectory caused by 

accumulated position. 

 

• Conversely, when k > 1, and especially when k >> 1, the cost structure 

becomes dominated by permanent market impact. In this regime, the 

trader’s concern shifts toward the long-term consequences of their own and 

their competitors’ cumulative order flow. Since each additional unit traded 

contributes to a persistent long-lasting shift in price, it becomes 

strategically advantageous to trade ahead of others, “First mover 

advantage” executing larger volumes earlier to avoid adverse price moves 

caused by aggregate demand. The resulting trading profiles are 

characteristically eager, front-loaded, and exhibit a more pronounced 

deviation from the risk-neutral baseline. 

 

 

This crucial distinction between k-regimes not only completes the Chriss 

framework modeling capability for optimal trading execution in competitive 

contexts; but also emphasizes how the balance between temporary and 

permanent impact fundamentally alters the incentives driving a trader 

behavior. The shape and efficiency of a trading strategy are tightly linked to the 

prevailing k-regime, and optimizing accordingly can yield substantial cost savings 

over naïve or benchmark-based approaches, especially under the previously 

described scenarios number 1 and 2 
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1.5 Passive vs Active optimization 

 

Introduction 

 

In this section the mechanism of the optimization process under the Chriss model 

will be presented. Moreover, this section will start with the simple two-trader 

equilibrium without competition, then it will arrive at the most complex case which 

is the multi-trader equilibrium in competition. 

Ther main idea behind the Chriss optimization model is to find the strategy 

which minimizes the total cost of trading, driven by both temporary and 

permanent market impact components. 

 

Two-trader Chriss model optimization without competition 

 

In this situation two traders A and B are trading without considering the impact that 

the other trader’ orders will have on the asset price. Therefore, both traders assume 

that the market impact is only caused by their own trading activity and that the 

opponent party trading activity is negligible in terms of market impact. 

This situation can also be called passive optimization problem, since the optimal 

trading solution is obtained against risk neutral trading strategy (unitary λ = 1 or λ-

scaled λ > 1), a passive benchmark. 

Moreover, with its trading activity the large institutional investor is expected to 

impact the price of the asset mainly through the temporary cost component, in a 

liquid market. 

Recalling the mathematical expressions for the market impact components, under 

no competition, from section 1.2 

Permanent Cost for trader A = a(t) 𝑎̇(t) 

Temporary Cost for trader A = 𝑎̇!(t) 

 

It will now be proven mathematically that, under the Chriss model 

optimization process applied to this passive scenario, the permanent cost 

component of the market impact vanishes. 
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Statement: 

 

Given the set of all eligible trading strategies, set of possible solutions: 

S = {𝑎: [0,1]®	𝑅|𝑎(0) = 0, 𝑎(1) = 1, 𝑎	̈ 𝑒𝑥𝑖𝑠𝑡}  

 

𝑚𝑖𝑛"Î' of {LA} = min {𝑎̇*(t) + k a(t) 𝑎̇(t) + λ s2 𝑎̇*(t)} 

s.t. a(0) = 0 and a(1) = 1 

 

The Chriss model optimization applied to a passive scenario has as solution aÎ S, 
the trading strategies of the form:  

a(t)	=	+,-.(s#)
+,-.(s)

	;	with	s = √λ	s	

	
Proof: 

 

Instantaneous total cost of trading for trader A, called also Loss function: 

LA = 𝑎̇!(t) + k a(t) 𝑎̇(t) + λ s2 𝑎̇!(t)  

Where: λ s2 𝑎̇!(t) is accounting for the risk aversion preference, it is a component 

depending directly on the volatility of the asset an on the size component λ. 

From an economical perspective it represents the risk of holding the asset, due to 

price movements, during the trading window. 

At this point the target of the Chriss optimization model will be to minimize the 

loss function LA with boundary conditions a(0) = 0 and a(1) = 1, which ensure that 

trading must occur. 

 

When averaging using the integral expression of the instantaneous total cost of 

trading it becomes:  

 

𝑚𝑖𝑛"Î' of {∫ 𝐿!
"
# } = min {∫ 𝑎̇$(t) 	+ 	𝑘	a(t)	𝑎̇(t) 	+ 	λ	s$	𝑎̇$(t)"

# 	𝑑𝑡} 

s.t a(0) = 0 and a(1) = 1 

 

{ 
 

{ 
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In order to efficiently solve this, instead of computing directly the integral 

expression, it is useful to use a fundamental tool in the calculus of variations for 

constrained optimization problems: 

 

The Euler-Lagrange formula: 

 

𝑑𝐿1
𝑑a

−
𝑑
𝑑t
L
𝑑𝐿1
𝑑𝑎̇

M = 0 

 

Then by computing the necessary derivatives: 

 

𝑑𝐿1
𝑑a

= 	𝑘𝑎̇(t) + 2λ	s*𝑎(t) 

𝑑𝐿1
𝑑𝑎̇

= 2𝑎̇(t) + 𝑘𝑎(t) 

𝑑
𝑑t
L
𝑑𝐿1
𝑑𝑎̇

M = 2𝑎̈(𝑡) + 𝑘𝑎̇(t) 

 

Applying Euler-Lagrange equation:  

 

	𝑘𝑎̇(t) + 2λ	s*𝑎(t) − [2𝑎̈(𝑡) + 𝑘𝑎̇(t)] = 0  

	𝑘𝑎̇(t) + 2λ	s*𝑎(t) − 2𝑎̈(𝑡) − 𝑘𝑎̇(t) = 0  

2λ	s*𝑎(t) − 2𝑎̈(𝑡) = 0	 

𝑎̈(𝑡) − λ	s*𝑎(t) = 0	 

 
The permanent cost component of the market impact has disappeared, proving 

that in a passive optimization process under the Chriss model, or equivalently 

under no competition, a trader must focus only on the temporary cost 

component of the market impact. 

 

𝑎̈(𝑡) − λ	s*𝑎(t) = 0	 

s.t. a(0) = 0 and a(1) = 1 

 

{ 
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Optimal trading strategy under Chriss model for a two-trader passive scenario: 

a(t) = +,-.(s#)
+,-.(s)

 ; with s = √λ	s ; where: sinh(hyperbolic	sin) = )!(#)*)!(#)

!
  

 

Since this optimization problem starts with the assumption of no competition, each 

trader thinks that the other trader’s orders will not have an effect on price, therefore 

market impact is only due to the temporary component of their own trading activity, 

depending highly on the total size λ. 

In this situation the optimal trading strategy is to deploy a λ-scaled risk-averse 

trading trajectory which has 𝑎̈(t) > 0 for all t. It is a convex set of solutions 

depending on the parameter of risk aversion: volatility s. 

 

 
 
Figure 4: A graphical representation of the λ-scaled risk-averse trading trajectories 
As s (volatility) increases, the trajectories become more convex moving away to 
the right of the red dashed line, which is representing the benchmark risk neutral 
trading trajectory. 
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Two-trader Chriss model optimization with asymmetric competition 

 

In this situation, both trader A and trader B are executing trades on the same stock 

within the same trading window, with trader B employing a λ-scaled strategy. 

However, there exists a competitive asymmetry: trader B is a passive market 

participant who can adopt any form of λ-scaled trading strategy whether risk-

averse, risk-neutral, or risk-seeking.  

Moreover, trader B lacks any information regarding trader A’s execution activity. 

Once a specific λ-scaled strategy is selected, it remains fixed for the entire trading 

window without any adaptive adjustments.  

Consequently, B is trading passively with respect to A. 

Conversely, trader A is an active participant who, upon acquiring information about 

B’s trading activity, adjusts their strategy accordingly by employing a best-response 

optimization approach.  

 

From a financial perspective, this scenario mirrors a competitive dynamic between 

institutional market participants, where one trader possesses an informational 

advantage over the other. 

Setting aside the illegal practice of insider trading, a comparable real-world parallel 

emerges in the distinction between mutual funds and hedge funds.  

Mutual funds and hedge funds differ significantly in terms of the flexibility of their 

investment mandates and more broadly, the regulatory frameworks governing their 

disclosure requirements, particularly concerning their investment strategies.  

Mutual funds, designed to cater to retail investors, are subject to stringent 

regulations aimed at protecting this category of investors. On the other hand, hedge 

funds are structured for sophisticated investors and, as a result, are permitted to 

implement high-return speculative strategies without being legally required to 

disclose them publicly.  

This discrepancy in mandate flexibility and consequently in the ability to 

rapidly adjust investment strategies, can create a competitive advantage for 

hedge funds over mutual funds when both entities are competing for the same 

asset at the same time. 
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The mathematical optimization problem of the Chriss model becomes in this case:  

 

𝑚𝑖𝑛"Î' {[𝑎̇(t) 	+ 	λ𝑏̇(t)]	𝑎̇(t) 	+ 	𝑘	[𝑎(t) + 	λb(t)]	𝑎̇(t)} 

s.t. a(0) = 0, b(0) = 0, a(1) = 1 
 

Applying the Euler-Lagrange equation: 

 

2𝑎̈(𝑡) + λ𝑏̈(𝑡) + 𝑘𝑎̇(𝑡) + 𝑘λ𝑏̇(𝑡) − 𝑘𝑎̇(𝑡) = 0 

𝑎̈(𝑡) = 	−
λ
2
[𝑏̈(𝑡) + 𝑘𝑏̇(𝑡)] 

At this point of the optimization, trader A will use the information advantage and 

substitute for b(t), 𝑏̇(𝑡)	and 𝑏̈(𝑡) the appropriate expression. 

 

There could be three possible cases: 

1. B employs a λ-scaled risk averse trading strategy, which has  𝑏̈(t) > 0 

2. B employs a λ-scaled risk neutral trading strategy, which has 𝑏̈(t) = 0 

3. B employs a λ-scaled risk seeking trading strategy, which has 𝑏̈(t) < 0 
 

Let’s see the final expressions once all the substitutions are done: 

• For case 1 B risk averse, the optimal best response trading strategy of A is: 

q(t) = +,-.(s#)
+,-.(s)

+ 2
s
	34+.(s#)
34+.(s#)

 

𝑎(𝑡) = 	−
λ
2
𝑞(𝑡) + P1 +

λ
2
[𝑞(1) − 𝑞(0)]Q 𝑡 +

λ
2
	q(0)	 

• For case 2 B risk neutral, the optimal best response trading strategy of A is: 

𝑎(𝑡) = L1 +
λk
4
M 𝑡* +

λk
4
𝑡 

• For case 2 B risk seeking, the optimal best response trading strategy of A is: 

													𝑎(𝑡) = 	
𝑒5$#{𝑒$(λ − 𝑘) − 𝑡𝑒$#(λ − 𝑘 + 2) + 𝑒$(#67)[𝑘 − λ + t(λ − 𝑘 + 2)]}

2(e5$ − 1)
 

 

𝑏(𝑡) = 	 )
%#*#

)&%*#
	λ-scaled eager trading strategy of B 

 

{ 
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It is useful to analyze graphically each case: 

 

 
Figure 5: These figures represent the trading trajectories of case 1 in a low k-regime, 
k ranging from 0.05 to 0.25, for different increasing levels of λ, y = t is the risk 
neutral passive benchmark. 

 

 

 
Figure 6: These figures represent the trading trajectories of case 1 in a high k-
regime, k ranging from 2 to 10, for different increasing levels of λ, y = t is the risk 
neutral passive benchmark. 
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From both figures clearly the best response trading strategy of trader A, optimized 

using the Chriss model, has the trajectory of an eager strategy for which 𝑎̈(t) < 0 for 

all t, mathematically a(t) it’s always a concave function of time.  

From a financial perspective A knows that B is trading using a risk averse trading 

strategies and anticipates it. The larger k, the more significant will be the market 

impact of both traders’ orders on the asset’s price, therefore the more eager will be 

the trading strategy of A, buying large volumes to get ahead of B before the price 

of the asset increases too much. 

 

Figure 7: The following figures represent the trading trajectories of case 2. for k 
ranging from 0.05 to 25, while keeping λ constant. Where trader B is always using 
a risk neutral trading strategy, in fact the dashed line representing the passive 
benchmark y = t coincides with the trading trajectories b(t). 
 
 

 
Also in this case, trader A best response to trader B is to trade aggressively using 

an eager trading trajectory, which is increasingly eager as the scenario enters in a 

high k-regime. 

 

Moreover, for both cases: 

 

• B trading using a risk averse trading strategy 

• B trading using a risk neutral trading strategy 
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A best response under the Chriss model for the two-trader optimization with 

asymmetric competition can be generalized to deploy always an eager trading 

strategy which must be directly proportional to k. 

 

Figure 8: The following figures represent the trading trajectories of case 3, k ranging 
from 0.1 to 25 while λ ranging from 1 to 25, y = t is the risk neutral passive 
benchmark. 
 

 
 

When B uses a b(t) eager trading strategy the best response of A can’t be 

generalized as in the previous two cases but rather depends on highly on the single 

scenarios simulated. For scenarios in which there is a small market impact 

coefficient k < 1 and where the impact of the eager trader B is low λ =1, trader A 

optimal trading trajectory is to be risk averse. As λ ­Þ b(t) will mainly influence 

the instantaneous total cost function, then the best response of A will be to short 

sell initially and buy once the price has dropped, toward the ending of the trading 

window. When instead A faces an extremely high k-regime, with k > 2.5 ; λ	< 10, 

the optimal strategy is to be more eager than trader B, buying more volume than 

necessary and selling it once the price has increased, primarily due to the impact of 

k on the instantaneous total cost function.  
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As also λ­, it counterbalances the effect of an high k-regime and A in some cases, 

(when k = λ)	deploys as best response, a trading strategy which is risk neutral, for 

example in scenarios: k = λ = 10 and k = λ = 25 

 

Two-traders Chriss model optimization under perfect competition 

 

In this situation, both trader A and trader B are executing trades on the same stock 

within the same trading window and both traders are actively optimizing their 

trading strategies with respect to each other. Trader B uses a λ-scaled trading 

strategy while A is using a unitary one.  

Moreover, there are no information asymmetries among them. In this scenario an 

important concept from Game Theory can be introduced, the so called Nash 

equilibrium: 

Definition of Two traders joint equilibrium (Nash equilibrium) 

Let A and B traders with strategies a(t) and b(t).  

Let 𝑎f(𝑡) be the best response to b(t) and 𝑏g(𝑡) be the best response to a(t). 

Then A and B are in equilibrium if and only if: 

𝑎f(𝑡) = 𝑎(𝑡) and 𝑏g(𝑡) = 𝑏(𝑡) 

 

Therefore, the Chriss model must be used to solve a joint optimization problem, to 

arrive at the Nash Equilibrium. 

min {LA and LB} 

s.t. a(0) = 0, b(0) = 0, a(1) = 1, b(1) = 1 

which becomes: 

min {[𝑎̇(t) 	+ 	λ𝑏̇(t)]	𝑎̇(t) 	+ 	𝑘	[𝑎(t) + 	λb(t)]	𝑎̇(t)}  

min {[𝑎̇(t) 	+ 	λ𝑏̇(t)]	λ𝑏̇(t) 	+ 	𝑘	[𝑎(t) + 	λb(t)]	λ𝑏̇(t)} 

                   s.t. a(0) = 0, b(0) = 0, a(1) = 1, b(1) = 1 
 

By applying the Euler-Lagrange equation, it is obtained the following ODE system:  

𝑎̈(𝑡) = − $
*
U𝑏̈(𝑡) + 𝑘𝑏̇(𝑡)V 

𝑏̈(𝑡) = − $
*$
W𝑎̈(𝑡) + 𝑘𝑎̇(𝑡)X 

With boundary conditions: a(0) = 0, b(0) = 0, a(1) = 1, b(1) = 1 

{ 
 

min 
 

{ 

 



 26 

 

Before deriving the final closed formula equilibrium solutions for the ODE system, 

under the Chriss model, it is useful to analyze two extreme cases: 

 

 

1) Market impact is driven only by the temporary cost component: 

ODE becomes: 

							𝑎̈(𝑡) = − $
*
	 𝑏̈(𝑡) 

𝑏̈(𝑡) = − $
*$

 

By applying the boundary conditions, the following equilibrium optimal solution 

are obtained:  

a(t) = t 

b(t) = t 

 
Therefore, in the absence of the permanent market impact component, both traders 

will focus on minimizing total cost of trading at each pint in time. The best way to 

achieve this is to spread the trading volume equally across the whole duration of 

the trading window. 

 

2) Market impact is driven only by the permanent cost component: 

𝐿1(𝑡) = 𝑘[(𝑎(𝑡) + 	λb(t)]𝑎̇(𝑡) 

𝐿8(𝑡) = 𝑘[(𝑎(𝑡) + 	λb(t)]λ𝑏̇(𝑡) 

 
Applying the Euler-Lagrange formula: 

𝑘𝑎̇(𝑡) + 𝑘λ𝑏̇(𝑡) = 0 

𝑘λ𝑎̇(𝑡) + 𝑘λ*𝑏̇(𝑡) = 0 
 

Dividing by k the first equation and by kλ the second one, the system reduces to the 

single equation: 

𝑎̇(𝑡) + 	λ𝑏̇(𝑡) = 0 

 

{ 

 

{ 
 

{ 
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By integrating both sides of the equation for some integration constant C, it 

becomes:  

a(t) = −λb(t) + C 
 

Given the boundary conditions: a(0) = 0, b(0) = 0, a(1) = 1, b(1) = 1 

 

substituting for t = 0  

 

a(0) = −λb(0) + C Þ 0 = 0 + C  Þ C = 0 

 

substituting for t = 1, knowing the integrating constant C = 0 

 

a(1) = −λb(1) Þ 1= −λ(1) Þ λ = 	−1 

which is not possible by construction of the Chriss model, λ must always be positive 

λ > 0! Therefore, the Chriss model optimization process in this case leads to no 

solution. 

By studying the limit as k ® +¥ of the original, it is possible to comprehend the 

behavior of the Chriss model in extremely high k-regimes. 

Figure 9: Representing the optimal trading trajectories for a(t) and b(t), for a joint 
optimization problem under high k-regimes. k ranging from 10 to 500, while λ is 
kept constant at 5. 

 

In this extreme high k scenarios, under a perfectly symmetric competition, 

trader A deploys a bucket shaped trading strategies while trader B, as best 

response to A, uses a barbel shaped trading strategies. 
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Intuitively the unit trader A prefers to get ahead of trader B, buying a volume bigger 

than the one needed mostly at the beginning of the trading window and then selling 

the excessive volume at the end of it. Instead, trader B that can trade for a  λ-scaled 

factor, prefers to partially buy a certain volume of its position at the beginning and 

then waiting to the very end of the trading window to cover the remaining volume.   

The closed formula expression, solution of the two-traders Chriss model 

optimization under perfect competition are the following: 

 
 
Figure 10: Plots of the optimal trading trajectories for the two-traders Chriss model 
optimization under perfect competition, k ranging from 0.05 to 75, while λ is kept 
constant to 5. y = t is the risk neutral passive benchmark. 
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As k ­ trader A uses an increasingly eager strategy, that at k = 75 resembles a bucket 

one. Instead, B starts with a risk neutral strategy for low k-regime scenarios that for 

k = 1 becomes risk averse, as k continues to increase the risk averse strategy 

becomes a barbel shaped trading strategy, spreading the position building activity 

at the extremes of the trading window. 

 

Multi-traders Chriss model optimization under perfect competition 

If there are n+1 unit traders A1,………,An+1 all trading in perfect competition, the 

instantaneous total cost function or loss function for trader Ai becomes: 

 

𝐿9(𝑡) = 	 𝑎̇9(𝑡)Y 𝑎̇:

;

:

(𝑡) + 𝑘𝑎9(𝑡)Y 𝑎̇:

;

:

(𝑡) 

 

With the following minimization problem: 

 

min {𝐿9(𝑡)} Þ min {	𝑎̇9(𝑡) ∑ 𝑎̇:;
: (𝑡) + 𝑘𝑎9(𝑡) ∑ 𝑎̇:;

: (𝑡)} 

s.t. ai(0) = 0, ai(1) = 1 , ai = aj for all i 

 
Applying the Euler-Lagrange equation: 

 

𝑎̈9(𝑡) = 	−
7
*
(	∑ 𝑎̈:;

:¹	9 + 𝑘∑ 𝑎̇:	;
:¹	9 ) ; ai(0) = 0, ai(1) = 1 , ai = aj for all i 

 
This is the multi-trader symmetric equilibrium equation. If all n+1 traders will trade 

identical optimal strategies in equilibrium by solving this equation simultaneously 

for all traders by setting λ = n: 

 

𝑎(𝑡) = 	
𝑒
$<
$6* 	L1 − 𝑒5

$<
$6*#M

𝑒
$2
$6* − 1

 

 

 

{ 
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By studying the limit as n® +¥ it is equivalent to let the size parameter of the 

Chriss model λ® +¥ in that case (+
(,!

	®	𝑘 then the limit becomes: 

 

𝑎9(𝑡) = 	
𝑒2 − 𝑒2(75#)

𝑒2 − 1
 

 

 

Figure 11: Plots of the optimal trading trajectories for the multi-traders Chriss 
model optimization under perfect competition, k ranging from 0.05 to 500, for 
different levels of λ. The red dashed line represents the risk neutral passive 
benchmark. 
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From the plots it can be seen clearly that for low k-regimes, where the temporary 

market impact cost component dominates, the optimal trading strategy for trader Ai 

is to follow a risk neutral trading trajectory. As k increases entering inside an high 

k-regime, where the permanent market impact component dominates the temporary 

one, the optimal strategy of trader Ai is to deploy an eager trading strategy that 

increases in a direct proportionality relation with the parameters k and  λ. 

 

However, when comparing the limit case scenario with both high k and λ, the shape 

of the trading strategy doesn’t resemble the bucket of the limit case seen previously 

under the two-traders Chriss model optimization in symmetric competition. 

 

This result is key to understand that treating a two-traders equilibrium scenario with 

a large λ, for the λ-scaled trader (B), as equal to the scenario with multiple unit 

traders, thinking that the size parameter will be split among them, is incorrect and 

will lead to different optimal trading strategies. 

Moreover, trader Ai before choosing between a two-traders or a multi-traders 

perfect symmetric optimization process, must know if in the market there is 

one large adversary or if there are many smaller one. 
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1.6 Chriss model with volatility 

 

In this section an extension of the two-traders Chriss model optimization under 

perfect competition will be presented. From section 1.3 under the two-trader passive 

optimization the instantaneous cost function was modified to account also for the 

volatility of the asset s. As in that case the volatility represents the risk of holding 

the asset, due to price movements, during the trading window. 

Therefore, the extended the two-traders Chriss model optimization under perfect 

competition will be the following problem: 

 

          {[𝑎̇(t) 	+ 	λ𝑏̇(t)]	𝑎̇(t) 	+ 	𝑘	[𝑎(t) + 	λb(t)]	𝑎̇(t) + x"s
*𝑎*} 

{[𝑎̇(t) + 	λ𝑏̇(t)\λ𝑏̇(t) + 	𝑘	[𝑎(t) + 	λb(t)]λ𝑏̇(t) + x%s
*𝑏*} 

                   s.t. a(0) = 0, b(0) = 0, a(1) = 1, b(1) = 1 
 

Where:  

x-s
!𝑎! and x.s

!𝑏! are the mathematical expressions accounting for the 

asset volatility inside the loss function also called instantaneous total cost 

function. In particular x- and x. are the trader-specific risk preference 

coefficients. 

 

By applying the Euler-Lagrange formula: 

 

2𝑎̈(𝑡) + l𝑏̈(𝑡) + 𝑘l𝑏̇ − 2x"s
*𝑎(𝑡) = 0 

𝑎̈(𝑡) + 2l𝑏̈(𝑡) + 𝑘𝑎̇ − 2
x%
l
s*𝑏(𝑡) = 0 

 

Which reduces to the second order ODE system: 

 

𝑎̈(𝑡) = − $
*
U𝑏̈(𝑡) + 𝑘𝑏̇(𝑡)V + x"s

*𝑎(𝑡) 

𝑏̈(𝑡) = − $
*$
W𝑎̈(𝑡) + 𝑘𝑎̇(𝑡)X + x$

$!
s*𝑏(𝑡) 

With boundary conditions: a(0) = 0, b(0) = 0, a(1) = 1, b(1) = 1 

{ 
 

min 

{ 
 

{ 
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Figure 12: Plots of the optimal trading trajectories for the two-traders Chriss model 
optimization under perfect competition, including risk preferences and s.  
k and l are kept constant at 5, s is kept constant at 2 while x-,	x. are changing. 
 

 
 

From the first row: x- =	x. trader A and trader B have the same level of risk-

aversion and are increasing from 1.5 to 50, all the other parameters are kept at a 

constant level (s =2 and k = l = 5). Trader A deploys an eager trading strategy until 

x- grows too much. 

 

From the second row: x- >	x., trader A has greater risk aversion than trader B 

with x- is increasing from 10 to 200 while x.is kept constant at 1.5 all the other 

parameters are kept at a constant level (s = 2 and k = l = 5). In this case trader A is 

more conservative and as optimal trading strategy deploys a risk-averse trajectory, 

as can be seen in the central and last plots (2ND row; 2ND and 3RD columns). 

 

From the third row: x- <	x., trader B has greater risk aversion than trader A; x. is 

increasing from 10 to 200 while x-is kept constant at 1.5, all the other parameters 
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are kept at a constant level (s = 2 and k = l = 5) In this case trader B uses a roughly 

risk-neutral strategy while A trades a very eager strategy.  

 

 

The main result is that when including inside the Chriss model the trader 

personal risk preferences parameter ξi and the asset volatility s , a trader does 

not engage in significant overbuying (meaning deploying an eager shaped 

trading strategy) unless the opponent party is significantly more risk-averse 

than him.
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1.7 Summary of main theoretical results 

 

In this first chapter of this master’s degree in finance thesis, the Chriss model 

developed in the research paper titled: Optimal Position-Building Strategies in 

Competition by Neil A. Chriss was rigorously presented and extensively analyzed 

in each subcase; exploring its results both under a mathematical perspective but also 

from a financial one.  

An important concept to keep in mind as this work proceeds is the structure of the 

instantaneous cost function, which is made by both the temporary and permanent 

market impacts components governed by the k-parameter, which tells in what k-

regime the model is optimizing. 

The goal of each optimization problem is always the same: minimize the 

instantaneous total cost function, at least theoretically. Perhaps, as this work 

proceeds, it will be explained as in practice, it is only possible to minimize the 

average total cost function (the integral of the instantaneous total cost function, 

presented in details in section 1.3). It is not possible to work and compute integrals 

with continuous time, time needs to be discretized in very small time steps Δt. 

As Δt→0, the discrete time steps approach an infinitesimal variation dt, i.e., 

lim
/0®$

Δt = dt 

However, this does not mean that the theory is unfeasible to use in real life, it just 

needs to be approximated using the correct procedure in full compliance with the 

theoretical framework of Chriss. 

 

From the Chriss model theoretical model, some “axioms” can be derived, the most 

important ones are:  

 

• From the sensitivity analysis carried out in section 1.3 it is clear that the 

Chriss model's total cost structure exhibits lower estimation errors for 

the parameter k when operating in a high k-regime. This suggests a 

form of robustness of the model when used in more illiquid markets or 

in all the other high market impact scenarios, high k-regime. 

 

• In a case in which the temporary market impact component dominates 

the permanent one, (if 0 <	k << 1) the optimal trading strategy will have 
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the shape of a risk neutral trading trajectory. Intuitively a trader wants 

to minimize the total cost function that in this case depends only on the 

temporary market impact, therefore it must be optimized at each time t 

because there is no persistence in the asset price shift.  

Then in general, the optimal choice would be to spread the trading volume 

as even as possible during the entire trading window. 

 

• In a case in which the permanent market impact component is predominant,  

(if k >> 1) the optimal trading strategy will have in general the shape of a 

risk seeking eager trading trajectory.  

 

However, for this case some distinction must be made: 

 

a) In a passive two-traders optimization framework the 

permanent market impact disappears (as mathematically proven 

at the beginning of section 1.5). Moreover, only the personal 

temporary market impact component, which depends directly on 

size parameter l, and the personal risk aversion preferences matter 

in this scenario.  

 

b) When the optimization problem is derived for a two-traders 

asymmetric competition scenario, the trader which has more 

information regarding the opponent party trading strategy, will 

always have an advantage when minimizing its total cost 

function. In particular: when trader B is trading using a risk neutral 

or risk averse strategy, the best response of trader A will be to 

deploy an eager strategy directly proportional to k. If instead trader 

B uses an eager strategy, trader A best response can’t be generalized 

and depends on the specific scenario. 

 
c) When the optimal problem is derived from the perfect 

competition, the solution of the problem represents the Nash 

equilibrium. The limit case in which k ® +¥ (high k-regime) 

leads to the following optimal trading strategies: Trader B (l-
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scaled) deploys as best response to trader A a barbel shaped 

trading strategy, while trader A best response to trader B will 

be to deploy a bucket shaped trading trajectory.  

 

• When comparing this limit case scenario (with both high k and 𝛌) 

between the two-trader and the multi-traders equilibriums, the 

shape of the multi-traders optimal trading strategy doesn’t 

resemble the bucket of the two-traders under perfect competition. 

This result is key to understand that treating a two-traders equilibrium 

scenario with a large λ, for the λ-scaled trader (B), as equal to the 

scenario with multiple unit traders, thinking that the size parameter will 

be split among them, is incorrect and will lead to different optimal 

trading strategies.  

Therefore, a trader must know if in the market there is one large 

adversary or if there are many smaller one, before choosing to 

carry out a two-traders or a multi-traders perfect symmetric 

optimization process. 

 

• When including inside the Chriss optimization process, for a two-

trader symmetric competition scenario, the trader personal risk 

preferences parameter ξi and the asset volatility s. A trader does 

not engage in significant overbuying (meaning deploying an eager 

shaped trading strategy) unless the opponent party is significantly 

more risk-averse than him:  

Ai uses an eager trading strategy for which 𝒂̈𝒊(t) < 0 for all t 

If and only if  Þ ξi << ξj 
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2. Standard trading approaches & Benchmarks 

 

Introduction 

 
The principal aim of this thesis is to find the most efficient order execution 

methodology (the one that minimizes the total cost function), tailored to the specific 

scenario (liquid or illiquid) in which trading occurs. 

This chapter will focus on analyzing standard trading approaches, that rely on a 

simpler mathematical framework, when compared to the sophisticated Chriss 

optimization model. Nevertheless, standard trading approaches like moving 

averages and the volume weighted average price VWAP, have been a corner stone 

for disciplines like technical analysis and algorithmic trading. 

Having said that, it is outside the scope of this thesis to discuss whether technical 

analysis signals can be used to make profitable investment decisions. Moreover, 

arguments like technical vs fundamental analysis will not be touched in this work. 

Again, the main target here is to find the most cost-efficient execution approaches 

when trading in different scenarios.  

However, tools from technical analysis and algorithmic trading can be used in order 

to reach this target and possibly provide a benchmark for the performance 

evaluation of the Chriss model that will be the focus of the next chapter. 

 
2.1 Simple moving averages 

 

In the field of financial econometrics and quantitative trading, the moving 

average (MA) represents one of the most fundamental and widely utilized tools in 

the analysis of time series data, particularly in the study of security prices. Its 

simplicity, combined with its dynamical interpretive power, makes it an essential 

component in both academic research and practical trading strategies. 

The origins of moving averages in finance can be traced back to the early 20th 

century, when analysts and traders began using average price levels to discern 

market trends. One of the earliest adopters of the method was Charles H. Dow, 

whose writings laid the foundation for modern technical analysis. However, it was 

not until the mid-20th century, with the advent of computational tools and the 

formalization of technical analysis frameworks, that moving averages gained 
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widespread academic and professional adoption. With the development of modern 

portfolio theory and the efficient market hypothesis (EMH) in the 1960s and 1970s, 

moving averages initially faced criticism from academics who questioned the 

predictive power of past price data. Nevertheless, empirical studies particularly 

those exploring momentum effects, mean reversion, and algorithmic trading 

strategies have continued to demonstrate that moving averages can, under certain 

market conditions, offer valuable insights into price dynamics and investor 

behavior. 

 

Definition of moving average (MA) 

A moving average is a statistical calculation that smooths a time series by averaging 

a subset of data points typically closing prices over a defined period. The average 

“moves” because it continuously recalculates as new data becomes available, 

thereby adjusting dynamically to the latest information.  

There are several types of moving averages, with the most common being 

the Simple Moving Average (SMA), which assigns equal weight to each 

observation within the period, and the Exponential Moving Average (EMA), 

which can be set to give more weight to recent data or to past observations in order 

to respond more dynamically to price changes.  

Mathematically, for a time series of prices Pt for t = 1, ……,n the simple moving 

average over n periods is defined as:  

𝑆𝑀𝐴2 =	
1
𝑛k𝑃2*3

4*#

35$

 

In contrast, the exponential moving average incorporates a smoothing factor α, such 

that: 

𝐸𝑀𝐴2	 = α𝑃2 + (1 − α)𝐸𝑀𝐴2*#	; where:  α = 	 !
4,#

 

 

The factor α is the weighting factor between the last period EMAt-1 and the current 

price Pt. As n®+¥ Þ lim
4®,¥

α = lim
4®,¥

!
4,#

=	 0	 

The larger the period considered, the smaller the smoothing factor, this means 

that less weight is given to recent prices Pt and more weight is retained by the last 

period EMAt-1. Moreover, the EMA becomes less sensitive to recent price changes, 

behaving more like a long-term moving average, reacting slowly to new data. This 
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is almost equivalent to a very long Simple Moving Average (SMA) but with a key 

difference: the EMA never fully "forgets" the past, whereas the SMA drops older 

data entirely once it falls out of the fixed window. This property allows EMA to 

have a “memory” of past prices that decays exponentially, this is very useful to 

detect only major, persistent trends, avoiding noise. 

 

On the Bloomberg Terminal, the three commonly used moving averages that 

appear by default on charts and in technical analysis functions are: 

 

1. Simple Moving Average (SMA) Short-term, usually: SMA (50) 

Period (trading window): 50 trading days (~2.5 month) 

Purpose: Captures short-term price trends; often used by traders for recent 

momentum. 

2. Simple Moving Average (SMA) Medium-term, usually: SMA (100) 

Period (trading window): 100 trading days (~5 months) 

Purpose: Filters out short-term noise; used to identify intermediate trend 

direction. 

3. Simple Moving Average (SMA) Long-term, usually: SMA (200) 

Period (trading window): 200 trading days (~10 months) 

Purpose: Identifies long-term trends and major support/resistance levels. 
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Figure 13: A screenshot of the three standard moving averages of the Bloomberg 
terminal for the Bitcoin (XBT) against the US Dollar (USD). 
 
Moving averages are a cornerstone of technical analysis, a discipline predicated on 

the notion that historical price patterns and trading volumes can provide predictive 

insight into future price movements. MAs can be used as trend-following 

indicators and support/resistance levels, making them a dual-purpose tool for 

market participants. A moving average effectively acts as a smoothing function, 

filtering out short-term price fluctuations or “noise” to reveal the underlying 

trend. When prices remain consistently above a moving average, it typically 

indicates an upward trend, while sustained movement below the average 

suggests a downward trend. Furthermore, the slope of the moving average itself 

provides information about the momentum and strength of the prevailing price 

trend. 

 

In practice, moving averages generate actionable trading signals through various 

mechanisms, the most common of which include: 

 

• Crossovers: One of the most well-known strategies is the “moving average 

crossover,” where a shorter-term MA (e.g., 21-day) crosses above or below 

a longer-term MA (e.g., 50-day or 200-day). A bullish crossover (also 

known as a "golden cross") occurs when the short-term MA crosses above 

the long-term MA, suggesting upward momentum. Conversely, a bearish 

crossover ("death cross") signals potential downward pressure. 

 

• Price-to-MA Crosses: When the market price crosses above a moving 

average, it may signal a buy opportunity, while a move below the average 

can indicate a sell opportunity or weakening support. 

 

• Support and Resistance: Moving averages often act as dynamic support or 

resistance levels, particularly in trending markets. Institutional traders 

frequently monitor key MAs (such as the 50-day and 200-day) to anticipate 

potential reversal zones or breakout points. 
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These signals, while simplistic in structure, are widely used due to their intuitive 

appeal and ability to be enhanced through algorithmic frameworks or combined 

with other technical indicators such as Relative Strength Index (RSI), Bollinger 

Bands, or MACD. 

In summary, moving averages offer a foundational yet powerful mechanism for 

smoothing price data and identifying underlying trends, making them widely used 

in both discretionary and algorithmic trading contexts. While inherently simple in 

construction, their adaptive nature and ability to produce trading signals through 

crossovers or trend identification have made them enduring tools in market practice.  

However, despite their widespread use, moving averages are not without 

limitations. They are inherently lagging indicators, meaning they reflect past price 

action and may respond slowly to sudden market reversals or volatility shocks. The 

choice of period length also significantly influences their effectiveness; shorter 

periods offer quicker responses but are prone to false signals, while longer periods 

are more stable but may react too slowly for active trading. 

For the aim of this thesis, moving averages are not evaluated for their predictive 

capability or investment profitability per se, but rather as a baseline methodology 

for trade execution under cost efficiency. While moving averages effectively 

capture price dynamics and are widely adopted in liquid market environments, their 

use as a benchmark for evaluating optimization-based execution strategies, such as 

the Chriss model, presents certain limitations. At first glance, moving averages may 

appear as suitable candidates for such benchmarking, given that the total cost 

function in the Chriss framework is inherently sensitive to price evolution, which 

is affected by both the temporary and permanent market impact components. 

However, moving averages do not incorporate a critical component required 

for accurate cost assessment in optimal execution models: the traded volume. 

Since the effectiveness of a trading strategy under the Chriss model depends 

not only on price trajectories but also on the size and timing of executed orders, 

any benchmark must reflect both price and volume. Consequently, while 

moving averages can serve as a preliminary reference for price aligned 

strategies, they are insufficient as standalone benchmarks for evaluating the 

trading execution cost efficiency of the Chriss model. Therefore, a more 

complex approach is needed to pursue this task. 
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2.2 VWAP approach 

 

In modern market microstructure and algorithmic execution, the Volume Weighted 

Average Price (VWAP) stands as one of the most widely implemented benchmarks 

for institutional trading. Unlike moving averages, which rely solely on price 

information, VWAP integrates both price and volume data, thereby offering a 

more comprehensive and exhaustive representation of the market activity. This dual 

dependency enables VWAP to better approximate the real average transaction 

price over a given period, thus allowing for more refined execution cost evaluation. 

The evolution of VWAP as an execution benchmark can be traced back to the 

increased automation of trading during the 1980s and 1990s. As institutional 

investors sought to minimize the market impact of large orders and align execution 

performance with average market prices, VWAP emerged as a preferred strategy. 

It quickly became a standard for post-trade cost analysis and subsequently evolved 

into a basis for algorithmic execution models, especially for passive or 

participation-based trading strategies. Its widespread adoption was further 

catalyzed by the increased availability of high-frequency market data and the 

demand for execution transparency under regulatory frameworks such as MiFID II 

in Europe and Reg NMS in the United States. 

 

Definition of the volume weighted average price VWAP 

The VWAP approach, captures the average price at which a security is traded 

throughout a given time interval, weighted by the total traded volume. 

Mathematically, the VWAP for a trading interval is defined as: 

 

𝑉𝑊𝐴𝑃# =
∑ 𝑃9	𝑉9#
9=7
∑ 𝑉9#
9=7

 

Where: 

• Pi is the trade price of the security at time interval ( i) 

• Vi is the volume traded at that price Pi during the interval (i) 

• t is the current time interval for the sum, starting at (i = 1) ending at (i = t) 

• If the VWAP is computed for the entire trading session, which is 

composed of a total of n intervals, then the sum is executed setting t = n  
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This formulation ensures that trades executed at higher volumes exert 

proportionally greater influence on the final value of VWAP, making it inherently 

sensitive to both price dynamics and liquidity conditions. Unlike simple or 

exponential moving averages, which treat all prices (or recent prices) with equal or 

decaying weight, VWAP dynamically reflects where the majority of trading 

activity is concentrated throughout the session. 

 

From a practical perspective, VWAP is often used in two distinct but 

complementary ways: as a benchmark and as a trading strategy, known as the 

VWAP execution algorithm approach.  

 

As a benchmark, institutional traders compare the average execution price of their 

orders against the VWAP to evaluate whether they traded “better” or “worse” than 

the market average. Executing below the VWAP for a buy order (or above for 

a sell order) typically implies favorable execution performance. 

 

As a trading strategy, the VWAP execution algorithm approach aims to 

distribute order flow proportionally throughout the entire trading session, 

matching the expected market volume curve (also known as the volume 

profile). Specifically, the algorithm aims to execute buy or sell orders at prices that 

are close to the n interval VWAPt, for each time interval in the entire trading 

session. The main idea is that the total execution price should be as close as possible 

to the average price weighted by volume during the trading session. 

In order to implement this strategy, the algorithm breaks down the order into 

smaller, time-based portions and then executes these portions according to the 

expected trading volume at each time point. This "expected market volume 

curve" is essentially the volume profile, which shows how the volume of trades 

is typically distributed throughout the day. In practice, the VWAP algorithm 

tries to execute orders in proportion to this volume distribution, executing 

larger portions of the order when the market volume is expected to be high, 

and smaller portions when volume is low. 

This approach is especially effective in liquid markets, where there is ample 

volume throughout the trading session. In such markets, the algorithm can 

smoothly match the pace of the market, without significantly moving the price 
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or encountering slippage. The liquidity ensures that the smaller trades executed 

by the algorithm can be absorbed without disrupting the market or drastically 

changing the price. 

In summary, the VWAP execution strategy is about passively participating in 

the market by aligning with its natural volume flow, which helps to avoid 

drawing attention to large orders or causing unnecessary price fluctuations. It 

works well when there is sufficient trading volume to absorb the passive 

participation throughout the day. 

 

 

On the Bloomberg Terminal, the VWAP can be visualized in multiple ways. It 

appears as a time-series line overlaid on price charts (function: VWAP<GO>) and 

is available for both real-time and historical analysis. Additionally, the Execution 

Quality Analysis (EQA) tool enables traders to benchmark individual or grouped 

trades against VWAP to quantify slippage and assess trading desk performance. 

Bloomberg computes intraday VWAP using tick-by-tick trade data, ensuring 

accuracy across various timeframes. 

From a signal generation perspective, the VWAP line serves multiple roles: 

 

• Price Relative to VWAP: Traders often consider prices above the VWAP as a sign 

of bullish sentiment (overvaluation in the short term), while prices below VWAP 

may suggest bearishness or undervaluation. 

 

• Mean Reversion: Since VWAP reflects the average traded price, short-term 

deviations from it are often interpreted as temporary inefficiencies, leading to 

reversion trades. 

 

• Support and Resistance: Similar to moving averages, VWAP may act as a dynamic 

support or resistance level, particularly during intraday trading. 
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Figure 14: An execution performance evaluation carried out with the Bloomberg 
terminal, the VWAP (green vertical line) represents the mean of the VWAPt 
distribution for each time interval t during the entire trading session.  

 
 
Despite its versatility, VWAP is not devoid of limitations. It assumes that past 

intraday volume patterns are a good predictor of current liquidity, which may not 

hold true during volatile or news-driven sessions. Moreover, in illiquid markets or 

for large block orders, VWAP strategies may result in adverse selection or increased 

opportunity costs due to slow execution. 

Nonetheless, VWAP’s integration of both price levels and execution 

volume renders it especially suitable as a benchmark for optimal execution 

frameworks, such as the Chriss model. Given that the Chriss model seeks to 

minimize a total cost function dependent on market impact (a function of both 

traded volume and price trajectory), VWAP offers a natural benchmark against 

which cost efficiency execution can be evaluated. Unlike moving averages, which 

abstract away order size, VWAP mirrors the execution environment more 

faithfully, capturing both the intensity of trading and prevailing market 

prices. 
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2.3 Summary of main differences 

 

𝑆𝑀𝐴# =	
7
;
∑ 𝑃#59;57
9=>  vs 𝑉𝑊𝐴𝑃# =

∑ @%	A%&
%'(
∑ A%&
%'(

 

 

From a financial perspective, the key distinction between Moving Averages (MAs) 

and the Volume Weighted Average Price (VWAP) lies in their treatment of price 

and volume dynamics. MAs are primarily used for identifying price trends but do 

not incorporate volume, which is a crucial factor in determining execution costs. 

This limitation is especially problematic in illiquid markets, where volume and 

trade frequency can significantly influence price trajectories. Furthermore, MAs are 

inherently lagging indicators, relying on a fixed window of historical prices that 

may not fully capture sudden market shifts. 

In contrast, VWAP integrates both price and volume, offering a more accurate 

representation of the average price at which a security is traded over a specified 

period. Since VWAP is tied to transaction volumes, it provides a more precise 

picture of how price dynamics unfold within the context of market liquidity. This 

makes VWAP particularly valuable for evaluating trade execution under both liquid 

and illiquid scenarios. 

The inclusion of volume in VWAP further enhances its ability to reflect the true 

cost of execution. In real-world trading, larger orders tend to create greater market 

impact, and VWAP adjusts for this by giving more weight to trades with higher 

volumes. This feature makes VWAP a more realistic benchmark for assessing 

execution strategies, particularly in the context of large block orders or 

strategies aimed at minimizing market impact. 

The Chriss model, which seeks to minimize total execution costs through 

optimized order flow, is sensitive to both price changes and trade volume. It 

explicitly accounts for the temporary and permanent market impact of order 

execution, highlighting the importance of liquidity and timing in minimizing overall 

trading costs. In this context, MAs, while valuable for understanding general 

price trends, fail to capture the volume component that directly impacts 

execution costs, particularly in the case of large trades. Therefore, using MAs 

as a benchmark for the Chriss model could lead to misleading conclusions about 

the true cost of trade execution. Conversely, VWAP, which incorporates both 
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price and volume, offers a comprehensive view of market dynamics. Given that 

the Chriss model aims to minimize execution costs by considering the 

interaction between price and market impact, VWAP serves as a more 

appropriate benchmark. It reflects both price fluctuations and trade size, making 

it an ideal reference for evaluating strategies designed to minimize market impact, 

especially in liquid or semi-liquid markets. 

In conclusion, while Moving Averages provide a useful tool for analyzing price 

trends, they do not capture the critical volume aspect essential to the Chriss model’s 

cost function. VWAP’s dual reliance on price and volume makes it a far more 

suitable benchmark for assessing optimal execution strategies that aim to 

minimize market impact. 

 

 

2.4 VWAP Total cost function for k-regimes 

 

For the aim of this thesis in finding the most efficient order execution methodology, 

fitted for the specific market scenario (illiquid and liquid). A total cost performance 

comparative evaluation between the Chriss optimization model and the VWAP 

execution algorithm approach must be carried out. In order to pursue this final 

objective, the VWAP total cost function must be formulated in a way that can be 

effectively comparable with the mathematical expression conceptualized by Neil 

A. Chriss for his optimization model. In particular, the VWAP instantaneous total 

cost function must also depend on the k parameter of the Chriss model. 

The generalized VWAP instantaneous total cost function, restructured to 

incorporate the Chriss model’s market impact parameter κ, is defined as: 

 

𝐶#AB1@ =	 (𝑣̇(𝑡))* + 𝑘𝑣(𝑡)𝑣̇(𝑡) 
Where: 

 

• (𝑣̇(𝑡))!is the temporary market impact at time t 

•  𝑣(𝑡)𝑣̇(𝑡) is the permanent market impact component at time t 

• 	𝑣	̇ (𝑡) = 	 !AB1@&
!#

		is the VWAP execution rate at time t 
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As already done in Chapter 1 section 1.3 for the Chriss model, the instantaneous 

total cost function is integrated from 0 to 1, then the average total cost function is: 

 

𝐶AB1@ =	
1
𝑇
Y[	(	

𝑑𝑉𝑊𝐴𝑃#
𝑑𝑡

	)* + 𝑘Y𝑑𝑉𝑊𝐴𝑃C ⋅ 𝑑𝑉𝑊𝐴𝑃#	
#

C=7

	]
D

#=7

 

 

𝐶AB1@ =	1 [(𝑣̇
7

>
(𝑡))* + 𝑘1 𝑣̇

#

>
(𝑠)𝑑𝑠	𝑣	̇ (𝑡)]	𝑑𝑡 

 

The term ∫ 𝑣̇#> (𝑠)𝑑𝑠  is the cumulative volume up to time t. The double 

summation in the second term reflects how prior trades influence the cost of future 

executions, aligning this VWAP formulation with the theoretical structure of 

dynamic market impact present in the Chriss model which is equivalent to 

𝑣(𝑡).	Therefore, the integral expression can be simplified and becomes: 

𝐶AB1@ =	1 [𝑣̇
7

>
(𝑡)* + 𝑘v(t) ⋅ 𝑣̇(t)]dt 

This mathematical expression effectively models the cumulative market impact of 

executed volume over time, while at the same time accounting for the fitted leading 

k-regime of the scenario. In particular, the cost function of the VWAP approach has 

a double dependence on both the temporary market impact component (first term) 

and the permanent market impact component (second term) weighted by the market 

impact coefficient κ. 

Recalling multi-traders optimization scenario: 

If there are n+1 unit traders A1,………,An+1 all trading in perfect competition, the 

instantaneous total cost function or loss function for trader Ai becomes: 

 

𝐿9(𝑡) = 	 𝑎̇9(𝑡)Y 𝑎̇:

;

:

(𝑡) + 𝑘𝑎9(𝑡)Y 𝑎̇:

;

:

(𝑡) 

Here, 𝑎̇3	(𝑡)	represents the trading rate of trader i, while 𝑎3(𝑡) is the cumulative 

quantity traded inside the market during the trading window. The first term reflects 
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the temporary cost due to simultaneous executions (liquidity competition), while 

the second term, scaled by κ, models the permanent impact due to accumulated 

execution pressure on the market. 

Since this scenario assumes a perfect symmetric competition among all the n 

traders, then the Chriss structurally assumes that each trader uses a symmetric unit 

trading strategy:  

D 𝑎̇7(𝑡)𝑑𝑡
#

$
= 1	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑗 

 

if all use the same strategy a(t), since it’s under perfect competition then: 

 

k𝑎̇7

4,#

75#

(𝑡) = (𝑛 + 1)𝑎̇(𝑡) 

 

	k𝑎7

4,#

75#

(𝑡) = (𝑛 + 1)𝑎(𝑡) 

 

Then the average total cost function (or loss function) for trader Ai will be: 

 

𝐿7(𝑡) = 𝑎̇(𝑡) ⋅ (𝑛 + 1)𝑎̇(𝑡) + 𝜅𝑎(𝑡) ⋅ (𝑛 + 1)𝑎̇(𝑡) 
 

That becomes: 

𝐿7(𝑡) = (n + 1)[𝑎̇(𝑡)* + κa(t)𝑎̇(𝑡)] 

 
Then by taking the integral from 0 to 1, the average total cost function is obtained: 

𝐶EFG9CC = 1 𝐿7(𝑡)𝑑𝑡 = 	 (𝑛 + 1)1 [𝑎̇
7

>
(𝑡)* + 𝑘a(t) ⋅ 𝑎̇(t)]dt

7

>
 

And by normalizing dividing by (n+1), the following final expression is obtained: 

𝐶EFG9CC =	1 [𝑎̇
7

>
(𝑡)* + 𝑘a(t) ⋅ 𝑎̇(t)]dt 
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𝐶EFG9CC =	1 [𝑎̇
7

>
(𝑡)* + 𝑘a(t) ⋅ 𝑎̇(t)]dt 

𝐶AB1@ =	1 [𝑣̇
7

>
(𝑡)* + 𝑘v(t) ⋅ 𝑣̇(t)]dt 

 

Comparing the VWAP average total cost function and the one of the Chriss model, 

It is evident that the VWAP approach is simpler and passive, relying on historical 

average volumes, therefore lacking the sophisticated scenario adaptability of the 

Chriss minimization cost procedure. Moreover, the VWAP is not derived under an 

equilibrium condition like the result of the Chriss multi-traders optimization, in 

perfect symmetric competition. Nevertheless, by embedding the κ parameter into 

the VWAP cost function, it is possible to achieve the target of deriving a meaningful 

benchmarking method, that can be used to effectively evaluate the cost efficiency 

of the Chriss model under different simulated scenarios. 

From a theoretical perspective in liquid markets, where price impact is minimal and 

competition is less of a concern, the VWAP trading approach may be proven to be 

the most cost-efficient due to its simplicity and alignment with the market volume 

profile. In contrast, in illiquid or high-volatility environments, the Chriss model 

should exhibit a superior performance, thanks to its natural adaptability by 

explicitly optimizing trading in real-time, minimizing the total cost function under 

both temporary and permanent market impact components, through a dynamical 

mathematical framework, that accounts for size and leading k-regime. 

In the following chapter a comparative cost efficiency evaluation of these two 

trading methodologies, that will be implemented in practice using the R-Studio 

software, will provide the empirical evidence to support this master’s degree in 

Finance thesis’ main objective: identifying the most efficient trading strategy (the 

one that minimizes the total cost function) tailored to the specific scenario (liquid 

or illiquid) in which trading occurs. 
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3. Performance analysis for cost efficiency 

 

The following chapter constitutes the core of this master’s degree in Finance thesis. 

Indeed, it finally addresses the primary objective of this work: identifying the most 

cost-efficient trading strategies tailored to specific market conditions. 

In the previous chapter, a valid benchmark for cost efficiency comparison and 

performance analysis was identified through the VWAP trading algorithm. 

In line with this objective, the VWAP approach and the Chriss model will be 

implemented and compared with a focus on cost efficiency, in full compliance with 

the theoretical framework established in the earlier sections of this thesis. 

The tool used to conduct this analysis is R-Studio, an integrated development 

environment (IDE) specifically designed for the R programming language, widely 

adopted in statistics, data analysis, and quantitative finance. 

It is important to recall a key insight already highlighted by their theoretical 

frameworks: namely, given the different structures of the cost functions and more 

broadly the fundamental distinct nature between the Chriss optimization model and 

the VWAP approach, their performance is expected to vary significantly depending 

on the specific market scenario in which they are applied. 

This theoretical distinction is further reinforced by earlier analysis in the thesis. 

As shown in the sensitivity analysis in Section 1.3, the Chriss model demonstrates 

greater robustness in illiquid market scenarios those characterized by a high value 

of the parameter k. Its cost structure is less sensitive to estimation errors in such 

environments, making it more reliable when the market impact is significant. 

On the other hand, the VWAP algorithm, which spreads execution in line with 

volume distribution, performs best in liquid markets. In these conditions, abundant 

market volume allows the algorithm to execute smoothly with minimal price 

disruption and slippage. 

In summary, these theoretical insights suggest that the Chriss model is more 

effective in illiquid scenarios, whereas the VWAP approach performs better in 

highly liquid ones. The central aim of this chapter is to investigate whether 

these theoretical expectations are confirmed by empirical evidence, and to 

assess the statistical significance of the observed results. 
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3.1 Cost functions time discretization 

 

The instantaneous total cost functions and their integrated expressions, which 

represents the average total cost functions, all belong to the family of C2 functions 

(C2 means continuous and twice differentiable). This level of smoothness is 

essential for deriving analytical results within the continuous time theoretical 

framework. 

However, practical implementation of these models, particularly in computational 

environments such as R-Studio, requires a shift from continuous to discrete time. 

Since such software environments do not work directly with continuous variables 

or functions, time discretization becomes necessary to simulate and evaluate 

trading strategies numerically. 

The discretization method employed in this thesis involves dividing the total trading 

horizon T into N equally spaced intervals of length where: 

 Δt = D
H

 ; t0= 0, t1= Δt, tN = NΔt = T;  

in general, for an i-interval ti = i Δt for i = 0, 1,..…., N  

This transforms the continuous cost function into a stepwise approximation, 

allowing cumulative costs to be estimated using discrete values.  

As Δt→0, the discrete time steps approach an infinitesimal increment dt, i.e., 

lim
/0®$

Δt = dt 

bridging the discrete approximation with the continuous-time formulation used in 

the theoretical frameworks of optimal trading strategies. 

A useful way to visualize this process is through the use of Riemann sums, where 

the area under the curve of a continuous cost function is approximated by the sum 

of the areas of rectangles.  

For the purpose of this thesis, each rectangle represents the average cost of a 

discrete time interval and mathematically speaking is referred to as a Riemann 

rectangle. The smaller the time step, the smaller the base of the Riemann rectangle, 

leading to a more precise approximation of the continuous time theoretical 

framework. 

The software R-Studio is able to perform these summations calculations, using a 

very small discretization time step Δt ≈ dt, leading to consistent and precise results. 
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Figure 15: Both figures visualize the approximation of continuous time thanks to 
its discretization. The first figure shows a quite large time step Δt for the Riemann 
sums, therefore it is not a very good approximation. Instead, the second figure uses 
a very small time step Δt, leading to a more precise approximation of the continuous 
time. 
 

 

This discretized framework not only makes numerical summation feasible for 

computational purposes but also aligns the theoretical models with real-world 

trading, where as a matter of fact, decisions are made at discrete time intervals.  
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3.2 Liquid vs Illiquid scenarios with Monte Carlo method 

 

The first step in a comparative analysis between the Chriss model’s optimization 

process and the VWAP algorithmic approach for trading execution is to test whether 

their respective trading trajectories differ with statistical significance under both 

liquid and illiquid market scenarios.  

Therefore, using the software R-Studio the Chriss model optimization procedure 

was implemented for the case of multi-traders under perfect competition; for the 

liquid market scenario the model parameters were set to k = 0.1 and l = 1 while for 

the illiquid market scenario parameters were set to k = 5 and l = 10. 

Instead, the VWAP algorithm approach was simulated using the Monte Carlo 

method, using a standard normal distribution with standard deviation s = 0.02, 

needed to introduce a random noise factor, typical for any Monte Carlo Simulation. 

Monte Carlo simulations were set to run 100 times. 

The following figure shows the trading trajectories obtained for both frameworks. 
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Figure 16: R-Plots of trading trajectories for both liquid and illiquid market 
environments. The Chriss model trading trajectories (red lines) were built following 
the theoretical optimization process for the case of multi-traders under perfect 
competition while the VWAP (black dashed lines) were simulated using the Monte 
Carlo method. 
 
 
It is clear from the figures that the Chriss optimization process is more flexible 

and adapts better to different market conditions when compared to the 

VWAP, which instead appears to be more stable showing rather risk averse 

trading trajectories for both simulated scenarios. 

This is not surprising, in fact as expected from the theory, the Chriss optimization 

model is an active execution approach that highly depends on the environment in 

which it is operating in. Moreover, both trading strategies are of the eager type 

especially in the case of illiquid environment or equivalently (institutional trader 

trading large quantities). 

The final step in this preliminary comparison of the two methodologies trading 

trajectories is to seek for statistical significance. A standard t-test would work if 

both trading outcomes were assumed to be normally distributed. While this is true 

for the VWAP, which has its trading trajectories distributed as a standard normal 

with standard deviation  s = 0.02, it could not be assumed that also the Chriss model 

trading trajectories follow a standard normal distribution.  

Therefore, to pursue a more robust comparison, that does not rely on the assumption 

of normality, the Kolmogorov–Smirnov (K-S) test is employed. This non-

parametric test is particularly well suited for this analysis, as it compares the entire 

empirical distribution functions of the two datasets without requiring any 

assumptions about their underlying distributions. Given that the Chriss model 

generates trading trajectories that are shaped by dynamic optimization in response 

to varying market impact and liquidity conditions, its output distribution may 

exhibit skewness, kurtosis, or other non-Gaussian features. The K-S test is thus 

preferable to the standard t-test, which is limited to comparing means under the 

assumption of normality and equal variances.  

Therefore, by applying the Kolmogorov–Smirnov test, it is possible to 

rigorously determine whether the differences in trading trajectories between 

the Chriss model and VWAP are statistically significant across different 

market scenarios, capturing both the magnitude and distributional shape of 

the outcomes. 
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The following lines show the R-Studio printouts of the K-S results for both liquid 

and illiquid market scenarios: 

 

 
 
 

 
 

As shown by the results of the Kolmogorov Smirnov test, the trading 

trajectories produced by the Chriss model and the VWAP algorithm differ 

with statistical significance across both market scenarios. Particularly for the 

illiquid environment, where the test p-values are considerably lower than those 

observed in the liquid case, the K-S test result is confirmed at all confidence 

levels. This outcome confirms that the choice between the Chriss model and 

VWAP for execution purposes leads to materially different trading paths, as 

expected from their distinct theoretical foundations and underlying 

assumptions. 

 

Given this divergence, attention naturally shifts to a more fundamental issue 

namely, the question of which methodology offers greater cost efficiency under 

different market conditions. Specifically, it becomes necessary to evaluate which 

approach is more advantageous in liquid markets and which proves superior in 

illiquid environments. In order to address this, a comparative performance analysis 

based on the cost functions embedded in each model must be undertaken. 
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For this purpose, as already explained in sections: 1.3 (for the Chriss model cost 

functions), 2.4 (for the VWAP) and 3.1(Time discretization) 

 

The procedure is the following: 

 

1) The instantaneous total cost functions also known as loss functions are 

derived, which reflect both the temporary and permeant market impact 

components. Both components are governed by the k parameter. 

2) By integrating these expressions, for the trading interval from 0 

starting time) to 1 (closing time), the average total cost functions are 

obtained for both trading execution approaches. 

3) Finally, to perform in practice the integral summation, time will be 

discretized in very small discrete time steps Δt→0, ensuring good 

accuracy (fine Riemann summation methodology). 

 

The following figures show the comparative dynamic cost evolution, between the 

Chriss model optimization, for the case of multi-traders symmetric equilibrium, and 

the Monte Carlo simulated VWAP algorithm, during a trading window. 

For the liquid scenario parameters were set to k = 0.1 and l = 1 while for the illiquid 

market scenario parameters were set to k = 5 and l = 10. 

Monte Carlo simulations were set to 100 times. The number of traders was fixed. 

It is important to notice that both Chriss model and VWAP cost functions are deeply 

depending on the parameter k, which is responsible to determine the equilibrium 

between the temporary and permanent market impact components as time evolves. 

 

𝐶EFG9CC =	1 [𝑎̇
7

>
(𝑡)* + 𝑘a(t) ⋅ 𝑎̇(t)]dt 

𝐶AB1@ =	1 [𝑣̇
7

>
(𝑡)* + 𝑘v(t) ⋅ 𝑣̇(t)]d 
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Figure 17: R-Plots of the average cost functions dynamic time evolution under both 
liquid and illiquid market scenarios. The Chriss model average total cost functions 
(red lines) were derived following the theoretical optimization process for the case 
of multi-traders under perfect competition while the VWAP average total cost 
functions (black dashed lines) were simulated using the Monte Carlo method, 100 
times. N (number of traders) = 10 
 
 
From the figure on the left, it is evident that when operating in a liquid market 

environment, the VWAP algorithm proves to be the most cost-efficient execution 

strategy. Indeed, as illustrated in the figure, the dashed black line depicting the 

average total cost evolution of the VWAP over time, is always below the red line 

representing the Chriss model average total cost time evolution. 

Therefore, it is possible to conclude that in a liquid scenario the VWAP 

execution approach leads to lower costs in terms of both temporary and 

permanent market impact. 

This picture changes significantly when analyzing the figure on the right.  

Under an illiquid market environment, both cost functions initially rise at a similar 

rate. Nevertheless, around time t = 0.25, the advantage of the Chriss model’s 

flexibility begins to emerge: its average total cost curve starts to decline, whereas 

the VWAP cost continues to rise until the end of the trading window. 
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From this empirical evidence, it is possible to conclude that when operating in 

an illiquid scenario the Chriss model optimization execution methodology has 

lower costs in terms of both temporary and permanent market impact. 

The following R-table shows the mean values of both Chriss model and VWAP 

total costs under both liquid and illiquid market environments. 

 

 
 

 
Looking at the means, the difference between average total cost of the two 

approaches is noticeable, especially for the illiquid market scenario, where the 

Chriss optimization procedure clearly dominates the VWAP in terms of cost 

efficiency.  

For completeness the results obtained using the same methodology but for N 

(number of traders) = 100 are also reported below. 
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Figure 18: R-Plots of the average cost functions dynamic time evolution under both 
liquid and illiquid market scenarios. The Chriss model average total cost functions 
(red lines) were derived following the theoretical optimization process for the case 
of multi-traders under perfect competition while the VWAP average total cost 
functions (black dashed lines) were simulated using the Monte Carlo method, 100 
times. N (number of traders) = 100 
 

Figure 17 (N = 10) and Figure 18 (N = 100) display nearly identical visual patterns, 

with both showing similar shapes in the average total cost functions for the two 

methods, despite the expected differences in cost magnitudes, given by the 

difference in total traders an therefore total traded volumes. 

 

 
 

The two tables show different values from the N =10 and the N = 100 cases, as 

expect by the difference in total traded volumes. However, when analyzing the 

difference between the mean of the total cost function of the Chriss model and 

the one of the VWAP, the conclusion is exactly the same: The Chriss model is 

the best at cost efficiency when deployed in an illiquid scenario. 

In this analysis the number of traders was kept constant, in the first case  N = 10 

and in the second case to N = 100 with a dynamical comparative cost evaluation for 

each time step inside the interval starting at t = 0 and ending at t = 1. 

 

At this point to have a more robust and complete analysis, it could be useful to 

simulate both liquid and illiquid market scenarios, keeping time at a fixed time 

interval and computing the limit as the number of traders increases, 

approaching infinity. 
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3.3 Limit case study as N traders  ® + ¥ 
 
 

The following figure shows the limit case scenarios for both the Chriss model 

optimization and the VWAP approach. In this case N represents the number of 

traders and goes to infinity. The time is fixed to a closed interval, i.e. (0, 1) 

therefore, this is not a dynamic, as in the previous section, but rather a static cost 

efficiency performance evaluation. Here the average total cost functions are 

analyzed at a given time horizon across different market densities. 

The following figure shows a comparative cost efficiency performance evaluation 

between the Chriss model optimization, for the case of multi-traders symmetric 

equilibrium, and the Monte Carlo simulated VWAP algorithm, focusing on 

different market sizes, given by the increasing N ­ Þ N® + ¥ 

For the liquid scenario parameters were set to to k = 0.1 and l = 1 while for the 

illiquid market scenario parameters were set to k = 5 and l = 10. 

Monte Carlo simulations were set to 100 times. In this case the time interval is fixed, 

the number of traders was varying approaching infinite. 
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Figure 18: R-Plots of the average cost functions under both liquid and illiquid 
market scenarios. The Chriss model average total cost functions (red lines) were 
derived following the theoretical optimization process for the case of multi-traders 
under perfect competition while the VWAP average total cost functions (black 
dashed lines) were simulated using the Monte Carlo method, N ® + ¥ where N is 
the number of traders. 

 
 

When analyzing these limit case scenarios, the result does not change. Chriss 

model average total costs are always above the ones of the VWAP in the case of 

liquid market environment (left figure) and are always below the ones of the VWAP 

in the case of illiquid market environment (right figure). Confirming the findings 

of the previous section’s comparative dynamical cost efficiency performance 

evaluation:  

 

• Chriss model is better in terms of cost efficiency when deployed in an 

illiquid market environment. 

 

• VWAP algorithmic approach is better in terms of cost efficiency 

when deployed in a liquid market environment. 

 

At this stage, the primary objective set forth in this thesis has been successfully 

achieved through the application of advanced methodologies, fully aligned 

with the theoretical fundamentals of both trading execution strategies.  

Nonetheless, while not strictly essential to the core analysis, a valuable extension 

of this work could involve the comparison of the average total cost functions based 

on historical data rather than relying solely on Monte Carlo simulations for the 

VWAP approach. Such an addition would enrich the empirical robustness of the 

findings and offer further insights into the practical applicability of VWAP under 

real-market conditions. 

The next section focuses on this using real life trading data obtained from the 

Bloomberg terminal to construct the VWAP execution methodology. 
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3.4 Liquid vs Illiquid scenarios with Historical data 
 
 

In this section an R-Studio code was developed to firstly compute the VWAP 

approach total costs using real life trading data, obtained from the Bloomberg 

terminal. Then carry out a comparative dynamic cost efficiency performance 

evaluation between the constructed VWAP based on historical data and the Chriss 

optimization model. These data include the most influent traded volumes in the 

Apple stock during the trading day of the 19TH February 2025 in the Nasdaq. 

The Chriss model optimization was set to operate in a highly liquid market 

environment, as both the security Apple stock and market Nasdaq are very liquid 

ones. In particular, the model’s parameters for the numerical optimization were set 

as the following: k = 0.1 , l = 1 

The following figures represent the obtained average total cost functions, as time 

evolves, for both VWAP with historical data and Chriss model equilibrium. 

 

 

 
 
 

Figure 19: R-Plot of the average cost function under a highly liquid market scenario. 
The Chriss model average total cost function (red line) was derived following the 
theoretical optimization process for the case of multi-traders under perfect 
competition. The green dashed line represents the sample mean of each total cost 
incurred during the trading window. 
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Figure 20: R-Plot of the average cost function for the daily volume trading data 
obtained from the Bloomberg terminal for the Apple stock on the 19TH February 
2025 in the Nasdaq.The VWAP algorithm was applied to this data. The VWAP 
average total cost function dynamical evolution (black line).The green dashed line 
represents the sample mean of each total cost incurred during the trading window. 

 
 
From both figures but also from the data shown in the table below, it could be seen 

that a trader, trading in the Apple stock on the Nasdaq market during the trading 

day of the 19TH February 2025, would incur on average lower trading costs, 

considering both the temporary and the permanent market impacts components, by 

using the VWAP algorithm as order execution method. This is not surprising as 

both the traded security and the market in which trading occurs are highly liquid 

ones. Therefore, once again confirming the superiority in terms of cost 

efficiency of the VWAP algorithmic order execution approach in liquid market 

environments. 
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The K-S test p-values confirm the statistical significance of the result founded 

in this comparative dynamic cost efficiency performance evaluation between 

the constructed VWAP based on historical data and the Chriss optimization 

model. 
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Conclusions 
 

 

This master’s thesis in Finance addresses the challenge of identifying cost efficient 

trading execution strategies under competitive conditions in both liquid and illiquid 

market environments. The objective was to determine the most effective 

methodology for minimizing execution costs in each scenario. 

In the first chapter a mathematical framework developed by mathematician and 

hedge fund manager Neil A. Chriss was presented and analyzed in detail. 

The theoretical mathematical optimization approach presented by Chriss is 

sophisticated showing high robustness and great adaptability to different market 

conditions. Nevertheless, the model remains easy to understand and interpret, 

relying on a limited set of parameters and boundary conditions for reaching an 

optimal solution, that minimizes the total cost for order execution. 

Chapter two introduced the Volume Weighted Average Price (VWAP), a widely 

used and relatively simple algorithmic trading benchmark. VWAP executes orders 

based on historical price and volume data and is frequently employed by 

institutional investors due to its transparency and ease of implementation. 

In the third chapter, the core of this thesis, the Chriss model and the VWAP were 

set to compete against each other, carrying out a comparative performance analysis 

focused on cost efficiency in each market scenario. 

The comparative analysis accurately recreated the Chriss optimization model 

procedure and compared it to the VWAP approach, both dynamically (fixed market 

size and evolving time intervals) and statically (fixed time interval and increasing 

market sizes). The VWAP was performed both by Monte Carlo simulation method 

and by using historical data, on daily trading volumes and prices for US equity 

securities, obtained from the Bloomberg Terminal. 

The results of this thesis research show that the Chriss model outperforms 

VWAP in terms of cost efficiency within illiquid markets, whereas VWAP 

proves more cost efficient in liquid market environments.  

All simulations, empirical analyses and statistical tests were carried out using the 

R-Studio software. 
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Annex 
 
 

The original code provided by Neil A. Chriss’ in his Research Paper titled “Optimal 

Position-Building Strategies in Competition”. In this case the following code in 

Wolfram Mathematica is used to solve the two-traders symmetric equilibrium in for 

the Chriss model including volatility and traders’ risk preferences as in section 1.6. 
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