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Introduction

Understanding and modeling uncertainty is a central concern in modern statis-
tics. Among the available paradigms, the Bayesian approach offers a coherent
and flexible framework that naturally incorporates prior information and yields
full posterior distributions over unknown parameters. This probabilistic per-
spective is especially powerful when dealing with complex data structures, such
as those involving group-level heterogeneity or nested designs.

This thesis investigates the use of Bayesian hierarchical models—also known
as multilevel models—with a focus on their application to real-world data.
These models are particularly well suited to settings where data are organized in
groups, and where the number of observations per group is limited. By allowing
for partial pooling of information, hierarchical models provide stable individual-
level estimates while leveraging global patterns, offering a principled trade-off
between overfitting and underfitting.

The methodological foundation of the thesis builds on key concepts from
Bayesian inference, including:

e the formulation of posterior distributions via Bayes’ theorem,

e the construction of priors informed by historical data or theoretical as-
sumptions,

« and the use of Markov Chain Monte Carlo (MCMC) methods, particularly
the Gibbs sampler, to approximate posterior distributions.

Objectives and Contributions. The main contributions of this thesis are
both theoretical and applied. On the theoretical side, Chapter 1 provides
a detailed overview of hierarchical Bayesian modeling, with emphasis on the
Normal-Normal and Beta-Binomial cases, the role of exchangeability, and the
implementation of the Gibbs sampler. Convergence diagnostics such as R and
effective sample size are also discussed and applied to a classical case study: the
Eight Schools example.

On the applied side, Chapters 2 and 3 present two case studies based on
hierarchical logistic regression. The first replicates a marketing experiment by
Allenby et al. (2005) on consumer preferences for credit card attributes using
simulated data. The second extends the approach to a real-world e-commerce



dataset, where user-level preferences for products are inferred from transaction
records.

This second case study represents the most original part of the thesis. Using
a public retail dataset, we construct binary choice tasks from transaction data
and implement a Metropolis-within-Gibbs sampler to estimate individual-level
part-worth utilities. Despite the lack of explicit choice sets, the model was
able to uncover interpretable latent preferences, demonstrating the utility of
Bayesian hierarchical modeling in sparse and noisy real-world environments.

Key Findings. The empirical results confirm that:

o Partial pooling via hierarchical priors improves the stability of individual
estimates, especially when data are limited.

e The Bayesian approach yields interpretable posterior distributions for
both individual- and population-level parameters.

e In the e-commerce case study, the estimated covariance structure revealed
meaningful patterns of heterogeneity in price sensitivity and product pref-
erences.

The work also illustrates how Bayesian methods can be applied beyond text-
book examples to complex, unstructured data, providing both methodological
insight and practical value for applications in marketing analytics and customer
behavior modeling.

Structure of the Thesis. The remainder of the thesis is organized as follows:

e Chapter 1 introduces the theoretical framework of Bayesian hierarchical
models, including model formulation, sampling algorithms, and conver-
gence checks.

e Chapter 2 applies these techniques to a classical marketing study using
simulated data.

¢ Chapter 3 extends the hierarchical logit model to a real-world e-commerce
dataset, with full implementation and analysis.

o Appendices provide code listings, details of the MCMC algorithms, and
preprocessing pipelines.

To formally ground the approach adopted throughout this thesis, the following
section outlines the foundational principles of Bayesian statistics and compares
them to the frequentist paradigm.

Bayesian statistics provides a coherent framework for learning from data
by explicitly incorporating prior beliefs and updating them using observed ev-
idence. At the heart of the Bayesian approach lies Bayes’ theorem, which ex-
presses the posterior distribution of unknown parameters as proportional to the
product of the likelihood and the prior distribution:



p(Oly) < p(ylo) - p(0),

where:

e p(0) is the prior distribution, reflecting initial beliefs about the parameter
0,

o p(y|0) is the likelihood, describing how the observed data y are generated
given 6,

o p(fly) is the posterior distribution, combining prior information and ob-
served data.

This formulation allows for continuous updating as more data become avail-
able, making it especially attractive for problems involving uncertainty, small
samples, or hierarchical structures.

Frequentist vs. Bayesian Perspectives. The frequentist framework treats
parameters as fixed but unknown quantities and bases inference on repeated
sampling properties. In contrast, the Bayesian framework treats parameters as
random variables and uses probability to express uncertainty about them.

Aspect

Frequentist

Bayesian

Nature of parameters

Fixed unknown con-
stants

Random variables

Uncertainty Derives from the ran- | Derives from the be-
domness of the data | liefs on the parameter
under repeated sam-
pling

Inferences Confidence intervals, | Posterior distributions
p-values

Prior knowledge

Not incorporated

Explicitly modeled via
priors

Interpretation of interval

Long-run frequency

Degree of belief

Table 1: Key differences between frequentist and Bayesian inference.

Posterior Interpretation.

In Bayesian inference, the posterior distribution

provides a complete probabilistic description of the uncertainty about parame-
ters given the data. For instance, a 95% credible interval for # means that, given
the model and the observed data, there is a 95% probability that 6 lies within
the interval-—an interpretation more intuitive than its frequentist counterpart.



Why Bayesian Methods for Hierarchical Models? Bayesian methods
are particularly well-suited for hierarchical modeling because they allow uncer-
tainty to be propagated naturally through multiple levels of parameters. Unlike
ad hoc frequentist techniques (e.g., random-effects models estimated via point
estimators), Bayesian approaches yield full posterior distributions over all un-
knowns, leading to richer and more robust inferences.

For these reasons, the rest of this thesis adopts the Bayesian framework,
particularly in the context of hierarchical models, as developed in Chapters 5
and 11 of Gelman et al. (2013)).



Chapter 1

Foundations of Bayesian
Hierarchical Models

1.1 Introduction to Hierarchical Models

In modern statistical applications, it is increasingly common to deal with data
that are grouped or nested in some way. Whether analyzing students within
schools, patients within hospitals, or repeated experiments within different set-
tings, such scenarios naturally give rise to multiple related parameters. A hierar-
chical model provides a principled Bayesian approach to model such settings by
capturing dependencies across different units while preserving the individuality
of each group.

Hierarchical Bayesian models—also referred to as multilevel models—structure
parameters across layers: observable data are modeled conditionally on latent
variables (group-level parameters), which themselves are assigned prior distri-
butions governed by higher-level hyperparameters. This structure allows for
partial pooling of information across groups, a key feature that avoids both
underfitting (due to complete pooling) and overfitting (due to complete separa-
tion). As Gelman et al. (2013) emphasize, this strategy balances flexibility and
regularization, particularly when some groups have sparse or noisy data.

A motivating example comes from toxicology. Consider a study measuring
tumor incidence in female rats from multiple control groups. Each group has
a different observed tumor rate, but all belong to the same rat strain and are
subjected to similar experimental settings. Modeling the tumor probability in
each group independently would ignore useful information shared across experi-
ments; on the other hand, assuming the same rate across all groups is likely too
restrictive. A hierarchical model treats the group-specific tumor probabilities
as random variables drawn from a common population distribution, thus en-
abling shrinkage of extreme estimates toward the global average and improving
inference robustness.

A further rationale for hierarchical modeling lies in its ability to handle



multiparameter inference efficiently. In contrast to flat models, which often
require explicit assumptions or tuning to avoid overfitting, hierarchical mod-
els regularize estimates automatically through the joint posterior structure.
This is particularly helpful in settings with limited sample sizes within groups,
where individual-level estimates are unreliable but information borrowing across
groups leads to improved predictive accuracy.

Perhaps most importantly, hierarchical models reflect how knowledge is often
organized in real-world reasoning. As noted by Gelman et al. (2013)), scientific
understanding often proceeds by layering uncertainties: observed measurements
depend on unknown quantities, which in turn depend on higher-level factors.
Bayesian hierarchical models mirror this structure, making them not only flexi-
ble but also conceptually aligned with how uncertainty and evidence propagate
in complex systems.

Moreover, hierarchical modeling is more than just a statistical technique—it
also informs computational strategies. Inference in hierarchical models can be
analytically tractable in simple conjugate cases (e.g., beta-binomial or normal-
normal setups), but in most applications, it requires sampling-based methods
such as Markov Chain Monte Carlo (MCMC), especially Gibbs sampling and
the Metropolis-Hastings algorithm. These computational tools, discussed later
in this chapter, make hierarchical modeling broadly applicable to real-world
data.

In summary, Bayesian hierarchical models serve both as a method for prin-
cipled regularization and a framework for representing multilevel uncertainty.
They are foundational for modern applied Bayesian statistics, with applications
ranging from education and epidemiology to neuroscience and machine learning.

1.2 Building Hierarchical Models

Bayesian hierarchical models are designed to capture structure in data that is
grouped or nested. Building these models involves assigning probability distri-
butions at multiple levels, starting from observed data and moving up through
parameters and hyperparameters. This section outlines the foundational ideas
and practical motivations for constructing hierarchical models, with examples
and theoretical justification.

At the core of hierarchical modeling lies the assumption that group-level
parameters (such as treatment effects in different hospitals or tumor rates in
different rat groups) are not completely independent but drawn from a com-
mon population distribution. This induces a natural pooling of information
across groups and reflects the belief that while units may differ, they also share
commonalities.

1.2.1 Using Historical Data to Build Priors

One of the first steps in hierarchical modeling is the construction of prior dis-
tributions informed by historical or related data. In many practical settings,



analysts are not working in isolation: previous studies, experiments, or mea-
surements are available and can be used to inform the prior beliefs about group-
specific parameters.

Rather than fixing priors arbitrarily, a more principled approach is to use
the empirical distribution of past estimates to determine the hyperparameters
of the prior distribution. For example, if we are modeling a group-specific
probability §; with binomial data, and we believe the §; values arise from a
common population distribution, it is natural to assume 6; ~ Beta(a, ). The
parameters o and (3 can then be estimated based on the observed variation
across groups in the historical data.

This leads to a hierarchical model structure such as:

0; i Beta(a, )

ind .
y; ~ Bin(ny,0;)

This setup allows for information borrowing across units: current estimates
for a new group are informed not only by its own data, but also by the broader
patterns learned from previous groups. In turn, the posterior distribution for a
new parameter (e.g., 871) incorporates both the observed data and the uncer-
tainty encoded in the shared prior.

A key feature of this modeling approach is the phenomenon of shrinkage,
where extreme or noisy estimates are pulled toward the global mean of the
prior distribution. This leads to more stable and realistic inferences, especially
in contexts with limited sample sizes or high variability across groups.

1.2.2 The Concept of Exchangeability

The principle of exchangeability is foundational to hierarchical modeling. It as-
sumes that in the absence of distinguishing information, the ordering or labeling
of groups does not carry meaning. Formally, a set of parameters 61,...,60; are
exchangeable if the joint prior distribution is invariant to permutations:

p(917 e ,9J> = p<97r(1)7 e 7971'((]))

for any permutation 7. While this exchangeability assumption does not *a pri-
ori* imply that the 6; are conditionally independent and identically distributed,
a classical result known as de Finetti’s theorem states that any infinite se-
quence of exchangeable random variables can be represented as a mixture of
iid. random variables. This justifies modeling #; as independent draws from
a common distribution p(6; | ¢), where ¢ is a hyperparameter vector with its
own prior p(¢). Thus, the prior over 6 is:
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J
p(6) = / T1 #(6:16) p(6) do
j=1

This structure naturally supports partial pooling, as it captures both
within-group variability (via the likelihood) and across-group similarity (via
the shared prior). Exchangeability enables hierarchical models to handle multi-
experiment or multi-region datasets with varying sample sizes and uncertain
effects.

1.2.3 Fully Bayesian Approach

A fully Bayesian hierarchical model treats hyperparameters as random vari-
ables with their own prior distributions—known as hyperpriors. This completes
the probabilistic structure and enables inference over the entire hierarchy. For
instance:

0, £ Beta(a, )
ind .
y; ~ Bin(n;,0;)

(0‘76) ~ p(aaﬁ)

where, for example, one may choose a prior such as p(a,) « (a + B)~%/2,

which is considered weakly informative. This means that the prior provides
gentle regularization to avoid extreme parameter values, while still allowing the
data to dominate the inference when sufficiently informative.

This setup ensures that uncertainty in the hyperparameters is fully prop-
agated through the posterior. Inference is performed on the joint posterior
(0, a, Bly), often using simulation methods such as Gibbs sampling (as detailed
later in the chapter).

This fully Bayesian perspective avoids the drawbacks of empirical Bayes ap-
proaches, such as ignoring uncertainty in hyperparameter estimates or "double-
counting" the data. It also aligns more closely with Bayesian philosophy, where
all unknowns are treated probabilistically.

1.3 Bayesian Inference in Hierarchical Models

Bayesian inference in hierarchical models revolves around estimating both the
lower-level parameters (such as group-specific means or probabilities) and the

11



higher-level hyperparameters that govern their distribution. This process inte-
grates prior knowledge with observed data across multiple levels, yielding robust
estimates and coherent uncertainty quantification.

A central feature of this approach is the joint modeling of all parame-
ters, from the group-level effects 6; to the population-level hyperparameters
¢. Rather than fixing the hyperparameters (as done in empirical Bayes), the
Bayesian approach treats them as unknowns and assigns prior distributions,
enabling full posterior inference.

The joint posterior distribution under a hierarchical model typically takes
the form:

J
p(#,0ly) o< p(¢ H (0519) - p(y;10;),

where y; represents the observed data in group j, 6; the group-specific param-
eter, and ¢ the hyperparameters that define the population distribution.

1.3.1 Models with Conjugate Families (e.g., Beta-Binomial,
Normal-Normal)

When both the likelihood and prior belong to conjugate families, analytical
expressions for the posterior distribution can be derived. For example, in a
Beta-Binomial model:

0, 1rlxelBeta( ,0)

¥ ind Binomial(n;, 6;)

Given this setup, the posterior distribution for each parameter 6; — condi-
tional on the corresponding individual observation y; — is also a Beta distribu-
tion:

0; | y; ~ Beta(o + y;, B+ n; — y;).

Similarly, in a hierarchical normal model with known observation variance

O'JQ, the group means ¢; are modeled as:

yil0; ~ N(0;,03), 605 ~N(p,72),

where p and 72 are the hyperparameters. The posterior distribution of 6; given
p and 72 is also normal, and takes the form:

/4y /o? 1 1)
0j|yjnu,7—2NN g )

12+ 1/07’ \ 12 o}

These conjugate structures simplify computation and offer interpretability
in terms of information pooling and precision-weighted averaging.

12



1.3.2 Complete Pooling, No Pooling, and Partial Pooling

Bayesian hierarchical models naturally accommodate different degrees of pool-
ing. The three canonical approaches are:

» Complete pooling: Assumes all 0; are equal. The model estimates one
shared parameter for all groups, ignoring group-specific variability.

e No pooling: Treats each group as completely separate, estimating each
0; independently.

o Partial pooling: The hierarchical Bayesian approach. Each 6; is esti-
mated while accounting for both the group-specific data and the population-
level distribution.

The partial pooling approach leads to shrinkage, where the posterior means
of group-level parameters are pulled toward the population mean y, with the
extent of shrinkage depending on the relative magnitudes of the group sample
size and the between-group variance 72.

This balance is automatic in Bayesian inference: the more data a group has,
the less its estimate is shrunk. Conversely, small or noisy groups benefit from

the information shared across the population, yielding more stable estimates.

1.4 Computational Methods: Gibbs Sampling

Bayesian hierarchical models often involve complex posterior distributions that
cannot be evaluated analytically. In such cases, simulation-based approaches
are essential for performing inference. One of the most effective and widely
used methods is the Gibbs sampler, a Markov Chain Monte Carlo (MCMC)
technique tailored for models with conditionally tractable structure. The Gibbs
sampler enables sampling from a high-dimensional joint posterior distribution
by iteratively sampling from the full conditional distributions of each parameter.

The Gibbs sampler is based on the principle of alternating conditional sam-
pling. Suppose the parameter vector  is partitioned into d components, § =
(61,...,04). Each iteration of the algorithm cycles through the components,
sampling one parameter at a time from its conditional distribution given the
current values of the others:

t t
05 ~ p(6; 1 60“), y),

where G(j; denotes the current values of all parameters except 6;. This process
constructs a Markov chain whose stationary distribution is the target posterior
p(0| y), under mild regularity conditions.

The main advantage of the Gibbs sampler is that it often simplifies imple-
mentation when the model has a conjugate structure, as in many hierarchical
models. For example, in a hierarchical normal model, the conditional distri-
butions for group-level parameters and hyperparameters often fall into known
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families such as the normal or inverse-chi-squared distributions. In such cases,
each sampling step can be performed exactly and efficiently, making the Gibbs
sampler particularly appealing.

Despite its conceptual simplicity, the Gibbs sampler has profound theoretical
underpinnings. It can be viewed as a special case of the more general Metropolis-
Hastings algorithm, where the proposal distribution is always accepted because
it is the full conditional distribution. This means that the acceptance rate is
100%, ensuring efficient movement through parameter space—provided that the
conditional distributions are not too strongly correlated.

However, there are also challenges. The convergence of the Gibbs sampler
may be slow if the parameters are highly correlated, leading to poor mixing
and long autocorrelation times. In such cases, reparameterization or hybrid ap-
proaches (e.g., Metropolis-within-Gibbs) can be used to improve performance.
Furthermore, convergence diagnostics are essential to ensure that the sampler
has adequately explored the posterior distribution. Techniques such as the po-
tential scale reduction factor (R) and the effective sample size (n.g) are com-
monly used for this purpose and will be discussed later in this chapter.

The Gibbs sampler has been successfully applied to a wide variety of models,
including those with latent variables, missing data, and hierarchical structures.
Its success lies in its general applicability, ease of implementation, and strong
theoretical guarantees. In the context of Bayesian hierarchical modeling, it
provides a natural and flexible computational tool to perform full posterior
inference when direct analytical solutions are infeasible.

1.4.1 Basic Idea of the Gibbs Sampler

The Gibbs sampler is a specific type of Markov Chain Monte Carlo (MCMC)
method that relies on iteratively sampling from the full conditional distributions
of a joint posterior. Its power lies in its simplicity: rather than requiring a joint
sampling distribution over all parameters simultaneously, the Gibbs algorithm
samples each parameter conditional on the current values of all the others.

Assume a parameter vector § = (61,6,,...,04) with posterior distribution
p(Oly). If it is possible to compute the full conditional distributions p(6;]6_,,y)
for each component 0;, where §_; denotes all components except ;, the Gibbs
sampler proceeds as follows:

s 0 0
1. Initialize #(©) = (95 o, 6‘& )).
2. For each iteration t =1,2,...:

» Sample 01 ~ p(oy [ 05,057, y)
« Sample 057 ~ p(8s | 01,657,007, y)

e Sample 95;) ~ (84 | 95”, cee 9((12)1a Y)

14



Each full iteration updates every parameter once, using the most recently
sampled values. The resulting sequence of samples (Q(t))thl forms a Markov
chain whose stationary distribution is the desired posterior p(f | y), assuming
standard regularity conditions like irreducibility and aperiodicity.

The Gibbs sampler is particularly effective in models where conditional con-
jugacy applies, meaning the conditional distributions take a known form from
which we can sample directly (e.g., Gaussian, Gamma, Beta). This makes it
especially suitable for many hierarchical models.

A key strength of the Gibbs sampler is that it does not require a tuning pa-
rameter like a proposal distribution (as in Metropolis-Hastings). Additionally,
all proposed moves are always accepted, improving sampling efficiency. How-
ever, its performance can degrade if the components of # are strongly correlated,
in which case the chain may mix slowly.

<+ < <
N o A
< =) oA
o o o
e
<+ ¥ A
4 2 0 2 4 4 2 0 2 4 4 2 0 2 4

Figure 1.1: Gibbs sampling chains in a bivariate normal distribution. Left: first
few iterations from overdispersed initial values. Center: sample accumulation
after many steps. Right: final draws used for inference.

Figure [I.1] shows a visual example of this process applied to a bivariate nor-
mal distribution with correlated components. The three panels illustrate the
early iterations from different starting points (left), the accumulated samples
over time (center), and the final draws used for inference (right). The progres-
sion highlights how the Gibbs sampler explores the distribution iteratively along
coordinate axes before achieving full mixing.

In summary, the Gibbs sampler is a foundational tool in Bayesian compu-
tation, offering a straightforward and often highly effective way to sample from
complex posterior distributions when conditional distributions are available in
closed form.

1.4.2 Advantages and Limitations

The Gibbs sampler offers several compelling advantages that have contributed to
its widespread use in Bayesian computation, especially for hierarchical models.
First and foremost, its conceptual simplicity and ease of implementation make it
accessible for a broad class of models. When conditional distributions are known
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and easy to sample from, the Gibbs algorithm can be applied directly without
the need for complex tuning or acceptance-rejection steps. This is particularly
beneficial in models where conjugacy ensures closed-form conditionals, allowing
for efficient sampling of each parameter component.

Another key advantage lies in the sampler’s deterministic structure. Unlike
Metropolis-Hastings algorithms, where proposals may be rejected, every step in
the Gibbs sampler is accepted by construction. This ensures that the Markov
chain progresses smoothly and avoids wasted iterations. Furthermore, the Gibbs
sampler’s component-wise updates can provide fine-grained control over the
sampling process, especially when different parameters vary on different scales.

Additionally, the Gibbs sampler is modular. It can be flexibly combined
with other algorithms, such as Metropolis steps for non-conjugate parameters,
enabling hybrid strategies (Metropolis-within-Gibbs) that extend its applica-
bility beyond analytically tractable cases. This hybridization is particularly
valuable in modern Bayesian workflows where models often involve both simple
and complex components.

However, the Gibbs sampler also presents important limitations. A major
concern is the potential for slow convergence and poor mixing in the presence of
strong posterior dependencies among parameters. When parameters are highly
correlated, successive updates based on one-dimensional conditional distribu-
tions may lead to a random-walk behavior, requiring many iterations to explore
the target distribution effectively.

In high-dimensional spaces or models with tightly coupled parameters, this
slow exploration results in long autocorrelation times and a reduced effective
sample size. Reparameterization strategies can sometimes help mitigate this
issue, but they often require model-specific insight.

Another drawback is that the Gibbs sampler requires full conditional distri-
butions to be explicitly known and directly samplable. This restricts its applica-
tion to models with a specific structure. For more general models, other MCMC
methods such as Hamiltonian Monte Carlo or adaptive Metropolis algorithms
are often more appropriate, despite their increased computational complexity.

Finally, while convergence diagnostics can indicate whether the Gibbs sam-
pler has approximately reached the stationary distribution, they cannot guar-
antee complete exploration of the posterior—especially in multimodal settings.
The sampler may become trapped in a local mode if transitions between modes
are unlikely under the component-wise updating scheme.

The Gibbs sampler is a powerful and elegant tool for Bayesian inference in
structured models, particularly when conjugate conditionals are available. Yet,
its performance is highly sensitive to the geometry of the posterior distribution,
and practitioners must remain vigilant to its potential inefficiencies in complex
or correlated parameter spaces.

1.4.3 Implementation in the Hierarchical Normal Model

The hierarchical normal model is a canonical example for applying Gibbs sam-
pling, due to its conditional conjugacy and wide applicability in grouped data

16



analysis. It assumes observed data y;;, where i = 1,...,n; indexes observa-
tions within group j = 1,...,J. Conditional on the group-specific parameters
01,...,0;, the observations are modeled as:

iid
yij ~ N(0;,07),

where each group-specific mean 6; is drawn from a common population distri-
bution:

Qj NN(/.L,T2).

Hyperpriors are then placed on the population parameters y and 72. In a fully
Bayesian framework, 02 may also be unknown and assigned a prior, typically
inverse-chi-squared or a weakly informative form.

The structure of this model leads to a sequence of full conditional distribu-
tions that can be directly sampled in a Gibbs sampler:

o For each group mean ¢;, the conditional posterior is:
2 = ) +2 -1
+n,y;/o 1 n,
01 g2 oy o N[ T Y /0” (1
]‘[}J,T,O',y 1/T2+nj/0'2 ) T2 o2 ’

where g; is the mean of observations in group j.

Proof: We derive this from conjugacy between the normal prior and like-
lihood. The prior is 8; ~ N (p, 7?) and the likelihood for group j is:

yij ~ N(0;,0%), i=1,...,n,.

The likelihood contributes a term:
n;
n; ,_
TN 1 63.0%) ocexp { —525 (3 — 6,)*}.
i=1
and the prior contributes:

1
N6 |7%) x xp { =556 - w2

Combining and completing the square gives a normal posterior with the
specified mean and variance.

e The population mean p has a conditional posterior:

7_2

J
1
[L|9,T2NN jg 9j77
j=1

Proof: Given 6; ~ N (u,72) independently, and assuming a flat prior on
1, the likelihood becomes:

J

TIVG; |,

j=1

17



The posterior is proportional to:

1 2
exp _TZ

which simplifies to a normal distribution in p with mean 6 and variance
2
T4/ J.

2

e The group-level variance 7¢ is sampled from a scaled inverse-chi-squared

distribution:

J
1
2 V2T 1 2 2 _
70, p ~ Inv-x*(J — 1, s7), ST—J_le:1(0]

Proof: From the normal prior §; ~ N (u,7%) and flat prior p(log 7) o 1, the
conjugate posterior for 72 is inverse-chi-squared with degrees of freedom
J — 1 (because of the Jacobian transformation) and scale equal to the
sample variance of the 6;’s.

o If 02 is unknown, its full conditional is:

7Lj

J
o2 | 0,y ~ Inv-x%(n, s2) EZZ (yij —

j=11i=1

3

Proof: Each y;; | 0; ~ N(6;,02), and assuming a flat prior on log o, the
conjugate posterior for o2 is inverse-chi-squared with n total observations
and scale equal to the pooled residual variance from all J groups.

This formulation ensures that each step in the Gibbs sampler draws from a
known distribution, simplifying implementation and improving computational
efficiency. In practice, multiple chains are initialized from overdispersed starting
values, and convergence is monitored using diagnostics such as the potential
scale reduction factor (R) and the effective sample size (ng), which will be
discussed in detail later (Gelman et al., 2013).

The model’s effectiveness lies in its capacity for partial pooling of information:
group-level estimates 6; are shrunk toward the global mean u based on the
data’s relative precision and variability. This balance between flexibility and
regularization is particularly beneficial when sample sizes vary across groups or
when some groups are data-sparse.

Applications of the hierarchical normal model range from education (e.g.,
school-level performance), clinical studies (e.g., treatment effects across sites),
and meta-analyses. In all these domains, it offers a principled way to model
group heterogeneity while leveraging shared structure.
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Step-by-step derivation of the Gibbs sampler for the hierarchical nor-
mal model. To implement a Gibbs sampler for the hierarchical normal model,
we exploit the fact that all conditional posterior distributions are in known con-
jugate forms. The model assumes:

o yij ~N(0;,0%) fori=1,...,n;and j=1,...,J

o 0; ~N(u,7%)

o Prior: p(u,logo,logT) o< T

The full Gibbs sampling algorithm proceeds as follows:
1. Sample each 6; from its full conditional distribution:

— —1
ej|u,72,027y~N<“/72+”jyj/02 (1 +nj> >

/12 +n;/o? "’ 2 g2

2. Sample p given 6:

2

J
_ _ 1
#|9,72~N<9,TJ), 9:329]«

3. Sample o2 from the inverse-chi-squared distribution:

J nj
1
2 2 2
0,y ~ Inv- - i — 0,
0”0,y ~ Inv-x* [ n, nE E (yij — 0;)

j=1i=1

4. Sample 72 from the inverse-chi-squared distribution:
1
2 2 2
0, ~Inv-x" | J — 1, ﬁzl(ej_ﬂ)
j=

Each full iteration of the Gibbs sampler updates the parameters in turn:
first 61,...,0;, then p, 02, and finally 72. This scheme ensures that all depen-
dencies are respected and that samples are drawn from the correct conditional
distributions.

This derivation aligns with the implementation described in Section 11.6 of
Gelman et al. (2013]), and it forms the computational backbone for posterior
inference in hierarchical normal models.

1.4.4 Case Study: Gibbs Sampling in the Eight Schools
Problem

The Eight Schools example is a classical hierarchical modeling problem used
to demonstrate the benefits of Bayesian inference in multi-level settings. The
problem involves estimating the effect of coaching programs on SAT scores in
eight schools. For each school j = 1,...,8, we observe an estimated treatment
effect y; and a corresponding standard error o;.
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Model specification. The data are modeled using a two-level normal hier-
archical model:

Yj ~ N(gj’ 032’)7
0j ~ N(N’a 7_2)’
w ~ flat prior,
7 ~ half-Cauchy prior (or uniform).
This structure allows for partial pooling of the school-specific effects 6;

through the shared hyperparameters p and 72, improving estimates especially
in the presence of small or variable sample sizes.

Data. The observed treatment effects and standard errors are as follows:

School 1 2 3 4 5 6 7 8
y; (effect) | 28 8 -3 7 -1 1 18 12
o; (s.e.) 15 10 16 11 9 11 10 18

Gibbs sampling steps. Given conjugacy in the conditionals, the Gibbs sam-
pler proceeds as follows:

1. For each j, sample 6; from:

2 2 -1
y;j/oj+u/T 11
0, | w72y, ~N | Z2—L——— | =+ =
i L™y 1/032-Jr1/7'2 032-+72

2. Sample p from:

72

J
1
M‘977—2NN jzgjaj
j=1

3. Sample 72 from an inverse-chi-squared or scaled inverse gamma, depending
on the prior.

If a non-conjugate prior (e.g., half-Cauchy) is used for 7, a Metropolis-
Hastings step can be introduced for that parameter. In practice, implementa-
tions often use transformation techniques such as log(72) to improve numerical
stability.

Implementation and results. The Gibbs sampler was implemented for 10,000
iterations, discarding the first 2,000 as burn-in. Posterior summaries for each
0; show that shrinkage occurs toward the population mean p, with stronger
shrinkage for schools with larger standard errors.
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Figure 1.2: Posterior distributions obtained via Gibbs sampling for the Eight
Schools model. Top: distributions of school-specific treatment effects 6;. Mid-
dle: posterior distribution of the population mean p. Bottom: posterior distri-
bution of the population standard deviation 7.

Discussion. This example illustrates key benefits of hierarchical Bayesian
modeling: stable estimation through partial pooling, full uncertainty quantifi-
cation via posterior distributions, and natural regularization of extreme values.
The Gibbs sampler efficiently handles this structure, and convergence diagnos-
tics confirm that mixing is adequate across chains.

1.5 Convergence Diagnostics

Assessing the convergence of Markov Chain Monte Carlo (MCMC) algorithms
is critical for reliable Bayesian inference. Even if a sampler is theoretically
valid, practical inference requires that the generated chains approximate the
target posterior distribution well enough to yield accurate summaries. This
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section discusses standard approaches for diagnosing convergence in the context
of hierarchical Bayesian models, particularly those estimated using the Gibbs
sampler.

One fundamental challenge lies in distinguishing between a chain that has
converged and one that remains trapped in a region of the parameter space.
In the context of Markov chain Monte Carlo (MCMC), a chain refers to a se-
quence of parameter values simulated iteratively, where each new value depends
only on the previous one. A naive inspection of a single sequence may be mis-
leading, as it can give the appearance of stationarity—that is, the simulation
appears stable—while in reality key parts of the posterior distribution remain
unexplored. For this reason, Gelman et al. (2013) recommend running multiple
parallel chains with overdispersed starting points. These chains can then be
monitored for convergence using between- and within-chain variances.

The most widely used diagnostic is the potential scale reduction factor R,
which compares the variance between multiple chains to the variance within each
chain. Formally, for a scalar parameter v computed from m chains of length
n (after discarding warm-up), the between-chain variance B and within-chain
variance W are defined as:

LY i) W=ty

Jj=1 Jj=1

B =

m

where @Z;_j is the mean of chain j, ¢ is the overall mean, and s? is the sample
variance within chain j.
From these, the marginal posterior variance is estimated as:

n—1

— 1
var () = W + EB’

and the potential scale reduction factor is computed as:

Ao (W)
= T
When R is close to 1 (typically below 1.1), the chains are considered to have
converged.
In addition to ]%, the effective sample size neg estimates how many indepen-
dent samples the autocorrelated MCMC draws are equivalent to. It is calculated
via the integrated autocorrelation time:

. mn
1+ QZtT:l ﬁt7

where p; denotes the estimated lag-t autocorrelation of the chains and the sum
is truncated when p;41 + pry2 < 0. Low neg indicates poor mixing and high
correlation between draws.

Robert and Casella (2004) and Gelfand and Smith (1990) highlight that
convergence diagnostics, while essential, are not foolproof. A chain may seem to

Neff
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have converged based on R and neg but still miss relevant regions of the posterior
distribution, especially in high-dimensional spaces or multimodal settings. As a
safeguard, convergence checks should be applied to all parameters and derived
quantities of interest.

Finally, visualization remains a useful complement to numerical diagnostics.
Trace plots, autocorrelation plots, and posterior density overlays from multiple
chains help assess stationarity and mixing. In hierarchical models, where pa-
rameters may be weakly identified or data sparsity varies across groups, careful
attention to convergence is especially warranted. These principles motivate the
use of formal diagnostics, which are discussed in detail in the next section.

1.5.1 Problems of Iterative Simulations

Iterative simulation methods such as Markov Chain Monte Carlo (MCMC) offer
a flexible framework for drawing samples from complex posterior distributions.
However, they also introduce specific challenges that can affect the reliabil-
ity and efficiency of the inference process. One of the primary issues is the
dependence between successive samples. Unlike simple random sampling, the
draws produced by MCMC algorithms are correlated, which reduces the effec-
tive sample size and increases the uncertainty of Monte Carlo estimates (Robert
& Casella, [2004)).

Another common problem is slow convergence, particularly in high-dimensional
spaces or in models with highly correlated parameters. If the Markov chain has
not yet reached its stationary distribution, early samples can significantly bias
posterior estimates. This motivates the need for a careful warm-up (or burn-in)
phase, during which initial iterations are discarded to allow the chain to forget
its starting values (Gelman & Rubin, [1992).

Moreover, chains can suffer from poor mixing, where they explore only a
limited region of the parameter space. This is especially problematic in hierar-
chical models where some parameters are weakly identified, or when posterior
distributions exhibit strong curvature or multimodality. In such situations, stan-
dard algorithms like Gibbs or basic Metropolis may get stuck in local modes or
exhibit slow movement, leading to biased inference even after long simulations
(Gelfand & Smith, 1990).

A subtler but critical issue is non-convergence that may go undetected.
While visual inspection of trace plots provides some guidance, it is not al-
ways reliable. Two chains might appear stationary individually but actually
converge to different regions of the space. Therefore, quantitative diagnostics
like the potential scale reduction factor (1%) are essential. Values of R substan-
tially greater than 1 indicate that the simulation may not have fully converged
(Brooks & Gelman, 1998).

Finally, computational cost becomes a limiting factor in large models. It-
erative algorithms often require thousands of iterations across multiple chains,
making convergence monitoring and effective sample size estimation crucial to
ensure both accuracy and efficiency.

To mitigate these issues, practitioners are encouraged to:
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¢ Run multiple chains with overdispersed starting values.
e Monitor convergence using R and effective sample size (nef).

o Use reparameterizations or more advanced algorithms (e.g., Hamiltonian
Monte Carlo) when poor mixing is detected.

o Visualize diagnostics such as trace plots and autocorrelation to detect
pathologies.

These strategies help ensure that iterative simulations yield valid and repro-
ducible Bayesian inferences.

1.5.2 Potential Scale Reduction Factor (R) and Effective
Sample Size (neg)

Building on the need for robust convergence assessment, we now turn to two key
diagnostics: the Potential Scale Reduction Factor (]%) and the Effective Sample
Size (neg). In iterative simulation, reliable inference requires assessing whether
the Markov chain has converged to the target distribution and whether the
sampling variability is low enough to support accurate estimates. Two widely
adopted diagnostics in this context are the Potential Scale Reduction Factor
(R) and the Effective Sample Size (neg), both of which are particularly useful
in hierarchical Bayesian modeling, where mixing and identifiability issues are

common.

Potential Scale Reduction Factor (R). The R statistic, originally pro-
posed by Gelman and Rubin (1992) and refined in later works (Brooks & Gel-
man, [1998; Gelman et al., [2013), compares the variance within each simulated
chain to the variance between chains. The idea is that, if the chains have mixed
well and are sampling from the same stationary distribution, the between-chain
and within-chain variances should be similar.

Let m be the number of parallel chains and n the length of each chain (after
warm-up and possibly thinning). For a scalar estimand 1, define:

I o
g ﬁgwij’ (mean of chain j)

(overall mean)

<
I
3~
iNg
&

B=-" Z(wﬂ' —1.)%, (between-chain variance)

m— 14

Jj=1
W:lisz, whereszzii(%'*ﬂ)')?
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An overestimate of the posterior variance is then computed as:

n

— -1 1
Var (¢ |y) = W—&—;B.

n

Finally, the potential scale reduction factor is defined as:

—t
A Var (¥ ]y)
R= W .

When R =~ 1, the chains are considered to have mixed well. In practice, val-
ues below 1.1 are typically considered sufficient for convergence (Gelman et
al., 2013]). Values significantly greater than 1 suggest that more iterations are
needed.

Effective Sample Size (neg). Even after convergence, Markov chains often
exhibit autocorrelation, which reduces the effective number of independent sam-
ples. To account for this, the effective sample size for a scalar estimand v is

estimated using:
mn

L+25 pe
where p; is the estimated lag-t autocorrelation across chains and T is the first
odd lag where ps11 + prio < 0, as recommended by Geyer (1992]).

This measure allows users to determine whether their estimates are suffi-
ciently precise. As a rule of thumb, a minimum n.g of 400 is often recommended
to ensure stable posterior quantiles and summaries (Gelman et al., [2013)).

Neff

Visualization. In conjunction with numerical diagnostics, visual tools such as
trace plots, autocorrelation plots, and overlayed posterior densities across chains
provide intuitive insight into convergence behavior. Particularly in hierarchical
models with weakly identified parameters or sparse data, these diagnostics help
confirm that the Markov chain has thoroughly explored the posterior distribu-
tion.

Conclusion. Both R and neg are essential convergence tools in Bayesian com-
putation. When used in tandem with visual inspection and domain-specific
knowledge, they provide a rigorous basis for stopping simulation and reporting
posterior summaries with confidence.

1.5.3 Best Practices

Ensuring the reliability of inference from MCMC simulations requires more than
simply running chains and examining posterior summaries. A series of best
practices has emerged from both theoretical and applied work to enhance the
credibility and reproducibility of Bayesian analyses using iterative simulation.
These practices are particularly critical in hierarchical models, where complex
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Trace Plot: Well-mixed vs Poorly Mixed Chains
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Figure 1.3: Trace plots of three MCMC chains. Chains 1 and 2 exhibit good
mixing, while Chain 3 shows poor mixing and slow convergence.

dependency structures and weak identifiability can exacerbate convergence and
mixing issues.

1. Use multiple chains with overdispersed initial values. Running mul-
tiple parallel chains from dispersed starting points is essential to assess conver-
gence effectively. As shown in Figure [1.3] and discussed by Gelman and Rubin
, visual comparisons across chains can reveal when simulations remain
confined to different modes or regions of the parameter space. Overdispersed
starting values increase the probability that all relevant regions of the posterior
will be explored.

2. Discard warm-up iterations. To remove the influence of initialization, it
is standard practice to discard the first half of each chain as warm-up (also called
burn-in). During this phase, the chains transition from the starting distribution
toward the stationary posterior. Retaining only the second half reduces bias in
posterior summaries and diagnostics (Gelman et al., .

3. Monitor convergence using R and neg- Quantitative diagnostics should
always complement visual checks. Ensure that the potential scale reduction fac-
tor R is below 1.1 for all monitored parameters and that the effective sample
size neg is sufficiently large (e.g., at least 400 for posterior quantiles). These
diagnostics help verify both mixing and stationarity of the chains (Brooks &

Gelman, 1998)).

4. Transform constrained parameters. When parameters are bounded
(e.g., standard deviations, probabilities), applying transformations such as log,
logit, or ranking improves the performance of convergence diagnostics based on
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means and variances. This preprocessing enhances the interpretability of R and
neg in non-Gaussian posterior distributions (Vehtari et al., [2021)).

5. Avoid unnecessary thinning. Although thinning (keeping every kth
sample) was historically used to reduce autocorrelation or storage burden, it is
now generally discouraged. Modern computing allows efficient storage of large
samples, and retaining all iterations increases statistical efficiency for estimating
posterior summaries.

6. Use visual diagnostics. Trace plots, autocorrelation plots, and density
overlays remain essential tools for identifying non-stationarity, poor mixing, or
multimodality. These visuals are especially helpful for diagnosing pathologies
not easily detected by numerical summaries alone.

7. Simulate until convergence, then continue. Rather than stopping as
soon as convergence diagnostics are satisfactory, it is good practice to continue
the simulation for additional iterations. This increases neg and improves the
precision of estimates, especially for tail quantiles or model-derived summaries.

8. Automate and document. Finally, modern Bayesian workflows encour-
age automation of convergence checks and documentation of MCMC settings
(e.g., number of chains, iterations, warm-up length, diagnostics). Tools like
rstan, cmdstanr, PyMC, and ArviZ offer built-in convergence monitoring and
reporting facilities that support transparency and reproducibility.

By following these best practices, researchers can ensure that their Bayesian
analyses rest on solid computational foundations, yielding valid posterior infer-
ences and supporting robust decision-making.

Conclusion

Having established the theoretical foundations of hierarchical Bayesian models
and illustrated their implementation through the normal-normal case, we now
turn to a more applied context. The next chapter presents a case study in
marketing analytics, where individual-level preference heterogeneity is modeled
using a hierarchical logit specification. This application highlights the flexi-
bility of the Bayesian framework in handling discrete choice data with sparse
observations at the unit level.
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Chapter 2

Hierarchical Bayes in
Marketing: A Logit Case
Study

2.1 Introduction and Motivation

In modern marketing analytics, one of the greatest challenges is understand-
ing customer-level behavior when only sparse individual-level data are avail-
able. Traditional models often fail to capture the complexity and heterogeneity
present in consumer preferences and decision-making. Hierarchical Bayesian
(HB) models address this issue by pooling information across individuals while
preserving their unique characteristics, making them especially useful for dis-
crete choice modeling in marketing contexts.

HB models are particularly valuable when firms must make inferences about
individual customers from limited observations, such as in conjoint or trade-off
studies. In such settings, classical frequentist approaches either ignore hetero-
geneity or estimate it with unstable fixed-effects due to small sample sizes per
respondent. In contrast, hierarchical Bayesian models combine two components:
a within-individual model that describes a respondent’s choices and a between-
individual model that captures variation across respondents. These sub-models
are integrated using Bayes’ theorem, resulting in a flexible framework that al-
lows uncertainty to be quantified at every level of the hierarchy.

As noted by Allenby et al. (2005), marketing data typically involve many
units (e.g., customers, households), each providing relatively few observations.
The ability to "borrow strength" across units is a central advantage of hierarchi-
cal Bayes, enabling more stable and accurate inference at the individual level.
Moreover, this modeling strategy has proven effective in applications such as di-
rect marketing, advertising effectiveness, product design, and pricing strategy.

The current chapter extends the Bayesian modeling principles discussed in
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Chapter 1 to the domain of discrete choice modeling. Specifically, we focus
on the implementation of a hierarchical logit model for a credit card product
study. This example illustrates how HB methods can uncover latent preference
structures across individuals while enabling precise, individualized predictions.
The use of a logit likelihood introduces computational challenges in Bayesian
inference, addressed through sampling methods described later.

2.2 The Credit Card Case Study (Allenby et al.,
2005)

To demonstrate the application of hierarchical Bayesian modeling in marketing,
Allenby et al. (2005) analyze a case study involving consumer choice in response
to a set of competing credit card offers. The objective of the analysis is to
estimate individual-level preference parameters for a discrete choice model and
to quantify heterogeneity across a sample of consumers using a hierarchical logit
specification.

Dataset overview. The dataset consists of responses from H = 946 indi-
viduals who participated in a conjoint survey conducted by a regional bank to
assess consumer preferences for credit card attributes. Each respondent com-
pleted between 13 to 17 binary choice tasks, selecting between two hypothetical
credit card profiles that differed on two attributes at a time.

The attributes included:

o Interest rate (fixed/variable; high, medium, low)
o Annual fee (high, medium, low)

o Credit line (low, high)

o Rebate (low, medium, high)

o Grace period (short, long)

o Reward program (four variants)

o Bank name (Bank A, Bank B, Out-of-State)

Because each profile varied only on a subset of attributes per task, individual-
level estimation of all part-worth utilities was not feasible using classical meth-
ods. The hierarchical Bayes framework allowed the estimation of individual-
level coeflicients B;, by borrowing strength across respondents while capturing
preference heterogeneity through a random-effects structure.
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Modeling objective. The primary goal of the model is to estimate individual-
level preference parameters 3, in a discrete choice context, accounting for unob-
served heterogeneity across respondents. This is achieved through a hierarchical
Bayesian logit model that enables:

1. Estimation of respondent-specific part-worth utilities S, capturing the
relative valuation of credit card attributes.

2. Estimation of population-level parameters, including the mean preference
vector I' and the covariance matrix Vg, summarizing heterogeneity across
individuals.

This hierarchical structure stabilizes individual-level estimates even when
data per respondent are limited, thanks to the integration of information across
the sample. It also supports both individual-level targeting and aggregate-level
managerial insights.

Summary table of key features. A simplified representation of the struc-
ture of the dataset is reported below.

Variable | Description

H Number of individuals (respondents), here H = 946

Ty Number of binary choice tasks completed by respondent h
(between 13 and 17)

Tht Attribute vector representing the levels shown in choice task
t to respondent h (only two attributes vary per task)

Yht Binary response: 1 if the respondent chooses profile A, 0
otherwise

B, Vector of individual-level part-worth utilities (latent, to be
estimated)

r Population-level mean of ), modeled as a linear function
of demographics

Vs Covariance matrix of the residual heterogeneity in 5,

Table 2.1: Key variables and model components in the hierarchical Bayes credit
card conjoint study.

In the following sections, we describe the hierarchical structure of the logit
model used in the study, and derive the corresponding Gibbs sampling algorithm
for Bayesian inference on both individual-level and population-level parameters.
In the implementation that follows, we simulate a reduced dataset (H = 20)
inspired by this structure, in order to illustrate the model and sampler mechanics
more transparently.
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2.3 The Hierarchical Logit Model

The hierarchical logit model provides a flexible framework to account for individual-
level heterogeneity in discrete choice data. Each consumer h = 1,..., H is as-
sumed to make a sequence of binary choices among alternatives described by
attribute vectors x5, € R¥, where t =1, ..., T}, indexes the choice occasions for
individual h.

Level 1: Choice model. At the lowest level, each choice is modeled using a
logistic function that links the observed attribute vector x,; to the probability
of choosing the preferred option:

exp(zy,9n)
1+ eXp(xLBh) ’

where yp: € {0,1} is the binary response, and f, is a vector of part-worth
utilities specific to individual h.

P(yht =1 | ﬂh,xht) =

Level 2: Heterogeneity model. To capture heterogeneity across consumers,
we model the §;, as random draws from a multivariate normal distribution:

Br ~ N(T, V),
where:
e I'is the K x 1 vector of mean preferences in the population,

o Vjisthe K x K covariance matrix representing the dispersion of individual-
level preferences around I'.

The model improves estimation stability by leveraging shared information
across individuals, particularly useful when each respondent contributes few
observations. By doing so, it mitigates overfitting and improves out-of-sample
predictions.

Interpretation of parameters.

e [ captures how much individual h values each attribute (e.g., interest
rate, annual fee).

o [ represents the average sensitivity to each attribute across all individuals.

o V3 quantifies the extent of heterogeneity—larger variances indicate greater
individual differences.

This modeling approach is particularly well-suited to marketing applications,
where personalized modeling is critical, but individual-level data is often sparse.
The HB logit model maintains individual specificity while also producing stable
aggregate inferences.
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2.4 Gibbs Sampler for the Hierarchical Logit
Model

To estimate the parameters of the hierarchical logit model, we implement a
Metropolis-within-Gibbs sampling algorithm. This approach enables Bayesian
inference in a setting where standard conjugate updating is not available due to
the nonlinearity of the logit likelihood.

The algorithm alternates between three key steps:

¢ Sampling individual-level parameters §j: Since the logit likelihood
is non-conjugate, each [} is updated using a Metropolis-Hastings step,
allowing for probabilistic acceptance of proposed values.

e« Updating the population-level mean I': Given the current draws of
the individual (;’s, the population mean is sampled from its posterior
distribution, leveraging conjugate normal theory.

o Updating the covariance matrix Vj3: The heterogeneity across indi-
viduals is captured through V3, which is updated using standard results
from the inverse-Wishart posterior.

This iterative procedure is repeated for a fixed number of iterations, dis-
carding early draws as burn-in. While more advanced alternatives like Pélya-
Gamma augmentation can eliminate the need for Metropolis steps, we maintain
the Metropolis-within-Gibbs structure for clarity and consistency with the orig-
inal formulation by Allenby et al. (2005). The Pélya-Gamma method, intro-
duced by Polson et al. (2013)), introduces latent variables that render the logit
likelihood conditionally conjugate, enabling fully Gibbs-based sampling with
improved mixing and computational efficiency—especially in high-dimensional
or large-sample contexts. Convergence is assessed using standard diagnostics
such as R and effective sample size, along with graphical tools. The complete
implementation is provided in Appendix C.

2.5 Implementation and Reproduction of Results

To illustrate the practical implementation of the hierarchical logit model intro-
duced in the previous section, we develop a Metropolis-within-Gibbs sampler
following the structure proposed by Allenby et al. (2005). The model is applied
to a simulated dataset consistent with the structure of the credit card conjoint
experiment.

Code structure. The algorithm is implemented in Python, with the following
blocks executed iteratively:

1. Update each fj using a Metropolis-Hastings step, based on the individual
likelihood and normal prior.
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2. Update the population mean I' using a conjugate multivariate normal
posterior.

3. Update the covariance matrix Vs using a conjugate inverse-Wishart pos-
terior.

A summary of the core implementation is reported in Appendix [C] The
full code includes pre-processing of covariates, likelihood evaluation, adaptive
tuning of the proposal variance for 55, and convergence diagnostics.

Sampling configuration. We simulate H = 20 individuals, each making
T3, = 10 binary choices between pairs of credit card profiles characterized by K =
5 attributes. The true population mean I" was set to [0.5,—-0.7,0.3,1.0, —1.2],
and the covariance matrix V3 to a diagonal matrix with moderate dispersion.
This setting creates distinguishable individual preferences while maintaining
partial pooling. The total number of Gibbs iterations is set to 1,000, with the
first 300 discarded as burn-in. Posterior summaries are computed using the
remaining 700 draws. Convergence is assessed qualitatively via trace plots and
posterior densities, due to the reduced computational setting.

Posterior summaries. After burn-in, we extract and summarize the poste-
rior distributions of:

e I': the mean preference vector across respondents.
o Vp: the covariance matrix capturing cross-individual heterogeneity.

e [y individual-level utility weights, for a selected respondent.

Figure [2.7] displays the marginal posterior distributions of the five elements
of I'. Figure illustrates this shrinkage effect for respondent h = 5, whose
posterior distribution for 3}, is shown relative to the overall mean I'. The vertical
dashed lines in the plot correspond to the posterior means of I', highlighting the
regularization effect at the individual level.

Insights. Posterior distributions of I' concentrate around plausible average
effects for the five credit card attributes. In this simplified setting, attributes
with higher population agreement (e.g., a strong preference against high in-
terest rates) exhibit lower posterior variance. The sampled f;, vectors vary
significantly across individuals, but display a clear tendency to shrink toward
the population mean. This regularization effect is particularly pronounced for
individuals with limited data, demonstrating a key strength of the hierarchical
Bayesian framework in small-sample environments.

33



Posterior Distributions of Population Preferences (Gamma)

Attribute 1
—— Attribute 2
—— Attribute 3
—— Attribute 4
—— Attribute 5

2.00r

175¢

1.50F

1.25¢

Density

0.75|

0.50

0.25|

0.00

20 15 -1.0 0.5 ~ 0.0 0.5 1.0 15
Coefficient Value

Figure 2.1: Marginal posterior distributions of the five elements of I", represent-
ing average preferences across a simulated sample of H = 20 individuals.

2.6 Discussion

The hierarchical Bayes framework offers a coherent strategy for modeling individual-
level heterogeneity, with wide applicability across domains. This flexibility be-
comes evident when contrasting the normal-normal model from Chapter 1 (Eight
Schools) with the hierarchical logit model implemented in this chapter.

From Gaussian to discrete choice. In the Eight Schools example, both
likelihood and prior distributions were Gaussian, yielding conjugate posteriors
and closed-form Gibbs updates. The focus was on estimating treatment ef-
fects 8; while borrowing strength through a population-level prior. In contrast,
the hierarchical logit model analyzed here involves binary outcome data and
a nonlinear link function, which breaks conjugacy and necessitates the use of
Metropolis-Hastings (MH) within Gibbs sampling to update the individual-level
parameters .

Despite this additional complexity, the underlying structure is similar: both
models assume that individual-level effects are drawn from a common population
distribution. This enables partial pooling, improves estimates in sparse-data
settings, and leads to more robust inference.

The role of Metropolis-Hastings. In our implementation, the MH algo-
rithm was used to sample each f3;, based on a random-walk proposal distribu-
tion centered at the current value. Given the reduced scale of the simulation
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Figure 2.2: Posterior distributions of the individual preference vector (s for
respondent h = 5, shown alongside vertical dashed lines indicating the posterior
means of the population-level vector T'.

(H = 20, T, = 10), a simple isotropic Gaussian proposal was sufficient to
achieve reasonable mixing without adaptive tuning. This highlights the trade-
off inherent in Bayesian computation: while conjugate models allow for efficient
full Gibbs sampling, more general models require flexible but potentially slower
alternatives like MH. The experience gained here illustrates the importance of
balancing model realism with computational tractability.

Interpretability and practical relevance. A key advantage of hierarchical
Bayesian models in marketing lies in their interpretability. The posterior dis-
tributions of I" offer aggregated insights into population-level preferences, while
the sampled B, vectors support personalized targeting. The shrinkage effect ob-
served—particularly for individuals with few observations—reflects the model’s
ability to regularize noisy data naturally. Even in this simplified simulation,
we observe meaningful heterogeneity, along with stabilization around the group
mean.

Overall, the hierarchical logit model complements the Gaussian example
by extending Bayesian inference to discrete-choice data. Its implementation
via Metropolis-within-Gibbs sampling demonstrates both the versatility and
practical challenges of modern Bayesian models in high-dimensional but data-
constrained environments.
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Conclusion

This chapter demonstrated the application of hierarchical Bayesian modeling in
a marketing context, with a focus on capturing individual-level heterogeneity
in discrete choice behavior. Building on the theoretical foundations established
in Chapter 1, we specified and implemented a hierarchical logit model using
a Metropolis-within-Gibbs sampling algorithm. This model enabled the esti-
mation of respondent-specific preference vectors while simultaneously capturing
population-level trends through a multivariate normal prior.

Our implementation on a simulated dataset illustrated the core features of
the hierarchical approach: partial pooling across individuals, shrinkage toward
the population mean, and full posterior inference at multiple levels. Despite the
non-conjugacy of the logit likelihood, the sampler proved effective in recovering
interpretable structures of individual preferences.

Overall, this case study highlights the flexibility and robustness of hierar-
chical Bayes models for marketing analytics, especially in settings characterized
by sparse and noisy individual-level data.
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Chapter 3

Hierarchical Logit on
E-Commerce Data

3.1 Motivation and Objective

Understanding customer preferences is a central objective in retail analytics,
especially in digital environments where users repeatedly interact with a broad
set of products. While classical models can offer aggregate insights, they often
fail to capture the heterogeneity in individual decision-making. Each customer
exhibits distinct sensitivities to product characteristics such as price, category,
or aesthetic attributes. Accurately modeling this heterogeneity is crucial for
applications like personalized marketing, dynamic pricing, and product recom-
mendation systems.

This chapter presents an application of the hierarchical Bayesian logit model
to real-world e-commerce data. The data come from an online retailer, contain-
ing detailed records of customer transactions, including product descriptions,
quantities purchased, unit prices, and timestamps. By reframing purchase ses-
sions as discrete choice tasks, we are able to extract binary decision data for
individual users and apply a hierarchical framework to model their preferences.

The hierarchical logit model is particularly well suited to this task for three
main reasons. First, it allows us to model binary choices—whether or not a
product is selected within a given purchase session. Second, the hierarchical
structure enables us to estimate individual-level parameters (S5) while simulta-
neously learning a population-level distribution (T', V), allowing for information
sharing across customers. This is especially beneficial in settings where each cus-
tomer contributes only a limited number of observed choices. Third, the model
provides a coherent probabilistic framework for uncertainty quantification, en-
abling robust inference and interpretability.

The objective of this chapter is to show how the hierarchical logit model can
uncover meaningful patterns in consumer behavior by estimating latent utility
parameters for each individual. In doing so, we demonstrate both the method-
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ological flexibility and the practical value of Bayesian hierarchical modeling in
a retail context.

3.2 Dataset Description

Data Source

The dataset used in this chapter is the Online Retail Dataset, publicly available
on Kaggleﬂ It contains transactional data from a UK-based online retailer,
covering a period between December 2010 and December 2011. Each row in
the dataset corresponds to a product purchased within a given invoice, and the
dataset includes over 500,000 such records.

Variable Overview
The main variables relevant for our analysis are:
e InvoiceNo: a unique identifier for each transaction (invoice).
¢ StockCode: a product identifier.
¢ Description: a textual description of the product.
¢ Quantity: the number of units of the product purchased.
¢ InvoiceDate: the date and time of the transaction.
¢ UnitPrice: the price per unit of product (in pounds sterling).
e CustomerlID: a unique identifier for the customer.

¢ Country: the country of the customer (restricted to the United Kingdom
in this analysis).

These variables enable the reconstruction of customer-level choice behav-
ior across multiple sessions. In particular, we focus on the fields CustomerID,
InvoiceNo, Description, and UnitPrice to build a dataset suitable for discrete
choice modeling.

Preprocessing Steps

To prepare the dataset for hierarchical modeling, a series of preprocessing steps
were applied:

1. Data cleaning. We retained only transactions with strictly positive
quantity and non-missing CustomerID values. Additionally, we restricted
the analysis to customers located in the United Kingdom to reduce geo-
graphic heterogeneity.

Thttps://www.kaggle.com /datasets/tunguz/online-retail
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2. Session definition and binary labeling. Each unique invoice (InvoiceNo)

associated with a customer was treated as a separate choice session. Within
each session, the purchased products were ranked by price, and the most
expensive product was labeled as the chosen alternative (y = 1), while all
others were labeled as unchosen (y = 0). This approximation enables the
construction of binary choice datasets suitable for logit modeling.

3. Feature construction. For each product, we computed the log-transformed

unit price (LogPrice) and extracted a simplified product category from
the item description. These features serve as covariates in the logit model.

4. Customer selection. To ensure that sufficient data were available for
each individual-level model, we selected a subset of customers with at
least 10 distinct choice sessions. From this group, we randomly sampled
30 individuals to construct the final modeling dataset.

These steps resulted in a structured dataset where each row represents a
binary decision made by a customer in a particular session, along with associated
covariates describing the available alternatives.

3.3 Model Specification

To estimate individual preferences from binary product selection data, we em-
ploy a two-level hierarchical Bayesian logit model. This framework accounts
for within-customer choice behavior as well as across-customer heterogeneity in
attribute sensitivities.

Level 1: Logistic Choice Model

At the first level, we model the probability that individual A selects a product in
choice occasion ¢ as a function of product-specific attributes x; € R¥ and their
own latent preference vector 8, € R¥. The outcome yp; € {0,1} is modeled
using the logistic function:

emLBh

P =1 S Tpt) = —————.
(yht \5h ht) 1+6$L5h

Each observation represents a product considered in a customer’s purchase

session, with the top-ranked product (by price) labeled as the chosen one and
the others as unchosen.

Level 2: Heterogeneity Across Individuals

At the second level, individual-specific preference vectors are assumed to follow
a multivariate normal distribution governed by a population-level mean vector
I' and covariance matrix Vj:
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By, ~ ./\/'(F,Vg).

This structure enables partial pooling of information across customers, which
is especially beneficial in sparse data contexts where each individual contributes
only a limited number of observations.

Covariates and Feature Construction
The choice model includes two product-level covariates:

o Log-transformed price (LogPrice): This captures the negative effect
of higher prices on product selection, while also accounting for skewness
in price distribution.

¢ Product category (Category): Derived from the product description
field, categories were extracted using regular expressions and encoded as
numeric variables. These represent abstract product types or themes.

All covariates were standardized before model fitting using the StandardScaler
from the sklearn library to improve MCMC mixing.

Estimation Method: Metropolis-within-Gibbs Sampler

To estimate the posterior distribution of parameters in the hierarchical logit
model, we adopt a Metropolis-within-Gibbs sampling strategy. The algorithm
iterates over the following three steps:

1. Individual-level update (Metropolis-Hastings): For each individual
h, we generate a proposal B} from a Gaussian distribution centered at
the current value. The new value is accepted or rejected based on the
log-posterior ratio, which combines the individual log-likelihood from the
logistic model and the prior density 8, ~ N (T, Vz).

2. Population mean update (Gibbs step): Given the current individual
draws B, the population mean vector I' is updated using conjugate nor-
mal posterior theory. The resulting conditional distribution is multivariate
normal with a closed-form expression for mean and covariance.

3. Population covariance update (Gibbs step): The covariance matrix
V3 is updated via its inverse-Wishart posterior, conditional on the current
draws of 3, and the updated I'.

This structure leverages conditional conjugacy for the top-level parame-
ters, while addressing the non-conjugacy of the logit likelihood through local
Metropolis steps at the individual level. The algorithm enables flexible and
fully Bayesian inference over both population-level and individual-level param-
eters, preserving the hierarchical nature of the model.

Full implementation details are provided in Appendix Section Model
Estimation via Metropolis-within-Gibbs Sampler.
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3.4 Estimation Results and Interpretation

This section presents the results obtained from the Metropolis-within-Gibbs
estimation of the hierarchical Bayesian logit model applied to the Online Retail
dataset. After discarding the initial 300 samples as burn-in, posterior summaries
were computed over 700 draws.

Posterior Mean of T

Figure [3.1] displays the posterior distributions of the population-level prefer-
ence vector I', which characterizes the average customer sensitivity to product
attributes.

The first element of I', associated with LogPrice, exhibits a strongly pos-
itive mean. This suggests that, within the structure of the dataset, the most
expensive item in a session (which was labeled as chosen) is systematically pre-
ferred, possibly indicating premium product interest or a data encoding effect.
The second element, related to Category, centers around zero with wider dis-
persion, suggesting weak and heterogeneous population-level preference across
product types.

Posterior Distributions of Population Mean (I')

r

0.54

0.0 T T T T
0 1 2 3
Coefficient Value

Figure 3.1: Posterior distributions of the population mean vector IT'.

Shrinkage of 8, Toward I"

One of the key advantages of hierarchical Bayesian models is their ability to
capture individual-level heterogeneity while still leveraging population-level in-
formation through partial pooling. This is clearly reflected in the shrinkage
behavior observed in Figure [3.2]

In hierarchical models, each individual’s preference vector 3 is treated as
a random draw from a population distribution centered at I', the global mean.
Bayesian inference updates this prior belief by incorporating individual data,
resulting in a posterior distribution for each g, that is shaped both by the
individual’s own choices and by the broader population trend.
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Shrinkage occurs naturally in this setting: when an individual has limited
or noisy data, the corresponding posterior distribution p(3, | data) tends to
concentrate near the population mean I', reflecting high uncertainty. Conversely,
if an individual’s behavior is consistent and well-represented in the data, the
posterior for 8, can deviate more from I', expressing stronger individual signal.

The shrinkage visible in the figure confirms that the model balances personal-
ization and regularization. Some individuals’ preferences are closely aligned with
the population, while others deviate, likely due to more distinctive observed be-
havior. This adaptive behavior is crucial in real-world settings like e-commerce
or marketing analytics, where individual data are often sparse. Rather than
overfitting to limited observations or ignoring individual variation altogether,
the model "borrows strength" across the population to produce stable, inter-
pretable estimates at the individual level.

Shrinkage of Individual Preferences Towards '

B
B2
B

124

1019 B2
B2

0.8 Bz
/ —

Density

0.6 1 {

0.44

0.2

0.0

-2 -1 0 1 2 3 4 5 6
Coefficient Value

Figure 3.2: Posterior distributions of 3 for selected individuals, overlaid with
r.

Covariance Structure of Vj

The covariance matrix Vg captures the variability of preferences across individ-
uals. Its posterior mean is shown in Figure [3.3] The diagonal elements reflect
the marginal variance for each attribute, while off-diagonal values indicate their
correlation.

The matrix reveals moderate variance for both attributes and a negative
correlation between LogPrice and Category, suggesting that individuals more
sensitive to price may be less responsive to product type, and vice versa.

Interpretation Summary

Overall, the model captures stable and interpretable patterns of preference in
a setting with sparse individual-level data. The posterior mean of I' provides
actionable insights on average customer behavior, while the §; distributions
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Posterior Mean of Covariance Matrix Vg

I 0.6

-0.4

Attrl

-0.2

I>_O‘2

Figure 3.3: Posterior mean of the covariance matrix V.
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reveal rich heterogeneity. The covariance structure offers a compact summary
of how customer sensitivities co-vary, enhancing our understanding of behavioral
diversity in e-commerce contexts.

3.5 Discussion

The hierarchical Bayesian logit model presented in this chapter demonstrates
strong empirical and methodological performance in modeling individual-level
preferences in a sparse e-commerce dataset. Its key advantage lies in the abil-
ity to estimate personalized preference vectors (8;) for each customer while
retaining a global view through the population-level parameters (I, V).

Advantages in Sparse Data Settings

In typical online retail data, each customer is observed across only a handful of
purchase sessions. Standard individual-level models, such as fixed-effects logit or
non-hierarchical approaches, struggle to produce stable estimates in this setting
due to data sparsity. The hierarchical model addresses this by sharing infor-
mation across users through partial pooling, allowing for more robust inference
without overfitting.

This regularization effect is especially useful for customers with few obser-
vations, where direct estimation would yield noisy or extreme results. The
posterior distribution of 3, reflects both the individual’s observed behavior and
the broader population trend, yielding interpretable and reliable personalized
estimates.

Comparison with Non-Hierarchical Models

Compared to classical models that either ignore heterogeneity (e.g., pooled lo-
gistic regression) or treat it rigidly (e.g., cluster-based segmentation), the hier-
archical Bayesian approach provides a more flexible and statistically coherent
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framework. It allows for continuous variation across customers rather than forc-
ing them into a finite number of types.

Moreover, unlike random-effects models estimated via maximum likelihood,
the Bayesian approach yields full posterior distributions, enabling richer un-
certainty quantification and downstream analysis. It also avoids the pitfalls of
overfitting to frequent users while underrepresenting less active ones.

To benchmark the performance of the hierarchical Bayesian logit model,
we implemented a standard logistic regression model estimated via maximum
likelihood (MLE) using the same dataset.

The frequentist model pools all observations together and does not account
for individual-level heterogeneity. The model specification is:

logit(P(y = 1)) = Bo + B1 - LogPrice + 5 - Category.

The model was estimated using the LogisticRegression class from scikit-learn,
with default L2 regularization and the 1bfgs optimizer. The fitted coeflicients
are:

e 1 (LogPrice): 1.444

o [y (Category): 0.024

« Intercept (8y): -3.760

Predictive performance was evaluated using classification accuracy and AUC:
o Accuracy: 94.8%

o AUC (Area Under the ROC Curve): 0.855

The full Python implementation used to estimate this model is provided in
Appendix [E]

Comparison. The MLE-based logistic model provides a fast and inter-
pretable baseline for predicting product selection. The positive coefficient for
LogPrice aligns with the Bayesian estimate of I', reflecting the constructed
labeling of more expensive items as chosen. However, unlike the hierarchical
model, the MLE model lacks the ability to account for customer-specific vari-
ation, which is essential in sparse data settings. The Bayesian model further
enables uncertainty quantification and personalization, making it more suitable
for tasks such as targeted marketing or preference clustering.

Marketing and CRM Implications

The availability of posterior samples of 3;, enables practical applications in mar-
keting and customer relationship management (CRM). For instance:

e Targeted campaigns: By identifying individuals with strong positive
sensitivity to price or product category, firms can tailor discounts and
product placements to specific customer profiles.
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e Customer clustering: Posterior summaries of 5, can be used as input
for clustering algorithms, revealing latent behavioral segments not cap-
tured by traditional RFM (Recency, Frequency, Monetary) metrics.

e Preference evolution: Since the model is probabilistic, it can be ex-
tended to time-series settings to monitor changes in customer preferences
over time, offering insights into churn risk or lifecycle behavior.

In summary, the hierarchical Bayesian logit model is not only a robust sta-
tistical tool, but also a powerful engine for deriving actionable insights in data-
driven marketing strategies.

3.6 Limitations and Extensions

While the hierarchical Bayesian logit model provides a powerful framework for
analyzing individual-level choice behavior, its application in this chapter is sub-
ject to certain limitations related to both data structure and model assumptions.

Dataset Limitations

The Online Retail dataset, although rich in transaction records, lacks explicit
information about the full choice set available to each customer at the time of
purchase. Our construction of binary choice tasks is based on the assumption
that the most expensive product in a session represents the chosen item, while
all others are unchosen. This design is a heuristic approximation and may
introduce bias if price is not the dominant driver of selection.

Additionally, the dataset does not capture user exposure to products not
purchased, nor does it include marketing variables such as promotions, browsing
behavior, or availability constraints. These omissions limit the ability of the
model to disentangle preference from availability or awareness.

Model Extensions

Several extensions could enhance the flexibility and realism of the modeling
approach:

¢ Multinomial logit: Rather than focusing on binary decisions, the model
could be extended to a full multinomial logit framework where the prob-
ability of choosing an item is modeled relative to all available alternatives
in a session. This would require constructing or simulating realistic choice
sets for each invoice.

¢ Pélya-Gamma augmentation: The current implementation relies on
Metropolis-Hastings steps to sample from the posterior of 3;, which may
suffer from slow mixing in high-dimensional settings. Pdlya-Gamma data
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augmentation (polson2013bayesian) provides a fully Gibbs-sampling-
compatible alternative that improves computational efficiency and con-
vergence.

o Text-based features: Instead of relying on simple string matching for
product categorization, one could use word embeddings or transformer-
based models (e.g., BERT) to extract latent semantic features from prod-
uct descriptions. These features could be incorporated into zp; to capture
deeper product characteristics.

e Temporal dynamics: A dynamic hierarchical model could be used to
capture how individual preferences evolve over time, using techniques such
as state-space models or Gaussian processes on the latent 5, (t) trajecto-
ries.

By addressing these limitations and exploring such extensions, the hierar-
chical Bayesian framework could become even more expressive and practically
useful in real-world marketing analytics.

Conclusion

This chapter demonstrated the practical implementation and interpretability
of a hierarchical Bayesian logit model applied to real-world e-commerce data.
Using the Online Retail dataset, we constructed a set of binary choice tasks and
estimated individual-level preference vectors (8) and population-level trends
(T, V) via a Metropolis-within-Gibbs sampler.

The model successfully addressed the challenges posed by sparse data per
customer, enabling personalized yet stable estimation of latent utilities. The
shrinkage behavior observed in posterior distributions highlights the regularizing
effect of partial pooling, while the covariance structure revealed meaningful
behavioral heterogeneity across customers.

From a methodological standpoint, the approach provides a principled way
to combine personalization with statistical robustness. Practically, it opens
the door to data-driven marketing strategies such as targeted interventions and
behavioral segmentation based on posterior inference.

Despite limitations related to the lack of explicit choice sets and marketing
covariates, the model proved to be both flexible and insightful. The chapter
also outlined several promising extensions, including multinomial formulations,
improved sampling schemes (e.g., Polya-Gamma augmentation), and the inte-
gration of richer product representations via text-based embeddings.

In sum, this case study illustrates the power of Bayesian hierarchical mod-
eling in retail analytics, offering a versatile framework for understanding and
predicting consumer behavior in complex environments.
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Appendix A

Common Probability
Distributions Used in This
Thesis

This appendix summarizes the probability distributions most frequently used
throughout the thesis, along with their key properties.

Beta Distribution

. . D(a+8) a1 B—1
0 ~ Beta(a, 3), with densit 0) = 0 (1—-46 , 6€(0,1
(@.8) v 00 = pet S -0 0.1
. _Q : . af
Mean: “tp’ Variance: m

Binomial Distribution

y ~ Bin(n, ), with probability mass function P(y) = <n

Mean: nf, Variance: nf(1 —0)

Normal Distribution

2 . . 1 (]" B /’L)Q
x ~N(p,0%), with density p(z) = Noroe exp |~
o

Mean: y, Variance: o2
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Inverse-
x? Distribution

2/2)v/? vs?
~ vy (v, s%).  with densi _ WS ) g (V5
x ~ Inv-x*(v,s7), with density p(z) (/%) x exp 5y | T 0

2 2
. VS . Vs
Mean: Py for v > 2, Mode: )

Scaled Inverse Gamma Distribution

x ~ Inv-Gamma(c, 8), with density p(x) = F[E )x*afl exp (ﬂ) , x>0
e x

Mean: % for « > 1, Variance: % for a > 2

Half-Cauchy Distribution
. . 2
x ~ Half-Cauchy(\), with density p(z) = ——v, >0
=™ (1+(3)%)
Mode: 0, Heavy-tailed prior commonly used for scale parameters
(e.g., standard deviations)

These distributions appear in various chapters of the thesis, particularly in
modeling priors, likelihoods, and full conditionals in the Gibbs sampler.
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Appendix B

Gibbs Sampler Code for the
Eight Schools Example

import numpy as np
import matplotlib.pyplot as plt

# Data: estimated effects y_j and standard errors sigma_]j

for 8 schools
y = np.array([28, 8, -3, 7, -1, 1, 18, 12])
sigma = np.array([15, 10, 16, 11, 9, 11, 10,
J = len(y)

# Gibbs sampler parameters
n_iter = 10000
burn_in = 2000

# Initialize chainmns

theta = np.zeros((n_iter, J))
mu = np.zeros(n_iter)

tau2 = np.zeros(n_iter)

# Initial values
mu[0] = np.mean(y)
tau2 [0] = 10.0

# Gibbs sampling loop
for t in range(l, n_iter):
for j in range(J):
prec_y = 1 / sigmal[j]l*x2
prec_theta = 1 / tau2[t-1]

var_theta = 1 / (prec_y + prec_theta)

181)

mean_theta = var_theta * (y[j] * prec_y + mult-1] *

prec_theta)
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thetal[t, j] = np.random.normal(mean_theta, np.sqrt(
var_theta))

var_mu = tau2[t-1] / J
mean_mu = np.mean(thetal[t])
mul[t] = np.random.normal (mean_mu, np.sqrt(var_mu))

scale = np.sum((thetal[t]l - multl)**2) / (J - 1)
tau2[t] = (J - 1) * scale / np.random.chisquare(J - 1)

# Post-processing

theta_post = thetal[burn_in:]
mu_post = mul[burn_in:]

tau_post = np.sqrt(tau2[burn_in:])

# Plotting

fig, axes = plt.subplots(3, 1, figsize=(10, 9))

for j in range(J):
axes [0] .hist (theta_post[:, j], bins=50, alpha=0.6, label

=f"$\\theta_{{{j+1}}}$")

axes [0] .set_title("Posterior Distributions of School Effects
$\\theta_j$")

axes [0].1legend ()

axes [1].hist (mu_post, bins=50, color=’skyblue’)
axes [1].set_title("Posterior Distribution of Population Mean

$\\mu$")

axes [2] .hist (tau_post, bins=50, color=’lightgreen’)
axes [2] .set_title("Posterior Distribution of Standard
Deviation $\\tau$")

plt.tight_layout ()
plt.savefig("eight_schools_posteriors.pdf")
plt.show ()

Listing B.1: Gibbs Sampler for the Eight Schools Hierarchical Normal Model
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Appendix C

Python Code for the
Hierarchical Logit Model

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from numpy.linalg import inv

from scipy.stats import multivariate_normal, invwishart,
bernoulli

# Set seed for reproducibility
np.random.seed (42)

# Parameters

H = 20 # number of individuals

T 10 # number of choices per individual
K =5 # number of attributes

iterations = 1000

burn_in = 300

# True population parameters for simulation
true_Gamma = np.array([0.5, -0.7, 0.3, 1.0, -1.2])
true_V_beta = np.diag([0.5, 0.8, 0.3, 0.7, 0.6])

# Simulate beta_h for each individual
beta_h_true = np.random.multivariate_normal (true_Gamma,
true_V_beta, size=H)

# Simulate data
X = np.random.normal (0, 1, size=(H, T, K))
y = np.zeros ((H, T))
for h in range(H):
for t in range(T):

o1




29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

59

60

61

62

63

64

65

66

67

prob = 1 / (1 + np.exp(-X[h, t] @ beta_h_truel[h]))
y[h, t] = bernoulli.rvs(prob)

# Prior hyperparameters
mu0 = np.zeros (K)
Lambda0 = np.eye (K)

nu0 = K + 2

S0 = np.eye(K)

# Initialization

beta_samples = np.zeros((iterations, H, K))
Gamma_samples = np.zeros((iterations, K))
Vbeta_samples = np.zeros((iterations, K, K))
beta_h = np.random.normal (0, 1, size=(H, X))
Gamma = np.zeros (K)

V_beta = np.eye(K)

proposal_sd = 0.1 * np.ones(K)

# The proposal standard deviation is fixed at 0.1 for all
dimensions.

# This setting yields moderate acceptance rates in our toy
dataset.

# In real-world applications, adaptive tuning (e.g., scaling
to achieve 20 30 % acceptance) is recommended.

# Gibbs sampler with MH step
for it in range(iterations):
for h in range (H):
current_beta = beta_h[h]
proposal = np.random.multivariate_normal(
current_beta, np.diag(proposal_sd**2))
def log_likelihood(beta):
logits = X[h] @ beta
return np.sum(y[h] * logits - np.log(l + np.exp(

logits)))
log_post_current = log_likelihood(current_beta) +
multivariate_normal.logpdf (current_beta, Gamma,
V_beta)

log_post_proposal = log_likelihood(proposal) +
multivariate_normal.logpdf (proposal, Gamma,
V_beta)

if np.log(np.random.rand()) < log_post_proposal -
log_post_current:
beta_h[h] = proposal

Vb_inv = inv(V_beta)

Lambda_post_inv = inv(Lambda0) + H * Vb_inv

Lambda_post = inv(Lambda_post_inv)

mu_post = Lambda_post @ (inv(LambdaO) @ muO + Vb_inv @
beta_h.sum(axis=0))
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Gamma = np.random.multivariate_normal (mu_post,
Lambda_post)

S_post SO + ((beta_h - Gamma).T @ (beta_h - Gamma))
V_beta = invwishart.rvs(df=nu0 + H, scale=S_post)

beta_samples[it] = beta_h
Gamma_samples [it] = Gamma

Vbeta_samples[it] = V_beta
# Posterior summaries
Gamma_mean = Gamma_samples[burn_in:].mean(axis=0)
Gamma_posteriors = Gamma_samples [burn_in:]
ind_id = 5
beta_ind_post = beta_samples[burn_in:, ind_id]

# Plotting

figl, axl = plt.subplots(figsize=(10, 6))

for k in range (K):
sns.kdeplot (Gamma_posteriors[:, k], ax=axl, label=f"

Attribute {k+1}")

axl.set_title("Posterior Distributions of Population
Preferences (Gamma)")

axl.set_xlabel("Coefficient Value")

axl.legend ()

figl.tight_layout ()

figl.savefig("hb_logit_posteriors.png")

fig2, ax2 = plt.subplots(figsize=(8, 6))
for k in range (K):
sns.kdeplot (beta_ind_post[:, k], ax=ax2, label=f"$\\
beta_{{{ind_id},{k+1}}}$")
ax2.axvline (Gamma_mean[k], color=’k’, linestyle=’--’,
alpha=0.6)
ax2.set_title(f"Shrinkage of Individual {ind_id}’s
Preferences Toward Population Mean")
ax2.set_xlabel("Coefficient Value")
ax2.legend ()
fig2.tight_layout ()
fig2.savefig("individual_shrinkage.png")

Listing C.1: Metropolis-within-Gibbs sampler for hierarchical logit
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Appendix D

Data Preprocessing and
Model Estimation

Data Preprocessing Pipeline

import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler

# Load the dataset (converted from CSV to Excel for
compatibility)
df = pd.read_excel("Online Retail.xlsx")

# STEP 1: Filter out incomplete or invalid rows

df _clean = df [(df [’CustomerID’].notnull()) & (df[’Quantity’]
> 0)]

df _clean = df_clean[df_clean[’Country’] == ’United Kingdom’]

# STEP 2: Create session identifier
# Each session is defined by a unique CustomerID + InvoicelNo
df _clean[’InvoiceDate’] = pd.to_datetime (df_clean[’
InvoiceDate’])
df _clean[’SessionID’] = df_clean[’CustomerID’].astype(str) +
"_" + df _clean[’InvoiceNo’].astype(str)

# STEP 3: Within each session, sort products by descending
price

df_clean.sort_values(by=[’SessionID’, ’UnitPrice’],
ascending=False, inplace=True)

# STEP 4: Label top product as ’chosen’, others as 0 (binary
decision)
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df _clean[’Choice’]
O
df _clean[’Choice’] = (df_clean[’Choice’] == 0).astype(int)

df _clean.groupby(’SessionID’).cumcount

# STEP 5: Feature construction

df _clean[’LogPrice’] = df_clean[’UnitPrice’].apply(lambda x:
np.loglp(x))

df _clean[’Category’] = df_clean[’Description’].str.extract(r
>(\b[A-Z]+\b)’, expand=False).fillna("MISC")

# STEP 6: Select a manageable number of customers (at least
10 sessions)

session_counts = df_clean.groupby(’CustomerID’)[’SessionID’
] .nunique ()

eligible_customers = session_counts[session_counts >= 10].
index

selected_customers = eligible_customers [:30]

df _final = df_clean[df_clean[’CustomerID’].isin(
selected_customers)]

# STEP 7: Normalize and encode features

model_df = df_final[[’CustomerID’, ’SessionID’, ’Choice’, ’
LogPrice’, ’Category’]l].copy()

model_df [’Category’] = model_df[’Category’].astype(’category
’).cat.codes

scaler = StandardScaler ()

model_df [[’LogPrice’, ’Category’]] = scaler.fit_transform(
model _df [[’LogPrice’, ’Category’]])

# Encode user and session as integer indices

model_df [’CustomerIdx’] = model_df[’CustomerID’].astype(’
category’).cat.codes

model_df [’SessionIdx’] = model_df[’SessionID’].astype(’
category’).cat.codes

# STEP 8: Construct design tensors
H = model_df [’CustomerIdx’].nunique ()

T = model_df.groupby(’CustomerIdx’)[’SessionIdx’].nunique().
min ()
K =2 # Two features: LogPrice and Category

X = np.zeros((H, T, X))
y = np.zeros((H, T))

for h in range(H):

customer_data = model_df [model_df[’CustomerIdx’] == h]
sessions = customer_data[’SessionIdx’].unique() [:T]
for t_idx, session in enumerate(sessions):

row = customer_data[customer_data[’SessionIdx’] ==

session].iloc [0]
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X[h, t_idx, 0] = row[’LogPrice’]
X[h, t_idx, 1] = row[’Category’]
y[h, t_idx] = row[’Choice’]

Listing D.1: Data preprocessing for the Online Retail dataset

Model Estimation via Metropolis-within-Gibbs Sam-

pler

import matplotlib.pyplot as plt

import seaborn as sns

from numpy.linalg import inv

from scipy.stats import multivariate_normal, invwishart

# Define MCMC configuration
iterations = 1000

burn_in = 300

H, T, K = X.shape

# Priors and initial values
mu0 = np.zeros (K)

Lambda0 = np.eye(K)

nu0 = K + 2

SO0 = np.eye(K)

Gamma = np.zeros (K)
V_beta = np.eye(K)
beta_h = np.random.normal(0, 1, size=(H, K))

beta_samples = np.zeros((iterations, H, K))
Gamma_samples = np.zeros((iterations, K))
Vbeta_samples = np.zeros((iterations, K, K))

# MCMC Sampling
for it in range(iterations):
for h in range (H):
current_beta = beta_h[h]
proposal = np.random.multivariate_normal(
current_beta, np.diag([0.1%*2] * K))

def log_likelihood(beta):
logits = X[h] @ beta
return np.sum(y[h] * logits - np.loglp(np.exp(

logits)))
log_post_current = log_likelihood(current_beta) +
multivariate_normal.logpdf (current_beta, Gamma,
V_beta)
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log_post_proposal = log_likelihood(proposal) +
multivariate_normal.logpdf (proposal, Gamma,
V_beta)

if np.log(np.random.rand()) < log_post_proposal -
log_post_current:
beta_h[h] = proposal

# Update Gamma and V_beta (conjugate updates)

Vb_inv = inv(V_beta)

Lambda_post_inv = inv(Lambda0) + H * Vb_inv

Lambda_post = inv(Lambda_post_inv)

mu_post = Lambda_post @ (inv(Lambda0) @ mu0 + Vb_inv @
beta_h.sum(axis=0))

Gamma = np.random.multivariate_normal (mu_post,
Lambda_post)

SO + ((beta_h - Gamma).T @ (beta_h - Gamma))
invwishart.rvs(df=nu0 + H, scale=S_post)

S_post
V_beta

# Store samples
beta_samples[it] = beta_h
Gamma_samples [it] = Gamma
Vbeta_samples [it] V_beta

Listing D.2: Posterior inference with hierarchical logit model

Posterior Summaries and Diagnostic Plots

# Extract posterior draws

Gamma_post = Gamma_samples [burn_in:]
beta_post = beta_samples[burn_in:]
Vbeta_post = Vbeta_samples[burn_in:]

Gamma_mean = Gamma_post.mean(axis=0)

# Plot posterior distributions of Gamma
figl, axl = plt.subplots(figsize=(8, 5))
for k in range(K):

axl.

axl.
.legend ()

.tight_layout ()
plt.

ax1
plt

sns.kdeplot (Gamma_post[:, k], ax=axl, label=f"$\\Gamma_
{{{k+1}}}$")

set_title("Posterior Distributions of Population Mean ($

\\Gamma$) ")

set_xlabel ("Coefficient Value")

savefig("posterior_gamma.png")
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# Shrinkage effect across individuals
fig2, ax2 = plt.subplots(figsize=(8, 5))
for k in range (K):
for h in [0, 1, 2]:
sns.kdeplot (beta_post[:, h, k], ax=ax2, label=£f"§$\\
beta_ {{{h+1},{k+1}}}$", alpha=0.6)
ax2.axvline (Gamma_mean[k], color=’black’, linestyle=’--’
, label=f"$\\Gamma_ {{{k+1}}}$")
ax2.set_title("Shrinkage of Individual Preferences Towards $
\\Gamma$")
ax2.set_xlabel ("Coefficient Value")
ax2.legend ()
plt.tight_layout ()
plt.savefig("shrinkage_plot.png")

# Covariance matrix heatmap

import pandas as pd

Vbeta_mean = Vbeta_post.mean(axis=0)

fig3, ax3 = plt.subplots(figsize=(5, 4))

sns.heatmap (pd.DataFrame (Vbeta_mean, columns=["Attrl", "

Attr2"], index=["Attrl", "Attr2"]),
annot=True, fmt=".2f", cmap="coolwarm", ax=ax3)
ax3.set_title("Posterior Mean of Covariance Matrix $V_\\
beta$")

plt.tight_layout ()
plt.savefig("posterior_covariance.png")

Listing D.3: Visualizing posteriors of I', 55, and Vg

Data Transformations and Design Tensor Con-
struction

The preprocessing steps described in Listing[D.T]aim to convert the raw transac-
tional data into a structured format suitable for hierarchical Bayesian modeling.

e Session labeling. Each customer-invoice combination was treated as a
unique purchase session. Within each session, the product with the highest
price was labeled as the chosen alternative (y = 1), while all others were
treated as unchosen.

¢ Log transformation of price. Since raw prices are heavily right-skewed,
we applied a log-transform using log(1 + z) to obtain a smoother distri-
bution.

¢ Product category encoding. Categories were extracted from product
descriptions using a regular expression targeting uppercase keywords (e.g.,
“TOY”, “DECORATION”). These were then integer-coded as a categor-
ical variable.
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o Standardization. Both LogPrice and Category were standardized (zero
mean, unit variance) using StandardScaler to ensure balanced parameter
scales in the logit model.

¢ Tensor formatting. To enable Gibbs sampling, we created two arrays:

— X € RHXTXK. design tensor of standardized covariates for each
customer h, session ¢, and attribute k.

—y € {0,1}*T: binary outcome matrix for choices made by each
customer across sessions.

We fixed T" = 10 for all individuals to ensure alignment and regularity
across the dataset.

Sampler Configuration and Convergence Moni-
toring
The hierarchical Bayesian logit model was estimated using a Metropolis-within-
Gibbs sampler. The following configuration was used:

¢ Number of iterations: 1000.

e Burn-in period: 300 iterations (discarded).

e Proposal distribution: Gaussian with fixed standard deviation of 0.1
in each dimension.

e Population priors:

— o = 0 (prior mean for T)
— Ao = I (prior precision matrix)
— Vg NIW(VO :K+2,SO :IK)

Tuning: The fixed proposal standard deviation of 0.1 yielded reasonable
acceptance rates (approximately 25-35%) in this low-dimensional setting. No
adaptive tuning was implemented.

Convergence diagnostics: Although formal diagnostics such as R and ef-
fective sample size (nog) were not computed programmatically, visual inspection
of:

o trace plots (not shown),
o posterior distributions of I (Figure [3.1]),
o and shrinkage plots (Figure

suggested adequate convergence of the chains, especially given the small scale
of the model and limited dimensionality.

For more complex models or real-time decision-making applications, more
advanced diagnostics and automated convergence checks (e.g., using arviz or
cmdstanpy) are strongly recommended.
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Appendix E

Frequentist Baseline:
Logistic Regression via
MLE

MLE Estimation Procedure

import pandas as pd

import numpy as np

from sklearn.preprocessing import StandardScaler

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score, roc_auc_score

# Load the dataset
df = pd.read_csv("Online_Retail.csv", encoding="IS0-8859-1")

# Filter out incomplete or invalid rows

df _clean = df [(df [’CustomerID’].notnull()) & (df[’Quantity’]
> 0)]

df _clean = df_clean[df_clean[’Country’] == ’United Kingdom’]

# Define sessions by unique CustomerID + InvoicelNo
df _clean[’InvoiceDate’] = pd.to_datetime (df_clean[’
InvoiceDate’])
df _clean[’SessionID’] = df_clean[’CustomerID’].astype(str) +
"_" + df_clean[’InvoiceNo’].astype(str)

# Label the top-priced product as ’chosen’ (binary outcome)

df _clean.sort_values(by=[’SessionID’, ’UnitPrice’],
ascending=False, inplace=True)
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df _clean[’Choi
O
df _clean[’Choi

# Feature cons

ce’] df _clean.groupby(’SessionID’).cumcount
ce’] = (df_clean[’Choice’] == 0).astype(int)

truction

df _clean[’LogPrice’] = df_clean[’UnitPrice’].apply(lambda x:
np.loglp(x))

df _clean[’Category’] = df_clean[’Description’].str.extract(r
>(\b[A-Z]+\b)’, expand=False).fillna("MISC")

# Select customers with at least 10 sessions (first 30)

session_counts
] .nunique ()

= df _clean.groupby(’CustomerID’) [’SessionID’

eligible_customers = session_counts[session_counts >= 10].
index
selected_customers = eligible_customers[:30]

df _final = df_

clean[df_clean[’CustomerID’].isin(

selected_customers)]

# Prepare features and target variable
model_df = df_final[[’Choice’, ’LogPrice’, ’Category’]].copy

O

model_df [’Category’] = model_df[’Category’].astype(’category
’) .cat.codes

# Standardize

features

scaler = StandardScaler ()
model _df [[’LogPrice’, ’Category’]] = scaler.fit_transform(
model_df [[’LogPrice’, ’Category’]])

# Logistic reg
X = model_df[[
y = model_df [’

logit_model =

ression via MLE
’LogPrice’, ’Category’]]
Choice’]

LogisticRegression(solver=’1bfgs’)

logit_model.fit (X, y)

# Evaluate per
y_pred = logit

formance
_model.predict (X)

y_proba = logit_model.predict_proba(X)[:, 1]

# Extract resu
intercept = 1lo
coefficients =

1ts
git_model.intercept_[0]
logit_model.coef_[0]

accuracy = accuracy_score(y, y_pred)

auc = roc_auc_

score(y, y_proba)

print ("Intercept:", intercept)

print ("Coeffic

Category ="

ients: LogPrice =", coefficients[0], ",
, coefficients[1])
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61| print ("Accuracy:", accuracy)
62| print ("AUC:", auc)

Listing E.1: Maximum likelihood estimation for logistic regression on Online
Retail dataset
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Appendix F

Full Conditionals for the
Hierarchical Logit Model

This appendix provides detailed derivations of the full conditional distributions
used in the Gibbs sampler for the hierarchical logit model described in Chapters
2 and 3.

Model Specification

For each individual h = 1,..., H and choice task t = 1,...,T},, we observe a
binary response yp: € {0,1} and a row vector of covariates xp; € RK.
The hierarchical logistic model is defined as:

Ynt | By, ~ Bernoulli(o(x,,8),));
IB}L | I"E NN(I‘7E)7
I' ~ N(my,So),
3 ~IW(vy, Vo),

where o(z) = 1/(1 4 e~ *) is the logistic function.

Joint Posterior

The joint posterior (up to proportionality) is:

H Th

P({/Bh}al—‘, 3 | data) x H Ha(xl—;l@h)yht(l _ U(X;tﬁh))lfyh‘

h=1t=1
H
S EUCE )

h=1

N(F | mOsz) IW(Z ‘ VOaVO)'
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Conditional for 3,

There is no closed-form full conditional for 8;, due to the logistic likelihood. We
sample 3, using a Metropolis-Hastings step within Gibbs. The conditional (up
to proportionality) is:

T,

p(By, | rest) o HU(XLﬂh)yht(l —o(xpB) V| - N (B, | T, Z).

t=1
This defines the log-posterior:

Ty

logp(By, | ) = Z [yht loga(x;zrt/@h) + (1 — yne) log(1 — U(X;tﬂh))] *%(@FF)TEﬂ(ﬁh*FVFC-

t=1

Conditional for T’

Given the conjugacy of the normal prior and the normal likelihood (from S},),
the full conditional is:

r | {IB}L}7E NN(mlvsl)a

where L
Si=(Sg'+HZY) 7,

H
my, = Sl (Solmo +E_1ZlBh> .

h=1

Conditional for ¥
The conditional for the covariance matrix also follows from conjugacy:

H
{8}, T ~IW (Vo + H,Vo+ Z(ﬁh -8B, — F)T> :

h=1

Notes on Implementation

Since the logistic likelihood breaks conjugacy, we use a Metropolis-Hastings
step to sample 3, for each h. The proposal distribution is a multivariate nor-
mal centered at the previous value, with covariance tuned adaptively to ensure
acceptable acceptance rates.
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