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Abstract

This experimental research addresses a prevalent inefficiency in retail operations: waste
generated through imprecise demand forecasting and suboptimal inventory management.
Adopting a Design Science Research (DSR) framework, the study develops a system
that combines machine learning techniques to enhance prediction accuracy and optimize
inventory levels.

An analysis of Walmart data spanning over 58 million daily observations (58,327,370
store-day records), covering three product categories (Foods, Hobbies, and Household)
across ten stores in California, Texas, and Wisconsin from 2011 to 2016, revealed marked
regional variations in demand patterns. These data represent 3,049 distinct products and
generate 30,490 unique time series at the most granular level, with differences of up
to 30% in response to events for identical products across locations. This geographic
variability in customer behavior, influenced by numerous factors often invisible to the human
eye, underscores the critical importance of capturing local nuances before establishing a
functional supply chain.

To address the challenge of real-world retail data, it was necessary to manage intermittent
demand patterns, where over 80% of products in categories like Hobbies exhibit zero sales
on more than 60% of days. An adaptive forecasting framework was implemented using a
two-stage approach that separately models the probability of sale and the expected quantity.
This methodology distinguishes between whether a product will sell on a given day and
how much will sell if a transaction occurs. The forecasting models achieved promising
accuracy, with average Mean Absolute Errors between 0.46 and 1.16 units per day across
product categories. The evaluation was conducted on a validation dataset that contain 30
days of sales following the training period, so these metrics reflect performance over a
one-month horizon.

The resulting model was used in a custom APS system that dynamically recalculates
Reorder Points based on predicted demand patterns, automatically adjusting safety stocks
using factors specific to each demand profile while maintaining user-selected service levels
(90%, 95%, or 99%). Current inventory levels at the specific store are also provided as
input to the system.

The core contribution of this research in the DSR context is twofold: the creation of a
technological artifact that integrates machine learning forecasts into an Advanced Planning
and Scheduling (APS) system, and the development of design knowledge on effective
approaches to intermittent demand forecasting in retail contexts. This system aligns safety

stock levels with desired service rates while accounting for operational constraints. For new



products lacking historical data, similarity-based forecasting methods were implemented,
leveraging patterns from comparable established items.

This research demonstrates how data-driven approaches can transform supply chain
management by capturing nuanced demand signals across regions, product categories, and
time periods, ultimately reducing stockouts, waste, and excess inventory while improving
overall operational efficiency. The DSR framework enables balanced contributions to
both practical operations management and theoretical understanding of retail demand
forecasting.
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Chapter 1

Introduction: Supply Chain and Its
Transformation in the AI Era

1.1 Supply Chain and Its Challenges

Modern supply chains have evolved into intricate global networks characterized by
interdependence, volatility, and data abundance. As products flow from suppliers to
retailers, businesses face fragmented demand patterns, shortened product lifecycles, and
heightened customer expectations for rapid deliveries (Chopra and Meindl 2019). This
complexity, amplified by expanding e-commerce channels, creates vulnerability where
even minor shipment delays or forecasting errors can cause stockouts, lost sales, excessive
inventory costs, or waste.

One of the core challenges is the sheer amount of data collected along the supply chain
from supplier to point-of-sale, and in real-time tracking of logistics. Conventional methods
of forecasting will not capture subtle patterns or be able to move fast enough to keep up
with changes in demand, especially if products demonstrate patterns of intermittent demand
in interspersed zero-sales and rapid peaks. The challenge intensifies further if several
thousand SKUs (stock keeping unit) need to be handled in combination in several different
types of stores and geographies.

Additionally, another complexity is that different regions and product categories react
differently to occasions and promotions. Black Friday, for example, may cause electronics
sales in one area to grow, while in another market, household items may see the most
significant sales lift. Government aid programs, specifically SNAP (Supplemental Nutrition
Assistance Program), may also affect the demand in some states more than in others.
Therefore, differing strategies may be required state to state and product to product. These
variations expose the limits of a one-size-fits-all approach in modern retail: universal

methods simply won’t work, so it’s essential to adopt differentiated tactics to each market



and product.

Global disruptions exemplify these vulnerabilities on a larger scale. The 2021 Suez
Canal blockage demonstrated how a single bottleneck can paralyze interconnected supply
networks, with effects reverberating globally (Kelkar, Marya, and Mysore 2024). Research
indicates companies risk losing over 40% of their annual profits due to supply chain
disruptions over a decade (Figure 1.1). Early identification and mitigation of such risks has
become essential, driving organizations toward more sophisticated analytics approaches that
can anticipate and respond to potential disruptions before they severely impact operations
(Agrawal et al. 2024) .

Supply-chain-disruption losses equal 42 percent of one year’s earnings before
interest, taxes, depreciation, and amortization on average over a decade.

Net present value (NPV) of expected losses over NPV for a major NPV of expected losses,?
10 years,' % of annual EBITDA? company,® $ million  EBITDA margin, percentage point

Aerospace (commercial) | GOE] 1664
Automotive 6,412

Mining 2,240

Petroleurmn products _ 5,327

Electrical equipment 5h6

Glass and cement 405 805

Machinery and equipment 1,084

Computers and electronics 2,914

Textiles and apparel 788
Medical devices 431

Chemicals 1018

Food and beverage 1,578

Pharmaceuticals 1,436

ool of o
=1 ~ [s's] w (&)

Average

Figure 1.1: Supply chain disruption losses can equal 42% of a company’s annual EBITDA
(adapted from McKinsey & Company).

Inventory decisions themselves hinge on a few core metrics, most notably Safety Stock
and the Reorder Point (ROP). Safety stock acts as a buffer to absorb variability in both
demand and lead time. It ensures product availability by compensating for deviations from
expected consumption and delays in procurement. It is calculated as:

SS=z-0-VL

where z is the Z-score corresponding to the desired service level, o is the standard
deviation of demand, and L is the lead time in days. This formula enables inventory systems
to maintain availability despite fluctuations, while balancing cost efficiency.

The Reorder Point (ROP) identifies the stock level at which a replenishment order
should be placed. It is given by:



ROP=p-L+S5S

where u is the average demand during lead time (the time between placing an order
and receiving it), and SS is the safety stock calculated using the formula above. The
ROP represents the inventory threshold that triggers a replenishment order, ensuring that
stock levels remain sufficient to meet customer demand during the procurement period
while maintaining the desired service level. These concepts are particularly relevant in the
Walmart case, where factors such as seasonality, localized promotions, and socioeconomic
programs (e.g., SNAP) introduce high variability in daily demand. The demand dynamics
for Foods, Hobbies, and Household categories differ significantly, reinforcing the need for
region and category specific forecasting strategies.

Lead Time, defined as the time elapsed between placing an order and receiving the
goods, varies based on production location, product turnover rate, and seasonality. Products
with rapid turnover or high volatility may benefit from shorter lead times, often achieved
through nearshoring or domestic manufacturing, to enable agile replenishment cycles.
Accurate demand forecasting not only ensures product availability but also informs strategic
choices such as production location.

Service Level is the expected (in B2C) or contractually defined (in B2B) performance
level of a logistics service. It encompasses delivery frequency, reliability, speed, and
adherence to time windows. Higher service levels help reduce lost sales and enhance
customer satisfaction but typically require maintaining more safety stock, increasing
inventory investment. Inventory management decisions rely on these metrics to guide
operational and strategic decisions, especially in complex retail networks like Walmart’s.

These fundamental inventory management metrics heavily depend on the quality
of demand forecasts. For this reason, advanced forecasting techniques are radically

transforming decision-making processes in modern supply chain management.

1.2 How Demand Forecasting is Changing the Supply
Chain

Today, demand forecasting has become an important element for guiding supply chain
decisions, influencing inventory policies, service levels, and production planning. Its
primary objective is to predict how many units customers will likely purchase over specific
time intervals by considering local variations and external factors such as events, promotions,
and macroeconomic indicators.

Historically, many companies relied on basic spreadsheet forecasts or deterministic



statistical models that only considered historical sales. These methods often struggled in
highly volatile environments or when demand was intermittent. The transition from these
traditional approaches to data-driven methodologies represents a revolution in supply chain
management, enabling predictive capabilities that were previously unattainable. Today, a

data-driven approach leverages:

* Granular data at store level (including point-of-sale, inventory records, lead times).

* Machine Learning models that capture seasonalities, local promotions, and excep-

tional events like Valentines Day or important sports finals.

* Real-time updates that allow frequent adjustments of inventory targets to match
observed demand patterns (McKinsey & Company 2020; McKinsey & Company
2019).

These integrated models make it possible to dynamically recalculate reorder points
(ROP) and safety stocks while also considering other constraints, such as warehouse
capacity or supplier lead times. For instance, as highlighted by (Agrawal et al. 2024),
linking advanced predictions with an Advanced Planning and Scheduling (APS) system
can synchronize procurement, replenishment, and production activities more efficiently.

Accurate forecasts not only minimize lost sales due to stock-outs but also prevent
overstocking and obsolescence. Kelkar studies show that forecasting errors can reduce
profits by up to 45% over a decade if the company lacks preventive measures. Additionally,
data-driven models allow simulation of “what-if”” scenarios enabling managers to evaluate
alternative sourcing plans, diversified suppliers, or new transportation routes. This is
especially useful when disruptive events occur, such as unexpected surges in demand or
major global interruptions (Kelkar, Marya, and Mysore 2024).

The practical application of these principles becomes particularly evident when
analyzing large-scale retail sales data, as demonstrated in the present study.

This project with the Walmart data was a key example of these principles. 58 million
rows were analyzed, consisting of the sales history for three product lines (Foods, Hobbies,
Household) across ten different U.S. locations. The differences in demand patterns across
regions was particularly intriguing, with the most surprising being how variable government
assistance programs were in driving sales by state. To illustrate, in Wisconsin, SNAP
(Supplemental Nutrition Assistance Program) payment days created food sale peaks of
as much as 30%, whereas in California, the effect was significantly less, in the range of
approximately 10%.

These regional differences were completely invisible in the aggregate data, thus
reaffirming the belief that contemporary supply chains needed to support forecasts with the

ability to capture and respond to patterns that differ by region, product category, and time.
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The experience with Walmart data illustrates how implementing advanced forecasting

techniques translates into concrete and measurable operational advantages such as:

1. Reduced Stock-Outs: Predictive models can anticipate sudden demand spikes,
especially around promotional periods or regional events, given what has happened

previously and how the model has been trained.

2. Optimized Inventory Costs: By leveraging machine learning forecasting models
that accurately predict future sales volumes and patterns, companies can calculate
more precise safety stock requirements. This precision prevents capital from being
unnecessarily tied up in excess inventory while still maintaining sufficient stock to
meet customer demand, effectively balancing the cost of holding inventory against

the risk of stockouts.

3. Scenario Analysis for Risk Management: Through digital twins or advanced
simulation tools, decision-makers can examine how a supply disruption in one region

influences company-wide service levels (Agrawal et al. 2024).

Recent analyses by McKinsey indicate that Al-driven forecasting solutions can reduce
forecast errors by up to 50% and trim inventory expenses by roughly 10%, allowing
organizations to respond faster to market changes. In some cases, planning cycles also
become 40% faster, which helps firms react swiftly to sudden shifts in demand or
unforeseen supply chain disruptions (McKinsey & Company 2020; McKinsey & Company
2019).

Shifting from a purely historical forecast to a more intelligent one able to incorporate
multiple internal and external signals has become a decisive factor in building a resilient,
agile, and profitable supply chain. As suggested by (McKinsey & Company 2020),
companies adopting Al forecasting have managed to halve forecasting errors while cutting
inventory costs, ultimately improving revenue, and their ability to respond quickly to
sudden changes in demand.

These transformations in demand forecasting systems are part of a broader context of
supply chain digitalization. In Italy, for instance, the government launched a strategic plan in
2016 to accelerate technology adoption and boost the Italian production system, particularly
focusing on SMEs which represent the majority of Italian enterprises (Kazemargi and
Spagnoletti 2020). Analysis of investments made by 1889 Italian SMEs revealed that 74%
of Industry 4.0 investments were directed toward advanced manufacturing technologies,
while 12.73% were invested in system integration that enables monitoring and control of
products through data exchange, both across different departments and along the supply
chain (Kazemargi and Spagnoletti 2020). This trend underscores the growing importance

of data integration and predictive systems in modern supply chains.
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To achieve this transformation from purely historical forecasts to intelligent models
capable of incorporating multiple signals, machine learning emerges as a fundamental

enabling technology, as we will explore in the following section.

1.3 The Role of Machine Learning

Machine learning (ML) in contemporary supply chains is now used as an enhancement
tool by mitigating the basic shortcomings of traditional forecasting methods. In choosing
the right forecasting models, there are several basic factors that need to be taken into
account: data dimensions (quantity, quality, granularity), product characteristics (number
of SKUs, seasonality patterns, frequency of sales), and whether the product is established
with known history or newly introduced. The best model should also consider the general
complexity of the patterns in demand and any operational restriction that may affect the
inventory decisions.

Traditionally, forecasting has relied on statistical models such as ARIMA (AutoRe-
gressive Integrated Moving Average). ARIMA models are among the most widely used
approaches for modeling and predicting time series data due to their intuitive structure and
interpretability. The ARIMA model integrates three distinct components, each designed to
capture specific characteristics of the data (GeeksforGeeks 2024):

* Autoregressive (AR) terms: These predict future values by looking at patterns in
past observations. An AR(p) model essentially says, "Today’s value depends on
what happened in the previous p days." For example, an AR(3) model would use

data from the last three days to predict today.

* Integrated (I) components: This handles data that shows trends or changes in
statistical properties over time. The I(d) component transforms unstable patterns
into stable ones through d rounds of differencing, making the data easier to predict.
For instance, rather than forecasting absolute sales, it possible to forecast day-to-day

changes in sales.

* Moving Average (MA) terms: These focus on how unexpected events affect future
values. An MA(g) component considers the previous ¢ prediction errors to refine
current forecasts. This helps the model adjust for recent surprises, like an unexpected

sales spike due to unplanned promotions.

When seasonal patterns are evident, the ARIMA model can be extended into Seasonal
ARIMA (SARIMA), explicitly incorporating parameters to capture recurring periodic
fluctuations. Furthermore, ARIMAX models extend ARIMA by integrating exogenous
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variables such as promotional activities, price changes, or external events, allowing for
more accurate forecasts that explicitly account for external influences (GeeksforGeeks
2024).

Despite their simplicity, ease of handling, and efficiency in linear and behaved situations,
ARIMA-based models are not capable in general of detecting sophisticated, non-linear
patterns, long-run dependencies, and sudden structural variations in the data. These
limitations have, therefore, inspired and led to the exploration and use of more versatile
machine learning models that are capable of handling such complexities.

Modern data-driven approaches have evolved to overcome these limitations by effectively
modeling complex patterns, non-linear interactions, and abrupt changes that traditional

methods struggle to capture. Among the key models employed in practice are:

* Tree-Based Machine Learning Models: Algorithms such as Random Forests and
Gradient Boosting Machines (GBM) provide reliable and interpretable frameworks
for forecasting. In particular, boosting frameworks such as XGBoost (Chen and
Guestrin 2016) and LightGBM (Ke et al. 2017) have gained prominence due to their
excellent performance and computational efficiency. XGBoost employs regularized
boosting techniques that introduce penalty terms in the model to prevent overfitting
and improve predictions on new data. It leverages parallel tree-building and gradient-
based optimization techniques, allowing efficient processing of large datasets while

maintaining prediction accuracy.

LightGBM further improve computational efficiency through two key innovations:

— Gradient-based One-Side Sampling (GOSS): This technique focuses the
training process by prioritizing the most informative data points (those with
larger gradient magnitudes) while still maintaining some randomness. This
approach allows models to train faster without sacrificing accuracy, which

proved essential when working with such a large dataset.

— Exclusive Feature Bundling (EFB): In datasets with many sparse features
(mostly zeros), EFB intelligently identifies features that rarely appear simul-
taneously and groups them into bundles. This bundling dramatically reduces
the complexity and dimensionality of the data, enabling faster model training

without negatively impacting prediction quality.

* Neural Networks: Deep learning models have and are revolution forecasting
thanks to their flexibility in capturing complex, temporal patterns. Among these
models, Long Short-Term Memory (LSTM) networks are particularly powerful
when analyzing time series data that includes long-term dependencies. Traditional



Recurrent Neural Networks (RNNs) often face difficulties known as vanishing or
exploding gradients, meaning they struggle to maintain useful information from
earlier time steps. LSTMs address these issues using specialized "gates" (input,
forget, and output gates) to selectively preserve or discard historical information.
This capability allows LSTMs to effectively capture recurring patterns, seasonalities,

and rapid shifts in consumer demand.

* Clustering and Similarity-Based Methods: These methods are highly beneficial
when dealing with intermittent demand or forecasting products with limited historical
data. By grouping similar products or stores based on their historical sales patterns,
clustering techniques allow models to learn from collective behaviors rather than
relying solely on individual, potentially sparse, data points. Similarly, similarity-based
forecasting leverages data from products or markets with comparable characteristics,

enabling more accurate predictions even for new or rarely sold items.

For instance, in Walmart dataset that comprises extensive data and many products with
zero sales and others that have large peaks. I started with preliminary experiment on a
sub-sample of 15 SKUs. Picked products in each category: with extremely low sales with
high peaks, with normal, consistent sales, and with highly event-stimulated variable sales.
This research aimed to ascertain what model is best suited to the particular shape of the
dataset, recognizing that no one model is always best as noted above; the optimum model
varies with the specific inside of the data, this research will feature in greater detail in
Chapter 3.1.

These planning models are integrated with an Advanced Planning and Scheduling
(APS) system in order to dynamically recalculate parameters like the Reorder Point (ROP)
and safety stock. This synchronization of procurement, replenishment, and production

decisions in real time optimizes supply chain resilience overall.

1.4 Advanced Planning and Scheduling (APS)

Advanced Planning and Scheduling (APS) serves as the interface where forecasts translate
into actionable inventory decisions. Unlike traditional Enterprise Resource Planning
(ERP) systems that manage basic business processes, modern APS systems dynamically
recalculate inventory policies based on continuously updated forecasts and incorporate
complex optimization techniques especially valuable for multi-echelon inventory networks.

This research integrates these phases into a single decision-making process, where the
machine learning model is directly optimized for operational metrics that matter to the

business (inventory costs and service levels). This method, which Agrawal et al. (Agrawal



et al. 2024) call "optimal machine learning" (OML), simultaneously considers forecast
uncertainty and operational constraints.

Implementation incorporates a ’digital twin’ of the supply chain, a comprehensive
virtual representation of the actual logistics network that dynamically simulates all
processes, material flows, and operational decisions. This digital replica enables testing
alternative scenarios in real-time, visualizing the impact of inventory parameter changes,
and anticipating the effects of potential disruptions before they occur in the real world.
In this implementation, the digital twin enables simulation of inventory policies and a

dynamic safety stock calculation that adapts to changing demand patterns:

ROP =y - L+SS (1.1)

SS=z-oy- VL (1.2)

where ROP is the reorder point, sy is the mean (expected value) of the predicted
demand (forward-looking, accounting for seasonality, events and price changes), L is the
procurement lead time in days, S is the safety stock, z is the service factor corresponding
to the desired service level (e.g. z = 1.65 for 95 % and z = 2.33 for 99 %), and o, is the
standard deviation of the predicted demand, capturing expected variability under current
conditions.

(Kelkar, Marya, and Mysore 2024) highlight that effective early warning systems must
prompt action’ rather than simply classify risk levels. Following this principle, APS
implementation automatically triggers procurement actions when inventory falls below
dynamically calculated thresholds. Their research shows this approach reduced parts
shortages by 70% in manufacturing environments, a significant improvement that I want to
replicate in retail context.

The semiconductor equipment case study from (Agrawal et al. 2024) provides a valuable
benchmark. Their implementation achieved a fill rate increase from 77% to 85% without
additional inventory investment by incorporating product installation data into inventory
policies. Similarly, this APS algorithm integrates SNAP calendar data, regional sales
patterns, events and change price which preliminary testing suggests can improve forecast
accuracy.

Have designed APS system architecture following what (Agrawal et al. 2024) describe
as “end-to-end data architecture,” where ’the storage system should be able to pool data
across teams, locations, and products and make it possible to update and access that
information in near real time.” Using ML models allows solution to maintain hierarchical

relationships between products, stores, and regions while capturing temporal patterns that



are very important for accurate forecasting.

The innovation in the approach is the transition from static, periodically updated
planning parameters to a continuous, ML-driven recalculation strategy. This enables
inventory policies that adapt to both gradual shifts in consumer behavior and sudden
changes during promotional events or supply disruptions.

This Advanced Planning and Scheduling system, integrating machine learning forecasts
with inventory optimization, aligns with the Design Science Research (DSR) framework
proposed by (Baskerville et al. 2018). DSR emphasizes creating technological artifacts
that solve practical problems while simultaneously developing theoretical knowledge.
This research follows this approach by developing a practical system that optimizes
inventory decisions while also contributing design principles for handling intermittent
demand patterns in retail environments. The technological artifact (the ML-driven APS
system) addresses real-world inventory challenges, while the design knowledge generated
contributes to our understanding of effective approaches to intermittent demand forecasting.

Subsequent chapters will detail the methodology and implementation, focusing on the
technical challenges of integrating machine learning forecasts with optimization algorithms
for inventory management, and evaluating the system against real-world retail metrics
using the Walmart dataset. Both the practical utility of the artifact and the theoretical

contributions to design knowledge will be assessed in the evaluation chapters.
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Chapter 2

Data, Exploratory Analysis, and
Preprocessing

2.1 Dataset Description: The Walmart MS Case

For purposes of research, I chose the Walmart M5 Forecasting dataset, providing a rich
depiction of retail operations with fine-grained sales data. This dataset was originally
published in association with the fifth Competition, hosted by the Makridakis Open
Forecasting Center (MOFC) of the University of Nicosia. The competition involved
predicting Walmart stores’ sales on a daily basis, and thus constituted an excellent proving
ground with which to assess traditional statistical techniques along with contemporary
machine learning techniques in the context of demand prediction. (Kaggle 2020)

The M5 dataset is comprised of Walmart stores in three U.S. states with about 5.5 years
of daily sales data. What is most valuable to this research is how dataset reflects real-world
retail complexity, and that the data preserves the actual difficulties experienced by retailers
in making forecasts in differing product categories, regions, and time periods.

Working with the dataset, I found that it has 3,049 distinct products spread across three
major product categories: Foods, Hobbies, and Household. These products are present in
10 Walmart stores in California (4 stores), Texas (3 stores), and Wisconsin (3 stores). For
the purposes of analysis, I converted the original data in the wide format to long format so
that there are 58,327,370 store-day records. (27,461,070 in the case of Foods, 20,008,170
in the case of Household, and 10,858,130 in the case of Hobbies).

11



Sales by Category Over Time
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Figure 2.1: Trend of sales from 2011 to 2016

NB: The sharp drop in sales on December 25 is due to store closures during Christmas Day.

This transformation from wide to long format was essential for machine learning
approach. In the original structure, each row represented a product-store combination with
1,913+ separate columns for daily sales. The restructured format created a single observation
per product-store-date combination, significantly facilitating feature engineering and
model development. While this increased the total row count substantially, presenting

computational challenges. It created an ideal structure for time series modeling by enabling:

Creation of temporal features (lags, moving averages, day-of-week effects)

Integration of external variables and event indicators

Application of machine learning algorithms requiring row-based observations

Detection of complex relationships between sales and influencing factors across time

This transformation proved essential for capturing the nuanced patterns that drive retail
demand across different products, locations, and time periods.

The temporal dimension of the dataset spans from January 29, 2011, to June 19, 2016,
with daily granularity. This extensive time period enabled me to analyze long-term trends,
seasonal patterns at various scales (yearly, monthly, weekly), and the impact of specific
events on demand. The combination of products and stores generates 30,490 distinct time
series at the most granular level, providing a reliable foundation for developing and testing

machine learning forecasting models.

12



During the analysis, I worked with four datesets. The main ones, sales_train_validation.csv,
contains daily unit sales for each product-store combination from day 1 to day 1,913. The
sales_train_evaluation.csv extends this historical data to include days 1 to 1,941, which I
used for validation purposes. Complementing the sales data, the calendar.csv file provides
essential contextual information about each date, including weekends, holidays, special
events (such as the Super Bowl and Black Friday), and SNAP (Supplemental Nutrition
Assistance Program) disbursement days. Finally, the sell_prices.csv file contains daily
pricing information for each product at each store location.

The validation framework of the dataset was of especial utility to this research approach.
The competition officials deliberately established a validation window of 28 days (days
1,914 to 1,941) during which ground truth values were ultimately made available. This
enabled me to use a validation approach in which I could train models against the early
historical data, compare performance on actual values during the validation window, and
value the model.

Perhaps most intriguing in the dataset is the existence of explanatory factors impacting
demand patterns other than the one that I will define for the model. Aside from simple
calendar characteristics such as day of the week and month, the data account for price
fluctuations, promotional efforts, and holiday and holiday weekend impacts. While
conducting exploratory analysis, I did observe significant variation in the impact these
factors have by product category and by region. As one example, SNAP payment days
were found to have more of an impact on the sale of food items in Wisconsin stores than in
California stores.

The data also pose the realistic challenge of sparse demand, with the majority of
products having sparse sales patterns defined by periods of zero demand separated by
occasional buying or product that did not sell. This intermittency is highly variable across
product categories and stores and necessitates sophisticated modeling that is capable of
handling regular and irregular patterns of demand.

For purposes of evaluation, the competition utilized the Weighted Root Mean Squared
Scaled Error (RMSSE) measure. RMSSE is most appropriate in retail forecasting
environments because it mitigates several of the challenges associated with comparing
forecasts between varied products. First, it scales the errors relative to the historical
volatility of each series, allowing errors to be comparable between products of varying
volumes. For example, an error in prediction of 10 units has very different consequences in
the context of a high-volume product that has thousands of units sold every day compared
with a specialty product that sells several units most every day. Second, the weighting
part of RMSE captures differences in relative importance in the business across different

products, with more importance assigned to products that have greater impacts on overall
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revenue or units sold. This maps the evaluation metric onto genuine business concerns,
where accuracy for high-volume or high-dollar products most often is more important than
accuracy in low-volume products.

The richness and complexity of the Walmart M5 dataset offer the perfect platform on
which to conduct research combining machine learning-based demand prediction with
stock optimization using Advanced Planning and Scheduling systems. The dataset’s direct
application to actual stock management decisions allows me to show how Al-based methods

will enhance supply chain efficiency.

Methodological Note: No specific outlier detection or treatment was performed on the
dataset. The original data were used exactly as provided, was just merged with spark
reflecting realistic conditions and challenges typically encountered in real-world retail

forecasting scenarios.

2.2 Exploratory Data Analysis (EDA)

After preparing and understanding the structure of the dataset, was conducted a com-
prehensive exploratory analysis to discover patterns and relationships that would help
modeling strategy. This exploration was important to develop effective prediction models,
identifying relevant features, and determining the appropriate modeling approach for
inventory optimization.

The goal of the EDA is to identify temporal patterns, category behaviors, and demand
variability. I focused particularly on understanding how different product categories behave
across time and locations and how each product behaves in a different way to the event, as
this would directly impact inventory management strategies.

The data reveals significant long-term trends and annual seasonality patterns that vary
by product category. Figure 2.1 displays the total sales by category over the full 2011-2016
period.

The time series analysis in Figure 2.1 reveals several insights:

* All categories demonstrate an overall positive growth trend from 2011 to 2016, with
the steepest growth occurring in 2015-2016

* Foods category maintains the highest sales volume throughout the period, approxi-

mately 3-4 times larger than Household and 6-8 times larger than Hobbies

* Annual seasonality is evident across all categories, with regular peaks occurring

during holiday seasons (November-December)
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* Several significant drops in sales occur at consistent times each year, corresponding

to major holidays when stores operate with reduced hours or close entirely

* The characteristic sawtooth pattern visible in the time series suggests a strong weekly

cyclical pattern that warrants closer examination

Analysis of category-specific patterns revealed distinct characteristics with important
implications for inventory management. Foods showed the highest volume with pronounced
seasonality, suggesting the need for responsive inventory strategies. Household items
demonstrated moderate but increasing demand with less volatility than Foods, potentially
allowing for more efficient safety stock planning. Meanwhile, Hobbies, though smallest
in volume, exhibited the most consistent year-over-year patterns, making historical data

potentially more reliable for forecasting in this category.

FIGURE 2.2: Weekly Seasonality Comparison Across Product Categories
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Figure 2.2: Weekly Seasonality Comparison Across Product Categories

Examining the data at a finer granularity reveals consistent weekly seasonality across
all product categories. Figure 2.2 presents the normalized sales by day of week for each
product category, demonstrating clear cyclical patterns so that the weekend the number of
all product sales increase. Beyond weekly patterns, special events and holidays demonstrate
significant impacts on sales dynamics that vary substantially between categories. To
provide a clear visualization of these effects, I analyzed the top five events with the greatest

impact on sales variability across product categories, as shown in Figure 2.3.
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Impact of Top 5,Special Events on Sales by Product Category
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Figure 2.3: Impact of Top 5 Special Events on Sales by Product Category

A significant observation that emerged from the analysis is how different product
categories respond to the same events. What initially seemed like a straightforward "event
effect” turned out to be a complex web of category-specific and often counterintuitive
responses.

Take Thanksgiving, for example. It was surprising to find substantial negative impacts
across all categories, with Hobbies suffering the most dramatic decrease (-54.3%). The
initial hypothesis suggested food sales would increase before the holiday, but the data
revealed that the shopping pattern was more complex, consumers likely make purchases
earlier, resulting in decreased store visits during the holiday itself.

Labor Day showed the opposite pattern. Foods (32.4%) and Household (35.5%)
categories experienced significant boosts, while Hobbies showed minimal change (2.1%).
This pattern suggests end-of-summer purchasing focused on home essentials rather than
leisure items.

The Super Bowl impact was particularly interesting because it affected all categories
positively, with Foods showing the strongest response (31.3%). This cross-category effect
suggests that Super Bowl preparations involve not just food but a broader shopping behavior
for entertainment needs.

These diverse responses to events challenged the initial modeling approach. It became
clear that simply including an "event flag" variable would be insufficient, the models needed
to capture the specific interaction between each event type and product category.

These diverse responses to special events highlight the need for sophisticated forecasting
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approaches that consider not just the presence of an event, but the specific type of event
and its unique interaction with each product category. Simply flagging days as "event
days" in a forecasting model would be insufficient, as the data clearly show that different
events drive dramatically different purchasing behaviors. For example, while Labor Day
boosts Household sales by 35.5%, Thanksgiving reduces them by 43.7%, treating these
events identically would lead to substantial inventory errors. Effective demand forecasting
must therefore incorporate event-specific features that capture these nuanced relationships,
allowing retailers to adjust inventory levels appropriately for each product category during
different types of special event.

The SNAP (Supplemental Nutrition Assistance Program) effect analysis yielded one
of the most surprising discoveries in this research. While anticipated some impact on
food sales, the magnitude of regional differences was unexpected. As shown in Figure 2.4,
Wisconsin stores demonstrated an exceptional response to SNAP disbursement days, with
Foods sales increasing by 30.0% compared to non-SNAP days. This effect progressively
decreased in Texas (+15. 6%) and California (+10. 4%).

These geographical variations necessitated a more advanced modeling approach than
originally planned. Rather than implementing a single national SNAP effect variable, I
developed state-specific interaction features to capture these regional differences accurately.
This implementation required careful calibration to balance model complexity against
potential overfitting.

The category-specific nature of the SNAP effect was equally revealing. While Foods
sales showed substantial increases on disbursement days, Hobbies and Household categories
remained largely unaffected (with modest effects between 1.9% and 3.8%). This pattern
aligns with the program’s intended purpose to support essential food purchases rather
than discretionary items and provided valuable guidance for feature engineering in the

forecasting models.
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Impact of SNAP Disbursement Days on Sales by State and Category
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Figure 2.4: Impact of SNAP Disbursement Days on Sales by State and Product Category

Price sensitivity analysis revealed additional insights relevant to inventory optimization.
Foods demonstrated the highest price elasticity (3.5% sales decrease per 1% price increase),
followed by Household items (2.1%) and Hobbies products (1.7%). This variation extends to
geographical differences as well, with California customers generally exhibiting higher price
sensitivity than Wisconsin shoppers. These findings directly informed feature engineering
strategy, with price-related variables receiving greater weight in Foods category models.

Examining the relationship between price changes and sales reveals notable demand
spikes during promotional periods. When prices drop by 10% or more, Foods products
experience an average sales increase of 127%, significantly higher than the increase 85% for
household products and 73% for hobbies under similar discount conditions. This suggests
that promotion features (decrease of price) would be especially valuable for forecasting
food category demand.

The analysis also uncovers substantial variation in demand consistency across product
categories. Foods products demonstrate the most consistent demand patterns, with only
26% of product-store combinations exhibiting extended periods without sales. In contrast,
Hobbies and Household categories show much higher intermittency, with 42% and 37%
of product-store combinations experiencing prolonged zero-sales periods, respectively.
This intermittency characteristic has strong implications for model selection, as standard
time-series approaches often perform poorly with sparse or irregular demand patterns, a
challenge that will be addressed more comprehensively in section 2.3.

Another element that was introduced to the APS system was lead time, which was
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not included in the given data set. Drawing on industry averages and retail supply chain
behavior, I created differentiated lead times based on product category attributes: Food
products were assigned short lead times (average between 3 and 5 days) that reflect their
perishable nature and high turnover speeds, while the Household and Hobby segments
were assigned longer and variable lead times (between 5 and 12 days) due to the complexity
of their supply chains and the frequency of replenishment. This variability in lead time,
alongside the patterns evidenced in demand, has direct impacts on safety stock planning
and stock optimization strategies, as will be discussed in Chapter 4.

Variability in patterns both within product categories, between regions, and over time
emphasizes the necessity of accommodating forecasting methods capable of describing
intricate interactions between several variables. Traditional statistical techniques might
not capture such advanced relationships that were discovered during the EDA, especially
the differential SNAP impacts, event response variations in particular categories, and
heterogeneous price sensitivities which our analysis exhibits. As shown in Section 3.2,
machine learning using gradient boosting architectures and two-stage methods, are capable
of capturing these non-linear patterns while being able to accommodate the heterogeneous
patterns of intermittency in the exploratory analysis. The modeling structure will focus on
state-specific SNAP interactions, event-type indicators, and category-specific features in
order to capture these complex patterns of demand in Foods, Hobbies, as well as Household
goods. Before constructing such forecasting models, however, the right methods of handling

the intermittency in the data are necessary, which will be discussed in the next section.

2.3 Preprocessing and Analysis of Intermittent Demand

The data introduced several preprocessing problems that first required to be solved in order
to build prediction models, with the pattern of intermittent demand most notable among
these. Intermittent demand with frequent zero-sales periods and irregular non-zero demand
periods is problematic to traditional methods that expect continuous and regular patterns.

To quantify this problem, I developed an analysis function that systematically examines
zero-sales patterns in the dataset. This challenge of intermittent demand is not unique to
this specific dataset but represents a widespread issue faced by supply chain companies
across different sectors in real-world scenarios. The function performs two key calculations

for each product-state combination:

* Percentage of days with zero sales: This metric quantifies how frequently a product
remains unsold. For example, if a product shows no sales on 70 out of 100 days, it

has a 70% zero-sales rate, indicating low sales frequency overall.
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* Average length of consecutive zero-sales runs: This measures the typical duration
of sales ’droughts’ for a product. For instance, if a product experiences three periods
without sales lasting 5, 8, and 12 days respectively, the average run length would be
8.33 days. This indicates how long a product typically remains on shelves without

being purchased.

This dual approach enables differentiation between distinct intermittency patterns. For
example, a product with a high percentage of zero-sales days (70%) but short average
sequences (2-3 days) suggests rare but somewhat regular sales (perhaps weekend-only
purchases). Conversely, the same percentage with long sequences (15-20 days) indicates
clustered sales events separated by extended inactivity periods.

The analysis was applied separately to each product category to identify category-
specific intermittency patterns. Analysis revealed that there were no products with zero sales
across the entire observation period, indicating that every product was sold at least once.
However, as shown in the results, many products still exhibit highly intermittent demand
patterns, with sales occurring very infrequently. Figure 2.5 illustrates the distribution of
zero-sales frequencies across the three product categories, highlighting what percentage of

products in each category fall into different intermittency ranges.

Distribution of Zero-Sales Patterns Across Product Categories
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Figure 2.5: Zero sales distribution across sectors
The analysis revealed striking differences in demand consistency across product
categories:
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* Hobbies: The most intermittent category, with 82.6% of products showing zero

sales on more than 60% of days (57.0% had zero sales on over 80% of days)

* Household: Slightly less extreme but still highly intermittent, with 74.4% of products
having zero sales on more than 60% of days

* Foods: The most stable category, yet still challenging 57.6% of products showed
zero sales on more than 60% of days

These patterns align with the weekly trends observed in the exploratory analysis, where
Foods products demonstrated a more consistent demand. However, the prevalence of
intermittent demand across all categories confirmed that specialized modeling approaches
would be necessary.

This analysis confirms the limitations of traditional forecasting methods when applied
to real-world data characterized by intermittent demand patterns. To effectively address
these challenges, a comprehensive preprocessing pipeline was implemented to address
both general data quality issues and the specific challenges of intermittent demand.

The three datasets were merged with spark due to the huge amount of data (product
information, calendar data, and sales records) and then split the resulting dataset by product
category, I did this for validation (the file with 30 days more than the training set) and
training dataset. This separation was motivated by the distinct characteristics and challenges
observed in each category during exploratory analysis. After splitting, I addressed missing
values in the price data (approximately 3.2% of records) using forward-fill imputation,
which maintains the most recently known price until a new one is observed. This approach
reflects the real-world scenario where prices typically remain stable until explicitly changed.
While the sales data itself had no missing values, there were many legitimate zero values
representing days without sales, which required special treatment as part of the intermittent
demand modeling strategy.

Feature engineering proved to be essential to capture the complex patterns identified in
the exploratory analysis. I created temporal features (day of week, month, holidays), lag
features (prior 1, 7, 14, and 28 days’ sales), rolling statistics (7, 14, and 28-day moving
averages and standard deviations), and price-related features (current price, price changes,
promotional indicators), the feature engineering is going to be explained better in Chapter
4. I also added dedicated event indicator features for major events like Easter and Super
Bowl final, allowing the model to learn the specific impact of each event on different
product categories. For the SNAP program effects that were particularly prominent in
Wisconsin, specific indicator variables for SNAP days and their interaction with the state
were added, allowing the model to capture the varying intensity of SNAP effects across

different regions.
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The high prevalence of intermittent demand patterns across all product categories
presents significant challenges for traditional forecasting approaches. As demonstrated
by the zero-sales analysis, more than half of the product-store combinations across all
categories show zero sales on at least 60% of days. Such sparse and irregular demand
patterns require specialized modeling techniques beyond standard time series methods.

While routine preprocessing methods such as feature engineering and normalization are
required, these are not enough to deal with the particular problems created by intermittency.
I will outline the particular methods used to address this issue in the next section, to deal
with these intermittency issues, I used specialized methods instead of data cleaning. For
highly sparse patterns of sales, employed a dual-model approach that models separately
how likely non-zero demand is and how much is likely to be demanded should there be
demand. This was more effective than usual forecasting methods for products with highly
irregular sales patterns. The technicalities and performance assessments of this dual-model
strategy will be shown in the subsequent chapter in which the full forecasting approach is

presented.
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Chapter 3

Forecasting Modeling and

Implementation

3.1 Preliminary Model Selection and Evaluation

Before developing a complete forecasting solution for the entire dataset, I conducted a
preliminary analysis to identify the best modeling approaches. Given the computational
challenges presented by the full dataset (exceeding 58 million observations), this targeted
evaluation allowed me to determine which algorithms would be most effective for the
subsequent full-scale implementation.

For this preliminary assessment, fifteen SKUs were selected from the Hobbies category.
This category was specifically chosen as it presented the most challenging forecast scenario,
with 82.6% of products showing zero sales on more than 60% of days (as detailed in
Section 2.3). These characteristics make Hobbies an ideal test case: If models perform
well in these challenging patterns, they should also handle the comparatively more regular
patterns in food and household categories effectively.

The SKU selection process employed a systematic classification approach that calculated

several key metrics for each product:
e Zero percentage (proportion of days with zero sales)
* Coeflicient of variation (standard deviation divided by mean)
* Weekly autocorrelation (correlation between sales with 7-day lag)
* Sales frequency (proportion of days with non-zero sales)
Based on these metrics, each SKU was classified into one of several types of demand

pattern. The final selection included:
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* 10 items with highly intermittent lumpy’ demand (high zero percentage and high

coefficient of variation)

* 4 items with more moderate 'regular’ sales patterns (moderate zero percentage, more

consistent patterns)
* 1 item with strong ’seasonal’ demand influences (high weekly autocorrelation)

This selection ensured the evaluation would reflect the full forecasting challenges
present in the dataset, while emphasizing the intermittent demand patterns that are most
prevalent in retail environments.

For each selected SKU, [ implemented and compared five distinct forecasting approaches:
ARIMA, Prophet, LSTM, LightGBM Direct, and LightGBM Two-Stage (all models
discussed in Section 1.3). During the preliminary tests I realized that a standard application
of LightGBM (the Direct approach) might not be optimal for the challenging intermittent
patterns prevalent in retail data. Inspired by techniques in demand planning literature, |
decided to test this Two-Stage implementation that better reflects the practical retail reality.
Instead of forcing a single model to predict both zeros and quantities simultaneously,
Two-Stage approach first determines whether a product will sell at all on a given day,
then, only if a sale is expected, estimates how much will be purchased. This dual-model
strategy mirrors the actual retail purchasing decision process: first a customer decides to
buy a product (or not), and only then decides how many units to purchase. This intuitive
decomposition proved particularly effective for the highly intermittent patterns in the
Hobbies category, where standard regression models often struggle to accurately represent
the sparse sales punctuated by occasional large purchases.

Each model was assessed using complementary performance metrics that capture
different aspects of forecast accuracy, and as target variable the sales contained in the

validation dataset:

* RMSE (Root Mean Square Error): The square root of the average of squared
differences between predicted and actual values. RMSE gives higher weight to large
errors and is particularly sensitive to outliers, making it appropriate for penalizing

significant forecasting mistakes that could lead to stockouts.

* MAE (Mean Absolute Error): The average of the absolute differences between
predicted and actual values. MAE represents the average error in units of sales,

providing a directly interpretable measure of prediction accuracy.

* MAPE (Mean Absolute Percentage Error): The average of absolute percentage

errors, expressed as a percentage relative to the actual values. MAPE facilitates

24



comparison across different SKUs with varying sales volumes, although it can be
inflated when actual values are close to zero, a common situation with intermittent

demand.

These complementary metrics provide a comprehensive assessment of the performance
of the forecast, with lower values indicating a better precision on all three measures. Table

3.1 presents the average performance across all tested SKUs:

Table 3.1: Average Performance Comparison of Forecasting Models on Hobbies SKUs

Model RMSE MAE MAPE
LightGBM_Two_Stage  0.93 0.52 61.6%
LightGBM_Direct 0.93 0.55 61.9%
LSTM 1.22 0.88  67.0%
Prophet 1.24 0.86 72.1%
ARIMA 1.39 091 82.2%

The results demonstrate that both LightGBM implementations significantly outper-
formed traditional time series models, with approximately 33% lower error rates compared
to ARIMA. The neural network approach (LSTM) performed better than traditional
statistical methods but still lagged behind the gradient boosting implementations.

This performance differential aligns with the theoretical strengths discussed in Section

1.3, but reveals additional insights specific to this specific context:

* Zero-inflation handling: The superior performance of LightGBM for Hobbies
products confirms that its architecture is particularly well-suited for the highly
intermittent demand patterns identified in Section 2.3, where it’s possible to observed

that 82.6% of Hobbies products showed zero sales on more than 60% of days.

* Data efficiency: Despite the limited historical data available for individual SKU-
store combinations, gradient boosting models achieved reliable performance without
overfitting, an important advantage over deep learning approaches like LSTM that
typically require larger training datasets to generalize effectively, potentially requiring

more SKUs and stronger hardware components.

* Feature utilization: The importance of temporal features (wm_yr_wk, rmean_14)
and intermittency indicators (zero_pct) shown in Table 3.3 demonstrates how
effectively LightGBM leverages the retail-specific features engineered based on the

exploratory analysis in Chapter 2.

The nearly identical overall RMSE between the Two-Stage and Direct LightGBM

approaches (both 0.93) warrants deeper investigation, as the aggregate metrics alone don’t
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reveal the pattern-specific advantages of each approach. Table 3.2 provides this breakdown
by demand pattern type.

Table 3.2: RMSE by Demand Pattern Type and Forecasting Model

LightGBM
SKU Type ARIMA Prophet LSTM Two-Stage Direct
Lumpy 1.5 1.3 1.3 1.0 1.0
Regular 1.0 0.9 0.9 0.6 0.6
Seasonal 1.8 1.9 1.8 1.7 1.7

This pattern-specific analysis revealed that:

* For highly intermittent "lumpy’ demand (which constitutes the majority of Hobbies
SKUs), the Two-Stage approach showed a 2.5% improvement over the Direct approach

and approximately 30% improvement over the next best non-LightGBM model

* For regular demand patterns, both LightGBM approaches performed similarly, with
minimal difference (0.56%)

* For seasonal demand, the Direct approach they have a very similar performe as well.

To understand which variables have the greatest impact on the model, the concept of
feature importance was used. Feature importance quantifies each variable’s contribution
to the model’s predictive power. In simple terms, a feature is considered important if
changing its values causes a significant change in the model’s predictions. In tree-based
models like LightGBM, feature importance is calculated by observing how frequently a
variable is selected for splitting the data and how much these splits improve the overall
accuracy of the model. Features with high importance are those that effectively distinguish
between different demand levels, thus providing greater predictive power.

The features used in the models can be grouped into six intuitive categories, each

capturing a different aspect of retail sales patterns:

* Calendar-based features: These capture how sales vary based on time. For
example, wm_yr_wk identifies specific weeks of the year (like the week of Black
Friday), dayofweek distinguishes between weekdays and weekends, and month

captures seasonal patterns like holiday shopping in December.

* Event indicators: These flag special days that influence shopping behavior. The
event_name_1 feature identifies specific events (like Super Bowl, Valentine’s Day, or
Thanksgiving), while event_type_1 categorizes events by type (sporting, cultural,
or national holiday). These features help the model capture the unique impact of

each event, which can vary dramatically as shown in Section 2.2.
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* SNAP disbursement features: The original SNAP indicators from the dataset are
preserved, allowing the model to learn the effects of benefit disbursement days on

purchasing patterns.

* Recent history features: These look at what happened in the immediate past. For
instance, lag_1 answers "how many units did we sell yesterday?", 1lag_7 shows
"what were sales on this same day last week?", and 1ag_14 reveals "what happened
two weeks ago on this day?". These help the model recognize patterns like "sales

typically spike the day after a promotion."

* Trend indicators: These smooth out daily fluctuations to reveal underlying patterns.
The rmean_7 feature shows the average sales over the last week, helping identify if a
product is trending upward or downward. Similarly, rmax_7 captures recent peaks,

answering "what was the highest daily sales volume this past week?"

* Purchasing frequency metrics: These specifically address how often a product sells.
The zero_pct feature answers "what percentage of days does this product not sell
at all?", while days_since_last_sale tracks how long it’s been since someone
bought the item. These are important to distinguish between popular daily items and

specialty products that sell occasionally.

* Price factors: These capture how pricing affects sales. The sell_price shows
the current price, price_lag_1 reveals if there was a recent price change, and
price_change flags when prices have just been adjusted, helping identify price
sensitivity and promotion effects.

These feature categories work together to model the complex dynamics of retail demand.
For example, the model can learn that a product with high zero_pct suddenly sells well
on snap_WI days with a temporary price reduction (price_change), particularly in the
FOODS category, reflecting the real-world pattern observed in the exploratory analysis.

Table 3.3 presents the top 15 features ranked by importance:

Diverse insights emerge from this analysis:

» Temporal patterns (particularly week of year) exhibit the strongest predictive power,

reflecting the strong weekly and annual cycles observed in Section 2.2

* Recent sales history metrics (rolling means and lags) provide essential context for
predictions, outperforming simple calendar variables

* Intermittency indicators (zero_pct, days_since_last_sale) rank among the top predic-

tors, confirming the importance of explicitly modeling zero-inflation patterns

27



Table 3.3: Top-15 Features by Importance in LightGBM for the 15 sample sku

Rank Feature Description
1 wm_yr_wk Week-of-year calendar encoding
2 rmean_14 14-day rolling mean of sales
3 rmean_7 7-day rolling mean of sales
4 zero_pct Percentage of zero-sales days in historical window
5 dayofweek Day of week (0-6)
6 lag_1 Previous day’s sales
7 month Month of year (1-12)
8 lag_7 Sales from same day previous week
9 lag_14 Sales from two weeks prior
10 store_id Store identifier (location effects)
11 rmax_7 Maximum sales in previous 7 days
12 days_since_last_sale Count of days since non-zero demand
13 month_sin Sinusoidal month encoding (seasonality)
14 rmax_14 Maximum sales in previous 14 days
15 day_cos Cosine encoding of day-of-week cycles

These feature importance rankings also explain why the LightGBM models outper-
formed traditional time series approaches. Tree-based methods like LightGBM can
automatically capture nonlinear relationships between features and learn complex interac-
tion patterns, particularly important for features like zero_pct and days_since_last_sale that
have threshold-like effects on demand prediction.

The preliminary analysis yielded two very important insights that guided subsequent
implementation: first, the superior performance of gradient boosting methods over
traditional approaches for intermittent demand; and second, the pattern-specific advantages
of each LightGBM variant. While both Direct and Two-Stage approaches demonstrated
similar overall performance, their effectiveness varied meaningfully across demand patterns,
suggesting an opportunity for an adaptive framework that could leverage the strengths of
each approach.

With these findings in hand, I proceeded to develop a full-scale implementation that
could process the entire 58-million-observation dataset while intelligently selecting the

best modeling approach based on each product-store combination’s characteristics.

3.2 Complete Forecasting Framework Development

Based on the results of the preliminary analysis conducted in Section 3.1, I choose
LightGBM as model and develop a complete adaptive forecasting framework capable of

scaling to the entire Walmart dataset divided by category. This implementation leveraged
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both LightGBM variants within a unified system that automatically selected the appropriate
approach based on demand pattern characteristics.

The core of the implementation is an adaptive model selection system that analyzes each
time series using three key metrics derived from the exploratory analysis: zero percentage
(proportion of days without sales), coeflicient of variation (standard deviation divided by
mean), and weekly autocorrelation (correlation between values separated by 7 days). Based

on these metrics, each product-store combination is classified into one of four patterns:
* "Lumpy’ pattern (zero_percentage > 0.7 & CV > 1.0): Two-Stage approach
* ’Seasonal’ pattern (weekly_autocorr > 0.5): Direct approach
* "Regular’ pattern (zero_percentage < 0.4): Direct approach

* ’Intermittent’ pattern (other cases): Two-Stage approach

Here a graphic representation of the framework’s pipeline:
Load data
+ Reduce Mem

Y

Feature Engineering

Y

Classifier

lumpy / intermittent Pattern check regular / seasonal

P(sale > 0) ‘ Direct LightGBM
(zero_%,CV, p
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Figure 3.1: Two-Stage adaptive forecasting pipeline

To evaluate the forecasting accuracy of the framework in retail contexts, Root Mean

Squared Scaled Error (RMSSE) metric was selected , as it effectively normalizes the

29



forecast errors relative to the inherent historical variability of each individual time series.
The RMSSE formula is defined as follows:
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RMSSE =

where y, denotes the actual sales at time 7, ¥, is the forecasted sales at time ¢, n is the
number of historical observations, and & represents the forecast horizon.

The denominator of this equation represents the root mean squared error of a naive
forecasting model, which simply predicts that future sales will be identical to sales from
the preceding period. Consequently, the RMSSE provides a relative measure of forecast
accuracy that accounts for each series’ historical volatility. This normalization is important,
as it allows for meaningful performance comparisons across Stock Keeping Units (SKUs)
that differ greatly in sales volume and volatility. Metrics like the RMSE fail to capture
these contextual differences, as they measure absolute prediction errors without reference
to historical variability.

Implementing this framework on such a large dataset required specific technical
optimizations. The memory management strategy was essential, involving a systematic
approach to data type optimization. For numeric columns, integers were downcasted to
the minimum required bit depth (8, 16, or 32-bit) based on their range of values, while
floating-point values were standardized to 32-bit precision instead of the default 64-bit.
This methodical optimization reduced the memory footprint by approximately 21.7%
across all three categories, allowing the entire dataset to be processed without specialized
high-memory hardware.

The feature engineering process was optimized for both computational efficiency and
predictive power. Rather than generating all possible time-based features, the imple-
mentation focused on the most predictive features identified in Section 3.1. Temporal
features included week-of-year encoding (wm_yr_wk), day of week (dayofweek), and
month, complemented by cyclic encodings (month_sin, day_cos) to capture seasonal
patterns. Lag features were selectively created for 1, 7, and 14-day offsets, while rolling
statistics (rmean_7, rmean_14, rmax_7) captured recent trends. Intermittency indicators
(zero_pct, days_since_last_sale) were specifically designed to address the challenges of
sparse sales patterns. Price-related features (price_lag_1, price_change) completed the
feature set, capturing price sensitivity effects. This selective approach significantly reduced
computation time while maintaining predictive power.

Developed a framework with a store-level checkpoint system that saved partial results,
allowing for recovery and resumption in case of processing interruptions. This proved

valuable when handling the multi-hour processing required for the complete dataset across
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all stores.

As thoroughly discussed in Section 2.3, the Walmart dataset presents significant
challenges due to highly intermittent demand patterns, characterized by extensive periods
with zero sales interspersed by occasional spikes in demand. To reliably address this
specific issue, I implemented a specialized forecasting approach known as the Two-Stage
model. This methodology explicitly accounts for the intermittency by decomposing the

forecasting task into two sequential phases:

1. Classification Stage: Predicting the probability of whether a product will sell on a

given day.

2. Regression Stage: Predicting the expected quantity sold, conditioned on a sale

occurring.

The classifier learns from all historical data to identify when sales occur, while the
regressor is trained only on positive-sales instances to estimate purchase quantities.

Synthetic Minority Over-sampling Technique (SMOTE) is a technique for addressing
highly unbalanced datasets by synthesizing examples of the minority class. implemented
using the Python library imbalanced-learn (Imbalanced-learn developers 2023), this
algorithm came in handy while handling the extreme class imbalance problem that is native
to intermittent demand forecasting. For retail settings, this imbalance is evidenced by
datasets in which the overwhelming majority of the days record zero sales (majority class),
thereby posing a major hurdle for machine learning models. While analyzing Walmart
data, I noted that standard classification models were highly "majority class biased,"
predicting "zero sales" for almost every day in cases where those models were trained on
highly imbalanced data, essentially neglecting the sparse but commercially valuable sales
occurrences.

Given the severe class imbalance in the classification phase (as zero-sales days
vastly outnumber days with positive sales), I employed SMOTE to balance the training
data. SMOTE in the classification part generates synthetic minority class instances by
interpolating between existing minority examples, effectively balancing the dataset and
enhancing the model’s predictive capabilities for rare but commercially significant sales
events.

Specifically, SMOTE creates synthetic data points according to the following formula-

tion:

Xnew = X; + @ - (xnn - xi)

where x; is an existing minority class instance, xy, represents one of its nearest neighbors
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in feature space, and « is a random value uniformly drawn between 0 and 1, determining
the interpolation point between these instances.

Through this targeted approach, the Two-Stage model with SMOTE effectively captures
the intermittent nature of product demand, significantly outperforming standard methods
that fail to explicitly model this aspect.

The implementation includes error handling that detected missing values and au-
tomatically fell back to the original dataset rather than failing, ensuring uninterrupted
processing even with imperfect data. Array dimension mismatches a common issue in time
series processing due to lagged features were resolved by implementing comprehensive
date tracking that maintained alignment between features, predictions, and actual values
throughout the pipeline.

Categorical variable handling required special consideration due to LightGBM’s
requirement for numeric input. A two-step approach was employed: first, categorical
variables were detected automatically based on their data type and cardinality; second,
they were either encoded using label encoding (for low-cardinality variables) or removed
(for high-cardinality variables with limited predictive value). This approach prevented
information leakage while maximizing the usable signal from categorical predictors.

To address class imbalance (typical of products with many zero-sales days), the
implementation utilizes the balancing technique described earlier, with error handling that
gracefully falls back to the original dataset when needed. The final forecast is calculated

by multiplying the probability of a sale by the expected conditional quantity:
$finat = P(sales > 0) x E[sales|sales > 0] (3.1)

This decomposition mirrors the actual decision process of a customer: first the binary choice
to purchase, then the quantity decision. By taking the product of these two components,
the model outputs the unconditional expected demand for the day. If either the purchase
probability is low or the conditional quantity spikes, their combined effect is naturally
tempered, yielding a smooth and interpretable forecast that scales well across items with
vastly different sparsity levels.

After initial implementation, I discovered that each product category required specific
optimizations to address their unique characteristics:

For FOODS, with higher price sensitivity (3.5%) and strong responses to events like
SNAP disbursements, I implemented additional price-related features and adjusted the
SMOTE threshold to 0.6 to accommodate its higher baseline of non-zero sales days (ranging
from 35% to 47%). Some stores with particularly balanced classes (>42% sales days)

encountered minority class sampling errors, requiring fallback to unbalanced training.
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For HOBBIES, which exhibited extreme intermittency with all stores classified as "lumpy"
(highly sparse sales patterns), I initially attempted standard SMOTE implementation with
SMOTE threshold of 0.3. The imputation strategy proved successful for HOBBIES stores,
enabling SMOTE application for all "lumpy" pattern stores.

The HOUSEHOLD category required an intermediate SMOTE threshold of 0.3, re-
flecting its position between the sparse HOBBIES patterns and the more regular FOODS
patterns. The imputation strategy proved successful for HOUSEHOLD stores, enabling
SMOTE application for all "lumpy" pattern stores.

The SMOTE implementation required category-level modifications. For HOBBIES,
the algorithm often struggled with missing values, whereas with some FOODS stores with
better balanced classes (>42% sales days), it encountered minority class sampling errors.
A robust error-measure handling system, with imputation in advance and graceful resorting
to the original dataset if required, solved the problem. This approach proved particularly
successful for HOUSEHOLD stores, where the imputation strategy enabled successful
SMOTE application for all "lumpy" pattern stores. Processing time also varied dramatically
between categories, with FOODS stores requiring substantially longer computation (up to
6,000 seconds per store) compared to HOBBIES (approximately 90-120 seconds per store),
reflecting the computational complexity of handling larger sales volumes and different class
distributions. Array dimension mismatches between predictions and actual values were
resolved by implementing comprehensive date tracking throughout the pipeline, ensuring
consistent alignment regardless of the category being processed.

The adaptive framework was applied to all three product categories (FOODS, HOBBIES,
and HOUSEHOLD) across all 10 stores. Analysis of demand patterns revealed interesting
category-specific characteristics, as detailed in Table 3.4.

Table 3.4: Distribution of Demand Patterns Across Product Categories

Pattern Type FOODS HOBBIES HOUSEHOLD
Count %o Count %o Count %o
Lumpy 0 0% 10 100% 6 60%
Regular 0 0% 0 0% 0 0%
Seasonal 0 0% 0 0% 0 0%
Intermittent 10 100% 0 0% 4 40%

The pattern distribution reveals a clear distinction between product categories. For the
HOBBIES category, all 10 stores were classified with lumpy’ demand patterns, confirming
the high intermittency observed in the exploratory analysis. The HOUSEHOLD category
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showed a more diverse distribution, with 60% of stores exhibiting ’lumpy’ patterns and
40% classified as ’intermittent.” In contrast, the FOODS category displayed a consistent
‘intermittent’ pattern across all stores, indicating a less extreme but still challenging
forecasting scenario compared to the other categories.

The performance of the models for each category showed different characteristics, as
detailed in Tables 3.5, 3.6, and 3.7.

Table 3.5: Performance Metrics for FOODS Stores

Store RMSSE RMSE MAE MAPE Pattern
CA_1 0.7994 2.6906 1.3220 99.10% Intermittent
CA_2 09104 23966 1.2348 92.90% Intermittent
CA_3 0.6735 29160 1.3157 80.09% Intermittent
CA_4 0.7602 1.5393 0.7414 78.56% Intermittent
TX_1 0.7136  2.0010 0.8160 80.68% Intermittent
TX_ 2 0.7246  2.3997 1.0173 88.99% Intermittent
TX 3 09660 2.8388 1.1998 98.75%  Intermittent
WI_1 09304 2.1761 1.1886 96.19% Intermittent
WI_2 0.9647 3.6343 1.5547 102.85% Intermittent
WI_3 0.8650 2.9070 1.2525 102.87% Intermittent
Average 0.8308 2.5499 1.1643 92.10%

Table 3.6: Performance Metrics for HOBBIES Stores

Store RMSSE RMSE MAE MAPE Pattern
CA_1l 0.6530 2.0260 0.6664 82.28% Lumpy
CA_2 0.6144 1.4871 04785 64.40% Lumpy
CA_3 0.6592 2.1110 0.6819 74.91% Lumpy
CA_4 0.6631 1.4118 0.4158 62.12% Lumpy
TX_1 0.6845 1.2308 0.3484 65.63% Lumpy
TX 2 0.6262  1.3051 0.4342 60.07% Lumpy
TX 3 0.7908 1.4331 0.4470 65.13% Lumpy
WI_1 0.6341 1.3496 0.4537 66.17% Lumpy
WI_2 0.7075 1.1192 0.3318 56.59% Lumpy
WI_3 0.6595 1.1601 0.3284 63.08% Lumpy
Average 0.6692 1.4634 0.4586 66.04%
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Table 3.7: Performance Metrics for HOUSEHOLD Stores

Store RMSSE RMSE MAE MAPE Pattern
CA_1l 0.7819 1.1596 0.5125 65.22% Intermittent
CA_2 0.7805 1.2961 0.6259 71.23% Intermittent
CA_3 0.7934 19170 0.8427 70.80% Intermittent
CA_4 0.7091 0.7111 0.2845 50.20% Lumpy
TX 1 0.7531 1.2148 0.4945 67.12% Lumpy
TX 2 1.0691 1.8078 0.5150 62.78% Intermittent
TX 3 0.7819  1.2004 0.4933 63.48% Lumpy

1 0.7206  0.9023 0.3745 54.23% Lumpy
2 09875 1.6862 0.5530 61.99% Lumpy
WI_3 0.7344 1.0464 0.4015 59.68% Lumpy
Average 0.8112 1.2942 0.5093 62.67%

Analyzing forecasting metrics across the three product categories reveals important
insights into the relationship between demand patterns and prediction accuracy. At first
glance, RMSE values suggest significant performance differences: FOODS (2.55) shows
notably higher errors compared to HOBBIES (1.46) and HOUSEHOLD (1.29). However,
this interpretation is misleading as it fails to consider intrinsic category-specific differences

in sales volumes and volatility.

The normalized RMSSE metric provides a more accurate picture by accounting for
historical variability. FOODS achieves an RMSSE of 0.83, closely aligned with HOUSE-
HOLD at 0.81 and competitively positioned against HOBBIES at 0.67. This shows that
despite higher absolute errors, FOODS forecasts are comparable when scaled against

inherent sales volatility.

Several key factors explain these results:

* Volume and Variability Differences: FOODS products have higher sales volumes
and more pronounced daily fluctuations, naturally producing larger absolute errors.
Normalizing these errors with RMSSE clearly demonstrates comparable forecasting
performance across categories. For example, a forecasting error of two units in a high-
volume FOODS product (typical daily sales ranging 0—10 units) is proportionally
less significant than a 0.5-unit error in a lower-volume HOBBIES product (typical

daily sales of 0-2 units).

* Distinct Demand Patterns: Each category exhibited unique demand characteristics:
HOBBIES were exclusively categorized as “lumpy” (100%), FOODS as consistently
“intermittent” (100%), while HOUSEHOLD displayed mixed patterns (60% lumpy,
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40% intermittent). This confirms the effectiveness of both the classification system

and the tailored forecasting strategies applied.

* Adaptive Sampling Strategies with SMOTE: The correct use of SMOTE required
fine-tuning across categories. HOUSEHOLD required a moderate threshold (0.3),
whereas FOODS needed a higher threshold (0.6) due to less extreme class imbalances
(35-47% non-zero days). Furthermore, for particularly balanced FOODS subsets
(>42%), the model intelligently omitted SMOTE, showcasing adaptive flexibility.

» Category-Specific Price Sensitivity: FOODS exhibited greater price sensitivity
(3.5% sales reduction per 1% price increase) compared to HOUSEHOLD (2.1%)
and HOBBIES (1.7%). This heightened responsiveness demanded careful inclusion

of price features in the forecasting model.

* Differential External Factor Responsiveness: FOODS demonstrated significant
sensitivity to external events, notably SNAP disbursement days (up to 30% sales
uplift in Wisconsin stores) and seasonal promotions. This external responsiveness
necessitated nuanced forecasting models, successfully addressed by the adopted

Two-Stage approach.

Despite pronounced differences in demand characteristics, the adaptive forecasting
framework achieved consistent scaled accuracy (RMSSE between 0.67-0.83) across all cat-
egories. This uniformity highlights the system’s ability to tailor forecasting methodologies
according to distinct product characteristics, removing the necessity for entirely separate
category-specific approaches. The operational implications of these performance results
will be explored further in Section 4.2.

The feature importance analysis presented in Table 3.8 underscores distinctions between
the classification and regression components of the Two-Stage forecasting model. In retail
demand forecasting, classification and regression mirror sequential consumer decision
processes.

The classification stage predicts the occurrence of a transaction, modeling the probability
P(sales > 0). This binary task addresses the significant challenge of zero-inflation
observed in the exploratory data analysis (Section 2.3).

The regression stage, conversely, estimates the expected quantity sold, conditional on a
sale occurring, i.e., E [sales|sales > 0]. By focusing solely on positive-sales events, the
regression model effectively isolates and models the quantity-purchase behavior, avoiding
biases from zero-inflated data.

Distinctive feature importance patterns validate this Two-Stage decomposition. Classifi-

cation models heavily relied on the intermittency metric (zero_pct), consistently ranking
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first with importance significantly higher than other features. Conversely, regression models
emphasized recent sales features (lag_1, rmean_7), particularly pronounced in FOODS,
illustrating the importance of recent purchasing behavior.

Price-related features consistently ranked high in classification (top-three across
categories) but were lower in regression rankings, aligning with practical retail intuition
that price changes primarily influence purchase decisions rather than quantity purchased.

Additionally, SNAP-related variables exhibited markedly higher importance for FOODS,
consistent with observed SNAP-dependency in the category. Event-related features also
mirrored exploratory findings (Section 2.2), affirming the distinct category-specific reactions

to external factors.

37



Table 3.8: Top 20 Feature Importance Comparison Across Categories and Model Types

| FOODS | HOUSEHOLD | HOBBIES

Rank ‘ Feature (CIf) Imp. ‘ Feature (CIf) Imp. ‘ Feature (CIf) Imp.
1 zero_pct 6219.8 zero_pct 4355.8 zero_pct 3847.3
2 price_norm. 4336.7 price_norm. 3477.6 sell_price 2225.2
3 sell_price 4014.7 sell_price 2967.2 rmean_14 1015.7
4 rmean_14 3492.3 rmean_14 2002.0 price_lag_1 417.1
5 rmean_7 1965.6 days_since_last 461.1 days_since_last 348.4
6 lag_1 1575.8 wm_yr_wk 447.5 wm_yr_wk 324.4
7 rmax_7 770.2 price_lag_1 301.9 month 186.6
8 days_since_last 550.7 lag_1 262.5 rmean_7 164.7
9 wm_yr_wk 531.5 rmean_7 2554 lag_1 145.2
10 price_lag_1 321.3 month 202.5 dayofweek 86.9
11 is_weekend 313.2 dayofweek 173.4 price_change 41.8
12 month 157.6 rmax_7 156.0 day_cos 27.2
13 dayofweek 131.2 month_sin 88.8 snap_CA 13.6
14 snap_WI 116.1 price_change 54.9 month_sin 9.6
15 price_change 78.0 snap_TX 22.8 lag_14 9.5
16 month_sin 27.9 is_weekend 15.3 rmax_7 9.0
17 lag_14 24.0 lag_14 15.0 lag_7 5.8
18 lag_7 16.8 snap_CA 12.4 snap_WI 5.6
19 snap_CA 10.1 lag_7 11.7 snap_TX 4.0
20 snap_TX 8.1 day_cos 6.2 has_event 2.2

Feature (Regr.) Feature (Regr.) Feature (Regr.)

1 lag_1 2473.7 rmean_14 1376.2 rmean_14 826.9
2 rmax_7 18429 rmean_7 1182.3 wm_yr_wk 679.5
3 rmean_7 1617.7 wm_yr_wk 1119.0 zero_pct 644.0
4 lag_7 1547.8 lag_1 1056.5 rmean_7 594.3
5 lag_14 1483.9 zero_pct 906.2 lag_14 501.1
6 rmean_14 1420.5 rmax_7 814.0 rmax_7 444.1
7 wm_yr_wk 1358.7 dayofweek 782.8 lag_7 427.1
8 zero_pct 1095.0 lag_14 699.4 lag_1 371.4
9 sell_price 1046.7 lag_7 659.6 price_lag_1 364.0
10 price_norm. 827.3 price_norm. 537.9 dayofweek 254.1
11 dayofweek 805.0 price_lag 1 399.3 sell_price 222.0
12 month 583.3 month_sin 311.5 month 187.8
13 month_sin 432.1 month 284.8 day_cos 179.4
14 is_weekend 414.7 day_cos 203.1 month_sin 109.2
15 day_cos 367.4 sell_price 181.6 snap_TX 57.7
16 price_lag_1 306.3 snap_CA 140.2 snap_CA 54.6
17 snap_CA 293.1 snap_TX 114.1 snap_WI 48.8
18 snap_TX 273.9 has_event 101.0 has_event 29.6
19 snap_WI 267.6 snap_WI 98.4 price_change 44
20 has_event 122.6 is_weekend 28.1 days_since_last 0.0
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Overall, these insights validate the Two-Stage model’s capability to effectively separate
and model distinct decision-making processes inherent in retail purchasing behavior. Note
that the model was executed store-by-store, naturally incorporating store-specific effects,

which would have emerged prominently had "store" been modeled explicitly as a feature.

3.3 Forecasting Demand for New Products via Similarity-

Based Approaches

During the development of the forecasting model, was encountered a question: how
would the system handle the introduction of a new item with a unique SKU, absent from
the historical dataset? This scenario, commonly known as the "cold start" problem, is
prevalent in dynamic retail environments like Walmart’s, where new products are frequently
introduced without prior sales data.

To address this challenge, similarity-based approaches were explored. The core idea
is to identify existing products with attributes similar to the new item and to use their
historical sales data to predict the demand for the newcomer. This method relies on the
assumption that products that share similar characteristics will exhibit comparable demand
patterns.

The similarity between products can be formalized mathematically through several
metrics. For feature vectors A and B representing an existing product and a new product

respectively, common metrics include:

-

. B ;-1:1 A,‘B,‘
A B [y a2 5 82

distewer (4, B) = [|1A = Bll = | ), (4i = B)? (3.3)
i=1

Calculating similarity between products involves analyzing various features:

SiMeos (A, B) = (3.2)

Categorical Attributes: Product category, subcategory, brand, and store type.

Numerical Attributes: Price, dimensions, and weight.

Textual Descriptions: Product titles and descriptions.

Visual Features: Product images.

To quantify similarity:
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» Categorical and Numerical Data: Techniques like one-hot encoding for categorical
variables and normalization for numerical variables are applied, followed by distance

metrics such as Euclidean or cosine similarity.

» Textual Data: Natural Language Processing (NLP) methods, including word
embeddings or fuzzy matching, are used to convert text into numerical vectors,

enabling similarity computation.

* Visual Data: Convolutional Neural Networks (CNNs) can extract feature embeddings

from images, which are then compared using similarity measures.

Advanced models may combine these features into a unified embedding space, allowing
for a comprehensive similarity assessment.

Once similar products are identified, their historical sales data can inform the demand
forecast for the new product. Techniques such as weighted averaging, where weights are
based on similarity scores, can be employed. For a new product p,,.,,, if we identify k most
similar products {p1, p2, ..., px } with similarity weights w;, the forecast can be calculated

as:

k
Forecast(ppew) = Z w; - Historical_Sales(p;) (3.4)
i=1
In this way machine learning models trained on similar products’ data can be adapted
to predict the new item’s demand.

Several studies and industry applications support this approach:

* Amazon Forecast uses item metadata to identify similar products, enhancing forecast
accuracy for new product introductions. Their approach has led to forecasts that are
up to 45% more accurate for products with no historical data (Amazon Web Services
2023).

* Impact Analytics developed Al-driven frameworks combining machine learning with
domain expertise to tackle cold start challenges in retail demand forecasting. Their
client research indicates demand forecasts for new products are between 25-30%

more accurate than former judgment-based forecasts (Impact Analytics 2023).

Although this approach shows significant promise for addressing the cold start problem
in retail forecasting, its implementation in the context of this study faces several practical
limitations. The Walmart M5 dataset lacks most of the essential data types identified
earlier, its have only basic category information without detailed subcategories like brands,

information on product dimensions or weight, no access to textual descriptions or visual
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product images. These data limitations significantly constrain the ability to calculate
similarity metrics between products. Computational efficiency would pose a substantial
challenge when dealing with large catalogs like Walmart’s, requiring specialized hardware
resources not available for this research. Despite these implementation barriers, the
theoretical framework remains valuable for understanding how retailers could address the
cold start problem in production environments where richer product metadata is available.

Incorporating these similarity-based methodologies into demand forecasting models
not only addresses the cold start problem but also contributes to more efficient inventory
management and supply chain optimization. For large enterprises like Walmart, which
regularly introduce new products, this approach enables the prediction of sales performance
for new items based on similarities with existing products, ultimately supporting more
effective inventory decisions. While implementation was not feasible within the current
research constraints, this conceptual framework provides a foundation for future extensions
discussed in Section 5.2. After developing forecasting models in this chapters, Chapter 4
focuses on translating these forecasts into concrete operational decisions through the APS

system.
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Chapter 4

Operational Integration and Results

4.1 Translating Forecasts into Inventory Decisions

The translation of machine learning forecasts into operational decisions marks the point
where theoretical research generates tangible business impact. This section presents
the development of a technological artifact, aligned with the Design Science Research
methodology described by (Baskerville et al. 2018), which encapsulates the design
knowledge built in the previous chapters.

Inventory management requires converting statistical forecasts into actionable purchas-
ing and stocking parameters. This research uses the improved accuracy of machine learning
models to dynamically optimize inventory decisions.

To operationalize this, I developed an Advanced Planning and Scheduling (APS) system
that serves as a digital twin for inventory management. In this context, a digital twin
represents a real-time virtual replica of the inventory system that continuously simulates
demand patterns, stock levels, and replenishment decisions. This digital twin enables

decision-makers to:

Test multiple scenarios instantly without affecting physical inventory

Visualize the immediate impact of different parameter changes

Understand financial implications before implementing decisions

* Integrate machine learning predictions with operational constraints

Figure 4.1 illustrates the high-level workflow of the APS digital twin, where machine
learning forecasts and demand pattern metrics are combined with user-selected parameters

to generate actionable inventory decisions and visual insights.
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User Settings
(Category, Store, Service Level,

Lead Time, Current Inventory)

ML Forecasts Pattern Metrics

(.csv) (-pkl)

Y

Compute
Safety Stock & ROP

Y
Evaluate

Order Quantity

Inventory Parameters Visual Dashboards

(SS, ROP, etc.) (Stock & Capital)

Figure 4.1: APS flow: inputs, core calculations, and resulting insights.

This digital twin provides dynamic, real-time simulation capabilities that translate
complex ML forecasts into concrete operational decisions. The APS system automatically
loads the relevant ML forecasts and pattern data for each store-category combination, ensur-

ing inventory parameters are based on the most accurate and context-specific predictions
available.

Advanced Planning and Scheduling (APS) System
ML Prediction Translation System into Inventory Decisions
Product Category nventory Current Status
HOUSEHOLD -
Store

CA_L -

Service Level Target
095 -

nvested Capital for Service Level
Lead Time Scenario
default -~

Current Inventory (Aggregate)

Calculate Inventory Decision

Figure 4.2: Advanced Planning and Scheduling (APS) System Interface showing the input
parameters panel
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The system operates with predefined operational parameters that reflect typical retail

industry values:!

Lead Time Scenarios by Category:

FOODS: 3 days (minimum), 4 days (default), 5 days (maximum) - reflecting

perishable nature and high turnover

HOBBIES: 5 days (minimum), 8 days (default), 12 days (maximum) - accounting
for more complex supply chains

HOUSEHOLD: 5 days (minimum), 8 days (default), 12 days (maximum) - standard
replenishment cycles

Average Unit Costs by Category:

FOODS: €5.50 per unit (acquisition and holding cost)
HOBBIES: €12.75 per unit (higher-value specialty items)

HOUSEHOLD: €8.25 per unit (standard consumer products)

The APS interface, developed using Gradio, provides an intuitive environment where

retail managers can:

Select the product category (FOODS, HOBBIES, or HOUSEHOLD) from a dropdown

menu
Choose a specific store location (CA_1, TX_2, etc.) to view location-specific data

Set the desired service level target (90%, 95%, or 99%) to balance availability against

inventory cost

Specify the lead time scenario (minimum, default, or maximum) to account for

supply chain variability

Input the current inventory level using a slider for immediate visual feedback

The system implements inventory optimization formulas based on traditional safety

stock and reorder point concepts, with several key innovations. The pattern_factor is

a central innovation that adjusts safety stock calculations based on the demand pattern
identified by the ML models:

IThese parameters represent typical industry estimates used for testing and demonstrating the framework’s
capabilities. In production environments, these would be replaced with actual supplier lead times and
negotiated costs. A detailed discussion of these assumptions and their limitations is provided in Section 5.1.
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* LUMPY patterns (factor = 1.2): Demand shows extreme intermittency with long
periods of zero sales followed by sudden, unpredictable spikes. The 20% safety stock

increase accounts for this high volatility.

 INTERMITTENT patterns (factor = 1.0): Demand shows moderate irregularity
with occasional zero-sales periods but more consistent purchasing behavior. This

represents the baseline pattern requiring no adjustment.

* REGULAR patterns (factor = 0.9): Demand is relatively predictable with minimal
zero-sales days and consistent purchasing behavior. The 10% safety stock reduction

reflects the lower uncertainty inherent in these patterns.

With this adaptive pattern factor in place, the complete inventory optimization formulas

are:

SS=z oy VL- pattern_factor 4.1

ROP =y - L+SS (4.2)

The ordering logic implemented in the system works as follows:

1. The system continuously monitors current inventory levels
2. When current inventory falls to or below the ROP, it triggers an ordering decision

3. Upon triggering, the system calculates an "order-up-to" level using the formula:

Order Up To Level = ROP + upp - L+ ppr - L - 0.5 4.3)

Order Quantity = max (0, Order Up To Level — Current Inventory) 4.4)
This enhanced ordering approach ensures that when inventory drops below the reorder
point, the system orders sufficient quantity to bring the inventory to a level that includes:

¢ The Reorder Point (ROP) threshold
* Expected demand during the lead time (upsp - L)

* An additional 50% buffer to cover demand uncertainty beyond ROP (upsz - L - 0.5)(
buffer of 0.5 approximately 4 days of additional coverage for an 8-day lead time)

This approach guarantees that when the order arrives, inventory will be well above
the ROP, preventing immediate reordering and providing adequate coverage for sustained

operations. Let’s see this in practice with a realistic example.
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Ilustrative example of what happen in the code —- HOUSEHOLD category, store CA_1

Current inventory Iy = 15 units (below the ROP, so replenishment is triggered)
Lead time L = 8 days (default for HOUSEHOLD)

ML prediction: ppp ~ 1.11 units/day

Safety stock SS ~ 7 units

Re-order point ROP = pupyp L+ SS =1.11 X 8+ 8 ~ 17 units

Order-up-to level

OUTL = ROP+ iy, L+0.5upr L = 17+(1.11 x 8) + (0.5 x 1.11 x 8) ~ 30.3

units

Quantity to order Q = OUTL — I =30.3 — 15 = 15.3 units

When the shipment is received, on-hand stock will rise to ~ 30.3 units, providing about

30.3/1.11 = 27 days of coverage and keeping inventory comfortably above the reorder

point.

2

2All numerical values in Fig. 4.3 are generated automatically by the APS prototype using the actual
forecast file for store CA_1.
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Advanced Planning and Scheduling (APS) System

ML Prediction Translation System into Inventory Decisions

Inventory Analysis for HOUSEHOLD - CA_1 (INTERMITTENT)

HOUSEHOLD - -==_RoP

=== safety Stock
Order Up T

Units

Current Ruorder satety order up
e DECISION: Order 15.3 units ™ e

Capital Invested for Different Service Levels c16n48
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Figure 4.3: APS System analysis for HOUSEHOLD category at CA_1 store

As illustrated in Figure 4.3, the system provides a comprehensive analysis for the
HOUSEHOLD category at store CA_1, where the ML models have identified an “IN-
TERMITTENT” demand pattern. This exemplifies how the digital twin adapts its
recommendations to different pattern characteristics and provides clear visual guidance for
inventory decisions.

The upper visualization displays the critical inventory status:

* Current inventory stands at 15 units (orange bar), indicating inventory has fallen

below the reorder point

* Reorder Point is calculated at approximately 17 units (blue dashed line), representing
the threshold for initiating replenishment

» Safety Stock level is set at approximately 7 units (purple dashed line), providing a
buffer against demand variability

* Order Up To Level is displayed as a light green bar at approximately 30 units

* The system recommendation is clear: “DECISION: Order 15.3 units”
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The 15.3-unit recommendation follows the enhanced order-up-to logic: when the order

arrives, the inventory will reach 30.3 units, providing substantial coverage above the ROP

while maintaining efficient capital utilization.

The lower chart in Figure 4.3 presents the capital investment implications across
different service levels:

* 90% service level requires €124.35 of invested capital (15.1 units total inventory)
* 95% service level requires €138.87 of invested capital (16.8 units total inventory)
* 99% service level requires €165.48 of invested capital (20.1 units total inventory)

The capital investment figures are calculated by multiplying the total inventory require-
ment by the unit cost:

Capital_Invested = ROP X Unit_Cost = (uyr - L +SS) X Unit_Cost 4.5)

Average unit costs are applied per category as describe before:
* FOODS: €5.50 per unit (acquisition and holding cost)

* HOBBIES: €12.75 per unit (higher-value items)

* HOUSEHOLD: €8.25 per unit (standard products)

In this research, a decision was made to implement inventory management at the store
category level rather than for individual SKUs. This approach was chosen for several

reasons:

* Data structure constraints: The forecasting framework outputs predictions aggre-

gated at store-category level, providing a natural foundation for inventory decisions.

* Statistical robustness: Aggregated forecasts typically exhibit lower error rates than
individual SKU forecasts due to the portfolio effect.

* Operational relevance: Store managers typically make initial decisions at the
category level before refining to individual SKUs.

* Computational efficiency: This approach enables faster decision-making while
capturing essential demand patterns.

Key advantages of this digital twin implementation include:
* Real-time adaptation: Dynamic recalculation as demand patterns evolve
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Financial transparency: Immediate visualization of service level trade-offs

Pattern-specific optimization: Adaptive calculations for different demand charac-

teristics

* Scenario simulation: Instant "what-if" analysis capabilities

Logical ordering consistency: Ensures post-order inventory always exceeds reorder
thresholds

The digital twin architecture ensures that inventory decisions are based on dynamic ML
predictions that capture complex patterns revealed in the exploratory analysis, closing the
loop between advanced analytics and operational execution. By guaranteeing that orders
bring inventory above the reorder point, the system maintains operational stability while
optimizing inventory investment.

While this chapter focused on demonstrating the practical implementation of the
forecasting models, the following chapter will evaluate the performance of this approach

and assess its reliability in different retail scenarios.

4.2 Evaluation of Operational KPIs and Results

This section evaluates the practical impact of the digital twin APS system on key operational
metrics, focusing on forecasting accuracy and its implications for inventory management.
An important aspect is understanding not just how accurate the forecasts are, but how the
system manages inevitable prediction errors in practice.

Before presenting the results, it’s important to clarify the choice of forecasting accuracy
metric. During preliminary model selection in Section 3.1, Was initially employed
Root Mean Squared Error (RMSE) to evaluate individual SKU performance. However,
when scaling to the full implementation across diverse product categories, RMSE proved
inadequate for cross-category comparisons due to significant differences in demand scales.
To address this limitation, was adopted the Root Mean Squared Scaled Error (RMSSE),
defined as:

% 2 (e = $1)?
ﬁ 2 = yim1)?

RMSSE = J (4.6)

The RMSSE normalizes forecast errors relative to a naive random-walk model that
simply predicts tomorrow’s sales will equal today’s. An RMSSE below 1 indicates superior
performance compared to this baseline, making it ideal for comparing accuracy across

product categories with vastly different sales volumes.
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The comprehensive evaluation revealed consistently strong performance across all
store-category combinations. As shown in Tables 3.5, 3.6, and 3.7, all RMSSE values
remained below 1.0, confirming the superior performance of ML-based forecasting over

naive approaches:

* FOODS: Average RMSSE of 0.8308, with all stores achieving RMSSE < 1.0 despite
dealing with intermittent demand patterns

* HOBBIES: Average RMSSE of 0.6692, representing the strongest performance

despite exclusively lumpy demand patterns

* HOUSEHOLD: Average RMSSE of 0.8112, with mixed pattern types (60% lumpy,
40% intermittent)

The pattern-specific performance revealed important insights. Notably, the HOBBIES
category, characterized entirely by lumpy demand patterns, achieved the lowest average
RMSSE. This counterintuitive result demonstrates the effectiveness of the Two-Stage
forecasting approach specifically designed for intermittent demand. The specialized
handling of zero-inflation through SMOTE balancing enables the model to capture the
sparse but predictable patterns in hobby products.

While RMSSE demonstrates that the models outperform baseline approaches, it doesn’t
reveal the practical scale of forecast errors in daily operations. The absolute error metrics
from the evaluation provide insights into the magnitude of prediction uncertainties the APS

system must manage:

* FOODS: Average RMSE of 2.55 units/day, MAE of 1.16 units/day
* HOBBIES: Average RMSE of 1.46 units/day, MAE of 0.46 units/day

* HOUSEHOLD: Average RMSE of 1.29 units/day, MAE of 0.51 units/day

These values indicate daily prediction errors ranging from 0.46 to 1.16 units - less than
2 products per day for any category. The relationship between these three error metrics
reveals important insights about forecast patterns:

MAE-RMSE Relationship: RMSE values consistently exceed MAE across all
categories (FOODS: 2.20x, HOBBIES: 3.17x, HOUSEHOLD: 2.53x), indicating:

* MAE (Mean Absolute Error) indicates how much, on average, the forecasts deviate

from the actual values each day.

* RMSE (Root Mean Square Error) gives extra weight to large errors by squaring the

differences before calculating their average.
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* The significant gap between RMSE and MAE suggests that most daily forecasts are
accurate (low MAE), but occasionally the system makes larger errors, particularly

during promotional events or sudden spikes in demand.

MAPE Limitations: MAPE values ranging from 62-92% appear concerning but are
misleading due to mathematical characteristics: MAPE (Mean Absolute Percentage Error)
calculates errors as a percentage of actual values, for intermittent demand with frequent
zero sales, small absolute errors (e.g., predicting 1 unit when actual is 0) result in infinite
percentage errors, when actual sales are very low (1-2 units), even small errors create
inflated percentages (e.g., predicting 2 when actual is 1 = 100% error)

This pattern is characteristic of retail environments where:

* Regular days show predictable sales patterns with minimal errors

* Special events or unexpected circumstances create temporary but substantial forecast

misses

» Zero-sales days, common in intermittent demand (>60% for many products), make
MAPE mathematically unstable

The critical question becomes: how does the APS system ensure these forecast
uncertainties don’t disrupt operations?

To illustrate how these protection mechanisms work in practice, let’s revisit the
HOUSEHOLD CA1_1 example from Section 4.1, now examining how the system maintains
operational stability despite forecast uncertainties. While the previous section demonstrated
the calculation methodology, here we analyze the robustness of these calculations against
prediction errors, The system employs a multi-layered approach to manage forecast
uncertainty:

1. Dynamic Safety Stock Protection

The safety stock formula directly incorporates forecast uncertainty through o7, (the
standard deviation of predicted demand values):

SS=z-ou-VL- pattern_factor “4.7)
Example (HOUSEHOLD at store CA_1):

* Demand pattern: Intermittent (¢ = 1.0).

Daily demand prediction: ppsz = 1.11 units/day.

Standard deviation of predicted values: opreq = 1.71.

Lead time: L = 8 days; Service level: 95% (z = 1.65).
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SS =z 0pred- VL - ¢ = 1.65x 1.71 x V8 x 1.0 ~ 8.0 units

ROP =y - L+S5S=1.11x8+8.0=16.88 ~ 17 units

2. Pattern-Adaptive Error Management
The pattern factor adjusts protection based on demand characteristics:

* Lumpy patterns (factor = 1.2): Additional 20% safety stock for unpredictable spike

patterns
 Intermittent patterns (factor = 1.0): Standard protection for moderate irregularity
* Regular patterns (factor = 0.9): Reduced protection for predictable demand

3. Order-Up-To Buffer System
Beyond safety stock, the system adds a 50% buffer during ordering:

OrderUpToLevel = ROP + upyy - L+ upyyg - L-0.5 4.8)

As detailed in Section 4.1, this 50% buffer ensures that when the order arrives, inventory
will be comfortably above the reorder point, preventing the need for immediate reordering
and providing coverage for sustained operations.

4. Practical Error Tolerance in Action

Let’s examine how these protections work with actual forecast errors the example of
the picture in chapter 4.1. For a HOUSEHOLD store with:

* Daily demand forecast: 1.13 units

* Lead time: 8 days

 Pattern type: Intermittent

When current inventory (15 units) falls below ROP (16.83 units):

 Safety stock protection: 7.82 units

* Order Up To Level = 16.83 + (1.13 x 8) + (1.13 x 8 x 0.5) = 30.35 units
* Order Quantity = 30.35 - 15 = 15.35 units

* Total protection after order: 15.35 units above immediate needs
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This multi-layered protection ensures the system remains operational even when
forecasts miss significantly, as evidenced by the high MAPE values.

The digital twin APS system’s effectiveness stems from treating forecasts as probability
distributions rather than point estimates. By maintaining RMSSE < 1.0 while strategically

managing absolute error ranges through calibrated buffers, the system achieves:

* Consistent service levels despite forecast errors ranging from 60-90% (MAPE)
* Optimized inventory levels that adapt to pattern-specific error characteristics
* Reduced stockout events through proactive error management

* Efficient capital utilization by avoiding excessive inventory accumulation

Regional variations also emerged from the analysis. Wisconsin stores generally showed
better forecasting performance across all categories, potentially reflecting the stronger
impact of SNAP disbursement patterns that the model was specifically designed to capture.
The pattern factors and buffer calculations adapt automatically to these regional differences,
ensuring consistent performance across geographic locations.

These results validate the practical value of integrating machine learning forecasts
with dynamic inventory optimization. The system’s ability to maintain operational
stability despite significant forecast errors, as measured by RMSE, MAE, and MAPE,
demonstrates its readiness for real-world implementation. Rather than pursuing perfect
prediction accuracy, the APS system achieves robust performance through intelligent
error management, transforming forecast uncertainty from a critical vulnerability into a
manageable operational parameter. A comprehensive and detailed discussion on the overall
quantitative impact of the proposed strategies, including the limitations and trade-offs

identified in practical applications, will be presented in the next chapter.
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Chapter 5

Limitations and Future Research

Directions

5.1 Trade-Offs and Limitations

While this research demonstrates the feasibility of integrating machine learning with
inventory optimization, several important limitations constrained the scope and depth of
the implementation, revealing critical trade-offs between theoretical potential and practical
constraints.

The implementation was conducted on a personal laptop (Intel 15-1345U @ 1.60 GHz
with 16GB RAM) due to budget problem, the computational capacity severely limited model
optimization opportunities. The available processing power forced a compromise between
model sophistication and computational feasibility, requiring simplified architectures that
could train within reasonable time. Access to GPU-accelerated infrastructure would unlock
exhaustive hyperparameter search.

With additional computational resources, several enhancements could have been

explored:

» Systematic hyperparameter optimization for LightGBM and Two-Stage models (an
attempt was made but computation time exceeded 4 days, forcing termination, due to

the huge number of rows)

* Deeper feature engineering with automated selection and interaction term discovery.
This would include implementing genetic algorithms for feature selection, automated
creation and testing of polynomial interactions between temporal and categorical
features, and exploration of complex feature combinations (e.g., price x seasonality x
SNAP interactions). Such automated feature discovery could potentially identify non-

obvious relationships between variables but would require substantial computational
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power for exhaustive search and validation

Several operational parameters were selected based on industry averages rather than

empirical optimization:

* Lead time distributions: Category-specific ranges (FOODS: 3-5 days, HOBBIES:
5-12 days) were assumed from typical retail operations rather than derived from

actual supplier data

* Lead time variability: The implementation used fixed lead time values for each
product category, while real-world supply chains experience significant variability in
procurement times. This simplified approach may underestimate the safety stock

requirements needed to accommodate delivery uncertainties.

» Safety buffer percentages: The 50% buffer in the order-up-to level was selected

based on conservative retail practices, not optimized through simulation

* Pattern factors: The multipliers for different demand patterns (lumpy=1.2, in-
termittent=1.0, regular=0.9) were calibrated through limited trial runs rather than

exhaustive testing

* Cost assumptions: Unit costs per category were estimated from typical retail
markups (€5.50 for Foods, €12.75 for Hobbies, €8.25 for Household), lacking

specific supplier agreements or actual procurement data

These assumptions, while reasonable, represent a trade-off between implementation
speed and optimal performance calibration. The lack of real-world calibration data meant
that these parameters, though based on industry standards, may not reflect the specific
operational realities of different retail environments or supply chain configurations.

The store-category level aggregation, though operationally practical, represents a
compromise that affects scalability:

Granularity limitation: Although the forecasting models were initially designed
for individual SKU-level predictions, challenges with categorical variable encoding and
memory constraints led to aggregation at the store-category level. This decision was
appropriate for the research context given the nature of the available data and computational
limitations. For an initial proof-of-concept demonstrating ML viability in inventory
optimization, the store-category level provided sufficient granularity to capture important
demand patterns while remaining computationally feasible. However, this aggregation
inherently sacrifices product-specific precision and may not fully capture individual SKU

behaviors or cross-product interactions within categories
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Despite the richness of the Walmart M5 dataset, certain limitations affected model

performance:

* Missing metadata: Lack of detailed product attributes such as product descriptions,

names, or images constrained similarity-based forecasting for new products

» External factors: Limited visibility into competitor actions, marketing campaigns,

and local economic indicators

* Supply chain visibility: Absence of supplier reliability data and transportation

delays in the dataset

* Product lifecycle modeling: This research did not explicitly model product maturity
stages or lifecycle effects (introduction, growth, maturity, decline). All SKUs
were treated uniformly in the forecasting model, assuming stationarity in demand
behavior over time. In real-world retail, especially for seasonal or trend-driven items,

incorporating lifecycle indicators could further refine the predictions.

The Two-Stage approach, while effective for intermittent demand, introduced several

trade-offs:

* Model complexity: Maintaining two specialized models for product category
increased maintenance overhead. The Direct approach was never utilized as the data
characteristics consistently indicated the need for Two-Stage modeling across all

patterns

* Training time: Sequential training of classification and regression models extended

overall development cycles
Several factors would complicate real-world deployment:

* Change management: Transitioning from traditional inventory systems requires

substantial organizational adaptation

* Integration costs: Connecting ML forecasts with existing supply chain systems

demands significant IT and hardware investment

 SKkill requirements: Operating and maintaining the system necessitates specialized

data science expertise
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 Validation challenges: Proving return on investment (ROI) in production envi-
ronments remains difficult without extensive testing. This limitation stems from
the inability to run controlled experiments where one store operates with the ML
system while another maintains traditional methods for direct comparison. Without
such parallel testing, attributing performance improvements specifically to the ML
system becomes challenging, as numerous external factors (seasonal changes, market

conditions, supply chain disruptions) can influence inventory metrics simultaneously

A more extensive temporal validation was not possible, as the validation dataset
provided only 30 days of data, limiting the ability to be sure about model performance over
longer time horizons.

These limitations highlight a fundamental trade-off in Al implementation: while
machine learning can theoretically optimize supply chain decisions and help managers make
“informed” decisions, the practical benefits are highly dependent on available computational
resources, organizational readiness, and data quality. Current research demonstrates the
feasibility of the approach in constrained environments with the assumptions noted above,
demonstrating that even modest hardware can yield significant improvements, while
also revealing the significant potential for organizations with the appropriate technical

infrastructure.

5.2 Future Research Directions

This research has demonstrated the potential of machine learning for demand forecasting and
inventory optimization in retail environments characterized by intermittent demand patterns.
The implementation of a Two-Stage forecasting approach integrated with an Advanced
Planning and Scheduling system has shown promising results across different product
categories and store locations. However, as a research endeavor, this work represents only
a starting point from which several future research directions can be identified.

The methodological framework developed in this thesis could be extended in various
ways to enhance both the theoretical understanding and practical application of machine
learning in inventory management. Several high-potential research avenues emerge from
the current limitations and findings, representing opportunities for significant advancement
in this field.

Advanced modeling approaches could transform how forecasting integrates with
inventory decisions. The current research relied primarily on gradient boosting methods,
which offer an effective balance between accuracy and computational efficiency. However,
more sophisticated architectures could potentially capture more complex patterns in retail
data.
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* Deep learning architectures for complex patterns: Recurrent neural networks with
attention mechanisms or transformer-based models could better capture seasonality
and event impacts in retail data. These architectures excel at identifying long-term
dependencies that simpler models miss, such as how an event 12 months ago affects
current demand. With additional data like product descriptions and attributes
(unavailable in the current dataset), these models could further improve by learning

rich product representations and their relationship to demand patterns.

* Reinforcement learning for direct inventory optimization: Instead of using
machine learning only for forecasting, reinforcement learning could directly learn
optimal inventory policies thanks to the feedback. This would work by simulating
thousands of inventory scenarios where an Al agent makes ordering decisions,
receives rewards based on profits and service levels, and gradually learns to balance
conflicting objectives like minimizing holding costs while avoiding stockouts thanks
to learing from the problematic situation with feedbacks. The key advantage is

optimization directly for business metrics rather than forecast accuracy.

Beyond methodological enhancements, future research should address the multi-echelon
nature of retail supply chains. The current implementation focused exclusively on store-
level inventory decisions, treating each location as an independent entity. This approach,
while computationally efficient, doesn’t capture the interconnected nature of modern retail
networks. A more comprehensive framework would consider the entire supply chain as an
integrated system, optimizing inventory placement throughout the network rather than at
individual nodes in isolation.

Such a network-oriented approach could reduce overall inventory requirements while
maintaining or improving service levels through more intelligent allocation of stock. By
considering distribution centers, warehouses, and stores simultaneously, the system could
leverage geographic diversification to reduce safety stock requirements. This direction is
particularly promising as it addresses a fundamental limitation of current inventory systems,

which often optimize locally rather than globally.

* Integrated multi-echelon inventory management: Future research could expand
beyond store-level decisions to simultaneously optimize inventory across stores,
distribution centers, and warehouses. This approach would determine not just when
to order, but also where to position inventory throughout the network, potentially
reducing total safety stock requirements through risk pooling while maintaining

service levels.

* Dynamic sourcing decisions: More advanced models could incorporate transporta-

tion disruptions (strikes, weather events, port congestion), supplier reliability metrics,
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and geographical factors to make intelligent sourcing decisions. This would enable
the system to recommend not just order quantities but also optimal sourcing locations
based on current supply chain conditions, balancing proximity, lead time reliability,

and cost factors dynamically.

The current research demonstrated the value of incorporating calendar events and
SNAP disbursement data into forecasting models. This success suggests that further
data integration could yield additional improvements in prediction accuracy. Future
implementations can explore more comprehensive data integration strategies, particularly
for products with demand heavily influenced by external factors like weather conditions and
other environmental and non-controllable variables. The goal would be to capture not just
historical sales patterns but also the contextual environment in which these patterns exist.

Particularly promising is the modeling of inter-product relationships. The current
implementation treats each product independently, but consumer purchasing behavior
often involves complementary or substitute products. Capturing these relationships could
significantly improve forecast accuracy, especially during promotional periods when

cross-product effects are most pronounced.

* Complementary and substitute product modeling: Beyond treating each product
independently, future research could model relationships between products that are
frequently purchased together (complements) or instead of each other (substitutes).
This approach would capture how a price change or promotion on one product affects
demand for related items, improving forecast accuracy especially during promotional
periods. For example, a model could learn that a promotion on pasta sauce increases

pasta sales by 30%, automatically adjusting inventory for both products.

* Real-time environmental factors: Though the current research incorporated
calendar events and SNAP impacts, future implementations could integrate real-time
factors like weather conditions (capturing how rain affects in-store traffic), local
COVID rates (affecting shopping patterns), or macroeconomic indicators (inflation
affecting purchase behavior). These external variables could be especially valuable

for improving forecasts during unusual market conditions.

For machine learning systems to be effectively adopted in practice, they must not
only make accurate predictions but also engender trust among users. This is particularly
important in inventory management, where decisions have significant financial implications
and managers often rely on years of experience and intuition. Future research should
address the human-system interaction aspects of Al-enhanced inventory management,
developing frameworks that make model recommendations transparent and interpretable to

non-technical users.
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Effective inventory systems of the future will likely operate as human-Al (AI agent)
partnerships rather than fully automated solutions. This collaborative approach requires
interfaces that explain recommendations in business terms rather than technical metrics,
allowing managers to understand not just what the system recommends but why. Addi-
tionally, these systems should be capable of learning from human expertise, gradually

incorporating the knowledge embedded in manual overrides and adjustments.

* Visual decision explanation interfaces: For inventory systems to gain trust,
managers need to understand why particular decisions are recommended. Future
research could develop interfaces that visually explain recommendations, showing
specifically how factors like upcoming events, recent sales trends, and lead time
uncertainty contributed to an order quantity. These interfaces could include interactive
"what-if" scenarios, allowing managers to see how changing assumptions would

affect recommendations.

* Learning from human expertise: Advanced systems could observe when managers
override recommendations, learn from these interventions, and gradually incorporate
this expertise. For example, if managers consistently increase order quantities before
school holidays beyond what historical data suggest, the system could learn this
pattern and automatically adjust future recommendations, blending human knowledge

with data-driven insights.

The cold start problem for new products represents one of the most challenging aspects
of retail forecasting. Without historical sales data, traditional forecasting methods cannot
be applied directly. Section 3.3 discussed similarity-based approaches conceptually, but
this area requires significant further research. Future work could adapt techniques from
computer vision and natural language processing to calculate product similarity based on
attributes, descriptions, and images, enabling a more effective transfer of demand patterns
from existing products to new introductions.

Another promising direction involves dynamic safety stock allocation based on forecast
confidence. The current implementation used fixed pattern factors (1.2 for lumpy, 1.0
for intermittent, 0.9 for regular) to adjust safety stock calculations. A more sophisticated
approach would continuously vary the levels of the safety stock based on the accuracy of
the predicted forecast, maintaining higher buffers for products where the predictions have
historically been less reliable. This would create a more efficient allocation of inventory

protection, potentially reducing overall stock levels while maintaining service targets.

e Similarity-based product matching: To address the cold-start problem for new

products, future research could adapt techniques from computer vision and natural
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language processing to calculate product similarity. By analyzing product descrip-
tions, images, and attributes, the system could identify the closest matching existing
products and use their demand patterns as a starting point for forecasting. This would
be particularly valuable for fashion, electronics, and seasonal items where historical

data doesn’t exist but similar products provide useful signals.

* Dynamic safety stock based on forecast confidence: Future implementations
could adjust safety stock levels based on prediction uncertainty, maintaining higher
buffers where forecasts have historically been less accurate. This approach would
create a more intelligent buffer system that allocates inventory protection based on
demonstrated forecast error patterns, potentially reducing overall inventory while

improving service levels.

Finally, longitudinal validation studies conducted in partnership with retailers would
provide valuable insights into long-term performance and adaptation of machine learning
inventory systems. The current research was limited to historical data analysis and
simulation, but real-world implementation would yield important insights about system
robustness across multiple seasonal cycles and changing market conditions. Such studies
thanks to continuous reinforcement learning updates would help bridge the gap between
theoretical potential and realized business value, informing both research directions and
implementation strategies.

Another promising research direction involves adapting demand forecasting and
inventory optimization models for SMEs with limited resources. Previous research
has highlighted how SMEs face specific challenges in aligning their IT strategies with
business objectives due to limited financial resources, insufficient IT skills, and inadequate
infrastructure (Kazemargi and Spagnoletti 2020). Despite these limitations, analysis of
Italian SMEs’ responses to government policies for Industry 4.0 shows growing interest in
system integration technologies (12.73% of investments) and simulation (3.95%), which
are fundamental components for implementing APS systems like the one presented in this
research (Kazemargi and Spagnoletti 2020). Future studies could explore how to simplify
and make machine learning-based forecasting models more accessible to SMEs, possibly
through cloud services or shared platforms that could reduce financial and technical barriers
to implementation.

Through these focused research directions, the foundation established in this work
could evolve into more sophisticated inventory management systems that better balance
efficiency and resilience in retail supply chains. By concentrating on these high-impact
areas, future research can bridge the gap between theoretical possibilities and practical

implementation in real-world retail environments.
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Chapter 6
Conclusions

This research began with a practical challenge observed in retail environments: the
persistent gap between machine learning models and operational inventory decisions.
Through applying Design Science Research principles, I sought not only to develop a
technical solution but to bridge theoretical knowledge with practical implementation and
address a fundamental challenge optimizing the supply chain from factory to retailer. My
driving motivation was to reduce product waste, minimize utilization of warehouse space,
conserve resources, and streamline processes throughout the supply network.

The central question that inspired this thesis was: "How can we optimize the entire
production chain in the most effective way?" This optimization would not only yield
corporate improvements through reduced costs and increased efficiency but could also
decrease waste and potentially lower consumer prices by reducing resources tied up in
inventory. By targeting this optimization challenge, the goal is to create value at multiple
levels: operational, economic, and environmental.

Working with the Walmart dataset revealed patterns that challenged initial assumptions
about retail demand. The stark regional differences in consumer response to identical
events, from SNAP disbursements to holidays underscored that even within a single retailer,
universal forecasting approaches are fundamentally limited. This observation shifted my
research focus from pursuing perfect prediction accuracy toward developing adaptable
systems that acknowledge and accommodate local variability.

The prevalence of intermittent demand across product categories reinforced my convic-
tion that retail inventory management requires specialized approaches. While literature
often treats zero sales as anomalies, my analysis revealed they are the norm in many retail
contexts. This realization led to the Two-Stage methodology that embraces rather than
avoids this reality.

The implementation of the forecasting models and their integration with the APS system

revealed the effectiveness of decomposing the problem into two fundamental questions:
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whether a product will sell on a given day, and how much will sell if a transaction occurs.
This Two-Stage approach proved particularly valuable for addressing the intermittent
demand patterns that dominated the dataset, especially in the Hobbies category where over
80% of products showed zero sales for more than 60% of days. The methodology used
SMOTE to balance the classification dataset in the first stage, addressing the challenge of
class imbalance, before proceeding to the prediction of the quantity in the second stage
when sales were expected to occur.

Empirical validation confirmed the superiority of this approach, with RMSSE values
consistently below 1.0 in all product categories, MAE under 1.1643, demand patterns,
demonstrating up to 33% improvement over traditional methods like ARIMA in the
preliminary model selection. These performance improvements translated directly into
more efficient inventory management through the Advanced Planning and Scheduling
system, which dynamically adjusted safety stocks and reorder points based on forecast
patterns.

Beyond measurable performance improvements, this research shifted my understanding
of how machine learning creates value in operational contexts. The greatest value often
came not from incremental accuracy improvements but from consistency, transparency,
and reduced manual intervention.

The development process reinforced that effective DSR isn’t merely about creating
technological artifacts, it’s about generating design knowledge that connects technical
capabilities with human and organizational contexts. This perspective transformed how
I approached validation, focusing not just on statistical performance but on whether the
system effectively supported decision-making processes.

Looking beyond current limitations, envision inventory management systems that learn
continuously from operational feedback, not just historical sales. Such systems would
evaluate inventory decisions against actual outcomes, creating a reinforcement learning
cycle that optimizes not just forecasts but the entire inventory policy.

As computational constraints diminish, the opportunity to implement truly personalized
inventory strategies at individual SKU levels becomes viable. This granularity would
unlock new optimization potential, particularly for retailers with diverse product portfolios.

The most promising frontier may be collaborative multi-echelon optimization, where
retailers and suppliers share forecasting insights and collaboratively manage inventory
positioning throughout the supply chain. This approach could transform traditionally
adversarial supply relationships into data-driven partnerships.

This research demonstrates that the gap between advanced analytics and operational
practice can be bridged through thoughtful design that respects both technical possibilities
and practical constraints. The Two-Stage forecasting approach and its integration with
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inventory systems represents not just a technical solution but a framework for thinking
about how we model and respond to demand uncertainty.

Beyond business optimization, this work highlights how Al and forecasting, when
properly implemented, can serve as powerful sustainability tools. The intelligent application
of machine learning to inventory management represents an opportunity to address pressing
environmental challenges through operational excellence. By precisely matching supply
with demand, these systems can significantly reduce overproduction and waste issues that
plague global supply chains and contribute to environmental degradation. In this sense,
advanced forecasting becomes not merely a profit-maximizing tool but a means to steward
resources more responsibly in our increasingly resource-constrained world.

As supply chains continue to face unprecedented volatility, the ability to make data-
driven inventory decisions that adapt to local conditions and account for complex demand
patterns will become increasingly vital. This work contributes one path toward a future
where more efficient supply chains not only improve business performance but also reduce
waste and resource consumption—potentially creating both economic and environmental

benefits through the intelligent application of machine learning to inventory management.
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