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1. Abstract 

Human fertility has historically been far above replacement rate. However, in just over 

half a century, global fertility has plummeted from more than five children per woman in 

1960 to 2.4 in 2024, and it is projected to fall below replacement rate (commonly set at 

2.1 children per woman) sometime in the 2070s. This phenomenon is already a fact in 

many parts of the world (especially in the western world), overturning societal makeup 

and bringing about unprecedented structural changes in society, such as the ever growing 

burden that seniors exert on society, but also the increased productivity of adults who are 

less burdened by child care. 

So, in order to understand the impact of this event, the scope of this dissertation is to 

estimate which is the optimal fertility rate that maximizes societal wellbeing, here 

measured as median income.  

This is done through two methodological steps: The best dependency ratio is first 

estimated through the use of cross-country regression analysis. After this has been 

obtained, a system of ordinary differential equations is put in place in order to derive an 

optimal fertility function which minimizes deviations from optimal dependency (all the 

while accounting for the dynamics of many time sensitive factors). The model is then 

applied in a global scenario, and its predictions will be benchmarked against U.N. 

predictions.  

It will be discovered that deviations from optimal fertility will result in a constant but 

inevitable decrease in median income, all else equal. 
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2. Introduction 

Global fertility rate has been over the replacement rate throughout most of human history. 

This phenomenon, which was considered the norm up until fifty years ago, started to 

reverse in the last half century. In fact, as of 2023, global fertility rate is at less than half 

of what it was in 1960 (Worldbank, 2023). Locally, the situation is quite uneven: 

developed countries have entered the new millennium with fertility rates already under 

replacement rate, while developing countries are largely above/at replacement rate 

(Worldbank, 2023), even though fertility rates are equating fast, and expected to fully 

converge by the end of the century (U.N. population division, 2023). This change in 

natality, paired with progressively increasing life expectancy (in relatively little time) has 

brought about many societal and economic challenges, oftentimes never before faced in 

our collective history (International Monetary Fund research dept, 2025). 

Translating this phenomenon in economic terms, we have to remember that economic 

activity is merely the result of (sometimes very complicated) exchanges between 

members of society. Hence, there is evidence to believe that population makeup is a 

determinant of the overarching economy, both in quantitative and qualitative terms. This 

has to do with the fact that children and seniors are not as economically proficient as 

adults, and adults themselves are more productive in certain age cohorts more than others 

(Freyer, 2007). Furthermore, infants and elders require care from the active population, 

redirecting resources from more fruitful usage. At the same time, the workforce of today 

will enter old age at some point.  

So, in order to maintain the same level of benefits enjoyed by current retirees and by 

society at large, there must be enough young individuals to at least replace today’s 
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working class (Pecchenino & Utendorf, 1999). But how much is enough, and if younger 

people require care, what is the maximum number that allows for future welfare 

maximization (here intended as median income), without excessively straining today’s 

workforce?  

For what just said, it seems to be that the nature of the forces at play implies that the 

function that links fertility rate to income could be effectively non-linear, namely 

showing an inverse U-shaped relationship with median income. 

Hence, the research question that this dissertation aims to answer is: which is the best 

possible level of fertility rate in order to maximise median income, precisely which is 

the optimum point of said function. 

It has in fact been shown that optimal fertility is not, as some demographers would say, 

exactly 2.1 children per woman (Striessnig & Lutz, 2011), and while extensive work has 

been done in terms of connecting optimal fertility rates in order to maximise some forms 

of societal welfare (which will be discussed in the next section), or in terms of how 

fertility rates affect income, none of the available research explores which is the global 

optimal fertility rate in order to maximize median income. This gap in the literature is 

what this  dissertation is aimed at filling. 

The original idea employed in order to identify this relationship was to utilize a non-linear 

cross sectional regression analysis which contained the median income level of different 

countries as a regressand, and the fertility rate of said countries as a regressor, besides 

other various control variables. This approach, though, proved to be cumbersome, since 

the actual impact of today’s fertility rate is felt after a notable time span (at least 15 to 20 

years). Because of this, the regression coefficients appeared to be noisy, poisoning results. 
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Furthermore, by employing fertility rate as a regressor , an additional issue of reverse 

causality would have needed to be addressed. Hence why the following approach has 

been chosen: 

The way in which this relationship is established is through two sequential steps. First, a 

cross-sectional regression analysis is employed. The necessary dataset is constructed 

using Data from the last available year, covering a global sample of countries across 

different income levels. The analysis focuses on identifying the dependency ratio that 

maximizes median income, employing a non-linear regression model along other 

economic controls. The second step is using the optimal dependency ratio obtained 

through regression analysis to reverse engineer the optimal global Fertility rate. This 

is accomplished through the use of  a system of differential equations, that treats the 

obtained dependency ratio as a steady state from which to  derive the optimal number of 

yearly births. In this manner optimal births can be objectively quantified. They are then 

used in an age‐structured cohort model, the final aim being to construct a second 

dependency ratio curve, dependent on the aforementioned optimal births. Differences in 

median income can then be obtained by comparing the evolution of said curve against a 

benchmark, which in this case will be based on U.N. predictions. This allows for the 

quantification of changes in median income in absolute and relative terms.  
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3. Literature Review 

The relationship between fertility rates and various economic variables has been studied 

rather extensively.  

Starting from classical economic literature, the causal relationship traditionally runs 

from income to fertility. This idea was pioneered by Becker (Becker, 1960), who holds 

that rising income leads to declining fertility rates. This is explained through the 

quantity-quality trade-off: as household income increases, parents tend to have fewer 

children and instead invest more heavily in each child’s education, health, and other 

factors aimed to better the pupil’s future life. In this framing, fertility decline is treated 

as a response to economic development, rather than a driver of it. The demographic 

transition theory also aligns with this logic, asserting that as societies become wealthier, 

fertility naturally falls due to lower infant mortality, greater access to contraception, and 

increased opportunity costs of childbearing (especially for women). 

In recent decades, researchers have started to challenge the validity of the aforementioned 

paper. From an empirical standpoint, an example can be given by Luci-Greulich and 

Thévenon (Luci-Greulich & Thévenon, 2014). In fact, they found that GDP and fertility 

rate were indeed correlated, but results were not compatible with what classical theory 

would have suggested. In fact, the researchers identified what they called a J shaped 

relationship. To further explain, it was indeed demonstrated how rise in GDP per capita 

tended to initially suppress fertility rate. Further increase, though, did not correlate with 

lower fertility rates, which seemed to plateau no matter the increase in GDP per capita. 

Lastly, it was (although weakly) shown that, in particularly rich countries, increase in 

GDP per capita actually correlated with rising fertility. 
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More recent studies have begun to challenge the classical causal relationship by 

emphasizing that GDP may not be the main determinant (or even a determinant at all) of 

fertility. This is precisely what Doepke (Doepke, Hannusch, Kindermann, & Tertilt, 2022) 

has done. In their work, in fact, they potentially disproved the work of Beker, and instead 

linked fertility in high income countries on other factors, such as: family policies, the 

cooperations of fathers, social norms that support working mothers and flexibility of 

labour market, and other environmental factors that incentivize an healthier work-life 

balance. Myrskylä (Myrskylä, Kohler, & Billari, 2009) also empirically estimated how 

fertility rates may be affected, though not through the use of GDP, but rather the Human 

Development index, which is composed of several factors other than GDP. The authors 

found that, while fertility declines as countries move from low to medium levels of 

development, at very high levels of socioeconomic development the trend is reversed. 

That is, in the most highly developed countries, further development halted the 

decline in birth rates and even led to modest fertility increases, turning the previously 

negative development–fertility relationship into a U-shape. 

Furthermore, researchers have also increasingly investigated the reverse direction of 

causality, emphasizing on endogeneity of fertility rates and potential feedback loops 

that may exist. This is what Boikos et alia (Boikos, Bucci, & Stengos, 2013) have done 

in their work, which followed a bifrontal theoretical and empirical approach. Their 

analysis was conducted on the effects of birth rates on per capita human capital investment, 

employing a benchmark model that followed endogeneity and monotonicity of fertility 

on human capital, and a revised model that instead followed an endogenous, non-

monotonic approach between the two measures. Results strongly rejected the benchmark 

model, instead supporting the latter approach. Once again, in line with the other papers 



11 
 
 

cited above, results showed an inverted U shaped relationship between fertility and 

Human capital investment. 

On a purely empirical side, much of the literature shows how in high fertility scenarios, 

reduction of births strongly correlates with an improvement of economic conditions. This 

is the conclusion of Ashraf (Ashraf, Weil, & Wilde, 2013) who through the employment 

of a simulation model (where fertility rate is considered endogenous) which had Nigeria 

as the subject country, showed that an absolute reduction of birth rates by 0.5 leaded to 

an increase in GDP per capita by roughly 6% in 20 years and 12% in 50 years (even 

though they emphasize that reduction in fertility is not the key to development, rather one 

of many factors). Bloom and other researchers (Bloom D. , Canning, Fink, & al., 2009) 

(Employing panel data with abortion law changes as an instrument), estimated a large 

negative causal effect of fertility on female labour force participation. Fewer births led 

to higher women’s workforce participation and persistent cohort effects. Simulations 

indicate that fertility reduction, via a “demographic dividend” (more workers per 

dependent), substantially raises income per capita over time. 

On the other hand of the spectrum, researchers found that in sustained low fertility 

scenario, the opposite may hold. Specifically, research conducted by Cevik (Cevik, 2025) 

(employing the same strategy of abortion law as an instrument) showed that higher 

fertility has a positive causal effect on GDP per capita growth in Europe, which as a 

continent already has low, stagnant birthrates. In fact, in aging economies with ultra-low 

fertility, further fertility decline became a drag on growth. A simulation for Lithuania 

finds that its fertility drop ( which has seen its total fertility rate, or TFR, decline from 

2.03 to 1.27 in the span of 30 years) could lower GDP per capita by up to 17.6% over 

coming decades compared to a scenario with stable fertility. This highlights that in post-
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transition societies, boosting fertility can mitigate workforce shrinkage and support 

growth, though only to a modest degree. 

A theoretical link that connects economic effects of both high and low fertility could be 

given by the work of Bloom, canning and Sevilla (Bloom, Canning, & Sevilla, The 

Demographic Dividend: A New Perspective on the Economic Consequences of 

Population Change (1st ed.)., 2003). In their paper, they describe what is known as first 

and second “demographic dividends”. In their work they formalize and quantify the idea 

that changing age structures can yield significant (but nonetheless limited) economic 

gains. Their reasoning boils down to the fact that, as fertility decreases, dependency (or 

in their case support ratios) benefit positively, since a decline of fertility brings significant 

additional per‐capita income (as the working‐age cohort as a percentage of total 

population rises) which they identify as the first demographic dividend. Furthermore, as 

the working age cohort ages, subsequent boost from higher aggregate saving (and thus 

investment) is then reflected in what they identify as the second demographic dividend. 

The authors also stress the transitory nature of this phenomenon, which (other than 

needing to be “fully activated” by appropriate policies) might reverse in the future due to 

the aging process of the general population. Lee and Mason build on this work (Mason, 

Lee, Abrigo, & Lee, 2017), assessing where each country stands dividend wise, and 

project the likely effects over the foreseeable future. Their results highlight that regions 

that have had continuously depressed fertility rate may soon start to face demographic 

drag, regions that have experienced recent fertility decline are in the process of harvesting 

dividends effects, while regions that have just started to see a decline in fertility have yet 

to see any tangible dividends. 
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To summarize, much of the available literature confirms that the relationship between 

Fertility and societal well-being of various monetary and non-monetary forms is indeed 

nonlinear (or more broadly speaking non monotonic), but instead supports the idea 

fostered in the introduction of the paper, hence that the relationship is reversely-U shaped, 

meaning that both very high and very low Fertility is decremental for society. 

Important to note, most of this research was focused on average indicators (such as GDP 

per capita or average income) or more general indicators rather than median income, 

which better captures the reality of an individual earnings profile and provide a better 

picture of economic well-being for the general population. Furthermore, none of these 

studies provide a direct estimate of the optimal fertility rate that maximizes median 

income on a global level. 
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4. Methodology 

In this section, the backbone of the analysis will be constructed through the use of two 

different techniques: 

 in the first part (Part I:Regression Modelling), a non-linear regression will be constructed 

in order to empirically understand in which way dependency ratio and median income are 

related; specifically which is the optimal dependency ratio in order to maximize median 

income. In this optic, the resulting dependency ratio can be viewed as the optimal 

dependency level.  

In the second part (Part II: From Dependency To Births), a system of Ordinary 

differential equations will be put in place in order to decipher optimal birth rates starting 

from optimal dependency, both in terms of static equilibrium as well as the transition 

states from today to the equilibrium. 

4.1  Part I: Regression Modelling 

The focus of this chapter is to find the optimal cross-sectional regression specification, so 

to locate the model that is able to explain best the relationship between Median Income 

(MI) and Dependency Ratio (DR), through a set of economic and social predictors. The 

final goal being to estimate the median income maximizing dependency ratio (DR). 

4.1.1 Variables 

Dependent variable 

MI (Median Income): is the income level that divides a population into two equal halves: 

50% of people earn below this income level, and 50% earn above it. this is the variable 
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under observation. It is now imperative to understand how it is related to the various 

economic and social forces listed below. 

Independent variables: 

1) DR (dependency Ratio): The dependency ratio is a demographic indicator, that 

compares the number of dependents (under 15 and over 64) to the number of 

working-age individuals (15-64) in a population. It measures the potential support 

burden on the working-age population from both children and the elderly.  It is 

the principal regressor of this study, as higher burden on the working age 

population negatively impacts income. A lower burden may not always be the 

optimal choice, as lower burdens today tend to correspond to sensibly higher 

burdens tomorrow. 

2) HDI (human development Index): Human development (that is: schooling, access 

to services, life expectancy etcetera) is proxied through an index that ranges from 

0 to 1. It is a good indicator for our unknown since an higher HDI generally 

indicates greater personal prosperity, positively impacting income. 

3) GPI (gender parity index): GPI measures the equality between females and males, 

ranging from 0 to 1. A GPI closer to 1 indicates gender equality. This means that 

an higher GPI signifies more and better participation of women in the workforce, 

positively impacting income. 

4) GS (government spending per country as a percentage of GDP): Government 

spending on healthcare, schooling, family subsidies and pensions. It measures 

government spending as a percentage of GDP, typically ranging from 0 to 1. 

Higher governmental spending usually signifies higher financial stability for low 

to medium income classes, positively impacting median income.  
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5) HCI (human capital index): The skills and knowledge required to meet the job 

market’s requirements. It is an index that ranges from 0 to 1. 

6) GDP (gross domestic product): The primary indicator of the economic output of 

a country/region. It is positively correlated with median income. 

4.1.2 Baseline Estimation 

In order to establish a baseline, a preliminary model is implemented utilizing all the 

available variables in a Level-Level specification. 

𝑀𝐼 = 𝛽0 + 𝛽1𝐷𝑅 + 𝛽2𝐺𝑃𝐼 + 𝛽3𝐻𝐷𝐼 + 𝛽4𝐺𝐷𝑃 + 𝛽5𝐻𝐶𝐼 + 𝛽6𝐺𝑆 + 𝜀 

Table 1: Summary of baseline regression results 

Variable Value 

𝐷𝑅 123.1155*** 

𝐺𝑃𝐼 60.9807 

𝐻𝐷𝐼 320.7439*** 

𝐺𝐷𝑃 1.82 × 10−10** 

𝐻𝐶𝐼 45.5826 

𝐺𝑆 18.8676 

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 -327.7323*** 

𝑅 − 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 0.7091 

Note. *** p < 0.01, ** p < 0.05, * p < 0.1 

Said specification yields the following results: 

• An 𝑅2 of 70.91%  
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• an increase of 1$ in the national GDP figure leads to an increase of 1.82 × 10−10  

in median income, ceteris paribus. Though it appears to be statistically 

insignificant. 

• An increase of 1 percentage point in HDI leads to an increase of 320.7$ in median 

income, ceteris paribus . 

• An increase of 1 percentage point in DR leads to an increase of 123.1$ in median 

income, ceteris paribus. 

• An increase of 1 percentage point in GPI leads to an increase of 61.0$ in median 

income, ceteris paribus. Though it appears to be statistically insignificant. 

• An increase of 1 percentage point in HCI leads to an increase of 45.6$ in median 

income, ceteris paribus. Though it appears to be statistically insignificant. 

• An increase of 1 percentage point in GS leads to an increase of 18.9$ in median 

income, ceteris paribus. Though it appears to be statistically insignificant. 

Before diving into the interpretation of the results, it is essential to perform all the 

necessary diagnostic checks and make any required adjustments to this statistical tool, 

such as addressing potential misspecification issues, handling outliers, and ensuring 

overall model validity. 
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I.  Linearity 

Two-way graphs, which link the independent variable to each regressor, have been put in 

place in order to conduct a preliminary evaluation so to understand if the associations 

between predictors and the dependent variable are linear.  

 

 

Figure 1: Scatterplot of MI against GPI 

 

Figure 2:Scatterplot of MI against HDI 

 

Figure 3: Scatterplot of MI against HCI 

 

Figure 4:Scatterplot of MI against GS 

 

Figure 5:Scatterplot of MI against GDP 

 

Figure 6:Scatterplot of MI against DR 
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While some relationships do seem to be linear indeed, other exhibit a trend that can be 

best approximated using a quadratic (if not exponential) relationship. 

Furthermore there seems to be a need to rescale variables, a logarithmic transformation 

of the dependent (and maybe of some independent) variable may be considered. 

II. Inspection for outliers 

Outlier presence is established by examining the distribution of regression residuals, 

which serve as model-based indicators of data points poorly explained by the predictor. 

A preliminary Quantile-Quantile plot demonstrates that outliers may indeed be present. It 

in fact seems that the tails of the distribution are heavier than expected, which further 

reinforces the possibility of a logarithmic transformation (which should somewhat 

alleviate this problem). 

 

Figure 7: Quantile-Quantile distribution of residuals 

Further visualization is given from a frequency table of residual distribution 
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Figure 8: Distribution frequency of residuals 

The graph above shows that distribution is quasi-normal, but displays skewness and (most 

importantly) kurtosis that renders it non-Gaussian. This phenomenon is likely a direct 

effect of outliers in the data, which may need to be expunged (other than of course model 

misspecification). 

A Shapiro-Wilk test confirms the abnormality of sample residual distribution: 

Table 2: Results of Shapiro-Wilk testing on baseline estimation residuals 

Hypothesis P value 

H0: Residuals are normally distributed 0.0000 

Note. An higher p value signifies higher probability that residuals are normally distributed 

This signifies that there is evidence to believe presence of outliers in the data, further 

investigation is necessary. 

III. Investigating for presence of multicollinearity 

The alleged presence of multicollinearity is investigated through the use of variance 

inflation factor. 
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Table 3: Variable specific and mean variance inflation factor 

Variable VIF coefficient 

𝐷𝑅 2.03 

𝐺𝑃𝐼 1.41 

𝐻𝐷𝐼 11.18 

𝐺𝐷𝑃 1.06 

𝐻𝐶𝐼 9.06 

𝐺𝑆 1.75 

𝑀𝑒𝑎𝑛 𝑉𝐼𝐹 4.41 

 

VIF analysis reveals a value of 4.41, which is no cause of concern, but reasonably close 

to the limit value commonly set at 5. 

Consequently, another correlation matrix between predictors is used in order to asses 

which variables display a problematic correlation level, and the results are the following: 

Table 4: Correlation matrix  

Variable 𝐷𝑅 𝐺𝑃𝐼 𝐻𝐷𝐼 𝐺𝐷𝑃 𝐻𝐶𝐼 𝐺𝑆 

𝐷𝑅 1      

𝐺𝑃𝐼 -0.2638 1     

𝐻𝐷𝐼 -0.6783 0.5049 1    

𝐺𝐷𝑃 -0.1206 0.0417 0.2157 1   
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𝐻𝐶𝐼 -0.5826 0.5045 0.9387 0.2157 1  

𝐺𝑆 -0.3357 0.4284 0.6226 0.1198 0.6406 1 

 

It is easy to understand that there indeed exists a multicollinearity problem between HDI 

and Human Capital Index, which display a correlation coefficient of 0.939. 

As such, there’s reason to believe that multicollinearity is present in the model 

specification. 

IV. Heteroskedasticity presence analysis 

A Breusch-Pagan test is conducted in order to assess the presence of heteroskedasticity. 

The results are the following: 

Table 5: Results of Breush-Pagan on baseline estimation 

Hypothesis P value 

H0: specification is homoscedastic  0.0000 

 

Results show that there is strong evidence for heteroskedasticity in this model. 

4.1.3 Fine Tuning 

In the section above it has been established that: 

• The best model specification may not be linear 

• Some variables may need to be rescaled 

• There is strong evidence for multicollinearity 



23 
 
 

• There is strong evidence for heteroskedasticity 

• There is evidence for presence of outliers in the dataset 

The aim of this chapter is to change and transform parts of the model in order to solve 

these issues. This is done through: 

I. Addressing multicollinearity 

The presence of multicollinearity may violate OLS assumptions, hence the need to 

minimize this problematic. In order to solve this, there is the need to eliminate strong 

correlations between regressors, which in this case are HDI and HCI.  

To achieve this, the best course of action is to drop HCI as a predictor.  

The removal of HCI has been revealed to have a minor impact in the model, as the drop 

in R squared is less than substantial; from 0.7091 to 0.7075. 

Table 6:Summary of regression results after dropping HCI 

Variable value 

𝐷𝑅 127.2251*** 

𝐺𝑃𝐼 62.9955 

𝐻𝐷𝐼 359.4630*** 

𝐺𝐷𝑃 1.85 × 10−10** 

𝐺𝑆 22.9471 

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 -335.3667*** 

𝑅 − 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 0.7075 

Note. *** p < 0.01, ** p < 0.05, * p < 0.1 
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II. Change variable specification 

In this section, logarithmic transformations to both the dependent and independent 

variables are discussed. This is a crucial step in improving model specification, enhancing 

interpretability, and assisting in the satisfaction of OLS assumptions. 

Based on a series of scatterplot diagnostics, namely lin-lin, log-lin, and log-log plots 

between median income and each explanatory variable, a clear case emerges for log 

rescaling several variables.  

 

Figure 9: Lin-lin scatterplots between regressand and regressors 

Starting with the dependent variable, median income (MI), the visual analysis of its raw 

distribution reveals considerable positive skewness, with income values ranging from a 

few hundred dollars to well above $20,000 per capita. This variation introduces 

significant heteroskedasticity, inflates residuals in poorer countries, and weakens the fit 

of the model. Furthermore, income is typically the product of several multiplicative 
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factors such as: productivity, capital accumulation, and demographic dynamics, further 

justifying the need to rescale the variable.  

Once log-transformed, median income exhibits (on average) a much more stable 

relationship with predictors. As such, the dependent variable in this study is expressed as 

the natural logarithm of median income (LMI) which also allows for percentage-based 

interpretations of coefficients. 

𝑙𝑀𝐼 = ln(𝑀𝐼) 

 

Figure 10: Log-lin scatterplots between regressand and regressor 

On the side of the independent variables, several transformations are similarly performed.  

GDP is notoriously right-skewed in global data, with extremely high values concentrated 

in a few countries. In its level form, GDP produces a vertical line in the scatterplot, hence 

creating high leverage among high-income nations. Once log-transformed (LGDP), the 
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spread becomes more uniform and the functional form with LMI appears approximately 

linear. This justifies the use of log-GDP,  

𝑙𝐺𝐷𝑃 = ln (𝐺𝐷𝑃) 

Dependency ratio is log-transformed due to the multiplicative nature of its relationship 

with income. As DR increases, its marginal impact on income changes nonlinearly: the 

burden imposed by an additional dependent is more economically disruptive in low-

burden societies than in those already strained. This suggests a power-law relationship. 

Log transforming DR enables the model to capture relative demographic shifts, and log-

log scatterplots confirm that this transformation spreads the data more evenly across the 

regression space. 

𝑙𝐷𝑅 = ln (𝐷𝑅) 

Government spending is also log-transformed. Like DR, GS appears to have a nonlinear, 

multiplicative effect on income. Higher levels of public expenditure are associated with 

rising income, but with diminishing marginal returns. Log-transforming GS both 

improves the visual linearity in diagnostic plots. 

𝑙𝐺𝑆 = ln (𝐺𝑆) 

In contrast to DR and GS, the Human Development Index (HDI) is retained in its level 

form, as it exhibits a clearly exponential relationship with income, as theory would 

predict. Scatterplots show that as HDI increases (particularly past the 0.7–0.8 threshold) 

median income rises at an accelerating rate. This pattern is best captured using a log-lin 

specification, where median income is logged but HDI remains in levels.  



27 
 
 

The Gender Parity Index (GPI) is retained in level form. Although a log 

transformation is technically possible, GPI exhibits low variation across countries in the 

sample. Applying a log transformation in this case does not improve the situation. 

Moreover, visual diagnostics suggest that GPI’s relationship with income is weakly linear 

at best and not meaningfully improved by rescaling. For these reasons, GPI is modelled 

in levels. 

 

Figure 11: Log-Log scatterplots between regressand and regressors 

III. Addressing heteroskedasticity 

Fortunately, heteroskedasticity can be easily addressed by running a Robust standard error 

regression (other than having minimal impact on coefficient estimation). The Log 

transformations just applied are also beneficial in order to solve this problem. 
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IV. Modelling for (non) linearity 

The current specification of the model, after applying the aforementioned changes, is the 

following: 

𝑙𝑀𝐼 = 𝛽0 + 𝛽1𝑙𝐷𝑅 + 𝛽2𝐺𝑃𝐼 + 𝛽3𝐻𝐷𝐼 + 𝛽4𝑙𝐺𝐷𝑃 + 𝛽5𝑙𝐺𝑆 + 𝜀 

It is now time to establish if the relationship between the variables is linear, or if it can be 

best approximated by other families of functions. The way in which this is done is by 

analysing the relationship between each regressor and the regressed variable by utilizing 

multiple two-way graphs: a scatterplot overlaid with a fractional-polynomial fitting line, 

so that the best fitting curve may emerge naturally. Applying what has just been explained: 

a) Dependency Ratio (𝒍𝑫𝑹) 

A two-way graph between 

𝑙𝐷𝑅  and 𝑙𝑀𝐼  shows that the 

best family of curves to 

approximate the relationship 

is a quadratic polynomial, 

hence: 

𝑙𝑀𝐼 = 𝛽1𝑙𝐷𝑅 + 𝛽2𝑙𝐷𝑅
2 

This relationship confirms the theoretical hypothesis and is also in line with the 

literature, as such this non linearity will be accepted and included in the 

specification. 

Figure 12: Best fit between LMI and LDR 
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b) Human Development Index 

(𝑯𝑫𝑰) 

A two-way graph between 

𝑙𝑀𝐼  and 𝐻𝐷𝐼  shows that the 

best family of curves to 

approximate the relationship 

is linear: 

 𝑙𝑀𝐼 = 𝛽3𝐻𝐷𝐼 

c) Gross Domestic Product 

(𝒍𝑮𝑫𝑷) 

A two-way graph between 

𝑙𝑀𝐼  and 𝑙𝐺𝐷𝑃  shows that the 

best family of curves to 

approximate the relationship 

is linear, hence: 

 𝑙𝑀𝐼 = 𝛽4𝑙𝐺𝐷𝑃 

In all technicality, the scatterplot suggests that there is a very weak (if none at all) 

relationship between the two. Nonetheless, this variable will be kept in the model 

for completeness. 

 

Figure 13: Best fit between LMI and HDI 

Figure 14: Best fit between LMI and LGDP 
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d) Gender Parity Index (GPI)  

A two-way graph between 

𝑙𝑀𝐼  and 𝐺𝑃𝐼  shows that the 

best family of curves to 

approximate the relationship 

is (quasi) linear, hence: 

𝑙𝑀𝐼 = 𝛽5𝐺𝑃𝐼 

 

e) Government Spending (𝒍𝑮𝑺) 

A two-way graph between 

𝑙𝑀𝐼  and 𝑙𝐺𝑆  shows that the 

best family of curves to 

approximate the relationship 

is a quadratic polynomial, 

hence: 

𝑙𝑀𝐼 = 𝛽6𝑙𝐺𝑆 + 𝛽7𝑙𝐺𝑆
2 

There is some evidence in the literature of a U shape relationship between 

government investment spending and economic growth (Aznan & Goh, 2023). 

Hence, this relationship will be accepted and included in the model. 

V. Detection of outliers 

In the last chapter it has been shown that outliers may be present in the sample, for this 

reason this section is devoted to their detection and, if justified, expulsion from the dataset. 

To determine a starting point, another QQ distribution plot is performed, this time on the 

residual distribution of the model that accounts for all the changes to date. This is done in 

Figure 15:Best fit between LMI and GPI 

Figure 16:Best fit between LMI and LGS 
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order to understand how much of the deviation of the distribution of the sample error was 

due to model misspecification and how much is due to genuine outlier presence. 

 

Figure 17: QQ plot after model specification change 

The graph shows that the majority of the points lie along the 45-degree reference line. 

Minor deviations at the extremes suggest slight non-normality in the tails, but overall the 

plot supports the normality assumption required for regression inference. 

Nonetheless there is evidence to believe that a few important outliers may be present.  

For this reason, a leverage VS residual squared graph is employed in order to understand 

which may be the possible culprit. 

 

Figure 18: First Leverage vs residual squared iteration 
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Two clear outliers emerge from this plot: 

• The United Arab Emirates, which has significantly more leverage than expected. 

The economic reason behind this phenomenon is due to its status as a global 

offshore economic hub, which significantly distorts standard macroeconomic 

indicators. The UAE exhibits abnormally high median income levels and low 

dependency ratios, driven largely by a concentrated influx of expatriate labour 

rather than organic demographic or economic dynamics. hence it is expunged 

from the dataset. 

• Uzbekistan is extremely Ill approximated by the model, most likely because of 

statistical discrepancies and statistical lag. Because of this, it is also expunged. 

A second iteration of the leverage VS residual squared is performed anew in order to 

control for masked outliers. 

 

Figure 19: Second Leverage vs residual squared iteration 

In the leverage-residual plot, Maldives, Sudan, and Ukraine exhibit relatively high 

leverage, indicating that their predictor values are atypical compared to the rest of the 

sample. 
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• The Maldives stands out with an exceptionally high leverage score, making it a 

clear outlier with potential to skew influence regression coefficients. This may 

have to do with the fact that the small island nation has a heavily tourism-driven 

economy (>60% of GDP) and unique demographic structure.  

• Sudan and Ukraine show lower but still unexplainable leverage, suggesting their 

influence is less severe but still cause for concern. Their outlier status may have 

to do with the fact that both nations have experienced recent or ongoing armed 

conflicts, which significantly disrupt economic activity, demographic stability, 

institutional functioning, and provokes statistical lag. 

For these reasons, these observations are expunged from the dataset. 

A third and final Iteration of leverage vs residual squared is performed anew, so to ensure 

that smaller masked outliers are not present in the dataset. 

 

Figure 20: Third Leverage vs residual squared iteration 

Although a few outliers are present, they are not cause for concern: no single observation 

exhibits unreasonably high leverage or high residual error, meaning that their 

influence on the estimated coefficients is limited. In other words, these points do not exert 

disproportionate pull on the regression, and the model remains reasonably well mannered 
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in their presence. Furthermore, there is no socioeconomic explanation that justifies the 

removal of the bad mannered data points. 

A second QQ distribution plot further confirms the absence of supplementary outliers. 

 

Figure 21: QQ plot after controlling for model specification and outlier detection 

To conclude, while a small number of countries (e.g. Lao PDR, the DRC, Lebanon …) 

exhibit relatively high leverage and/or moderately large residuals, the majority of 

observations are tightly pressed in the low-leverage, low-residual region. This indicates 

that the regression model fits the data well overall, and that most countries follow the 

general trend captured by the specification. 

4.1.4 Final Model And Optimum 

In this section everything that has been built up until now will be combined into a single, 

refined model, which will be then used to estimate the optimal dependency ratio (thanks 

to which we will be able to derive steady state fertility rates). 

I. Final Specification and results 

For what said in the last chapters, the optimal, final cross-country regression specification 

is the following: 
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𝒍𝑴𝑰 = 𝜷𝟎 + 𝜷𝟏𝒍𝑫𝑹 + 𝜷𝟐𝒍𝑫𝑹
𝟐 + 𝜷𝟑𝑯𝑫𝑰 + 𝜷𝟒𝒍𝑮𝑫𝑷 + 𝜷𝟓𝑮𝑷𝑰 + 𝜷𝟔𝒍𝑮𝑺 + 𝜷𝟕𝒍𝑮𝑺

𝟐 + 𝜺 

Proceeding with the sample estimation yields the following results: 

Table 7:Results summary of final regression specification 

Variable value 

𝑙𝐷𝑅 -12.3237** 

𝑙𝐷𝑅2 1.5356** 

𝐻𝐷𝐼 6.9066*** 

𝑙𝐺𝐷𝑃 -0.0062 

𝐺𝑃𝐼 0.0014 

𝑙𝐺𝑆 -2.9272** 

𝑙𝐺𝑆2 0.4767** 

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 32.3995*** 

𝑅 − 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 0.9005 

Note. *** p < 0.01, ** p < 0.05, * p < 0.1 

Commenting results, it is apparent that R squared rose significantly: from 70% in chapter 

4.1, to 90% now; a difference of circa 20 percentage points. Furthermore, an R squared 

of 90% means that the current model is able to explain over nine tenths of the variation 

in the data. 

Coefficientwise, it can be observed that: 

• An increase of one base point (bp) of the dependency ratio signifies a decrease of  

12,3% in median income, ceteris paribus 
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• An increase of one base point (bp) of the dependency ratio squared signifies an 

increase of 1,5% in median income, ceteris paribus 

• An increase of one percentage point in HDI signifies an increase of  7% in median 

income, ceteris paribus 

• An increase of 1 percent in GDP decreases Median income by 0,006% ceteris 

paribus, tough this variable seems to be statistically insignificant (one would argue 

completely uncorrelated) 

• An increase of 1 percentage point in GPI decreases Median income by 0,001% 

ceteris paribus, tough this variable seems to be statistically insignificant 

• An increase of  one base point in government spending decreases median income 

by 2,9%, ceteris paribus 

• An increase of  one base point in government spending squared increases median 

income by 0.5%, ceteris paribus. 

II. Optimality condition and optimum  

For the scope of this analysis, the coefficients of interest are the ones associated with 

Dependency ratio, hence 𝜷𝟏  and 𝜷𝟐 . With the help of those values the optimal 

dependency ratio can be mathematically derived: 

𝑙𝑀𝐼 = 𝛽0 + 𝛽1𝑙𝐷𝑅 + 𝛽2𝑙𝐷𝑅
2 + 𝛽3𝐻𝐷𝐼 + 𝛽4𝑙𝐺𝐷𝑃 + 𝛽5𝐺𝑃𝐼 + 𝛽6𝑙𝐺𝑆 + 𝛽7𝑙𝐺𝑆

2 + 𝜀 

Now, in order to find the maximum of this function (dependent on DR), it is necessary to 

satisfy the first order condition and solve for DR. 

 

𝑙𝑀𝐼 = 𝛽0 + 𝛽1𝑙𝐷𝑅 + 𝛽2𝑙𝐷𝑅
2 + 𝛽3𝐻𝐷𝐼 + 𝛽4𝑙𝐺𝐷𝑃 + 𝛽5𝐺𝑃𝐼 + 𝛽6𝑙𝐺𝑆 + 𝛽7𝑙𝐺𝑆

2 + 𝜀 

𝛿𝑙𝑀𝐼

𝛿𝐷𝑅
=

𝛿

𝛿𝐷𝑅
(𝛽0 + 𝛽1𝑙𝐷𝑅 + 𝛽2𝑙𝐷𝑅

2 + 𝛽3𝐻𝐷𝐼 + 𝛽4𝑙𝐺𝐷𝑃 + 𝛽5𝐺𝑃𝐼 + 𝛽6𝑙𝐺𝑆 + 𝛽7𝑙𝐺𝑆
2 + 𝜀) 
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𝛿𝑙𝑀𝐼

𝛿𝐷𝑅
= 0 → 𝐹𝑂𝐶 

𝛿

𝛿𝐷𝑅
(𝛽1 ln(𝐷𝑅) + 𝛽2 ln(𝐷𝑅)

2) = 0 

𝛽1 + 2𝛽2 ln(𝐷𝑅)

𝐷𝑅
= 0 

𝐷𝑅∗ = 𝑒
−
𝛽1
2𝛽2 

Now that the theoretical optimal value of DR has been established, it is time to compute it: 

𝛽1 = −12.3237 

𝛽2 = 1.5356 

𝐷𝑅∗ = 𝑒
−
𝛽1
2𝛽2 = 55.242 

At last, the analysis shows that dependency ratio of 55.2% is the optimal, median income 

maximising, value. 

4.2  Part II: From Dependency To Births 

Now that the optimal dependency ratio has been estimated, it is necessary to reverse 

engineer the birth rate. To do so, a system of Ordinary Differential Equations (ODEs) has 

been put in place, this allows for the simulation of population flows depending on 

different parameters. One of these “parameters” is the birth rate, which is consequently 

isolated and estimated, both on a static (birth rate that maintains optimum dependency) 

and dynamic (progressive change of birth rate to optimum, accounting for other time 

sensitive factors) basis. 
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4.2.1 Modelling Population Dependency Variables 

The dependency ratio at time t is defined as such: 

𝐷𝑅𝑡 =
𝑌𝑡 + 𝑂𝑡
𝐴𝑡

 

Where: 

• 𝑌𝑡 is the number of people aged between [0,15), referred to as juniors 

• 𝐴𝑡 is the number of people aged between [15,65), referred to as actives 

• 𝑂𝑡 is the number of people aged between [65,∞), referred to as seniors 

• 𝑏  is the number of children per actives per year (easily convertible from the 

fertility rate, or TFR, since 𝑏 = (
𝑇𝐹𝑅

50
)
1

2
=

𝑇𝐹𝑅

100
  ,assuming half of the active 

population is female) 

• 𝛾𝑌, 𝛾𝐴 represent the mobility coefficients for juniors and actives, respectively 

• 𝜇𝑌, 𝜇𝐴, 𝜇𝑂 are the mortality coefficients for each cohort 

These variables are modelled as follows: 

1) 𝑌̇ = 𝑏𝐴 − (𝛾𝑌 + 𝜇𝑌)𝑌 

The change, (or mathematically, the derivative) of Y is equal to: 𝑏(𝑡)𝐴, so the numbers 

of births per working age person in the span of 50 years (so the number of births per adult 

year (𝑏), times the actives (A)) minus 𝛾𝑌𝑌: the coefficient of people leaving the age group 

due to growth (𝛾𝑌) or premature death (𝜇𝑌) times Y, the number of juniors. 

2) 𝐴̇ = −(𝛾𝐴 + 𝜇𝐴)𝐴 + 𝛾𝑌𝑌 
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The derivative of A is equal to: 𝛾𝑌𝑌 (𝛾𝑌, the coefficient of people outgrowing the age 

group Y times Y) minus (𝛾𝐴 + 𝜇𝐴)𝐴 (𝛾𝐴, the coefficient of people leaving the age group 

A plus 𝜇𝐴 the premature death coefficient for cohort A, multiplied by A itself). 

3) 𝑂̇ = 𝛾𝐴𝐴 − 𝜇𝑂𝑂 

The derivative of  O is equal to: 𝛾𝐴𝐴 (𝛾𝐴,the coefficient of people leaving the age group 

A times A) minus 𝜇𝑂𝑂, (𝜇𝑂 , the mortality rate for seniors times O, the seniors per se). 

While the parameters 𝜇 need to be estimated (and U.N. mortality tables will do just fine), 

𝛾𝑌 and 𝛾𝐴 can be assumed to be the reciprocal of the width of the age cohort in years, 

since it is assumed that  every individual spends, on average, exactly 15 years in the “child” 

class before turning 15, and exactly 50 years in the “working-age” class before turning 

65. Hence: 

• 𝛾𝑌 =
1

15
 

• 𝛾𝐴 =
1

50
 

4.2.2 Backwards Induction 

It will be assumed that the optimal dependency ratio is considered to be in the steady state, 

hence, once reached, it will not diverge. The same can be said for the optimal Y, O and A. 

𝐷𝑅∗ =
𝑌∗ + 𝑂∗

𝐴∗
 

It follows that the derivatives of the age cohorts will equal 0, since the changes between 

the “entrances” and the “departures” of each cohort will be perfectly offset: 
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{

𝑏𝐴∗ − (𝛾𝑌 + 𝜇𝑌)𝑌
∗ = 0

𝛾𝑌𝑌
∗ − (𝛾𝐴 + 𝜇𝐴)𝐴

∗ = 0
𝛾𝐴𝐴

∗ − 𝜇𝑜𝑂
∗ = 0

 

It follows that 𝑌∗ =
𝑏𝐴

𝛾𝑌+𝜇𝑌
, while 𝑂∗ =

𝛾𝐴𝐴
∗

𝜇𝑂
. 

Substituting back into the DR function and solving for b, the equation that links births 

per active person (per year) is: 

𝒃∗ = (𝜸𝒀 + 𝝁𝒀)(𝑫𝑹
∗ −

𝜸𝑨
𝝁𝑶
) 

Through the help of this equation, the optimal number of children per person per adult 

year can be directly derived from the dependency ratio. 

4.2.3 Transition State 

In order to demonstrate the full effects of changes in birth rates, it is necessary to model 

how the system transitions from the initial to the steady state 

We start from the assumption that the derivative of the birth rate is equal to the difference 

between the optimal birth rate and the birth rate at time t, multiplied by a factor k, which 

signifies the speed of the adjustment of the birth rate through time. This embodies the 

essence of a continuous logistic equation, which will be added to the model in order to 

simulate the transition path. 

𝑏′ = 𝑘(𝑏∗ − 𝑏(𝑡)) 

Putting it all together, the system of differential equations gets augmented in this manner: 
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{
 
 

 
 
𝑏𝐴 − (𝛾𝑌 + 𝜇𝑌)𝑌 = 𝑌̇

𝛾𝑌𝑌 − (𝛾𝑌 + 𝜇𝑌)𝐴 = 𝐴̇

𝛾𝐴𝐴 − 𝜇𝑂 = 𝑂̇

𝑘(𝑏∗ − 𝑏(𝑡)) = 𝑏̇
 

 

It is important to note that, after setting the initial condition to today’s (as of 2023) 

birthrate (𝑏0), and solving the differential equation, the solution of the aforementioned 

equation becomes:  

𝒃(𝒕) = 𝒃∗ + (𝒃𝟎 − 𝒃
∗)𝒆−𝒌𝒕 

Furthermore, since this analysis will take place during a long time span, the assumption 

of constant mortality seems to be a tad too strong. For this reason, mortality rates will 

also be modelled to be decreasing functions through time, starting from an initial 

condition and progressively lowering to an assumed long term mortality rate. The 

equations through which they will be modelled are much like the equation that governs 

𝒃(𝒕), hence: 

𝜇𝑌(𝑡) = 𝜇𝑌
∗ + (𝜇𝑌0 − 𝜇𝑌

∗)𝑒−𝜌𝑡 

𝜇𝐴(𝑡) = 𝜇𝐴
∗ + (𝜇𝐴0 − 𝜇𝐴

∗)𝑒−𝜌𝑡  

𝜇𝑂(𝑡) = 𝜇𝑂
∗ + (𝜇𝑂0 − 𝜇𝑂

∗)𝑒−𝜌𝑡  

This implies that optimal fertility will not be constant throughout time, but rather 

adapting to changes in mortality rates. 

Putting it all back together, the final model yields: 
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{
 
 
 
 
 
 

 
 
 
 
 
 

𝒃(𝒕)𝑨 − (𝜸𝒀 + 𝝁𝒀(𝒕))𝒀 = 𝒀̇

𝜸𝒀𝒀 − (𝜸𝒀 + 𝝁𝒀(𝒕))𝑨 = 𝑨̇

𝜸𝑨𝑨 − 𝝁𝑶(𝒕)𝑶 = 𝑶̇

𝒃(𝒕) = 𝒃(𝒕)∗ + (𝒃𝟎 − 𝒃(𝒕)
∗)𝒆−𝒌𝒕

𝒃(𝒕)∗ = (𝜸𝒀 + 𝝁𝒀(𝒕)) (𝑫𝑹
∗ −

𝜸𝑨
𝝁𝑶(𝒕)

)

𝝁𝒀(𝒕) = 𝝁𝒀
∗ + (𝝁𝒀𝟎 − 𝝁𝒀

∗)𝒆−𝝆𝒕

𝝁𝑨(𝒕) = 𝝁𝑨
∗ + (𝝁𝑨𝟎 − 𝝁𝑨

∗)𝒆−𝝆𝒕

𝝁𝑶(𝒕) = 𝝁𝑶
∗ + (𝝁𝑶𝟎 − 𝝁𝑶

∗)𝒆−𝝆𝒕

𝑫𝑹 =
𝒀 + 𝑶

𝑨

 

This system of differential equations will govern how birth rates and dependency ratios 

will act through time, depending on different initial and steady state conditions. 

In the next chapter this model will be employed and its results will be discussed, so to 

ascertain  which are the effects of continued fertility above/below optimal rate. 

4.2.4 Derivation Of Imbalance Costs 

Quantifying the implicit cost that fertility and dependency imbalances generate on an 

individual level would be very beneficial in order to identify the economic impact of the 

phenomenon at hand. 

Thankfully, there is a mathematical strategy that allows to do just that. It employs a 

combination of the regression variables utilized in PART I and the transition model 

constructed in PART II. 

In fact, the regression built in the previous chapter is specified in the following manner: 

ln(𝑀𝐼) = 𝛽1ln(𝐷𝑅) + 𝛽2ln(𝐷𝑅)
2 +⋯+ 𝜀 

So that, 
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 𝑑 ln(𝑀𝐼)

𝑑 𝐷𝑅
=

𝑑

𝑑 𝐷𝑅
((𝛽1 ln(𝐷𝑅) + 𝛽2ln(𝐷𝑅)

2)) =
𝛽1 + 2𝛽2ln (𝐷𝑅)

𝐷𝑅
 

The change of MI with respect to the change in DR is now known. 

It is now necessary to extend the computation of MI from a general change of DR to an 

interval change of DR with respect to time. 

To do this, the midpoint rule is used to calculate D of t, which is the average change of 

MI In between DR at t and DR at t+1: 

𝐷𝑡 =
𝛽1 + 2𝛽2 ln (

𝐷𝑅𝑡+1 + 𝐷𝑅𝑡
2 )

(
𝐷𝑅𝑡+1 + 𝐷𝑅𝑡

2 )
 

This difference is then multiplied by the difference between DR at time t and DR at time 

t+1: 

∆ ln(𝑀𝐼𝑡) = 𝐷𝑡(𝐷𝑅𝑡+1 −𝐷𝑅𝑡) 

Extending this line of reasoning for all t and calculating the average: 

∑ ∆ ln(𝑀𝐼𝑖)
𝑇
𝑖=1

𝑇
= ∆ ln(𝑀𝐼 )𝑎𝑣𝑔 

∆ 𝐥𝐧(𝑴𝑰 )𝒂𝒗𝒈 =
𝟏

𝑻
∑ 𝑫𝒊(𝑫𝑹𝒊+𝟏 −𝑫𝑹𝒊)

𝑻

𝒊=𝟏
 

This Riemann sum approach is the most straightforward way to account for yearly data 

(especially when calculating the change in MI from U.N. projections, which will be 

conducted later). 

This final equation will allow for the quantification of the implied cost of fertility (and 

inevitably) dependency imbalances, enhancing findings (in the next section). 
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5. Findings And Recommendations 

In this chapter, the assembled model will be implemented into real word scenarios in order to 

quantify the economic effects of birth rate evolutions and deviations. Findings will be 

organized in two sections: 

 In the first section, the economic importance of optimal birth rates and the indirect cost of sub-

optimal fertility will be assessed.  

The second section, instead, will focus on the so called “demographic dividend” and shed some 

light on the obtained the dependency curve. 

In the third section, at last, results will be summarized and recommendations will be given. 

5.1 The Implicit Cost Of Sub Optimal Fertility 

It is now time to put the model to the test. The objective being to understand how economically 

quantify deviations from optimal births (which will result in deviations in dependency ratios) 

impact changes in median income. Since the optimal dependency ratios have been obtain 

utilizing a global perspective and the model lacks controls for migration, it only makes sense to 

employ this model in a global scenario. 

5.1.1 Model Calibration 

Before applying the model, though, different parameters should be estimated. Thankfully, 

population, mortality, and birth rates data and projections are compiled by the U.N. population 

division (U.N. population division, 2023) , and as such can be obtained from there. Estimation 

for parameter rho and k will be a little bit more difficult, but they can easily be reverse engineered 

by looking at the reduction speed of mortality and fertility in different years.  

The estimated final parameters are the following: 

 



45 
 
 

 

 

Table 8:Estimated values of parameters 

Parameter value 

𝜇𝑌0 0.0049 

𝜇𝐴0 0.0027 

𝜇𝑂0 0.1280 

𝜇𝑌
∗ 0.0018 

𝜇𝐴
∗ 0.0014 

𝜇𝑂
∗ 0.1054 

𝑘 0.0402 

𝜌 0.0196 

𝑏(0) 0.0240 

𝑏(100) 0.0159  

𝑌0 2 

𝐴0 5.2 

𝑂0 0.8 

Note. All the values with subscript 0 are to be intended at year 2023. 

5.1.2 Implementation And Results 

It is finally time to apply the model to a real world scenario. It will be benchmarked against 

(medium scenario) U.N. predictions (U.N. population division, 2023), both in terms of 

dependency and birth rates.  The initial conditions will be identical for both scenarios. After 
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that, fertility rates in the model will be allowed to deviate from projections, so to adjust for 

optimal fertility and consequently the best dependency ratio profile obtainable. 

The results are the following: 

Table 9:Values of optimal/projected births and respective dependency ratios 

variable 2023 2030 2050 2070 2100 

𝑏∗(𝑡) 0.0240 0.0279 0.0270 0.0263 0.0257 

𝑏(𝑡) 0.0240 0.0213 0.0179 0.0168 0.0161 

𝐷𝑅(𝑏(𝑡)∗) 0.5308 0.5193 0.5233 0.5342 0.5401 

𝐷𝑅(𝑏(𝑡)) 0.5308 0.5288 0.5795 0.6198 0.6759 

Note. 𝐷𝑅( 𝑥(𝑡)) is to be intended as DR of birth function x at time t, 𝑏∗(𝑡) is to be intended as 

the optimal birth function, while 𝑏(𝑡) as the projected birth function through time. 

The table above shows how the difference between projected and optimal fertility will impact the 

dependency ratio in time. It can be clearly seen that, while 𝒃(𝒕) decreases sharply in time, 

b(t)* remains relatively stable, hovering between 2.4 and 2.8 children per woman. In  

fact, the behaviour of b(t)* can be explained by the model adapting to the decreasing 

mortality over time, at first increasing from its base level (to compensate for relatively 

high mortality), then decreasing again due to the long run reduction in mortality.  
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In fact, it seems that the relative difference between the curves will stabilize to around a 

child per woman. This evolution can further be visualized in the graph below.

 

Figure 22: Evolution of optimal and projected births (b) over time 

The evolution of birth rates will inevitably impact the dependency ratio. In fact, as the 

table shows, dependencies will increase in both scenarios (this behaviour will be 

addressed later). The crucial difference is the velocity at which they’ll rise.  

In fact, progressive deviations from optimal births will lead to projected dependency 

of the benchmark (especially old age dependency) to increase much faster than the 

counterpart, as aging adults are not replaced by enough youngsters.  

Summarizing, while (almost) monotonic increases are true for both functions, this effect 

is more than contained in the mathematical design (thanks to optimal fertility 

adjustments), where total dependency, after a period of fall and subsequent rise, will 

effectively stay stable. UN projections, instead, clearly show how suboptimal fertility 

has a deeply negative effect on dependency, increasing its value by a staggering 14 

percentage points from base level. This can be easily seen in the chart below: 
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Figure 23: evolution of dependency ratios under projected and optimal births scenarios 

The effects in terms of median income are sensible. Applying the formula described in 

4.2.4, the average yearly growth (or rather decline) in median income ∆ ln(𝑀𝐼 ) for our 

model projection (𝑀𝐼 𝑏∗) against the U.N.  estimation(𝑀𝐼 𝑏 ) is: 

∆ 𝐥𝐧(𝑴𝑰𝒃∗)𝒂𝒗𝒈 = −0.000118 

∆ 𝐥𝐧(𝑴𝑰𝒃)𝒂𝒗𝒈 = −0.007237 

In a time span of 77 years (from 2023 to 2100) we can calculate the yearly change, which 

turns out to be a 0.012 percent decrease in median income per annum in the optimal 

fertility scenario  and a 0.72 percent decrease in median income per annum in the 

U.N. projection scenario (all else equal). This means that in this case, deviations from 

optimal fertility will bring about an additional .712 percent decrease in Median income 

per annum (ceteris paribus). It is important to note that this is an average value. Restricting 

the calculation on different time spans reveals even more worrying results. 
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Table 10:Impact on median income from different scenarios and estimation periods 

Estimation period U.N. projection Optimal fertility 

2023-2100 -.72% -0.012% 

2040-2100 -.80% -0.015% 

2060-2100 -.62% -0.009% 

2080-2100 -.41% -0.004% 

 

Multiple considerations can be done. The first one is that, while decreasing effects will 

persist for the whole century, the bulk of the negative effect will be felt between 2030 and 

2080. Secondly, optimal fertility systemically outperforms the model benchmark, 

yielding on average a difference of 63 base points. 

In conclusion, it has been shown that deviations from the optimal births scenario (the 

fertility gap), will indeed have long lasting negative effects on median income, one 

might even call it a fertility tax. 

In this case, the fertility gap turned out to be about a child per woman. The consequential 

effects of the fertility gap on median income (from 2023 to 2100) revealed themselves to 

be a .712 percent decrease in median income per annum (all else equal), relative to the 

difference between scenarios. This is an alarming figure, considering that real salary 

growth in the last 18 years has hovered around 2 percent (Statista, 2025), meaning that, 

all else equal, increase in income per capita will be cut almost by half. Another way to 

visualize the situation is that, under the current prediction scenario, the yearly loss 
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(assuming continuous compounding) could eat up more than 40% of the initial median 

income in the span of 77 years (all else equal). 

5.2 Assessing Curve Behaviour 

In the last section, it has been shown which are the economic implications of optimal and 

sub-optimal fertility, in terms of median income. 

The model also showed that, no matter the fertility profile, both dependency curves 

increased in the long run. This, however, seems to be no model’s flaw, but rather an 

unavoidable outcome under these circumstances.  

In this chapter, the reasons behind this changes will be decomposed and assessed. 

5.2.1 Accounting For The “Demographic Dividend” 

Counter intuitively, model output seems to be in line with the literature (Bloom, Canning, 

& Sevilla, The Demographic Dividend: A New Perspective on the Economic 

Consequences of Population Change (1st ed.)., 2003), (Mason, Lee, Abrigo, & Lee, 2017), 

(Mason, Demographic Transition and Demographic Dividends in Developed and 

Developing Countries, 2005) which has hinted that the level of dependency ratio of 

today in many industrialized countries (and at which the industrializing countries are 

projected to converge) is rather temporary and no more than an effect of what is called 

the “first demographic dividend” by scholars.  

This phenomenon is explained by the fact that, as births decrease, the junior cohort enters 

working age without fully replacing itself, yielding lower dependency ratios in the short 

to medium term. Hence median income improvements. The active cohort of today, though, 

will be the senior cohort of tomorrow, which will have less actives of tomorrow (the 



51 
 
 

juniors of today) to support it. Because of this, dependency ratio will inevitably climb 

back up again.  

The bottom line is that current worldwide dependency does not constitute a steady 

state, but rather a temporary achievement, which cannot be sustained in the very long 

term. 

Armed with this new found knowledge, it becomes easier to explain why the optimal 

dependency curve rises in the long term, and most importantly why the behaviour of the 

function is like so. 

The reasons behind the general rise in dependency are: 

Firstly, the model is calibrated around the static optimal dependency ratio (0,55242), 

which is greater than worldwide dependency at 2023 (0,5308). This inevitably results 

in an increase in the optimal dependency curve, above 2023 levels. 

Secondly, since the focus here is trying to stabilize dependency around an optimum, the 

model cannot immediately converge to optimal dependency (no matter the birth rate), but 

rather will show the U shaped curve because of the transitory initial conditions discussed 

above (many adults, and few dependents overall).  

Furthermore, the initial conditions of the model are heavily concentrated in the active 

cohort (2 billion juniors, 5.2 billion actives, 0.8 billion seniors). In order to reach a 

steady state, an increase in dependency is inevitable, confirming the effects of the 

demographic dividend. 
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5.3 Recommendations 

In the last chapter, the economic cost (in terms of median income) has been assessed. 

Results showed that, although a rise in dependency ratio is unavoidable, adjustments 

for optimality conditions will sensibly minimize the “fertility tax”.  

It is important to note that the situation under scrutiny was a global one, which can be 

seen as an average between many local situations. Hence, while local restrictions of the 

model have not been studied, there is reason to believe that the need to address sub-

optimal fertility are most urgent for developed countries, for whom the fertility tax 

may be tenfold higher and, above all, the tax collector could already be knocking at their 

door. Most middle income countries, instead, still have decades of low dependency to 

enjoy. 

On the other hand lower income countries may need to reduce fertility in order to 

experience a significant decrease in dependency, but, given the trends in natality, 

eventually will (U.N. population division, 2023).  

Thus, the main recommendations of this dissertation is to raise spending towards pro 

natality politics, especially in developed countries.  

The primary goal of these policies should be to limit the effect of the natality tax. 

Policymakers should in fact take into consideration that fertility increases could save up 

to/ at least (depending on the situation) 0.712% in annual median income growth, 

which in the span of the 77 year period in which this analysis takes place, continuously 

compounds to a loss of  more than 40% of initial endowment, all else equal.  
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6. Limitations 

Everything has its limits, and in this chapter the ones which pertain to this dissertation 

will be put on the spotlight. As per usual, it will be divided into two sections: In the former, 

limitations belonging to regression analysis will be conveyed, while in the latter the focus 

will shift on the limitations of the ODE system.  

6.1 Regression Analysis Limitations 

Several limitations are present in the least squares estimation. 

First, there are only 132 observations per variable. This limits the model’s ability to 

detect subtle but meaningful effects may be limited. Consequently, the estimated median 

income and dependency ratios, while mostly accurate, may not truly reflect the reality of 

the situation. 

Secondly, despite inclusion of several socioeconomic controls, the model may still suffer 

from omitted variable bias. Unobserved factors, such as regional dynamics, unmeasured 

aspects of income, submerged economy and/or cultural norms, could most definitely be 

correlated both with dependency ratios and income levels, hence distorting the 

estimations.  

Finally, the chosen specification cannot guarantee that all relevant nonlinearities are 

captured. 
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6.2 Differential Model Limitations 

This section critically analyses the assumptions and simplifications underlying the age‐

structured cohort compartment model. There are several assumptions and omissions that 

need to be addressed.  

First and foremost, the assumption of constant age distribution within each cohort. 

The model represents each of the three age‐cohorts (juniors, actives, seniors) with a single 

entry/exit rate. This implicitly assumes a uniform distribution of ages within each 

cohort. Hence, a Distorted cohort dynamic is inevitable. Cohort “concentrations” (for 

example the baby‐boom generation in the western world) are not accounted for, distorting 

results. While this distortion presents challenges when applying the model to a country-

specific level, it must be noted that as of right now the world population has a relatively 

uniform intra-cohort distribution (Population-pyramid.net, 2025), so the simulation does 

not overly distort reality.  

Secondly, static optimum fertility is used as a target of a  dynamic system. The birth‐

rate is obtained by inverting the static steady‐state dependency formula. This line of 

thinking presumes the age structure is already at equilibrium. As a result, the model will 

only converge asymptotically (but still retaining a satisfactory level of accuracy). 

In conclusion, The flat-cohort and static-optimum assumptions, paired with statistical 

errors make this mathematical representation of reality able to provide an overview of 

the phenomenon, but in an imprecise manner. 

Future work should employ stronger statistical estimations, explore better age-structure 

modelling and employ fully dynamic formulations in order to capture entirely the effects 

of demographic and economic changes. 
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7. Conclusion 

This dissertation demonstrated that the relationship between the dependency ratio and 

societal well-being (here proxied by median income) takes an inverted-U form, with an 

optimal dependency ratio of approximately 55.2 percent.  

By combining a cross-country regression analysis with a system of ordinary differential 

equations, it has been shown how this optimum dependency level can be translated 

into a steady-state annual birth rate, and how the projected global deviations in 

births from said rate will incur constant median income losses over time, estimated to 

be around 0.7% per annum, or a 40% loss of initial endowment in the span of 77 years. 

The ODE dynamic model proves to be a useful tool, as it provides a way to simulate the 

evolution of demographic structure in time and its economic consequences, 

especially if compared with alternative (in this case projected) scenarios. These results 

underline that very low fertility rates are most definitely undesirable. Instead, a 

balanced fertility profile, which in the long run transforms into a balanced structural 

demographic profile, will yield the greatest improvements in median income.  
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