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Abstract 
 

 

This thesis investigates deviations from perfect rationality within the Randomized FIFO dispatch 

mechanism developed by Castro et al. (2021), aimed at mitigating driver “cherry-picking” in ride-

sharing platforms. Specifically, it analyzes how realistic driver acceptance behaviors—modeled 

through unconditional, threshold-based, probabilistic, and patience-based heuristics—affect 

platform efficiency, fairness, queue stability, and revenue outcomes. 

To evaluate these behavioral deviations, two event-driven simulations are employed. The first 

simulation explores the impact of varying acceptance heuristics on system performance compared 

to the Nash Equilibrium baseline. The second simulation specifically identifies optimal queue 

dynamics, such as trip partitioning and bin configurations, to maximize efficiency under each 

behavioral heuristic. Results quantify performance trade-offs introduced by bounded rationality, 

driver impatience, and simplified decision-making, providing practical insights and actionable 

guidance for designing robust dispatch mechanisms under realistic constraints. 
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Chapter 1 
 

 

Introduction 
 

 

 

Urban ride-sharing platforms have reshaped the way people move through cities by dynamically 

matching rider requests with available drivers via smartphone apps. These systems provide 

advantages such as shorter waiting times, fewer cases of empty vehicle trips, and flexible earning 

opportunities for drivers. Nevertheless, the provision of these services relies on an advanced 

dispatch engine that decides which driver will serve each ride request. A dispatch mechanism is 

an algorithmic rule that considers available drivers and assigns each incoming trip request to one 

of them. The design of such a system directly affects passenger waiting times, efficiency of vehicle 

utilization, drivers’ earnings, and the financial sustainability of the platform. Therefore, finding 

an optimal balance between efficiency, fairness, and simplicity is critical to delivering sustainable 

and quality service. 

1.1 Overview 

This thesis focuses on the randomized FIFO dispatch mechanism, originally introduced by Castro 

et al. (2021)[1], designed to reduce the “cherry-picking” behavior that arises under strict First-In-

First-Out (FIFO) assignment. Under a strict FIFO system, every incoming trip request is assigned 

to the driver who has been waiting the longest, regardless of the value or distance of the trip. This 
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setting can incentivize drivers to cherry-pick—actively decline low-fare or short-distance requests 

in hopes of getting more lucrative rides—thus resulting in unfulfilled trip requests and operational 

inefficiencies. The randomized FIFO method overcomes this by grouping drivers into probabilistic 

“bins” and allowing the interleaving of offers among drivers with longer and shorter wait times, 

rather than imposing a strict chronological ordering by waiting time. We begin by characterizing 

the Nash equilibrium for this theoretical dispatch (Castro et al., 2021[1]), and then introduce a 

range of bounded-rational acceptance behaviors that better model the actual decision-making 

processes of drivers in the real world. We simulate these deviations, compare them against the 

equilibrium, and clarify the performance of various queue configurations in terms of throughput, 

net revenue, and fairness when drivers use non-optimally rational decision-making rules. 

1.2 Structure 

The structure of this thesis is as follows: Chapter 2 formalizes the mathematics underlying our 

analysis, including M/M/c queueing formulations, Erlang–C formulas, basic concepts of Game 

Theory, and concepts related to Nash equilibrium; Chapter 3 defines and formally introduces three 

dispatch mechanisms—Strict FIFO, Direct FIFO, and Randomized FIFO—and analyzes their 

equilibrium properties, summarizing the key theoretical insights from Castro et al. (2021)[1]; 

Chapter 4 describes our first discrete-event simulation, which examines how each acceptance rule 

behaves under the Randomized FIFO mechanism and highlights the trade-offs that arise; Chapter 

5 then presents the second simulation framework used to benchmark these acceptance rules against 

the Nash Equilibrium by testing every possible combination of trip partitions and queue 

segmentations to explore how different Randomized FIFO structures impact efficiency under each 

rule; Chapter 6 concludes with a synthesized overview of findings and discusses practical 

implications for platform design. 
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Chapter 2 
 

 

Mathematical Background 
 

 

 

Ride-sharing platforms operate at the intersection of demand and supply dynamics, where 

passenger requests must be matched with available drivers in real-time under varying market 

conditions. To analyze and optimize these interactions, it is essential to employ formal 

mathematical models that can accurately represent system behaviors, predict equilibrium 

outcomes, and inform decision-making processes. This chapter presents the theoretical foundations 

necessary to understand the Randomized FIFO dispatch model, focusing on the underlying 

queuing structures and the game-theoretic modeling of strategic behavior among drivers operating 

within dispatch mechanisms. 

2.1 Chapter overview 

Chapter 2 introduces the theoretical tools that support the modeling work developed later in the 

thesis. Section 2.2 focuses on queueing theory, presenting the M/M/c model and key metrics 

needed to evaluate system performance. This material will later inform our analysis of rider and 

driver dynamics. Section 2.3 turns to game theory, covering fundamental concepts such as Nash 

equilibrium and subgame-perfect equilibrium. Together, these sections equip us with the 
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frameworks necessary to formulate and analyze the dispatch dynamics addressed in the following 

chapters. 

2.2 Queueing theory: essential metrics and concepts 

Queueing theory tackles one of the most common challenges of daily life: the experience of waiting. 

The formal study of queueing systems began in the early 20th century with Danish mathematician 

and engineer Agner Krarup Erlang, who introduced probabilistic methods to analyze congestion 

in telephone networks.1 His groundbreaking work laid the foundation for the broader field of 

queueing theory, inspiring the development of increasingly sophisticated models to manage delays 

and improve service efficiency. Later in this chapter, we will reference a queueing theory framework 

known as the Erlang-C or M/M/c model. 

A queueing model possesses the characteristics listed below.2 These attributes are at the core of 

the dispatch mechanisms analyzed in Chapter 3, including Randomized FIFO. 

The arrival process of customers. It is commonly assumed that interarrival times are 

independent and identically distributed (i.i.d.). In many real-world systems, customers arrive at 

service facilities in a random fashion. This variability in arrivals is often well-modeled by a Poisson 

process, where the time between arrivals follows an exponential distribution. Therefore, the 

probability that the time between two consecutive arrivals is less than or equal to T, given a 

Poisson arrival process with rate  λ is:  

        𝑃 (𝑡 ≤ 𝑇 ) = 1 − 𝑒−λ𝑇 . (2.1) 

Here, λ represents the average number of arrivals per unit of time. Since the Poisson distribution 

is discrete, it also provides the probability of observing an exact number of arrivals within a set 

period, 

 
1 Erlang, A. The theory of probabilities and telephone conversations. Nyt Tidsskrift for Matematik B 20 
(1909), 33–39. 
2 Adan, Ivo, and Jacques Resing. Queueing Systems, Department of Mathematics and Computing Science 
Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven, The Netherlands, 26 Mar. 2015. 
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                                                         𝑃 (𝑋 =  𝑛) = (𝜆𝑇 )𝑛

𝑛! 𝑒−𝜆𝑇 , 𝑛 =  0,1,2,…    (2.2) 

In this context, n denotes a non-negative integer representing the specific number of occurrences 

for which we calculate the probability. λ𝑇  is the Poisson mean (or expected value), indicating the 

average number of occurrences within the given time interval. A Poisson process is characterized 

by three fundamental assumptions: 

1. Customers arrive individually, not in groups. 

2. Each arrival is independent of all the others. 

3. The likelihood of an arrival is uniform across time—it does not vary depending on the time of 

observation. 

The behavior of customers. Customers can vary in their willingness to wait—some may remain 

in the queue indefinitely, while others may abandon it after a certain period due to impatience. 

For example, a person calling a customer service center might decide to hang up and try again 

later if the wait time becomes too long. In our simulation, this customer behavior, specifically in 

the context of drivers, is modeled and adjusted through what we define as the “acceptance rule”. 

The service times. We assume that service times are independent and identically distributed 

(i.i.d.) and independent from the interarrival times. However, in some systems, service times may 

vary depending on the current queue length. For instance, in a production environment, machines 

might operate at higher speeds when the backlog of jobs becomes excessive. The exponential 

distribution is often used to model service times, capturing the probability that a service will be 

completed within a given time interval T. The probability can be calculated by using the following 

expression: 

        𝑃 (𝑡 ≤ 𝑇 ) = 1 − 𝑒−𝜇𝑇 . (2.3) 

Here, 𝜇 denotes the average service rate—that is, the number of customers served per unit of time. 

The variable t represents the service duration for an individual customer, and T is the time 

threshold we are evaluating. 



 
 6 

The service discipline. The service discipline defines how the system manages its resources, 

including the number of servers and the system’s capacity, the maximum number of customers 

allowed in the system at any time, including those currently being served. It also specifies the rule 

used to determine which customer is selected next for service. Common service disciplines include: 

- FIFO (First In First Out): customers are served in the order they arrive. 

- LIFO (Last Come First Out): the most recently arrived customer is served first. 

- RS (Random Service): the next customer is chosen at random. 

- PS (Processor Sharing): service capacity is equally shared among all active customers—

commonly used in computing systems.  

- Priority-Based: customers with higher priority (e.g., urgent requests or shorter service 

times) are served before others. 

The service capacity. There may be either a single server or multiple servers simultaneously 

providing service to customers. 

The waiting room. Queueing systems may have constraints on the number of customers that 

can wait within the system. For instance, in a small coffee shop, only a certain number of people 

can line up inside before the space becomes full, forcing others to wait outside or leave. 

2.2.1  Kendall’s notation 

This notation will be particularly helpful in our discussion of the queueing model underlying 

Randomized FIFO. The framework was introduced by mathematician David G. Kendall to classify 

a wide variety of queueing systems. We represent a queueing system using the notation: 

A / B / m / K / n / D 

Each element in the system notation is defined in the following way. A represents the distribution 

of interarrival times, while B describes the distribution of service times. The parameter m indicates 

the number of servers, and K refers to the total system capacity, meaning the maximum number 

of customers allowed in the system, including those being served. The variable n specifies the 



 
 7 

population size, or the total number of potential customers. Finally, D denotes the service 

discipline, such as FIFO, LIFO, or RS. 

The first two positions describe the statistical distributions of interarrival and service times. 

Common abbreviations include D (Deterministic distribution), M (Markovian—Poisson arrivals 

or Exponential services), G (General), GI (General and Independent), Geom (Geometric). The 

fourth position indicates the total capacity, including service points and buffer space. For instance, 

if there are K servers and no additional waiting area, K appears in this position. If the queue has 

unlimited capacity, this element is typically omitted. The sixth position denotes the queue 

discipline. It is only included when the discipline is something other than the default FIFO.3 

2.2.2  The M/M/c queue 

We now return to the work of mathematician A.K. Erlang to explore the Erlang-C model. This 

model describes a system in which customers arrive, with a constant rate, at a queue served by c 

identical servers and are assumed to have infinite patience. Given that arrivals follow a Poisson 

process and service times are exponentially distributed, the model is denoted as M/M/c/¥, or 

more commonly, M/M/c. To better understand the need to extend a single-server queueing model 

to a multi-server one—such as the one we analyze in our ride-sharing context—we introduce the 

concept of server utilization, denoted by 𝜌. This metric, also called the occupation rate, is defined 

as the ratio between the mean service time and the mean interarrival time: 

𝜌 =  mean service time
mean interarrival time . 

In the context of ride-sharing, 𝜌 is referred to as traffic intensity and indicates the fraction of time 

a driver is actively engaged in serving riders. Assuming an infinite population and a Poisson arrival 

process with rate λ, the mean interarrival time becomes 1/λ, and the mean service time 1/𝜇.4 

Substituting into the formula, we obtain for a single-server queue: 

 
3 Sztrik, János, et al. Basic Queueing Theory, University of Debrecen, Faculty of Informatics, Dec. 2012. 
4 If λ is the average number of arrivals per time unit, then on average one arrival happens every 1/λ time 
units. The same logic applies to 𝜇: if a server can handle 𝜇 customers per unit time, each service takes on 
average 1/𝜇 time units. 
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      𝜌 =  λ ⋅  1𝜇 = λ
𝜇 . (2.4) 

If 𝜌 > 1, the system is considered overloaded, meaning requests are arriving faster than they can 

be handled by a single server. This indicates a need for additional service capacity (e.g., more 

servers) to maintain system stability. In our scenario, an increase in rider arrivals is necessary to 

match driver availability and ensure timely service.5 Hence, we refer to the M/M/c queue to build 

an initial understanding of the system dynamics we will explore in the chapters that follow. Under 

M/M/c, indicators such as utilization, throughput, waiting time, and queue length can be derived 

analytically. However, in our study, the system behavior deviates from the classic multi-server 

queue, and we rely on simulation to assess system performance. We now shift our focus to the key 

performance metrics of an M/M/c queue.6 

Occupation rate. The traffic intensity previously defined for a single-server queue decreases 

when more servers are available, improving the system’s overall efficiency. Therefore, we have:  

     𝜌 = λ
𝑐 𝜇 . (2.5) 

For the system to remain stable and avoid becoming overloaded, it is required that 𝜌 < 1, meaning 

the arrival rate of customers must not exceed the total service capacity of all workers per unit of 

time.  

Steady state probabilities. The state of the system is characterized by the number of customers 

in the system. We denote with 𝑝𝑛 the equilibrium probability that there are n customers in the 

system. These probabilities are typically determined by modeling the system as a continuous-time 

Markov chain, where each state represents the number of customers present, and transitions occur 

based on arrival and service rates. These probabilities lay the basis for deriving the following 

performance metrics. 

           𝑃0 = [ ∑ (𝑐𝜌)𝑛

𝑛!

𝑐−1

𝑛=0
+ (𝑐𝜌)𝑐

𝑐! (1 − 𝜌) ]
−1

 (2.6) 

 
5 While it is logically reasonable to define drivers as servers, in the context of our model, the queueing 
dynamics analyzed in the following chapters focus on the queue of drivers. Therefore, we adopt a reversed 
perspective: drivers are treated as customers in the system, and riders are considered the servers. 
6 Fiveable. “8.3 M/M/1 and M/M/c queues – Stochastic Processes.” Edited by Becky Bahr, Fiveable, 2024.  
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    𝑃𝑛 = (𝑐𝜌)𝑛

𝑛!  𝑃0,   0 < 𝑛 < 𝑐 (2.7) 

𝑃𝑛 = (𝑐𝜌)𝑛

𝑐! 𝑐𝑛−𝑐  𝑃0,   𝑛 ≥ 𝑐 (2.8) 

Probability of waiting (Erlang-C). The Erlang’s C formula, also known as Erlang’s delay 

formula, expresses the probability that an arriving customer must wait for service. A lower value 

of this probability indicates a more efficient and responsive system.  

    𝑃𝑤 =

(𝑐𝜌)𝑛

𝑛!
𝑛

𝑛 − (𝑐𝜌)

∑ 𝜌𝑘

𝑘! +𝑛−1
𝑘=0

(𝑐𝜌)𝑛

𝑛!
𝑛

𝑛 − (𝑐𝜌)

 (2.9) 

Average number of customers in the queue. We define the expected number of customers 

in the queue as the average number of customers waiting to be served.  

    𝐿𝑞 = 𝑃0(𝑐𝜌)𝑛𝜌
𝑛! (1 − 𝜌)2 (2.10) 

A lower value of 𝐿𝑞 indicates that customers experience shorter waits before receiving service, 

contributing to higher system efficiency and customer satisfaction. 

Average number of customers in the system. We now introduce the expected number of 

customers in the system, L, which accounts for both those waiting in the queue (𝐿𝑞) and those 

currently being served. This measure is directly connected to Little’s Law, a fundamental 

relationship in queueing theory, which states that the average number of customers in the system 

equals the arrival rate (λ) multiplied by the average time a customer spends in the system (W).7 

At this stage, we express L in the following way: 

         𝐿 = 𝐿𝑞 + λ
𝜇 , (2.11) 

which is simply a reformulation of Little’s Law, 

          𝐿 =  λ𝑊 . (2.12) 

 
7 We will delve deeper into Little’s Law in the upcoming chapters, as it forms the foundation for many of 
the models we study. 
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A lower value of this metric indicates that the system is less congested, resulting in shorter delays 

for customers. Unlike 𝐿𝑞 , the average number of customers in the system offers a more 

comprehensive view of system congestion. 

Expected waiting time in the queue. The expected waiting time in the queue, 𝑊𝑞, measures 

the average amount of time a customer spends waiting in the queue before receiving service. The 

formula for this metric is a direct application of Little’s Law to the queue component of a system 

(𝐿𝑞 =  λ𝑊𝑞). It is expressed as: 

         𝑊𝑞 =
𝐿𝑞

λ  . (2.13) 

As one would expect, a lower value of 𝑊𝑞 reflects a more efficient queueing system, with customers 

experiencing reduced waiting times. Moreover, if a customer abandonment mechanism were 

introduced—an assumption outside the standard M/M/c framework where customer patience is 

infinite—a lower 𝑊𝑞  would also contribute to minimizing customer abandonment rates, thus 

enhancing overall system performance. 

Expected waiting time in the system. The expected waiting time in the system, W, represents 

the total amount of time a customer spends between entering the system and completing service. 

It combines both the waiting time in the queue and the service time itself. This expression is 

directly derived from Little’s Law—𝐿 =  λ𝑊 , previously introduced when discussing the average 

number of customers in the system. Accordingly, we have: 

          𝑊 = 𝐿
λ = 

𝐿𝑞

λ + 1
𝜇 = 𝑊𝑞 + 1

𝜇 . (2.14) 

In essence, we are summing the average time a customer spends waiting in the queue with average 

service time. A smaller value of this metric translates into shorter delays for customers throughout 

the system. Therefore, minimizing W leads to a more efficient, responsive, and satisfying service 

experience. 

While the metrics derived from the M/M/c model provide essential insights into system 

performance, they are not fully sufficient for capturing the dynamics of our specific scenario. In 
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our case, we introduce a fixed abandonment mechanism for rider patience, meaning that customers 

may leave the system if their wait exceeds a certain threshold. Therefore, while many of the multi-

server queue results remain highly informative, they will be carefully adapted to account for this 

additional behavioral dimension. 

 

2.3 Game theory: principles and equilibrium concepts 

Game theory offers a unified framework for modeling strategic interactions. It examines situations 

of conflict, the interactions between agents, and the decisions they make. A game is characterized 

by a set of players (typically finite) and the strategies available to them within given rules.8 The 

players in a game engage with one another in an interdependent manner—the choices made by 

one player influence not only their own outcome but also the outcomes of others. Hence, game 

theory studies situations where a player’s outcome is determined not only by their own choices 

but also by the decisions of other players. Game theory helps us analyze how drivers and riders 

in a ride-sharing queue make strategic accept-or-decline decisions—modeling each driver’s 

acceptance rule as a strategy and predicting the equilibrium outcomes (i.e., throughput, wait times, 

payoff distributions) of different dispatch mechanisms. We begin with a concise overview of game-

theory fundamentals. 

2.3.1  Game structures and information dynamics 

Normal form (strategic) games. A game in normal form is a formal representation of a 

strategic situation where all players choose their actions simultaneously and independently . It is 

defined by the following components (Hotz H., 2006): 

1. A finite set of players M = {𝑎1,… , 𝑎𝑛} . 

2. For each player, a set of possible actions or strategies 𝑆𝑖, 𝑖 ∈ 𝑀 . 

 
8 Hotz, Heiko. A Short Introduction to Game Theory, LMU Munich, 2006, www.theorie.physik.uni-
muenchen.de/lsfrey/teaching/archiv/sose_06/softmatter/talks/Heiko_Hotz-Spieltheorie-Handout.pdf. 
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3. A payoff function (𝑢𝑖) for each player (𝑖 ∈ 𝑀), mapping every profile of strategies into the 

reward (or cost) that player receives based on their own strategy and the choices made by 

others. 

When the game involves only two players and each has a limited set of strategies, the payoffs can 

be conveniently represented in a payoff matrix. This matrix visually displays the players, their 

available strategies, and the corresponding payoffs for each combination of choices. In the example 

below (Table 1), Player 1 chooses between two strategies: “T” (Top) or “B” (Bottom), while Player 

2 selects either “L” (Left) or “R” (Right). The resulting payoffs for each combination of strategies 

are displayed within the cells of the table. 

Player 1\Player 2 L R 

T (2, 5) (3, 7) 

B (2, 0) (5, 5) 

Table 1: A normal form game 

Each payoff is a pair (x, y), where x is the payoff for Player 1 and y is the payoff for Player 2. For 

instance, if Player 1 selects T and Player 2 selects R, the resulting outcome is (3, 7), meaning 

Player 1 receives a payoff of 3, while Player 2 receives a payoff of 7. 

Extensive form games. Unlike a normal form game, where players choose their strategies 

simultaneously, an extensive form game is structured so that players make their moves 

sequentially. This type of game is represented using a game tree, where each node corresponds to 

a specific stage. The initial node marks the beginning of the game, while terminal nodes, which 

have only one connected edge, signify the end of the game and define a complete strategy profile. 

Each non-terminal node is assigned to a particular player, indicating that it is their turn to make 

a decision. The edges connecting the nodes represent the possible actions available at each decision 

point. At the end of the game, each terminal node is associated with a payoff for every player, 

reflecting the outcome if the sequence of actions leading to that node is followed. 
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Figure 1: An extensive form game 

In the figure, if Player 1 chooses strategy L and Player 2 selects strategy R’, the resulting payoff 

will be 4 for Player 1 and 0 for Player 2. 

In analyzing strategic interactions, it is important to distinguish between games based on the 

information available to the players. 

- Perfect Information. A game is said to have perfect information if, at every decision 

point, each player knows the full history of previous moves; classic examples include chess 

and checkers. 

- Imperfect Information. In a game of imperfect information, players must make decisions 

without full knowledge of past actions, as in simultaneous-move games where players 

choose strategies at the same time. 

- Complete Information. A game involves complete information if all players are sully 

aware of the structure of the game, including the available strategies and payoff functions 

of all participants. 

- Incomplete Information. If any of the information necessary to have a complete 

information game is missing or uncertain, the game is classified as one of incomplete 

information, often requiring players to form beliefs about known elements. 

2.3.2  Strategic stability: Nash and Subgame-perfect equilibria 

Understanding how players’ strategies interact and stabilize is central to analyzing game-theoretic 

models. Two key solution concepts help capture this idea of stability: the Nash equilibrium and 

the Subgame-perfect equilibrium. While a Nash equilibrium ensures that no player has an incentive 

1

22
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L’ L’R’ R’

(2,1) (4,0) (1,3) (0,2)

·

u
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to deviate given the strategies of others, Subgame-perfect equilibria strengthen this notion by 

requiring credibility and optimality at every stage of the game. In particular, we delve into 

Subgame-perfect equilibrium because it is a fundamental concept for analyzing extensive form 

games—such as the dynamic scenario studied in our case—where decisions unfold over time. In 

this section, we introduce and compare these concepts to better understand strategic stability in 

both simultaneous and sequential games. 

Nash Equilibrium 

In a strategic game, each player is assumed to act rationally, choosing the best available action 

based on their expectations about the actions of others. Players must, therefore, form beliefs about 

how their opponents will behave. These beliefs are shaped by players’ prior experiences in playing 

the game, which are assumed to be extensive enough for them to accurately anticipate others’ 

actions. Importantly, players treat each game as an isolated event: they do not adapt their 

strategies based on familiarity with particular opponents, nor do they expect current actions to 

influence future behaviors. We consider a structured setting where players face a wide and 

changing pool of opponents, selected randomly for each play. This repeated interaction fosters 

beliefs about the behavior of “typical” opponents rather than specific individuals. At its core, the 

framework is built on two key components: (1) players act rationally based on their beliefs about 

others, and (2) players’ beliefs about others’ actions are correct. 

A Nash equilibrium is an action profile 𝑎∗  where no player i can improve their outcome by 

unilaterally deviating from their chosen action 𝑎𝑖
∗, assuming other player j adheres to their strategy 

𝑎𝑗
∗ (Osborne M. J., 2000). 

In a setting where players are drawn randomly from populations, a Nash equilibrium represents a 

steady state; if players repeatedly engage in the game and the same action profile, 𝑎∗, consistently 

arises, no player has any incentive to change it. Another important aspect of Nash equilibrium is 

the assumption that players’ beliefs about each other’s actions are accurate. Because of this, Nash 

equilibrium is often described as a situation where players’ expectations are coordinated.  

We let a represent an action profile where each player i chooses an action 𝑎𝑖. Representing with 

(𝑎𝑖
′, 𝑎−𝑖) the action profile in which all players implement strategy a while player i deviates to 
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strategy 𝑎𝑖
′. If 𝑎𝑖

′ = 𝑎𝑖, there is no deviation, and (𝑎𝑖
′, 𝑎−𝑖) = a. Using this notation, we provide 

the formal definition of a Nash equilibrium. 

Definition 1 (Nash equilibrium of strategic game with ordinal preferences; Osborne, M. J. (2000), 

An Introduction to Game Theory, Ch. 2, Def. 2.1, p. 21). An action profile 𝑎∗ in a strategic game 

with ordinal preferences is a Nash equilibrium if, for every player i and every alternative action 

𝑎𝑖 available to player i, 𝑎∗ is at least as preferred by player i as the action profile (𝑎𝑖, 𝑎−𝑖
∗ ), where 

player i unilaterally deviates to 𝑎𝑖 while every other player j continues to play 𝑎𝑗
∗. Formally, for 

every player i,  

         𝑢𝑖(𝑎∗) ≥ 𝑢𝑖(𝑎𝑖, 𝑎−𝑖
∗ ) for every action 𝑎𝑖 of player i, (2.15) 

where 𝑢𝑖 denotes the payoff function that represents player i’s preferences.9 

 

While Nash equilibrium is a key concept in strategic games, it does not ensure existence or 

uniqueness—some games have one, many, or no equilibria. Traditionally, it models steady-state 

behavior among experienced players, but an alternative view sees it as the outcome of rational 

players deducing others’ actions without prior experience. 

To properly analyze the strategic interactions in dynamic settings, we extend the concept of Nash 

equilibrium to extensive form games. Since the scenario we study can be modeled as a dynamic, 

extensive form game with perfect and complete information, it is necessary to characterize 

equilibrium strategies across the entire sequence of moves. In this context, a Nash equilibrium 

specifies a strategy profile where each player’s choices are optimal, given the observed history and 

the strategies of others. 

Definition 2 (Nash equilibrium of extensive game with perfect information; Osborne, M. J. (2000), 

An Introduction to Game Theory, Ch. 5, Def. 159.2, p. 159). A strategy profile 𝑠∗ in an extensive 

game with perfect information is a Nash equilibrium if, for every player i and every alternative 

strategy 𝑟𝑖 of player i, the terminal history O(𝑠∗) generated by 𝑠∗ is at least as preferred by player 

 
9  Osborne, Martin J. An Introduction to Game Theory by Martin J. Osborne, 6 Nov. 2000, 
mathematicalolympiads.wordpress.com/wp-content/uploads/2012/08/martin_j-_osborne-
an_introduction_to_game_theory-oxford_university_press_usa2003.pdf. 
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i as the terminal history O(𝑟𝑖, 𝑠−𝑖
∗ ) generated by the strategy profile (𝑟𝑖, 𝑠−𝑖

∗ ) where player i deviates 

to 𝑟𝑖 while every other player j continues to follow 𝑠𝑗
∗. Formally, for every player i,  

         𝑢𝑖(O(𝑠∗)) ≥ 𝑢𝑖(O(𝑟𝑖, 𝑠−𝑖
∗ )) for every strategy 𝑟𝑖 of player i, (2.16) 

where 𝑢𝑖 is a payoff function that represents player i’s preferences and O is the outcome function 

of the game. 

Subgame-perfect Equilibrium 

The notion of Nash equilibrium does not account for the sequential nature of extensive games. As 

a result, the steady states captured by Nash equilibrium may not always be robust when decisions 

are made over time. To better model sequential decision-making, we introduce a stronger concept: 

a solution that requires players’ strategies to be optimal after every possible history, not just at 

the beginning of the game. To define this refinement, we first introduce the idea of a subgame. 

Definition 3 (Subgame; Osborne, M. J. (2000), An Introduction to Game Theory, Ch. 5, Def. 

162.1, p. 162). Let Γ be an extensive game with perfect information and player function P. For 

any nonterminal history h, the subgame Γ(ℎ) following the history h is defined as the following 

extensive game. 

 Players. The players in Γ. 

Terminal histories. All action sequences ℎ′ such that (h,ℎ′) forms a complete terminal 

history in Γ. 

Player function. Each proper sub-history ℎ′ is assigned to a player according to P(h,ℎ′). 

Preferences. Players’ preferences are consistent with their preferences over the 

corresponding full histories (h,ℎ′) in Γ. 

Put it simply, for any nonterminal history h, the subgame following h refers to the part of the 

game that remains after h occurs. The subgame following the initial empty history ∅ is simply the 

entire game. All other subgames are referred to as proper subgames. Since every nonterminal 

history defines a subgame, the number of subgames equals the number of nonterminal histories. 
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To formally define subgame-perfect equilibrium, we introduce new notation. Let h be a history 

and s a strategy profile. If h occurs—even if it may not align with s—players thereafter follow the 

strategy profile s. We denote by Oℎ(𝑠) the terminal history resulting from h followed by actions 

according to s. Notably, when h is the initial history, O∅(𝑠)=O(𝑠).  

Definition 4 (Subgame perfect equilibrium; Osborne, M. J. (2000), An Introduction to Game 

Theory, Ch. 5, Def. 164.1, p. 164). A strategy profile 𝑠∗  in an extensive game with perfect 

information is called a subgame perfect equilibrium if, for every player i and every history h where 

it is player i’s turn to move (𝑃 (ℎ) = 𝑖), the following holds: the terminal history Oℎ(𝑠∗) resulting 

from following 𝑠∗ after h is at least as good for player i as the terminal history resulting from any 

deviation 𝑟𝑖 by player i, with all other players sticking to 𝑠∗. Formally, 

         𝑢𝑖(Oh(𝑠∗)) ≥ 𝑢𝑖(Oh(𝑟𝑖, 𝑠−𝑖
∗ )) for every strategy 𝑟𝑖 of player i, (2.17) 

Here, 𝑢𝑖 represents player i’s payoff function, and Oℎ(𝑠) denotes the sequence of actions starting 

from history h under strategy profile s.  

The key idea is that each player’s strategy must be optimal not only at the beginning of the game 

but after every possible history where the player is called to move. This ensures that strategies 

are credible and robust throughout the entire game. Given the definitions of Nash equilibrium and 

Subgame-perfect equilibrium, we now introduce a fundamental result 

A Subgame-perfect equilibrium is a strategy profile that induces a Nash equilibrium in 

every subgame (Osborne M. J., 2000). 

2.4 Summary and transition 

In this chapter, we introduced the mathematical background necessary for the analysis of the 

dispatch mechanisms. We began by presenting key elements of queueing theory, with a focus on 

the M/M/c, multi-server model and its associated performance metrics. We also discussed the 

limitations of the classical model for our purposes, noting the need to account for fixed 

abandonment behavior to better reflect rider patience. 
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In the second part of the chapter, we turned to game theory. We reviewed fundamental concepts 

such as Nash equilibrium and Subgame-perfect equilibrium, emphasizing their role in capturing 

strategic decision-making in dynamic settings. Although these concepts were introduced in a 

general framework, without direct application to drivers and riders, they will be essential in 

modeling the strategic interactions we explore in the next chapters.  

The mathematical tools discussed here provide the foundation for the analysis that follows. We 

are now ready to formally define the dispatch models under study and examine their equilibrium 

properties. 

2.4.1  Symbols and formulas 

We next summarize the main symbols and mathematical expressions introduced throughout the 

chapter. These definitions provide a concise reference for the core concepts discussed, ranging from 

queueing system metrics to equilibrium conditions in strategic and extensive form games. 
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Queueing Theory—M/M/c queue 

𝜆 Arrival rate (customers per unit time) 

𝜇 Service rate (customers served per unit time) 

c Number of servers 

𝐿 Expected number of customers in the system 

𝐿𝑞 Expected number of customers in the queue 

𝑊  Expected waiting time in the system 

𝑊𝑞 Expected waiting time in the queue 

𝜌 = λ
𝑐𝜇 Traffic intensity 

𝑃0 = [ ∑ (𝑐𝜌)𝑛

𝑛!

𝑐−1

𝑛=0
+ (𝑐𝜌)𝑐

𝑐! (1 − 𝜌) ]
−1

 Probability of having zero customers in the system 

𝑃𝑛 =

⎩{
⎨
{⎧    (𝑐𝜌)𝑛

𝑛!
 𝑃0,   0 < 𝑛 < 𝑐

(𝑐𝜌)𝑛

𝑐! 𝑐𝑛−𝑐  𝑃0,   𝑛 ≥ 𝑐
 Probability of having n customers in the system 

𝑃𝑤 =

(𝑐𝜌)𝑛

𝑛!
𝑛

𝑛 − (𝑐𝜌)

∑ 𝜌𝑘

𝑘! +𝑛−1
𝑘=0

(𝑐𝜌)𝑛

𝑛!
𝑛

𝑛 − (𝑐𝜌)

 
(Erlang-C) Probability that an arriving customer has 

to wait 

𝐿𝑞 = 𝑃0(𝑐𝜌)𝑛𝜌
𝑛! (1 − 𝜌)2 Average number of customers in the queue 

𝐿 = 𝐿𝑞 + λ
𝜇 Average number of customers in the system 

𝑊𝑞 =
𝐿𝑞

λ  Average waiting time in line 

𝑊 = 𝑊𝑞 + 1
𝜇 Average time spent in the system 
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Game Theory 

𝑀 Set of players 

𝑆𝑖 Set of strategies available to player i 

𝑠 =  (𝑠1,… , 𝑠𝑛) Strategy profile (one strategy for each player) 

𝑤𝑖 Payoff function for player i 

𝑎𝑖 Action chosen by player i 

𝑎−𝑖 Actions of all players other than i 

𝑎∗ Nash equilibrium action profile 

𝑠∗ Subgame-perfect equilibrium strategy profile 

Γ Extensive form game 

Γ(ℎ) Subgame following history h 

O(𝑠) Outcome of the game when strategy profile s is played 

Oℎ(𝑠) Outcome of the subgame starting at history h under strategy s 
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Chapter 3 
 

 

Dispatch Frameworks 
 

 

 

Ride-sharing platforms rely on efficient dispatch mechanisms to match drivers with riders while 

balancing fairness, reliability, and revenue optimization. Traditional First-In-First-Out (FIFO) 

dispatching, ensures that drivers who have waited the longest are prioritized. However, 

heterogeneous trip earnings incentivize drivers to cherry-pick (i.e., accepting only higher-fare trips 

while skipping lower-value ones), leading to longer rider wait times and inefficient matches. In the 

article “Randomized FIFO Mechanisms”, Francisco Castro, Hongyao Ma, Hamid Nazerzadeh, and 

Chiwei Yan propose a family of dispatch mechanisms that blend FIFO priority with controlled 

randomness.10 This chapter explores the following as presented in the article: Strict FIFO, Direct 

FIFO, and Randomized FIFO mechanisms. We analyze how each variant shapes driver behavior, 

influences platform earnings, and alters system-wide performance. In Chapter 4 and Chapter 5, 

we simulate the Randomized FIFO framework under more realistic conditions—specifically when 

drivers are not flawlessly strategic agents in a dynamic game of perfect and complete information. 

 
10  Castro, Francisco, et al. “Randomized FIFO Mechanisms.” arXiv.Org, 21 Nov. 2021, 
arxiv.org/abs/2111.10706. 
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3.1 Problem formulation and model design 

The article studies dispatch strategies for ride-sharing at high-demand locations (like airports), 

where trips differ significantly in earnings and riders have limited patience. Because platforms 

can’t easily adjust fares, they rely on driver waiting times as incentives to improve efficiency and 

fairness. Randomized FIFO aims to optimize the allocation of drivers to rider requests while 

maximizing the platform’s net revenue.  

A continuous-time, non-atomic queueing model is developed, with steady arrivals of drivers and 

riders. Riders request trips with varying earnings, may cancel after limited rejections, and drivers 

strategically balance waiting costs against trip earnings. The “first-best” solution, achievable 

without driver strategic behavior, serves as a performance benchmark. Strict FIFO dispatching—

offering trips to the longest-waiting driver—results in strategic “cherry-picking”, leaving lower-

paying trips unfulfilled, causing excessive wait times and revenue loss. Two alternative 

mechanisms address this. Direct FIFO sends lower-value trips directly to drivers further back in 

the queue, improving throughput but raising fairness concerns, as drivers who waited longer might 

miss out on trip offers. Randomized FIFO dispatches trips probabilistically within segments of 

the queue, encouraging acceptance while preserving fairness, maximizing revenue, and reducing 

income disparities. The study highlights queue-based incentive mechanisms as powerful tools for 

balancing fairness, reliability, and revenue without altering prices or imposing rigid penalties. 

3.1.1  Model setup and assumptions 

The study examines a continuous-time, non-atomic queueing model for dispatching trips from a 

single location (e.g., an airport). Riders request trips continuously to multiple destinations, 

represented as ℒ = {1, 2,… , ℓ}. Each destination i ∈ ℒ, has an arrival rate of riders of 𝜇𝑖 > 0 and 

an earnings value of wi. Riders cancel requests after being declined P times, reflecting limited 

patience. Drivers arrive at a rate of λ > 0, strategically balancing trip earnings against opportunity 

costs c > 0 incurred while waiting in queue; the platform also incurs an opportunity cost of 𝑐𝑝 ∈

[0, 𝑐].  
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The platform dispatches trip requests sequentially to drivers in a queue, who may accept or decline 

offers. A declined trip continues to be dispatched until it’s either accepted by another driver, 

canceled by the rider after P rejections, or withdrawn by the platform. The platform fully and 

transparently shares information on demand, supply, earnings, and opportunity costs with drivers. 

Drivers know their queue position, can decline trips without penalty, and are free to leave, rejoin, 

or exit the queue altogether. Under ideal conditions—no driver strategic behavior and perfect 

platform control—an optimal dispatch solution, the first-best, prioritizes trips in descending order 

of earnings to maximize revenue and throughput. The optimal set is determined by identifying 

the lowest-earning trip type dispatched, denoted as:  

  𝑖∗ = max {𝑖 ∈ ℒ | λ > ∑ 𝜇𝑗

𝑖−1

𝑗=1
} (3.1) 

An optimal platform strategy does not maintain a non-zero driver queue. It dispatches drivers 

upon arrival to destinations in decreasing order of wi until all riders are served or all drivers are 

utilized. The platform’s trip throughput is the mass of trips completed per unit time, while its net 

revenue is the total net earnings from completed trips minus the opportunity costs due to waiting 

drivers.  

Proposition 1 (The first best; Castro et. al. (2021), Randomized FIFO Mechanisms, Ch. 2, p. 8, 

Proposition 1). The steady state first best outcome has zero drivers in the queue. The first best 

trip throughput is represented by 

            𝑇𝐹𝐵 = min {λ, ∑ 𝜇𝑖
𝑖∈ℒ

} (3.2) 

If driver supply is greater than demand, then all rider requests are fulfilled, and the throughput 

is simply ∑ 𝜇𝑖𝑖∈ℒ . However, if driver supply is lower than demand, the throughput is constrained 

by λ, meaning some riders will not be served. The first-best net revenue represents the total 

earnings from completed trips after accounting for driver constraints. The formula 

            𝑅𝐹𝐵 = ∑ 𝜇𝑖
𝑖∈ℒ

∑ 𝑤𝑖𝜇𝑖 + 𝑤𝑖∗ min {λ − ∑ 𝜇𝑗, 𝜇𝑖∗

𝑖∗−1

𝑗=1
}

𝑖∗−1

𝑖=1
, (3.3) 
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breaks revenue into two components. The first term accounts for fully dispatched trips, where all 

requests for trip types 1 through 𝑖∗ − 1 are fulfilled. The second term addresses the lowest-priority 

trip 𝑖∗, where only a fraction of requests may be served, depending on the remaining available 

drivers. 

3.2 Mathematical formulation of the three models  

3.2.1  Strict FIFO: default queue-based dispatching 

Strict FIFO is generally perceived as fair because it ensures that each driver gets a chance to 

receive a trip in the order they arrived. However, when drivers have the flexibility to decline trips, 

they may choose to wait for more profitable ones, leading to cherry-picking. This behavior can 

result in poor outcomes for riders, drivers, and the platform. 

A driver will accept a trip to location 2 only if the additional waiting cost for a trip to location 1 

outweighs the earnings difference between the two trips (𝑤1 − 𝑤2). If 𝜏1,2 is the maximum time a 

driver is willing to wait for a trip to location 1, we have 

        𝜏1,2𝑐 = 𝑤1 − 𝑤2 ⇒ 𝜏1,2 = (𝑤1 − 𝑤2)
𝑐  . (3.4) 

Little’s Law relates the average number of items in a queue to the arrival rate and the average 

time spent in the system (𝐿 =  𝜆𝑊 ). Therefore, the first driver willing to accept a trip to location 

2 will be at position 𝑛2 ≜  𝜇1𝜏1,2 = 𝜇1(𝑤1 − 𝑤2)/𝑐 with a continuation payoff of 𝑤2, representing 

indifference. Given this and assuming infinite rider patience, the first position in the queue where 

a driver is willing to accept a trip to each location i ∈ ℒ as opposed to wait and obtain a trip to 

location i + 1 is given by the following lemma.  

Lemma 1. A strict FIFO dispatching system reaches equilibrium when a driver accepts a trip to 

destination i ∈ ℒ only if their queue position q satisfies 𝑞 ≥ 𝑛𝑖, where 𝑛1 ≜ 0 and for all 𝑖 ≥ 2, 

         𝑛𝑖 ≜ ∑ (
𝑤𝑗 − 𝑤𝑗+1

𝑐
∑ 𝜇𝑘

𝑗

𝑘=1
) .

𝑖−1

𝑗=1
 (3.5) 
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Since a driver is indifferent at position 𝑛𝑖, their continuation payoff—the driver’s net earnings 

from a trip minus the future waiting costs from their current position onward—is 𝑤𝑖 regardless of 

accepting a trip to location i or not. Drivers at earlier positions wait for trips with higher earnings. 

In reality, riders have finite patience, meaning that they will cancel their trip requests if it is 

declined too many times. If the patience level P is lower than the required queue positions ni, the 

trip request will never reach a driver who is willing to accept it. As a result, many trips may go 

unfulfilled, significantly reducing system efficiency. Strict FIFO dispatching leads to highly 

inefficient driver allocation, reducing both driver earnings and platform revenue.  

3.2.2  A dispatching mechanism 

While strict FIFO is itself a dispatch mechanism, its simplicity allows it to be described informally. 

A formal definition becomes necessary when analyzing more complex strategies which modify 

queue order and require a generalized framework. The article formally describes a dispatching 

mechanism that determines how trip requests are assigned to drivers. The mechanism can either 

dispatch the trip to a driver or choose not to dispatch it, denoted by 𝜙.  

Definition 1 (Dispatching Mechanism; Castro et. al. (2021), Randomized FIFO Mechanisms, Ch. 

3, p. 11, Definition 1). A dispatching mechanism determines how trips are allocated based on the 

queue length Q, the dispatching history h, and the trip’s destination. The mechanism selects a 

probability distribution over position in the queue [0, 𝑄] ∪ {𝜙}. This means the platform decides 

whether to assign a rider’s trip to a driver at position 𝑞 ∈ [0, 𝑄] or to not dispatch it (𝜙).  

The mechanism’s decisions depend only on the queue length Q, the system’s current state, and a 

trip’s past dispatch history—not on past driver actions. Similarly, drivers’ decisions depend on 

their current queue position and the current queue length. A driver’s strategy in the queue is 

represented as a tuple 𝜎 = (𝛼, 𝛽, 𝛾), where: 

(i) 𝛼(𝑞, 𝑄, 𝑖) ∈ [0,1]: probability that a driver accepts a trip dispatch to location i. 

(ii) 𝛽(𝑞, 𝑄) ∈ [0,1]: probability that a driver re-enters the queue at the tail after declining. 

(iii) 𝛾(𝑞, 𝑄) ∈ [0,1]: probability that a driver leaves the queue without taking a trip. 
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To evaluate the decision-making process of a driver, we define the continuation payoff, which 

captures the expected net benefit of remaining in the queue. Let 𝑈(𝑞, 𝑄, 𝜎, 𝜎′) be a random 

variable representing the continuation payoff of a driver at position q when the queue length is Q. 

This payoff depends on the driver adopting strategy 𝜎 while all other drivers follow strategy 𝜎′, 

including those who will enter the queue in the future. The continuation payoff consists of the net 

earnings from trips the driver may complete in the future, and the total opportunity cost incurred 

from waiting in the queue. The expected continuation payoff from position q is denoted as: 

𝜋(𝑞, 𝑄, 𝜎, 𝜎′)  ≜  𝔼[𝑈(𝑞, 𝑄, 𝜎, 𝜎′)] . 

This formulation allows the model to predict how drivers evaluate the trade-offs between accepting 

a trip, waiting for a better trip, or leaving the queue entirely. We now define several equilibrium 

properties that characterize an optimal dispatching mechanism. These properties ensure that 

drivers act rationally, do not attempt to manipulate their position in the queue, and make decisions 

that align with the system’s efficiency goals. 

Definition 2 (Subgame-Perfect Equilibrium; Castro et. al. (2021), Randomized FIFO 

Mechanisms, Ch. 3, p. 12, Definition 2). A strategy 𝜎∗ is said to be a subgame-perfect equilibrium 

(SPE) if, for any feasible strategy 𝜎, a driver following 𝜎∗ receives at least the same expected 

payoff as under 𝜎:  

         𝜋(𝑞, 𝑄, 𝜎∗, 𝜎∗) ≥ 𝜋(𝑞, 𝑄, 𝜎, 𝜎∗),    ∀𝑄 ≥ 0, ∀𝑞 ∈ [0, 𝑄]. (3.6) 

This ensures that drivers have no incentive to deviate from the equilibrium strategy, as doing so 

would not improve their expected payoff. While Osborne’s definition of subgame-perfect 

equilibrium applies to extensive-form games, the version by Castro et al. adapts the same principle 

to dynamic queues. In both cases, players have no incentive to deviate at any stage, ensuring 

strategies remain optimal throughout. This conceptual overlap justifies applying subgame-

perfection to ride-sharing dispatch models.11 

 
11 Although not a classical extensive-form game, the dynamic queue in our model shares core features: 
sequential decision-making, state-dependent payoffs, and strategic interactions over time. As such, subgame-
perfection can naturally be extended to this stochastic, dynamic setting, as in Castro et al. (2021). 
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Definition 3 (Individual Rationality; Castro et. al. (2021), Randomized FIFO Mechanisms, Ch. 

3, p. 12, Definition 3). A dispatching mechanism is individually rational in SPE if drivers expect 

a non-negative payoff upon joining the queue.  

        𝜋(𝑞, 𝑄, 𝜎∗, 𝜎∗) ≥ 0,    ∀𝑄 ≥ 0, ∀𝑞 ∈ [0, 𝑄]. (3.7) 

This condition guarantees that drivers do not enter the queue unless doing so yields an expected 

benefit, ensuring participation in the system remains viable. 

Definition 4 (Envy-Freeness; Castro et. al. (2021), Randomized FIFO Mechanisms, Ch. 3, p. 12, 

Definition 4). A mechanism is envy-free in SPE if no driver prefers the expected continuation 

payoff of another driver who has waited for less time. 

         𝜋(𝑞1, 𝑄, 𝜎∗, 𝜎∗) ≥ 𝜋(𝑞2, 𝑄, 𝜎∗, 𝜎∗),    ∀𝑞1, 𝑞2 ∈ [0, 𝑄] s. t. 𝑞1 ≤ 𝑞2. (3.8) 

This condition implies that drivers do not attempt to reposition themselves within the queue, 

ensuring fairness across different queue positions. 

When a dispatching mechanism ℳ reaches steady state under strategy 𝜎∗, the length of the queue, 

denoted as Q*, remains stable. This occurs when the rate at which drivers join the queue matches 

the rate at which they are dispatched. In this state, every driver follows the strategy 𝜎∗, ensuring 

predictable queue dynamics. Let 𝓏𝑖(𝜎∗) represent the fraction of trips to location i that are 

completed in equilibrium. The trip throughput of the mechanism is given by 

         𝑇ℳ(𝜎∗) = ∑ 𝓏𝑖(𝜎∗)𝜇𝑖.
𝑖∈ℒ

 (3.9) 

The total earnings of drivers from completed trips must be balanced against the opportunity costs 

associated with waiting in the queue. The net revenue generated by the platform under the 

mechanism is expressed as 

         𝑅ℳ(𝜎∗) = ∑ 𝓏𝑖(𝜎∗)𝜇𝑖𝑤𝑖 − 𝑄∗𝑐𝑝.
𝑖∈ℒ

 (3.10) 

The primary objective of a dispatching mechanism is to maximize trip throughput and net revenue 

while maintaining an efficient and stable equilibrium. A mechanism is considered optimal if, in 
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equilibrium (i) it achieves the first-best trip throughput, meaning that all feasible trips are 

completed with minimal inefficiency, (ii) it attains the second-best net revenue, which is the 

highest achievable net revenue under a dispatching system that is flexible, transparent, and does 

not penalize drivers for their choices. 

3.2.3  Direct FIFO: selective matching 

The direct FIFO mechanism builds upon FIFO dispatching by assigning lower-earning trips to 

drivers positioned further down the queue. This increases the likelihood of acceptance, as drivers 

further back are incentivized to take these trips in exchange for skipping the rest of the queue. 

When all drivers follow this strategy, the system reaches a subgame perfect equilibrium, ensuring 

maximum revenue and trip throughput within a flexible and transparent framework. 

Definition 5 (Direct FIFO Dispatching; Castro et. al. (2021), Randomized FIFO Mechanisms, 

Ch. 3, p. 13, Definition 5). Under the direct FIFO Dispatching, trips to each location 𝑖 ∈ ℒ are 

dispatched sequentially in a FIFO manner, but only from a specific queue position ni. If the queue 

length Q meets or exceeds ni, trips to location i are assigned. However, if Q < ni, then no trips to 

i are dispatched.  

Higher-earning trips are assigned to drivers at the front of the queue, as they have incurred the 

highest waiting costs. For trips to lower-earning destinations (i > 1), the mechanism bypasses 

drivers who are unlikely to accept them and instead starts dispatching from the first queue position 

where a driver is willing to accept. This assumes infinite rider patience. 

Theorem 1 (Incentive Compatibility of Direct FIFO; Castro et. al. (2021), Randomized FIFO 

Mechanisms, Ch. 3, p. 13, Theorem 1). In a subgame-perfect equilibrium (SPE) under the direct 

FIFO mechanism, drivers accept all trips dispatched and enter the queue only if the queue length 

does not exceed 

          𝑄̅̅̅̅ ≜ 𝑛ℓ + 𝑤ℓ
𝑐 ∑ 𝜇𝑖

𝑖∈ℒ
. (3.11) 

The equilibrium outcome is individually rational and envy-free.  
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The formula for 𝑄̅̅̅̅ reflects that, in a subgame perfect equilibrium (SPE), the queue is sufficiently 

long to accommodate all trip requests, including those to the lowest-paying destination ℓ. The 

segment of the queue given by 𝑤ℓ
𝑐 ∑ 𝜇𝑖𝑖∈ℒ  represents the final positions after 𝑛ℓ where drivers are 

still incentivized to accept trips to location ℓ rather than exit the queue. 

If there are more drivers than required to complete all high-earning trips, direct FIFO does not 

achieve the first-best net revenue. Some drivers engage in strategic waiting, declining lower-earning 

trips in favor of trips with higher earnings. This results in a nonzero queue length, reducing net 

revenue. While strategic waiting cannot be entirely eliminated, it can be minimized under direct 

FIFO. The following theorem establishes that direct FIFO achieves the highest possible 

equilibrium net revenue under any transparent and flexible dispatching mechanism that does not 

penalize drivers for rejecting trips. 

Theorem 2 (Optimality of direct FIFO; Castro et. al. (2021), Randomized FIFO Mechanisms, 

Ch. 3, p. 14, Theorem 2). For any economy, the direct FIFO mechanism satisfies in SPE (i) first-

best trip throughput, meaning all feasible trips are completed, (ii) first-best net revenue when the 

platform’s opportunity cost cp = 0, (iii) second-best net revenue when 𝑐𝑝 ∈ (0, 𝑐], meaning it 

maximizes net revenue among mechanisms that do not penalize drivers for declining trips. 

When driver supply does not exceed total rider demand, 𝜆 ≤ ∑ 𝜇𝑖𝑖∈ℒ , the queue forms up to 

position 𝑛𝑖∗ , and the lowest-earning trip 𝑖∗ is partially completed. All completed trips match the 

first best outcome, and each driver earns a payoff of 𝑤𝑖∗ . When driver supply exceeds total rider 

demand, 𝜆 > ∑ 𝜇𝑖𝑖∈ℒ , the system is oversupplied, all trips are completed, and the queue reaches 

its maximum equilibrium length 𝑄̅̅̅̅, with drivers indifferent between queueing or leaving, yielding 

zero payoff.  

Direct FIFO improves efficiency and revenue compared to strict FIFO but can be unfair, as it 

may allocate high-paying trips to drivers further back in the queue. To address this, Randomized 

FIFO is introduced—an approach that adds controlled randomness to trip assignments to reduce 

strategic waiting and promote fairer trip distribution among drivers. 
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3.2.4  Randomized FIFO: probabilistic dispatch to align incentives 

The family of randomized FIFO mechanisms achieves optimal throughput and near-optimal 

revenue in equilibrium without unfair prioritization. Randomized FIFO dispatches trips uniformly 

at random to drivers in the queue, aligning incentives and reducing cherry-picking. Drivers are 

less likely to reject low-paying trips because this implies waiting significantly longer for the next 

opportunity. To illustrate the impact of randomization on incentive alignment, the article presents 

the steady-state Nash equilibrium under random dispatching, where every trip request is assigned 

to drivers uniformly at random within the queue. 

Definition 6 (Nash Equilibrium in Steady State; Castro et. al. (2021), Randomized FIFO 

Mechanisms, Ch. 4, p. 15, Definition 6). A strategy 𝜎∗ is said to form a Nash equilibrium among 

drivers in steady state if there exists a queue length 𝑄∗ ≥ 0 such that for any feasible strategy 𝜎 

and any queue position 𝑞 ∈ [0, 𝑄∗],  

𝜋(𝑞, 𝑄∗, 𝜎∗, 𝜎∗) ≥ 𝜋(𝑞, 𝑄∗, 𝜎, 𝜎∗) ,         (3.12) 

when all drivers adopt strategy 𝜎∗, the steady-state queue length remains Q*. 

This condition ensures that no driver has an incentive to deviate from strategy 𝜎∗, and the queue 

length stabilizes in equilibrium.  

The concept of Nash equilibrium in steady state presented in Definition 6 builds on the classical 

notion of Nash equilibrium as introduced by Osborne (2000, Definition 2). In both formulations, 

a player (or drivers) has no incentive to unilaterally deviate from their strategy given the strategies 

of others. While Osborne’s definition is framed in terms of preferences over terminal histories in 

extensive-form games, the Castro model translates this to expected payoffs at different queue 

positions under a fixed queue length Q*. The common principle is that strategic optimality is 

preserved under unilateral deviations, whether in discrete histories or continuous queue positions, 

ensuring equilibrium stability in both settings. 

Proposition 2 (Optimality of random dispatching; Castro et. al. (2021), Randomized FIFO 

Mechanisms, Ch. 4, p. 15, Proposition 2). Under random dispatching, every trip is assigned 

uniformly at random across all drivers in the queue. In steady-state Nash equilibrium, this 
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mechanism achieves (i) first-best trip throughput, ensuring all feasible trips are completed, (ii) 

second-best net revenue when cp > 0, (iii) first-best net revenue when cp = 0.  

This leads to two key considerations. 

- A driver under random dispatching must wait significantly longer after declining a trip 

than under strict FIFO, increasing the cost of cherry-picking. 

- Trip assignments are less predictable, increasing the variance in both waiting times and 

net earnings among drivers. 

While pure randomization introduces substantial uncertainty, a well-structured randomized FIFO 

mechanism can align incentives while preserving fairness.  

Definition 7 (Randomized FIFO; Castro et. al. (2021), Randomized FIFO Mechanisms, Ch. 4, 

p. 16, Definition 7). A randomized FIFO mechanism is defined by dividing the queue into 𝑚 ≥ 1 

bins, denoted as ([𝑏(1), 𝑏(1)], [𝑏(2), 𝑏(2)],… , [𝑏(𝑚), 𝑏(𝑚)]). When a trip is dispatched for the kth time, 

the mechanism randomly assigns it to a driver within the corresponding bin [𝑏(𝑘), 𝑏(𝑘)]. If a trip is 

declined, it moves sequentially into the next bin until it is accepted or canceled. In essence, trip 

requests are initially assigned to drivers in the first bin ([𝑏(1), 𝑏(1)]) uniformly at random. If a 

dispatch is rejected, the system moves the trip to the next bin, continuing the process until all 

bins are exhausted. 

Given that riders have a patience level of P, a trip may be dispatched up to P times before the 

request is canceled. Let 𝑖∗ denote the lowest-earning trip type that is partially completed under 

the first-best outcome (as in 3.1). The top 𝑖∗ destinations are partitioned into 𝑚 ≤ min{𝑖∗, 𝑃} 

ordered sets ℒ(1),… , ℒ(𝑚), satisfying three conditions: 

(i) (exhaustiveness) the union of all partitions covers the top i* destinations: ⋃ ℒ(𝑘)𝑚
𝑘=1 =

{1,2,… , 𝑖∗} ⊆ ℒ 

(ii) (mutual exclusivity) trip i belongs to only one partition: ℒ(𝑘1) ∩ ℒ(𝑘2) = ∅,   ∀𝑘1 ≠ 𝑘2 

(iii) (monotonicity) later partitions contain lower-earning trips, such that for all k1, k2 where 

k1 < k2, the trips satisfy: 𝑖 < 𝑗,    ∀𝑖 ∈ ℒ(𝑘1), ∀𝑗 ∈ ℒ(𝑘2) 
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This guarantees that the higher-earning trips are assigned to earlier partitions, while lower-earning 

trips are assigned to later partitions. Each bin k is defined using the payoff gap from the minimum 

in its partition. The upper (𝑏(𝑘)) and lower (𝑏(𝑘)) bin bounds are calculated as 

𝑏(𝑘) ≜ ∑ (𝑤𝑖 − min
𝑖′∈ℒ(𝑘)

{𝑤𝑖′})
𝑖∈∪𝑘′<𝑘ℒ(𝑘′)

𝜇𝑖/𝑐, (3.13) 

𝑏(𝑘) ≜ ∑ (𝑤𝑖 − min
𝑖′∈ℒ(𝑘)

{𝑤𝑖′})
𝑖∈∪𝑘′≤𝑘ℒ(𝑘′)

𝜇𝑖/𝑐. (3.14) 

The formulas are derived using Little’s Law, similarly to 3.5. The article proves that the bins start 

from the head of the queue (i.e., 𝑏(1) = 0), and that they do not overlap.  

The primary result of this study is that the randomized FIFO mechanisms structured in the 

manner described achieve the optimal steady-state outcome in Nash equilibrium. Drivers are 

incentivized to accept trips in a way that maximizes trip throughput and net revenue without 

introducing unfair dispatching practices. 

Theorem 3 (Optimality of randomized FIFO; Castro et. al. (2021), Randomized FIFO 

Mechanisms, Ch. 4, p. 16, Theorem 3). For any given economy and any ordered partition of the 

top 𝑖∗ destinations denoted as (ℒ(1),… , ℒ(𝑚)) , where 𝑚 ≤ 𝑚𝑖𝑛{𝑖∗, 𝑃},  a randomized FIFO 

mechanism that follows the structure outlined in equations (3.13) and (3.14) achieves first-best 

trip throughput and second-best net revenue in Nash equilibrium. When the platform incurs no 

opportunity cost (i.e., cp = 0), the equilibrium also achieves the first-best net revenue. 

The equilibrium properties of randomized FIFO are fundamental for the upcoming analysis 

presented in Chapter 4. Under a randomized FIFO mechanism, a steady-state Nash equilibrium 

is achieved when (i) all driver in the kth bin accept only trips within the top k partitions ⋃ ℒ(𝑘′)𝑘
𝑘′=1 , 

(ii) no driver exits the queue without a trip or rejoins at the tail, (iii) drivers join the queue with 

probability min{1, ∑ 𝜇𝑖/𝜆𝑖∈ℒ } upon arrival, and (iv) the queue length remains constant at Q*. 

Furthermore, the continuation payoff for any driver in the kth bin is equal to the net earnings of 

the lowest-paying trip in the kth partition, i.e. 𝜋∗(𝑞) = min𝑖∈ℒ(𝑘){𝑤𝑖} for all 𝑞 ∈ [𝑏(𝑘), 𝑏(𝑘)] for each 



 
 33 

𝑘 ≤ 𝑚. Being 𝜋∗(𝑞) non-negative and monotonically non-increasing in q implies that randomized 

FIFO ensures individual rationality and envy-freeness in steady-state Nash equilibrium.  

With higher levels of rider patience, P, the randomized FIFO mechanism uses more bins to better 

match high-paying trips with longer-waiting drivers. If (𝑃 ≥ 𝑖∗), the mechanism assigns one trip 

to each partition and dispatches it to the driver at position 𝑛𝑘 in the queue on its kth attempt. In 

equilibrium, trips to all locations 𝑘 ≤ 𝑖∗  are accepted by drivers at nk, leading to the same 

equilibrium outcome as in direct FIFO with all drivers having equal total payoffs. 

3.3 Final remarks: relaxation of equilibrium 

While the Randomized FIFO mechanism is theoretically efficient—achieving optimal throughput 

and near-optimal revenue in Nash equilibrium—these results rely on the assumption of perfectly 

rational driver behavior. In real-world settings, drivers may act unpredictably, deviate from 

equilibrium strategies, or respond to short-term incentives. To explore how the mechanism 

performs under such realistic conditions, Chapter 4 presents simulation results that test 

Randomized FIFO in scenarios where drivers are not fully rational. This provides insights into 

the robustness and practical limitations of the mechanism when applied outside the idealized 

assumptions of game-theoretic models. 
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Chapter 4 
 

 

 

Behavioral Simulation Framework 
 

 

 

Building upon the theoretical models and equilibrium analyses discussed in the previous chapters, 

we conduct two simulations with distinct objectives. The first evaluates the performance of 

acceptance rules that deviate from perfect rationality to understand their impact on system 

metrics. The second benchmarks each acceptance rule against the Nash equilibrium optimum, 

developed by Castro et. al. (2021), by testing all bin and trip partitions to identify the most 

efficient configuration for each rule. In this chapter, we present the first simulation framework, 

designed to recreate the dynamics of the Randomized FIFO dispatch mechanism under more 

realistic behavioral conditions. While prior work assumes drivers are perfectly rational agents, 

real-world settings often deviate from such idealized behavior. Drivers may exhibit bounded 

rationality, inconsistent patience levels, or heuristics-driven decision-making. To bridge this gap 

between theory and practice, the simulation implements variations of Randomized FIFO-based 

dispatch rules in an event-based environment where drivers make decisions according to predefined 

but imperfect acceptance strategies. The model builds on the M/M/c queueing framework 

introduced in Chapter 3, and incorporates a dynamic game in which drivers act as players deciding 

whether to accept incoming trip offers based on queue position and perceived opportunity cost.  
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4.1 Simulation purpose and scope 

The simulation serves as a computational testbed to evaluate the practical viability and robustness 

of Randomized FIFO mechanisms under a range of behavioral assumptions. Inspired by the 

original article’s focus on high-demand ride-sharing locations—such as airports—it recreates a 

single-location dispatch environment with steady rider demand, varying trip earnings, and drivers 

making real-time decisions under pressure. These settings are prone to strategic behavior and 

fairness concerns due to limited rider patience and the high cost of missed offers. Instead of 

assuming fully rational agents, the simulation models a spectrum of driver behaviors, from 

deterministic cutoff rules to probabilistic and patience-based heuristics, to explore how real-world 

frictions affect system performance. 

Crucially, the simulation not only replicates the structural components of the theoretical model 

(such as partitioned queue bins and rider patience thresholds), but also enables controlled 

experimentation with behavioral assumptions. This flexibility makes it possible to benchmark 

alternative acceptance rules against key performance metrics—such as service rate, revenue, 

fairness, and queue efficiency—highlighting the trade-offs that platforms may face when rationality 

is no longer guaranteed. Rather than predicting exact outcomes, we seek to identify trends 

vulnerabilities, and strengths in the mechanism’s design across a diverse space of practical 

conditions. 

4.2 Code structure and acceptance rules 

The simulation code is organized into modular sections, each handling a distinct aspect of the 

Randomized FIFO environment. The simulation operates through a discrete-event object-driven 

framework, managing driver and rider arrivals and the dispatching process over discrete event 

timelines. Drivers and riders are modeled as agents arriving randomly, and their interactions are 

captured in a structured queue environment. Dispatches are managed through partitions and bins 

that are computed based on trip earnings and waiting costs. This structure allows clear separation 

between the setup of the simulation (parameters, partitions, bin boundaries) and its dynamic 

execution (agent interactions, event processing, metric calculations).  
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As mentioned above, the simulation tests a range of acceptance rules, each representing a distinct 

approach that drivers may take when deciding whether to accept or reject trip offers. The 

acceptance rules vary from simple unconditional acceptance to more sophisticated strategies that 

integrate probabilistic or patience-based decision-making. Specifically, the simulation considers 

the following rules (names are expressed as they appear in the code): AlwaysAccept, StrictCut, 

NE, ProbNE, ProbBinNE, DrivPNE, TimePNE. Each of these rules introduces different 

assumptions about driver rationality, patience, and responsiveness to queue conditions, enabling 

a comprehensive evaluation of how behavioral variation impacts the Randomized FIFO dispatch 

mechanism’s overall performance. Notably, rules ending in NE are direct modifications of the Nash 

Equilibrium rule, each relaxing its assumptions in a specific way to simulate more realistic behavior. 

These rules can be viewed along a behavioral spectrum, with some—like ProbNE and 

ProbBinNE—closely mirroring the rational behavior expected in equilibrium, and others—like 

AlwaysAccept or StrictCut—representing more extreme or implausible heuristics. This ranking 

allows us to assess how incremental deviations from optimal behavior influence system-level 

outcomes. 

4.2.1  Unconditional acceptance of all trips (AlwaysAccept) 

The AlwaysAccept rule represents the simplest possible driver behavior: unconditional acceptance 

of every trip offer, regardless of queue position, destination, or expected earnings. Drivers following 

this rule do not engage in any strategic evaluation; they accept the first trip presented to them 

without delay. This rule serves as a baseline in the simulation, illustrating system performance in 

the absence of selective behavior or incentive-driven decision-making. While unrealistic in practice, 

AlwaysAccept provides a useful benchmark for understanding how much strategic filtering affects 

metrics like throughput, queue length, driver payoff, and platform revenue. It effectively models 

a setting where drivers are fully compliant and indifferent to the variability in trip values or 

waiting costs.  

4.2.2  Deterministic queue-position threshold for acceptance (StrictCut) 

The StrictCut, or Strict Cutoff, rule introduces a simple deterministic decision mechanism based 

on a driver’s position in the queue. Under this rule, drivers accept a trip only if their current 
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queue position is less than or equal to a predefined threshold C (given that 0 represents the head 

of the queue, or the driver who has waited the longest in the queue). If a driver’s position exceeds 

this cutoff, the offer is automatically declined, regardless of the trip’s destination or potential 

earnings. This rule mimics a form of bounded rationality, where drivers follow a fixed heuristic, 

accepting offers only when they believe they have waited “long enough” to justify taking any trip. 

StrictCut reflects behavior that is not fully strategic but incorporates a basic sense of waiting cost 

and fairness. Drivers do not evaluate trip value but use their position in the queue as a proxy for 

opportunity cost—the longer they wait, the more likely they are to accept. This rule helps assess 

how threshold-based policies affect system performance, particularly regarding fairness, average 

payoff, and trip completion rates compared to more flexible or strategic acceptance rules. 

4.2.3  Nash-based acceptance logic (NE) 

The NE, or Nash equilibrium, acceptance rule represents the most strategic and rational behavior 

modeled in the simulation. Under this rule, a driver accepts a trip only if it belongs to a partition 

that offers at least as much expected utility as their current position in the queue. This logic 

directly follows from the equilibrium solution derived in the theoretical model, where each 

partition corresponds to a set of trips that rational drivers would accept based on their 

continuation value. The NE rule assumes full information and perfect rationality; drivers are aware 

of the trip partitions and can accurately assess whether an offer meets or exceeds their expected 

payoff. As such, it serves as the benchmark for optimal decision-making within the Randomized 

FIFO framework. 

4.2.4  Probabilistic Nash equilibrium (ProbNE) 

The ProbNE acceptance rule introduces a probabilistic variation of the Nash Equilibrium strategy. 

While it retains the core logic of partition-based decision-making, drivers following this rule no 

longer behave with perfect consistency. Consequently, drivers accept trips with 80% probability if 

𝑘ℒ ≤ 𝑘𝑏, and 20% when 𝑘ℒ > 𝑘𝑏, where 𝑘ℒ is the trip partition index and 𝑘𝑏 is the driver’s bin 

index. This models bounded rationality, where drivers generally act strategically but occasionally 

make suboptimal decisions due to uncertainty or error.  
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4.2.5  Bin-sensitive probabilistic acceptance (ProbBinNE) 

The ProbBinNE, or Probability By Bin, rule refines the ProbNE strategy by tying acceptance 

probabilities to both the trip’s partition and the bin from which the offer is made, incorporating 

a cost-aware behavioral logic. Specifically, when the partition index of the trip (𝑘ℒ) is less than 

or equal to the driver’s assigned bin (𝑘𝑏), the driver accepts the offer with a relatively high 

probability. This probability decreases progressively across bins (e.g., 0.9 for bin 1, 0.75 for bin 2, 

0.6 for bin 3), reflecting the increased cost of waiting in earlier positions. Conversely, if 𝑘ℒ > 𝑘𝑏, 

the acceptance probability is lower (e.g., 0.1 for bin 1, 0.3 for bin 2, 0.5 for bin 3), and increases 

with the bin index, indicating a willingness to compromise as the driver’s position worsens. In 

effect, ProbBinNE models acceptance behavior as a probabilistic function of perceived queueing 

costs: drivers in earlier bins require more attractive offers to justify the cost of continuing to wait, 

while those further back are more tolerant of less optimal trips. This rule captures cost-responsive 

behavior that sits between fully rational strategy and human-like compromise. 

4.2.6  Trip-specific patience-driven acceptance (DrivPNE) 

The DrivPNE, or Driver Patience, rule introduces a form of partition-aware, trip-specific patience 

into the driver’s decision-making process. Under this rule, each driver is assigned a fixed patience 

threshold for each combination of trip type and bin. Rather than making an immediate decision, 

the driver may reject an offer a predefined number of times before ultimately accepting it. For 

instance, a driver may accept a type-3 trip (lowest-paying trip on a scale of only 3 trip types) 

from bin 1 only after rejecting it twice, while accepting the same trip from bin 3 immediately. To 

keep things consistent with the other acceptance rules, we focus on two bins only in this simulation 

(we are holding rider patience fixed at P = 2). This implies that trips to location 3 are rejected 

at least once before being accepted.  In the next chapter, we’ll evaluate this rule across a three 

bins scheme as well. This structure reflects human-like hesitation: drivers are willing to wait in 

the hope of receiving a better offer, but their willingness is bounded and context-dependent. 

DrivPNE thus blends elements of the Nash Equilibrium framework with individual behavioral 

inertia, allowing for the analysis of how differentiated patience affects service rates, matching 

efficiency, and fairness across the queue. 
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4.2.7  Time-constrained queueing (TimePNE) 

The TimePNE, or Time Patience, rule represents a time-based constraint on driver participation 

in the queue. Under this rule, each drivers are assigned a fixed patience threshold—defined in 

terms of time spent waiting—after which they leave the queue if they have not been matched with 

a rider. Unlike other rules that evaluate individual trip offers, TimePNE does not consider the 

characteristics of specific trips or partitions; instead, drivers follow a simple temporal cutoff, 

exiting the system once their wait exceeds a predefined duration (e.g., 30 time units). This models 

a realistic behavioral limit, where drivers are only willing to idle for so long before choosing to 

abandon the platform. TimePNE allows the simulation to capture the effects of queue 

abandonment on system efficiency, service probability, and platform revenue, particularly under 

high-demand conditions where delays are common.  

4.3 Outcome analysis across acceptance strategies 

The simulation results provide a comprehensive view of how each acceptance rule influences key 

performance metrics within the Randomized FIFO dispatch system. Before presenting the 

outcomes, we first introduce the metrics analyzed—clarifying how each indicator captures different 

aspects of system efficiency. The results are then presented individually for each rule, highlighting 

how different behavioral assumptions—ranging from unconditional acceptance to partition-

sensitive patience—affect indicators such as service probability, driver utilization, average payoff, 

queue length, and platform revenue. This is followed by a comparative analysis across all 

acceptance rules, enabling the identification of consistent patterns, trade-offs, and outliers. 

Together, these results illustrate how deviations from equilibrium behavior, whether minor or 

extreme, can significantly shape system-level outcomes, offering practical insights into the 

robustness and flexibility of the dispatch mechanism under varied real-world conditions. 

4.3.1  Key metrics for system evaluation 

To evaluate how different acceptance rules influence the performance of the Randomized FIFO 

dispatch mechanism, the simulation tracks a set of key metrics that reflect efficiency, fairness, and 

platform profitability.  
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These metrics are computed at the end of each simulation run: 

- TP (Throughput). The number of riders successfully matched and served per unit of time. 

It reflects the system’s ability to fulfill demand.12 

- Bink_p. The probability of successfully matching a rider in bin k, calculated as the ratio 

of accepted to offered trips in that bin. 

- P_match. The overall rider matching probability, accounting for fallback across bins. 

- DrivUtil (Driver Utilization). The proportion of drivers who complete at least one trip. 

- ServProb (Service Probability). The fraction of rider requests that result in a successful 

match.13 

- CRate (Cancellation Rate). Defined as 1 – ServProb, measuring how often requests go 

unserved.  

- ExRate (Patience Exhaustion Rate). The share of riders who abandon after reaching their 

rejection limit. 

- AvgQLen (Average Queue Length). The mean number of drivers waiting over time. 

- NetRev (Net Revenue). Platform earnings net of drivers’ aggregate waiting costs. 

- AvgDrvPay (Average Driver Payoff). Mean driver payoff (earnings minus waiting costs). 

- VarDrvPay (Variance of Driver Payoffs). Statistical variance of driver payoffs, serving 

as a proxy for income inequality. 

Together, these metrics enable a multi-dimensional assessment of system performance, facilitating 

direct comparison across acceptance rules in terms of efficiency, fairness, and platform incentives. 

Below, we present the key findings from our simulation runs. For full code listings and detailed 

metric definitions, please refer to Appendix A. 

 

 
12 Intuitively, this measure aligns with the cumulative matching probability (P_match) multiplied by the 
total rider demand (∑ 𝜇𝑖). While computed directly from the simulation, the validity of throughput can be 
intuitively confirmed by this relationship, highlighting its consistency as an efficiency indicator. 
13 As bins are progressively reached, this metric converges to the ratio of total rider demand to total offers 
per rider—i.e., ∑ 𝜇 /∑ 𝑜, where 𝜇 is the location demand and 𝑜 the average offers needed for acceptance. 
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4.3.2  Results by acceptance rule 

 The results below are organized by acceptance rule, using the code names assigned in the 

simulation (e.g., 3_NE, 4_ProbNE). For each rule, we examine how system performance evolves 

with changes in driver supply. The simulations are based on a stylized urban environment with 

three destination types [1, 2, 3], each offering different rewards and arrival rates: $75, $25, and 

$15, with relative demand rates of [1, 6, 3]. Driver cost per unit time is set to 1/3. Riders are 

assumed to have a patience level of 2, meaning they will attempt up to two matches before exiting 

the system. Driver supply (λ) varies from 1 to 15 to explore undersupply, balanced, and oversupply 

conditions. Each simulation runs for 10,000 time units to approximate steady-state behavior. To 

isolate the effects of the acceptance mechanism, the queue is left unbounded, reflecting driver 

patience and allowing the system to capture extreme queue growth in oversupplied conditions. 

1_AlwaysAccept. We first present the main results under the AlwaysAccept rule, which serves 

as a baseline scenario where all trip offers are unconditionally accepted. 

 

 

As driver supply (λ) increases, throughput (TP) rises linearly until it plateaus at the demand 

ceiling (10 trips per unit time), confirming full utilization of demand.  

Rule P λ i* Partitions Bins TP Bin1_p Bin2_p P_match DrivUtil ServProb CRate ExRate AvgQLen NetRev AvgDrvPay VarDrvPay
1_AlwaysAccept 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.98 1 0 0 80.67 46.75 47.25 539.81
1_AlwaysAccept 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 1 NaN 1 1 1 0 0 0.4 65.06 32.27 313.01
1_AlwaysAccept 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 1 NaN 1 1 1 0 0 2.41 158.67 31.98 306.76
1_AlwaysAccept 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 1 NaN 1 1 1 0 0 4.09 213.84 26.86 278.17
1_AlwaysAccept 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 1 NaN 1 1 1 0 0 121.7 227.9 22.87 298.57
1_AlwaysAccept 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 1 NaN 1 0.83 1 0 0 10517.26 -3238.18 -219.84 34034.67
1_AlwaysAccept 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 10 1 NaN 1 0.67 1 0 0 24802.14 -7997.95 -350.26 128262.24
2_StrictCut(50) 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 1 1 0 0 15.98 67.75 69.34 33.53
2_StrictCut(50) 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 1 NaN 1 1 1 0 0 0.39 63.55 31.84 297.64
2_StrictCut(50) 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 1 NaN 1 1 1 0 0 2.44 158.38 31.85 301.57
2_StrictCut(50) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 1 NaN 1 1 1 0 0 3.97 214.43 26.79 272.98
2_StrictCut(50) 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.5 0.35 0 0.35 0.35 0.21 0.79 0.65 31940.92 -10552.77 -355.78 383605.81
2_StrictCut(50) 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.4 0.34 0 0.34 0.28 0.21 0.79 0.66 42758.42 -14161.42 -327.68 410364.52
2_StrictCut(50) 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.4 0.34 0 0.34 0.23 0.2 0.8 0.66 57812.32 -19179.06 -286.04 406229.24
3_NE 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 1 1 0 0 31.5 63.34 64.32 61.97
3_NE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.14 1 1 0.99 0.25 0.75 0 148.25 50.21 25.42 25.08
3_NE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.14 1 1 1 0.45 0.55 0 152.01 123.22 24.7 6.61
3_NE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.7 1 1 1 0.73 0.27 0 347.69 123.21 15.49 318.52
3_NE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 0.7 1 1 0.99 0.77 0.23 0 527.63 93.28 9.41 274.69
3_NE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 10 0.7 1 1 0.83 0.77 0.23 0 10140.6 -3109.9 -212.69 30384.74
3_NE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 0.7 1 1 0.66 0.77 0.23 0 25429.77 -8207.55 -356.72 134965.02
4_ProbNE 2 1 1 [[1]] [(0, 0)] 0.8 0.8 NaN 0.8 0.8 0.8 0.2 0 948.58 -256.43 -197.01 36214.75
4_ProbNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.29 NaN 0.29 1 0.29 0.71 0 33.95 77.58 39.21 619.38
4_ProbNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.29 0.8 0.86 1 0.47 0.53 0.07 153.89 121.19 24.01 308.7
4_ProbNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.62 0.8 0.92 1 0.65 0.35 0.05 360.19 107.77 13.44 342.75
4_ProbNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.93 0.92 0.67 0.33 0.07 3916.66 -1051.54 -94.75 5953.86
4_ProbNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.92 0.77 0.67 0.33 0.08 14060.48 -4432.94 -279.45 61720.53
4_ProbNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.92 0.62 0.67 0.33 0.08 28327.44 -9189.5 -374.14 170226.09
5_ProbBinNE 2 1 1 [[1]] [(0, 0)] 0.9 0.9 NaN 0.9 0.9 0.9 0.1 0 563.53 -120.85 -102.59 10174.23
5_ProbBinNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.21 0.75 0.81 0.99 0.26 0.74 0.02 145.62 46.14 23.26 480.98
5_ProbBinNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.21 0.75 0.8 1 0.43 0.57 0.11 156.28 119.9 24.15 222.41
5_ProbBinNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.66 0.75 0.92 1 0.67 0.33 0.04 355.43 113.59 14.26 323.14
5_ProbBinNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.1 0.66 0.75 0.92 0.91 0.68 0.32 0.08 4604.18 -1281.17 -113.54 8095.56
5_ProbBinNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.66 0.75 0.92 0.76 0.68 0.32 0.08 14192.15 -4475.32 -279.04 63311.81
5_ProbBinNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.1 0.66 0.75 0.92 0.61 0.68 0.32 0.08 29722.92 -9654.46 -383.93 183019.17
6_DrivPNE 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.98 1 0 0 154.64 22.96 23.54 660.67
6_DrivPNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.54 NaN 0.54 1 0.54 0.46 0 0.99 76.36 38.14 488.88
6_DrivPNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.54 1 1 1 0.61 0.39 0 148.96 125.39 25.18 376.52
6_DrivPNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.99 0.53 0.47 0.2 862.39 -49.29 -6.01 447.71
6_DrivPNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.79 0.53 0.47 0.2 10708.58 -3330.37 -259.89 49229.13
6_DrivPNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.5 0.59 0.8 0.66 0.53 0.47 0.2 20809.77 -6696.99 -363.66 140165.14
6_DrivPNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.52 0.53 0.47 0.2 36018.76 -11767.73 -402.33 254469.93
7_TimePNE(30) 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.97 1 0 0 16.54 66.95 67.3 163.9
7_TimePNE(30) 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 1 0.14 NaN 0.14 0.49 0.14 0.86 0 59.43 54.49 32.08 1067.18
7_TimePNE(30) 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 1.3 0.14 1 1 0.26 0.18 0.82 0 141.2 34.83 14.35 668.27
7_TimePNE(30) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.87 0.7 0.3 0 100.16 191.14 25.17 369.25
7_TimePNE(30) 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.7 0.7 0.3 0 188.84 163.64 19.3 377.74
7_TimePNE(30) 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.58 0.7 0.3 0 281.87 130.92 15.08 343.05
7_TimePNE(30) 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8.1 0.7 1 1 0.54 0.73 0.27 0 356.51 122.91 12.77 288.15
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These patterns are consistent with the bin-level acceptance data, where all trips to Location 1 are 

always matched in Bin 1, and all trips to Location 2 are also matched in Bin 1 once i* > 1, 

resulting in a 100% acceptance rate concentrated in a single bin.  

However, the absence of queue control or selective acceptance causes queue length and driver 

payoff variance to explode in oversupplied regimes (λ ≥ 10). Average driver payoff becomes 

strongly negative, reflecting high waiting costs due to long idle times. Net revenue collapses into 

deeply negative territory, indicating inefficiency from platform overspending on driver wait 

compensation. Driver utilization steadily declines beyond λ = 10, while service probability remains 

at 1.0 throughout—since all riders are matched eventually, albeit with excessive driver waiting. 

This masks the poor platform performance and worsening driver experience, evidenced by sharply 

increasing queue length and income dispersion. Overall, while AlwaysAccept ensures zero 

cancellation and maximal service levels, it leads to extreme inefficiencies and platform losses in 

high-supply scenarios, highlighting the need for smarter acceptance rules to manage market 

balance. 

2_StrictCut(50). The results for StrictCut at position 50 illustrate how enforcing a fixed 

positional threshold impacts key performance metrics across varying levels of driver supply. 

 

 

Rule λ L1_Bin1 L1_Bin2 L2_Bin1 L2_Bin2
1_AlwaysAccept 1 100 0 0 0
1_AlwaysAccept 2 100 0 100 0
1_AlwaysAccept 5 100 0 100 0
1_AlwaysAccept 8 100 0 100 0
1_AlwaysAccept 10 100 0 100 0
1_AlwaysAccept 12 100 0 100 0
1_AlwaysAccept 15 100 0 100 0
2_StrictCut(50) 1 100 0 0 0
2_StrictCut(50) 2 100 0 100 0
2_StrictCut(50) 5 100 0 100 0
2_StrictCut(50) 8 100 0 100 0
2_StrictCut(50) 10 100 0 100 0
2_StrictCut(50) 12 100 0 100 0
2_StrictCut(50) 15 100 0 100 0
3_NE 1 100 0 0 0
3_NE 2 100 0 0 100
3_NE 5 100 0 0 100
3_NE 8 100 0 0 100
3_NE 10 100 0 0 100
3_NE 12 100 0 0 100
3_NE 15 100 0 0 100
4_ProbNE 1 100 0 0 0
4_ProbNE 2 100 0 100 0
4_ProbNE 5 87.4 12.6 29.1 70.9
4_ProbNE 8 89.4 10.6 33.8 66.2
4_ProbNE 10 83.7 16.3 24.4 75.6
4_ProbNE 12 83.5 16.5 23.8 76.2
4_ProbNE 15 83.2 16.8 23.7 76.3
5_ProbBinNE 1 100 0 0 0
5_ProbBinNE 2 99 1 55.5 44.5
5_ProbBinNE 5 93.3 6.7 15.2 84.8
5_ProbBinNE 8 95.8 4.2 22.4 77.6
5_ProbBinNE 10 92.5 7.5 13.2 86.8
5_ProbBinNE 12 92.2 7.8 12.8 87.2
5_ProbBinNE 15 92.3 7.7 12.8 87.2
6_DrivPNE 1 100 0 0 0
6_DrivPNE 2 100 0 100 0
6_DrivPNE 5 100 0 70.2 29.8
6_DrivPNE 8 66.1 33.9 44.4 55.6
6_DrivPNE 10 65.7 34.3 44.8 55.2
6_DrivPNE 12 65.8 34.2 44.6 55.4
6_DrivPNE 15 65.8 34.2 44.4 55.6
7_TimePNE(30) 1 100 0 0 0
7_TimePNE(30) 2 100 0 0 0
7_TimePNE(30) 5 100 0 0 100
7_TimePNE(30) 8 100 0 0 0
7_TimePNE(30) 10 100 0 0 0
7_TimePNE(30) 12 100 0 0 0
7_TimePNE(30) 15 100 0 0 100

Rule P λ i* Partitions Bins TP Bin1_p Bin2_p P_match DrivUtil ServProb CRate ExRate AvgQLen NetRev AvgDrvPay VarDrvPay
1_AlwaysAccept 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.98 1 0 0 80.67 46.75 47.25 539.81
1_AlwaysAccept 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 1 NaN 1 1 1 0 0 0.4 65.06 32.27 313.01
1_AlwaysAccept 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 1 NaN 1 1 1 0 0 2.41 158.67 31.98 306.76
1_AlwaysAccept 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 1 NaN 1 1 1 0 0 4.09 213.84 26.86 278.17
1_AlwaysAccept 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 1 NaN 1 1 1 0 0 121.7 227.9 22.87 298.57
1_AlwaysAccept 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 1 NaN 1 0.83 1 0 0 10517.26 -3238.18 -219.84 34034.67
1_AlwaysAccept 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 10 1 NaN 1 0.67 1 0 0 24802.14 -7997.95 -350.26 128262.24
2_StrictCut(50) 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 1 1 0 0 15.98 67.75 69.34 33.53
2_StrictCut(50) 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 1 NaN 1 1 1 0 0 0.39 63.55 31.84 297.64
2_StrictCut(50) 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 1 NaN 1 1 1 0 0 2.44 158.38 31.85 301.57
2_StrictCut(50) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 1 NaN 1 1 1 0 0 3.97 214.43 26.79 272.98
2_StrictCut(50) 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.5 0.35 0 0.35 0.35 0.21 0.79 0.65 31940.92 -10552.77 -355.78 383605.81
2_StrictCut(50) 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.4 0.34 0 0.34 0.28 0.21 0.79 0.66 42758.42 -14161.42 -327.68 410364.52
2_StrictCut(50) 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.4 0.34 0 0.34 0.23 0.2 0.8 0.66 57812.32 -19179.06 -286.04 406229.24
3_NE 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 1 1 0 0 31.5 63.34 64.32 61.97
3_NE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.14 1 1 0.99 0.25 0.75 0 148.25 50.21 25.42 25.08
3_NE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.14 1 1 1 0.45 0.55 0 152.01 123.22 24.7 6.61
3_NE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.7 1 1 1 0.73 0.27 0 347.69 123.21 15.49 318.52
3_NE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 0.7 1 1 0.99 0.77 0.23 0 527.63 93.28 9.41 274.69
3_NE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 10 0.7 1 1 0.83 0.77 0.23 0 10140.6 -3109.9 -212.69 30384.74
3_NE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 0.7 1 1 0.66 0.77 0.23 0 25429.77 -8207.55 -356.72 134965.02
4_ProbNE 2 1 1 [[1]] [(0, 0)] 0.8 0.8 NaN 0.8 0.8 0.8 0.2 0 948.58 -256.43 -197.01 36214.75
4_ProbNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.29 NaN 0.29 1 0.29 0.71 0 33.95 77.58 39.21 619.38
4_ProbNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.29 0.8 0.86 1 0.47 0.53 0.07 153.89 121.19 24.01 308.7
4_ProbNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.62 0.8 0.92 1 0.65 0.35 0.05 360.19 107.77 13.44 342.75
4_ProbNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.93 0.92 0.67 0.33 0.07 3916.66 -1051.54 -94.75 5953.86
4_ProbNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.92 0.77 0.67 0.33 0.08 14060.48 -4432.94 -279.45 61720.53
4_ProbNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.92 0.62 0.67 0.33 0.08 28327.44 -9189.5 -374.14 170226.09
5_ProbBinNE 2 1 1 [[1]] [(0, 0)] 0.9 0.9 NaN 0.9 0.9 0.9 0.1 0 563.53 -120.85 -102.59 10174.23
5_ProbBinNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.21 0.75 0.81 0.99 0.26 0.74 0.02 145.62 46.14 23.26 480.98
5_ProbBinNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.21 0.75 0.8 1 0.43 0.57 0.11 156.28 119.9 24.15 222.41
5_ProbBinNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.66 0.75 0.92 1 0.67 0.33 0.04 355.43 113.59 14.26 323.14
5_ProbBinNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.1 0.66 0.75 0.92 0.91 0.68 0.32 0.08 4604.18 -1281.17 -113.54 8095.56
5_ProbBinNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.66 0.75 0.92 0.76 0.68 0.32 0.08 14192.15 -4475.32 -279.04 63311.81
5_ProbBinNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.1 0.66 0.75 0.92 0.61 0.68 0.32 0.08 29722.92 -9654.46 -383.93 183019.17
6_DrivPNE 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.98 1 0 0 154.64 22.96 23.54 660.67
6_DrivPNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.54 NaN 0.54 1 0.54 0.46 0 0.99 76.36 38.14 488.88
6_DrivPNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.54 1 1 1 0.61 0.39 0 148.96 125.39 25.18 376.52
6_DrivPNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.99 0.53 0.47 0.2 862.39 -49.29 -6.01 447.71
6_DrivPNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.79 0.53 0.47 0.2 10708.58 -3330.37 -259.89 49229.13
6_DrivPNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.5 0.59 0.8 0.66 0.53 0.47 0.2 20809.77 -6696.99 -363.66 140165.14
6_DrivPNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.52 0.53 0.47 0.2 36018.76 -11767.73 -402.33 254469.93
7_TimePNE(30) 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.97 1 0 0 16.54 66.95 67.3 163.9
7_TimePNE(30) 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 1 0.14 NaN 0.14 0.49 0.14 0.86 0 59.43 54.49 32.08 1067.18
7_TimePNE(30) 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 1.3 0.14 1 1 0.26 0.18 0.82 0 141.2 34.83 14.35 668.27
7_TimePNE(30) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.87 0.7 0.3 0 100.16 191.14 25.17 369.25
7_TimePNE(30) 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.7 0.7 0.3 0 188.84 163.64 19.3 377.74
7_TimePNE(30) 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.58 0.7 0.3 0 281.87 130.92 15.08 343.05
7_TimePNE(30) 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8.1 0.7 1 1 0.54 0.73 0.27 0 356.51 122.91 12.77 288.15

Rule P λ i* Partitions Bins TP Bin1_p Bin2_p P_match DrivUtil ServProb CRate ExRate AvgQLen NetRev AvgDrvPay VarDrvPay
1_AlwaysAccept 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.98 1 0 0 80.67 46.75 47.25 539.81
1_AlwaysAccept 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 1 NaN 1 1 1 0 0 0.4 65.06 32.27 313.01
1_AlwaysAccept 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 1 NaN 1 1 1 0 0 2.41 158.67 31.98 306.76
1_AlwaysAccept 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 1 NaN 1 1 1 0 0 4.09 213.84 26.86 278.17
1_AlwaysAccept 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 1 NaN 1 1 1 0 0 121.7 227.9 22.87 298.57
1_AlwaysAccept 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 1 NaN 1 0.83 1 0 0 10517.26 -3238.18 -219.84 34034.67
1_AlwaysAccept 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 10 1 NaN 1 0.67 1 0 0 24802.14 -7997.95 -350.26 128262.24
2_StrictCut(50) 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 1 1 0 0 15.98 67.75 69.34 33.53
2_StrictCut(50) 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 1 NaN 1 1 1 0 0 0.39 63.55 31.84 297.64
2_StrictCut(50) 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 1 NaN 1 1 1 0 0 2.44 158.38 31.85 301.57
2_StrictCut(50) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 1 NaN 1 1 1 0 0 3.97 214.43 26.79 272.98
2_StrictCut(50) 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.5 0.35 0 0.35 0.35 0.21 0.79 0.65 31940.92 -10552.77 -355.78 383605.81
2_StrictCut(50) 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.4 0.34 0 0.34 0.28 0.21 0.79 0.66 42758.42 -14161.42 -327.68 410364.52
2_StrictCut(50) 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.4 0.34 0 0.34 0.23 0.2 0.8 0.66 57812.32 -19179.06 -286.04 406229.24
3_NE 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 1 1 0 0 31.5 63.34 64.32 61.97
3_NE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.14 1 1 0.99 0.25 0.75 0 148.25 50.21 25.42 25.08
3_NE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.14 1 1 1 0.45 0.55 0 152.01 123.22 24.7 6.61
3_NE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.7 1 1 1 0.73 0.27 0 347.69 123.21 15.49 318.52
3_NE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 0.7 1 1 0.99 0.77 0.23 0 527.63 93.28 9.41 274.69
3_NE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 10 0.7 1 1 0.83 0.77 0.23 0 10140.6 -3109.9 -212.69 30384.74
3_NE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 0.7 1 1 0.66 0.77 0.23 0 25429.77 -8207.55 -356.72 134965.02
4_ProbNE 2 1 1 [[1]] [(0, 0)] 0.8 0.8 NaN 0.8 0.8 0.8 0.2 0 948.58 -256.43 -197.01 36214.75
4_ProbNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.29 NaN 0.29 1 0.29 0.71 0 33.95 77.58 39.21 619.38
4_ProbNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.29 0.8 0.86 1 0.47 0.53 0.07 153.89 121.19 24.01 308.7
4_ProbNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.62 0.8 0.92 1 0.65 0.35 0.05 360.19 107.77 13.44 342.75
4_ProbNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.93 0.92 0.67 0.33 0.07 3916.66 -1051.54 -94.75 5953.86
4_ProbNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.92 0.77 0.67 0.33 0.08 14060.48 -4432.94 -279.45 61720.53
4_ProbNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.92 0.62 0.67 0.33 0.08 28327.44 -9189.5 -374.14 170226.09
5_ProbBinNE 2 1 1 [[1]] [(0, 0)] 0.9 0.9 NaN 0.9 0.9 0.9 0.1 0 563.53 -120.85 -102.59 10174.23
5_ProbBinNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.21 0.75 0.81 0.99 0.26 0.74 0.02 145.62 46.14 23.26 480.98
5_ProbBinNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.21 0.75 0.8 1 0.43 0.57 0.11 156.28 119.9 24.15 222.41
5_ProbBinNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.66 0.75 0.92 1 0.67 0.33 0.04 355.43 113.59 14.26 323.14
5_ProbBinNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.1 0.66 0.75 0.92 0.91 0.68 0.32 0.08 4604.18 -1281.17 -113.54 8095.56
5_ProbBinNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.66 0.75 0.92 0.76 0.68 0.32 0.08 14192.15 -4475.32 -279.04 63311.81
5_ProbBinNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.1 0.66 0.75 0.92 0.61 0.68 0.32 0.08 29722.92 -9654.46 -383.93 183019.17
6_DrivPNE 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.98 1 0 0 154.64 22.96 23.54 660.67
6_DrivPNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.54 NaN 0.54 1 0.54 0.46 0 0.99 76.36 38.14 488.88
6_DrivPNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.54 1 1 1 0.61 0.39 0 148.96 125.39 25.18 376.52
6_DrivPNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.99 0.53 0.47 0.2 862.39 -49.29 -6.01 447.71
6_DrivPNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.79 0.53 0.47 0.2 10708.58 -3330.37 -259.89 49229.13
6_DrivPNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.5 0.59 0.8 0.66 0.53 0.47 0.2 20809.77 -6696.99 -363.66 140165.14
6_DrivPNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.52 0.53 0.47 0.2 36018.76 -11767.73 -402.33 254469.93
7_TimePNE(30) 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.97 1 0 0 16.54 66.95 67.3 163.9
7_TimePNE(30) 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 1 0.14 NaN 0.14 0.49 0.14 0.86 0 59.43 54.49 32.08 1067.18
7_TimePNE(30) 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 1.3 0.14 1 1 0.26 0.18 0.82 0 141.2 34.83 14.35 668.27
7_TimePNE(30) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.87 0.7 0.3 0 100.16 191.14 25.17 369.25
7_TimePNE(30) 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.7 0.7 0.3 0 188.84 163.64 19.3 377.74
7_TimePNE(30) 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.58 0.7 0.3 0 281.87 130.92 15.08 343.05
7_TimePNE(30) 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8.1 0.7 1 1 0.54 0.73 0.27 0 356.51 122.91 12.77 288.15
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At low to moderate driver supply levels (λ  ≤ 8), StrictCut(50) performs similarly to the 

AlwaysAccept benchmark—throughput (TP) rises steadily, service probability is perfect, and 

driver utilization is complete. This is confirmed by the distribution of accepted matches: from λ 

= 2 to λ = 15, 100% of L1 and L2 trips are accepted in Bin1, with zero matches from downstream 

positions. 

 

 

However, once λ exceeds 8, the rigid position threshold at queue index 50 becomes a bottleneck. 

TP quickly caps at around 3.5, Bin1_p stagnates near 0.35, and P_match also stabilizes at 0.34–

0.35, signaling that only early-position drivers are consistently matched while the rest are bypassed. 

As a result, service probability drops, despite many rider requests, since offers beyond the strict 

cutoff are wasted. This inefficiency leads to a sharp rise in cancellation and exhaustion rates, and 

driver utilization plummets to just 23% at high λ. Economic outcomes reflect these mismatches: 

net revenue becomes deeply negative, and average driver payoffs collapse into losses with 

extremely high variance (over 400,000), driven by idle time and growing inequality in driver 

opportunities. Average queue lengths explode (over 57,000 at λ  = 15), revealing systemic 

congestion. In sum, while StrictCut(50) enforces queue fairness at low supply, it fails to adapt 

under oversupply, creating performance ceilings and instability across key metrics. 

Rule λ L1_Bin1 L1_Bin2 L2_Bin1 L2_Bin2
1_AlwaysAccept 1 100 0 0 0
1_AlwaysAccept 2 100 0 100 0
1_AlwaysAccept 5 100 0 100 0
1_AlwaysAccept 8 100 0 100 0
1_AlwaysAccept 10 100 0 100 0
1_AlwaysAccept 12 100 0 100 0
1_AlwaysAccept 15 100 0 100 0
2_StrictCut(50) 1 100 0 0 0
2_StrictCut(50) 2 100 0 100 0
2_StrictCut(50) 5 100 0 100 0
2_StrictCut(50) 8 100 0 100 0
2_StrictCut(50) 10 100 0 100 0
2_StrictCut(50) 12 100 0 100 0
2_StrictCut(50) 15 100 0 100 0
3_NE 1 100 0 0 0
3_NE 2 100 0 0 100
3_NE 5 100 0 0 100
3_NE 8 100 0 0 100
3_NE 10 100 0 0 100
3_NE 12 100 0 0 100
3_NE 15 100 0 0 100
4_ProbNE 1 100 0 0 0
4_ProbNE 2 100 0 100 0
4_ProbNE 5 87.4 12.6 29.1 70.9
4_ProbNE 8 89.4 10.6 33.8 66.2
4_ProbNE 10 83.7 16.3 24.4 75.6
4_ProbNE 12 83.5 16.5 23.8 76.2
4_ProbNE 15 83.2 16.8 23.7 76.3
5_ProbBinNE 1 100 0 0 0
5_ProbBinNE 2 99 1 55.5 44.5
5_ProbBinNE 5 93.3 6.7 15.2 84.8
5_ProbBinNE 8 95.8 4.2 22.4 77.6
5_ProbBinNE 10 92.5 7.5 13.2 86.8
5_ProbBinNE 12 92.2 7.8 12.8 87.2
5_ProbBinNE 15 92.3 7.7 12.8 87.2
6_DrivPNE 1 100 0 0 0
6_DrivPNE 2 100 0 100 0
6_DrivPNE 5 100 0 70.2 29.8
6_DrivPNE 8 66.1 33.9 44.4 55.6
6_DrivPNE 10 65.7 34.3 44.8 55.2
6_DrivPNE 12 65.8 34.2 44.6 55.4
6_DrivPNE 15 65.8 34.2 44.4 55.6
7_TimePNE(30) 1 100 0 0 0
7_TimePNE(30) 2 100 0 0 0
7_TimePNE(30) 5 100 0 0 100
7_TimePNE(30) 8 100 0 0 0
7_TimePNE(30) 10 100 0 0 0
7_TimePNE(30) 12 100 0 0 0
7_TimePNE(30) 15 100 0 0 100

Rule λ L1_Bin1 L1_Bin2 L2_Bin1 L2_Bin2
1_AlwaysAccept 1 100 0 0 0
1_AlwaysAccept 2 100 0 100 0
1_AlwaysAccept 5 100 0 100 0
1_AlwaysAccept 8 100 0 100 0
1_AlwaysAccept 10 100 0 100 0
1_AlwaysAccept 12 100 0 100 0
1_AlwaysAccept 15 100 0 100 0
2_StrictCut(50) 1 100 0 0 0
2_StrictCut(50) 2 100 0 100 0
2_StrictCut(50) 5 100 0 100 0
2_StrictCut(50) 8 100 0 100 0
2_StrictCut(50) 10 100 0 100 0
2_StrictCut(50) 12 100 0 100 0
2_StrictCut(50) 15 100 0 100 0
3_NE 1 100 0 0 0
3_NE 2 100 0 0 100
3_NE 5 100 0 0 100
3_NE 8 100 0 0 100
3_NE 10 100 0 0 100
3_NE 12 100 0 0 100
3_NE 15 100 0 0 100
4_ProbNE 1 100 0 0 0
4_ProbNE 2 100 0 100 0
4_ProbNE 5 87.4 12.6 29.1 70.9
4_ProbNE 8 89.4 10.6 33.8 66.2
4_ProbNE 10 83.7 16.3 24.4 75.6
4_ProbNE 12 83.5 16.5 23.8 76.2
4_ProbNE 15 83.2 16.8 23.7 76.3
5_ProbBinNE 1 100 0 0 0
5_ProbBinNE 2 99 1 55.5 44.5
5_ProbBinNE 5 93.3 6.7 15.2 84.8
5_ProbBinNE 8 95.8 4.2 22.4 77.6
5_ProbBinNE 10 92.5 7.5 13.2 86.8
5_ProbBinNE 12 92.2 7.8 12.8 87.2
5_ProbBinNE 15 92.3 7.7 12.8 87.2
6_DrivPNE 1 100 0 0 0
6_DrivPNE 2 100 0 100 0
6_DrivPNE 5 100 0 70.2 29.8
6_DrivPNE 8 66.1 33.9 44.4 55.6
6_DrivPNE 10 65.7 34.3 44.8 55.2
6_DrivPNE 12 65.8 34.2 44.6 55.4
6_DrivPNE 15 65.8 34.2 44.4 55.6
7_TimePNE(30) 1 100 0 0 0
7_TimePNE(30) 2 100 0 0 0
7_TimePNE(30) 5 100 0 0 100
7_TimePNE(30) 8 100 0 0 0
7_TimePNE(30) 10 100 0 0 0
7_TimePNE(30) 12 100 0 0 0
7_TimePNE(30) 15 100 0 0 100
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3_NE. The NE rule captures strategic driver behavior under equilibrium conditions, where 

acceptance decisions reflect utility-maximizing responses to rider destinations and queue 

positioning. The following results illustrate how this rational behavior shapes overall system dynamics 

across varying levels of driver supply. 

 

 

 

As driver supply (λ) increases, throughput (TP) grows quickly and stabilizes around 10 riders per 

unit of time, corresponding to the total passenger arrival rate. This suggests the system 

successfully fulfills nearly all demand once an adequate number of drivers are available, validating 

the effectiveness of equilibrium-based matching. The service probability follows a more nuanced 

trajectory and eventually stabilizes at approximately 0.77—matching the theoretical limit derived 

from the ratio of total accepted arrival rates to total offers: 1+6+3/1+6+2	∙	3 = 10/13 ≈ 0.77. 

 

 

This cap reflects that only trips that reach a willing bin contribute to matches under NE behavior. 

Bin 1 acceptance probability (Bin1_p) remains flat at ~0.7 once the queue reliably reaches beyond 

the Bin 1 boundary. The data in the table above supports this: offers to location 1 (L1) are always 

Rule P λ i* Partitions Bins TP Bin1_p Bin2_p P_match DrivUtil ServProb CRate ExRate AvgQLen NetRev AvgDrvPay VarDrvPay
1_AlwaysAccept 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.98 1 0 0 80.67 46.75 47.25 539.81
1_AlwaysAccept 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 1 NaN 1 1 1 0 0 0.4 65.06 32.27 313.01
1_AlwaysAccept 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 1 NaN 1 1 1 0 0 2.41 158.67 31.98 306.76
1_AlwaysAccept 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 1 NaN 1 1 1 0 0 4.09 213.84 26.86 278.17
1_AlwaysAccept 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 1 NaN 1 1 1 0 0 121.7 227.9 22.87 298.57
1_AlwaysAccept 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 1 NaN 1 0.83 1 0 0 10517.26 -3238.18 -219.84 34034.67
1_AlwaysAccept 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 10 1 NaN 1 0.67 1 0 0 24802.14 -7997.95 -350.26 128262.24
2_StrictCut(50) 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 1 1 0 0 15.98 67.75 69.34 33.53
2_StrictCut(50) 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 1 NaN 1 1 1 0 0 0.39 63.55 31.84 297.64
2_StrictCut(50) 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 1 NaN 1 1 1 0 0 2.44 158.38 31.85 301.57
2_StrictCut(50) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 1 NaN 1 1 1 0 0 3.97 214.43 26.79 272.98
2_StrictCut(50) 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.5 0.35 0 0.35 0.35 0.21 0.79 0.65 31940.92 -10552.77 -355.78 383605.81
2_StrictCut(50) 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.4 0.34 0 0.34 0.28 0.21 0.79 0.66 42758.42 -14161.42 -327.68 410364.52
2_StrictCut(50) 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.4 0.34 0 0.34 0.23 0.2 0.8 0.66 57812.32 -19179.06 -286.04 406229.24
3_NE 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 1 1 0 0 31.5 63.34 64.32 61.97
3_NE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.14 1 1 0.99 0.25 0.75 0 148.25 50.21 25.42 25.08
3_NE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.14 1 1 1 0.45 0.55 0 152.01 123.22 24.7 6.61
3_NE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.7 1 1 1 0.73 0.27 0 347.69 123.21 15.49 318.52
3_NE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 0.7 1 1 0.99 0.77 0.23 0 527.63 93.28 9.41 274.69
3_NE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 10 0.7 1 1 0.83 0.77 0.23 0 10140.6 -3109.9 -212.69 30384.74
3_NE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 0.7 1 1 0.66 0.77 0.23 0 25429.77 -8207.55 -356.72 134965.02
4_ProbNE 2 1 1 [[1]] [(0, 0)] 0.8 0.8 NaN 0.8 0.8 0.8 0.2 0 948.58 -256.43 -197.01 36214.75
4_ProbNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.29 NaN 0.29 1 0.29 0.71 0 33.95 77.58 39.21 619.38
4_ProbNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.29 0.8 0.86 1 0.47 0.53 0.07 153.89 121.19 24.01 308.7
4_ProbNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.62 0.8 0.92 1 0.65 0.35 0.05 360.19 107.77 13.44 342.75
4_ProbNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.93 0.92 0.67 0.33 0.07 3916.66 -1051.54 -94.75 5953.86
4_ProbNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.92 0.77 0.67 0.33 0.08 14060.48 -4432.94 -279.45 61720.53
4_ProbNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.92 0.62 0.67 0.33 0.08 28327.44 -9189.5 -374.14 170226.09
5_ProbBinNE 2 1 1 [[1]] [(0, 0)] 0.9 0.9 NaN 0.9 0.9 0.9 0.1 0 563.53 -120.85 -102.59 10174.23
5_ProbBinNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.21 0.75 0.81 0.99 0.26 0.74 0.02 145.62 46.14 23.26 480.98
5_ProbBinNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.21 0.75 0.8 1 0.43 0.57 0.11 156.28 119.9 24.15 222.41
5_ProbBinNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.66 0.75 0.92 1 0.67 0.33 0.04 355.43 113.59 14.26 323.14
5_ProbBinNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.1 0.66 0.75 0.92 0.91 0.68 0.32 0.08 4604.18 -1281.17 -113.54 8095.56
5_ProbBinNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.66 0.75 0.92 0.76 0.68 0.32 0.08 14192.15 -4475.32 -279.04 63311.81
5_ProbBinNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.1 0.66 0.75 0.92 0.61 0.68 0.32 0.08 29722.92 -9654.46 -383.93 183019.17
6_DrivPNE 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.98 1 0 0 154.64 22.96 23.54 660.67
6_DrivPNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.54 NaN 0.54 1 0.54 0.46 0 0.99 76.36 38.14 488.88
6_DrivPNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.54 1 1 1 0.61 0.39 0 148.96 125.39 25.18 376.52
6_DrivPNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.99 0.53 0.47 0.2 862.39 -49.29 -6.01 447.71
6_DrivPNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.79 0.53 0.47 0.2 10708.58 -3330.37 -259.89 49229.13
6_DrivPNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.5 0.59 0.8 0.66 0.53 0.47 0.2 20809.77 -6696.99 -363.66 140165.14
6_DrivPNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.52 0.53 0.47 0.2 36018.76 -11767.73 -402.33 254469.93
7_TimePNE(30) 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.97 1 0 0 16.54 66.95 67.3 163.9
7_TimePNE(30) 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 1 0.14 NaN 0.14 0.49 0.14 0.86 0 59.43 54.49 32.08 1067.18
7_TimePNE(30) 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 1.3 0.14 1 1 0.26 0.18 0.82 0 141.2 34.83 14.35 668.27
7_TimePNE(30) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.87 0.7 0.3 0 100.16 191.14 25.17 369.25
7_TimePNE(30) 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.7 0.7 0.3 0 188.84 163.64 19.3 377.74
7_TimePNE(30) 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.58 0.7 0.3 0 281.87 130.92 15.08 343.05
7_TimePNE(30) 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8.1 0.7 1 1 0.54 0.73 0.27 0 356.51 122.91 12.77 288.15

Rule P λ i* Partitions Bins TP Bin1_p Bin2_p P_match DrivUtil ServProb CRate ExRate AvgQLen NetRev AvgDrvPay VarDrvPay
1_AlwaysAccept 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.98 1 0 0 80.67 46.75 47.25 539.81
1_AlwaysAccept 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 1 NaN 1 1 1 0 0 0.4 65.06 32.27 313.01
1_AlwaysAccept 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 1 NaN 1 1 1 0 0 2.41 158.67 31.98 306.76
1_AlwaysAccept 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 1 NaN 1 1 1 0 0 4.09 213.84 26.86 278.17
1_AlwaysAccept 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 1 NaN 1 1 1 0 0 121.7 227.9 22.87 298.57
1_AlwaysAccept 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 1 NaN 1 0.83 1 0 0 10517.26 -3238.18 -219.84 34034.67
1_AlwaysAccept 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 10 1 NaN 1 0.67 1 0 0 24802.14 -7997.95 -350.26 128262.24
2_StrictCut(50) 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 1 1 0 0 15.98 67.75 69.34 33.53
2_StrictCut(50) 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 1 NaN 1 1 1 0 0 0.39 63.55 31.84 297.64
2_StrictCut(50) 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 1 NaN 1 1 1 0 0 2.44 158.38 31.85 301.57
2_StrictCut(50) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 1 NaN 1 1 1 0 0 3.97 214.43 26.79 272.98
2_StrictCut(50) 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.5 0.35 0 0.35 0.35 0.21 0.79 0.65 31940.92 -10552.77 -355.78 383605.81
2_StrictCut(50) 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.4 0.34 0 0.34 0.28 0.21 0.79 0.66 42758.42 -14161.42 -327.68 410364.52
2_StrictCut(50) 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.4 0.34 0 0.34 0.23 0.2 0.8 0.66 57812.32 -19179.06 -286.04 406229.24
3_NE 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 1 1 0 0 31.5 63.34 64.32 61.97
3_NE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.14 1 1 0.99 0.25 0.75 0 148.25 50.21 25.42 25.08
3_NE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.14 1 1 1 0.45 0.55 0 152.01 123.22 24.7 6.61
3_NE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.7 1 1 1 0.73 0.27 0 347.69 123.21 15.49 318.52
3_NE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 0.7 1 1 0.99 0.77 0.23 0 527.63 93.28 9.41 274.69
3_NE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 10 0.7 1 1 0.83 0.77 0.23 0 10140.6 -3109.9 -212.69 30384.74
3_NE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 0.7 1 1 0.66 0.77 0.23 0 25429.77 -8207.55 -356.72 134965.02
4_ProbNE 2 1 1 [[1]] [(0, 0)] 0.8 0.8 NaN 0.8 0.8 0.8 0.2 0 948.58 -256.43 -197.01 36214.75
4_ProbNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.29 NaN 0.29 1 0.29 0.71 0 33.95 77.58 39.21 619.38
4_ProbNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.29 0.8 0.86 1 0.47 0.53 0.07 153.89 121.19 24.01 308.7
4_ProbNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.62 0.8 0.92 1 0.65 0.35 0.05 360.19 107.77 13.44 342.75
4_ProbNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.93 0.92 0.67 0.33 0.07 3916.66 -1051.54 -94.75 5953.86
4_ProbNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.92 0.77 0.67 0.33 0.08 14060.48 -4432.94 -279.45 61720.53
4_ProbNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.92 0.62 0.67 0.33 0.08 28327.44 -9189.5 -374.14 170226.09
5_ProbBinNE 2 1 1 [[1]] [(0, 0)] 0.9 0.9 NaN 0.9 0.9 0.9 0.1 0 563.53 -120.85 -102.59 10174.23
5_ProbBinNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.21 0.75 0.81 0.99 0.26 0.74 0.02 145.62 46.14 23.26 480.98
5_ProbBinNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.21 0.75 0.8 1 0.43 0.57 0.11 156.28 119.9 24.15 222.41
5_ProbBinNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.66 0.75 0.92 1 0.67 0.33 0.04 355.43 113.59 14.26 323.14
5_ProbBinNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.1 0.66 0.75 0.92 0.91 0.68 0.32 0.08 4604.18 -1281.17 -113.54 8095.56
5_ProbBinNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.66 0.75 0.92 0.76 0.68 0.32 0.08 14192.15 -4475.32 -279.04 63311.81
5_ProbBinNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.1 0.66 0.75 0.92 0.61 0.68 0.32 0.08 29722.92 -9654.46 -383.93 183019.17
6_DrivPNE 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.98 1 0 0 154.64 22.96 23.54 660.67
6_DrivPNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.54 NaN 0.54 1 0.54 0.46 0 0.99 76.36 38.14 488.88
6_DrivPNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.54 1 1 1 0.61 0.39 0 148.96 125.39 25.18 376.52
6_DrivPNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.99 0.53 0.47 0.2 862.39 -49.29 -6.01 447.71
6_DrivPNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.79 0.53 0.47 0.2 10708.58 -3330.37 -259.89 49229.13
6_DrivPNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.5 0.59 0.8 0.66 0.53 0.47 0.2 20809.77 -6696.99 -363.66 140165.14
6_DrivPNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.52 0.53 0.47 0.2 36018.76 -11767.73 -402.33 254469.93
7_TimePNE(30) 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.97 1 0 0 16.54 66.95 67.3 163.9
7_TimePNE(30) 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 1 0.14 NaN 0.14 0.49 0.14 0.86 0 59.43 54.49 32.08 1067.18
7_TimePNE(30) 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 1.3 0.14 1 1 0.26 0.18 0.82 0 141.2 34.83 14.35 668.27
7_TimePNE(30) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.87 0.7 0.3 0 100.16 191.14 25.17 369.25
7_TimePNE(30) 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.7 0.7 0.3 0 188.84 163.64 19.3 377.74
7_TimePNE(30) 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.58 0.7 0.3 0 281.87 130.92 15.08 343.05
7_TimePNE(30) 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8.1 0.7 1 1 0.54 0.73 0.27 0 356.51 122.91 12.77 288.15

Rule λ L1_Bin1 L1_Bin2 L2_Bin1 L2_Bin2
1_AlwaysAccept 1 100 0 0 0
1_AlwaysAccept 2 100 0 100 0
1_AlwaysAccept 5 100 0 100 0
1_AlwaysAccept 8 100 0 100 0
1_AlwaysAccept 10 100 0 100 0
1_AlwaysAccept 12 100 0 100 0
1_AlwaysAccept 15 100 0 100 0
2_StrictCut(50) 1 100 0 0 0
2_StrictCut(50) 2 100 0 100 0
2_StrictCut(50) 5 100 0 100 0
2_StrictCut(50) 8 100 0 100 0
2_StrictCut(50) 10 100 0 100 0
2_StrictCut(50) 12 100 0 100 0
2_StrictCut(50) 15 100 0 100 0
3_NE 1 100 0 0 0
3_NE 2 100 0 0 100
3_NE 5 100 0 0 100
3_NE 8 100 0 0 100
3_NE 10 100 0 0 100
3_NE 12 100 0 0 100
3_NE 15 100 0 0 100
4_ProbNE 1 100 0 0 0
4_ProbNE 2 100 0 100 0
4_ProbNE 5 87.4 12.6 29.1 70.9
4_ProbNE 8 89.4 10.6 33.8 66.2
4_ProbNE 10 83.7 16.3 24.4 75.6
4_ProbNE 12 83.5 16.5 23.8 76.2
4_ProbNE 15 83.2 16.8 23.7 76.3
5_ProbBinNE 1 100 0 0 0
5_ProbBinNE 2 99 1 55.5 44.5
5_ProbBinNE 5 93.3 6.7 15.2 84.8
5_ProbBinNE 8 95.8 4.2 22.4 77.6
5_ProbBinNE 10 92.5 7.5 13.2 86.8
5_ProbBinNE 12 92.2 7.8 12.8 87.2
5_ProbBinNE 15 92.3 7.7 12.8 87.2
6_DrivPNE 1 100 0 0 0
6_DrivPNE 2 100 0 100 0
6_DrivPNE 5 100 0 70.2 29.8
6_DrivPNE 8 66.1 33.9 44.4 55.6
6_DrivPNE 10 65.7 34.3 44.8 55.2
6_DrivPNE 12 65.8 34.2 44.6 55.4
6_DrivPNE 15 65.8 34.2 44.4 55.6
7_TimePNE(30) 1 100 0 0 0
7_TimePNE(30) 2 100 0 0 0
7_TimePNE(30) 5 100 0 0 100
7_TimePNE(30) 8 100 0 0 0
7_TimePNE(30) 10 100 0 0 0
7_TimePNE(30) 12 100 0 0 0
7_TimePNE(30) 15 100 0 0 100

Rule λ L1_Bin1 L1_Bin2 L2_Bin1 L2_Bin2
1_AlwaysAccept 1 100 0 0 0
1_AlwaysAccept 2 100 0 100 0
1_AlwaysAccept 5 100 0 100 0
1_AlwaysAccept 8 100 0 100 0
1_AlwaysAccept 10 100 0 100 0
1_AlwaysAccept 12 100 0 100 0
1_AlwaysAccept 15 100 0 100 0
2_StrictCut(50) 1 100 0 0 0
2_StrictCut(50) 2 100 0 100 0
2_StrictCut(50) 5 100 0 100 0
2_StrictCut(50) 8 100 0 100 0
2_StrictCut(50) 10 100 0 100 0
2_StrictCut(50) 12 100 0 100 0
2_StrictCut(50) 15 100 0 100 0
3_NE 1 100 0 0 0
3_NE 2 100 0 0 100
3_NE 5 100 0 0 100
3_NE 8 100 0 0 100
3_NE 10 100 0 0 100
3_NE 12 100 0 0 100
3_NE 15 100 0 0 100
4_ProbNE 1 100 0 0 0
4_ProbNE 2 100 0 100 0
4_ProbNE 5 87.4 12.6 29.1 70.9
4_ProbNE 8 89.4 10.6 33.8 66.2
4_ProbNE 10 83.7 16.3 24.4 75.6
4_ProbNE 12 83.5 16.5 23.8 76.2
4_ProbNE 15 83.2 16.8 23.7 76.3
5_ProbBinNE 1 100 0 0 0
5_ProbBinNE 2 99 1 55.5 44.5
5_ProbBinNE 5 93.3 6.7 15.2 84.8
5_ProbBinNE 8 95.8 4.2 22.4 77.6
5_ProbBinNE 10 92.5 7.5 13.2 86.8
5_ProbBinNE 12 92.2 7.8 12.8 87.2
5_ProbBinNE 15 92.3 7.7 12.8 87.2
6_DrivPNE 1 100 0 0 0
6_DrivPNE 2 100 0 100 0
6_DrivPNE 5 100 0 70.2 29.8
6_DrivPNE 8 66.1 33.9 44.4 55.6
6_DrivPNE 10 65.7 34.3 44.8 55.2
6_DrivPNE 12 65.8 34.2 44.6 55.4
6_DrivPNE 15 65.8 34.2 44.4 55.6
7_TimePNE(30) 1 100 0 0 0
7_TimePNE(30) 2 100 0 0 0
7_TimePNE(30) 5 100 0 0 100
7_TimePNE(30) 8 100 0 0 0
7_TimePNE(30) 10 100 0 0 0
7_TimePNE(30) 12 100 0 0 0
7_TimePNE(30) 15 100 0 0 100
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fully accepted in Bin1, while L2 is only ever accepted in Bin2, which begins receiving and accepting 

offers starting at λ = 2 and continues with 100% acceptance through λ = 15.  

This behavior stabilizes the cancellation rate (Crate), which drops significantly once location 2 

trips consistently reach Bin2, reducing mismatches. However, despite high throughput and stable 

matching efficiency, economic performance deteriorates sharply beyond equilibrium levels. As λ 

exceeds 10, driver utilization drops from 0.99 to 0.66, average driver payoffs plunge into negative 

territory, and net revenue becomes increasingly negative. This decline stems from inflated queue 

lengths (over 25,000 at λ = 15), long idle times, and growing compensation costs. These results 

underscore that while NE matching is efficient within equilibrium bounds, it suffers substantially 

from performance losses when supply far exceeds demand. 

4_ProbNE. The results for ProbNE highlight how introducing probabilistic acceptance affects 

system behavior across varying driver supply levels. Specifically, drivers accept requests with an 

80% probability when the rider’s destination lies within a location group (partition) with index 

corresponding to their own bin or a lower, higher-paying one, and with a 20% probability otherwise. 

Compared to deterministic rules, this approach introduces smoother performance transitions and 

softens queue dynamics, particularly in intermediate supply regimes. 

 

 

 

Rule P λ i* Partitions Bins TP Bin1_p Bin2_p P_match DrivUtil ServProb CRate ExRate AvgQLen NetRev AvgDrvPay VarDrvPay
1_AlwaysAccept 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.98 1 0 0 80.67 46.75 47.25 539.81
1_AlwaysAccept 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 1 NaN 1 1 1 0 0 0.4 65.06 32.27 313.01
1_AlwaysAccept 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 1 NaN 1 1 1 0 0 2.41 158.67 31.98 306.76
1_AlwaysAccept 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 1 NaN 1 1 1 0 0 4.09 213.84 26.86 278.17
1_AlwaysAccept 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 1 NaN 1 1 1 0 0 121.7 227.9 22.87 298.57
1_AlwaysAccept 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 1 NaN 1 0.83 1 0 0 10517.26 -3238.18 -219.84 34034.67
1_AlwaysAccept 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 10 1 NaN 1 0.67 1 0 0 24802.14 -7997.95 -350.26 128262.24
2_StrictCut(50) 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 1 1 0 0 15.98 67.75 69.34 33.53
2_StrictCut(50) 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 1 NaN 1 1 1 0 0 0.39 63.55 31.84 297.64
2_StrictCut(50) 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 1 NaN 1 1 1 0 0 2.44 158.38 31.85 301.57
2_StrictCut(50) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 1 NaN 1 1 1 0 0 3.97 214.43 26.79 272.98
2_StrictCut(50) 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.5 0.35 0 0.35 0.35 0.21 0.79 0.65 31940.92 -10552.77 -355.78 383605.81
2_StrictCut(50) 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.4 0.34 0 0.34 0.28 0.21 0.79 0.66 42758.42 -14161.42 -327.68 410364.52
2_StrictCut(50) 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.4 0.34 0 0.34 0.23 0.2 0.8 0.66 57812.32 -19179.06 -286.04 406229.24
3_NE 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 1 1 0 0 31.5 63.34 64.32 61.97
3_NE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.14 1 1 0.99 0.25 0.75 0 148.25 50.21 25.42 25.08
3_NE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.14 1 1 1 0.45 0.55 0 152.01 123.22 24.7 6.61
3_NE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.7 1 1 1 0.73 0.27 0 347.69 123.21 15.49 318.52
3_NE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 0.7 1 1 0.99 0.77 0.23 0 527.63 93.28 9.41 274.69
3_NE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 10 0.7 1 1 0.83 0.77 0.23 0 10140.6 -3109.9 -212.69 30384.74
3_NE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 0.7 1 1 0.66 0.77 0.23 0 25429.77 -8207.55 -356.72 134965.02
4_ProbNE 2 1 1 [[1]] [(0, 0)] 0.8 0.8 NaN 0.8 0.8 0.8 0.2 0 948.58 -256.43 -197.01 36214.75
4_ProbNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.29 NaN 0.29 1 0.29 0.71 0 33.95 77.58 39.21 619.38
4_ProbNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.29 0.8 0.86 1 0.47 0.53 0.07 153.89 121.19 24.01 308.7
4_ProbNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.62 0.8 0.92 1 0.65 0.35 0.05 360.19 107.77 13.44 342.75
4_ProbNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.93 0.92 0.67 0.33 0.07 3916.66 -1051.54 -94.75 5953.86
4_ProbNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.92 0.77 0.67 0.33 0.08 14060.48 -4432.94 -279.45 61720.53
4_ProbNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.92 0.62 0.67 0.33 0.08 28327.44 -9189.5 -374.14 170226.09
5_ProbBinNE 2 1 1 [[1]] [(0, 0)] 0.9 0.9 NaN 0.9 0.9 0.9 0.1 0 563.53 -120.85 -102.59 10174.23
5_ProbBinNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.21 0.75 0.81 0.99 0.26 0.74 0.02 145.62 46.14 23.26 480.98
5_ProbBinNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.21 0.75 0.8 1 0.43 0.57 0.11 156.28 119.9 24.15 222.41
5_ProbBinNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.66 0.75 0.92 1 0.67 0.33 0.04 355.43 113.59 14.26 323.14
5_ProbBinNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.1 0.66 0.75 0.92 0.91 0.68 0.32 0.08 4604.18 -1281.17 -113.54 8095.56
5_ProbBinNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.66 0.75 0.92 0.76 0.68 0.32 0.08 14192.15 -4475.32 -279.04 63311.81
5_ProbBinNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.1 0.66 0.75 0.92 0.61 0.68 0.32 0.08 29722.92 -9654.46 -383.93 183019.17
6_DrivPNE 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.98 1 0 0 154.64 22.96 23.54 660.67
6_DrivPNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.54 NaN 0.54 1 0.54 0.46 0 0.99 76.36 38.14 488.88
6_DrivPNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.54 1 1 1 0.61 0.39 0 148.96 125.39 25.18 376.52
6_DrivPNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.99 0.53 0.47 0.2 862.39 -49.29 -6.01 447.71
6_DrivPNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.79 0.53 0.47 0.2 10708.58 -3330.37 -259.89 49229.13
6_DrivPNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.5 0.59 0.8 0.66 0.53 0.47 0.2 20809.77 -6696.99 -363.66 140165.14
6_DrivPNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.52 0.53 0.47 0.2 36018.76 -11767.73 -402.33 254469.93
7_TimePNE(30) 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.97 1 0 0 16.54 66.95 67.3 163.9
7_TimePNE(30) 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 1 0.14 NaN 0.14 0.49 0.14 0.86 0 59.43 54.49 32.08 1067.18
7_TimePNE(30) 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 1.3 0.14 1 1 0.26 0.18 0.82 0 141.2 34.83 14.35 668.27
7_TimePNE(30) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.87 0.7 0.3 0 100.16 191.14 25.17 369.25
7_TimePNE(30) 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.7 0.7 0.3 0 188.84 163.64 19.3 377.74
7_TimePNE(30) 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.58 0.7 0.3 0 281.87 130.92 15.08 343.05
7_TimePNE(30) 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8.1 0.7 1 1 0.54 0.73 0.27 0 356.51 122.91 12.77 288.15

Rule P λ i* Partitions Bins TP Bin1_p Bin2_p P_match DrivUtil ServProb CRate ExRate AvgQLen NetRev AvgDrvPay VarDrvPay
1_AlwaysAccept 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.98 1 0 0 80.67 46.75 47.25 539.81
1_AlwaysAccept 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 1 NaN 1 1 1 0 0 0.4 65.06 32.27 313.01
1_AlwaysAccept 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 1 NaN 1 1 1 0 0 2.41 158.67 31.98 306.76
1_AlwaysAccept 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 1 NaN 1 1 1 0 0 4.09 213.84 26.86 278.17
1_AlwaysAccept 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 1 NaN 1 1 1 0 0 121.7 227.9 22.87 298.57
1_AlwaysAccept 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 1 NaN 1 0.83 1 0 0 10517.26 -3238.18 -219.84 34034.67
1_AlwaysAccept 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 10 1 NaN 1 0.67 1 0 0 24802.14 -7997.95 -350.26 128262.24
2_StrictCut(50) 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 1 1 0 0 15.98 67.75 69.34 33.53
2_StrictCut(50) 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 1 NaN 1 1 1 0 0 0.39 63.55 31.84 297.64
2_StrictCut(50) 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 1 NaN 1 1 1 0 0 2.44 158.38 31.85 301.57
2_StrictCut(50) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 1 NaN 1 1 1 0 0 3.97 214.43 26.79 272.98
2_StrictCut(50) 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.5 0.35 0 0.35 0.35 0.21 0.79 0.65 31940.92 -10552.77 -355.78 383605.81
2_StrictCut(50) 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.4 0.34 0 0.34 0.28 0.21 0.79 0.66 42758.42 -14161.42 -327.68 410364.52
2_StrictCut(50) 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.4 0.34 0 0.34 0.23 0.2 0.8 0.66 57812.32 -19179.06 -286.04 406229.24
3_NE 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 1 1 0 0 31.5 63.34 64.32 61.97
3_NE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.14 1 1 0.99 0.25 0.75 0 148.25 50.21 25.42 25.08
3_NE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.14 1 1 1 0.45 0.55 0 152.01 123.22 24.7 6.61
3_NE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.7 1 1 1 0.73 0.27 0 347.69 123.21 15.49 318.52
3_NE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 0.7 1 1 0.99 0.77 0.23 0 527.63 93.28 9.41 274.69
3_NE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 10 0.7 1 1 0.83 0.77 0.23 0 10140.6 -3109.9 -212.69 30384.74
3_NE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 0.7 1 1 0.66 0.77 0.23 0 25429.77 -8207.55 -356.72 134965.02
4_ProbNE 2 1 1 [[1]] [(0, 0)] 0.8 0.8 NaN 0.8 0.8 0.8 0.2 0 948.58 -256.43 -197.01 36214.75
4_ProbNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.29 NaN 0.29 1 0.29 0.71 0 33.95 77.58 39.21 619.38
4_ProbNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.29 0.8 0.86 1 0.47 0.53 0.07 153.89 121.19 24.01 308.7
4_ProbNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.62 0.8 0.92 1 0.65 0.35 0.05 360.19 107.77 13.44 342.75
4_ProbNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.93 0.92 0.67 0.33 0.07 3916.66 -1051.54 -94.75 5953.86
4_ProbNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.92 0.77 0.67 0.33 0.08 14060.48 -4432.94 -279.45 61720.53
4_ProbNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.92 0.62 0.67 0.33 0.08 28327.44 -9189.5 -374.14 170226.09
5_ProbBinNE 2 1 1 [[1]] [(0, 0)] 0.9 0.9 NaN 0.9 0.9 0.9 0.1 0 563.53 -120.85 -102.59 10174.23
5_ProbBinNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.21 0.75 0.81 0.99 0.26 0.74 0.02 145.62 46.14 23.26 480.98
5_ProbBinNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.21 0.75 0.8 1 0.43 0.57 0.11 156.28 119.9 24.15 222.41
5_ProbBinNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.66 0.75 0.92 1 0.67 0.33 0.04 355.43 113.59 14.26 323.14
5_ProbBinNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.1 0.66 0.75 0.92 0.91 0.68 0.32 0.08 4604.18 -1281.17 -113.54 8095.56
5_ProbBinNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.66 0.75 0.92 0.76 0.68 0.32 0.08 14192.15 -4475.32 -279.04 63311.81
5_ProbBinNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.1 0.66 0.75 0.92 0.61 0.68 0.32 0.08 29722.92 -9654.46 -383.93 183019.17
6_DrivPNE 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.98 1 0 0 154.64 22.96 23.54 660.67
6_DrivPNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.54 NaN 0.54 1 0.54 0.46 0 0.99 76.36 38.14 488.88
6_DrivPNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.54 1 1 1 0.61 0.39 0 148.96 125.39 25.18 376.52
6_DrivPNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.99 0.53 0.47 0.2 862.39 -49.29 -6.01 447.71
6_DrivPNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.79 0.53 0.47 0.2 10708.58 -3330.37 -259.89 49229.13
6_DrivPNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.5 0.59 0.8 0.66 0.53 0.47 0.2 20809.77 -6696.99 -363.66 140165.14
6_DrivPNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.52 0.53 0.47 0.2 36018.76 -11767.73 -402.33 254469.93
7_TimePNE(30) 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.97 1 0 0 16.54 66.95 67.3 163.9
7_TimePNE(30) 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 1 0.14 NaN 0.14 0.49 0.14 0.86 0 59.43 54.49 32.08 1067.18
7_TimePNE(30) 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 1.3 0.14 1 1 0.26 0.18 0.82 0 141.2 34.83 14.35 668.27
7_TimePNE(30) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.87 0.7 0.3 0 100.16 191.14 25.17 369.25
7_TimePNE(30) 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.7 0.7 0.3 0 188.84 163.64 19.3 377.74
7_TimePNE(30) 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.58 0.7 0.3 0 281.87 130.92 15.08 343.05
7_TimePNE(30) 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8.1 0.7 1 1 0.54 0.73 0.27 0 356.51 122.91 12.77 288.15
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Throughput (TP) increases steadily with driver supply and saturates just below 10, closely 

tracking the rise in cumulative match probability (P_match), which converges around 0.92. This 

cap stems from the fixed probabilities embedded in the rule: trips to higher bins are only accepted 

with 0.8 and 0.2 probability depending on their relative bin position, which limits maximum 

achievable matches regardless of queue size. 

 

 

This pattern is further confirmed in the table above, which shows how trips to Location 1 and 2 

are split across bins under oversupply: only ~83% of L1 trips and ~76% of L2 trips are matched, 

consistent with the 0.8 acceptance cap. 

Service probability stabilizes near 0.67 in high-supply regimes, reflecting the equilibrium between 

increasing offers and the bounded acceptance chances. This is lower than NE’s 0.77 cap because 

some offers—even to drivers in matching bins—are probabilistically rejected. Cancellation rate 

and patience exhaustion grow with λ due to this stochastic rejection, though more mildly than in 

StrictCut(50). Driver utilization begins at 1.0 (with the exception of the single-bin scenario) and 

then gently declines with oversupply. Economic metrics like net revenue and average driver payoff 

deteriorate in high λ, though not as drastically as with more rigid rules. Overall, ProbNE achieves 

a more resilient balance between match rates and system flexibility but remains constrained by 

its inherent probability ceilings. 

5_ProbBinNE. We now examine the performance of ProbBinNE, which refines the probabilistic 

decision logic by assigning different acceptance probabilities across bins. This rule increases realism 

by capturing the idea that drivers may be more likely to accept requests in higher-priority bins. 

The results reveal how this differentiated behavior affects efficiency, utilization, and fairness across 

varying levels of driver supply. Drivers accept requests with a 90%, 75%, or 60% (ordered by bin 

1-3) probability when the rider’s destination lies within a location group (partition) with index 

Rule λ L1_Bin1 L1_Bin2 L2_Bin1 L2_Bin2
1_AlwaysAccept 1 100 0 0 0
1_AlwaysAccept 2 100 0 100 0
1_AlwaysAccept 5 100 0 100 0
1_AlwaysAccept 8 100 0 100 0
1_AlwaysAccept 10 100 0 100 0
1_AlwaysAccept 12 100 0 100 0
1_AlwaysAccept 15 100 0 100 0
2_StrictCut(50) 1 100 0 0 0
2_StrictCut(50) 2 100 0 100 0
2_StrictCut(50) 5 100 0 100 0
2_StrictCut(50) 8 100 0 100 0
2_StrictCut(50) 10 100 0 100 0
2_StrictCut(50) 12 100 0 100 0
2_StrictCut(50) 15 100 0 100 0
3_NE 1 100 0 0 0
3_NE 2 100 0 0 100
3_NE 5 100 0 0 100
3_NE 8 100 0 0 100
3_NE 10 100 0 0 100
3_NE 12 100 0 0 100
3_NE 15 100 0 0 100
4_ProbNE 1 100 0 0 0
4_ProbNE 2 100 0 100 0
4_ProbNE 5 87.4 12.6 29.1 70.9
4_ProbNE 8 89.4 10.6 33.8 66.2
4_ProbNE 10 83.7 16.3 24.4 75.6
4_ProbNE 12 83.5 16.5 23.8 76.2
4_ProbNE 15 83.2 16.8 23.7 76.3
5_ProbBinNE 1 100 0 0 0
5_ProbBinNE 2 99 1 55.5 44.5
5_ProbBinNE 5 93.3 6.7 15.2 84.8
5_ProbBinNE 8 95.8 4.2 22.4 77.6
5_ProbBinNE 10 92.5 7.5 13.2 86.8
5_ProbBinNE 12 92.2 7.8 12.8 87.2
5_ProbBinNE 15 92.3 7.7 12.8 87.2
6_DrivPNE 1 100 0 0 0
6_DrivPNE 2 100 0 100 0
6_DrivPNE 5 100 0 70.2 29.8
6_DrivPNE 8 66.1 33.9 44.4 55.6
6_DrivPNE 10 65.7 34.3 44.8 55.2
6_DrivPNE 12 65.8 34.2 44.6 55.4
6_DrivPNE 15 65.8 34.2 44.4 55.6
7_TimePNE(30) 1 100 0 0 0
7_TimePNE(30) 2 100 0 0 0
7_TimePNE(30) 5 100 0 0 100
7_TimePNE(30) 8 100 0 0 0
7_TimePNE(30) 10 100 0 0 0
7_TimePNE(30) 12 100 0 0 0
7_TimePNE(30) 15 100 0 0 100

Rule λ L1_Bin1 L1_Bin2 L2_Bin1 L2_Bin2
1_AlwaysAccept 1 100 0 0 0
1_AlwaysAccept 2 100 0 100 0
1_AlwaysAccept 5 100 0 100 0
1_AlwaysAccept 8 100 0 100 0
1_AlwaysAccept 10 100 0 100 0
1_AlwaysAccept 12 100 0 100 0
1_AlwaysAccept 15 100 0 100 0
2_StrictCut(50) 1 100 0 0 0
2_StrictCut(50) 2 100 0 100 0
2_StrictCut(50) 5 100 0 100 0
2_StrictCut(50) 8 100 0 100 0
2_StrictCut(50) 10 100 0 100 0
2_StrictCut(50) 12 100 0 100 0
2_StrictCut(50) 15 100 0 100 0
3_NE 1 100 0 0 0
3_NE 2 100 0 0 100
3_NE 5 100 0 0 100
3_NE 8 100 0 0 100
3_NE 10 100 0 0 100
3_NE 12 100 0 0 100
3_NE 15 100 0 0 100
4_ProbNE 1 100 0 0 0
4_ProbNE 2 100 0 100 0
4_ProbNE 5 87.4 12.6 29.1 70.9
4_ProbNE 8 89.4 10.6 33.8 66.2
4_ProbNE 10 83.7 16.3 24.4 75.6
4_ProbNE 12 83.5 16.5 23.8 76.2
4_ProbNE 15 83.2 16.8 23.7 76.3
5_ProbBinNE 1 100 0 0 0
5_ProbBinNE 2 99 1 55.5 44.5
5_ProbBinNE 5 93.3 6.7 15.2 84.8
5_ProbBinNE 8 95.8 4.2 22.4 77.6
5_ProbBinNE 10 92.5 7.5 13.2 86.8
5_ProbBinNE 12 92.2 7.8 12.8 87.2
5_ProbBinNE 15 92.3 7.7 12.8 87.2
6_DrivPNE 1 100 0 0 0
6_DrivPNE 2 100 0 100 0
6_DrivPNE 5 100 0 70.2 29.8
6_DrivPNE 8 66.1 33.9 44.4 55.6
6_DrivPNE 10 65.7 34.3 44.8 55.2
6_DrivPNE 12 65.8 34.2 44.6 55.4
6_DrivPNE 15 65.8 34.2 44.4 55.6
7_TimePNE(30) 1 100 0 0 0
7_TimePNE(30) 2 100 0 0 0
7_TimePNE(30) 5 100 0 0 100
7_TimePNE(30) 8 100 0 0 0
7_TimePNE(30) 10 100 0 0 0
7_TimePNE(30) 12 100 0 0 0
7_TimePNE(30) 15 100 0 0 100
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corresponding to their own bin or a lower, higher-paying one, and with a 10%, 30%, or 50% 

probability otherwise. 

 

 

 

The performance of ProbBinNE closely resembles that of ProbNE, with key differences emerging 

from the bin-specific acceptance probabilities. Throughput (TP) rises predictably with driver 

supply and plateaus at 9.2 due to the limit set by cumulative match probability (P_match = 

0.92) multiplied by total rider demand (𝜇 = 10). The service probability curve similarly levels off 

around 0.68, reflecting the weighted effect of acceptance caps per bin—bin 1 capped at 0.66, bin 

2 at 0.75—and their respective exposure to ride offers. For example, in oversupplied settings, bin 

1 is saturated with offers to L1 and L2 but rejects the latter ~33% of the time, which inflates the 

offer denominator while limiting matches. 

 

 

These patterns are evident in the match distribution table: Bin 1 consistently captures over 92% 
of L1 matches across λ ≥ 5, while Bin 2 handles most L2 matches—87.2% at λ = 15. Yet, Bin 1 

Rule P λ i* Partitions Bins TP Bin1_p Bin2_p P_match DrivUtil ServProb CRate ExRate AvgQLen NetRev AvgDrvPay VarDrvPay
1_AlwaysAccept 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.98 1 0 0 80.67 46.75 47.25 539.81
1_AlwaysAccept 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 1 NaN 1 1 1 0 0 0.4 65.06 32.27 313.01
1_AlwaysAccept 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 1 NaN 1 1 1 0 0 2.41 158.67 31.98 306.76
1_AlwaysAccept 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 1 NaN 1 1 1 0 0 4.09 213.84 26.86 278.17
1_AlwaysAccept 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 1 NaN 1 1 1 0 0 121.7 227.9 22.87 298.57
1_AlwaysAccept 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 1 NaN 1 0.83 1 0 0 10517.26 -3238.18 -219.84 34034.67
1_AlwaysAccept 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 10 1 NaN 1 0.67 1 0 0 24802.14 -7997.95 -350.26 128262.24
2_StrictCut(50) 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 1 1 0 0 15.98 67.75 69.34 33.53
2_StrictCut(50) 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 1 NaN 1 1 1 0 0 0.39 63.55 31.84 297.64
2_StrictCut(50) 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 1 NaN 1 1 1 0 0 2.44 158.38 31.85 301.57
2_StrictCut(50) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 1 NaN 1 1 1 0 0 3.97 214.43 26.79 272.98
2_StrictCut(50) 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.5 0.35 0 0.35 0.35 0.21 0.79 0.65 31940.92 -10552.77 -355.78 383605.81
2_StrictCut(50) 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.4 0.34 0 0.34 0.28 0.21 0.79 0.66 42758.42 -14161.42 -327.68 410364.52
2_StrictCut(50) 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.4 0.34 0 0.34 0.23 0.2 0.8 0.66 57812.32 -19179.06 -286.04 406229.24
3_NE 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 1 1 0 0 31.5 63.34 64.32 61.97
3_NE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.14 1 1 0.99 0.25 0.75 0 148.25 50.21 25.42 25.08
3_NE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.14 1 1 1 0.45 0.55 0 152.01 123.22 24.7 6.61
3_NE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.7 1 1 1 0.73 0.27 0 347.69 123.21 15.49 318.52
3_NE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 0.7 1 1 0.99 0.77 0.23 0 527.63 93.28 9.41 274.69
3_NE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 10 0.7 1 1 0.83 0.77 0.23 0 10140.6 -3109.9 -212.69 30384.74
3_NE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 0.7 1 1 0.66 0.77 0.23 0 25429.77 -8207.55 -356.72 134965.02
4_ProbNE 2 1 1 [[1]] [(0, 0)] 0.8 0.8 NaN 0.8 0.8 0.8 0.2 0 948.58 -256.43 -197.01 36214.75
4_ProbNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.29 NaN 0.29 1 0.29 0.71 0 33.95 77.58 39.21 619.38
4_ProbNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.29 0.8 0.86 1 0.47 0.53 0.07 153.89 121.19 24.01 308.7
4_ProbNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.62 0.8 0.92 1 0.65 0.35 0.05 360.19 107.77 13.44 342.75
4_ProbNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.93 0.92 0.67 0.33 0.07 3916.66 -1051.54 -94.75 5953.86
4_ProbNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.92 0.77 0.67 0.33 0.08 14060.48 -4432.94 -279.45 61720.53
4_ProbNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.92 0.62 0.67 0.33 0.08 28327.44 -9189.5 -374.14 170226.09
5_ProbBinNE 2 1 1 [[1]] [(0, 0)] 0.9 0.9 NaN 0.9 0.9 0.9 0.1 0 563.53 -120.85 -102.59 10174.23
5_ProbBinNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.21 0.75 0.81 0.99 0.26 0.74 0.02 145.62 46.14 23.26 480.98
5_ProbBinNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.21 0.75 0.8 1 0.43 0.57 0.11 156.28 119.9 24.15 222.41
5_ProbBinNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.66 0.75 0.92 1 0.67 0.33 0.04 355.43 113.59 14.26 323.14
5_ProbBinNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.1 0.66 0.75 0.92 0.91 0.68 0.32 0.08 4604.18 -1281.17 -113.54 8095.56
5_ProbBinNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.66 0.75 0.92 0.76 0.68 0.32 0.08 14192.15 -4475.32 -279.04 63311.81
5_ProbBinNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.1 0.66 0.75 0.92 0.61 0.68 0.32 0.08 29722.92 -9654.46 -383.93 183019.17
6_DrivPNE 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.98 1 0 0 154.64 22.96 23.54 660.67
6_DrivPNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.54 NaN 0.54 1 0.54 0.46 0 0.99 76.36 38.14 488.88
6_DrivPNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.54 1 1 1 0.61 0.39 0 148.96 125.39 25.18 376.52
6_DrivPNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.99 0.53 0.47 0.2 862.39 -49.29 -6.01 447.71
6_DrivPNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.79 0.53 0.47 0.2 10708.58 -3330.37 -259.89 49229.13
6_DrivPNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.5 0.59 0.8 0.66 0.53 0.47 0.2 20809.77 -6696.99 -363.66 140165.14
6_DrivPNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.52 0.53 0.47 0.2 36018.76 -11767.73 -402.33 254469.93
7_TimePNE(30) 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.97 1 0 0 16.54 66.95 67.3 163.9
7_TimePNE(30) 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 1 0.14 NaN 0.14 0.49 0.14 0.86 0 59.43 54.49 32.08 1067.18
7_TimePNE(30) 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 1.3 0.14 1 1 0.26 0.18 0.82 0 141.2 34.83 14.35 668.27
7_TimePNE(30) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.87 0.7 0.3 0 100.16 191.14 25.17 369.25
7_TimePNE(30) 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.7 0.7 0.3 0 188.84 163.64 19.3 377.74
7_TimePNE(30) 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.58 0.7 0.3 0 281.87 130.92 15.08 343.05
7_TimePNE(30) 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8.1 0.7 1 1 0.54 0.73 0.27 0 356.51 122.91 12.77 288.15

Rule P λ i* Partitions Bins TP Bin1_p Bin2_p P_match DrivUtil ServProb CRate ExRate AvgQLen NetRev AvgDrvPay VarDrvPay
1_AlwaysAccept 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.98 1 0 0 80.67 46.75 47.25 539.81
1_AlwaysAccept 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 1 NaN 1 1 1 0 0 0.4 65.06 32.27 313.01
1_AlwaysAccept 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 1 NaN 1 1 1 0 0 2.41 158.67 31.98 306.76
1_AlwaysAccept 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 1 NaN 1 1 1 0 0 4.09 213.84 26.86 278.17
1_AlwaysAccept 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 1 NaN 1 1 1 0 0 121.7 227.9 22.87 298.57
1_AlwaysAccept 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 1 NaN 1 0.83 1 0 0 10517.26 -3238.18 -219.84 34034.67
1_AlwaysAccept 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 10 1 NaN 1 0.67 1 0 0 24802.14 -7997.95 -350.26 128262.24
2_StrictCut(50) 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 1 1 0 0 15.98 67.75 69.34 33.53
2_StrictCut(50) 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 1 NaN 1 1 1 0 0 0.39 63.55 31.84 297.64
2_StrictCut(50) 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 1 NaN 1 1 1 0 0 2.44 158.38 31.85 301.57
2_StrictCut(50) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 1 NaN 1 1 1 0 0 3.97 214.43 26.79 272.98
2_StrictCut(50) 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.5 0.35 0 0.35 0.35 0.21 0.79 0.65 31940.92 -10552.77 -355.78 383605.81
2_StrictCut(50) 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.4 0.34 0 0.34 0.28 0.21 0.79 0.66 42758.42 -14161.42 -327.68 410364.52
2_StrictCut(50) 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.4 0.34 0 0.34 0.23 0.2 0.8 0.66 57812.32 -19179.06 -286.04 406229.24
3_NE 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 1 1 0 0 31.5 63.34 64.32 61.97
3_NE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.14 1 1 0.99 0.25 0.75 0 148.25 50.21 25.42 25.08
3_NE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.14 1 1 1 0.45 0.55 0 152.01 123.22 24.7 6.61
3_NE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.7 1 1 1 0.73 0.27 0 347.69 123.21 15.49 318.52
3_NE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 0.7 1 1 0.99 0.77 0.23 0 527.63 93.28 9.41 274.69
3_NE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 10 0.7 1 1 0.83 0.77 0.23 0 10140.6 -3109.9 -212.69 30384.74
3_NE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 0.7 1 1 0.66 0.77 0.23 0 25429.77 -8207.55 -356.72 134965.02
4_ProbNE 2 1 1 [[1]] [(0, 0)] 0.8 0.8 NaN 0.8 0.8 0.8 0.2 0 948.58 -256.43 -197.01 36214.75
4_ProbNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.29 NaN 0.29 1 0.29 0.71 0 33.95 77.58 39.21 619.38
4_ProbNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.29 0.8 0.86 1 0.47 0.53 0.07 153.89 121.19 24.01 308.7
4_ProbNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.62 0.8 0.92 1 0.65 0.35 0.05 360.19 107.77 13.44 342.75
4_ProbNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.93 0.92 0.67 0.33 0.07 3916.66 -1051.54 -94.75 5953.86
4_ProbNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.92 0.77 0.67 0.33 0.08 14060.48 -4432.94 -279.45 61720.53
4_ProbNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.92 0.62 0.67 0.33 0.08 28327.44 -9189.5 -374.14 170226.09
5_ProbBinNE 2 1 1 [[1]] [(0, 0)] 0.9 0.9 NaN 0.9 0.9 0.9 0.1 0 563.53 -120.85 -102.59 10174.23
5_ProbBinNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.21 0.75 0.81 0.99 0.26 0.74 0.02 145.62 46.14 23.26 480.98
5_ProbBinNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.21 0.75 0.8 1 0.43 0.57 0.11 156.28 119.9 24.15 222.41
5_ProbBinNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.66 0.75 0.92 1 0.67 0.33 0.04 355.43 113.59 14.26 323.14
5_ProbBinNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.1 0.66 0.75 0.92 0.91 0.68 0.32 0.08 4604.18 -1281.17 -113.54 8095.56
5_ProbBinNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.66 0.75 0.92 0.76 0.68 0.32 0.08 14192.15 -4475.32 -279.04 63311.81
5_ProbBinNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.1 0.66 0.75 0.92 0.61 0.68 0.32 0.08 29722.92 -9654.46 -383.93 183019.17
6_DrivPNE 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.98 1 0 0 154.64 22.96 23.54 660.67
6_DrivPNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.54 NaN 0.54 1 0.54 0.46 0 0.99 76.36 38.14 488.88
6_DrivPNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.54 1 1 1 0.61 0.39 0 148.96 125.39 25.18 376.52
6_DrivPNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.99 0.53 0.47 0.2 862.39 -49.29 -6.01 447.71
6_DrivPNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.79 0.53 0.47 0.2 10708.58 -3330.37 -259.89 49229.13
6_DrivPNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.5 0.59 0.8 0.66 0.53 0.47 0.2 20809.77 -6696.99 -363.66 140165.14
6_DrivPNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.52 0.53 0.47 0.2 36018.76 -11767.73 -402.33 254469.93
7_TimePNE(30) 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.97 1 0 0 16.54 66.95 67.3 163.9
7_TimePNE(30) 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 1 0.14 NaN 0.14 0.49 0.14 0.86 0 59.43 54.49 32.08 1067.18
7_TimePNE(30) 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 1.3 0.14 1 1 0.26 0.18 0.82 0 141.2 34.83 14.35 668.27
7_TimePNE(30) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.87 0.7 0.3 0 100.16 191.14 25.17 369.25
7_TimePNE(30) 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.7 0.7 0.3 0 188.84 163.64 19.3 377.74
7_TimePNE(30) 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.58 0.7 0.3 0 281.87 130.92 15.08 343.05
7_TimePNE(30) 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8.1 0.7 1 1 0.54 0.73 0.27 0 356.51 122.91 12.77 288.15

Rule λ L1_Bin1 L1_Bin2 L2_Bin1 L2_Bin2
1_AlwaysAccept 1 100 0 0 0
1_AlwaysAccept 2 100 0 100 0
1_AlwaysAccept 5 100 0 100 0
1_AlwaysAccept 8 100 0 100 0
1_AlwaysAccept 10 100 0 100 0
1_AlwaysAccept 12 100 0 100 0
1_AlwaysAccept 15 100 0 100 0
2_StrictCut(50) 1 100 0 0 0
2_StrictCut(50) 2 100 0 100 0
2_StrictCut(50) 5 100 0 100 0
2_StrictCut(50) 8 100 0 100 0
2_StrictCut(50) 10 100 0 100 0
2_StrictCut(50) 12 100 0 100 0
2_StrictCut(50) 15 100 0 100 0
3_NE 1 100 0 0 0
3_NE 2 100 0 0 100
3_NE 5 100 0 0 100
3_NE 8 100 0 0 100
3_NE 10 100 0 0 100
3_NE 12 100 0 0 100
3_NE 15 100 0 0 100
4_ProbNE 1 100 0 0 0
4_ProbNE 2 100 0 100 0
4_ProbNE 5 87.4 12.6 29.1 70.9
4_ProbNE 8 89.4 10.6 33.8 66.2
4_ProbNE 10 83.7 16.3 24.4 75.6
4_ProbNE 12 83.5 16.5 23.8 76.2
4_ProbNE 15 83.2 16.8 23.7 76.3
5_ProbBinNE 1 100 0 0 0
5_ProbBinNE 2 99 1 55.5 44.5
5_ProbBinNE 5 93.3 6.7 15.2 84.8
5_ProbBinNE 8 95.8 4.2 22.4 77.6
5_ProbBinNE 10 92.5 7.5 13.2 86.8
5_ProbBinNE 12 92.2 7.8 12.8 87.2
5_ProbBinNE 15 92.3 7.7 12.8 87.2
6_DrivPNE 1 100 0 0 0
6_DrivPNE 2 100 0 100 0
6_DrivPNE 5 100 0 70.2 29.8
6_DrivPNE 8 66.1 33.9 44.4 55.6
6_DrivPNE 10 65.7 34.3 44.8 55.2
6_DrivPNE 12 65.8 34.2 44.6 55.4
6_DrivPNE 15 65.8 34.2 44.4 55.6
7_TimePNE(30) 1 100 0 0 0
7_TimePNE(30) 2 100 0 0 0
7_TimePNE(30) 5 100 0 0 100
7_TimePNE(30) 8 100 0 0 0
7_TimePNE(30) 10 100 0 0 0
7_TimePNE(30) 12 100 0 0 0
7_TimePNE(30) 15 100 0 0 100

Rule λ L1_Bin1 L1_Bin2 L2_Bin1 L2_Bin2
1_AlwaysAccept 1 100 0 0 0
1_AlwaysAccept 2 100 0 100 0
1_AlwaysAccept 5 100 0 100 0
1_AlwaysAccept 8 100 0 100 0
1_AlwaysAccept 10 100 0 100 0
1_AlwaysAccept 12 100 0 100 0
1_AlwaysAccept 15 100 0 100 0
2_StrictCut(50) 1 100 0 0 0
2_StrictCut(50) 2 100 0 100 0
2_StrictCut(50) 5 100 0 100 0
2_StrictCut(50) 8 100 0 100 0
2_StrictCut(50) 10 100 0 100 0
2_StrictCut(50) 12 100 0 100 0
2_StrictCut(50) 15 100 0 100 0
3_NE 1 100 0 0 0
3_NE 2 100 0 0 100
3_NE 5 100 0 0 100
3_NE 8 100 0 0 100
3_NE 10 100 0 0 100
3_NE 12 100 0 0 100
3_NE 15 100 0 0 100
4_ProbNE 1 100 0 0 0
4_ProbNE 2 100 0 100 0
4_ProbNE 5 87.4 12.6 29.1 70.9
4_ProbNE 8 89.4 10.6 33.8 66.2
4_ProbNE 10 83.7 16.3 24.4 75.6
4_ProbNE 12 83.5 16.5 23.8 76.2
4_ProbNE 15 83.2 16.8 23.7 76.3
5_ProbBinNE 1 100 0 0 0
5_ProbBinNE 2 99 1 55.5 44.5
5_ProbBinNE 5 93.3 6.7 15.2 84.8
5_ProbBinNE 8 95.8 4.2 22.4 77.6
5_ProbBinNE 10 92.5 7.5 13.2 86.8
5_ProbBinNE 12 92.2 7.8 12.8 87.2
5_ProbBinNE 15 92.3 7.7 12.8 87.2
6_DrivPNE 1 100 0 0 0
6_DrivPNE 2 100 0 100 0
6_DrivPNE 5 100 0 70.2 29.8
6_DrivPNE 8 66.1 33.9 44.4 55.6
6_DrivPNE 10 65.7 34.3 44.8 55.2
6_DrivPNE 12 65.8 34.2 44.6 55.4
6_DrivPNE 15 65.8 34.2 44.4 55.6
7_TimePNE(30) 1 100 0 0 0
7_TimePNE(30) 2 100 0 0 0
7_TimePNE(30) 5 100 0 0 100
7_TimePNE(30) 8 100 0 0 0
7_TimePNE(30) 10 100 0 0 0
7_TimePNE(30) 12 100 0 0 0
7_TimePNE(30) 15 100 0 0 100
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also regularly receives L2 offers (e.g., 12.8% at λ = 15) and rejects many, dragging down the 
service rate. 

Cancellation and patience exhaustion rates stabilize at 0.32 and 0.08 respectively, similarly to the 

caps observed in ProbNE. Driver utilization drops steadily with λ, from 1.0 to 0.61, as many 

drivers remain idle for longer periods. This leads to worsening driver payoffs and rising variance, 

culminating in high queue lengths (nearly 30,000 at λ = 15) and platform losses. Notably, caps in 

P_match (0.92) and Bin1_p (0.66) arise directly from the probabilistic structure of the rule—

these are not results of behavioral changes but rather fixed acceptance ceilings. Overall, 

ProbBinNE introduces more nuanced rejection behavior while preserving throughput efficiency up 

to high supply levels, albeit at the cost of fairness and revenue stability in oversaturated conditions. 

6_DrivPNE. DrivPNE incorporates targeted patience thresholds based on both bin index and 

destination. This design reflects the idea that drivers may be willing to wait through a certain 

number of mismatches before accepting trips to lower-valued locations. The willingness to wait is 

proportional to the waiting costs drivers incur while remaining in the queue. Drivers in Bin 1 

accept trips to Location 1 immediately, to Location 2 after 1 decline, and to Location 3 after 2 

declines. Drivers in Bin 2 accept Location 1 and 2 immediately and Location 3 after 1 decline. 

 

 

 

Rule P λ i* Partitions Bins TP Bin1_p Bin2_p P_match DrivUtil ServProb CRate ExRate AvgQLen NetRev AvgDrvPay VarDrvPay
1_AlwaysAccept 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.98 1 0 0 80.67 46.75 47.25 539.81
1_AlwaysAccept 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 1 NaN 1 1 1 0 0 0.4 65.06 32.27 313.01
1_AlwaysAccept 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 1 NaN 1 1 1 0 0 2.41 158.67 31.98 306.76
1_AlwaysAccept 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 1 NaN 1 1 1 0 0 4.09 213.84 26.86 278.17
1_AlwaysAccept 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 1 NaN 1 1 1 0 0 121.7 227.9 22.87 298.57
1_AlwaysAccept 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 1 NaN 1 0.83 1 0 0 10517.26 -3238.18 -219.84 34034.67
1_AlwaysAccept 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 10 1 NaN 1 0.67 1 0 0 24802.14 -7997.95 -350.26 128262.24
2_StrictCut(50) 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 1 1 0 0 15.98 67.75 69.34 33.53
2_StrictCut(50) 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 1 NaN 1 1 1 0 0 0.39 63.55 31.84 297.64
2_StrictCut(50) 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 1 NaN 1 1 1 0 0 2.44 158.38 31.85 301.57
2_StrictCut(50) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 1 NaN 1 1 1 0 0 3.97 214.43 26.79 272.98
2_StrictCut(50) 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.5 0.35 0 0.35 0.35 0.21 0.79 0.65 31940.92 -10552.77 -355.78 383605.81
2_StrictCut(50) 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.4 0.34 0 0.34 0.28 0.21 0.79 0.66 42758.42 -14161.42 -327.68 410364.52
2_StrictCut(50) 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.4 0.34 0 0.34 0.23 0.2 0.8 0.66 57812.32 -19179.06 -286.04 406229.24
3_NE 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 1 1 0 0 31.5 63.34 64.32 61.97
3_NE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.14 1 1 0.99 0.25 0.75 0 148.25 50.21 25.42 25.08
3_NE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.14 1 1 1 0.45 0.55 0 152.01 123.22 24.7 6.61
3_NE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.7 1 1 1 0.73 0.27 0 347.69 123.21 15.49 318.52
3_NE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 0.7 1 1 0.99 0.77 0.23 0 527.63 93.28 9.41 274.69
3_NE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 10 0.7 1 1 0.83 0.77 0.23 0 10140.6 -3109.9 -212.69 30384.74
3_NE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 0.7 1 1 0.66 0.77 0.23 0 25429.77 -8207.55 -356.72 134965.02
4_ProbNE 2 1 1 [[1]] [(0, 0)] 0.8 0.8 NaN 0.8 0.8 0.8 0.2 0 948.58 -256.43 -197.01 36214.75
4_ProbNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.29 NaN 0.29 1 0.29 0.71 0 33.95 77.58 39.21 619.38
4_ProbNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.29 0.8 0.86 1 0.47 0.53 0.07 153.89 121.19 24.01 308.7
4_ProbNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.62 0.8 0.92 1 0.65 0.35 0.05 360.19 107.77 13.44 342.75
4_ProbNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.93 0.92 0.67 0.33 0.07 3916.66 -1051.54 -94.75 5953.86
4_ProbNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.92 0.77 0.67 0.33 0.08 14060.48 -4432.94 -279.45 61720.53
4_ProbNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.92 0.62 0.67 0.33 0.08 28327.44 -9189.5 -374.14 170226.09
5_ProbBinNE 2 1 1 [[1]] [(0, 0)] 0.9 0.9 NaN 0.9 0.9 0.9 0.1 0 563.53 -120.85 -102.59 10174.23
5_ProbBinNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.21 0.75 0.81 0.99 0.26 0.74 0.02 145.62 46.14 23.26 480.98
5_ProbBinNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.21 0.75 0.8 1 0.43 0.57 0.11 156.28 119.9 24.15 222.41
5_ProbBinNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.66 0.75 0.92 1 0.67 0.33 0.04 355.43 113.59 14.26 323.14
5_ProbBinNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.1 0.66 0.75 0.92 0.91 0.68 0.32 0.08 4604.18 -1281.17 -113.54 8095.56
5_ProbBinNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.66 0.75 0.92 0.76 0.68 0.32 0.08 14192.15 -4475.32 -279.04 63311.81
5_ProbBinNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.1 0.66 0.75 0.92 0.61 0.68 0.32 0.08 29722.92 -9654.46 -383.93 183019.17
6_DrivPNE 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.98 1 0 0 154.64 22.96 23.54 660.67
6_DrivPNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.54 NaN 0.54 1 0.54 0.46 0 0.99 76.36 38.14 488.88
6_DrivPNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.54 1 1 1 0.61 0.39 0 148.96 125.39 25.18 376.52
6_DrivPNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.99 0.53 0.47 0.2 862.39 -49.29 -6.01 447.71
6_DrivPNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.79 0.53 0.47 0.2 10708.58 -3330.37 -259.89 49229.13
6_DrivPNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.5 0.59 0.8 0.66 0.53 0.47 0.2 20809.77 -6696.99 -363.66 140165.14
6_DrivPNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.52 0.53 0.47 0.2 36018.76 -11767.73 -402.33 254469.93
7_TimePNE(30) 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.97 1 0 0 16.54 66.95 67.3 163.9
7_TimePNE(30) 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 1 0.14 NaN 0.14 0.49 0.14 0.86 0 59.43 54.49 32.08 1067.18
7_TimePNE(30) 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 1.3 0.14 1 1 0.26 0.18 0.82 0 141.2 34.83 14.35 668.27
7_TimePNE(30) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.87 0.7 0.3 0 100.16 191.14 25.17 369.25
7_TimePNE(30) 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.7 0.7 0.3 0 188.84 163.64 19.3 377.74
7_TimePNE(30) 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.58 0.7 0.3 0 281.87 130.92 15.08 343.05
7_TimePNE(30) 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8.1 0.7 1 1 0.54 0.73 0.27 0 356.51 122.91 12.77 288.15

Rule P λ i* Partitions Bins TP Bin1_p Bin2_p P_match DrivUtil ServProb CRate ExRate AvgQLen NetRev AvgDrvPay VarDrvPay
1_AlwaysAccept 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.98 1 0 0 80.67 46.75 47.25 539.81
1_AlwaysAccept 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 1 NaN 1 1 1 0 0 0.4 65.06 32.27 313.01
1_AlwaysAccept 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 1 NaN 1 1 1 0 0 2.41 158.67 31.98 306.76
1_AlwaysAccept 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 1 NaN 1 1 1 0 0 4.09 213.84 26.86 278.17
1_AlwaysAccept 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 1 NaN 1 1 1 0 0 121.7 227.9 22.87 298.57
1_AlwaysAccept 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 1 NaN 1 0.83 1 0 0 10517.26 -3238.18 -219.84 34034.67
1_AlwaysAccept 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 10 1 NaN 1 0.67 1 0 0 24802.14 -7997.95 -350.26 128262.24
2_StrictCut(50) 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 1 1 0 0 15.98 67.75 69.34 33.53
2_StrictCut(50) 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 1 NaN 1 1 1 0 0 0.39 63.55 31.84 297.64
2_StrictCut(50) 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 1 NaN 1 1 1 0 0 2.44 158.38 31.85 301.57
2_StrictCut(50) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 1 NaN 1 1 1 0 0 3.97 214.43 26.79 272.98
2_StrictCut(50) 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.5 0.35 0 0.35 0.35 0.21 0.79 0.65 31940.92 -10552.77 -355.78 383605.81
2_StrictCut(50) 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.4 0.34 0 0.34 0.28 0.21 0.79 0.66 42758.42 -14161.42 -327.68 410364.52
2_StrictCut(50) 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.4 0.34 0 0.34 0.23 0.2 0.8 0.66 57812.32 -19179.06 -286.04 406229.24
3_NE 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 1 1 0 0 31.5 63.34 64.32 61.97
3_NE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.14 1 1 0.99 0.25 0.75 0 148.25 50.21 25.42 25.08
3_NE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.14 1 1 1 0.45 0.55 0 152.01 123.22 24.7 6.61
3_NE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.7 1 1 1 0.73 0.27 0 347.69 123.21 15.49 318.52
3_NE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 0.7 1 1 0.99 0.77 0.23 0 527.63 93.28 9.41 274.69
3_NE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 10 0.7 1 1 0.83 0.77 0.23 0 10140.6 -3109.9 -212.69 30384.74
3_NE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 0.7 1 1 0.66 0.77 0.23 0 25429.77 -8207.55 -356.72 134965.02
4_ProbNE 2 1 1 [[1]] [(0, 0)] 0.8 0.8 NaN 0.8 0.8 0.8 0.2 0 948.58 -256.43 -197.01 36214.75
4_ProbNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.29 NaN 0.29 1 0.29 0.71 0 33.95 77.58 39.21 619.38
4_ProbNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.29 0.8 0.86 1 0.47 0.53 0.07 153.89 121.19 24.01 308.7
4_ProbNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.62 0.8 0.92 1 0.65 0.35 0.05 360.19 107.77 13.44 342.75
4_ProbNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.93 0.92 0.67 0.33 0.07 3916.66 -1051.54 -94.75 5953.86
4_ProbNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.92 0.77 0.67 0.33 0.08 14060.48 -4432.94 -279.45 61720.53
4_ProbNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.92 0.62 0.67 0.33 0.08 28327.44 -9189.5 -374.14 170226.09
5_ProbBinNE 2 1 1 [[1]] [(0, 0)] 0.9 0.9 NaN 0.9 0.9 0.9 0.1 0 563.53 -120.85 -102.59 10174.23
5_ProbBinNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.21 0.75 0.81 0.99 0.26 0.74 0.02 145.62 46.14 23.26 480.98
5_ProbBinNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.21 0.75 0.8 1 0.43 0.57 0.11 156.28 119.9 24.15 222.41
5_ProbBinNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.66 0.75 0.92 1 0.67 0.33 0.04 355.43 113.59 14.26 323.14
5_ProbBinNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.1 0.66 0.75 0.92 0.91 0.68 0.32 0.08 4604.18 -1281.17 -113.54 8095.56
5_ProbBinNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.66 0.75 0.92 0.76 0.68 0.32 0.08 14192.15 -4475.32 -279.04 63311.81
5_ProbBinNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.1 0.66 0.75 0.92 0.61 0.68 0.32 0.08 29722.92 -9654.46 -383.93 183019.17
6_DrivPNE 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.98 1 0 0 154.64 22.96 23.54 660.67
6_DrivPNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.54 NaN 0.54 1 0.54 0.46 0 0.99 76.36 38.14 488.88
6_DrivPNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.54 1 1 1 0.61 0.39 0 148.96 125.39 25.18 376.52
6_DrivPNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.99 0.53 0.47 0.2 862.39 -49.29 -6.01 447.71
6_DrivPNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.79 0.53 0.47 0.2 10708.58 -3330.37 -259.89 49229.13
6_DrivPNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.5 0.59 0.8 0.66 0.53 0.47 0.2 20809.77 -6696.99 -363.66 140165.14
6_DrivPNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.52 0.53 0.47 0.2 36018.76 -11767.73 -402.33 254469.93
7_TimePNE(30) 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.97 1 0 0 16.54 66.95 67.3 163.9
7_TimePNE(30) 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 1 0.14 NaN 0.14 0.49 0.14 0.86 0 59.43 54.49 32.08 1067.18
7_TimePNE(30) 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 1.3 0.14 1 1 0.26 0.18 0.82 0 141.2 34.83 14.35 668.27
7_TimePNE(30) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.87 0.7 0.3 0 100.16 191.14 25.17 369.25
7_TimePNE(30) 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.7 0.7 0.3 0 188.84 163.64 19.3 377.74
7_TimePNE(30) 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.58 0.7 0.3 0 281.87 130.92 15.08 343.05
7_TimePNE(30) 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8.1 0.7 1 1 0.54 0.73 0.27 0 356.51 122.91 12.77 288.15
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The performance of DrivPNE exhibits several distinctive patterns driven by its patience-based 

queue logic. Throughput (TP) increases with driver supply and stabilizes around 7.9 trips per unit 

of time at λ ≥ 8. This cap stems from the limited patience thresholds that restrict when drivers 

are willing to accept lower-priority trips. Despite having the full set of drivers in queue, trips to 

lower-valued locations are delayed until enough mismatches occur, limiting instantaneous 

matching and suppressing P_match, which caps at 0.79. Service probability stabilizes around 0.53, 

significantly lower than that of AlwaysAccept or NE. This reflects the high number of rider offers 

that are rejected when they arrive before reaching a driver’s acceptance threshold. 

 

 

As seen in the data, only about 66% of L1 trips are matched to Bin 1 at λ ≥ 8, while substantial 

offers are routed to Bin 2. For example, at λ = 15, L1 matches are split as 65.8% to Bin 1, 34.2% 

to Bin 2, reflecting early mismatches and driver drop-off points. 

The impact of these thresholds is visible in the stability of Bin1_p and Bin2_p values, which 

plateau at 0.5 and 0.59 respectively. This confirms that despite increased queue length, driver 

willingness to serve only arrives after specific declines, capping their participation rate. As a result, 

cancellation and exhaustion rates rise and flatten near 0.47 and 0.2, respectively. Economic 

performance deteriorates sharply as supply increases. Average driver payoff declines from 23.5 to 

– 402.3, with variance exploding to over 250,000. Queue length follows a steep upward trajectory, 

reaching over 36,000 at λ = 15, confirming substantial delays and system congestion. Driver 

utilization falls from 0.98 to 0.52, reflecting the long idle times caused by drivers waiting to reach 

acceptable positions in the queue. 

Overall, DrivPNE introduces realistic behavioral heterogeneity by allowing variable patience, but 

this comes at the cost of substantial performance trade-offs. While it avoids strict rejection rules, 

its inherent delays in acceptance drive inefficiencies under high-supply scenarios, leading to capped 

throughput, suppressed service probability, and considerable platform losses. 

Rule λ L1_Bin1 L1_Bin2 L2_Bin1 L2_Bin2
1_AlwaysAccept 1 100 0 0 0
1_AlwaysAccept 2 100 0 100 0
1_AlwaysAccept 5 100 0 100 0
1_AlwaysAccept 8 100 0 100 0
1_AlwaysAccept 10 100 0 100 0
1_AlwaysAccept 12 100 0 100 0
1_AlwaysAccept 15 100 0 100 0
2_StrictCut(50) 1 100 0 0 0
2_StrictCut(50) 2 100 0 100 0
2_StrictCut(50) 5 100 0 100 0
2_StrictCut(50) 8 100 0 100 0
2_StrictCut(50) 10 100 0 100 0
2_StrictCut(50) 12 100 0 100 0
2_StrictCut(50) 15 100 0 100 0
3_NE 1 100 0 0 0
3_NE 2 100 0 0 100
3_NE 5 100 0 0 100
3_NE 8 100 0 0 100
3_NE 10 100 0 0 100
3_NE 12 100 0 0 100
3_NE 15 100 0 0 100
4_ProbNE 1 100 0 0 0
4_ProbNE 2 100 0 100 0
4_ProbNE 5 87.4 12.6 29.1 70.9
4_ProbNE 8 89.4 10.6 33.8 66.2
4_ProbNE 10 83.7 16.3 24.4 75.6
4_ProbNE 12 83.5 16.5 23.8 76.2
4_ProbNE 15 83.2 16.8 23.7 76.3
5_ProbBinNE 1 100 0 0 0
5_ProbBinNE 2 99 1 55.5 44.5
5_ProbBinNE 5 93.3 6.7 15.2 84.8
5_ProbBinNE 8 95.8 4.2 22.4 77.6
5_ProbBinNE 10 92.5 7.5 13.2 86.8
5_ProbBinNE 12 92.2 7.8 12.8 87.2
5_ProbBinNE 15 92.3 7.7 12.8 87.2
6_DrivPNE 1 100 0 0 0
6_DrivPNE 2 100 0 100 0
6_DrivPNE 5 100 0 70.2 29.8
6_DrivPNE 8 66.1 33.9 44.4 55.6
6_DrivPNE 10 65.7 34.3 44.8 55.2
6_DrivPNE 12 65.8 34.2 44.6 55.4
6_DrivPNE 15 65.8 34.2 44.4 55.6
7_TimePNE(30) 1 100 0 0 0
7_TimePNE(30) 2 100 0 0 0
7_TimePNE(30) 5 100 0 0 100
7_TimePNE(30) 8 100 0 0 0
7_TimePNE(30) 10 100 0 0 0
7_TimePNE(30) 12 100 0 0 0
7_TimePNE(30) 15 100 0 0 100

Rule λ L1_Bin1 L1_Bin2 L2_Bin1 L2_Bin2
1_AlwaysAccept 1 100 0 0 0
1_AlwaysAccept 2 100 0 100 0
1_AlwaysAccept 5 100 0 100 0
1_AlwaysAccept 8 100 0 100 0
1_AlwaysAccept 10 100 0 100 0
1_AlwaysAccept 12 100 0 100 0
1_AlwaysAccept 15 100 0 100 0
2_StrictCut(50) 1 100 0 0 0
2_StrictCut(50) 2 100 0 100 0
2_StrictCut(50) 5 100 0 100 0
2_StrictCut(50) 8 100 0 100 0
2_StrictCut(50) 10 100 0 100 0
2_StrictCut(50) 12 100 0 100 0
2_StrictCut(50) 15 100 0 100 0
3_NE 1 100 0 0 0
3_NE 2 100 0 0 100
3_NE 5 100 0 0 100
3_NE 8 100 0 0 100
3_NE 10 100 0 0 100
3_NE 12 100 0 0 100
3_NE 15 100 0 0 100
4_ProbNE 1 100 0 0 0
4_ProbNE 2 100 0 100 0
4_ProbNE 5 87.4 12.6 29.1 70.9
4_ProbNE 8 89.4 10.6 33.8 66.2
4_ProbNE 10 83.7 16.3 24.4 75.6
4_ProbNE 12 83.5 16.5 23.8 76.2
4_ProbNE 15 83.2 16.8 23.7 76.3
5_ProbBinNE 1 100 0 0 0
5_ProbBinNE 2 99 1 55.5 44.5
5_ProbBinNE 5 93.3 6.7 15.2 84.8
5_ProbBinNE 8 95.8 4.2 22.4 77.6
5_ProbBinNE 10 92.5 7.5 13.2 86.8
5_ProbBinNE 12 92.2 7.8 12.8 87.2
5_ProbBinNE 15 92.3 7.7 12.8 87.2
6_DrivPNE 1 100 0 0 0
6_DrivPNE 2 100 0 100 0
6_DrivPNE 5 100 0 70.2 29.8
6_DrivPNE 8 66.1 33.9 44.4 55.6
6_DrivPNE 10 65.7 34.3 44.8 55.2
6_DrivPNE 12 65.8 34.2 44.6 55.4
6_DrivPNE 15 65.8 34.2 44.4 55.6
7_TimePNE(30) 1 100 0 0 0
7_TimePNE(30) 2 100 0 0 0
7_TimePNE(30) 5 100 0 0 100
7_TimePNE(30) 8 100 0 0 0
7_TimePNE(30) 10 100 0 0 0
7_TimePNE(30) 12 100 0 0 0
7_TimePNE(30) 15 100 0 0 100
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7_TimePNE. TimePNE applies a uniform time-based cutoff, where drivers exit the queue if 

unmatched after a fixed threshold of T = 30 time units. Unlike spatial or probabilistic rules, it 

does not consider trip characteristics—only wait duration. This models realistic abandonment 

behavior and reveals how limited patience impacts system efficiency and service under high-delay 

conditions. 

 

 

 

By forcing drivers out after 30 time units, TimePNE keeps the queue from stretching into lower‐

priority bins, so overall throughput is governed by how quickly drivers move through Bin 1 rather 

than by total demand. As supply rises, TP jumps from about 1 at λ = 5 to around 7 under the 

[1, 2],[3] split, reflecting the larger share of drivers in Bin 1. However, because few drivers ever 

reach the Bin 2 cutoff before abandoning, TP stays capped and never fully exploits excess supply. 

Consequently, service probability levels off around 0.7 and only edges up slightly once supply is 

high enough to cover Bin 2. Rider patience exhaustion remains at zero, which is encouraging, but 

drivers still cancel roughly 30% of requests whenever λ ≥ 8. 

 

 

Rule P λ i* Partitions Bins TP Bin1_p Bin2_p P_match DrivUtil ServProb CRate ExRate AvgQLen NetRev AvgDrvPay VarDrvPay
1_AlwaysAccept 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.98 1 0 0 80.67 46.75 47.25 539.81
1_AlwaysAccept 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 1 NaN 1 1 1 0 0 0.4 65.06 32.27 313.01
1_AlwaysAccept 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 1 NaN 1 1 1 0 0 2.41 158.67 31.98 306.76
1_AlwaysAccept 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 1 NaN 1 1 1 0 0 4.09 213.84 26.86 278.17
1_AlwaysAccept 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 1 NaN 1 1 1 0 0 121.7 227.9 22.87 298.57
1_AlwaysAccept 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 1 NaN 1 0.83 1 0 0 10517.26 -3238.18 -219.84 34034.67
1_AlwaysAccept 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 10 1 NaN 1 0.67 1 0 0 24802.14 -7997.95 -350.26 128262.24
2_StrictCut(50) 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 1 1 0 0 15.98 67.75 69.34 33.53
2_StrictCut(50) 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 1 NaN 1 1 1 0 0 0.39 63.55 31.84 297.64
2_StrictCut(50) 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 1 NaN 1 1 1 0 0 2.44 158.38 31.85 301.57
2_StrictCut(50) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 1 NaN 1 1 1 0 0 3.97 214.43 26.79 272.98
2_StrictCut(50) 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.5 0.35 0 0.35 0.35 0.21 0.79 0.65 31940.92 -10552.77 -355.78 383605.81
2_StrictCut(50) 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.4 0.34 0 0.34 0.28 0.21 0.79 0.66 42758.42 -14161.42 -327.68 410364.52
2_StrictCut(50) 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.4 0.34 0 0.34 0.23 0.2 0.8 0.66 57812.32 -19179.06 -286.04 406229.24
3_NE 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 1 1 0 0 31.5 63.34 64.32 61.97
3_NE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.14 1 1 0.99 0.25 0.75 0 148.25 50.21 25.42 25.08
3_NE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.14 1 1 1 0.45 0.55 0 152.01 123.22 24.7 6.61
3_NE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.7 1 1 1 0.73 0.27 0 347.69 123.21 15.49 318.52
3_NE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 0.7 1 1 0.99 0.77 0.23 0 527.63 93.28 9.41 274.69
3_NE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 10 0.7 1 1 0.83 0.77 0.23 0 10140.6 -3109.9 -212.69 30384.74
3_NE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 0.7 1 1 0.66 0.77 0.23 0 25429.77 -8207.55 -356.72 134965.02
4_ProbNE 2 1 1 [[1]] [(0, 0)] 0.8 0.8 NaN 0.8 0.8 0.8 0.2 0 948.58 -256.43 -197.01 36214.75
4_ProbNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.29 NaN 0.29 1 0.29 0.71 0 33.95 77.58 39.21 619.38
4_ProbNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.29 0.8 0.86 1 0.47 0.53 0.07 153.89 121.19 24.01 308.7
4_ProbNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.62 0.8 0.92 1 0.65 0.35 0.05 360.19 107.77 13.44 342.75
4_ProbNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.93 0.92 0.67 0.33 0.07 3916.66 -1051.54 -94.75 5953.86
4_ProbNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.92 0.77 0.67 0.33 0.08 14060.48 -4432.94 -279.45 61720.53
4_ProbNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.92 0.62 0.67 0.33 0.08 28327.44 -9189.5 -374.14 170226.09
5_ProbBinNE 2 1 1 [[1]] [(0, 0)] 0.9 0.9 NaN 0.9 0.9 0.9 0.1 0 563.53 -120.85 -102.59 10174.23
5_ProbBinNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.21 0.75 0.81 0.99 0.26 0.74 0.02 145.62 46.14 23.26 480.98
5_ProbBinNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.21 0.75 0.8 1 0.43 0.57 0.11 156.28 119.9 24.15 222.41
5_ProbBinNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.66 0.75 0.92 1 0.67 0.33 0.04 355.43 113.59 14.26 323.14
5_ProbBinNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.1 0.66 0.75 0.92 0.91 0.68 0.32 0.08 4604.18 -1281.17 -113.54 8095.56
5_ProbBinNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.66 0.75 0.92 0.76 0.68 0.32 0.08 14192.15 -4475.32 -279.04 63311.81
5_ProbBinNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.1 0.66 0.75 0.92 0.61 0.68 0.32 0.08 29722.92 -9654.46 -383.93 183019.17
6_DrivPNE 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.98 1 0 0 154.64 22.96 23.54 660.67
6_DrivPNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.54 NaN 0.54 1 0.54 0.46 0 0.99 76.36 38.14 488.88
6_DrivPNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.54 1 1 1 0.61 0.39 0 148.96 125.39 25.18 376.52
6_DrivPNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.99 0.53 0.47 0.2 862.39 -49.29 -6.01 447.71
6_DrivPNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.79 0.53 0.47 0.2 10708.58 -3330.37 -259.89 49229.13
6_DrivPNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.5 0.59 0.8 0.66 0.53 0.47 0.2 20809.77 -6696.99 -363.66 140165.14
6_DrivPNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.52 0.53 0.47 0.2 36018.76 -11767.73 -402.33 254469.93
7_TimePNE(30) 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.97 1 0 0 16.54 66.95 67.3 163.9
7_TimePNE(30) 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 1 0.14 NaN 0.14 0.49 0.14 0.86 0 59.43 54.49 32.08 1067.18
7_TimePNE(30) 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 1.3 0.14 1 1 0.26 0.18 0.82 0 141.2 34.83 14.35 668.27
7_TimePNE(30) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.87 0.7 0.3 0 100.16 191.14 25.17 369.25
7_TimePNE(30) 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.7 0.7 0.3 0 188.84 163.64 19.3 377.74
7_TimePNE(30) 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.58 0.7 0.3 0 281.87 130.92 15.08 343.05
7_TimePNE(30) 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8.1 0.7 1 1 0.54 0.73 0.27 0 356.51 122.91 12.77 288.15

Rule P λ i* Partitions Bins TP Bin1_p Bin2_p P_match DrivUtil ServProb CRate ExRate AvgQLen NetRev AvgDrvPay VarDrvPay
1_AlwaysAccept 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.98 1 0 0 80.67 46.75 47.25 539.81
1_AlwaysAccept 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 1 NaN 1 1 1 0 0 0.4 65.06 32.27 313.01
1_AlwaysAccept 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 1 NaN 1 1 1 0 0 2.41 158.67 31.98 306.76
1_AlwaysAccept 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 1 NaN 1 1 1 0 0 4.09 213.84 26.86 278.17
1_AlwaysAccept 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 1 NaN 1 1 1 0 0 121.7 227.9 22.87 298.57
1_AlwaysAccept 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 1 NaN 1 0.83 1 0 0 10517.26 -3238.18 -219.84 34034.67
1_AlwaysAccept 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 10 1 NaN 1 0.67 1 0 0 24802.14 -7997.95 -350.26 128262.24
2_StrictCut(50) 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 1 1 0 0 15.98 67.75 69.34 33.53
2_StrictCut(50) 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 1 NaN 1 1 1 0 0 0.39 63.55 31.84 297.64
2_StrictCut(50) 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 1 NaN 1 1 1 0 0 2.44 158.38 31.85 301.57
2_StrictCut(50) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 1 NaN 1 1 1 0 0 3.97 214.43 26.79 272.98
2_StrictCut(50) 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.5 0.35 0 0.35 0.35 0.21 0.79 0.65 31940.92 -10552.77 -355.78 383605.81
2_StrictCut(50) 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.4 0.34 0 0.34 0.28 0.21 0.79 0.66 42758.42 -14161.42 -327.68 410364.52
2_StrictCut(50) 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.4 0.34 0 0.34 0.23 0.2 0.8 0.66 57812.32 -19179.06 -286.04 406229.24
3_NE 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 1 1 0 0 31.5 63.34 64.32 61.97
3_NE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.14 1 1 0.99 0.25 0.75 0 148.25 50.21 25.42 25.08
3_NE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.14 1 1 1 0.45 0.55 0 152.01 123.22 24.7 6.61
3_NE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.7 1 1 1 0.73 0.27 0 347.69 123.21 15.49 318.52
3_NE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 0.7 1 1 0.99 0.77 0.23 0 527.63 93.28 9.41 274.69
3_NE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 10 0.7 1 1 0.83 0.77 0.23 0 10140.6 -3109.9 -212.69 30384.74
3_NE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 0.7 1 1 0.66 0.77 0.23 0 25429.77 -8207.55 -356.72 134965.02
4_ProbNE 2 1 1 [[1]] [(0, 0)] 0.8 0.8 NaN 0.8 0.8 0.8 0.2 0 948.58 -256.43 -197.01 36214.75
4_ProbNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.29 NaN 0.29 1 0.29 0.71 0 33.95 77.58 39.21 619.38
4_ProbNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.29 0.8 0.86 1 0.47 0.53 0.07 153.89 121.19 24.01 308.7
4_ProbNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.62 0.8 0.92 1 0.65 0.35 0.05 360.19 107.77 13.44 342.75
4_ProbNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.93 0.92 0.67 0.33 0.07 3916.66 -1051.54 -94.75 5953.86
4_ProbNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.92 0.77 0.67 0.33 0.08 14060.48 -4432.94 -279.45 61720.53
4_ProbNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.92 0.62 0.67 0.33 0.08 28327.44 -9189.5 -374.14 170226.09
5_ProbBinNE 2 1 1 [[1]] [(0, 0)] 0.9 0.9 NaN 0.9 0.9 0.9 0.1 0 563.53 -120.85 -102.59 10174.23
5_ProbBinNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.21 0.75 0.81 0.99 0.26 0.74 0.02 145.62 46.14 23.26 480.98
5_ProbBinNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.21 0.75 0.8 1 0.43 0.57 0.11 156.28 119.9 24.15 222.41
5_ProbBinNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.66 0.75 0.92 1 0.67 0.33 0.04 355.43 113.59 14.26 323.14
5_ProbBinNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.1 0.66 0.75 0.92 0.91 0.68 0.32 0.08 4604.18 -1281.17 -113.54 8095.56
5_ProbBinNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.2 0.66 0.75 0.92 0.76 0.68 0.32 0.08 14192.15 -4475.32 -279.04 63311.81
5_ProbBinNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.1 0.66 0.75 0.92 0.61 0.68 0.32 0.08 29722.92 -9654.46 -383.93 183019.17
6_DrivPNE 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.98 1 0 0 154.64 22.96 23.54 660.67
6_DrivPNE 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 2 0.54 NaN 0.54 1 0.54 0.46 0 0.99 76.36 38.14 488.88
6_DrivPNE 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 5 0.54 1 1 1 0.61 0.39 0 148.96 125.39 25.18 376.52
6_DrivPNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.99 0.53 0.47 0.2 862.39 -49.29 -6.01 447.71
6_DrivPNE 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.79 0.53 0.47 0.2 10708.58 -3330.37 -259.89 49229.13
6_DrivPNE 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 0.5 0.59 0.8 0.66 0.53 0.47 0.2 20809.77 -6696.99 -363.66 140165.14
6_DrivPNE 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.52 0.53 0.47 0.2 36018.76 -11767.73 -402.33 254469.93
7_TimePNE(30) 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 0.97 1 0 0 16.54 66.95 67.3 163.9
7_TimePNE(30) 2 2 2 [[1], [2]] [(0, 0), (150, 150)] 1 0.14 NaN 0.14 0.49 0.14 0.86 0 59.43 54.49 32.08 1067.18
7_TimePNE(30) 2 5 2 [[1], [2]] [(0, 0), (150, 150)] 1.3 0.14 1 1 0.26 0.18 0.82 0 141.2 34.83 14.35 668.27
7_TimePNE(30) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.87 0.7 0.3 0 100.16 191.14 25.17 369.25
7_TimePNE(30) 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.7 0.7 0.3 0 188.84 163.64 19.3 377.74
7_TimePNE(30) 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.58 0.7 0.3 0 281.87 130.92 15.08 343.05
7_TimePNE(30) 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8.1 0.7 1 1 0.54 0.73 0.27 0 356.51 122.91 12.77 288.15

Rule λ L1_Bin1 L1_Bin2 L2_Bin1 L2_Bin2
1_AlwaysAccept 1 100 0 0 0
1_AlwaysAccept 2 100 0 100 0
1_AlwaysAccept 5 100 0 100 0
1_AlwaysAccept 8 100 0 100 0
1_AlwaysAccept 10 100 0 100 0
1_AlwaysAccept 12 100 0 100 0
1_AlwaysAccept 15 100 0 100 0
2_StrictCut(50) 1 100 0 0 0
2_StrictCut(50) 2 100 0 100 0
2_StrictCut(50) 5 100 0 100 0
2_StrictCut(50) 8 100 0 100 0
2_StrictCut(50) 10 100 0 100 0
2_StrictCut(50) 12 100 0 100 0
2_StrictCut(50) 15 100 0 100 0
3_NE 1 100 0 0 0
3_NE 2 100 0 0 100
3_NE 5 100 0 0 100
3_NE 8 100 0 0 100
3_NE 10 100 0 0 100
3_NE 12 100 0 0 100
3_NE 15 100 0 0 100
4_ProbNE 1 100 0 0 0
4_ProbNE 2 100 0 100 0
4_ProbNE 5 87.4 12.6 29.1 70.9
4_ProbNE 8 89.4 10.6 33.8 66.2
4_ProbNE 10 83.7 16.3 24.4 75.6
4_ProbNE 12 83.5 16.5 23.8 76.2
4_ProbNE 15 83.2 16.8 23.7 76.3
5_ProbBinNE 1 100 0 0 0
5_ProbBinNE 2 99 1 55.5 44.5
5_ProbBinNE 5 93.3 6.7 15.2 84.8
5_ProbBinNE 8 95.8 4.2 22.4 77.6
5_ProbBinNE 10 92.5 7.5 13.2 86.8
5_ProbBinNE 12 92.2 7.8 12.8 87.2
5_ProbBinNE 15 92.3 7.7 12.8 87.2
6_DrivPNE 1 100 0 0 0
6_DrivPNE 2 100 0 100 0
6_DrivPNE 5 100 0 70.2 29.8
6_DrivPNE 8 66.1 33.9 44.4 55.6
6_DrivPNE 10 65.7 34.3 44.8 55.2
6_DrivPNE 12 65.8 34.2 44.6 55.4
6_DrivPNE 15 65.8 34.2 44.4 55.6
7_TimePNE(30) 1 100 0 0 0
7_TimePNE(30) 2 100 0 0 0
7_TimePNE(30) 5 100 0 0 100
7_TimePNE(30) 8 100 0 0 0
7_TimePNE(30) 10 100 0 0 0
7_TimePNE(30) 12 100 0 0 0
7_TimePNE(30) 15 100 0 0 100

Rule λ L1_Bin1 L1_Bin2 L2_Bin1 L2_Bin2
1_AlwaysAccept 1 100 0 0 0
1_AlwaysAccept 2 100 0 100 0
1_AlwaysAccept 5 100 0 100 0
1_AlwaysAccept 8 100 0 100 0
1_AlwaysAccept 10 100 0 100 0
1_AlwaysAccept 12 100 0 100 0
1_AlwaysAccept 15 100 0 100 0
2_StrictCut(50) 1 100 0 0 0
2_StrictCut(50) 2 100 0 100 0
2_StrictCut(50) 5 100 0 100 0
2_StrictCut(50) 8 100 0 100 0
2_StrictCut(50) 10 100 0 100 0
2_StrictCut(50) 12 100 0 100 0
2_StrictCut(50) 15 100 0 100 0
3_NE 1 100 0 0 0
3_NE 2 100 0 0 100
3_NE 5 100 0 0 100
3_NE 8 100 0 0 100
3_NE 10 100 0 0 100
3_NE 12 100 0 0 100
3_NE 15 100 0 0 100
4_ProbNE 1 100 0 0 0
4_ProbNE 2 100 0 100 0
4_ProbNE 5 87.4 12.6 29.1 70.9
4_ProbNE 8 89.4 10.6 33.8 66.2
4_ProbNE 10 83.7 16.3 24.4 75.6
4_ProbNE 12 83.5 16.5 23.8 76.2
4_ProbNE 15 83.2 16.8 23.7 76.3
5_ProbBinNE 1 100 0 0 0
5_ProbBinNE 2 99 1 55.5 44.5
5_ProbBinNE 5 93.3 6.7 15.2 84.8
5_ProbBinNE 8 95.8 4.2 22.4 77.6
5_ProbBinNE 10 92.5 7.5 13.2 86.8
5_ProbBinNE 12 92.2 7.8 12.8 87.2
5_ProbBinNE 15 92.3 7.7 12.8 87.2
6_DrivPNE 1 100 0 0 0
6_DrivPNE 2 100 0 100 0
6_DrivPNE 5 100 0 70.2 29.8
6_DrivPNE 8 66.1 33.9 44.4 55.6
6_DrivPNE 10 65.7 34.3 44.8 55.2
6_DrivPNE 12 65.8 34.2 44.6 55.4
6_DrivPNE 15 65.8 34.2 44.4 55.6
7_TimePNE(30) 1 100 0 0 0
7_TimePNE(30) 2 100 0 0 0
7_TimePNE(30) 5 100 0 0 100
7_TimePNE(30) 8 100 0 0 0
7_TimePNE(30) 10 100 0 0 0
7_TimePNE(30) 12 100 0 0 0
7_TimePNE(30) 15 100 0 0 100
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As the table illustrates, TimePNE mirrors NE’s bin‐based acceptance patterns exactly—drivers 

accept the same trip partitions in each bin. The only deviation arises when the queue never grows 

large enough to reach Partition 2, in which case those trips simply go unoffered.  

This rule’s most dramatic impact is on net revenue: by capping driver wait times, the platform 

retains nearly the full fare for every match, driving revenue well above that of other rules. 

Although surpassing the Nash benchmark may appear counterintuitive, it reflects lower driver 

cost burdens, not better matching. Revenues reach their highest point at λ = 8 and then decline 

when the system becomes oversupplied. Correspondingly, payoff variance plunges from over 1,000 

at λ = 2 down to about 200 at high supply, indicating that the rule also stabilizes driver earnings 

by limiting extreme wait‐time swings. 

Overall, TimePNE injects realistic impatience by removing drivers after a fixed wait, which 

sharply reduces waiting costs and boosts net revenue—but this comes at the expense of total 

matches. While it stabilizes payoffs and caps queue lengths, throughput and service probability 

remain bounded below the demand rate, and excess supply simply increases abandonment rather 

than completed trips. 

4.4 Cross-rule performance comparison and final insights 

Having examined each acceptance rule in isolation, we now turn to a side-by-side comparison that 

highlights how drivers’ behavioral strategies shape system‐level outcomes across varying supply 

regimes. By plotting key metrics—throughput (TP), service probability (ServProb), average driver 

payoff (AvgDrvPay), queue length (AvgQLen), net revenue (NetRev), payoff variance 

(VarDrvPay), and others—against driver supply (λ), we can identify systematic trade-offs between 

efficiency, fairness, and platform profitability. In what follows, we organize our discussion around 

three market conditions (undersupply, balanced supply, oversupply) and contrast groups of rules 

by their “filtering aggressiveness” (AlwaysAccept vs. StrictCut), strategy sophistication (NE and 

its probabilistic relaxations), and patience constraints (DrivPNE, TimePNE). 
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Undersupply (𝝀 ≤ 𝟓). When driver supply is low relative to demand, all rules achieve nearly 

the same throughput—with the exception of TimePNE(30), which matches slightly fewer trips 

overall. However, service probabilities diverge sharply from NE under several rules. Both 

AlwaysAccept and StrictCut(50) always match every trip, driving their service rates to 1.0, 

whereas NE deliberately holds service probability down. In contrast, DrivPNE overserves relative 

to NE (about 0.54 at 𝜆 = 2 and 0.61 at 𝜆 = 5 versus NE’s 0.25 and 0.55), while TimePNE(30) 

markedly underserves (only about 0.14 at 𝜆 = 2 and 0.18 at 𝜆 = 5). The two probabilistic‐

threshold rules—ProbNE and ProbBinNE—track NE most closely, deviating by only a few 

percentage points. Overserving rules like AlwaysAccept and DrivPNE boost total earnings but 

increase variability, while underserving rules like TimePNE sacrifice overall matches and driver 

income in exchange for more consistent (lower‐variance) pay. 

Balanced supply (𝝀 ≈ 𝟖 − 𝟏𝟎). AlwaysAccept continues to overserve—matching nearly every 

trip even as λ rises—while NE holds service around 0.70–0.75. This drives down average driver 

pay and spikes payoff variance. StrictCut(50), by contrast, severely underserves, yielding rising 

queues and dramatically lower earnings and efficiency. Among the bounded‐rational rules, ProbNE 

and ProbBinNE stay closest to NE, sacrificing a few percentage points of service and resulting in 

slightly higher payoff dispersion. DrivPNE and TimePNE(30) also underserve versus NE but far 
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less drastically than StrictCut. These rules strike intermediate trade‐offs, keeping driver pay and 

queue lengths nearer to NE levels while tolerating slightly lower throughput. 

Oversupply (𝝀 > 𝟏𝟎). StrictCut(50) serves a small portion of demand, inducing prohibitively 

long queues and huge negative net revenues, while AlwaysAccept maximizes matches and keeps 

queues minimal with revenues plunging slightly in the negatives. Equilibrium‐based rules (NE, 

ProbNE, ProbBinNE) sustain moderate queue sizes and negative revenue due to oversupply, 

service probability stabilizing at cap values; introducing randomness or bin‐sensitivity helps 

contain extreme disparities in driver earnings. DrivPNE’s individualized patience consistently 

curbs queue growth and smooths payoff distributions, while TimePNE achieves the tightest 

control on both queue length and income inequality by expelling drivers who exceed their wait 

threshold. 

No single acceptance rule universally dominates across all metrics and supply regimes. Our 

simulations reaffirm that NE serves as the efficiency benchmark—it maximizes throughput and 

revenue under balanced supply, though oversupply amplifies inefficiencies. In extreme undersupply 

or oversupply, AlwaysAccept ensures full coverage with minimal queues, while StrictCut(50) 

rigidly sacrifices many matches once driver availability crosses its cutoff. Hybrid strategies—

ProbNE, ProbBinNE, DrivPNE, and TimePNE—closely track NE’s performance, each 

introducing controlled randomness or patience constraints to manage queues and stabilize pay 

without substantially lowering overall throughput. These deviations from perfect rationality reveal 

where efficiency, stability, and cost controls intersect. 
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Chapter 5 
 

 

 

Benchmarking Behavioral Strategies 

 

 

 

In this chapter, we present the second simulation, which aims to benchmark each relaxation of 

Nash Equilibrium behavior against the Nash equilibrium optimum. The goal is to identify the 

optimal bin and partition setups for each acceptance rule under realistic behavioral constraints. 

Building on the acceptance rules introduced earlier, we systematically compare each behavioral 

variation—ProbNE, ProbBinNE, DrivPNE, and TimePNE—with the NE baseline. Unlike 

previous simulations that varied the level of driver supply, this analysis keeps supply fixed and 

instead explores different patience levels and queue configurations. For each rule, we test all bin 

and partition designs to identify the most efficient combination. Key performance indicators such 

as throughput, and net revenue are recorded, along with the Price of Anarchy (PoA), which 

captures the cost of deviating from optimal NE behavior. This chapter provides a comparative 

framework for understanding which configuration minimizes efficiency losses for each behavioral 

rule. 
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5.1 Simulation focus and design 

This chapter builds upon the behavioral simulation framework introduced earlier, using the same 

event-driven, randomized FIFO architecture to model interactions between drivers and riders. As 

before, drivers are queued and matched based on real-time system dynamics, and the platform’s 

performance is assessed through key operational and economic metrics. 

However, the scope of this simulation is narrower and more focused. Here, we test only four 

acceptance rules—ProbNE, ProbBinNE, DrivPNE, and TimePNE—each representing a principled 

relaxation of the Nash Equilibrium (NE) benchmark. The objective is to benchmark these near-

rational strategies under controlled conditions: specifically, fixed driver supply and varying 

patience levels. By doing so, we evaluate how close each rule remains to NE outcomes, quantify 

their performance losses via Price of Anarchy metrics, and identify the most effective bin and 

partition configurations for each acceptance strategy. The goal is to identify for each acceptance 

rule which scenario combination achieves the highest system efficiency while remaining grounded 

in realistic driver behavior. 

5.2 Algorithmic variations 

This simulation builds on the same event-driven randomized FIFO framework developed in the 

previous chapter, but incorporates several key adjustments to align more closely with the 

equilibrium conditions described in the theoretical model and to better assess variations of the NE 

rule under more realistic system constraints. 

5.2.1  Partition focus on [1, 2, 3] 

A central focus of this simulation is on testing the partition configuration [1, 2, 3], which activates 

a randomized dispatch mechanism when 𝑖∗ > 1 and P = 1. In the [1,2,3] partition with a single 

bin, any rule based on NE will lead all drivers to accept all trips, because every trip belongs to 

the single partition assigned to that bin. So from a trip selection perspective, there’s no filtering 

or prioritization happening—all trips are equally valid targets. 
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This setup departs from traditional partitioning logic by grouping all locations into a single 

partition, thereby removing any spatial prioritization. The resulting configuration is supported 

under the randomized FIFO equilibrium framework and is known to significantly raise the cost of 

cherry-picking behavior: drivers can no longer rely on targeted acceptance to isolate high-value 

trips, as all offers are now uniformly randomized across locations. These fairness gains come at 

the cost of predictability and control. Drivers may face increased uncertainty in earnings and idle 

time since their ability to pick profitable matches is reduced. This can lead to higher dispersion 

in payoffs and longer average waiting times, particularly in oversupplied conditions.  

Because of these trade-offs, the partition [1, 2, 3] is interesting to explore. It includes the extreme 

end of randomized dispatch design and allows for examination of how robust each acceptance rule 

is to uncertainty and reduced control. Comparing this partition against more traditional scenarios 

such as [[1], [2, 3]] or [[1], [2], [3]] helps clarify how far near-rational strategies can go in terms of 

performance. 

5.2.2  Queue length bounding to approximate steady-state 

To better replicate steady-state equilibrium behavior, we bound the maximum queue length. In 

theory, the queue stabilizes at a constant level 𝑄∗  when the system reaches equilibrium. 

Specifically, for our parameters where 𝑖∗ = 3, 𝑄∗ = n3 = 360 under the direct FIFO model (see 

Theorem 2, Sec. 3.2.3). However, in practice, to ensure consistent simulation coverage and reduce 

variability, we set the queue length cap to 400. This ensures that the system reliably reaches the 

target length without excessive sensitivity to short-term fluctuations.14 

5.2.3  Equilibrium randomization for trips to 𝒊∗ 

A final algorithmic refinement concerns the treatment of trips to the threshold location 𝑖∗ under 

the NE rule. In equilibrium, drivers in the final bin randomize over whether to accept a trip to 

 
14 The equilibrium queue length 𝑄∗ ensures that the queue neither grows indefinitely nor empties out, 
allowing throughput and payoffs to stabilize. In the oversupplied regime (𝜆 > ∑ 𝜇𝑖𝑖 ), the system reaches a 
steady state where all trips are completed, and the queue length stabilizes at 𝑄∗ = 𝑛𝑖∗ . For 𝑖∗ = 3, this 
means 𝑄∗ = 𝑛3, where 𝑛3 is the number of drivers needed to serve location 3 demand in equilibrium. 
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location 𝑖∗ with a probability calibrated to match the system’s feasible service rate. Specifically, 

if d = 𝑖∗ (where d is the requested destination), the probability of accepting the trip is given by:  

min (𝜆 − ∑ 𝜇𝑖, 𝜇𝑖∗)𝑖<𝑖∗

𝜇𝑖∗
 . 

This logic is encoded directly in the simulation code and controls whether a drivers serves a rider 

at 𝑖∗ or not.15 

5.3 Results and analysis 

The following section presents the results of the refined simulation under fixed drivers supply and 

varying patience levels. We analyze system performance across five acceptance rules—NE, ProbNE, 

ProbBinNE, DrivPNE, and TimePNE(30)—using a consistent setup with three location types [1, 

2, 3], trip rewards [75, 25, 15], and a uniform cost of waiting set to c = 1/3. The rider demand 

vector is fixed at [1, 6, 3], representing heterogeneous destination popularity, while the arrival rate 

of drivers is held at 𝜆 = 8. For each acceptance rule, we compare results across different bin 

configurations and location partitions to identify which scenario yields the best balance of 

throughput, efficiency, and fairness. We begin by introducing the key performance metrics used 

to evaluate each scenario. 

5.3.1  Performance metrics 

The core performance indicators capture both operational efficiency and driver experience. These 

include Throughput (TP), Net Revenue, Average Waiting Time, and Average Driver Payoff. In 

addition, we compute Price of Anarchy metrics—PoA_TP and PoA_NetRev—to measure 

efficiency loss relative to the NE benchmark.  

- TP (Throughput). Measures the number of successfully served ride requests per unit time. 

 
15 This follows the equilibrium mixed strategy described in the paper: drivers in the kth bin accept all trips 
in partitions ⋃ ℒ(𝑘′)𝑘

𝑘′=1 , but randomize over 𝑖∗ when in the final bin, ensuring the acceptance rate matches 
the residual system demand. 
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- NetRev (Net Revenue). captures platform earnings after deducting driver compensation 

based on queue time. 

- AvgWait (Average Waiting Time). reflects how long drivers wait in the queue before 

being matched.  

- AvgPayoff (Average Driver Payoff). represents the average net earnings of drivers, 

accounting for both rewards and waiting costs. 

- PoA_TP (Price of Anarchy – TP). evaluates the efficiency loss in throughput compared 

to the NE benchmark. Calculated as: PoATP = (TP under rule)/(TP under NE). 

- PoA_NetRev (Price of Anarchy – Net Revenue). evaluates revenue efficiency loss 

compared to NE. Calculated as: PoANetRev = (NetRev under rule)/(NetRev under NE). 

Together, these metrics enable a clear benchmarking of each acceptance rule’s efficiency. 

5.3.2  Nash equilibrium benchmark 

The first step in our simulation was to validate the Nash Equilibrium (NE) rule under all tested 

configurations. This ensures a solid benchmark for comparing the efficiency of alternative 

acceptance strategies. As shown, NE consistently delivers the first-best throughput and the second-

best net revenue across all partition types and bin designs. 

 

These results are consistent with the theoretical findings: NE maximizes completed trips while 

maintaining fairness and individual rationality. The net revenue achieved is optimal under positive 

waiting costs—specifically, the second-best outcome when c > 0, as drivers incur opportunity costs 

while queuing. The effective NE behavior is expected to yield throughput (TP) values as close as 

possible to 8, which represents the total rider arrival rate. For net revenue comparisons, we can 

take the average of NE net revenues across partitions (≈ 125.4) as a reference point when 

evaluating whether other acceptance rules appear to outperform NE due to stochastic fluctuations . 

The small discrepancies observed (e.g., TP slightly below 8) are attributed to simulation noise, 

not deviations from equilibrium behavior. Confirming the NE benchmark is essential for evaluating 

Rule P λ i* Partitions Bins TP NetRev AvgWait AvgPayoff PoATP PoANR
NE 1 8 3 [[1, 2, 3]] [(0, 360)] 7.99 123.67 43.2 15.47 1 1
NE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.83 113 47.92 14.37 1 1
NE 2 8 3 [[1], [2, 3]] [(0, 0), (180, 360)] 7.98 153.47 31.99 19.21 1 1
NE 3 8 3 [[1], [2], [3]] [(0, 0), (150, 150), (360, 360)] 7.83 111.49 47.83 14.17 1 1
ProbNE 1 8 3 [[1, 2, 3]] [(0, 360)] 6.4 58.69 61.74 9.23 0.8 0.47
ProbNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.52 97.85 51.38 12.99 0.96 0.87
ProbNE 2 8 3 [[1], [2, 3]] [(0, 0), (180, 360)] 6.78 76.65 58.03 11.28 0.85 0.5
ProbNE 3 8 3 [[1], [2], [3]] [(0, 0), (150, 150), (360, 360)] 7.6 102.02 50.65 13.37 0.97 0.92
ProbBinNE 1 8 3 [[1, 2, 3]] [(0, 360)] 7.21 85.01 54.14 11.8 0.9 0.69
ProbBinNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.58 102.14 50.79 13.43 0.97 0.9
ProbBinNE 2 8 3 [[1], [2, 3]] [(0, 0), (180, 360)] 6.37 67.81 61.89 10.65 0.8 0.44
ProbBinNE 3 8 3 [[1], [2], [3]] [(0, 0), (150, 150), (360, 360)] 7.2 91.23 54.31 12.63 0.92 0.82
DrivPNE 1 8 3 [[1, 2, 3]] [(0, 360)] 4.45 25.92 89.33 5.96 0.56 0.21
DrivPNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.32 98.39 53.39 13.42 0.93 0.87
DrivPNE 2 8 3 [[1], [2, 3]] [(0, 0), (180, 360)] 7.31 99.69 53.34 13.58 0.92 0.65
DrivPNE 3 8 3 [[1], [2], [3]] [(0, 0), (150, 150), (360, 360)] 7.87 114.23 47.3 14.44 1.01 1.02
TimePNE(30) 1 8 3 [[1, 2, 3]] [(0, 360)] 7.89 220.77 5.29 27.67 0.99 1.79
TimePNE(30) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 191.44 9.99 25.18 0.89 1.69
TimePNE(30) 2 8 3 [[1], [2, 3]] [(0, 0), (180, 360)] 3.02 62.19 9.82 13.96 0.38 0.41
TimePNE(30) 3 8 3 [[1], [2], [3]] [(0, 0), (150, 150), (360, 360)] 4 100.26 7.82 17.51 0.51 0.9
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the Price of Anarchy, as it represents the upper bound of performance under rational decision-

making. 

5.3.3  Comparative performance by acceptance rule 

This section presents a comparative analysis of the four NE-based acceptance rules—ProbNE, 

ProbBinNE, DrivPNE, and TimePNE(30). Using consistent simulation settings, we evaluate how 

these rules perform across various bin and partition schemes. Results are assessed in terms of 

throughput, net revenue, waiting times, and driver payoffs, with deviations from NE outcomes 

quantified using Price of Anarchy metrics. This comparison highlights the operational and 

economic trade-offs introduced by each rule and identifies which configurations most closely 

approach NE efficiency. 

ProbNE. Behaves identically to the rule introduced in the previous chapter, where drivers accept 

trips with 80% probability if 𝑘ℒ ≤ 𝑘𝑏, and 20% when 𝑘ℒ > 𝑘𝑏, where 𝑘ℒ is the trip partition index 

and 𝑘𝑏 is the driver’s bin index.  

 

 

Throughput (TP) remains strong overall, peaking at 7.6–7.52. The PoA_TP values confirm this, 

ranging from 0.8 to 0.97. Net revenue declines compared to NE, with values between 58.69 and 

102.02, reflecting losses due to mismatches and partially accepted trips. The corresponding 

PoA_NetRev ranges from 0.47 to 0.92, underscoring that while ProbNE maintains respectable 

efficiency, it can incur steep opportunity costs under less favorable partitioning (e.g., [[1, 2, 3]]). 

AvgWait stays elevated (above 50), indicating that the probabilistic rejection of even desirable 

trips leads to longer queuing times. AvgPayoff is also reduced relative to NE, staying in the 9.23–

13.37 range. 

Among all tested configurations, the [1, 2, 3] partition consistently performs worst across every 

metric. This outcome stems from the absence of spatial structure: drivers in all bins face the same 

wide distribution of destinations, leading to more frequent probabilistic rejections. Since ProbNE 

Rule P λ i* Partitions Bins TP NetRev AvgWait AvgPayoff PoATP PoANR
NE 1 8 3 [[1, 2, 3]] [(0, 360)] 7.99 123.67 43.2 15.47 1 1
NE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.83 113 47.92 14.37 1 1
NE 2 8 3 [[1], [2, 3]] [(0, 0), (180, 360)] 7.98 153.47 31.99 19.21 1 1
NE 3 8 3 [[1], [2], [3]] [(0, 0), (150, 150), (360, 360)] 7.83 111.49 47.83 14.17 1 1
ProbNE 1 8 3 [[1, 2, 3]] [(0, 360)] 6.4 58.69 61.74 9.23 0.8 0.47
ProbNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.52 97.85 51.38 12.99 0.96 0.87
ProbNE 2 8 3 [[1], [2, 3]] [(0, 0), (180, 360)] 6.78 76.65 58.03 11.28 0.85 0.5
ProbNE 3 8 3 [[1], [2], [3]] [(0, 0), (150, 150), (360, 360)] 7.6 102.02 50.65 13.37 0.97 0.92
ProbBinNE 1 8 3 [[1, 2, 3]] [(0, 360)] 7.21 85.01 54.14 11.8 0.9 0.69
ProbBinNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.58 102.14 50.79 13.43 0.97 0.9
ProbBinNE 2 8 3 [[1], [2, 3]] [(0, 0), (180, 360)] 6.37 67.81 61.89 10.65 0.8 0.44
ProbBinNE 3 8 3 [[1], [2], [3]] [(0, 0), (150, 150), (360, 360)] 7.2 91.23 54.31 12.63 0.92 0.82
DrivPNE 1 8 3 [[1, 2, 3]] [(0, 360)] 4.45 25.92 89.33 5.96 0.56 0.21
DrivPNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.32 98.39 53.39 13.42 0.93 0.87
DrivPNE 2 8 3 [[1], [2, 3]] [(0, 0), (180, 360)] 7.31 99.69 53.34 13.58 0.92 0.65
DrivPNE 3 8 3 [[1], [2], [3]] [(0, 0), (150, 150), (360, 360)] 7.87 114.23 47.3 14.44 1.01 1.02
TimePNE(30) 1 8 3 [[1, 2, 3]] [(0, 360)] 7.89 220.77 5.29 27.67 0.99 1.79
TimePNE(30) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 191.44 9.99 25.18 0.89 1.69
TimePNE(30) 2 8 3 [[1], [2, 3]] [(0, 0), (180, 360)] 3.02 62.19 9.82 13.96 0.38 0.41
TimePNE(30) 3 8 3 [[1], [2], [3]] [(0, 0), (150, 150), (360, 360)] 4 100.26 7.82 17.51 0.51 0.9

Rule P λ i* Partitions Bins TP NetRev AvgWait AvgPayoff PoATP PoANR
NE 1 8 3 [[1, 2, 3]] [(0, 360)] 7.99 123.67 43.2 15.47 1 1
NE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.83 113 47.92 14.37 1 1
NE 2 8 3 [[1], [2, 3]] [(0, 0), (180, 360)] 7.98 153.47 31.99 19.21 1 1
NE 3 8 3 [[1], [2], [3]] [(0, 0), (150, 150), (360, 360)] 7.83 111.49 47.83 14.17 1 1
ProbNE 1 8 3 [[1, 2, 3]] [(0, 360)] 6.4 58.69 61.74 9.23 0.8 0.47
ProbNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.52 97.85 51.38 12.99 0.96 0.87
ProbNE 2 8 3 [[1], [2, 3]] [(0, 0), (180, 360)] 6.78 76.65 58.03 11.28 0.85 0.5
ProbNE 3 8 3 [[1], [2], [3]] [(0, 0), (150, 150), (360, 360)] 7.6 102.02 50.65 13.37 0.97 0.92
ProbBinNE 1 8 3 [[1, 2, 3]] [(0, 360)] 7.21 85.01 54.14 11.8 0.9 0.69
ProbBinNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.58 102.14 50.79 13.43 0.97 0.9
ProbBinNE 2 8 3 [[1], [2, 3]] [(0, 0), (180, 360)] 6.37 67.81 61.89 10.65 0.8 0.44
ProbBinNE 3 8 3 [[1], [2], [3]] [(0, 0), (150, 150), (360, 360)] 7.2 91.23 54.31 12.63 0.92 0.82
DrivPNE 1 8 3 [[1, 2, 3]] [(0, 360)] 4.45 25.92 89.33 5.96 0.56 0.21
DrivPNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.32 98.39 53.39 13.42 0.93 0.87
DrivPNE 2 8 3 [[1], [2, 3]] [(0, 0), (180, 360)] 7.31 99.69 53.34 13.58 0.92 0.65
DrivPNE 3 8 3 [[1], [2], [3]] [(0, 0), (150, 150), (360, 360)] 7.87 114.23 47.3 14.44 1.01 1.02
TimePNE(30) 1 8 3 [[1, 2, 3]] [(0, 360)] 7.89 220.77 5.29 27.67 0.99 1.79
TimePNE(30) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 191.44 9.99 25.18 0.89 1.69
TimePNE(30) 2 8 3 [[1], [2, 3]] [(0, 0), (180, 360)] 3.02 62.19 9.82 13.96 0.38 0.41
TimePNE(30) 3 8 3 [[1], [2], [3]] [(0, 0), (150, 150), (360, 360)] 4 100.26 7.82 17.51 0.51 0.9
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does not prioritize specific trip types within such a flat partition, riders are frequently mismatched 

or delayed, inflating wait times (61.74), lowering net revenue (58.69), and reducing match rates 

(TP = 6.4). These inefficiencies are directly linked to the design of the partition, where the rule’s 

probabilistic nature offers no corrective mechanism to counterbalance the lack of trip segmentation.  

By contrast, the most efficient outcomes emerge under the most granular configuration—[[1], [2], 

[3]]—which yields the highest TP (7.6), NetRev (102.02), and highest AvgPayoff (13.37) among 

ProbNE setups. This structure aligns well with the rule’s probabilistic logic: because drivers are 

assigned to specific bins and those bins are narrowly focused on particular destinations, the 80% 

acceptance probability is mostly directed toward relevant, high-incentive matches. Mismatches 

are minimized, and the system avoids the inefficient randomness seen in flatter partitions. In 

essence, ProbNE benefits most from clear spatial separation, where each bin is tightly associated 

with specific rider types. Without this structure—as in [1, 2, 3]—its stochastic nature becomes a 

liability, amplifying queue delays and reducing economic efficiency. 

ProbBinNE. This rule builds on the logic of ProbNE but assigns bin-specific acceptance 

probabilities—90%, 75%, or 60% (bin 1 to 3 respectively) for trips where 𝑘ℒ ≤ 𝑘𝑏, and 10%, 30%, 

or 50% for trips where 𝑘ℒ > 𝑘𝑏. While it retains the stochastic foundation of ProbNE, this added 

differentiation is intended to better align acceptance behavior with incentive gradients across bins. 

 

 

Throughput (TP) remains robust, ranging from 6.37 to 7.58, mirroring the performance of ProbNE. 

However, Net Revenue shows a slightly narrower and more stable range—from 67.81 to 102.14—

suggesting improved alignment between rider offers and driver preferences due to bin-specific 

probabilities. Price of Anarchy metrics similarly reflect moderate efficiency loss, with PoA_TP 

between 0.80 and 0.97 and PoA_NetRev from 0.44 to 0.90. While AvgWait remains elevated 

across all scenarios, it is slightly more consistent than in ProbNE, indicating more predictable 

queue dynamics. AvgPayoff also improves marginally in most partitions, pointing to better payoff 

distribution among drivers. 

Rule P λ i* Partitions Bins TP NetRev AvgWait AvgPayoff PoATP PoANR
NE 1 8 3 [[1, 2, 3]] [(0, 360)] 7.99 123.67 43.2 15.47 1 1
NE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.83 113 47.92 14.37 1 1
NE 2 8 3 [[1], [2, 3]] [(0, 0), (180, 360)] 7.98 153.47 31.99 19.21 1 1
NE 3 8 3 [[1], [2], [3]] [(0, 0), (150, 150), (360, 360)] 7.83 111.49 47.83 14.17 1 1
ProbNE 1 8 3 [[1, 2, 3]] [(0, 360)] 6.4 58.69 61.74 9.23 0.8 0.47
ProbNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.52 97.85 51.38 12.99 0.96 0.87
ProbNE 2 8 3 [[1], [2, 3]] [(0, 0), (180, 360)] 6.78 76.65 58.03 11.28 0.85 0.5
ProbNE 3 8 3 [[1], [2], [3]] [(0, 0), (150, 150), (360, 360)] 7.6 102.02 50.65 13.37 0.97 0.92
ProbBinNE 1 8 3 [[1, 2, 3]] [(0, 360)] 7.21 85.01 54.14 11.8 0.9 0.69
ProbBinNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.58 102.14 50.79 13.43 0.97 0.9
ProbBinNE 2 8 3 [[1], [2, 3]] [(0, 0), (180, 360)] 6.37 67.81 61.89 10.65 0.8 0.44
ProbBinNE 3 8 3 [[1], [2], [3]] [(0, 0), (150, 150), (360, 360)] 7.2 91.23 54.31 12.63 0.92 0.82
DrivPNE 1 8 3 [[1, 2, 3]] [(0, 360)] 4.45 25.92 89.33 5.96 0.56 0.21
DrivPNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.32 98.39 53.39 13.42 0.93 0.87
DrivPNE 2 8 3 [[1], [2, 3]] [(0, 0), (180, 360)] 7.31 99.69 53.34 13.58 0.92 0.65
DrivPNE 3 8 3 [[1], [2], [3]] [(0, 0), (150, 150), (360, 360)] 7.87 114.23 47.3 14.44 1.01 1.02
TimePNE(30) 1 8 3 [[1, 2, 3]] [(0, 360)] 7.89 220.77 5.29 27.67 0.99 1.79
TimePNE(30) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 191.44 9.99 25.18 0.89 1.69
TimePNE(30) 2 8 3 [[1], [2, 3]] [(0, 0), (180, 360)] 3.02 62.19 9.82 13.96 0.38 0.41
TimePNE(30) 3 8 3 [[1], [2], [3]] [(0, 0), (150, 150), (360, 360)] 4 100.26 7.82 17.51 0.51 0.9
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Across the four tested partitions, the split [1, 2], [3] emerges as the clear optimum: grouping the 

two most popular locations (1 2) into Bin 1 aligns the 90 % acceptance rate with the bulk of 

demand, resulting in the highest throughput (TP = 7.58), net revenue (102.14), and average driver 

payoff (13.43). This configuration also minimizes wasted offers to lower‐value trips, keeping 

average wait times relatively low (50.79) and preserving 97 % of the NE throughput benchmark. 

By contrast, the partition [1], [2, 3] performs worst: Bin 2 must serve both trips to locations 2 and 

3 under a 75 % acceptance rule, inflating mismatches. Here, throughput falls to 6.37 (PoA_TP = 

0.80), net revenue collapses to 67.81 (PoA_NetRev = 0.44), and drivers endure the longest queues 

(AvgWait = 61.89). The flat single-bin case [1, 2, 3] and the fully granular split [1], [2], [3] produce 

intermediate outcomes—better than [1], [2, 3] but not as strong as [1, 2], [3]—highlighting that 

ProbBinNE’s stochastic acceptance benefits most from partitions that concentrate high-

probability matches on the largest demand clusters. 

DrivPNE. This rule models bounded rationality through a deterministic patience structure. 

Drivers in Bin 1 accept trips to Location 1 immediately, to Location 2 after 1 decline, and to 

Location 3 after 2 declines. Drivers in Bin 2 accept Location 1 and 2 immediately and Location 3 

after 1 decline, while drivers in Bin 3 accept Location 1, 2, and 3 immediately. Unlike the 

probabilistic rules, DrivPNE enforces acceptance through accumulated patience depletion rather 

than acceptance probability, reflecting time-sensitive decision-making. 

 

 

DrivPNE displays a more behaviorally constrained performance profile than the probabilistic rules, 

with Throughput (TP) ranging from 4.45 to 7.87 and Net Revenue between 25.92 and 114.23. 

These wider spreads indicate that performance is highly sensitive to partition structure. The Price 

of Anarchy metrics also reflect this volatility: PoA_TP spans from a low 0.56 to near-parity at 

1.01, while PoA_NetRev ranges from just 0.21 to 1.02 (PoA measures > 1 are due to NE 

measurements not being in perfect steady-state, e.g. TP ≠ 8.0, because of simulation noise). 

Compared to ProbNE and ProbBinNE, AvgWait is considerably more variable—reaching as high 
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ProbNE 3 8 3 [[1], [2], [3]] [(0, 0), (150, 150), (360, 360)] 7.6 102.02 50.65 13.37 0.97 0.92
ProbBinNE 1 8 3 [[1, 2, 3]] [(0, 360)] 7.21 85.01 54.14 11.8 0.9 0.69
ProbBinNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.58 102.14 50.79 13.43 0.97 0.9
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as 89.33 when queue dynamics degrade—while AvgPayoff spans from 5.96 to 14.44. This confirms 

that under certain conditions, the rule’s logic of incrementally relaxing driver constraints can either sharply 

hinder or closely match NE-like performance. 

The configuration with the fully separated partition [[1],[2],[3]] emerges as the most effective, 

achieving a throughput (TP) of 7.87 and a net revenue of 114.23—slightly surpassing the NE 

benchmark due to minor simulation noise. This marginal overshoot in Price of Anarchy metrics 

(PoA_TP = 1.01, PoA_NetRev = 1.02) does not indicate a rule superiority over NE, but rather 

that the rule successfully mimics rational equilibrium behavior under favorable structural 

alignment. Drivers progressively align with less preferred but still viable offers, similarly to the 

behavior observed under NE, avoiding long idle periods and wasted opportunities. The result is a 

low average wait time (47.3) and the highest AvgPayoff (14.44) among all rules tested. In contrast, 

the single-bin configuration [1,2,3] performs worst across every metric, yielding the lowest TP 

(4.45), net revenue (25.92), and highest AvgWait (89.33). Here, all drivers face the same pool of 

trips and utilize the full patience window before accepting most offers, producing systemic delays 

and inefficient matching. Without structured trip differentiation, the mechanism fails to leverage 

its behavioral strengths. 

DrivPNE performs best when bins are aligned with destination types, where its deterministic 

decline logic facilitates match efficiency. Its rule design not only maintains spatial rationality but 

also achieves almost-peak system efficiency under the right partitioning. 

TimePNE(30). Under this rule, drivers remain in the queue for up to 30 time units, after which 

they exit the system if not matched. This introduces a realistic constraint, finite willingness to 

wait, which captures urgency-driven behavior and naturally penalizes dispatching delays. 

 

 

The TimePNE bounded queuing behavior leads to strikingly different system dynamics, especially 

in terms of Net Revenue. While Throughput (TP) varies from 3.02 to 7.89—less consistent than 

under NE-based rules—the standout pattern is the extraordinary surge in Net Revenue, which 

Rule P λ i* Partitions Bins TP NetRev AvgWait AvgPayoff PoATP PoANR
NE 1 8 3 [[1, 2, 3]] [(0, 360)] 7.99 123.67 43.2 15.47 1 1
NE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.83 113 47.92 14.37 1 1
NE 2 8 3 [[1], [2, 3]] [(0, 0), (180, 360)] 7.98 153.47 31.99 19.21 1 1
NE 3 8 3 [[1], [2], [3]] [(0, 0), (150, 150), (360, 360)] 7.83 111.49 47.83 14.17 1 1
ProbNE 1 8 3 [[1, 2, 3]] [(0, 360)] 6.4 58.69 61.74 9.23 0.8 0.47
ProbNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.52 97.85 51.38 12.99 0.96 0.87
ProbNE 2 8 3 [[1], [2, 3]] [(0, 0), (180, 360)] 6.78 76.65 58.03 11.28 0.85 0.5
ProbNE 3 8 3 [[1], [2], [3]] [(0, 0), (150, 150), (360, 360)] 7.6 102.02 50.65 13.37 0.97 0.92
ProbBinNE 1 8 3 [[1, 2, 3]] [(0, 360)] 7.21 85.01 54.14 11.8 0.9 0.69
ProbBinNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.58 102.14 50.79 13.43 0.97 0.9
ProbBinNE 2 8 3 [[1], [2, 3]] [(0, 0), (180, 360)] 6.37 67.81 61.89 10.65 0.8 0.44
ProbBinNE 3 8 3 [[1], [2], [3]] [(0, 0), (150, 150), (360, 360)] 7.2 91.23 54.31 12.63 0.92 0.82
DrivPNE 1 8 3 [[1, 2, 3]] [(0, 360)] 4.45 25.92 89.33 5.96 0.56 0.21
DrivPNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.32 98.39 53.39 13.42 0.93 0.87
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TimePNE(30) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 191.44 9.99 25.18 0.89 1.69
TimePNE(30) 2 8 3 [[1], [2, 3]] [(0, 0), (180, 360)] 3.02 62.19 9.82 13.96 0.38 0.41
TimePNE(30) 3 8 3 [[1], [2], [3]] [(0, 0), (150, 150), (360, 360)] 4 100.26 7.82 17.51 0.51 0.9
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spans from 62.19 to 220.77. This is not the result of better matching, but rather of drivers leaving 

the system before incurring significant wait costs, minimizing opportunity losses and boosting 

platform profit. Price of Anarchy (PoA) values capture this shift: PoA_NetRev peaks at 1.79, an 

unusual outcome justified by reduced waiting rather than increased trip efficiency. AvgWait is 

low across most setups (as low as 5.29), while AvgPayoff varies between 13.96 and 27.67—the 

highest range among all acceptance rules. 

Among all partition setups, the [1, 2, 3] configuration produces the most striking results across 

every key metric. With drivers all eligible to serve the full trip set, the system maintains maximum 

flexibility in matching while ensuring drivers do not wait longer than 30 units. This setup achieves 

near-optimal throughput (TP = 7.89), minimal average waiting time (5.29), and the highest net 

revenue observed in the entire simulation (220.77). The exceptional PoA_NetRev of 1.79—greater 

than the NE benchmark—is fully justified here: it’s not due to better matching but stems from 

reduced waiting losses under hard time caps. Drivers who are not matched promptly exit the 

system before incurring costly delays, allowing the platform to retain more trip value. This makes 

TimePNE(30) under [1, 2, 3] uniquely suited for maximizing revenue in oversupplied environments.  

In contrast, the [1], [2, 3] partition performs worst across nearly all dimensions. Here, Bin 2 must 

absorb the bulk of demand and serve multiple destinations—yet with limited flexibility due to 

spatial separation. With strict time limits, many drivers time out before being matched efficiently, 

especially in Bin 2, which faces destination mismatches and sparse opportunities. This leads to 

the lowest throughput (TP = 3.02) and net revenue (62.19) among all scenarios tested for 

TimePNE(30). AvgWait rises (9.82), and while net revenue doesn’t collapse entirely, the system’s 

inefficiency is clear: PoA_TP falls to 0.38, and PoA_NetRev drops to 0.41, indicating severe 

underperformance relative to NE. In summary, TimePNE(30) thrives under unified partitions like 

[1, 2, 3], where flexibility compensates for early driver exits. In fragmented partitions like [1], [2, 

3], however, the strict time constraints amplify mismatches and block trip completion, drastically 

reducing system efficiency. 
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5.4 Summary and implications 

This chapter has examined a set of near-rational acceptance rules under a refined simulation model 

grounded in the randomized FIFO dispatch mechanism. By holding driver supply fixed and 

varying patience, we assessed results for different behavioral constraints—ranging from stochastic 

acceptance to deterministic patience thresholds—under all possible bin and trip configurations. 

Across all scenarios, Nash Equilibrium served as a performance ceiling, consistently achieving first-

best throughput and second-best net revenue. Simulation results show that queue segmentation 

plays a pivotal role in driving efficiency, but the optimal partitioning depends on the specific logic 

of each acceptance rule. ProbNE and DrivPNE share the same optimal partition—the fully 

separated structure [[1], [2], [3]]—which best supports their respective probabilistic and patience-

based decision rules by aligning bins with distinct trip types. ProbBinNE, however, behaves less 

predictably: when a majority of high-value trips fall into Bin 1, where acceptance probabilities are 

highest, the system performs well—but this efficiency hinges on the distribution of demand 

aligning with the bin hierarchy. In contrast, TimePNE(30) consistently performs best under 

unified partitions like [1, 2, 3], where full flexibility compensates for limited driver patience, 

allowing the platform to retain more trip value under strict time constraints. Overall, efficiency 

emerges not solely from the rule, but from the fit between acceptance behavior and partition 

structure. 
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Chapter 6 
 

 

 

Conclusions 

 

 

 

In this dissertation, we developed and analyzed a family of near-rational acceptance rules for ride-

sharing queues under a Randomized FIFO dispatch mechanism, originally proposed by Castro et 

al. (2021)[1], that attain a significant fraction of the efficiency under the Nash equilibrium and yet 

comply with realistic behavioral constraints. The mathematical basis was set in place in Chapter 

2: we modeled the M/M/c queue of strategic agents, used Erlang–C formulae to derive steady-

state wait time distributions, and clarified the notions of Nash and subgame-perfect equilibrium 

in the context of the dispatch mechanisms. Chapter 3 outlined three particular dispatch variants—

Strict FIFO, Direct FIFO, and Randomized FIFO—and carefully detailed the equilibrium 

operating aspects of each mechanism, summarizing the foundations presented in Castro et. al. 

(2021)[1], as well as the queue partitioning or threshold parameterizing technique for use in 

simulations. For the purposes of checking these findings in more realistic scenarios, Chapter 4 

developed an event-driven simulation setting in which drivers follow bounded-rational acceptance 

rules. We evaluated the behavior of the main indicators relative to each strategy over a significant 

timescale across various ratios of supplies to demands parameters. Then, in Chapter 5, we set 

standards for the whole family of bounded-rational variants against the optimal Nash equilibrium 
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rule, studying each variant to determine its optimal queue partitions or thresholds relative to 

throughput and net revenue.  

In every experimental setting, the Nash equilibrium represents the upper bound—attaining 

throughputs near the first‐best and revenues close to the second‐best (with deviations due to 

simulation noise). Alternative mechanisms introduce systematic variations reflecting bounded 

rationality and impatience: ProbNE/ProbBinNE replace equilibrium calculations with simple 

random choices, DrivPNE limits the number of rejections allowed to prevent endless cherry‐

picking, and TimePNE imposes time limits to capture real‐time impatience. Though each 

alternative sacrifices a small amount of NE efficiency, TimePNE achieves greater net revenue than 

Nash equilibrium by substantially curtailing waiting‐cost losses incurred by passengers—at the 

cost of higher abandonment rates, however. Underlying all of these results is the fact that 

Randomized FIFO was proven optimal only when drivers follow exact NE strategies—because its 

bin‐and‐partition structure perfectly aligns continuation values—yet real drivers often deviate 

from full rationality, using heuristics, misestimating wait times, or exhibiting inconsistent patience. 

To bridge that gap and preserve near‐NE performance, the platform can anticipate boundedly 

rational behavior by adjusting bin thresholds, collapsing or expanding partitions, or even providing 

“nudges” in the driver interface to guide acceptance decisions. For instance, if many drivers accept 

high‐value trips probabilistically (as in ProbBinNE), merging lower‐value bins ensures more offers 

land in bins where acceptance is likely, preserving throughput and revenue. Consequently, the 

efficacy of these mechanisms is reinforced through strategic partitioning: under tight time 

constraints, a single undifferentiated pool (e.g., [1, 2, 3]) maximizes flexibility and revenue, but 

when drivers depart from ideal rationality, carefully segmented, destination‐oriented categories 

(e.g., [1], [2, 3]) nudge them toward underserved trips, dampen supply‐demand imbalances, and 

almost restore all of the Nash equilibrium’s throughput while reducing volatility. Ultimately, 

thoughtful partition design is crucial for maximizing efficiency when drivers deviate from perfect 

rationality under a Randomized FIFO dispatch system. 
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Appendix A 
 

 

 

Simulation Codes and Metrics 

 

 

 

In this appendix, we present the full Python code for both simulation frameworks and the key 

performance metrics used to evaluate their outputs. First, we introduce each metric’s 

mathematical definition and interpretation, and then the complete simulation scripts that generate 

these metrics under the different acceptance strategies. 

Performance metrics 

TP #{matched riders}
𝑇  Riders served per unit time. 

Bink_p 
#{accepted offers in bin 𝑘}

#{offers sent in bin 𝑘}  Acceptance rate within the kth 

bin. 

P_match 
#{served riders}

#{offers sent (all bins)} Overall probability an offer 

leads to a match. 

DrivUtil 
1

𝑁𝑇 ∑ busy_time𝑑

𝑁

𝑑=1
 

Fraction of total driver-time 

spent on trips. 
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ServProb 
#{accepted offers}

#{offers sent}  Share of offers that drivers 

accept. 

CRate 
1 − ServProb Share of offers explicitly 

declined. 

ExRate 
#{expired offers}

#{offers sent}  Share of offers that time out 

(no response). 

AvgQLen 
1
𝑇 ∫ 𝑄(𝑡)𝑑𝑡

𝑇

0
 

Time-average queue length 

(riders waiting). 

NetRev 
∑ 𝑤destserved

𝑇 − 𝑐𝑝(AvgQLen) 
Fare revenue rate minus 

waiting-cost rate. 

AvgDrvPay 
1
𝑁 ∑ ( ∑ 𝑤dest − 𝑐𝜏𝑑

matches𝑑

)
𝑁

𝑑=1
 

Mean net payoff per driver 

(earnings minus waiting cost). 

VarDrvPay 

1
𝑁 ∑(𝜋𝑑 − 𝜋̅)2 

𝑁

𝑑=1
 

where   𝜋𝑑 = ∑ 𝑤dest − 𝑐𝜏𝑑 ,   𝜋̅ = 1
𝑁 ∑ 𝜋𝑑 

Population variance of driver 

payoffs (inequality measure). 

 

Below is the Python code for the first simulation, which tests the behavior of the various 

acceptance rules (AlwaysAccept, StrictCut, NE, ProbNE, ProbBinNE, DrivPNE, and TimePNE) 

and records the associated performance metrics. 
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The following section presents the Python code for the second simulation, which benchmarks these 

behavioral strategies under different partitioning and queue‐bounding settings. 
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