e LUISS

Department of Business and Management

Teaching: Games and Strategies

Randomized FIFO and Relaxed Rationality in Ride-
Sharing Platforms: Design and Performance of Multiple

Acceptance Rules

SUPERVISOR
Prof. Xavier Mathieu Raymond Venel

CANDIDATE
Francesca lannacci

ID: 281431

Academic Year 2024/2025

Abstract

This thesis investigates deviations from perfect rationality within the Randomized FIFO dispatch
mechanism developed by Castro et al. (2021), aimed at mitigating driver “cherry-picking” in ride-
sharing platforms. Specifically, it analyzes how realistic driver acceptance behaviors—modeled
through unconditional, threshold-based, probabilistic, and patience-based heuristics—affect

platform efficiency, fairness, queue stability, and revenue outcomes.

To evaluate these behavioral deviations, two event-driven simulations are employed. The first
simulation explores the impact of varying acceptance heuristics on system performance compared
to the Nash Equilibrium baseline. The second simulation specifically identifies optimal queue
dynamics, such as trip partitioning and bin configurations, to maximize efficiency under each
behavioral heuristic. Results quantify performance trade-offs introduced by bounded rationality,
driver impatience, and simplified decision-making, providing practical insights and actionable

guidance for designing robust dispatch mechanisms under realistic constraints.

Acknowledgements

Game theory is one of the courses that most captured my interest in my academic path, primarily
thanks to Professor Venel’s brilliant teaching. I want to thank him for inspiring me to deepen my
knowledge of the subject and to structure my thesis around it. His unwavering support and
insightful guidance shaped both the direction and rigor of this study. His expertise in game-
theoretic models was invaluable at every stage—from formulating the initial research questions to

refining the simulation frameworks and interpreting the results.

I am deeply grateful for my years at LUISS University. Its vibrant academic community nurtured
my intellectual curiosity and inspired me to think critically. Through diverse experiences—
including international opportunities—I grew both personally and academically into a version of
myself I am truly proud to be. I want to thank all my professors for their excellent instruction,
constant availability, and support, which enabled me to explore the subjects that truly inspire me

and to bring them together in this work.

Lastly, I wish to express my heartfelt gratitude to my family and friends for their constant love
and support throughout the years. I owe a large part of my achievements to their encouragement
and moral sustenance, which gave me the strength to persevere when everything felt overwhelming.
In particular, I am profoundly grateful to my parents, Olga and Michelangelo, whose sacrifices
allowed me to pursue this rewarding path and to appreciate the wonders that higher education

has revealed to me.

Thank you

11

Contents

1

2

3

Introduction
1.1 Overview o

1.2 Structure s

Mathematical Background

2.1 Chapter overview e

2.2 Queueing theory: essential metrics and concepts.
2.2.1 Kendall’'s notation.
222 The M/M/cqueue

2.3 Game Theory: principles, strategies, and equilibrium concepts
2.3.1 Game structures and information dynamics
2.3.2 Strategic stability: Nash and Subgame-perfect equilibria

2.4 Summary and transition L 0L

2.4.1 Symbols and formulas.o

Dispatch Frameworks

3.1 Problem formulation and model design L.
3.1.1 Model setup and assumptions.

3.2 Mathematical formulation of the three models
3.2.1 Strict FIFO: default queue-based dispatching
3.2.2 A dispatching mechanism. 0o Lo
3.2.3 Direct FIFO: selective matching
3.2.4 Randomized FIFO: probabilistic dispatch to align incentives

3.3 Final remarks: relaxation of equilibrium

111

~ o R~ W o

11
11
13
17
18

21
22
22
24
24
25
28
30
33

4 Behavioral Simulation Framework
4.1 Simulation purpose and scopeo oL
4.2 Code structure and acceptance ruleso
4.2.1 Unconditional acceptance of all trips (AlwaysAccept)
4.2.2 Deterministic queue-position threshold for acceptance (StrictCut).
4.2.3 Nash-based acceptance logic (NE),
4.2.4 Probabilistic Nash equilibrium (ProbNE).
4.2.5 Bin-sensitive probabilistic acceptance (ProbBinNE)
4.2.6 Trip-specific patience-driven acceptance (DrivPNE)
4.2.7 Time-constrained queueing (TimePNE)
4.3 Outcome analysis across acceptance strategies
4.3.1 Key metrics for system evaluation
4.3.2 Results by acceptancerule0

4.4 Cross-rule performance comparison and final insights

5 Benchmarking Behavioral Strategies
5.1 Simulation focus and designo
5.2 Algorithmic variations L Lo
5.2.1 Partition focuson [1,2,3]o
5.2.2 Queue length bounding to approximate steady-state.
5.2.3 Equilibrium randomization for trips to4*.o
5.3 Results and analysis
5.3.1 Performance metricso
5.3.2 Nash equilibrium benchmark
5.3.3 Comparative performance by acceptancerule

5.4 Summary and implications L0

6 Conclusion
Bibliography

Appendix A: Simulation Codes and Metrics

v

34
35
35
36
36
37
37
38
38
39
39
39
41
51

54
95
95
95
56
56
o7
o7
58
99
64

65
67
69

Chapter 1

Introduction

Urban ride-sharing platforms have reshaped the way people move through cities by dynamically
matching rider requests with available drivers via smartphone apps. These systems provide
advantages such as shorter waiting times, fewer cases of empty vehicle trips, and flexible earning
opportunities for drivers. Nevertheless, the provision of these services relies on an advanced
dispatch engine that decides which driver will serve each ride request. A dispatch mechanism is
an algorithmic rule that considers available drivers and assigns each incoming trip request to one
of them. The design of such a system directly affects passenger waiting times, efficiency of vehicle
utilization, drivers’ earnings, and the financial sustainability of the platform. Therefore, finding
an optimal balance between efficiency, fairness, and simplicity is critical to delivering sustainable

and quality service.

1.1 Overview

This thesis focuses on the randomized FIFO dispatch mechanism, originally introduced by Castro
et al. (2021)1!, designed to reduce the “cherry-picking” behavior that arises under strict First-In-
First-Out (FIFO) assignment. Under a strict FIFO system, every incoming trip request is assigned

to the driver who has been waiting the longest, regardless of the value or distance of the trip. This

setting can incentivize drivers to cherry-pick—actively decline low-fare or short-distance requests
in hopes of getting more lucrative rides—thus resulting in unfulfilled trip requests and operational
inefficiencies. The randomized FIFO method overcomes this by grouping drivers into probabilistic
“bins” and allowing the interleaving of offers among drivers with longer and shorter wait times,
rather than imposing a strict chronological ordering by waiting time. We begin by characterizing
the Nash equilibrium for this theoretical dispatch (Castro et al., 202111), and then introduce a
range of bounded-rational acceptance behaviors that better model the actual decision-making
processes of drivers in the real world. We simulate these deviations, compare them against the
equilibrium, and clarify the performance of various queue configurations in terms of throughput,

net revenue, and fairness when drivers use non-optimally rational decision-making rules.

1.2 Structure

The structure of this thesis is as follows: Chapter 2 formalizes the mathematics underlying our
analysis, including M/M/c queueing formulations, Erlang—C formulas, basic concepts of Game
Theory, and concepts related to Nash equilibrium; Chapter 3 defines and formally introduces three
dispatch mechanisms—Strict FIFO, Direct FIFO, and Randomized FIFO—and analyzes their
equilibrium properties, summarizing the key theoretical insights from Castro et al. (2021)!;
Chapter 4 describes our first discrete-event simulation, which examines how each acceptance rule
behaves under the Randomized FIFO mechanism and highlights the trade-offs that arise; Chapter
5 then presents the second simulation framework used to benchmark these acceptance rules against
the Nash Equilibrium by testing every possible combination of trip partitions and queue
segmentations to explore how different Randomized FIFO structures impact efficiency under each
rule; Chapter 6 concludes with a synthesized overview of findings and discusses practical

implications for platform design.

Chapter 2

Mathematical Background

Ride-sharing platforms operate at the intersection of demand and supply dynamics, where
passenger requests must be matched with available drivers in real-time under varying market
conditions. To analyze and optimize these interactions, it is essential to employ formal
mathematical models that can accurately represent system behaviors, predict equilibrium
outcomes, and inform decision-making processes. This chapter presents the theoretical foundations
necessary to understand the Randomized FIFO dispatch model, focusing on the underlying
queuing structures and the game-theoretic modeling of strategic behavior among drivers operating

within dispatch mechanisms.
2.1 Chapter overview

Chapter 2 introduces the theoretical tools that support the modeling work developed later in the
thesis. Section 2.2 focuses on queueing theory, presenting the M/M/c model and key metrics
needed to evaluate system performance. This material will later inform our analysis of rider and
driver dynamics. Section 2.3 turns to game theory, covering fundamental concepts such as Nash

equilibrium and subgame-perfect equilibrium. Together, these sections equip us with the

frameworks necessary to formulate and analyze the dispatch dynamics addressed in the following

chapters.

2.2 Queueing theory: essential metrics and concepts

Queueing theory tackles one of the most common challenges of daily life: the experience of waiting.
The formal study of queueing systems began in the early 20th century with Danish mathematician
and engineer Agner Krarup Erlang, who introduced probabilistic methods to analyze congestion
in telephone networks.! His groundbreaking work laid the foundation for the broader field of
queueing theory, inspiring the development of increasingly sophisticated models to manage delays
and improve service efficiency. Later in this chapter, we will reference a queueing theory framework

known as the Erlang-C or M/M/c model.

A queueing model possesses the characteristics listed below.? These attributes are at the core of

the dispatch mechanisms analyzed in Chapter 3, including Randomized FIFO.

The arrival process of customers. It is commonly assumed that interarrival times are
independent and identically distributed (i.i.d.). In many real-world systems, customers arrive at
service facilities in a random fashion. This variability in arrivals is often well-modeled by a Poisson
process, where the time between arrivals follows an exponential distribution. Therefore, the
probability that the time between two consecutive arrivals is less than or equal to T, given a
Poisson arrival process with rate X\ is:

Pt<T)=1—eT, (2.1)

Here, X represents the average number of arrivals per unit of time. Since the Poisson distribution
is discrete, it also provides the probability of observing an exact number of arrivals within a set

period,

I Erlang, A. The theory of probabilities and telephone conversations. Nyt Tidsskrift for Matematik B 20
(1909), 33-39.

2 Adan, Ivo, and Jacques Resing. Queueing Systems, Department of Mathematics and Computing Science
Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven, The Netherlands, 26 Mar. 2015.

P(X = n)=R1" 2T = 0,1,2,... (2.2)

n!

In this context, n denotes a non-negative integer representing the specific number of occurrences
for which we calculate the probability. \T' is the Poisson mean (or expected value), indicating the
average number of occurrences within the given time interval. A Poisson process is characterized
by three fundamental assumptions:

1. Customers arrive individually, not in groups.

2. Each arrival is independent of all the others.

3. The likelihood of an arrival is uniform across time—it does not vary depending on the time of

observation.

The behavior of customers. Customers can vary in their willingness to wait—some may remain
in the queue indefinitely, while others may abandon it after a certain period due to impatience.
For example, a person calling a customer service center might decide to hang up and try again
later if the wait time becomes too long. In our simulation, this customer behavior, specifically in

the context of drivers, is modeled and adjusted through what we define as the “acceptance rule”.

The service times. We assume that service times are independent and identically distributed
(i.i.d.) and independent from the interarrival times. However, in some systems, service times may
vary depending on the current queue length. For instance, in a production environment, machines
might operate at higher speeds when the backlog of jobs becomes excessive. The exponential
distribution is often used to model service times, capturing the probability that a service will be
completed within a given time interval 7. The probability can be calculated by using the following
expression:

Pt<T)=1-—e"T. (2.3)

Here, 1 denotes the average service rate—that is, the number of customers served per unit of time.
The variable t represents the service duration for an individual customer, and T is the time

threshold we are evaluating.

The service discipline. The service discipline defines how the system manages its resources,
including the number of servers and the system’s capacity, the maximum number of customers
allowed in the system at any time, including those currently being served. It also specifies the rule

used to determine which customer is selected next for service. Common service disciplines include:

- FIFO (First In First Out): customers are served in the order they arrive.

- LIFO (Last Come First Out): the most recently arrived customer is served first.

- RS (Random Service): the next customer is chosen at random.

- PS (Processor Sharing): service capacity is equally shared among all active customers—
commonly used in computing systems.

- Priority-Based: customers with higher priority (e.g., urgent requests or shorter service

times) are served before others.

The service capacity. There may be either a single server or multiple servers simultaneously

providing service to customers.

The waiting room. Queueing systems may have constraints on the number of customers that
can wait within the system. For instance, in a small coffee shop, only a certain number of people

can line up inside before the space becomes full, forcing others to wait outside or leave.

2.2.1 Kendall’s notation

This notation will be particularly helpful in our discussion of the queueing model underlying
Randomized FIFO. The framework was introduced by mathematician David G. Kendall to classify

a wide variety of queueing systems. We represent a queueing system using the notation:

A/B/m/K/n/D

Each element in the system notation is defined in the following way. A represents the distribution
of interarrival times, while B describes the distribution of service times. The parameter m indicates
the number of servers, and K refers to the total system capacity, meaning the maximum number

of customers allowed in the system, including those being served. The variable n specifies the

population size, or the total number of potential customers. Finally, D denotes the service

discipline, such as FIFO, LIFO, or RS.

The first two positions describe the statistical distributions of interarrival and service times.
Common abbreviations include D (Deterministic distribution), M (Markovian—Poisson arrivals
or Exponential services), G (General), GI (General and Independent), Geom (Geometric). The
fourth position indicates the total capacity, including service points and buffer space. For instance,
if there are K servers and no additional waiting area, K appears in this position. If the queue has
unlimited capacity, this element is typically omitted. The sixth position denotes the queue

discipline. It is only included when the discipline is something other than the default FIFO.?

2.2.2 The M/M/c queue

We now return to the work of mathematician A.K. Erlang to explore the Erlang-C model. This
model describes a system in which customers arrive, with a constant rate, at a queue served by c
identical servers and are assumed to have infinite patience. Given that arrivals follow a Poisson
process and service times are exponentially distributed, the model is denoted as M/M/c/w, or
more commonly, M/M/c. To better understand the need to extend a single-server queueing model
to a multi-server one—such as the one we analyze in our ride-sharing context—we introduce the
concept of server utilization, denoted by p. This metric, also called the occupation rate, is defined

as the ratio between the mean service time and the mean interarrival time:

mean service time

p = mean interarrival time

In the context of ride-sharing, p is referred to as traffic intensity and indicates the fraction of time
a driver is actively engaged in serving riders. Assuming an infinite population and a Poisson arrival
process with rate \, the mean interarrival time becomes 1/X\, and the mean service time 1/pu.*

Substituting into the formula, we obtain for a single-server queue:

3 Sztrik, Janos, et al. Basic Queueing Theory, University of Debrecen, Faculty of Informatics, Dec. 2012.
41f X is the average number of arrivals per time unit, then on average one arrival happens every 1/\ time
units. The same logic applies to pu: if a server can handle p customers per unit time, each service takes on

average 1/p time units.

1 X

If p > 1, the system is considered overloaded, meaning requests are arriving faster than they can
be handled by a single server. This indicates a need for additional service capacity (e.g., more
servers) to maintain system stability. In our scenario, an increase in rider arrivals is necessary to
match driver availability and ensure timely service.” Hence, we refer to the M/M/ ¢ queue to build
an initial understanding of the system dynamics we will explore in the chapters that follow. Under
M/ M/ ¢, indicators such as utilization, throughput, waiting time, and queue length can be derived
analytically. However, in our study, the system behavior deviates from the classic multi-server
queue, and we rely on simulation to assess system performance. We now shift our focus to the key

performance metrics of an M/ M/ ¢ queue.

Occupation rate. The traffic intensity previously defined for a single-server queue decreases

when more servers are available, improving the system’s overall efficiency. Therefore, we have:

A

AN (2.5)
cp

p

For the system to remain stable and avoid becoming overloaded, it is required that p < 1, meaning
the arrival rate of customers must not exceed the total service capacity of all workers per unit of
time.

Steady state probabilities. The state of the system is characterized by the number of customers
in the system. We denote with p,, the equilibrium probability that there are n customers in the
system. These probabilities are typically determined by modeling the system as a continuous-time
Markov chain, where each state represents the number of customers present, and transitions occur
based on arrival and service rates. These probabilities lay the basis for deriving the following

performance metrics.

B = {i(cp')n + (cp) B (2.6)

5 While it is logically reasonable to define drivers as servers, in the context of our model, the queueing
dynamics analyzed in the following chapters focus on the queue of drivers. Therefore, we adopt a reversed
perspective: drivers are treated as customers in the system, and riders are considered the servers.

6 Fiveable. “8.3 M/M/1 and M/M/c queues — Stochastic Processes.” Edited by Becky Bahr, Fiveable, 2024.

8

P:(Cp) B, 0<n<ec (2.7)
n n' 0

P = (cp) R, n>c (2.8)
mooelene

Probability of waiting (Erlang-C). The Erlang’s C formula, also known as Erlang’s delay
formula, expresses the probability that an arriving customer must wait for service. A lower value

of this probability indicates a more efficient and responsive system.

iR
Py=———— (2.9)
S+ s

Average number of customers in the queue. We define the expected number of customers

in the queue as the average number of customers waiting to be served.

_ Ry(ep)
L _!0(17 (2.10)

"p
q 7p)2

A lower value of L, indicates that customers experience shorter waits before receiving service,

contributing to higher system efficiency and customer satisfaction.

Average number of customers in the system. We now introduce the expected number of
customers in the system, L, which accounts for both those waiting in the queue (L,) and those
currently being served. This measure is directly connected to Little’s Law, a fundamental
relationship in queueing theory, which states that the average number of customers in the system
equals the arrival rate (X\) multiplied by the average time a customer spends in the system (W).7

At this stage, we express L in the following way:

X
L=1L,+>, (2.11)
I

which is simply a reformulation of Little’s Law,

L= W. (2.12)

" We will delve deeper into Little’s Law in the upcoming chapters, as it forms the foundation for many of
the models we study.

A lower value of this metric indicates that the system is less congested, resulting in shorter delays
for customers. Unlike L, , the average number of customers in the system offers a more

comprehensive view of system congestion.

Expected waiting time in the queue. The expected waiting time in the queue, I, measures
the average amount of time a customer spends waiting in the queue before receiving service. The
formula for this metric is a direct application of Little’s Law to the queue component of a system

(L, = X\W,). It is expressed as:

W= (2.13)

As one would expect, a lower value of W, reflects a more efficient queueing system, with customers
experiencing reduced waiting times. Moreover, if a customer abandonment mechanism were
introduced—an assumption outside the standard M/M/c framework where customer patience is
infinite—a lower W, would also contribute to minimizing customer abandonment rates, thus

enhancing overall system performance.

Expected waiting time in the system. The expected waiting time in the system, W, represents
the total amount of time a customer spends between entering the system and completing service.
It combines both the waiting time in the queue and the service time itself. This expression is
directly derived from Little’s Law—L = AW, previously introduced when discussing the average

number of customers in the system. Accordingly, we have:
L L
W= "= 294" W +_. 2.14
~= %+ + (2.14)

In essence, we are summing the average time a customer spends waiting in the queue with average
service time. A smaller value of this metric translates into shorter delays for customers throughout
the system. Therefore, minimizing W leads to a more efficient, responsive, and satisfying service

experience.

While the metrics derived from the M/M/c model provide essential insights into system

performance, they are not fully sufficient for capturing the dynamics of our specific scenario. In

10

our case, we introduce a fixed abandonment mechanism for rider patience, meaning that customers
may leave the system if their wait exceeds a certain threshold. Therefore, while many of the multi-
server queue results remain highly informative, they will be carefully adapted to account for this

additional behavioral dimension.

2.3 Game theory: principles and equilibrium concepts

Game theory offers a unified framework for modeling strategic interactions. It examines situations
of conflict, the interactions between agents, and the decisions they make. A game is characterized
by a set of players (typically finite) and the strategies available to them within given rules.® The
players in a game engage with one another in an interdependent manner—the choices made by
one player influence not only their own outcome but also the outcomes of others. Hence, game
theory studies situations where a player’s outcome is determined not only by their own choices
but also by the decisions of other players. Game theory helps us analyze how drivers and riders
in a ride-sharing queue make strategic accept-or-decline decisions—modeling each driver’s
acceptance rule as a strategy and predicting the equilibrium outcomes (i.e., throughput, wait times,
payoff distributions) of different dispatch mechanisms. We begin with a concise overview of game-

theory fundamentals.

2.3.1 Game structures and information dynamics

Normal form (strategic) games. A game in normal form is a formal representation of a
strategic situation where all players choose their actions simultaneously and independently . It is

defined by the following components (Hotz H., 2006):

1. A finite set of players M = {ay,...,a,} .

2. For each player, a set of possible actions or strategies .S;, i € M.

8 Hotz, Heiko. A Short Introduction to Game Theory, LMU Munich, 2006, www.theorie.physik.uni-
muenchen.de/lsfrey /teaching /archiv/sose 06 /softmatter/talks/Heiko Hotz-Spieltheorie-Handout.pdf.

11

3. A payoff function (u,) for each player (i € M), mapping every profile of strategies into the
reward (or cost) that player receives based on their own strategy and the choices made by

others.

When the game involves only two players and each has a limited set of strategies, the payoffs can
be conveniently represented in a payoff matrix. This matrix visually displays the players, their
available strategies, and the corresponding payoffs for each combination of choices. In the example
below (Table 1), Player 1 chooses between two strategies: “T” (Top) or “B” (Bottom), while Player
2 selects either “L” (Left) or “R” (Right). The resulting payoffs for each combination of strategies

are displayed within the cells of the table.

Player 1\Player 2 L R
T (2,5 | 37
B (2,0) | (5.5)

Table 1: A normal form game

Each payoff is a pair (z, y), where z is the payoff for Player 1 and y is the payoff for Player 2. For
instance, if Player 1 selects T and Player 2 selects R, the resulting outcome is (3, 7), meaning

Player 1 receives a payoff of 3, while Player 2 receives a payoff of 7.

Extensive form games. Unlike a normal form game, where players choose their strategies
simultaneously, an extensive form game is structured so that players make their moves
sequentially. This type of game is represented using a game tree, where each node corresponds to
a specific stage. The initial node marks the beginning of the game, while terminal nodes, which
have only one connected edge, signify the end of the game and define a complete strategy profile.
Each non-terminal node is assigned to a particular player, indicating that it is their turn to make
a decision. The edges connecting the nodes represent the possible actions available at each decision
point. At the end of the game, each terminal node is associated with a payoff for every player,

reflecting the outcome if the sequence of actions leading to that node is followed.

12

(2,1) (4,0) (1,3) (0,2)

Figure 1: An extensive form game

In the figure, if Player 1 chooses strategy L and Player 2 selects strategy R’, the resulting payoff
will be 4 for Player 1 and 0 for Player 2.

In analyzing strategic interactions, it is important to distinguish between games based on the

information available to the players.

- Perfect Information. A game is said to have perfect information if, at every decision
point, each player knows the full history of previous moves; classic examples include chess
and checkers.

- Imperfect Information. In a game of imperfect information, players must make decisions
without full knowledge of past actions, as in simultaneous-move games where players
choose strategies at the same time.

- Complete Information. A game involves complete information if all players are sully
aware of the structure of the game, including the available strategies and payoff functions
of all participants.

- Incomplete Information. If any of the information necessary to have a complete
information game is missing or uncertain, the game is classified as one of incomplete

information, often requiring players to form beliefs about known elements.

2.3.2 Strategic stability: Nash and Subgame-perfect equilibria

Understanding how players’ strategies interact and stabilize is central to analyzing game-theoretic
models. Two key solution concepts help capture this idea of stability: the Nash equilibrium and

the Subgame-perfect equilibrium. While a Nash equilibrium ensures that no player has an incentive

13

to deviate given the strategies of others, Subgame-perfect equilibria strengthen this notion by
requiring credibility and optimality at every stage of the game. In particular, we delve into
Subgame-perfect equilibrium because it is a fundamental concept for analyzing extensive form
games—such as the dynamic scenario studied in our case—where decisions unfold over time. In
this section, we introduce and compare these concepts to better understand strategic stability in

both simultaneous and sequential games.

Nash Equilibrium

In a strategic game, each player is assumed to act rationally, choosing the best available action
based on their expectations about the actions of others. Players must, therefore, form beliefs about
how their opponents will behave. These beliefs are shaped by players’ prior experiences in playing
the game, which are assumed to be extensive enough for them to accurately anticipate others’
actions. Importantly, players treat each game as an isolated event: they do not adapt their
strategies based on familiarity with particular opponents, nor do they expect current actions to
influence future behaviors. We consider a structured setting where players face a wide and
changing pool of opponents, selected randomly for each play. This repeated interaction fosters
beliefs about the behavior of “typical” opponents rather than specific individuals. At its core, the
framework is built on two key components: (1) players act rationally based on their beliefs about

others, and (2) players’ beliefs about others’ actions are correct.

A Nash equilibrium is an action profile ¢* where no player ¢ can improve their outcome by
unilaterally deviating from their chosen action a}, assuming other player j adheres to their strategy

a; (Osborne M. J., 2000).

In a setting where players are drawn randomly from populations, a Nash equilibrium represents a
steady state; if players repeatedly engage in the game and the same action profile, a*, consistently
arises, no player has any incentive to change it. Another important aspect of Nash equilibrium is
the assumption that players’ beliefs about each other’s actions are accurate. Because of this, Nash

equilibrium is often described as a situation where players’ expectations are coordinated.

We let a represent an action profile where each player i chooses an action a;. Representing with

(a;,a_;) the action profile in which all players implement strategy a while player i deviates to

14

strategy a;. If a; = a;, there is no deviation, and (a;,a_;) = a. Using this notation, we provide

the formal definition of a Nash equilibrium.

Definition 1 (Nash equilibrium of strategic game with ordinal preferences; Osborne, M. J. (2000),
An Introduction to Game Theory, Ch. 2, Def. 2.1, p. 21). An action profile a¢* in a strategic game
with ordinal preferences is a Nash equilibrium if, for every player 7 and every alternative action
a; available to player i, a* is at least as preferred by player i as the action profile (a;,a*;), where
player ¢ unilaterally deviates to a; while every other player j continues to play aj. Formally, for
every player 1,

u;(a*) > wu,(a;,a* ;) for every action a, of player 4, (2.15)

where u; denotes the payoff function that represents player #’s preferences.’

While Nash equilibrium is a key concept in strategic games, it does not ensure existence or
uniqueness—some games have one, many, or no equilibria. Traditionally, it models steady-state
behavior among experienced players, but an alternative view sees it as the outcome of rational

players deducing others’ actions without prior experience.

To properly analyze the strategic interactions in dynamic settings, we extend the concept of Nash
equilibrium to extensive form games. Since the scenario we study can be modeled as a dynamic,
extensive form game with perfect and complete information, it is necessary to characterize
equilibrium strategies across the entire sequence of moves. In this context, a Nash equilibrium
specifies a strategy profile where each player’s choices are optimal, given the observed history and

the strategies of others.

Definition 2 (Nash equilibrium of extensive game with perfect information; Osborne, M. J. (2000),
An Introduction to Game Theory, Ch. 5, Def. 159.2, p. 159). A strategy profile s* in an extensive
game with perfect information is a Nash equilibrium if, for every player ¢ and every alternative

strategy r; of player 7, the terminal history O(s*) generated by s* is at least as preferred by player

9 Osborne, Martin J. An Introduction to Game Theory by Martin J. Osborne, 6 Nov. 2000,
mathematicalolympiads.wordpress.com/wp-content /uploads/2012/08 /martin _j- osborne-
an_introduction to game theory-oxford university press usa2003.pdf.

15

i as the terminal history O(r;, s* ;) generated by the strategy profile (r;, s* ;) where player i deviates

to 7, while every other player j continues to follow s}. Formally, for every player 1,
u; (O(s*)) > u,;(O(r;, s*,)) for every strategy r; of player i, (2.16)

where u,; is a payoff function that represents player #’s preferences and O is the outcome function

of the game.

Subgame-perfect Equilibrium

The notion of Nash equilibrium does not account for the sequential nature of extensive games. As
a result, the steady states captured by Nash equilibrium may not always be robust when decisions
are made over time. To better model sequential decision-making, we introduce a stronger concept:
a solution that requires players’ strategies to be optimal after every possible history, not just at

the beginning of the game. To define this refinement, we first introduce the idea of a subgame.

Definition 3 (Subgame; Osborne, M. J. (2000), An Introduction to Game Theory, Ch. 5, Def.
162.1, p. 162). Let I" be an extensive game with perfect information and player function P. For
any nonterminal history h, the subgame I'(h) following the history & is defined as the following

extensive game.

Players. The players in T'.

Terminal histories. All action sequences h’ such that (h,h") forms a complete terminal
history in I'.

Player function. Each proper sub-history h’ is assigned to a player according to P(h,h").
Preferences. Players’ preferences are consistent with their preferences over the

corresponding full histories (h,h") in T'.

Put it simply, for any nonterminal history h, the subgame following h refers to the part of the
game that remains after h occurs. The subgame following the initial empty history) is simply the
entire game. All other subgames are referred to as proper subgames. Since every nonterminal

history defines a subgame, the number of subgames equals the number of nonterminal histories.

16

To formally define subgame-perfect equilibrium, we introduce new notation. Let h be a history
and s a strategy profile. If h occurs—even if it may not align with s—players thereafter follow the
strategy profile s. We denote by O, (s) the terminal history resulting from h followed by actions

according to s. Notably, when h is the initial history, Oy(s)=0(s).

Definition 4 (Subgame perfect equilibrium; Osborne, M. J. (2000), An Introduction to Game
Theory, Ch. 5, Def. 164.1, p. 164). A strategy profile s* in an extensive game with perfect
information is called a subgame perfect equilibrium if, for every player ¢ and every history h where
it is player 's turn to move (P(h) = i), the following holds: the terminal history O, (s*) resulting
from following s* after h is at least as good for player i as the terminal history resulting from any

deviation r; by player i, with all other players sticking to s*. Formally,
u; (O (8*)) > u,; (0 (r;, s*,)) for every strategy r; of player i, (2.17)

Here, u, represents player 's payoff function, and O, (s) denotes the sequence of actions starting

from history h under strategy profile s.

The key idea is that each player’s strategy must be optimal not only at the beginning of the game
but after every possible history where the player is called to move. This ensures that strategies
are credible and robust throughout the entire game. Given the definitions of Nash equilibrium and

Subgame-perfect equilibrium, we now introduce a fundamental result

A Subgame-perfect equilibrium is a strategy profile that induces a Nash equilibrium in

every subgame (Osborne M. J., 2000).
2.4 Summary and transition

In this chapter, we introduced the mathematical background necessary for the analysis of the
dispatch mechanisms. We began by presenting key elements of queueing theory, with a focus on
the M/M/ ¢, multi-server model and its associated performance metrics. We also discussed the
limitations of the classical model for our purposes, noting the need to account for fixed

abandonment behavior to better reflect rider patience.

17

In the second part of the chapter, we turned to game theory. We reviewed fundamental concepts
such as Nash equilibrium and Subgame-perfect equilibrium, emphasizing their role in capturing
strategic decision-making in dynamic settings. Although these concepts were introduced in a
general framework, without direct application to drivers and riders, they will be essential in

modeling the strategic interactions we explore in the next chapters.

The mathematical tools discussed here provide the foundation for the analysis that follows. We
are now ready to formally define the dispatch models under study and examine their equilibrium

properties.

2.4.1 Symbols and formulas

We next summarize the main symbols and mathematical expressions introduced throughout the
chapter. These definitions provide a concise reference for the core concepts discussed, ranging from

queueing system metrics to equilibrium conditions in strategic and extensive form games.

18

Queueing Theory—M/M/c queue

A Arrival rate (customers per unit time)
L Service rate (customers served per unit time)
c Number of servers
L Expected number of customers in the system
L, Expected number of customers in the queue
1%7%4 Expected waiting time in the system
W, Expected waiting time in the queue
p= A Traffic intensity
cp
Sl (e 17
P = cp + P Probability of having zero customers in the system
0 — nl c(1—p)
n=0
c n
(p') R, 0<n<ec
P, = (”)n Probability of having n customers in the system
cp
len—e 100 T =
n
b (Cﬁ? ™ JZ(p) (Erlang-C) Probability that an arriving customer has
- Zn_lﬁ n cp)” n to wait
k=0 k! n! n—(cp)
R, " .
L,= M Average number of customers in the queue
TRl pp
L=L,+ b Average number of customers in the system
I
W, = % Average waiting time in line
1 . .
W =W, + ; Average time spent in the system

19

Game Theory

Set of players

Set of strategies available to player i
Strategy profile (one strategy for each player)
Payoff function for player ¢

Action chosen by player 4

Actions of all players other than i

Nash equilibrium action profile
Subgame-perfect equilibrium strategy profile
Extensive form game

Subgame following history h

Outcome of the game when strategy profile s is played

Outcome of the subgame starting at history h under strategy s

20

Chapter 3

Dispatch Frameworks

Ride-sharing platforms rely on efficient dispatch mechanisms to match drivers with riders while
balancing fairness, reliability, and revenue optimization. Traditional First-In-First-Out (FIFO)
dispatching, ensures that drivers who have waited the longest are prioritized. However,
heterogeneous trip earnings incentivize drivers to cherry-pick (i.e., accepting only higher-fare trips
while skipping lower-value ones), leading to longer rider wait times and inefficient matches. In the
article “Randomized FIFO Mechanisms”, Francisco Castro, Hongyao Ma, Hamid Nazerzadeh, and
Chiwei Yan propose a family of dispatch mechanisms that blend FIFO priority with controlled
randomness.'’ This chapter explores the following as presented in the article: Strict FIFO, Direct
FIFO, and Randomized FIFO mechanisms. We analyze how each variant shapes driver behavior,
influences platform earnings, and alters system-wide performance. In Chapter 4 and Chapter 5,
we simulate the Randomized FIFO framework under more realistic conditions—specifically when

drivers are not flawlessly strategic agents in a dynamic game of perfect and complete information.

10 Castro, Francisco, et al. “Randomized FIFO Mechanisms.” arXiv.Org, 21 Nov. 2021,
arxiv.org/abs/2111.10706.

21

3.1 Problem formulation and model design

The article studies dispatch strategies for ride-sharing at high-demand locations (like airports),
where trips differ significantly in earnings and riders have limited patience. Because platforms
can’t easily adjust fares, they rely on driver waiting times as incentives to improve efficiency and
fairness. Randomized FIFO aims to optimize the allocation of drivers to rider requests while

maximizing the platform’s net revenue.

A continuous-time, non-atomic queueing model is developed, with steady arrivals of drivers and
riders. Riders request trips with varying earnings, may cancel after limited rejections, and drivers
strategically balance waiting costs against trip earnings. The “first-best” solution, achievable
without driver strategic behavior, serves as a performance benchmark. Strict FIFO dispatching—
offering trips to the longest-waiting driver—results in strategic “cherry-picking”, leaving lower-
paying trips unfulfilled, causing excessive wait times and revenue loss. Two alternative
mechanisms address this. Direct FIFO sends lower-value trips directly to drivers further back in
the queue, improving throughput but raising fairness concerns, as drivers who waited longer might
miss out on trip offers. Randomized FIFO dispatches trips probabilistically within segments of
the queue, encouraging acceptance while preserving fairness, maximizing revenue, and reducing
income disparities. The study highlights queue-based incentive mechanisms as powerful tools for

balancing fairness, reliability, and revenue without altering prices or imposing rigid penalties.
3.1.1 Model setup and assumptions

The study examines a continuous-time, non-atomic queueing model for dispatching trips from a
single location (e.g., an airport). Riders request trips continuously to multiple destinations,
represented as £ = {1,2,...,¢}. Each destination i € £, has an arrival rate of riders of y; > 0 and
an earnings value of w;. Riders cancel requests after being declined P times, reflecting limited
patience. Drivers arrive at a rate of X > 0, strategically balancing trip earnings against opportunity
costs ¢ > 0 incurred while waiting in queue; the platform also incurs an opportunity cost of ¢, €

[0, c].

22

The platform dispatches trip requests sequentially to drivers in a queue, who may accept or decline
offers. A declined trip continues to be dispatched until it’s either accepted by another driver,
canceled by the rider after P rejections, or withdrawn by the platform. The platform fully and
transparently shares information on demand, supply, earnings, and opportunity costs with drivers.
Drivers know their queue position, can decline trips without penalty, and are free to leave, rejoin,
or exit the queue altogether. Under ideal conditions—no driver strategic behavior and perfect
platform control—an optimal dispatch solution, the first-best, prioritizes trips in descending order
of earnings to maximize revenue and throughput. The optimal set is determined by identifying

the lowest-earning trip type dispatched, denoted as:

i—1
i*:max{i€£|>\>2uj} (3.1)

=1

An optimal platform strategy does not maintain a non-zero driver queue. It dispatches drivers
upon arrival to destinations in decreasing order of w; until all riders are served or all drivers are
utilized. The platform’s trip throughput is the mass of trips completed per unit time, while its net
revenue is the total net earnings from completed trips minus the opportunity costs due to waiting

drivers.

Proposition 1 (The first best; Castro et. al. (2021), Randomized FIFO Mechanisms, Ch. 2, p. 8,
Proposition 1). The steady state first best outcome has zero drivers in the queue. The first best

trip throughput is represented by

Typp = min {XZM} (3.2)

i€l

If driver supply is greater than demand, then all rider requests are fulfilled, and the throughput
is simply Zie M- However, if driver supply is lower than demand, the throughput is constrained

by A, meaning some riders will not be served. The first-best net revenue represents the total

earnings from completed trips after accounting for driver constraints. The formula

1 i1
RFB:ZiuiZwilui+wi* min {XZ,UJJ’?“i*}a (33)
=1

i€l i=1

23

breaks revenue into two components. The first term accounts for fully dispatched trips, where all
requests for trip types 1 through ¢* — 1 are fulfilled. The second term addresses the lowest-priority
trip ¢*, where only a fraction of requests may be served, depending on the remaining available

drivers.

3.2 Mathematical formulation of the three models

3.2.1 Strict FIFO: default queue-based dispatching

Strict FIFO is generally perceived as fair because it ensures that each driver gets a chance to
receive a trip in the order they arrived. However, when drivers have the flexibility to decline trips,
they may choose to wait for more profitable ones, leading to cherry-picking. This behavior can

result in poor outcomes for riders, drivers, and the platform.

A driver will accept a trip to location 2 only if the additional waiting cost for a trip to location 1
outweighs the earnings difference between the two trips (w; —w,). If 7, 5 is the maximum time a

driver is willing to wait for a trip to location 1, we have

(w; — w,) ‘ (3.4)

7-1726 - wl - w2 = 7-172 - c

Little’s Law relates the average number of items in a queue to the arrival rate and the average
time spent in the system (L = AW). Therefore, the first driver willing to accept a trip to location
2 will be at position ny = pu;7) 5 = piy (wy —wy)/c with a continuation payoff of w,, representing
indifference. Given this and assuming infinite rider patience, the first position in the queue where
a driver is willing to accept a trip to each location i € £ as opposed to wait and obtain a trip to

location i + 1 is given by the following lemma.

Lemma 1. A strict FIFO dispatching system reaches equilibrium when a driver accepts a trip to

destination i € £ only if their queue position ¢ satisfies ¢ > n,, where n; = 0 and for all i > 2,

i—1 oy
n; = (MZM>) (3.5)
=1 ¢ k=1

24

Since a driver is indifferent at position n;, their continuation payoff—the driver’s net earnings
from a trip minus the future waiting costs from their current position onward—is w, regardless of

accepting a trip to location ¢ or not. Drivers at earlier positions wait for trips with higher earnings.

In reality, riders have finite patience, meaning that they will cancel their trip requests if it is
declined too many times. If the patience level P is lower than the required queue positions n; the
trip request will never reach a driver who is willing to accept it. As a result, many trips may go
unfulfilled, significantly reducing system efficiency. Strict FIFO dispatching leads to highly

inefficient driver allocation, reducing both driver earnings and platform revenue.

3.2.2 A dispatching mechanism

While strict FIFO is itself a dispatch mechanism, its simplicity allows it to be described informally.
A formal definition becomes necessary when analyzing more complex strategies which modify
queue order and require a generalized framework. The article formally describes a dispatching
mechanism that determines how trip requests are assigned to drivers. The mechanism can either

dispatch the trip to a driver or choose not to dispatch it, denoted by ¢.

Definition 1 (Dispatching Mechanism; Castro et. al. (2021), Randomized FIFO Mechanisms, Ch.
3, p- 11, Definition 1). A dispatching mechanism determines how trips are allocated based on the
queue length @, the dispatching history h, and the trip’s destination. The mechanism selects a
probability distribution over position in the queue [0, Q] U {¢}. This means the platform decides

whether to assign a rider’s trip to a driver at position g € [0, Q] or to not dispatch it (¢).

The mechanism’s decisions depend only on the queue length @), the system’s current state, and a
trip’s past dispatch history—not on past driver actions. Similarly, drivers’ decisions depend on
their current queue position and the current queue length. A driver’s strategy in the queue is

represented as a tuple o = («, 3,7), where:

(i) a(q,Q,1) € [0,1]: probability that a driver accepts a trip dispatch to location .
(ii) B(q,Q) € [0,1]: probability that a driver re-enters the queue at the tail after declining.

(iii) (g, Q) € [0,1]: probability that a driver leaves the queue without taking a trip.

25

To evaluate the decision-making process of a driver, we define the continuation payoff, which
captures the expected net benefit of remaining in the queue. Let U(q,Q,0,0") be a random
variable representing the continuation payoff of a driver at position ¢ when the queue length is Q.
This payoff depends on the driver adopting strategy o while all other drivers follow strategy o’,
including those who will enter the queue in the future. The continuation payoff consists of the net
earnings from trips the driver may complete in the future, and the total opportunity cost incurred

from waiting in the queue. The expected continuation payoff from position ¢ is denoted as:

W(q,Q,O’,OJ) = E[U(q,Q,a,a/)].

This formulation allows the model to predict how drivers evaluate the trade-offs between accepting
a trip, waiting for a better trip, or leaving the queue entirely. We now define several equilibrium
properties that characterize an optimal dispatching mechanism. These properties ensure that
drivers act rationally, do not attempt to manipulate their position in the queue, and make decisions

that align with the system’s efficiency goals.

Definition 2 (Subgame-Perfect Equilibrium; Castro et. al. (2021), Randomized FIFO
Mechanisms, Ch. 3, p. 12, Definition 2). A strategy o* is said to be a subgame-perfect equilibrium
(SPE) if, for any feasible strategy o, a driver following o* receives at least the same expected

payoff as under o:

m(q,Q,0",0") 2 7(q,Q,0,0%), VQ>0,Yq€ [0,Q]. (3.6)

This ensures that drivers have no incentive to deviate from the equilibrium strategy, as doing so
would not improve their expected payoff. While Osborne’s definition of subgame-perfect
equilibrium applies to extensive-form games, the version by Castro et al. adapts the same principle
to dynamic queues. In both cases, players have no incentive to deviate at any stage, ensuring
strategies remain optimal throughout. This conceptual overlap justifies applying subgame-

perfection to ride-sharing dispatch models.!!

I Although not a classical extensive-form game, the dynamic queue in our model shares core features:
sequential decision-making, state-dependent payoffs, and strategic interactions over time. As such, subgame-
perfection can naturally be extended to this stochastic, dynamic setting, as in Castro et al. (2021).

26

Definition 3 (Individual Rationality; Castro et. al. (2021), Randomized FIFO Mechanisms, Ch.
3, p- 12, Definition 3). A dispatching mechanism is individually rational in SPE if drivers expect

a non-negative payoff upon joining the queue.
m(q,Q,0%,0*) >0, VQ>0,Yq€0,Q] (3.7)

This condition guarantees that drivers do not enter the queue unless doing so yields an expected

benefit, ensuring participation in the system remains viable.

Definition 4 (Envy-Freeness; Castro et. al. (2021), Randomized FIFO Mechanisms, Ch. 3, p. 12,
Definition 4). A mechanism is envy-free in SPE if no driver prefers the expected continuation

payoff of another driver who has waited for less time.

W(QlaQaJ*aa*) 2 F(Q%Q?U*aa*)v VQDQQ € [Ov Q] S't'Q1 S QQ' (38)

This condition implies that drivers do not attempt to reposition themselves within the queue,

ensuring fairness across different queue positions.

When a dispatching mechanism M reaches steady state under strategy o*, the length of the queue,
denoted as @, remains stable. This occurs when the rate at which drivers join the queue matches
the rate at which they are dispatched. In this state, every driver follows the strategy ¢*, ensuring
predictable queue dynamics. Let x,(c*) represent the fraction of trips to location ¢ that are
completed in equilibrium. The trip throughput of the mechanism is given by

The(o*) = x,(0"). (3.9)

€L

The total earnings of drivers from completed trips must be balanced against the opportunity costs
associated with waiting in the queue. The net revenue generated by the platform under the

mechanism is expressed as

Ry (") = Zzi(g*)ﬂiwi —Qc,. (3.10)

i€l

The primary objective of a dispatching mechanism is to maximize trip throughput and net revenue

while maintaining an efficient and stable equilibrium. A mechanism is considered optimal if, in

27

equilibrium (i) it achieves the first-best trip throughput, meaning that all feasible trips are
completed with minimal inefficiency, (ii) it attains the second-best net revenue, which is the
highest achievable net revenue under a dispatching system that is flexible, transparent, and does

not penalize drivers for their choices.

3.2.3 Direct FIFO: selective matching

The direct FIFO mechanism builds upon FIFO dispatching by assigning lower-earning trips to
drivers positioned further down the queue. This increases the likelihood of acceptance, as drivers
further back are incentivized to take these trips in exchange for skipping the rest of the queue.
When all drivers follow this strategy, the system reaches a subgame perfect equilibrium, ensuring

maximum revenue and trip throughput within a flexible and transparent framework.

Definition 5 (Direct FIFO Dispatching; Castro et. al. (2021), Randomized FIFO Mechanisms,
Ch. 3, p. 13, Definition 5). Under the direct FIFO Dispatching, trips to each location i € £ are
dispatched sequentially in a FIFO manner, but only from a specific queue position n;. If the queue
length () meets or exceeds n;, trips to location ¢ are assigned. However, if () < n; then no trips to

1 are dispatched.

Higher-earning trips are assigned to drivers at the front of the queue, as they have incurred the
highest waiting costs. For trips to lower-earning destinations (i > 1), the mechanism bypasses
drivers who are unlikely to accept them and instead starts dispatching from the first queue position

where a driver is willing to accept. This assumes infinite rider patience.

Theorem 1 (Incentive Compatibility of Direct FIFO; Castro et. al. (2021), Randomized FIFO
Mechanisms, Ch. 3, p. 13, Theorem 1). In a subgame-perfect equilibrium (SPE) under the direct
FIFO mechanism, drivers accept all trips dispatched and enter the queue only if the queue length

does not exceed

R w
Q2n,+—Y p (3.11)
C “
€L

The equilibrium outcome is individually rational and envy-free.

28

The formula for Q reflects that, in a subgame perfect equilibrium (SPE), the queue is sufficiently
long to accommodate all trip requests, including those to the lowest-paying destination ¢. The

segment of the queue given by % > represents the final positions after n, where drivers are

zeﬁ'ui

still incentivized to accept trips to location £ rather than exit the queue.

If there are more drivers than required to complete all high-earning trips, direct FIFO does not
achieve the first-best net revenue. Some drivers engage in strategic waiting, declining lower-earning
trips in favor of trips with higher earnings. This results in a nonzero queue length, reducing net
revenue. While strategic waiting cannot be entirely eliminated, it can be minimized under direct
FIFO. The following theorem establishes that direct FIFO achieves the highest possible
equilibrium net revenue under any transparent and flexible dispatching mechanism that does not

penalize drivers for rejecting trips.

Theorem 2 (Optimality of direct FIFO; Castro et. al. (2021), Randomized FIFO Mechanisms,
Ch. 3, p. 14, Theorem 2). For any economy, the direct FIFO mechanism satisfies in SPE (i) first-
best trip throughput, meaning all feasible trips are completed, (ii) first-best net revenue when the
platform’s opportunity cost c, = 0, (iii) second-best net revenue when c, € (0,¢], meaning it

maximizes net revenue among mechanisms that do not penalize drivers for declining trips.

When driver supply does not exceed total rider demand, A < Zie M the queue forms up to
position n;., and the lowest-earning trip ¢* is partially completed. All completed trips match the
first best outcome, and each driver earns a payoff of w;:. When driver supply exceeds total rider
demand, \ > Zie M the system is oversupplied, all trips are completed, and the queue reaches
its maximum equilibrium length Q, with drivers indifferent between queueing or leaving, yielding

zero payoff.

Direct FIFO improves efficiency and revenue compared to strict FIFO but can be unfair, as it
may allocate high-paying trips to drivers further back in the queue. To address this, Randomized
FIFO is introduced—an approach that adds controlled randomness to trip assignments to reduce

strategic waiting and promote fairer trip distribution among drivers.

29

3.2.4 Randomized FIFO: probabilistic dispatch to align incentives

The family of randomized FIFO mechanisms achieves optimal throughput and near-optimal
revenue in equilibrium without unfair prioritization. Randomized FIFO dispatches trips uniformly
at random to drivers in the queue, aligning incentives and reducing cherry-picking. Drivers are
less likely to reject low-paying trips because this implies waiting significantly longer for the next
opportunity. To illustrate the impact of randomization on incentive alignment, the article presents
the steady-state Nash equilibrium under random dispatching, where every trip request is assigned

to drivers uniformly at random within the queue.

Definition 6 (Nash Equilibrium in Steady State; Castro et. al. (2021), Randomized FIFO
Mechanisms, Ch. 4, p. 15, Definition 6). A strategy o* is said to form a Nash equilibrium among
drivers in steady state if there exists a queue length @Q* > 0 such that for any feasible strategy o
and any queue position ¢ € [0, Q*],

m(q,Q* 0%, 0%) > 7(q,Q*,0,0%) , (3.12)
when all drivers adopt strategy o*, the steady-state queue length remains Q.

This condition ensures that no driver has an incentive to deviate from strategy ¢*, and the queue

length stabilizes in equilibrium.

The concept of Nash equilibrium in steady state presented in Definition 6 builds on the classical
notion of Nash equilibrium as introduced by Osborne (2000, Definition 2). In both formulations,
a player (or drivers) has no incentive to unilaterally deviate from their strategy given the strategies
of others. While Osborne’s definition is framed in terms of preferences over terminal histories in
extensive-form games, the Castro model translates this to expected payoffs at different queue
positions under a fixed queue length @°. The common principle is that strategic optimality is
preserved under unilateral deviations, whether in discrete histories or continuous queue positions,

ensuring equilibrium stability in both settings.

Proposition 2 (Optimality of random dispatching; Castro et. al. (2021), Randomized FIFO
Mechanisms, Ch. 4, p. 15, Proposition 2). Under random dispatching, every trip is assigned

uniformly at random across all drivers in the queue. In steady-state Nash equilibrium, this

30

mechanism achieves (i) first-best trip throughput, ensuring all feasible trips are completed, (ii)
second-best net revenue when ¢, > 0, (iii) first-best net revenue when ¢, = 0.

This leads to two key considerations.

- A driver under random dispatching must wait significantly longer after declining a trip
than under strict FIFO, increasing the cost of cherry-picking.
- Trip assignments are less predictable, increasing the variance in both waiting times and

net earnings among drivers.

While pure randomization introduces substantial uncertainty, a well-structured randomized FIFO

mechanism can align incentives while preserving fairness.

Definition 7 (Randomized FIFO; Castro et. al. (2021), Randomized FIFO Mechanisms, Ch. 4,

p. 16, Definition 7). A randomized FIFO mechanism is defined by dividing the queue into m > 1

bins, denoted as ([Q(l), bW, %, 53], ... [p™, B(m)]>. When a trip is dispatched for the k™ time,

the mechanism randomly assigns it to a driver within the corresponding bin [b*), b®]. If a trip is

declined, it moves sequentially into the next bin until it is accepted or canceled. In essence, trip

requests are initially assigned to drivers in the first bin ([b'*), 5*)]) uniformly at random. If a
dispatch is rejected, the system moves the trip to the next bin, continuing the process until all

bins are exhausted.

Given that riders have a patience level of P, a trip may be dispatched up to P times before the
request is canceled. Let ¢* denote the lowest-earning trip type that is partially completed under

the first-best outcome (as in 3.1). The top i* destinations are partitioned into m < min{i*, P}

ordered sets £, ..., £ satisfying three conditions:
(i) (exhaustiveness) the union of all partitions covers the top i* destinations: U:L: . L) =
{1,2,...,i*} C L

(ii) (mutual exclusivity) trip i belongs to only one partition: £%1) N £k2) =), Vk, # k,
(ili) (monotonicity) later partitions contain lower-earning trips, such that for all ki, k» where

k1 < ko, the trips satisfy: i < j, Vie £*1) vje £k

31

This guarantees that the higher-earning trips are assigned to earlier partitions, while lower-earning

trips are assigned to later partitions. Each bin k is defined using the payoff gap from the minimum
in its partition. The upper (b'®) and lower (b)) bin bounds are calculated as

R SR (T ig&){wi/ﬁ /e, (3.13)

€Uy %)

2 (“’i - JQ}E}C){WD i/ c. (3.14)

i€Uys, L)

=
Z
o

The formulas are derived using Little’s Law, similarly to 3.5. The article proves that the bins start

from the head of the queue (i.e., b = 0), and that they do not overlap.

The primary result of this study is that the randomized FIFO mechanisms structured in the
manner described achieve the optimal steady-state outcome in Nash equilibrium. Drivers are
incentivized to accept trips in a way that maximizes trip throughput and net revenue without

introducing unfair dispatching practices.

Theorem 3 (Optimality of randomized FIFO; Castro et. al. (2021), Randomized FIFO
Mechanisms, Ch. 4, p. 16, Theorem 3). For any given economy and any ordered partition of the
top i* destinations denoted as (L), ..., L™ where m < min{i*, P}, a randomized FIFO
mechanism that follows the structure outlined in equations (3.13) and (3.14) achieves first-best
trip throughput and second-best net revenue in Nash equilibrium. When the platform incurs no

opportunity cost (i.e., ¢, = 0), the equilibrium also achieves the first-best net revenue.

The equilibrium properties of randomized FIFO are fundamental for the upcoming analysis

presented in Chapter 4. Under a randomized FIFO mechanism, a steady-state Nash equilibrium
is achieved when (i) all driver in the A" bin accept only trips within the top & partitions U:/: 4 (k)
(ii) no driver exits the queue without a trip or rejoins at the tail, (iii) drivers join the queue with

probability min{1, > i/ A} upon arrival, and (iv) the queue length remains constant at Q.

Furthermore, the continuation payoff for any driver in the A" bin is equal to the net earnings of

the lowest-paying trip in the & partition, i.e. 7*(q) = min,_ m {w,} for all ¢ € [b'¥); b*)] for each

32

k < m. Being 7*(q) non-negative and monotonically non-increasing in ¢ implies that randomized

FIFO ensures individual rationality and envy-freeness in steady-state Nash equilibrium.

With higher levels of rider patience, P, the randomized FIFO mechanism uses more bins to better
match high-paying trips with longer-waiting drivers. If (P > ¢*), the mechanism assigns one trip
to each partition and dispatches it to the driver at position n, in the queue on its & attempt. In
equilibrium, trips to all locations k < ¢* are accepted by drivers at ny leading to the same

equilibrium outcome as in direct FIFO with all drivers having equal total payoffs.
3.3 Final remarks: relaxation of equilibrium

While the Randomized FIFO mechanism is theoretically efficient—achieving optimal throughput
and near-optimal revenue in Nash equilibrium—these results rely on the assumption of perfectly
rational driver behavior. In real-world settings, drivers may act unpredictably, deviate from
equilibrium strategies, or respond to short-term incentives. To explore how the mechanism
performs under such realistic conditions, Chapter 4 presents simulation results that test
Randomized FIFO in scenarios where drivers are not fully rational. This provides insights into
the robustness and practical limitations of the mechanism when applied outside the idealized

assumptions of game-theoretic models.

33

Chapter 4

Behavioral Simulation Framework

Building upon the theoretical models and equilibrium analyses discussed in the previous chapters,
we conduct two simulations with distinct objectives. The first evaluates the performance of
acceptance rules that deviate from perfect rationality to understand their impact on system
metrics. The second benchmarks each acceptance rule against the Nash equilibrium optimum,
developed by Castro et. al. (2021), by testing all bin and trip partitions to identify the most
efficient configuration for each rule. In this chapter, we present the first simulation framework,
designed to recreate the dynamics of the Randomized FIFO dispatch mechanism under more
realistic behavioral conditions. While prior work assumes drivers are perfectly rational agents,
real-world settings often deviate from such idealized behavior. Drivers may exhibit bounded
rationality, inconsistent patience levels, or heuristics-driven decision-making. To bridge this gap
between theory and practice, the simulation implements variations of Randomized FIFO-based
dispatch rules in an event-based environment where drivers make decisions according to predefined
but imperfect acceptance strategies. The model builds on the M/M/c queueing framework
introduced in Chapter 3, and incorporates a dynamic game in which drivers act as players deciding

whether to accept incoming trip offers based on queue position and perceived opportunity cost.

34

4.1 Simulation purpose and scope

The simulation serves as a computational testbed to evaluate the practical viability and robustness
of Randomized FIFO mechanisms under a range of behavioral assumptions. Inspired by the
original article’s focus on high-demand ride-sharing locations—such as airports—it recreates a
single-location dispatch environment with steady rider demand, varying trip earnings, and drivers
making real-time decisions under pressure. These settings are prone to strategic behavior and
fairness concerns due to limited rider patience and the high cost of missed offers. Instead of
assuming fully rational agents, the simulation models a spectrum of driver behaviors, from
deterministic cutoff rules to probabilistic and patience-based heuristics, to explore how real-world

frictions affect system performance.

Crucially, the simulation not only replicates the structural components of the theoretical model
(such as partitioned queue bins and rider patience thresholds), but also enables controlled
experimentation with behavioral assumptions. This flexibility makes it possible to benchmark
alternative acceptance rules against key performance metrics—such as service rate, revenue,
fairness, and queue efficiency—highlighting the trade-offs that platforms may face when rationality
is no longer guaranteed. Rather than predicting exact outcomes, we seek to identify trends
vulnerabilities, and strengths in the mechanism’s design across a diverse space of practical

conditions.

4.2 Code structure and acceptance rules

The simulation code is organized into modular sections, each handling a distinct aspect of the
Randomized FIFO environment. The simulation operates through a discrete-event object-driven
framework, managing driver and rider arrivals and the dispatching process over discrete event
timelines. Drivers and riders are modeled as agents arriving randomly, and their interactions are
captured in a structured queue environment. Dispatches are managed through partitions and bins
that are computed based on trip earnings and waiting costs. This structure allows clear separation
between the setup of the simulation (parameters, partitions, bin boundaries) and its dynamic

execution (agent interactions, event processing, metric calculations).

35

As mentioned above, the simulation tests a range of acceptance rules, each representing a distinct
approach that drivers may take when deciding whether to accept or reject trip offers. The
acceptance rules vary from simple unconditional acceptance to more sophisticated strategies that
integrate probabilistic or patience-based decision-making. Specifically, the simulation considers
the following rules (names are expressed as they appear in the code): AlwaysAccept, StrictCut,
NE, ProbNE, ProbBinNE, DrivPNE, TimePNE. Each of these rules introduces different
assumptions about driver rationality, patience, and responsiveness to queue conditions, enabling
a comprehensive evaluation of how behavioral variation impacts the Randomized FIFO dispatch
mechanism’s overall performance. Notably, rules ending in NE are direct modifications of the Nash
Equilibrium rule, each relaxing its assumptions in a specific way to simulate more realistic behavior.
These rules can be viewed along a behavioral spectrum, with some—like ProbNE and
ProbBinNE—closely mirroring the rational behavior expected in equilibrium, and others—like
AlwaysAccept or StrictCut—representing more extreme or implausible heuristics. This ranking
allows us to assess how incremental deviations from optimal behavior influence system-level

outcomes.

4.2.1 Unconditional acceptance of all trips (AlwaysAccept)

The AlwaysAccept rule represents the simplest possible driver behavior: unconditional acceptance
of every trip offer, regardless of queue position, destination, or expected earnings. Drivers following
this rule do not engage in any strategic evaluation; they accept the first trip presented to them
without delay. This rule serves as a baseline in the simulation, illustrating system performance in
the absence of selective behavior or incentive-driven decision-making. While unrealistic in practice,
AlwaysAccept provides a useful benchmark for understanding how much strategic filtering affects
metrics like throughput, queue length, driver payoff, and platform revenue. It effectively models
a setting where drivers are fully compliant and indifferent to the variability in trip values or

waiting costs.

4.2.2 Deterministic queue-position threshold for acceptance (StrictCut)

The StrictCut, or Strict Cutoff, rule introduces a simple deterministic decision mechanism based

on a driver’s position in the queue. Under this rule, drivers accept a trip only if their current

36

queue position is less than or equal to a predefined threshold C (given that 0 represents the head
of the queue, or the driver who has waited the longest in the queue). If a driver’s position exceeds
this cutoff, the offer is automatically declined, regardless of the trip’s destination or potential
earnings. This rule mimics a form of bounded rationality, where drivers follow a fixed heuristic,
accepting offers only when they believe they have waited “long enough” to justify taking any trip.
StrictCut reflects behavior that is not fully strategic but incorporates a basic sense of waiting cost
and fairness. Drivers do not evaluate trip value but use their position in the queue as a proxy for
opportunity cost—the longer they wait, the more likely they are to accept. This rule helps assess
how threshold-based policies affect system performance, particularly regarding fairness, average

payoff, and trip completion rates compared to more flexible or strategic acceptance rules.

4.2.3 Nash-based acceptance logic (NE)

The NE, or Nash equilibrium, acceptance rule represents the most strategic and rational behavior
modeled in the simulation. Under this rule, a driver accepts a trip only if it belongs to a partition
that offers at least as much expected utility as their current position in the queue. This logic
directly follows from the equilibrium solution derived in the theoretical model, where each
partition corresponds to a set of trips that rational drivers would accept based on their
continuation value. The NE rule assumes full information and perfect rationality; drivers are aware
of the trip partitions and can accurately assess whether an offer meets or exceeds their expected
payoff. As such, it serves as the benchmark for optimal decision-making within the Randomized

FIFO framework.

4.2.4 Probabilistic Nash equilibrium (ProbNE)

The ProbNE acceptance rule introduces a probabilistic variation of the Nash Equilibrium strategy.
While it retains the core logic of partition-based decision-making, drivers following this rule no
longer behave with perfect consistency. Consequently, drivers accept trips with 80% probability if
k, <k,, and 20% when k, > k,, where k, is the trip partition index and k, is the driver’s bin
index. This models bounded rationality, where drivers generally act strategically but occasionally

make suboptimal decisions due to uncertainty or error.

37

4.2.5 Bin-sensitive probabilistic acceptance (ProbBinNE)

The ProbBinNE, or Probability By Bin, rule refines the ProbNE strategy by tying acceptance
probabilities to both the trip’s partition and the bin from which the offer is made, incorporating
a cost-aware behavioral logic. Specifically, when the partition index of the trip (k,) is less than
or equal to the driver’s assigned bin (k;,), the driver accepts the offer with a relatively high
probability. This probability decreases progressively across bins (e.g., 0.9 for bin 1, 0.75 for bin 2,
0.6 for bin 3), reflecting the increased cost of waiting in earlier positions. Conversely, if k. > k,,
the acceptance probability is lower (e.g., 0.1 for bin 1, 0.3 for bin 2, 0.5 for bin 3), and increases
with the bin index, indicating a willingness to compromise as the driver’s position worsens. In
effect, ProbBinNE models acceptance behavior as a probabilistic function of perceived queueing
costs: drivers in earlier bins require more attractive offers to justify the cost of continuing to wait,
while those further back are more tolerant of less optimal trips. This rule captures cost-responsive

behavior that sits between fully rational strategy and human-like compromise.

4.2.6 Trip-specific patience-driven acceptance (DrivPNE)

The DrivPNE, or Driver Patience, rule introduces a form of partition-aware, trip-specific patience
into the driver’s decision-making process. Under this rule, each driver is assigned a fixed patience
threshold for each combination of trip type and bin. Rather than making an immediate decision,
the driver may reject an offer a predefined number of times before ultimately accepting it. For
instance, a driver may accept a type-3 trip (lowest-paying trip on a scale of only 3 trip types)
from bin 1 only after rejecting it twice, while accepting the same trip from bin 3 immediately. To
keep things consistent with the other acceptance rules, we focus on two bins only in this simulation
(we are holding rider patience fixed at P = 2). This implies that trips to location 3 are rejected
at least once before being accepted. In the next chapter, we’ll evaluate this rule across a three
bins scheme as well. This structure reflects human-like hesitation: drivers are willing to wait in
the hope of receiving a better offer, but their willingness is bounded and context-dependent.
DrivPNE thus blends elements of the Nash Equilibrium framework with individual behavioral
inertia, allowing for the analysis of how differentiated patience affects service rates, matching

efficiency, and fairness across the queue.

38

4.2.7 Time-constrained queueing (TimePNE)

The TimePNE, or Time Patience, rule represents a time-based constraint on driver participation
in the queue. Under this rule, each drivers are assigned a fixed patience threshold—defined in
terms of time spent waiting—after which they leave the queue if they have not been matched with
a rider. Unlike other rules that evaluate individual trip offers, TimePNE does not consider the
characteristics of specific trips or partitions; instead, drivers follow a simple temporal cutoff,
exiting the system once their wait exceeds a predefined duration (e.g., 30 time units). This models
a realistic behavioral limit, where drivers are only willing to idle for so long before choosing to
abandon the platform. TimePNE allows the simulation to capture the effects of queue
abandonment on system efficiency, service probability, and platform revenue, particularly under

high-demand conditions where delays are common.

4.3 Outcome analysis across acceptance strategies

The simulation results provide a comprehensive view of how each acceptance rule influences key
performance metrics within the Randomized FIFO dispatch system. Before presenting the
outcomes, we first introduce the metrics analyzed—clarifying how each indicator captures different
aspects of system efficiency. The results are then presented individually for each rule, highlighting
how different behavioral assumptions—ranging from unconditional acceptance to partition-
sensitive patience—affect indicators such as service probability, driver utilization, average payoff,
queue length, and platform revenue. This is followed by a comparative analysis across all
acceptance rules, enabling the identification of consistent patterns, trade-offs, and outliers.
Together, these results illustrate how deviations from equilibrium behavior, whether minor or
extreme, can significantly shape system-level outcomes, offering practical insights into the

robustness and flexibility of the dispatch mechanism under varied real-world conditions.

4.3.1 Key metrics for system evaluation

To evaluate how different acceptance rules influence the performance of the Randomized FIFO
dispatch mechanism, the simulation tracks a set of key metrics that reflect efficiency, fairness, and

platform profitability.

39

These metrics are computed at the end of each simulation run:

- TP (Throughput). The number of riders successfully matched and served per unit of time.
It reflects the system’s ability to fulfill demand.!?

- Bing_ p. The probability of successfully matching a rider in bin k, calculated as the ratio
of accepted to offered trips in that bin.

- P __match. The overall rider matching probability, accounting for fallback across bins.

- DrivUtil (Driver Utilization). The proportion of drivers who complete at least one trip.

- ServProb (Service Probability). The fraction of rider requests that result in a successful
match.'3

- CRate (Cancellation Rate). Defined as 1 - ServProb, measuring how often requests go
unserved.

- ExRate (Patience Exhaustion Rate). The share of riders who abandon after reaching their
rejection limit.

- AvgQLen (Average Queue Length). The mean number of drivers waiting over time.

- NetRev (Net Revenue). Platform earnings net of drivers’ aggregate waiting costs.

- AvgDrvPay (Average Driver Payoff). Mean driver payoff (earnings minus waiting costs).

- VarDrvPay (Variance of Driver Payoffs). Statistical variance of driver payoffs, serving

as a proxy for income inequality.

Together, these metrics enable a multi-dimensional assessment of system performance, facilitating
direct comparison across acceptance rules in terms of efficiency, fairness, and platform incentives.
Below, we present the key findings from our simulation runs. For full code listings and detailed

metric definitions, please refer to Appendix A.

12 Intuitively, this measure aligns with the cumulative matching probability (P_match) multiplied by the
total rider demand (3 ;). While computed directly from the simulation, the validity of throughput can be
intuitively confirmed by this relationship, highlighting its consistency as an efficiency indicator.

13 As bins are progressively reached, this metric converges to the ratio of total rider demand to total offers
per rider—i.e., > 11/ 0, where p is the location demand and o the average offers needed for acceptance.

40

4.3.2 Results by acceptance rule

The results below are organized by acceptance rule, using the code names assigned in the
simulation (e.g., 3 NE, 4 ProbNE). For each rule, we examine how system performance evolves
with changes in driver supply. The simulations are based on a stylized urban environment with
three destination types [1, 2, 3], each offering different rewards and arrival rates: $75, $25, and
$15, with relative demand rates of [1, 6, 3|. Driver cost per unit time is set to 1/3. Riders are
assumed to have a patience level of 2, meaning they will attempt up to two matches before exiting
the system. Driver supply (\) varies from 1 to 15 to explore undersupply, balanced, and oversupply
conditions. Each simulation runs for 10,000 time units to approximate steady-state behavior. To
isolate the effects of the acceptance mechanism, the queue is left unbounded, reflecting driver

patience and allowing the system to capture extreme queue growth in oversupplied conditions.

1_AlwaysAccept. We first present the main results under the AlwaysAccept rule, which serves

as a baseline scenario where all trip offers are unconditionally accepted.

Rule IPl A Ii*IPartitionsl Bins |TP |Bin1_p| Bin2_p |P_match|DrivUtil I ServProbIClhte | ExRatelAngLenI NetRev IAngrvPayIVarDrvPay
T_AlwaysAccept 2 1 1 [[1]] 10, 0)] T 1 NaN 1 0.98 1 0 0 80.67 16.75 17.25 539.81
1_AlwaysAccept 2 2 2 [, [2]] [(0,0), (150, 150)] 2 1 NaN 1 1 1 0 0 0.4 65.06 32.27 313.01
1_AlwaysAccept 2 5 2 [[1],[2]] [(0,0), (150, 150)] 5 1 NaN 1 1 1 0 0 2.41 158.67 31.98 306.76
1_AlwaysAccept 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 8 1 NaN 1 1 1 0 0 1.09 21384 26.86 278.17
1_AlwaysAccept 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 9.9 1 NaN 1 1 1 0 0 121.7 227.9 22.87 298.57
1_AlwaysAccept 2 12 3 [[1,2], 3] [(0, 150), (360, 360)] 9.9 1 NaN 1 0.83 1 0 0 10517.26 -3238.18 -219.84 34034.67
1_AlwaysAccept 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 10 1 NaN 1 0.67 1 0 0 24802.14 -7997.95 -350.26 128262.24

performance of 1_AlwaysAccept

10 1.00 50

104 0.04 005 o
8 -50
102 0.02 090
Y _ > -100
g H &
& ¢ é 1.00 5 000 H 08 £ -150
& ° S 0.80 g -200
4 0.98 -0.02
075 -250
2 0.96 -0.04 0.70 =300
-350
25 50 75 100 125 150 25 50 75 100 125 150 25 50 75 100 125 150 25 50 75 100 125 150 25 50 75 100 125 150
Driver supply (A) Driver supply (A) Driver supply (A) Driver supply (A) Driver supply (A)
o 25000
120000 0.04 104
100000 20000
~2000 0.02 102
é 80000 ; P g 15000 5
3 000 £ —4000 g oo0jee—e—o—o—o——o| T 5100 e-0——e——o—o—o—9
s = w 2 10000 a!
40000 -0.02 098
-6000 5000
20000
-0.04 096
0 -8000 0
25 50 75 100 125 150 25 50 75 100 125 150 25 50 75 100 125 150 25 50 75 100 125 150 25 50 75 100 125 150
Driver supply (\) Driver supply (\) Driver supply (\) Driver supply (A) Driver supply (\)

As driver supply (X\) increases, throughput (TP) rises linearly until it plateaus at the demand

ceiling (10 trips per unit time), confirming full utilization of demand.

41

Rule [A]L1 Bin1[L1 Bin2|[L2_ Binl[L2_ Bin2

1_ AlwaysAccept 1 100 0 0 0
1_ AlwaysAccept 2 100 0 100 0
1_AlwaysAccept 5 100 0 100 0
1_ AlwaysAccept 8 100 0 100 0

1_AlwaysAccept 10 100 0 100 0
1 AlwaysAccept 12 100 0 100 0
1 AlwaysAccept 15 100 0 100 0

These patterns are consistent with the bin-level acceptance data, where all trips to Location 1 are
always matched in Bin 1, and all trips to Location 2 are also matched in Bin 1 once i" > 1,

resulting in a 100% acceptance rate concentrated in a single bin.

However, the absence of queue control or selective acceptance causes queue length and driver
payoff variance to explode in oversupplied regimes (X > 10). Average driver payoff becomes
strongly negative, reflecting high waiting costs due to long idle times. Net revenue collapses into
deeply negative territory, indicating inefficiency from platform overspending on driver wait
compensation. Driver utilization steadily declines beyond X = 10, while service probability remains
at 1.0 throughout—since all riders are matched eventually, albeit with excessive driver waiting.
This masks the poor platform performance and worsening driver experience, evidenced by sharply
increasing queue length and income dispersion. Overall, while AlwaysAccept ensures zero
cancellation and maximal service levels, it leads to extreme inefficiencies and platform losses in
high-supply scenarios, highlighting the need for smarter acceptance rules to manage market

balance.

2 StrictCut(50). The results for StrictCut at position 50 illustrate how enforcing a fixed

positional threshold impacts key performance metrics across varying levels of driver supply.

Rule |P| A |1*|Part1tlons| Bins |TP|Bin1_p| Bin2_p |P_match|DrivUtil|ServProblCRatelExRatelAngLenl NetRev |AngrvPay|VarDrvPay
2_StrictCut(50) 2 1 1 [[1]] [(0, 0)] 1 1 NaN 1 1 1 0 0 15.98 67.75 69.34 33.53
2_StrictCut(50) 2 2 2 [[1], [2]] [(0,0), (150, 150)] 2 1 NaN 1 1 1 0 0 0.39 63.55 31.84 297.64
2_StrictCut(50) 2 5 2 [[1], [2]] [(0,0), (150, 150)] 5 1 NaN 1 1 1 0 0 2.44 158.38 31.85 301.57
2_StrictCut(50) 2 8 3 (1, 2], [3]] [(0, 150), (360, 360)] 8 1 NaN 1 1 1 0 0 3.97 214.43 26.79 272.98
2_StrictCut(50) 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.5 0.35 0 0.35 0.35 0.21 0.79 0.65 31940.92 -10552.77 -355.78 383605.81
2_StrictCut(50) 2 12 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.4 0.34 0 0.34 0.28 0.21 0.79 0.66 42758.42 -14161.42 -327.68 410364.52
2_StrictCut(50) 2 15 3 [[1, 2], [3]] [(0, 150), (360, 360)] 3.4 0.34 0 0.34 0.23 0.2 0.8 0.66 57812.32 -19179.06 -286.04 406229.24

42

Performance of 2_StrictCut(50)

T
BN W oA 0 e N o®
ServProb
|
=
g

e o
AvgDrvPay

>
CRate
o o
IS
Drivutil
°
S

°
W
°
|
0
3
s

-300

o o
S oW
o °
s &

°

25 50 75 100 125 150 25 50 75 100 125 150 25 50 75 100 125 150 25 50 75 100 125 150 25 50 75 100 125 150
Driver supply (A) Driver supply (A) Driver supply (\) Driver supply (A) Driver supply (A)

60000
400000 0

-2500 50000 0.9
300000 ~5000

40000 0.8
~7500 0.4

200000

VarDrvPay
NetRev
AvgQLen

@ bt

B 30000 s

~10000 €03 H

o a

~12500 20000

100000 05

—15000

01 10000

—17500 0.4

00 0

o —20000

2.5 5.0 75 100 125 15.0 25 5.0 75 100 125 15.0 25 5.0 75 100 125 15.0 2.5 5.0 75 100 125 15.0 25 5.0 75 100 125 15.0
Driver supply (A) Driver supply (A) Driver supply (A) Driver supply (A) Driver supply (A)

At low to moderate driver supply levels (X < 8), StrictCut(50) performs similarly to the
AlwaysAccept benchmark—throughput (TP) rises steadily, service probability is perfect, and
driver utilization is complete. This is confirmed by the distribution of accepted matches: from X\
= 2to X\ = 15, 100% of L1 and L2 trips are accepted in Binl, with zero matches from downstream

positions.

Rule [A]L1_Binl[L1l_ Bin2[L2_Binl|L2_Bin2
2_ StrictCut(50) 1 100 0 0 0
2_ StrictCut(50) 2 100 0 100 0
2_ StrictCut(50) 5 100 0 100 0
2_ StrictCut(50) 8 100 0 100 0
2_ StrictCut(50) 10 100 0 100 0
2_ StrictCut(50) 12 100 0 100 0
2_ StrictCut(50) 15 100 0 100 0

However, once \ exceeds 8, the rigid position threshold at queue index 50 becomes a bottleneck.
TP quickly caps at around 3.5, Binl p stagnates near 0.35, and P match also stabilizes at 0.34—
0.35, signaling that only early-position drivers are consistently matched while the rest are bypassed.
As a result, service probability drops, despite many rider requests, since offers beyond the strict
cutoff are wasted. This inefficiency leads to a sharp rise in cancellation and exhaustion rates, and
driver utilization plummets to just 23% at high X\. Economic outcomes reflect these mismatches:
net revenue becomes deeply negative, and average driver payoffs collapse into losses with
extremely high variance (over 400,000), driven by idle time and growing inequality in driver
opportunities. Average queue lengths explode (over 57,000 at X = 15), revealing systemic
congestion. In sum, while StrictCut(50) enforces queue fairness at low supply, it fails to adapt

under oversupply, creating performance ceilings and instability across key metrics.

43

3 NE. The NE rule captures strategic driver behavior under equilibrium conditions, where
acceptance decisions reflect utility-maximizing responses to rider destinations and queue

positioning. The following results illustrate how this rational behavior shapes overall system dynamics

across varying levels of driver supply.

Rule [P] A Ji*[Partitions] Bins [TP[Binl_p[Bin2_p [P_match[DrivUtil[ServProb[CRate [ExRate[AvgQLen[NetRev [AvgDrvPay|VarDrvPay
3_NE 21 1] [0, 0)] [NaN 1 1 1 0 0 315 63.34 64.32 61.97
3_NE 2 2 2 [[2 [0,0),(150,150)] 2 0.14 1 1 0.99 0.25 075 0 148.25 5021 25.42 25.08
3_NE 25 2 [0, [2 [0,0),(150,150)] 5 0.14 1 1 1 0.45 055 0 152.01 123.22 247 6.61
3_NE 2.8 3 (1,2, [3]] [0, 150), (360, 360)] 7.9 0.7 1 1 1 0.73 027 0 347.69 12321 1549 318.52
3_NE 210 3 1,2, [3] [(0, 150), (360, 360)] 9.9 0.7 1 1 0.99 0.77 023 0 527.63 93.28 9.41 274.69
3_NE 2 12 3 1,2, 3] [(0, 150), (360, 360)] 10 0.7 1 1 0.83 0.77 023 0 101406 -3109.9 -212.69 30384.74
3_NE 2 15 3 1,2, [3]] [(0, 150), (360, 360)] 9.9 0.7 1 1 0.66 0.77 023 0 25429.77 -8207.55 -356.72 134965.02

Performance of 3_NE
10 1.0 1.00
0.7
0.9 0.95 0
8 0.6
0.8
05 0.90 w0
e ® g Yo Zoss g
" 5°° 5 goao g
03 z
4 ¢ 05 < -200
0.2 0.75
0.4
2 0.1 0.70 -300
03
00 065
25 5.0 75 100 125 15.0 25 5.0 75 100 125 150 25 5.0 75 100 125 15.0 2.5 5.0 75 100 125 15.0 25 5.0 75 100 125 150
Driver supply (A) Driver supply (A) Driver supply (A) Driver supply (A) Driver supply (A)
140000
0 25000
120000 0.04 1.04
2000 20000
100000 - 0.02 1.02
& 80000 > o § 15000 5
H %—4000 § 000{ee—e—o—o—o—o| O E100{ee—e—o—o—o—
§ o000 < @ < 10000 o
40000 ~6000 -0.02 0.98
5000
20000
-0.04 0.96
0 —8000 0
25 5.0 75 100 125 15.0 25 5.0 75 100 125 15.0 25 5.0 75 100 125 15.0 2.5 5.0 75 100 125 15.0 25 5.0 75 100 125 15.0
Driver supply (A) Driver supply (A) Driver supply (A) Driver supply (A) Driver supply (A)

As driver supply (X\) increases, throughput (TP) grows quickly and stabilizes around 10 riders per
unit of time, corresponding to the total passenger arrival rate. This suggests the system
successfully fulfills nearly all demand once an adequate number of drivers are available, validating
the effectiveness of equilibrium-based matching. The service probability follows a more nuanced
trajectory and eventually stabilizes at approximately 0.77—matching the theoretical limit derived

from the ratio of total accepted arrival rates to total offers: 146+3/14+6+2-3 = 10/13 ~ 0.77.

Rule [2][L1_Binl[Ll_ Bin2|L2_Binl|L2_Bin2
3_NE 1100 0 0 0
3_NE 2100 0 0 100
3_NE 5 100 0 0 100
3_NE 8 100 0 0 100
3_NE 10 100 0 0 100
3_NE 12 100 0 0 100
3_NE 15 100 0 0 100

This cap reflects that only trips that reach a willing bin contribute to matches under NE behavior.
Bin 1 acceptance probability (Binl p) remains flat at ~0.7 once the queue reliably reaches beyond

the Bin 1 boundary. The data in the table above supports this: offers to location 1 (L1) are always

44

fully accepted in Binl, while L2 is only ever accepted in Bin2, which begins receiving and accepting

offers starting at X = 2 and continues with 100% acceptance through X = 15.

This behavior stabilizes the cancellation rate (Crate), which drops significantly once location 2
trips consistently reach Bin2, reducing mismatches. However, despite high throughput and stable
matching efficiency, economic performance deteriorates sharply beyond equilibrium levels. As X\
exceeds 10, driver utilization drops from 0.99 to 0.66, average driver payoffs plunge into negative
territory, and net revenue becomes increasingly negative. This decline stems from inflated queue
lengths (over 25,000 at X = 15), long idle times, and growing compensation costs. These results
underscore that while NE matching is efficient within equilibrium bounds, it suffers substantially

from performance losses when supply far exceeds demand.

4 ProbNE. The results for ProbNE highlight how introducing probabilistic acceptance affects
system behavior across varying driver supply levels. Specifically, drivers accept requests with an
80% probability when the rider’s destination lies within a location group (partition) with index
corresponding to their own bin or a lower, higher-paying one, and with a 20% probability otherwise.
Compared to deterministic rules, this approach introduces smoother performance transitions and

softens queue dynamics, particularly in intermediate supply regimes.

Rule [P] A Ji*[Partitions] Bins [TP[Binl_p[Bin2_p [P_match[DrivUtil[ServProb[CRate [ExRate[AvgQLen[NetRev [AvgDrvPay|VarDrvPay
4_ProbNE 21 1] [0, 0)] 08 08 NaN 0.8 0.8 08 02 0 94858 -256.43 -197.01 36214.75
4_ProbNE 2 2 2 [0, 2 [0,0),(150,150)] 2 0.29 NaN 0.29 1 0.29 071 0 33.95 77.58 39.21 619.38
4_ProbNE 25 2 (A2 [0,0),(150,150)] 5 0.29 0.8 0.86 1 047 053 007 153.89 12119 24.01 308.7
4_ProbNE 2 8 3 (1,2, [3]] [0, 150), (360, 360)] 8 0.62 0.8 0.92 1 0.65 0.35 0.05 360.19 107.77 13.44 342.75
4_ProbNE 210 3 1,2, [3]] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.93 0.92 0.67 0.33 0.07 3916.66 -1051.54 -94.75 5953.86
4_ProbNE 2 12 3 1,2, 3] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.92 0.77 0.67 0.33 0.08 14060.48 -4432.94 -279.45 61720.53
4_ProbNE 2 15 3 (1,2, 3] [(0, 150), (360, 360)] 9.2 0.62 0.8 0.92 0.62 0.67 0.33 0.08 2832744 -9189.5 -374.14 170226.09

Performance of 4_ProbNE
0.8 0.7 1.00
8 0.95 0
o7 06
0.90
6 . ~100
3 0.6 405 z 0.85 3
5 % & 2 0.80 é
4 & 05 0.4 S s £ -200
, 0.4 03 070 ~300
0.65
03 0.2
2.5 5.0 75 100 125 15.0 25 5.0 75 100 125 150 25 5.0 75 100 125 15.0 2.5 5.0 75 100 125 15.0 25 5.0 75 100 125 150
Driver supply (A) Driver supply (A) Driver supply (A) Driver supply (A) Driver supply (A)
175000 0 0.08 0o
150000 0.07 25000
0.8
125000 2000 0.08 20000
> 0.05 - 0.7
%B 100000 g ~4000 EDOA g 15000 % o
€ 75000 2 & H o
- ~6000 0.03 10000 os
50000 -
0.02
25000 8000 001 5000 0.4
0 0.00 0 03
25 5.0 75 100 125 15.0 25 5.0 75 100 125 15.0 2.5 5.0 75 100 125 15.0 25 5.0 75 100 125 15.0 25 5.0 75 100 125 15.0
Driver supply (A) Driver supply (A) Driver supply (A) Driver supply (A) Driver supply (A)

45

Throughput (TP) increases steadily with driver supply and saturates just below 10, closely
tracking the rise in cumulative match probability (P _match), which converges around 0.92. This
cap stems from the fixed probabilities embedded in the rule: trips to higher bins are only accepted
with 0.8 and 0.2 probability depending on their relative bin position, which limits maximum

achievable matches regardless of queue size.

Rule [A]L1_Binl|Ll_ Bin2[L2_ Binl|L2_Bin2
4_ProbNE 1 100 0 0 0
4_ProbNE 2100 0 100 0
4_ProbNE 5 874 12.6 29.1 70.9
4_ProbNE 8 894 10.6 33.8 66.2
4_ProbNE 10 83.7 16.3 24.4 75.6
4_ProbNE 12 83.5 16.5 23.8 76.2
4_ProbNE 15 83.2 16.8 23.7 76.3

This pattern is further confirmed in the table above, which shows how trips to Location 1 and 2
are split across bins under oversupply: only ~83% of L1 trips and ~76% of L2 trips are matched,

consistent with the 0.8 acceptance cap.

Service probability stabilizes near 0.67 in high-supply regimes, reflecting the equilibrium between
increasing offers and the bounded acceptance chances. This is lower than NE’s 0.77 cap because
some offers—even to drivers in matching bins—are probabilistically rejected. Cancellation rate
and patience exhaustion grow with X due to this stochastic rejection, though more mildly than in
StrictCut(50). Driver utilization begins at 1.0 (with the exception of the single-bin scenario) and
then gently declines with oversupply. Economic metrics like net revenue and average driver payoff
deteriorate in high X\, though not as drastically as with more rigid rules. Overall, ProbNE achieves
a more resilient balance between match rates and system flexibility but remains constrained by

its inherent probability ceilings.

5 ProbBinNE. We now examine the performance of ProbBinNE, which refines the probabilistic
decision logic by assigning different acceptance probabilities across bins. This rule increases realism
by capturing the idea that drivers may be more likely to accept requests in higher-priority bins.
The results reveal how this differentiated behavior affects efficiency, utilization, and fairness across
varying levels of driver supply. Drivers accept requests with a 90%, 75%, or 60% (ordered by bin

1-3) probability when the rider’s destination lies within a location group (partition) with index

46

corresponding to their own bin or a lower, higher-paying one, and with a 10%, 30%, or 50%

probability otherwise.

Rule |P| A |i*|Partitions| Bins |TP|Bin17p| Bin2_p |P7match|DrivUtil|ServProb|CRate|ExRate|AngLen| NetRev |AngrvPay|VarDrvPay
5_ProbBmNE 2 1 [T} [0, 0)] 0.9 0.9 NaN 0.9 0.9 0.9 0.1 0 563.53 212085 -102.59 10174.23
5 ProbBinNE 2 2 2 [[1], [2]] [0, 0), (150, 150)] 2 0.21 0.75 0.81 0.99 0.26 0.74 0.02 145.62 46.14 23.26 180.98
5 ProbBmNE 2 5 2 [[1], [2]] [0, 0), (150, 150)] 5 0.21 0.75 0.8 1 0.43 057 0.1 156.28 119.9 24.15 222.41
5_ProbBinNE 2 8 3 (1,2, [3]] [(0, 150), (360, 360)] 8 0.66 0.75 0.92 1 0.67 033 0.04 355.43 113.59 14.26 323.14
5 ProbBinNE 2 10 3 (1,2, [3]] [(0, 150), (360, 360)] 9.1 0.66 0.75 0.92 0.91 0.68 032 0.08 460418 -1281.17 -113.54 8095.56
5 ProbBmNE 2 12 3 [[1,2], [3]] [(0, 150), (360, 360)] 9.2 0.66 0.75 0.92 0.76 0.68 032 0.08 14192.15 -4475.32 -279.04 63311.81
5_ProbBinNE 2 15 3 [[1, 2], [3]] [0, 150), (360, 360)] 9.1 0.66 0.75 0.92 0.61 0.68 0.32 008 29722.92 -9654.46 -383.93 183019.17

Performance of 5_ProbBinNE
0.9 1.00
0.7 o
8 08 0.95 5o
06 0.90
07 -100
6 05 _ 085 >
B Zos 2 - £-10
% 04 g S -200
4 0.5 03 0.75 < 250
04 0.70 -300
2 0.2
03 0.65 ~350
01 0.60 -400
25 5.0 75 100 125 15.0 25 5.0 75 100 125 15.0 25 5.0 75 100 125 15.0 2.5 5.0 75 100 125 150 25 5.0 75 100 125 15.0
Driver supply (A) Driver supply (A) Driver supply (A) Driver supply (A) Driver supply (A)
0 30000 0.92
175000
010
150000 000 25000 090
0.08
125000 20000 088
i3 ~4000 § g
E 100000 % é 006 3 15000 ©0.86
K 2 5 2 £
= o 6000 0.04 * 10000 *osa
50000
25000 ~8000 0.02 5000 0.82
o ~10000 0.00 0 0.80
25 5.0 75 100 125 150 25 5.0 75 100 125 15.0 25 5.0 75 100 125 15.0 2.5 5.0 75 100 125 150 25 5.0 75 100 125 15.0
Driver supply (A) Driver supply (A) Driver supply (A) Driver supply (A) Driver supply (A)

The performance of ProbBinNE closely resembles that of ProbNE, with key differences emerging

from the bin-specific acceptance probabilities. Throughput (TP) rises predictably with driver

supply and plateaus at 9.2 due to the limit set by cumulative match probability (P _match =

0.92) multiplied by total rider demand (u = 10). The service probability curve similarly levels off

around 0.68, reflecting the weighted effect of acceptance caps per bin—bin 1 capped at 0.66, bin

2 at 0.75—and their respective exposure to ride offers. For example, in oversupplied settings, bin

1 is saturated with offers to L1 and L2 but rejects the latter ~33% of the time, which inflates the

offer denominator while limiting matches.

Rule

5_ProbBinNE
5_ProbBinNE
5_ProbBinNE
5_ProbBinNE
5_ProbBinNE
5_ProbBinNE
5 ProbBinNE

[2»]L1 Binl|L1l Bin2|L2_ Binl|[L2_Bin2
1100 0 0 0

299 1 55.5 445

5 933 6.7 15.2 84.8

8 958 4.2 22.4 77.6

10 92.5 7.5 13.2 86.8

12 922 7.8 12.8 87.2

15 92.3 7.7 12.8 87.2

These patterns are evident in the match distribution table: Bin 1 consistently captures over 92%
of L1 matches across X > 5, while Bin 2 handles most L2 matches—87.2% at X = 15. Yet, Bin 1

47

also regularly receives L2 offers (e.g., 12.8% at X\ = 15) and rejects many, dragging down the
service rate.

Cancellation and patience exhaustion rates stabilize at 0.32 and 0.08 respectively, similarly to the
caps observed in ProbNE. Driver utilization drops steadily with X\, from 1.0 to 0.61, as many
drivers remain idle for longer periods. This leads to worsening driver payoffs and rising variance,
culminating in high queue lengths (nearly 30,000 at X = 15) and platform losses. Notably, caps in
P match (0.92) and Binl p (0.66) arise directly from the probabilistic structure of the rule—
these are not results of behavioral changes but rather fixed acceptance ceilings. Overall,
ProbBinNE introduces more nuanced rejection behavior while preserving throughput efficiency up

to high supply levels, albeit at the cost of fairness and revenue stability in oversaturated conditions.

6 DrivPNE. DrivPNE incorporates targeted patience thresholds based on both bin index and
destination. This design reflects the idea that drivers may be willing to wait through a certain
number of mismatches before accepting trips to lower-valued locations. The willingness to wait is
proportional to the waiting costs drivers incur while remaining in the queue. Drivers in Bin 1
accept trips to Location 1 immediately, to Location 2 after 1 decline, and to Location 3 after 2

declines. Drivers in Bin 2 accept Location 1 and 2 immediately and Location 3 after 1 decline.

Rule [P] A Ji*[Partitions] Bins [TP[Binl_p[Bin2_p [P_match[DrivUtil[ServProb[CRate [ExRate[AvgQLen[NetRev [AvgDrvPay[VarDrvPay
6_DrivPNE 2 1 1] [0, 0)] 11 NaN 1 0.98 1 0 0 154.64 22.96 23.54 660.67
6_DrivPNE 2 2 2 (O [2]l [0, 0), (150, 150)] 2 0.54 NaN 0.54 1 0.54 046 0 0.99 76.36 38.14 488.88
6_DrivPNE 25 2 [2] [0,0),(150,150)] 5 0.54 1 1 1 0.61 039 0 14896 12539 2518 376.52
6_DrivPNE 2 8 3 (1,2, 3] [0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.99 0.53 047 02 86239 4929 -6.01 447.71
6_DrivPNE 2 10 3 [[1,2], 3] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.79 0.53 047 0.2 1070858 -3330.37 -259.89 49229.13
6_DrivPNE 2 12 3 [[1,2], 8] [(0, 150), (360, 360)] 8 0.5 0.59 038 0.66 0.53 047 0.2 20809.77 -6696.99 -363.66 140165.14
6_DrivPNE 2 15 3 (1,2, [3]] [(0, 150), (360, 360)] 7.9 0.5 0.59 0.79 0.52 0.53 047 02 36018.76 -11767.73 -402.33 254469.93

Performance of 6_DrivPNE

8 10 10
0
7 04
09 09
6 -100
03 >
5 gos8 o £ 08 K
o - ® 3 2
= H g = S -200
4 g So2 5 2
07 07 E
3
01 -300
2 06 06
1 0.0 05 -400
25 50 7.5 100 125 150 25 50 75 100 125 150 25 50 75 100 125 150 25 50 75 100 125 150 25 50 75 100 125 150
Driver supply (A) Driver supply (A) Driver supply (A) Driver supply (A) Driver supply (A)
250000 o 0200 35000 10
0175 30000
~2000
200000 0150 09
25000
7 150000 000 0125 _ B
< g 2 8 20000 §os
I £ -6000 g 0.100 % E
£ 100000 = @ 0075 Z 15000 o
~8000 . 07
0.050 0000
50000
~10000 0.025 5000 06
0 —~12000 0.000 0
25 50 75 100 125 150 25 50 7.5 100 125 150 25 50 7.5 100 125 150 25 50 75 100 125 150 25 50 7.5 100 125 150
Driver supply () Driver supply (\) Driver supply (A) Driver supply (\) Driver supply (\)

48

The performance of DrivPNE exhibits several distinctive patterns driven by its patience-based
queue logic. Throughput (TP) increases with driver supply and stabilizes around 7.9 trips per unit
of time at X\ > 8. This cap stems from the limited patience thresholds that restrict when drivers
are willing to accept lower-priority trips. Despite having the full set of drivers in queue, trips to
lower-valued locations are delayed until enough mismatches occur, limiting instantaneous
matching and suppressing P match, which caps at 0.79. Service probability stabilizes around 0.53,
significantly lower than that of AlwaysAccept or NE. This reflects the high number of rider offers

that are rejected when they arrive before reaching a driver’s acceptance threshold.

Rule [2]L1_Bin1[L1_ Bin2[L2_Binl[L2_ Bin2

6_ DrivPNE 1100 0 0 0

6_ DrivPNE 2100 0 100 0

6_ DrivPNE 5 100 0 70.2 29.8
6_DrivPNE 8 66.1 33.9 44.4 55.6
6_DrivPNE 10 65.7 34.3 44.8 55.2
6_DrivPNE 12 65.8 34.2 44.6 55.4
6_DrivPNE 15 65.8 34.2 44.4 55.6

As seen in the data, only about 66% of L1 trips are matched to Bin 1 at X\ > 8, while substantial
offers are routed to Bin 2. For example, at X\ = 15, L1 matches are split as 65.8% to Bin 1, 34.2%

to Bin 2, reflecting early mismatches and driver drop-off points.

The impact of these thresholds is visible in the stability of Binl p and Bin2 p values, which
plateau at 0.5 and 0.59 respectively. This confirms that despite increased queue length, driver
willingness to serve only arrives after specific declines, capping their participation rate. As a result,
cancellation and exhaustion rates rise and flatten near 0.47 and 0.2, respectively. Economic
performance deteriorates sharply as supply increases. Average driver payoff declines from 23.5 to
—402.3, with variance exploding to over 250,000. Queue length follows a steep upward trajectory,
reaching over 36,000 at X\ = 15, confirming substantial delays and system congestion. Driver
utilization falls from 0.98 to 0.52, reflecting the long idle times caused by drivers waiting to reach

acceptable positions in the queue.

Overall, DrivPNE introduces realistic behavioral heterogeneity by allowing variable patience, but
this comes at the cost of substantial performance trade-offs. While it avoids strict rejection rules,
its inherent delays in acceptance drive inefficiencies under high-supply scenarios, leading to capped

throughput, suppressed service probability, and considerable platform losses.

49

7 TimePNE. TimePNE applies a uniform time-based cutoff, where drivers exit the queue if
unmatched after a fixed threshold of T = 30 time units. Unlike spatial or probabilistic rules, it
does not consider trip characteristics—only wait duration. This models realistic abandonment

behavior and reveals how limited patience impacts system efficiency and service under high-delay

conditions.

Rule [P] a [i*[Partitions] Bins [TP[Binl_p[Bin2_p [P_match[DrivUtil[ServProb[CRate [ExRate[AvgQLen[NetRev [AvgDrvPay|VarDrvPay
7_TimePNE@30) 2 1 1 [[1]] [0, 0)] [NaN 1 0.97 1 0 0 16.54 66.95 673 163.9
7_TimePNE@30) 2 2 2 [[], 2] [(0,0), (150,150)] 1 0.14 NaN 0.14 0.49 0.14 086 0 59.43 54.49 32.08 1067.18
7_TimePNE@30) 2 5 2 [[1],[2]] [(0,0), (150, 150)] 1.3 0.14 1 1 0.26 0.18 082 0 141.2 34.83 14.35 668.27
7_TimePNE@30) 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.87 0.7 03 0 10016 19114 2517 369.25
7_TimePNE@30) 2 10 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7 0.7 NaN 0.7 0.7 0.7 03 0 188.84 16364 193 377.74
7_TimePNE(30) 2 12 3 [[1, 2], [3]] [(0. 150), (360, 360)] 7 0.7 NaN 0.7 0.58 0.7 03 0 281.87 13092 15.08 343.05
7_TimePNE@30) 2 15 3 [[L, 2], [3]] [(0, 150), (360, 360)] 8.1 0.7 1 1 0.54 0.73 027 0 356.51 12291 1277 288.15

Performance of 7_TimePNE(30)
8 1.0 10 70
0.8
5 0.9 60
0.8 0.8
6 0.6 50
F) - 0.7 >
& ° é 0e g 206 S
4 H & 0.4 g 3
S 04 05 “ 5
02 0.4
2 20
0.2 03
1 0.0
25 5.0 75 100 125 15.0 25 5.0 75 100 125 15.0 25 5.0 75 100 125 15.0 25 5.0 75 100 125 15.0 2.5 5.0 75 100 125 15.0
Driver supply (A) Driver supply (A) Driver supply (A) Driver supply (A) Driver supply (A)
350 e
1000 180 0.04
160 300 08
800 140 0.02 250
g 3 2 g g
5 600 % 120 % 0.00 % 200 g 0.6
g Z 100 @ < 150 !
400 80 -0.02 100 0.4
60
200 w0 -0.04 50 0.2
25 5.0 75 100 125 15.0 25 5.0 75 100 125 15.0 25 5.0 75 100 125 15.0 ° 25 5.0 75 100 125 15.0 25 5.0 75 100 125 15.0
Driver supply (A) Driver supply (A) Driver supply (A) Driver supply (A) Driver supply (A)

By forcing drivers out after 30 time units, TimePNE keeps the queue from stretching into lower-
priority bins, so overall throughput is governed by how quickly drivers move through Bin 1 rather
than by total demand. As supply rises, TP jumps from about 1 at X\ = 5 to around 7 under the
[1, 2],[3] split, reflecting the larger share of drivers in Bin 1. However, because few drivers ever
reach the Bin 2 cutoff before abandoning, TP stays capped and never fully exploits excess supply.
Consequently, service probability levels off around 0.7 and only edges up slightly once supply is
high enough to cover Bin 2. Rider patience exhaustion remains at zero, which is encouraging, but

drivers still cancel roughly 30% of requests whenever X\ > 8.

Rule [2[L1_Bin1|[Ll_Bin2[L2_ Binl|[L2_ Bin2
7_TimePNE(30) 1 100 0 0 0
7_TimePNE(30) 2 100 0 0 0
7_TimePNE(30) 5 100 0 0 100
7_TimePNE(30) 8 100 0 0 0
7_TimePNE(30) 10 100 0 0 0
7_TimePNE(30) 12 100 0 0 0
7_TimePNE(30) 15 100 0 0 100

50

As the table illustrates, TimePNE mirrors NE’s bin-based acceptance patterns exactly—drivers
accept the same trip partitions in each bin. The only deviation arises when the queue never grows

large enough to reach Partition 2, in which case those trips simply go unoffered.

This rule’s most dramatic impact is on net revenue: by capping driver wait times, the platform
retains nearly the full fare for every match, driving revenue well above that of other rules.
Although surpassing the Nash benchmark may appear counterintuitive, it reflects lower driver
cost burdens, not better matching. Revenues reach their highest point at X = 8 and then decline
when the system becomes oversupplied. Correspondingly, payoff variance plunges from over 1,000
at X = 2 down to about 200 at high supply, indicating that the rule also stabilizes driver earnings

by limiting extreme wait-time swings.

Overall, TimePNE injects realistic impatience by removing drivers after a fixed wait, which
sharply reduces waiting costs and boosts net revenue—but this comes at the expense of total
matches. While it stabilizes payoffs and caps queue lengths, throughput and service probability
remain bounded below the demand rate, and excess supply simply increases abandonment rather

than completed trips.

4.4 Cross-rule performance comparison and final insights

Having examined each acceptance rule in isolation, we now turn to a side-by-side comparison that
highlights how drivers’ behavioral strategies shape system-level outcomes across varying supply
regimes. By plotting key metrics—throughput (TP), service probability (ServProb), average driver
payoff (AvgDrvPay), queue length (AvgQLen), net revenue (NetRev), payoff variance
(VarDrvPay), and others—against driver supply (\), we can identify systematic trade-offs between
efficiency, fairness, and platform profitability. In what follows, we organize our discussion around
three market conditions (undersupply, balanced supply, oversupply) and contrast groups of rules
by their “filtering aggressiveness” (AlwaysAccept vs. StrictCut), strategy sophistication (NE and

its probabilistic relaxations), and patience constraints (DrivPNE, TimePNE).

o1

Comparison of All Acceptance Rules

—e— 1_AlwaysAccept #— 2_StrictCut(50) —e— 3_.NE —e— 4 ProbNE —e— 5 ProbBinNE = —e— 6_DrivPNE 7_TimePNE(30)

1.0 oo - R 1.0
0.8 .
091«

e
@

J
06 08

au =07

2
0.4 206

ServProb
e
B
CRate

AvgDrvPay

a
0.5

e
IS

0.2 0.4

0.3

e
N

0.0{ - S S, 02
5 10 15 5 10 15 5 10 15 5 10 15 5 10 15
Driver supply A Driver supply A Driver supply A Driver supply A Driver supply A

60000

400000 T 01 o e Y e ————
-2500 o6 50000 / < *
- 05 p, 0.8 — VA
300000 5000 20000 \ f

-7500

200000 30000

VarDrvPay

NetRev
AvgQLen
P_match
o
>

]

5
~10000 \ %03

5
20000

0000 12500 \, 0.2 0.4 \/
100000 _ bl
15000 \ o 10000
N -17500 \ / 02
SH—0 » 0.0{ « 010

0 -20000
15 15 15

15 15

10 10 5 10 10
Driver supply A Driver supply A Driver supply A Driver supply A Driver supply A

Undersupply (A < 5). When driver supply is low relative to demand, all rules achieve nearly
the same throughput—with the exception of TimePNE(30), which matches slightly fewer trips
overall. However, service probabilities diverge sharply from NE under several rules. Both
AlwaysAccept and StrictCut(50) always match every trip, driving their service rates to 1.0,
whereas NE deliberately holds service probability down. In contrast, DrivPNE overserves relative
to NE (about 0.54 at A = 2 and 0.61 at A\ = 5 versus NE’s 0.25 and 0.55), while TimePNE(30)
markedly underserves (only about 0.14 at A = 2 and 0.18 at A = 5). The two probabilistic-
threshold rules—ProbNE and ProbBinNE—track NE most closely, deviating by only a few
percentage points. Overserving rules like AlwaysAccept and DrivPNE boost total earnings but
increase variability, while underserving rules like TimePNE sacrifice overall matches and driver

income in exchange for more consistent (lower-variance) pay.

Balanced supply (A ~ 8 —10). AlwaysAccept continues to overserve—matching nearly every
trip even as A rises—while NE holds service around 0.70-0.75. This drives down average driver
pay and spikes payoff variance. StrictCut(50), by contrast, severely underserves, yielding rising
queues and dramatically lower earnings and efficiency. Among the bounded-rational rules, ProbNE
and ProbBinNE stay closest to NE, sacrificing a few percentage points of service and resulting in

slightly higher payoff dispersion. DrivPNE and TimePNE(30) also underserve versus NE but far

52

less drastically than StrictCut. These rules strike intermediate trade-offs, keeping driver pay and

queue lengths nearer to NE levels while tolerating slightly lower throughput.

Oversupply (A > 10). StrictCut(50) serves a small portion of demand, inducing prohibitively
long queues and huge negative net revenues, while AlwaysAccept maximizes matches and keeps
queues minimal with revenues plunging slightly in the negatives. Equilibrium-based rules (NE,
ProbNE, ProbBinNE) sustain moderate queue sizes and negative revenue due to oversupply,
service probability stabilizing at cap values; introducing randomness or bin-sensitivity helps
contain extreme disparities in driver earnings. DrivPNE’s individualized patience consistently
curbs queue growth and smooths payoff distributions, while TimePNE achieves the tightest
control on both queue length and income inequality by expelling drivers who exceed their wait

threshold.

No single acceptance rule universally dominates across all metrics and supply regimes. Our
simulations reaffirm that NE serves as the efficiency benchmark—it maximizes throughput and
revenue under balanced supply, though oversupply amplifies inefficiencies. In extreme undersupply
or oversupply, AlwaysAccept ensures full coverage with minimal queues, while StrictCut(50)
rigidly sacrifices many matches once driver availability crosses its cutoff. Hybrid strategies—
ProbNE, ProbBinNE, DrivPNE, and TimePNE——closely track NE’s performance, each
introducing controlled randomness or patience constraints to manage queues and stabilize pay
without substantially lowering overall throughput. These deviations from perfect rationality reveal

where efficiency, stability, and cost controls intersect.

93

Chapter 5

Benchmarking Behavioral Strategies

In this chapter, we present the second simulation, which aims to benchmark each relaxation of
Nash Equilibrium behavior against the Nash equilibrium optimum. The goal is to identify the
optimal bin and partition setups for each acceptance rule under realistic behavioral constraints.
Building on the acceptance rules introduced earlier, we systematically compare each behavioral
variation—ProbNE, ProbBinNE, DrivPNE, and TimePNE—with the NE baseline. Unlike
previous simulations that varied the level of driver supply, this analysis keeps supply fixed and
instead explores different patience levels and queue configurations. For each rule, we test all bin
and partition designs to identify the most efficient combination. Key performance indicators such
as throughput, and net revenue are recorded, along with the Price of Anarchy (PoA), which
captures the cost of deviating from optimal NE behavior. This chapter provides a comparative
framework for understanding which configuration minimizes efficiency losses for each behavioral

rule.

o4

5.1 Simulation focus and design

This chapter builds upon the behavioral simulation framework introduced earlier, using the same
event-driven, randomized FIFO architecture to model interactions between drivers and riders. As
before, drivers are queued and matched based on real-time system dynamics, and the platform’s

performance is assessed through key operational and economic metrics.

However, the scope of this simulation is narrower and more focused. Here, we test only four
acceptance rules—ProbNE, ProbBinNE, DrivPNE, and TimePNE—each representing a principled
relaxation of the Nash Equilibrium (NE) benchmark. The objective is to benchmark these near-
rational strategies under controlled conditions: specifically, fixed driver supply and varying
patience levels. By doing so, we evaluate how close each rule remains to NE outcomes, quantify
their performance losses via Price of Anarchy metrics, and identify the most effective bin and
partition configurations for each acceptance strategy. The goal is to identify for each acceptance
rule which scenario combination achieves the highest system efficiency while remaining grounded

in realistic driver behavior.

5.2 Algorithmic variations

This simulation builds on the same event-driven randomized FIFO framework developed in the
previous chapter, but incorporates several key adjustments to align more closely with the
equilibrium conditions described in the theoretical model and to better assess variations of the NE

rule under more realistic system constraints.

5.2.1 Partition focus on [1, 2, 3]

A central focus of this simulation is on testing the partition configuration [1, 2, 3], which activates
a randomized dispatch mechanism when i* > 1 and P = 1. In the [1,2,3] partition with a single
bin, any rule based on NE will lead all drivers to accept all trips, because every trip belongs to
the single partition assigned to that bin. So from a trip selection perspective, there’s no filtering

or prioritization happening—all trips are equally valid targets.

95

This setup departs from traditional partitioning logic by grouping all locations into a single
partition, thereby removing any spatial prioritization. The resulting configuration is supported
under the randomized FIFO equilibrium framework and is known to significantly raise the cost of
cherry-picking behavior: drivers can no longer rely on targeted acceptance to isolate high-value
trips, as all offers are now uniformly randomized across locations. These fairness gains come at
the cost of predictability and control. Drivers may face increased uncertainty in earnings and idle
time since their ability to pick profitable matches is reduced. This can lead to higher dispersion

in payoffs and longer average waiting times, particularly in oversupplied conditions.

Because of these trade-offs, the partition [1, 2, 3] is interesting to explore. It includes the extreme
end of randomized dispatch design and allows for examination of how robust each acceptance rule
is to uncertainty and reduced control. Comparing this partition against more traditional scenarios
such as [[1], [2, 3]] or [[1], [2], [3]] helps clarify how far near-rational strategies can go in terms of

performance.

5.2.2 Queue length bounding to approximate steady-state

To better replicate steady-state equilibrium behavior, we bound the maximum queue length. In
theory, the queue stabilizes at a constant level @* when the system reaches equilibrium.
Specifically, for our parameters where i* = 3, Q* = ny = 360 under the direct FIFO model (see
Theorem 2, Sec. 3.2.3). However, in practice, to ensure consistent simulation coverage and reduce
variability, we set the queue length cap to 400. This ensures that the system reliably reaches the

target length without excessive sensitivity to short-term fluctuations.'4

5.2.3 Equilibrium randomization for trips to ¢*

A final algorithmic refinement concerns the treatment of trips to the threshold location ¢* under

the NE rule. In equilibrium, drivers in the final bin randomize over whether to accept a trip to

14 The equilibrium queue length Q* ensures that the queue neither grows indefinitely nor empties out,
allowing throughput and payoffs to stabilize. In the oversupplied regime (A>3~ 4;), the system reaches a
steady state where all trips are completed, and the queue length stabilizes at @Q* = n,.. For ¢* = 3, this
means) = ng, where ng is the number of drivers needed to serve location 3 demand in equilibrium.

o6

location ¢* with a probability calibrated to match the system’s feasible service rate. Specifically,

if d = i* (where d is the requested destination), the probability of accepting the trip is given by:

min ()\ - Z’i<i* Lo s luz*)
Hoe .

This logic is encoded directly in the simulation code and controls whether a drivers serves a rider

at ¢* or not.1%

5.3 Results and analysis

The following section presents the results of the refined simulation under fixed drivers supply and
varying patience levels. We analyze system performance across five acceptance rules—NE, ProbNE,
ProbBinNE, DrivPNE, and TimePNE(30)—using a consistent setup with three location types [1,
2, 3], trip rewards [75, 25, 15], and a uniform cost of waiting set to ¢ = 1/3. The rider demand
vector is fixed at [1, 6, 3], representing heterogeneous destination popularity, while the arrival rate
of drivers is held at A = 8. For each acceptance rule, we compare results across different bin
configurations and location partitions to identify which scenario yields the best balance of
throughput, efficiency, and fairness. We begin by introducing the key performance metrics used

to evaluate each scenario.

5.3.1 Performance metrics

The core performance indicators capture both operational efficiency and driver experience. These
include Throughput (TP), Net Revenue, Average Waiting Time, and Average Driver Payoff. In
addition, we compute Price of Anarchy metrics—PoA TP and PoA NetRev—to measure

efficiency loss relative to the NE benchmark.

- TP (Throughput). Measures the number of successfully served ride requests per unit time.

15 This follows the equilibrium mixed strate y described in the paper: drivers in the kth bin accept all tI‘ipS
g
in partitions " /C(k/), but randomize over ¢* when in the final bin, ensuring the acceptance rate matches
k/_l g
the residual system demand.

o7

- NetRev (Net Revenue). captures platform earnings after deducting driver compensation
based on queue time.

- AvgWait (Average Waiting Time). reflects how long drivers wait in the queue before
being matched.

- AvgPayoff (Average Driver Payoff). represents the average net earnings of drivers,
accounting for both rewards and waiting costs.

- PoA TP (Price of Anarchy — TP). evaluates the efficiency loss in throughput compared
to the NE benchmark. Calculated as: PoAtp = (TP under rule)/(TP under NE).

- PoA NetRev (Price of Anarchy — Net Revenue). evaluates revenue efficiency loss

compared to NE. Calculated as: PoAxctrev = (NetRev under rule)/(NetRev under NE).

Together, these metrics enable a clear benchmarking of each acceptance rule’s efficiency.
5.3.2 Nash equilibrium benchmark

The first step in our simulation was to validate the Nash Equilibrium (NE) rule under all tested
configurations. This ensures a solid benchmark for comparing the efficiency of alternative
acceptance strategies. As shown, NE consistently delivers the first-best throughput and the second-

best net revenue across all partition types and bin designs.

Rule [P [A]i*[Partitions] Bins | TP [NetRev|AvgWait | AvgPayoff| PoATP [PoANR
NE 18 31,2, 3] [0, 360)] 799 123.67 43.2 15.47 1 1
NE 2 8 31,2],[3]] [0, 150), (360, 360)] 7.83 113 47.92 14.37 1 1
NE 2 8 3], [2,3]] [(0,0), (180, 360)] 798 15347 31.99 19.21 1 1
NE 3.8 3 [[1], [2], 3] [(0,0), (150, 150), (360, 360)] 7.83 111.49 47.83 14.17 1 1

These results are consistent with the theoretical findings: NE maximizes completed trips while
maintaining fairness and individual rationality. The net revenue achieved is optimal under positive
waiting costs—specifically, the second-best outcome when ¢ > 0, as drivers incur opportunity costs
while queuing. The effective NE behavior is expected to yield throughput (TP) values as close as
possible to 8, which represents the total rider arrival rate. For net revenue comparisons, we can
take the average of NE net revenues across partitions (& 125.4) as a reference point when
evaluating whether other acceptance rules appear to outperform NE due to stochastic fluctuations .
The small discrepancies observed (e.g., TP slightly below 8) are attributed to simulation noise,

not deviations from equilibrium behavior. Confirming the NE benchmark is essential for evaluating

o8

the Price of Anarchy, as it represents the upper bound of performance under rational decision-

making.

5.3.3 Comparative performance by acceptance rule

This section presents a comparative analysis of the four NE-based acceptance rules—ProbNE,
ProbBinNE, DrivPNE, and TimePNE(30). Using consistent simulation settings, we evaluate how
these rules perform across various bin and partition schemes. Results are assessed in terms of
throughput, net revenue, waiting times, and driver payoffs, with deviations from NE outcomes
quantified using Price of Anarchy metrics. This comparison highlights the operational and
economic trade-offs introduced by each rule and identifies which configurations most closely

approach NE efficiency.

ProbNE. Behaves identically to the rule introduced in the previous chapter, where drivers accept
trips with 80% probability if k. < k,, and 20% when k, > k,, where k, is the trip partition index

and k,, is the driver’s bin index.

Rule |P|)\|i*|Partitions| Bins | TP |NetRev AvgWait | AvgPayoff | PoATP [PoANR
ProbNE 18 3[1,2,3]] [(0,360) 6.4 58.69 61.74 9.23 0.8 0.47
ProbNE 2 8 31, 2], [3]] [(0,150), (360, 360)] 7.52 97.85 51.38 12.99 0.96 0.87
ProbNE 2 8 3 1], [2,3]] [(0,0), (180, 360)] 6.78 76.65 58.03 11.28 0.85 0.5
ProbNE 3 8 3 (1], [2], [3]] [(0,0), (150, 150), (360, 360)] 7.6 102.02 50.65 13.37 0.97 0.92

Throughput (TP) remains strong overall, peaking at 7.6-7.52. The PoA TP values confirm this,
ranging from 0.8 to 0.97. Net revenue declines compared to NE, with values between 58.69 and
102.02, reflecting losses due to mismatches and partially accepted trips. The corresponding
PoA NetRev ranges from 0.47 to 0.92, underscoring that while ProbNE maintains respectable
efficiency, it can incur steep opportunity costs under less favorable partitioning (e.g., [[1, 2, 3]]).
AvgWait stays elevated (above 50), indicating that the probabilistic rejection of even desirable
trips leads to longer queuing times. AvgPayoff is also reduced relative to NE, staying in the 9.23—
13.37 range.

Among all tested configurations, the [1, 2, 3] partition consistently performs worst across every
metric. This outcome stems from the absence of spatial structure: drivers in all bins face the same

wide distribution of destinations, leading to more frequent probabilistic rejections. Since ProbNE

99

does not prioritize specific trip types within such a flat partition, riders are frequently mismatched
or delayed, inflating wait times (61.74), lowering net revenue (58.69), and reducing match rates
(TP = 6.4). These inefficiencies are directly linked to the design of the partition, where the rule’s

probabilistic nature offers no corrective mechanism to counterbalance the lack of trip segmentation.

By contrast, the most efficient outcomes emerge under the most granular configuration—I[1], [2],
[3]]—which yields the highest TP (7.6), NetRev (102.02), and highest AvgPayoff (13.37) among
ProbNE setups. This structure aligns well with the rule’s probabilistic logic: because drivers are
assigned to specific bins and those bins are narrowly focused on particular destinations, the 80%
acceptance probability is mostly directed toward relevant, high-incentive matches. Mismatches
are minimized, and the system avoids the inefficient randomness seen in flatter partitions. In
essence, ProbNE benefits most from clear spatial separation, where each bin is tightly associated
with specific rider types. Without this structure—as in [1, 2, 3]—its stochastic nature becomes a

liability, amplifying queue delays and reducing economic efficiency.

ProbBinNE. This rule builds on the logic of ProbNE but assigns bin-specific acceptance
probabilities—90%, 75%, or 60% (bin 1 to 3 respectively) for trips where k, < k,, and 10%, 30%,
or 50% for trips where k. > k,. While it retains the stochastic foundation of ProbNE, this added

differentiation is intended to better align acceptance behavior with incentive gradients across bins.

Rule [P[A]i*[Partitions]| Bins | TP [NetRev | AvgWait | AvgPayoff| POATP [PoANR
ProbBinNE 1 8 3 [[1,2,3]] [(0, 360)] 721 85.01 54.14 11.8 0.9 0.69
ProbBinNE 2 8 3 [[1, 2], [3]] [(0, 150), (360, 360)] 7.58 102.14 50.79 13.43 0.97 0.9
ProbBinNE 2 8 3 [[1], [2, 3] [(0, 0), (180, 360)] 6.37 67.81 61.89 10.65 0.8 0.44
ProbBinNE 3 8 3 [[1], [2], [3] [(0, 0), (150, 150), (360, 360)] 7.2 91.23 54.31 12.63 0.92 0.82

Throughput (TP) remains robust, ranging from 6.37 to 7.58, mirroring the performance of ProbNE.
However, Net Revenue shows a slightly narrower and more stable range—from 67.81 to 102.14—
suggesting improved alignment between rider offers and driver preferences due to bin-specific
probabilities. Price of Anarchy metrics similarly reflect moderate efficiency loss, with PoA TP
between 0.80 and 0.97 and PoA NetRev from 0.44 to 0.90. While AvgWait remains elevated
across all scenarios, it is slightly more consistent than in ProbNE, indicating more predictable
queue dynamics. AvgPayoff also improves marginally in most partitions, pointing to better payoff

distribution among drivers.

60

Across the four tested partitions, the split [1, 2], [3] emerges as the clear optimum: grouping the
two most popular locations (1 2) into Bin 1 aligns the 90 % acceptance rate with the bulk of
demand, resulting in the highest throughput (TP = 7.58), net revenue (102.14), and average driver
payoff (13.43). This configuration also minimizes wasted offers to lower-value trips, keeping

average wait times relatively low (50.79) and preserving 97 % of the NE throughput benchmark.

By contrast, the partition [1], [2, 3] performs worst: Bin 2 must serve both trips to locations 2 and
3 under a 75 % acceptance rule, inflating mismatches. Here, throughput falls to 6.37 (PoA TP =
0.80), net revenue collapses to 67.81 (PoA NetRev = 0.44), and drivers endure the longest queues
(AvgWait = 61.89). The flat single-bin case [1, 2, 3] and the fully granular split [1], [2], [3] produce
intermediate outcomes—better than [1], [2, 3] but not as strong as [1, 2|, [3]—highlighting that
ProbBinNE’s stochastic acceptance benefits most from partitions that concentrate high-

probability matches on the largest demand clusters.

DrivPNE. This rule models bounded rationality through a deterministic patience structure.
Drivers in Bin 1 accept trips to Location 1 immediately, to Location 2 after 1 decline, and to
Location 3 after 2 declines. Drivers in Bin 2 accept Location 1 and 2 immediately and Location 3
after 1 decline, while drivers in Bin 3 accept Location 1, 2, and 3 immediately. Unlike the
probabilistic rules, DrivPNE enforces acceptance through accumulated patience depletion rather

than acceptance probability, reflecting time-sensitive decision-making.

Rule |PI)\|i*|Partitions| Bins | TP |NetRev|Angait|Angayoff PoATP |PoANR
DrivPNE 1 8 31([1,2,3]] [0, 360)] 4.45 25.92 89.33 5.96 0.56 0.21
DrivPNE 2 8 31, 2], 3] [(0,150), (360, 360)] 7.32 98.39 53.39 13.42 0.93 0.87
DrivPNE 2 8 31,2, 3]] [(0,0), (180, 360)] 7.31 99.69 53.34 13.58 0.92 0.65
DrivPNE 3 8 3 1], 2], [3]] [(0,0), (150, 150), (360, 360)] 7.87 114.23 47.3 14.44 1.01 1.02

DrivPNE displays a more behaviorally constrained performance profile than the probabilistic rules,
with Throughput (TP) ranging from 4.45 to 7.87 and Net Revenue between 25.92 and 114.23.
These wider spreads indicate that performance is highly sensitive to partition structure. The Price
of Anarchy metrics also reflect this volatility: PoA TP spans from a low 0.56 to near-parity at
1.01, while PoA NetRev ranges from just 0.21 to 1.02 (PoA measures > 1 are due to NE
measurements not being in perfect steady-state, e.g. TP # 8.0, because of simulation noise).

Compared to ProbNE and ProbBinNE, AvgWait is considerably more variable—reaching as high

61

as 89.33 when queue dynamics degrade—while AvgPayoff spans from 5.96 to 14.44. This confirms
that under certain conditions, the rule’s logic of incrementally relaxing driver constraints can either sharply

hinder or closely match NE-like performance.

The configuration with the fully separated partition [[1],[2],[3]] emerges as the most effective,
achieving a throughput (TP) of 7.87 and a net revenue of 114.23—slightly surpassing the NE
benchmark due to minor simulation noise. This marginal overshoot in Price of Anarchy metrics
(PoA TP = 1.01, PoA NetRev = 1.02) does not indicate a rule superiority over NE, but rather
that the rule successfully mimics rational equilibrium behavior under favorable structural
alignment. Drivers progressively align with less preferred but still viable offers, similarly to the
behavior observed under NE, avoiding long idle periods and wasted opportunities. The result is a
low average wait time (47.3) and the highest AvgPayoff (14.44) among all rules tested. In contrast,
the single-bin configuration [1,2,3] performs worst across every metric, yielding the lowest TP
(4.45), net revenue (25.92), and highest AvgWait (89.33). Here, all drivers face the same pool of
trips and utilize the full patience window before accepting most offers, producing systemic delays
and inefficient matching. Without structured trip differentiation, the mechanism fails to leverage

its behavioral strengths.

DrivPNE performs best when bins are aligned with destination types, where its deterministic
decline logic facilitates match efficiency. Its rule design not only maintains spatial rationality but

also achieves almost-peak system efficiency under the right partitioning.

TimePNE(30). Under this rule, drivers remain in the queue for up to 30 time units, after which
they exit the system if not matched. This introduces a realistic constraint, finite willingness to

wait, which captures urgency-driven behavior and naturally penalizes dispatching delays.

Rule [P[a]i*[Partitions]| Bins | TP [NetRev|AvgWait | AvgPayoff| PoOATP [PoANR
TimePNE(30) 1 8 3 [[1,2,3]] [(0, 360)] 7.89 220.77 5.29 27.67 0.99 1.79
TimePNE(30) 2 & 3 [[1, 2], [3]] [(0, 150), (360, 360)] 719144 9.99 25.18 0.89 1.69
TimePNE@30) 2 8 3 [[1],[2, 3] [(0, 0), (180, 360)] 3.02 6219 9.82 13.96 0.38 0.41
TimePNE(30) 3 8 3 [[1], [2], 3] [(0, 0), (150, 150), (360, 360)] 4 10026 7.82 17.51 0.51 0.9

The TimePNE bounded queuing behavior leads to strikingly different system dynamics, especially
in terms of Net Revenue. While Throughput (TP) varies from 3.02 to 7.89—Tless consistent than

under NE-based rules—the standout pattern is the extraordinary surge in Net Revenue, which

62

spans from 62.19 to 220.77. This is not the result of better matching, but rather of drivers leaving
the system before incurring significant wait costs, minimizing opportunity losses and boosting
platform profit. Price of Anarchy (PoA) values capture this shift: PoA NetRev peaks at 1.79, an
unusual outcome justified by reduced waiting rather than increased trip efficiency. AvgWait is
low across most setups (as low as 5.29), while AvgPayoff varies between 13.96 and 27.67—the

highest range among all acceptance rules.

Among all partition setups, the [1, 2, 3] configuration produces the most striking results across
every key metric. With drivers all eligible to serve the full trip set, the system maintains maximum
flexibility in matching while ensuring drivers do not wait longer than 30 units. This setup achieves
near-optimal throughput (TP = 7.89), minimal average waiting time (5.29), and the highest net
revenue observed in the entire simulation (220.77). The exceptional PoA NetRev of 1.79—greater
than the NE benchmark—is fully justified here: it’s not due to better matching but stems from
reduced waiting losses under hard time caps. Drivers who are not matched promptly exit the
system before incurring costly delays, allowing the platform to retain more trip value. This makes

TimePNE(30) under |1, 2, 3] uniquely suited for maximizing revenue in oversupplied environments.

In contrast, the [1], [2, 3] partition performs worst across nearly all dimensions. Here, Bin 2 must
absorb the bulk of demand and serve multiple destinations—yet with limited flexibility due to
spatial separation. With strict time limits, many drivers time out before being matched efficiently,
especially in Bin 2, which faces destination mismatches and sparse opportunities. This leads to
the lowest throughput (TP = 3.02) and net revenue (62.19) among all scenarios tested for
TimePNE(30). AvgWait rises (9.82), and while net revenue doesn’t collapse entirely, the system’s
inefficiency is clear: PoA TP falls to 0.38, and PoA NetRev drops to 0.41, indicating severe
underperformance relative to NE. In summary, TimePNE(30) thrives under unified partitions like
[1, 2, 3], where flexibility compensates for early driver exits. In fragmented partitions like [1], [2,
3], however, the strict time constraints amplify mismatches and block trip completion, drastically

reducing system efficiency.

63

5.4 Summary and implications

This chapter has examined a set of near-rational acceptance rules under a refined simulation model
grounded in the randomized FIFO dispatch mechanism. By holding driver supply fixed and
varying patience, we assessed results for different behavioral constraints—ranging from stochastic
acceptance to deterministic patience thresholds—under all possible bin and trip configurations.
Across all scenarios, Nash Equilibrium served as a performance ceiling, consistently achieving first-
best throughput and second-best net revenue. Simulation results show that queue segmentation
plays a pivotal role in driving efficiency, but the optimal partitioning depends on the specific logic
of each acceptance rule. ProbNE and DrivPNE share the same optimal partition—the fully
separated structure [[1], [2], [3]]—which best supports their respective probabilistic and patience-
based decision rules by aligning bins with distinct trip types. ProbBinNE, however, behaves less
predictably: when a majority of high-value trips fall into Bin 1, where acceptance probabilities are
highest, the system performs well—but this efficiency hinges on the distribution of demand
aligning with the bin hierarchy. In contrast, TimePNE(30) consistently performs best under
unified partitions like [1, 2, 3|, where full flexibility compensates for limited driver patience,
allowing the platform to retain more trip value under strict time constraints. Overall, efficiency
emerges not solely from the rule, but from the fit between acceptance behavior and partition

structure.

64

Chapter 6

Conclusions

In this dissertation, we developed and analyzed a family of near-rational acceptance rules for ride-
sharing queues under a Randomized FIFO dispatch mechanism, originally proposed by Castro et
al. (2021)["] that attain a significant fraction of the efficiency under the Nash equilibrium and yet
comply with realistic behavioral constraints. The mathematical basis was set in place in Chapter
2: we modeled the M/M/c queue of strategic agents, used Erlang—C formulae to derive steady-
state wait time distributions, and clarified the notions of Nash and subgame-perfect equilibrium
in the context of the dispatch mechanisms. Chapter 3 outlined three particular dispatch variants—
Strict FIFO, Direct FIFO, and Randomized FIFO-—and carefully detailed the equilibrium
operating aspects of each mechanism, summarizing the foundations presented in Castro et. al.
(2021)I1] as well as the queue partitioning or threshold parameterizing technique for use in
simulations. For the purposes of checking these findings in more realistic scenarios, Chapter 4
developed an event-driven simulation setting in which drivers follow bounded-rational acceptance
rules. We evaluated the behavior of the main indicators relative to each strategy over a significant
timescale across various ratios of supplies to demands parameters. Then, in Chapter 5, we set

standards for the whole family of bounded-rational variants against the optimal Nash equilibrium

65

rule, studying each variant to determine its optimal queue partitions or thresholds relative to

throughput and net revenue.

In every experimental setting, the Nash equilibrium represents the upper bound—attaining
throughputs near the first-best and revenues close to the second-best (with deviations due to
simulation noise). Alternative mechanisms introduce systematic variations reflecting bounded
rationality and impatience: ProbNE/ProbBinNE replace equilibrium calculations with simple
random choices, DrivPNE limits the number of rejections allowed to prevent endless cherry-
picking, and TimePNE imposes time limits to capture real-time impatience. Though each
alternative sacrifices a small amount of NE efficiency, TimePNE achieves greater net revenue than
Nash equilibrium by substantially curtailing waiting-cost losses incurred by passengers—at the
cost of higher abandonment rates, however. Underlying all of these results is the fact that
Randomized FIFO was proven optimal only when drivers follow exact NE strategies—because its
bin-and-partition structure perfectly aligns continuation values—yet real drivers often deviate
from full rationality, using heuristics, misestimating wait times, or exhibiting inconsistent patience.
To bridge that gap and preserve near-NE performance, the platform can anticipate boundedly
rational behavior by adjusting bin thresholds, collapsing or expanding partitions, or even providing
“nudges” in the driver interface to guide acceptance decisions. For instance, if many drivers accept
high-value trips probabilistically (as in ProbBinNE), merging lower-value bins ensures more offers
land in bins where acceptance is likely, preserving throughput and revenue. Consequently, the
efficacy of these mechanisms is reinforced through strategic partitioning: under tight time
constraints, a single undifferentiated pool (e.g., [1, 2, 3]) maximizes flexibility and revenue, but
when drivers depart from ideal rationality, carefully segmented, destination-oriented categories
(e.g., [1], [2, 3]) nudge them toward underserved trips, dampen supply-demand imbalances, and
almost restore all of the Nash equilibrium’s throughput while reducing volatility. Ultimately,
thoughtful partition design is crucial for maximizing efficiency when drivers deviate from perfect

rationality under a Randomized FIFO dispatch system.

66

Bibliography

1]
2]

3]

4]

[5]

(6]

7]

8]
19]

Castro, Francisco, et al. “‘Randomized FIFO Mechanisms.” arXiv.Org, 21 Nov. 2021.

Erlang, A. The theory of probabilities and telephone conversations. Nyt Tidsskrift for
Matematik B 20 (1909), 33—-39.

Adan, Ivo, and Jacques Resing. Queueing Systems, Department of Mathematics and
Computing Science Eindhoven University of Technology, 26 Mar. 2015.

Green, Linda. Queueing Theory and Modeling, Graduate School of Business, Columbia
University, New York.

Fiveable. 8.3 M/M/1 and M/M/c queues — Stochastic Processes. Edited by Becky Bahr,
Fiveable, 2024.

Sztrik, Janos, et al. Basic Queueing Theory, University of Debrecen, Faculty of Informatics,
Dec. 2012.

Zukerman, Moshe. “Introduction to Queueing Theory and Stochastic Teletraffic Models.” EE
Department City University of Hong Kong.

Rubino, G. “Basics on Queues.” INRIA / IRISA, Rennes, France, Feb. 2006.

Holler, Manfred J. Classical, Modern and New Game Theory, 4 Aug. 2001.

[10] Hotz, Heiko. A Short Introduction to Game Theory, LMU Munich, 2006.

[11] Gurrien, Bernard. “On the Current State of Game Theory.” Real-World Economics Review,

[Université Paris 1, France|, 2018.

[12] Cave, Jonathan. Introduction to Game Theory, The Rand Graduate School, Apr. 1987.

67

[13]
[14]

[15]

[16]

[17]

[18]

Karlin, Anna R., and Yuval Peres. Game Theory, Alive, 13 Dec. 2016.

Osborne, Martin J., and Ariel Rubinstein. A Course in Game Theory, Massachusetts Institute
of Technology, 1994.

Bonanno, Giacomo. Game Theory, Third Edition, 2024.

Angelopoulos, Konstantinos, et al. First-and Second-Best Allocations Under Economic and
Environmental Uncertainty, University of Glasgow, Athens University of Economics and
Business, CESifo, Munich., 29 Oct. 2010.

Sethi, Rajiv, and Jorgen Weibull. “What Is Nash Equilibrium?” Edited by Cesar E. Silva,
The Graduate Student Section.

Osborne, Martin J. An Introduction to Game Theory, Department of Economics, University

of Toronto Toronto, Canada , 6 Nov. 2000.

68

Appendix A

Simulation Codes and Metrics

In this appendix, we present the full Python code for both simulation frameworks and the key
performance metrics used to evaluate their outputs. First, we introduce each metric’s
mathematical definition and interpretation, and then the complete simulation scripts that generate

these metrics under the different acceptance strategies.

Performance metrics

TP #{matched riders} Riders served per unit time.
T
#{accepted offers in bin k} Acceptance rate within the &
Bink_p 1 1
#{offers sent in bin k} bin.
#{served riders} Overall probability an offer
P_match #{offers sent (all bins)}

leads to a match.
Fraction of total driver-time

1 & ,
DrivUtil = E busy_time,
NT 4=~)
= spent on trips.

69

#{accepted offers} Share of offers that drivers
ServProb #{offers sent}

accept.
1 — ServProb Share of offers explicitly
CRate
declined.
#{expired offers} Share of offers that time out
ExRate #{offers sent}

(no response).

1 [T Time-average queue length
AvgQLen T/ Q(t)dt
0 (riders waiting).

NetR Zserved W est ¢ (AvgQLen) Fare revenue rate minus
etRev —c,
T waiting-cost rate.
1 Y Mean net payoff per driver
avepnpey w3 Y e e
d=1 \'matches, (earnings minus waiting cost).
1 i (7)? Population variance of driver
- Tg — T
VarDrvPay N= payoffs (inequality measure).

_ 1
where 7Td:§ Wyest — CTy, T = NE T,

Below is the Python code for the first simulation, which tests the behavior of the various
acceptance rules (AlwaysAccept, StrictCut, NE, ProbNE, ProbBinNE, DrivPNE, and TimePNE)

and records the associated performance metrics.

1 import heapq

2 import math

3 import numpy as np

1 import pandas as pd

5 import matplotlib.pyplot as plt

6 from IPython.display import display

7 from IPython.display import FileLink

10

11 def generate_partitions(mu, lam, P):

12 _mu = np.cumsum(mu)
13 i_star = np.searchsorted(cum_mu, lam, side='left') + 1
14 star = min(i_star, len(mu))

15 1 = min(r, P)
16 base, extra = divmod(i_star, m)
17

18 parts, start = [], 1

19 for _ in range(m):

0 size = base + (1 if extra>0 else 0)

21 extra —= 1
22 parts.append(list(range(start, start+size)))

start += size

70

if len(parts) == 2:
flat = parts[@] + parts[1]
parts = [
flatl:-1],
[flat[-1]]
]
return parts, i_star
—— 2) Bin-boundary computation
def compute_bin_bounds(mu, w, c, partitions):
mu = np.array(mu, float)
w = np.array(w, float)
bins = []
for k, part in enumerate(partitions):
w_min = min(w[i-1] for i in part)
1o = sum((w[i-1]-w_min)s*mu[i-1]
for j in range(k) for i in partitions[j]) / ¢
hi = sum((w[i-1]-w_min)x*mu[i-1]
for j in range(k+1) for i in partitions[jl) / c
lo = int(np.floor(lo))
hi = int(np.ceil (hi))
bins.append((lo, hi))
return bins
—— 3) Acceptance-rule classes
class AcceptanceRule:

def accept(self, driver, rider, bin_idx, pos, now=None):

raise NotImplementedError

class AlwaysAccept(AcceptanceRule):

def accept(self, driver, rider, bin_idx, pos, now=None):

return True

class StrictCut(AcceptanceRule):
def __init_ (self, C): self.C = C

def accept(self, driver, rider, bin_idx, pos, now=None):

return pos <= self.C

class NE(AcceptanceRule):

def accept(self, driver, rider, bin_idx, pos, now=None):
for p_idx, part in enumerate(driver.partitions):

if (rider.dest + 1) in part:
break
else:
return False

return p_idx <= bin_idx

class ProbNE(AcceptanceRule):

def accept(self, driver, rider, bin_idx, pos, now=None):
for p_idx, part in enumerate(driver.partitions):

if (rider.dest + 1) in part:
break
else:
return False

p_accept = 0.8 if p_idx <= bin_idx else 0.2
return np.random.rand() < p_accept

class ProbBinNE(AcceptanceRule):

def accept(self, driver, rider, bin_idx, pos, now=None):
for p_idx, part in enumerate(driver.partitions):

if (rider.dest + 1) in part:
break
else:
return False
high_probs = [0.9, 0.75, 0.6]
low_probs = [0.1, 0.30, 0.5]

p_accept = high_probs[bin_idx] if p_idx <= bin_idx else low_probs[bin_idx]

return np.random.rand() < p_accept

class DrivPNE(AcceptanceRule):
def __init_ (self):
self.patience = {

71

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

0: {0:0, 1:1, 2:2},
1: {1:0, 2:1},
2: {2:0}
}
def accept(self, driver, rider, bin_idx, pos, now=None):
loc = rider.dest
max_declines = self.patience.get(bin_idx, {}).get(loc,0)
if driver.declines < max_declines:

driver.declines += 1
return False
return True
class TimePNE(AcceptanceRule):
def __init_ (self, T=30):
self.T=T
def accept(self, driver, rider, bin_idx, pos, now=None):
if now is not None and (now - driver.join_time) > self.T:
return None
for p_idx, part in enumerate(driver.partitions):
if (rider.dest + 1) in part:
return p_idx <= bin_idx
return False
—— 4) Event-driven randomized-FIFO simulator

class Driver:

def __init_ (self, join_time, w, bins, partitions):
self.join_time = join_time
self.earnings = 0.0
self.wait_cost = 0.0
self.declines = 0
self.bins = bins
self.partitions = partitions
self.w =w

def serve(self, dest, now, w, c):
wait = now - self.join_time

self.wait_cost += c * wait
self.earnings += wldest]
class Rider:
def __init__(self, dest, P):
self.dest = dest
self.patience = P
self.declines = @

class Event:
def __init_ (self, t, kind):
self.t, self.kind = t, kind
def __1t__(self, other):
return self.t < other.t

def simulate_random_fifo(mu, w, ¢, cp, lam, P,
partitions, bin_bounds,
rule: AcceptanceRule,
T_max=50000) :

now = 0.0
prev = 0.0
queue, drivers = [], []
m = len(partitions)
total_reqs = np.zeros(m, int)
served_by_bin = np.zeros((m, m), int)
offers_by_bin = np.zeros(m, int)
dest_to_part = { d1-1: p_idx
for p_idx, part in enumerate(partitions)
for d1 in part }
ev = []

heapq.heappush(ev, Event(np.random.exponential(1/lam), ‘driver_arr'))
heapq.heappush(ev, Event(np.random.exponential(1l/sum(mu)), 'rider_arr"'))

warmup_horizon = 5.0

while ev and now < warmup_horizon:
e = heapq.heappop(ev)
now = e.t
if isinstance(rule, TimePNE):

72

180 queue = [d for d in queue if now - d.join_time <= rule.T]

181

182 if e.kind == 'driver_arr'

183 d = Driver(join_time=now, w=w, bins=bin_bounds, partitions=partitions)
184 drivers.append(d)

185 queue.append(d)

186 heapq.heappush(ev, Event(now + np.random.exponential(1l/lam), 'driver_arr'))
187 else:

188 dest = np.random.choice(len(mu), p=np.array(mu)/sum(mu))
189 rider = Rider(dest, P)

190 heapq.heappush(ev, Event(now + np.random.exponential(1l/sum(mu)), 'rider_arr'))
191 for k,(lo,hi) in enumerate(bin_bounds):

192 if rider.declines >= P:

193 break

194 if not queue:

195 continue

196 idxs = [i for i in range(len(queue)) if lo <= i <= hi]
197 if not idxs:

198 continue

199 pick = np.random.choice(idxs)

200 d = queue[pick]

201 if rule.accept(d, rider, k, pick, now):

202 d.serve(dest, now, w, c)

203 queue.pop(pick)

204 break

205 ellse:

206 rider.declines += 1

207

208 len_prewarm = len(drivers)

209 now = prev = warmup_horizon

210 stats = {'served':0, 'riders':0, 'cancelled':0, 'offers':0, 'patience_exhausted': 0}
211 total_earn = 0.0

212 queue_time = 0.0

213 driver_arrivals = 0

214

215 while ev and now < T_max:

216 e = heapq.heappop(ev)

217 now = e.t

218 dt = now - prev

219 queue_time += len(queue)*dt

220 prev = now

221 if isinstance(rule, TimePNE):

222 queue = [d for d in queue if now - d.join_time <= rule.T]
223

224 if e.kind == 'driver_arr'

225 d = Driver(now, w, bin_bounds, partitions)

226 drivers.append(d)

227 queue.append(d)

228 driver_arrivals += 1

229 heapq.heappush(ev, Event(now + np.random.exponential(1/lam), 'driver_arr'))
230

231 else:

232 stats['riders'] += 1

233 dest = np.random.choice(len(mu), p=np.array(mu)/sum(mu))
234 rider = Rider(dest, P)

235 dest_part = dest_to_part.get(dest, None)

236 if dest_part is None:

237 stats['cancelled'] += 1

238 heapq.heappush(ev, Event(now + np.random.exponential(1/sum(mu)), 'rider_arr'))
239 continue

240 total_reqgs[dest_part] += 1

241 heapq.heappush(ev, Event(now + np.random.exponential(1l/sum(mu)), 'rider_arr'))
242

243 for k,(lo,hi) in enumerate(bin_bounds):

244 if not queue:

245 break

246 idxs = [i for i in range(len(queue)) if lo <= i <= hi]
247 if not idxs:

248 continue

249 offers_by_bin[k] += 1

250 stats['offers'] += 1

251 pick = np.random.choice(idxs)

252 d = queue[pick]

253 decision = rule.accept(d, rider, k, pick, now)

254 if decision is None:

255 queue.pop(pick)

256 continue

73

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
328
324
325
326
327

329
330
331
8372
838
334

elif decision:
stats['served'] += 1
d.serve(dest, now, w, c)

total_earn += wldest]

queue.pop(pick)

if dest_part is not None:
served_by_bin[dest_part, k] += 1

break
else:
rider.declines += 1
if rider.declines >= P:

stats['patience_exhausted'] += 1

break

T = T_max
served = stats['served']
if stats['offers'] > 0:
sp = served / stats['offers']
else:
sp = np.nan
sp = float(np.clip(sp, 0.0, 1.0))
cr = float(np.clip(1l - sp, 0.0, 1.0))
drivers_meas = drivers[len_prewarm:]

util_count = sum(1 for d in drivers_meas if d.earnings > 0)
driver_util = util_count / driver_arrivals
patience_rate = stats['patience_exhausted'] / stats['riders']

payoffs = np.array([d.earnings - d.wait_

return {
'throughput': served / T,
'service_prob': sp,
'cancel_rate': cr,

cost for d in drivers_meas])

‘driver_utilization': driver_util,
'patience_exhaustion_rate': patience_rate,

‘avg_driver_payoff': payoffs.mean()
'var_driver_payoff': payoffs.var()
‘avg_queue_len': queue_time / T,

if payoffs.size else np.nan,
if payoffs.size else np.nan,

'net_revenue': (total_earn / T) - cp * (queue_time / T),

'total_reqs': total_reqs,

'served_by_bin': served_by_bin,

‘offers_by_bin': offers_by_bin
}

— 5) All rules test

np.random.seed(0)

mu
w

C, Cp

P
lam_values

[1,6,3]

758255151

1/3, 1/3

2
[1,2,5,8,10,12,15]

rules = {
'1_AlwaysAccept': AlwaysAccept(),
'2_StrictCut(50)': StrictCut(50),
'3_NE': NE(),
'4_ProbNE"': ProbNE(),
'5_ProbBinNE"': ProbBinNE(),
'6_DrivPNE': DrivPNE(),
'7_TimePNE(30)': TimePNE(T=30),

records = []
accept_records = []
for name, rule in rules.items():
for lam in lam_values:
parts, i_star
bin_bounds

offers = out['offers_by_bin']
served = out['served_by_bin']
01 = offers[0]
Al = served[:,0].sum()
ps = []
for k in range(len(offers)):
Ok = offers[k]
Ak = served[:, k].sum()

generate_partitions(mu, lam, P)
compute_bin_bounds(mu, w, c, parts)
out = simulate_random_fifo(mu, w, c, cp, lam, P, parts,

74

bin_bounds, rule, T_max=10000)

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
851}
352
353
354
855

357
358
359
360
361
362

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
B8//9]
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

396
397

399
400
401
402
403
404
405
406
407
408
409
410
411

pk = Ak / Ok if Ok > @ else np.nan
ps.append(pk)

P_match = 0.0

prod_fail = 1.0

for pk in ps:

P_match += prod_fail x (pk if not math.isnan(pk) else 0.0)

prod_fail x= 1 - (pk if not math.isnan(pk) else 0.0)
bin_info = [(lo, hi) for lo, hi in bin_bounds]
records.append({

'Rule': name,

g P,

At lam,

Yik': i_star,

'Partitions': parts,

'Bins': bin_info,

'TP': round(out['throughput'],1),

'Binl_p': round(ps[o],2),

'Bin2_p': round(ps[1],2) if len(ps)>1 else float('nan'),

'P_match': round(P_match,2),

'‘DrivUtil': round(out['driver_utilization'],2),

'ServProb': round(out['service_prob'l,2),

'CRate': round(out['cancel_rate'l,2),

'ExRate': round(out ['patience_exhaustion_rate'],2),

'AvgQLen': round(out['avg_queue_len'],2),

'NetRev': round(out['net_revenue'l,2),

'AvgDrvPay': round(out['avg_driver_payoff'l,2),

'VarDrvPay': round(out['var_driver_payoff'],2),
1)
total_reqs = out['total_reqs']

for p_idx in range(len(parts)):
total_accepted = served[p_idx].sum()
for b_idx in range(len(parts)):

pct = (served[p_idx, b_idx] / total_accepted *x 100) \

if total_accepted>0 else 0.0
accept_records.append({
'Rule': name,
Al lam,
'Partition': f"L{p_idx+1}",
'Bin': f"Bin{b_idx+1}",
'AcceptPct': round(pct,1)
1)

accept_df = pd.DataFrame(accept_records)
wide = (
accept_df

.pivot(index=['Rule','A'], columns=['Partition','Bin'], values='AcceptPct')

.fillna(0)
)

wide = wide.sort_index(axis=1, level=[0,1])

wide.columns = [f"{part}_{bin}" for part,bin in wide.columns]

wide = wide.reset_index()
display(wide)

df = pd.DataFrame(records)
display(df)

— 6) Visual Comparison

metrics = ['TP', 'ServProb', 'CRate', 'DrivUtil’,
'P_match']
n_metrics = len(metrics)

ncols =5

nrows = math.ceil(n_metrics / ncols)

Combined grid

fig, axes = plt.subplots(2, 5, figsize=(25, 11))
axes = axes.flatten()

TITLE_FS = 16

LABEL_FS = 16

TICK_FS = 14

LEG_FS = 10

SUPTITLE_FS = 22

for ax, metric in zip(axes, metrics):

'AvgDrvPay',

75

'VarDrvPay',

'NetRev',

'ExRate’,

'AvgQLen’,

412 pivot = df.pivot(index='A', columns='Rule', values=metric)

413 pivot.plot(ax=ax, marker='o', legend=False)

414 ax.set_xlabel('Driver supply A', fontsize=LABEL_FS)
415 ax.set_ylabel(metric, fontsize=LABEL_FS)
416 ax.tick_params(axis='both', labelsize=TICK_FS)

417

418 handles, labels = axes[@].get_legend_handles_labels()
419 fig.legend(

420 handles,

421 labels,

422 loc="upper center",

423 ncol=7,

424 frameon=False,

425 fontsize=16,

426 bbox_to_anchor=(0.5, 0.935),
427 bbox_transform=fig.transFigure
428)

429

430 for ax in axes[len(metrics):]:
431 ax.set_visible(False)

432

433 fig.suptitle("Comparison of All Acceptance Rules", fontsize=SUPTITLE_FS)
434 plt.tight_layout(rect=[0, 0.03, 1, 0.92])

435 plt.show()

436

437 # Separate graphs per acceptance rule

438 for rule in df['Rule']l.unique():

439 sub = df[df['Rule'] == rule]

440 fig, axes = plt.subplots(nrows, ncols, figsize=(20, 4xnrows))
441 axes = axes.flatten()

442 for ax, metric in zip(axes, metrics):

443 ax.plot(sub['A'], sub[metric], marker='o', linestyle='-")
444 ax.set_xlabel('Driver supply (A)')

445 ax.set_ylabel(metric)

446 ax.grid(True)

447 for ax in axes[len(metrics):]:

448 ax.set_visible(False)

449 fig.suptitle(f"Performance of {rule}")

450 fig.tight_layout(rect=[0, 0.03, 1, 0.96])

451 filename = f'performance_{rule.replace(" ","_")}.png'

452 fig.savefig(filename, dpi=300, bbox_inches='tight"')

453 display(FileLink(filename))

454 plt.show()

The following section presents the Python code for the second simulation, which benchmarks these

behavioral strategies under different partitioning and queue-bounding settings.

1 import math

2 import heapq

3 import random

4 import numpy as np

5 import pandas as pd

6 import matplotlib.pyplot as plt

7 from IPython.display import display
8 from IPython.display import FilelLink

9

10 # — 1) Partition helper (returns partitions, i_star)
11 def generate_partitions(mu, lam, P):

12 cum_mu = np.cumsum(mu)

13 i_star = np.searchsorted(cum_mu, lam, side='left') + 1
14 i_star = min(i_star, len(mu))

15 m = min(i_star, P)

16 base, extra = divmod(i_star, m)

17

18 parts, start = [], 1

19 for _ in range(m):

20 size = base + (1 if extra>0 else 0)

21 extra -= 1

22 parts.append(list(range(start, start+size)))
23 start += size

24

25 if len(parts) == 2:

26 flat = parts[0] + parts[1]

27 parts = [

28 flat[:-1],

76

29 [flat[-1]]
]

30

31

32 return parts, i_star

33

34 # — 2) Bin-boundary computation

35 def compute_bin_bounds(mu, w, c, partitions):

36 mu = np.array(mu, float)

37 w = np.array(w, float)

38 bins = []

39 for k, part in enumerate(partitions):

40 w_min = min(w[i-1] for i in part)

41 1o = sum((w[i-1]-w_min)*mu[i-1]

42 for j in range(k) for i in partitions[jl) / c
43 hi = sum((w[i-1]-w_min)*mu[i-1]

44 for j in range(k+1) for i in partitions[jl) / ¢
45 lo = int(np.floor(lo))

46 hi = int(np.ceil (hi))

47 bins.append((lo, hi))

48 return bins

49

50 # — 3) Acceptance-rule classes

51 class AcceptanceRule:

52 def accept(self, driver, rider, bin_idx, pos, now=None):
53 raise NotImplementedError

54

55 class NE(AcceptanceRule):

56 def accept(self, driver, rider, bin_idx, pos, now=None):
57 for p_idx, part in enumerate(driver.partitions):

58 if (rider.dest + 1) in part:

59 break

60 else:

61 return False

62

63 return p_idx <= bin_idx

64

65 class ProbNE(AcceptanceRule):

66 def accept(self, driver, rider, bin_idx, pos, now=None):
67 for p_idx, part in enumerate(driver.partitions):

68 if (rider.dest + 1) in part:

69 break

70 else:

71 return False

72

73 p_accept = 0.8 if p_idx <= bin_idx else 0.2

74 return np.random.rand() < p_accept

75

76 class ProbBinNE(AcceptanceRule):

77 def accept(self, driver, rider, bin_idx, pos, now=None):
78 for p_idx, part in enumerate(driver.partitions):

79 if (rider.dest + 1) in part:

80 break

81 else:

82 return False

83 high_probs = [0.9, 0.75, 0.6]

84 low_probs = [0.1, 0.30, 0.5]

85 p_accept = high_probs[bin_idx] if p_idx <= bin_idx else low_probs[bin_idx]
86 return np.random.rand() < p_accept

87

88 class DrivPNE(AcceptanceRule):

89 def __init__(self):

90 self.patience = {

91 0: {0:0, 1:1, 2:2},

92 18 {{ilg0, 2805,

93 2: {2:0}

94

95 def accept(self, driver, rider, bin_idx, pos, now=None):
96 loc = rider.dest

97 max_declines = self.patience.get(bin_idx, {}).get(loc,0)
98 if driver.declines < max_declines:

99 driver.declines += 1

100 return False

101 return True

102

103 class TimePNE(AcceptanceRule):

104 def __init__(self, T=30):

105 self.T=T

106

107 def accept(self, driver, rider, bin_idx, pos, now=None):
108 if now is not None and (now - driver.join_time) > self.T:
109 return None

110 for p_idx, part in enumerate(driver.partitions):

111 if (rider.dest + 1) in part:

112 return p_idx <= bin_idx

113 return False

7

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
158
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

—— 4) Event-driven randomized-FIF0 simulator

class Driver:

def __init_ (self, join_time, w, bins, partitions):
self.join_time = join_time
self.earnings 0.0
self.wait_cost = 0.0
self.total_wait = 0.0
self.declines = 0

o

self.bins = bins
self.partitions = partitions
self.w =w

def serve(self, dest, now, w, c):
wait = now - self.join_time
self.total_wait += wait
self.wait_cost += ¢ * wait
self.earnings += wldest]

@property

def payoff(self):
return self.earnings - self.wait_cost

class Rider:

def __init__ (self, dest, P):
self.dest est
self.patience
self.declines

nonn
® v

class Event:

def

def __init__(self, t, kind):
self.t, self.kind = t, kind
def __1t__(self, other):
return self.t < other.t

simulate_random_fifo(mu, w, ¢, cp, lam, P, partitions, bin_bounds, rule: AcceptanceRule, 1, i_star, T_max=50000):

random. seed(1)
now = 0.0
prev = 0.0
queue, drivers = [1, []
m = len(partitions)
total_reqs = np.zeros(m, int)
served_by_bin = np.zeros((m, m), int)
offers_by_bin = np.zeros(m, int)
dest_to_part = { d1-1: p_idx
for p_idx, part in enumerate(partitions)
for d1 in part }

heapq.heappush(ev, Event(np.random.exponential(1/lam), ‘driver_arr'))
heapq.heappush(ev, Event(np.random.exponential(1l/sum(mu)), 'rider_arr"'))
warmup_horizon = @
while ev and now < warmup_horizon:

e = heapq.heappop(ev)

now = e.t

if e.kind == 'driver_arr':
d = Driver(join_time=now, w=w, bins=bin_bounds, partitions=partitions)
if random.random()<min(1):
drivers.append(d)
queue.append(d)
heapg.heappush(ev, Event(now + np.random.exponential(1l/lam), ‘'driver_arr'))
else:
dest = np.random.choice(len(mu), p=np.array(mu)/sum(mu))
rider = Rider(dest, P)
heapq.heappush(ev, Event(now + np.random.exponential(1/sum(mu)), 'rider_arr'))
for k,(lo,hi) in enumerate(bin_bounds):
if rider.declines >= P:
break
if not queue:
continue
idxs = [i for i in range(len(queue)) if lo <= i <= hi]
if not idxs:

continue
pick = np.random.choice(idxs)
d = queue[pick]

if rule.accept(d, rider, k, pick):
d.serve(dest, now, w, c)
queue.pop(pick)
break

ellse:
rider.declines += 1

len_prewarm = len(drivers)

78

199 now = prev = warmup_horizon

200 stats = {'served':0, 'riders':0, 'cancelled':0, 'offers':0}

201 total_earn = 0.0

202 queue_time = 0.0

203 driver_arrivals = @

204

205 for n in range(360):

206 d = Driver(now, w, bin_bounds, partitions)

207 queue.append(d)

208

209 while ev and now < T_max:

210 e = heapq.heappop(ev)

211 now = e.t

212

213 if isinstance(rule, TimePNE):

214 queue = [d for d in queue if now - d.join_time <= rule.T]
215

216 dt = now - prev

217 queue_time += len(queue)xdt

218 prev = now

219

220 if e.kind == 'driver_arr' and len(queue)>400:

221 heapq.heappush(ev, Event(now + np.random.exponential(1l/lam), 'driver_arr'))
222 elif e.kind == 'driver_arr' and len(queue)<=400:

223 d = Driver(now, w, bin_bounds, partitions)

224 if random.random()<1:

225 drivers.append(d)

226 queue.append(d)

227 driver_arrivals += 1

228 heapq.heappush(ev, Event(now + np.random.exponential(1l/lam), 'driver_arr'))
229

230 ellset

231 stats['riders'] += 1

232 dest = np.random.choice(len(mu), p=np.array(mu)/sum(mu))
233 rider = Rider(dest, P)

234 heapq.heappush(ev, Event(now + np.random.exponential(1l/sum(mu)), 'rider_arr'))
235

236 for k,(lo,hi) in enumerate(bin_bounds):

237 if not queue:

238 break

239 idxs = [i for i in range(len(queue)) if lo <= i <= hi]
240 if not idxs:

241 continue

242 offers_by_bin[k] += 1

243 stats['offers'] += 1

244 pick = np.random.choice(idxs)

245 d = queue[pick]

246

247 decision = rule.accept(d, rider, k, pick, now)

248 if decision is None:

249 queue.pop(pick)

250 continue

251 elif decision:

252 sum_mu_before = sum(mu[:i_star-1])

253 mu_i_star = mu[i_star-1]

254 numerator = min(lam — sum_mu_before, mu_i_star)
255

256 if (dest==i_star-1) and random.random()>numerator/mu_i_star:
257 mu_i_star

258 else:

259 stats['served'] += 1

260 d.serve(dest, now, w, c)

261 total_earn += wldest]

262 queue. pop(pick)

263 break

264 else:

265 rider.declines += 1

266 if rider.declines >= P:

267 break

268

269 T = T_max

270 served = stats['served']

271

272 drivers_meas = drivers[len_prewarm:]

273 payoffs = np.array([d.earnings - d.wait_cost for d in drivers_meas])
274

275 served_drivers = [d for d in drivers_meas if d.earnings > 0]

276

277 if served_drivers:

278 avg_wait = np.mean([d.total_wait for d in served_drivers])
279 avg_payoff = payoffs.mean() if payoffs.size else np.nan

280 else:

281 avg_wait = avg_payoff = np.nan

282

283 throughput = served / T

79

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

net_rev = (total_earn/T) - cp * (queue_time/T)

return throughput, net_rev, avg_wait, avg_payoff

— 5) All rules test
np.random.seed(@)

mu, w, ¢, cp = [1,6,3]1, [75,25,15], 1/3, 1/3

lam = 8

rules = {
'NE': NE(),
'ProbNE": ProbNE(),
'ProbBinNE": ProbBinNE(),
'TimePNE(30)': TimePNE(T=30),
'DrivPNE": DrivPNE(),

}

scenarios = []

partsl, il = generate_partitions(mu, lam, 1)
scenarios.append((1, partsl, il))

parts2a, i2a = generate_partitions(mu, lam, 2)
parts2b = [[1],[2,3]]

i2b = i2a

scenarios.append((2, parts2a, i2a))
scenarios.append((2, parts2b, i2b))

parts3, i3 = generate_partitions(mu, lam, 3)
scenarios.append((3, parts3, i3))

rows = []
for P, parts, i_star in scenarios:
bins = compute_bin_bounds(mu, w, c, parts)

results = {}

for name, rule in rules.items():
tp, nr, aw, ap = simulate_random_fifo(mu, w, ¢, cp, lam, P, parts, bins, rule, 5, i_star, T_max=10000)
results[namel = (tp, nr, aw, ap)

tp_NE, nr_NE, _, _ = results['NE']

for name, (tp, nr, aw, ap) in results.items():

rows.append ({
'Rule': name,
'P': P,
A lam,
ix': i_star,
'Partitions': parts,
'Bins': bins,
'TP': round(tp,2),
'NetRev': round(nr,2),

'AvgWait': round(aw,2),
'AvgPayoff': round(ap,2),

'POATP': round(tp/tp_NE, 2),
'POANR" : round(nr/nr_NE, 2),
1)

df = pd.DataFrame(rows)
display(df)
rule_order = ['NE', 'ProbNE', 'ProbBinNE', 'DrivPNE', 'TimePNE(30) ']
df['Rule'] = pd.Categorical(df['Rule'], categories=rule_order, ordered=True)
df_by_rule = df.sort_values(['Rule','P']).reset_index(drop=True)

display(df_by_rule)

80

