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INTRODUCTION TO THE TOPIC 
In our world, both animals and humans, when they can be considered different species, have always 

been fighting among members of their own species. And in most of the cases rivals are not willing 

nor ready to fight until death. As humans have conflicting opinions and most of the contrasts can be 

solved verbally, at the same manner animals have conflicting desires and needs, but usually duels do 

not escalate except in the prey-predator scenario. However, if we expect humans to be “reasonable”, 

we can’t say the same thing for animals. As documentaries show, in the animal kingdom it is often 



the case of “mors tua, vita mea”1 (literally “Your death, my life”, where the death of the opponent is 

necessary for the one to survive), thus we would expect animals to behave in a lethal manner more 

than not. If so, one question would remain unanswered: “Why can we observe limited war in animal 

fights?”. Why do animals in some cases give up on their food or on their reproductive possibility 

without having dueled until death? 

This seemed to be one of the most debated questions by biologists of the twentieth century. By then, 

the most religious hypothesis upon the theological fixism2 were being overcome by new discoveries 

of science brought by brave men as Darwin and “his Bulldog”3 Huxley (to name a few). First Darwin 

in 1859 with “On The Origin of Species” and then Huxley half a century after in “Evolution & ethics 

and other essays” modelled the theory according to which species are not fixed entities, but rather 

dynamic populations constantly changing through variation, selection, and adaptation to their 

environment. The following passage from Huxley’s work represents one of the most elegant answers 

to our question, ruling out for the unlimited struggle for existence in human society:  

“The first men who substituted the state of mutual peace for that of mutual war, whatever the 

motive which impelled them to take that step, created society. But, in establishing peace, they 

obviously put a limit upon the struggle for existence. Between the members of that society, at 

any rate, it was not to be pursued à outrance. And of all the successive shapes which society 

has taken, that most nearly approaches perfection in which the war of individual against 

individual is most strictly limited.”4 

Despite Huxley was referring to the formation of human society, an analogous concept of limited war 

can be extended to the animal kingdom.  As Darwin wrote in “The Descent of Man” or “On the 

Origin of Species by means of Natural Selection”, natural selection often favors traits which limit the 

use of excessive violence within the species, since its ultimately long-term survival depends on the 

health and number of its very own individuals. Darwin and Huxley together have been one of the first 

pioneers to understand the work of nature: who has as ultimate scope the survival of the species and 

eliminates all the threats and weaknesses through a dynamic process known as natural selection that 

operates among time and generations. 

 
1 “Mors tua, vita mea” is a Latin proverb meaning “your death, my life,” commonly cited in medieval collections of 
sayings (Proverbia Communia) and used to express the idea that one’s survival often depends on the downfall of 
another. 
2 biological theory according to which plant and animal species are designed to always remain the same, without 
undergoing any biological change. 
3 term due to his staunch support of Darwin's theories. 
4 https://origin-rh.web.fordham.edu/halsall/mod/1888thhuxley-struggle.asp 



This species-centric view of natural selection was refined by Richard Dawkins, who drew another 

very original attempt in his work “The Selfish Gene” in the second half of the twentieth century. 

Dawkins, while agreeing with his predecessors on the mechanism of evolution, proposes a substantial 

shift in perspective: natural selection doesn’t ultimately serve the survival of the species, but rather 

the survival of genes. He defines living organisms as “survival machines” built by genes in order to 

ensure their own existence throughout time. In his work he emphasizes that animals refrain from 

being aggressive to increase their reproductive possibilities and keep their genes alive through their 

prole rather than altruism, or again, as animals are mostly nice to their relatives with respect to 

strangers as they all share genes. “Dawkins repeatedly stresses that genes aren’t actively choosing to 

be “selfish,” since genes aren’t conscious. Rather, genes provide instructions for building embryos, 

like “build an embryo that will have long legs” (this helps organisms run faster and escape from 

predators), or “build an embryo that will chirp when there’s food nearby” (this benefits a chick’s 

nearby genetic relatives). These behavioral traits are a blind gamble: they’re the result of genes 

randomly shuffling in and out of chromosomes in sex cells. If the resulting behavioral traits happen 

to keep the organism alive long enough to reproduce, the gene for that trait will be passed on.”5 

Despite all these attempts, none of the theories above seems enough explanatory alone to the 

biologists Maynard and Price. Indeed, in their work of 1973 “The Logic of Animal Conflict” they 

stress out how there must be an individual benefit too for animals when adopting limited-war 

strategies, since animal instinct usually suggests behavior according to the biggest benefit they can 

obtain in the short-term. In the attempt to find the individual fitness behind the limited-war 

supremacy, Maynard conducted a complete study on the animal conflicts which will be the main 

focus of this thesis. His work regarding such topic divides mainly into two models: the 

aforementioned work co-authored with Price, and a sequent paper in 1974 on “The Theory of Games 

and the Evolution of Animal Conflicts”. 

These two complementary models study how animals engage in ritualized contests and their 

strategies, examining respectively both physical confrontations ("tournaments"), where the strongest 

or most resilient opponent prevails, and “displays”, in which victory is determined by persistence 

rather than brute force. 

By integrating these two seminal works, this thesis aims to examine how game theory models explain 

the evolution of conflict resolution in animals, highlighting strategic stability, escalation, and 

 
5 https://www.litcharts.com/lit/the-selfish-gene/summary 



retaliation in competitive behaviors. The following sections will explore these theories in depth, 

providing a modern reinterpretation of the models and a wider application to human sciences. 

Especially, the final part of this work will extend the results to human conflict dynamics, drawing 

parallels between animal contests and strategic interactions in international relations. Indeed, the 

deterrence theory (respectively, retaliation in animal conflicts) is essential for maintaining stability 

between major global powers nowadays. At the same time, the animal world offers valuable lessons 

on how deterrence can minimize violence, encourage cooperation and create unexpected 

opportunities for coexistence, showing that conflict does not always have to end in destruction. 

THE THEORY OF GAMES AND THE EVOLUTION OF ANIMAL 
CONFLICTS 
INTRODUCTION 

In the paper John Maynard Smith seeks to address our fundamental question in the attempt to find an 

individual benefit, rather than a species-level one, that better explains limited-war strategies in the 

animal behaviour. In this sequent work Maynard studied the interactions during animal displays, 

defined as ritualized contests in which animals compete on endurance and signalling rather than 

aggression, with the support of a model based on Game Theory, which was only at its earlier stages.  

Game Theory is indeed a mathematical framework that models strategic decision-making interactions 

among individuals whose outcome depends both on their own choices and on those of their opponent. 

In Game Theory models, or “games”, each player has primarily the scope of maximizing their own 

fitness, or “payoff”. Using such framework, Maynard formalizes animal interactions as strategic 

games, where each contestant, or animal, must decide how long to persist according to their expected 

costs and benefits. Indeed, since engaging in prolonged contests consumes energy and increases the 

vulnerability to other threats, natural selection favours strategies that optimize the trade-off between 

endurance and retreat. To model the game the author assigns a payoff to each different strategy, 

considering factors as energy expenditure, the probability of winning and the consequences of 

adopting different levels of persistence. Through a mathematical analysis, he demonstrates that there 

exists an ESS, which ensures that the population maintains a stable behavioural equilibrium where 

no alternative strategy can successfully replace the existing one.  

The importance of his work lies in its ability to explain why ritualized displays persist in nature, 

despite the presumed advantage of aggression in competitive scenarios. Indeed, displays offer a way 



for individuals to resolve conflicts while minimizing the risk of serious injury, which could reduce 

their chances of future survival and reproduction. Additionally, these contests are reliable signals of 

strength and endurance, allowing competitors to assess each other’s capabilities without engaging in 

costly physical fights. Over time, natural selection will favour strategies that balance competition 

with self-preservation, ensuring the stability of displays within populations. 

PREFACE ON GAME THEORY 

J. Maynard Smith highlighted two main general points in the introduction to his article, as they 

provide the clarification on the reason why the mathematical concept of ESS is applied in animal 

displays: 

1. Strategies are naturally selected to maximize the utility (or fitness) of the players. 

2. Since natural selection acts throughout time, the solution must have the form of an ESS. 

A step back to Game Theory’s fundaments must be taken, for in this section I intend to provide all 

the basic knowledge of Game Theory deemed useful and necessary to understand the following 

examinations in later chapters. 

As the Stanford Encyclopaedia of Philosophy writes: “Game theory is the study of the ways in 

which interacting choices of economic agents6 produce outcomes with respect to 

the preferences7 (or utilities) of those agents, […].”, where: 

The fundamental basis of Game Theory is the “game” (as the name anticipates), whose definition is 

close to the one suggested by common sense. Specifically, a game is described by three key 

components: 

1. Players, or participants, who interact in groups of 2 or more. 

2. Strategies, defined as the options to play available for each player, whose set is called action 

space. 

3. Payoffs, which are the outcomes for each player and depend on the strategies played by all 

the participants, thus the definition of “interacting”. 

 
6 denotes how each agent’s optimal choice depends on the choices of the others. 
7 numerical values are assigned to each preference indicating the level of satisfaction of the agent, which allows for 
mathematical studies to be conducted. 



A game is often represented with the help of a matrix, which plots each player’s payoff for each 

combination of strategies played (a graphical example is illustrated after). This schematic way of 

illustration is helpful to immediately catch some properties or equilibriums in the game. For example, 

a “symmetric” game is a game in which the identity of the players does not matter, as their play under 

the same exact circumstances. They have the same set of strategies and receive the same payoff for 

any pair of strategies played: describing the specifics of one player is equivalent of explaining those 

of the second player. For example, if agent 1 plays strategy A and agent 2 plays B, with respectively 

payoff 1 and 2, if the two agents swap their strategies, their payoff is also swapped, but still identical:  

disregarding the player, strategy A against B receives 1, and strategy B against A receives 2. 

Graphically, a game is symmetric when the matrix of the payoffs of player 1 is that of player 2 but 

transposed (as in the Rock, Paper, Scissors game presented later). This is one of the easiest 

characteristics of a matrix to recognise, and it permits mathematicians to study the game more 

efficiently, employing the respective methodologies. Another important and time-saving technique is 

the elimination of strictly dominated strategies. A strategy is strictly dominated by another when, 

disregarding the behaviour of other players, its payoff are always lower than the other ones, no matter 

what. This way, a rational player will never choose such strategy since they can always increase their 

payoff by changing unilaterally their behaviour (a clear example is provided in “Human conflicts: the 

war of deterrence”). Indeed, it must not be forgotten that the aim of any player is to achieve the highest 

possible profit, given their opponents’ choices. 

Due to the interacting feature of games, it is often8 possible to achieve a stable condition from where 

no player has an incentive to deviate, that is to change its strategy. 

The second core element of Game Theory is indeed the Nash Equilibrium: defined as a set of 

strategies (one for each player in the game) such that no player can improve their payoff by 

unilaterally changing their strategy, given the strategies chosen by the other players. In other words, 

a profile of strategies is a NE if they are each other’s best response. Its economic interpretation is 

quite relevant, as the NE indicates the situation(s) toward which a game economically and naturally 

converges, and that once reached, it is stable, unless perturbations are introduced in the game. 

 
8 The term “often” refers to the pure strategy case, as it is suggested by reason, where each player chooses a strategy to 
play with probability 1, that is with certainty. The mixed strategy case instead, implies that each strategy is assigned a 
specific probability to be played, whose sum equals 1. Unlike the pure strategy case, an important result in Game 
Theory is that a NE always exists in the mixed strategy due to the mathematical completeness of probability 
distribution. 



The Rock, Paper, Scissors example is often presented as an easily accessible explanation of the 

difference between Nash Equilibria in pure and mixed strategy. 

ROCK, PAPER, SCISSORS 

As a brief recall, the game is played by two contestants who at each round can choose to play rock, 

paper o scissors with the corresponding gesture of their hands: 

• rock wins against scissors but loses with paper. 

• paper wins against rock but loses with scissors. 

• scissors win against paper but loses with rock. 

It follows a formal description of the game according to Game Theory costumes. 

(𝑃!, 𝑃") the set of players, respectively player 1 and player 2. 

Ω! = Ω" = {𝑅, 𝑃, 𝑆} the set of strategies of the players, in order rock, paper and scissors. 

Games are illustrated through matrices, when possible, where the rows are the set of strategies of the 

first player, and the columns that of the second player. This way each cell reports the payoffs of the 

two players separated by a comma when the corresponding strategies are played. 

Where the numerical value of 1 is assigned in case 

of victory, -1 in case of loss and 0 when parity 

occurs. This is a clear example of a symmetric 

game, where the two players’ specifics are 

completely superimposable and interchangeable. 

Indeed, the payoff of player 1 when playing R 

against P is the same of that of player 2 when playing R against P: -1. 

In pure strategy, contestants can only play one strategy for certain, but for the payoffs of the game, 

there exists no NE. Here is a graphical illustration of the endless loop which prevents any NE to 

establish: 



Starting from (R, S), player 2 is willing to play P in 

spite of the higher payoff and makes the game shift 

to (R, P), then player 1 is willing to play S thus (S, 

P), then again player 2 is not satisfied and will move 

to (S, R) and so on.  

 

In pure strategy, at least one player is never satisfied with the outcome and would be willing to change 

its strategy, thus there can’t be any NE. Indeed, it also can be noticed that no strategy is strictly 

dominated by any other, as each strategy might prove useful to increase the payoff in response to a 

certain strategy played by the opponent. 

In mixed strategy, each player chooses a strategy randomly, with probabilities between 0 and 1. The 

standard procedure for finding a NE involves applying the indifference principle, which states that 

each player’s payoff must not vary as the strategy chosen by the other player changes. This ensures 

that no player has an incentive to deviate, and the expected payoff remains constant. The following 

computation helps in the understanding. 

Consider the following set of probabilities played by both the players (as the numeric finding is 

irrelevant for our purposes): 

,𝑝!(𝑅), 𝑝!(𝑃), 𝑝!(𝑆). = /!
#
, !
#
, !
#
0 player 1 set of probabilities 

,𝑝"(𝑅), 𝑝"(𝑃), 𝑝"(𝑆). = /!
#
, !
#
, !
#
0 player 2 set of probabilities 

E!(R) =
!
#
0 + !

#
1 + !

#
(−1) = 0 the expected payoff of player 1 when player 2 plays R (look 

at the green box in the picture) 

𝐸!(𝑃) =
!
#
(−1) + !

#
0 + !

#
1 = 0 when player 2 plays P 

𝐸!(𝑆) =
!
#
1 + !

#
(−1) + !

#
0 = 0 when player 2 plays S 



As the computations report, the expected payoff of player 1 if he plays with probabilities /!
#
, !
#
, !
#
0 is 

indifferent of the strategy played by player 2. The same is valid for player 2’s expected payoff. 

Therefore, 8/!
#
, !
#
, !
#
0 , /!

#
, !
#
, !
#
09 is a NE. 

The final core concept in Game Theory to introduce is the Evolutionarily Stable Strategy or ESS. 

When perturbations are introduced in the game, such as the emergence of rare or alternative strategies, 

it might become economically significant to verify whether the existing NE would remain stable over 

time or be outcompeted by any other pair of strategies. According to the formal definition “A mixed 

strategy 𝜎 is an Evolutionary Stable Strategy if: 

• for any pure strategy 𝑥: 

𝑓(𝑥, 𝜎) ≤ 𝑓(𝜎, 𝜎), where the expected payoff of strategy 𝑥 played against 𝜎 is lower or equal 

to the expected payoff of 𝜎 played against itself. Thus, no pure strategy bests out the mixed 

one. 

• 𝑥 ∈ 𝐵𝑅!(𝜎) and 𝜎(𝑥) < 1 , then: 

𝑓(𝑥, 𝑥) < 𝑓(𝜎, 𝑥).”9 In simple terms, if the pure strategy x is the best response to sigma and 

it is played in sigma with a probability lower than 1, the expected payoff of x played against 

itself is still lower than the payoff of σ played against x. 

The definition assures that there is no existing or incoming strategy that could ever overcome the 

evolutionary stable one(s) considering all the possible cases. To ensure a correct and robust analysis 

of the ESS, the procedure can be written under the form of an algorithm10. 

The algorithm involves three steps: 

• Step 1: Check that the strategy11 is a NE, and it is symmetric. These two initial conditions 

deserve further explanations, since their understanding is not trivial at first glance, but 

fundamental to comprehend the logic of the algorithm and the ESS concept itself. Whenever 

a strategy is not an ESS, there must exist then another strategy that leads the player to a higher 

payoff. As a consequence, any strategy that is not a NE can never be an ESS, as it is not stable 

 
9 Xavier, V. (2024) Games & Strategies [ESS and correlated equilibrium] LUISS. 
10 The algorithm was designed by the professor V. Xavier as a teaching aid. 
11 We refer to one strategy as under symmetry the pair of strategies that define a NE is made by the same one 
adopted by both players.  



even for the player itself (not to mention an entire population!). Furthermore, a NE must also 

be symmetric, meaning that all the players adopt the same strategy. This ensures that the 

population behaves uniformly, which is essential when studying the effects of a new invading 

strategy. Without this uniformity, it would be meaningless to analyze how a mutant interacts 

with the rest of the population. From this point on, the population strategy which is being 

studied for the ESS is defined as σ, and the mutant strategy as 𝑥. Only after having studied σ 

against all the possible mutant strategies 𝑥, it can be stated whether σ is evolutionary stable 

or not. 

• Step 2: Investigate each pure strategy throughout all the different cases. The aim is to analyze 

whether a new mutant strategy would lead to a higher payoff or not. If no strategy can be 

found that improves the payoff, then the NE is said to be evolutionary stable.  

o Case 1: P(𝑥) = 1 the pure strategy is played with probability 1 under σ. It is the case 

in which the mutant plays the very same strategy of the population; thus no invasion 

is recorded. 

o Case 2: f(𝑥, σ) < f(σ, σ) the pure strategy is giving a lower payoff than the payoff at 

the equilibrium. The mutant strategy gains a lower payoff against the population than 

the population strategy against itself. 

o Case 3a:	 f(𝑥, σ) = f(σ, σ)	 and f(σ, 𝑥) > f(𝑥, 𝑥) the pure strategy is giving a good 

payoff against σ, but 𝑥 against itself performs poorly. Even if the mutant strategy 

performs good enough against the population strategy, when playing against itself it 

is bested out by the population strategy. 

o Case 3b:	f(𝑥, σ) = f(σ, σ)	and f(σ, 𝑥) ≤ 𝑓(𝑥, 𝑥) the opposite case. Where the mutant 

strategy performs good enough to overcome in the long run or to be at least equivalent 

to the population strategy. 

• Step 3: Draw the conclusion, if there is at least one Case 3b in the analysis, then the mixed 

strategy σ is not an ESS. Indeed, the Case 3b is the only case in which the population strategy 

performance is beaten by a mutant one. 

ROCK, PAPER, SCISSORS CONT’D 

Let’s find the ESS, if it exists, applying the algorithm. 

• Step 1: 



8/!
#
, !
#
, !
#
0 , /!

#
, !
#
, !
#
09 is the only symmetric (as the strategy is identical for both players) NE in 

the game, thus: σ = 8/!
#
, !
#
, !
#
09. We shall test now if the NE is an ESS as well, investigating 

the comparison with each of the pure strategy R, P or S in the game. 

Let’s start from the pure strategy 𝑥 = 𝑅: 

• Step 2: 

o Case 1: P(𝑅) = !
#
 in σ, so we shall proceed with the next case as the first condition is 

not met. 

o Case 2: f(𝑅, σ) < f(σ, σ) , where: 

f(𝑅, σ) = 0 ⋅ !
#
+ (−1) ⋅ !

#
+ 1 ⋅ !

#
= 0, where player 1 plays R and player 2 plays σ =

8/!
#
, !
#
, !
#
09 and 

f(σ, σ) = 0 ⋅ !
#
⋅ !
#
+ (−1) ⋅ !

#
⋅ !
#
+ 1 ⋅ !

#
⋅ !
#
+ 1 ⋅ !

#
⋅ !
#
+ 0 ⋅ !

#
⋅ !
#
+ (−1) ⋅ !

#
⋅ !
#
+ (−1) ⋅

!
#
⋅ !
#
+ 1 ⋅ !

#
⋅ !
#
+ 0 ⋅ !

#
⋅ !
#
= 0, where both players play σ = 8/!

#
, !
#
, !
#
09. 

Since f(𝑅, σ) = (σ, σ) we proceed to case 3. 

o Case 3a: f(σ, 𝑅) > f(𝑅, 𝑅): 

f(σ, 𝑅) = 0 ⋅ !
#
+ 1 ⋅ !

#
+ (−1) ⋅ !

#
= 0, and 

f(𝑅, 𝑅) = 0 = f(σ, 𝑅), thus, the condition is not met. 

o Case 3b: Whenever none of the above conditions is met, it is surely Case 3b, indeed: 

f(𝑅, 𝑅) = f(σ, 𝑅) 

• Step 3: The game is symmetrical, therefore there is no need to investigate also for 𝑥 = 𝑃 or 

𝑥 = 𝑆, as we would get the exact same results. Since there is a Case 3b, the strategy σ =

8/!
#
, !
#
, !
#
09 is not an ESS. 

THE MODEL 

The model explores animal behaviour in displays and highlights how stability arises both from the 

payoff of the strategy itself and the resilience against perturbations introduced by rare or mutant 



strategies. The research is carried out with the aim of finding a general truth about the mechanisms 

in the evolution of populations and will serve as a fundament for the subsequent article “The Logic 

of Animal Conflict” (discussed later), where complementary and insightful conclusions are developed 

on animal behaviour and their strategies for survival. 

The game defined by Maynard Smith happens to be officially published in 1974, when Game Theory 

was only at its first stages towards becoming a fundament of interdisciplinary research. Considering 

the above, here it follows a personal attempt to redefine the game under modern terms, with the sole 

scope of giving a more detailed and technical illustration of the results exposed in Maynard’s article 

and provide a clearer reader’s experience. 

ON FINDING THE GAME 

Each display, by definition, involves two animals engaging in a duel for a variety of possible reasons. 

According to the rules of nature, the animal who can endure longer ultimately wins the clash. The 

setting must now be translated into modern Game Theory terms, to enable an accurate analysis of all 

the potential strategies and their respective outcomes. 

The game is set between two players, 𝑃! and 𝑃", with respective moves A and B. The two contestants 

can play any positive real number 𝑚! and 𝑚". 

I𝐴 ∈ ℝ$, 𝑚!
𝐵 ∈ ℝ+, 𝑚"

  

According to the rules of the game, the victory is assigned to the contestant who plays the higher 𝑚, 

therefore, in case of parity there’s a fifty percent of chance to win for each player. The utility functions 

of the two players are the following: 

𝑢!(𝑚!, 𝑚") = L
−𝑚!, 𝑚! < 𝑚"

!
"
𝑣 −𝑚!, 𝑚! = 𝑚"

𝑣 −𝑚", 𝑚! > 𝑚"

               𝑢"(𝑚!, 𝑚") = L
−𝑚", 𝑚" < 𝑚!

!
"
𝑣 −𝑚", 𝑚" = 𝑚!

𝑣 −𝑚!, 𝑚" > 𝑚!

 

where a contestant wins the victory gain 𝑣 discounted by the amount of effort put in place until the 

other player is defeated 𝑚"(𝑚!), and loses the amount of effort until he is defeated 𝑚!(𝑚"). 

The game is classified as symmetric, according to its identical strategies and payoffs for both the 

players. As a direct consequence, any strategic choice made by one player is equally valid for the 

other. This symmetry might be looked like an indicator of fairness, but in our game, it might lead to 



some implications instead. Specifically, the ambivalence of strategies might result in an infinite loop 

where every “winning” strategy is bested out by itself, thus preventing the game from reaching a 

stable equilibrium at least in pure strategy. 

Indeed, we shall proceed by identifying all the Nash Equilibria of the game and verifying whether 

our deductions align with the outcomes. 

NE IN PURE STRATEGY 

The NE in pure strategy is strategically defined as (𝑚!
∗ , 𝑚"

∗) where 𝑚!
∗ and 𝑚"

∗  are each other’s best 

response (BR), recalling that the NE is the stable condition from which no player has incentive to 

deviate: 

I𝑚!
∗ = 𝐵𝑅(𝑚"

∗)
𝑚"
∗ = 𝐵𝑅(𝑚!

∗)  

To find, if it exists, such equilibrium, we shall now consider three different cases according to the 

values of 𝑣, 𝑚!
∗ and 𝑚"

∗ : 

1. 𝑣 > 0, 

1. with 𝑚!
∗ < 𝑚"

∗  : 

1. for 0 ≤ 𝑚!
∗ ≤ 𝑚"

∗ , 

then 𝑚!
∗ is never the best response to 𝑚"

∗ , since player 1 is going to lose the 

game for having played a lower value than 2. Therefore, player 1 has the 

profitable deviation to play zero to avoid the loss of −𝑚!
∗, which opens for the 

following scheme: 

2. for 0 = 𝑚!
∗ ≤ 𝑚"

∗ , 

where a possible profitable deviation opens for player 2, who can play 𝑚"
∗! =

&"
∗

"
 (or whatever value lower than 𝑚"

∗) and still win the game, with lower efforts 

and higher gain 𝑣 −𝑚"
∗ ’. Since for player 2 there’s always a lower number 

they can play and still win the game (recall 𝐵 ∈ ℝ$), there exists no stable 

equilibrium NE. 

2. with 𝑚!
∗ > 𝑚"

∗  : 



the same reasoning applies as before, where players take each other’s position. 

3. with 𝑚!
∗ = 𝑚"

∗  : 

1. for /!
"
𝑣 −𝑚0 < 0, 

which implies negative returns also for the winner, player 1 should play 0, thus 

not participating in the game. 

2. for /!
"
𝑣 −𝑚0 > 0, 

two possible deviations open: 

§ 𝑚!
∗ ’ < 𝑚!

∗, where player 1 loses the game from the parity position and 

such deviation is not profitable, indeed their utility would move from 

/!
"
−𝑚!

∗0 > 0 to −𝑚!
∗ ’ < 0. 

§ 𝑚!
∗ ’ > 𝑚!

∗, where player 1 wins with cost 𝑚!
∗ ’ ≈ 𝑚!

∗ and gain 

(𝑣 − 𝑚"
∗) > /!

"
𝑣 −𝑚"

∗0. The deviation ε, where 𝑚!
∗ ’ = 𝑚!

∗ + 𝜀, is 

profitable for each: 𝑣 − (𝑚!
∗ + 𝜀) > !

"
𝑣 −𝑚!

∗, which translates into 

𝜀 < !
"
𝑣. The same profitable deviation opens for player 2, thus each of 

the two player has an incentive to deviate toward a higher 𝑚 until 𝜀 =
!
"
𝑣. Again, there is no NE since the interval 0 < 𝜀 < !

"
𝑣 contains 

infinite numbers in ℝ$. 

2. 𝑣 = 0, 

both players have no incentive to play and will therefore never enter the competition, since 

for any number they play their payoff would be negative. Their choice is respectively 𝑚!
∗ = 0 

and 𝑚"
∗ = 0: this is a pure NE. 

3. 𝑣 < 0, 

Same reasoning as in (2) applies. 

We can conclude that only if 𝑣 is purely positive there is no NE in pure strategy, where each profitable 

deviation strategy can be bested out by itself. As in nature 𝑣 is often strictly positive in duels, 



concerning food, reproduction or many other reasons, we shall explore our game further in the mixed 

strategy. 

NE IN MIXED STRATEGY 

The Nash Equilibrium in mixed strategy can be found by the indifference principle, recalling that for 

such principle players are indifferent between their strategies, since they need to yield the same 

expected payoff. In mathematical terms, it can be expressed as: 

𝑢"(𝑝(𝑥),𝑚) = λ , where 

λ is the constant value associated with the utility function 𝑢" of player 2. The first input of the function 

is the mixed strategy 𝑝(𝑥), representing the probability distribution of player 1’s choices, (in simple 

terms, player 1 plays a certain value 𝑥 with probability 𝑝(𝑥)). The second input is the parameter 𝑚, 

which represents player 2’s strategy. The goal is to determine the value of 𝑝(𝑥) that satisfies the 

condition of indifference mentioned above. 

Exploiting player 2’s utility function, given 𝑚 one has: 

𝑢"(𝑝,𝑚) = ∫ 𝑢"(𝑥,𝑚)𝑝(𝑥)'  𝑑x = E,𝑢"(𝑥,𝑚).  

𝑢"(𝑝,𝑚) = ∫ (𝑣 − 𝑥)𝑝(𝑥)&
(  𝑑x + ∫ /!

"
𝑣 −𝑚0𝑝(𝑥)&

&  𝑑x + ∫ −𝑚𝑝(𝑥)$)
&  𝑑x  

The first integral represents the case for any 𝑥 < 𝑚 where player 2 wins (𝑣 − 𝑥), the second describes 

the case in which players are in a condition of parity and both play exactly 𝑚 (or 𝑥 equivalently), and 

the latter formalises the case 𝑥 > 𝑚 where player 2 loses −𝑚. Note that the second integral, under 

the assumption 𝑃(𝑥 = 𝐶) = 0 in ℝ$, is equal to zero. 

After some arrangements: 

  v ∫ 𝑝(𝑥)&
(  𝑑x − ∫ 𝑥𝑝(𝑥)&

(  𝑑x − m∫ 𝑝(𝑥)$)
&  𝑑x = λ  

We shall now compute the first derivative with respect to 𝑚 and set it equal to zero (or First Order 

Condition), as the result will be exactly the value of 𝑝(𝑥) for which 𝑢" is constant: 

*+"
*,

= 0  



vp(𝑚) − mp(𝑚) − /∫ 𝑝(𝑥)$)
&  𝑑𝑥 − 𝑚𝑝(𝑚)0 = 0  

vp(𝑚) − ∫ 𝑝(𝑥)$)
&  𝑑x = 0  

vp(𝑚) = ∫ 𝑝(𝑥)$)
&  𝑑x  

As the function cannot be further exploited, we shall proceed further with the second derivative to 

find the zero: 

v *-(&)
*&

− p(𝑚) = 0 , which has solution 

p(𝑚) ∝ 𝑒0 &
1

, or equivalently p(𝑚) = c𝑒0 &
1

 

We generalize by replacing 𝑚 with 𝑥 since 𝑚 is just a placeholder variable, and the functional form 

𝑝(𝑚) applies to the entire domain of the distribution 𝑝(𝑥): 

p(𝑥) = c𝑒0 '
1
  

Then, to find that constant 𝑐 which represents only one among the possible solutions, we shall provide 

for the condition of normalization in the computations, according to which the total probability of all 

possible outcomes must equal 1: 

∫ 𝑐𝑒0 '
1

$)
(  𝑑x = 1  

c ∫ 𝑒0 '
1

$)
(  𝑑x = 1  

c `−𝑣𝑒0 '
1
a
(

$)
= 1  

c ` lim
'→$)

−𝑣𝑒0 '
1
− /−𝑣𝑒0 (

1
0a = 1  

c(0 + 𝑣) = 1  

c = !
1
 , finally, we plug in the result for 𝑝(𝑥): 

p(𝑥) = !
1
𝑒0 '

1
 [1] 



The NE is attained at the symmetric equilibrium where both players play 𝑝(𝑥) = /!
1
𝑒0 '

1
0. 

Once we get the value of 𝑝(𝑥) is a good costume to counter check that player 1, for any value of 𝑥 

he chooses to play, gets the same payoff against player 2, as previously we only looked for player 2’s 

indifference: 

𝑢! = ∫ (𝑣 −𝑚)𝑝(𝑚)'
(  𝑑m + ∫ /!

"
𝑣 −𝑚0𝑝(𝑚)'

'  𝑑m + ∫ −𝑥𝑝(𝑚)$)
'  𝑑m =  

= ∫ (𝑣 −𝑚) !
1
𝑒0 &

1
'
(  𝑑m + ∫ −𝑥 !

1
𝑒0 &

1
$)
'  𝑑m =  

= ∫ 𝑒0 &
1

'
(  𝑑m + ∫ −&

1
𝑒0 &

1
'
(  𝑑m − x∫ !

1
𝑒0 &

1
$)
'  𝑑m =  

= ∫ 𝑒0 &
1

'
(  𝑑m + `𝑚𝑒0 &

1
a
(

'
− ∫  𝑒0 &

1
3
(  𝑑m − x `− !

1
𝑣𝑒0 &

1
a
'

$)
=  

= `𝑚𝑒0 &
1
a
(

'
− x `−𝑒0 &

1
a 𝑥$) =  

= x𝑒0 '
1
− x𝑒0 '

1
=  

= 0  

As it states out from the computations, the utility is completely independent of the value 𝑣 the players 

can win. The obtained value of zero might seem odd at first, instead two relevant facts must be brought 

into light: 

1. The strategy 𝑥 = 0, whose payoff is null, is included in the set. And therefore, player 1 can 

be indifferent among all the possible values of 𝑥 only if 𝑢! = 0 in the end. 

2. The oddity might come first from a misinterpretation of the utility. As Maynard highlights: 

“The advantage that the winner of such a contest has over the loser is to be measured not by 

the energy in the food obtained, but by the energy which the loser must expend in finding a 

second similar item of food.”12. 

Lastly, we shall verify whether the Nash Equilibrium is stable throughout the time, thus it’s an ESS. 

 
12 J. Maynard Smith “The theory of Games and the Evolution of Animal Conflicts” 



The ESS in game theory is defined as the strategy for which the expected utility of such strategy 

played against himself is higher than the utility of any other strategy played against it. Only if such 

condition realises, then the strategy is stable and unaffected by other incoming behaviours. In natural 

terms, if the strategy of a specific male buffalo during reproduction duels qualifies as an ESS, and no 

other complicating factors subsist, then he will consistently win over any rival bull buffalo he 

encounters, even those from distinct or newly formed packs. To emphasize, if his strategy were 

merely a NE no conclusions could be drawn a priori about the moose's ability to win against specimen 

from other packs than the one analyzed. 

To verify the ESS condition, we introduce a strategy σ that plays one positive real number ς, opposed 

to the mixed strategy 𝑋 that plays 𝑝(𝑥). The idea is to test whether the strategy 𝑝(𝑥) yields the highest 

payoff for the player, regardless of the opponent’s strategy. In other words, 𝑝(𝑥) shall persist as NE 

despite any new or rare strategy opponents might introduce in the game. 

Thus, we shall demonstrate that for any positive unknown ς (given strategy σ) played by a contestant, 

the expected payoff of strategy 𝑋 against σ is always higher than σ versus itself. Equivalently, 

𝐸-(')(σ) > 𝐸4(σ): 

1. σ vs. σ: 

𝐸4(σ) =
!
"
v − ς , recall the 𝑚! = 𝑚" case. 

2. 𝑝(𝑥) vs. σ: 

𝐸-(')(σ) = ∫ −𝑥𝑝(𝑥)5
(  𝑑x + ∫ /!

"
𝑣 − ς0 𝑝(𝑥)5

5  𝑑x + ∫ (𝑣 − ς)𝑝(𝑥)$)
5  𝑑x , where [1] 

= ∫ −𝑥 !
1
𝑒0 '

1
5
(  𝑑x + ∫ (𝑣 − ς) !

1
𝑒0 '

1
$)
5  𝑑x = , integrating by parts we obtain 

= `xe0 3
6
a
(

5
− ∫ 𝑒0 '

1
5
(  𝑑x + (𝑣 − ς) !

1 ∫ 𝑒0 '
1

$)
5  𝑑x =  

= `𝑥𝑒0 '
1
+ 𝑣𝑒0 '

1
a
(

5
+ (𝑣 − ς) !

1
`−𝑣𝑒0 '

1
a
5

$)
=  

= ς𝑒0 5
1
+ v𝑒0 5

1
− v + 𝑒0 5

1
(𝑣 − ς) =  

= 𝑒0 5
1
(ς + 𝑣 + 𝑣 − ς) − v =  



= 2v𝑒0 5
1
− v  

Let’s verify the condition for 𝑝(𝑥) to be an ESS by verifying whether 𝐸-(')(σ) > 𝐸4(σ): 

2v𝑒0 5
1
− v > !

"
v − ς , where ς ≥ 0 as assumption 

v /2𝑒0 5
1
− 1 − !

"
0 ≻ −ς  

2𝑒0 5
1
− #

"
≻ − 5

1
  

2𝑒0 5
1
+ 5

1
− #

"
> 0, where γ = − 5

1
 

2𝑒07 + γ − #
"
> 0  

Now let’s study the function to understand whether it’s always strictly positive: 

With the table of variation, we can study the behaviour of the function at its limits: 

1. For γ → −∞: f(γ) → + ; 

2. for γ = 0: f(γ) = !
"
 ; 

3. for γ → +∞: f(γ) → + . 

At its limits the function approaches +∞, accordingly if its lowest value is positive, the function must 

always be strictly positive. We shall proceed by finding its minimum with the First Order Condition 

(FOC): 

f’(𝛾) = −2𝑒08 + 1 = 0 → 𝛾 = 𝑙𝑛(2) and f(γ) ≈ 0.19 > 0 



13 
We can conclude that our function is always strictly positive and that, finally, p(𝑥) = !

1
𝑒0 '

1
 [1] is the 

ESS of the game in mixed strategy. 

CONCLUSIONS 

As Maynard concludes “an evolutionarily stable population is either genetically polymorphic14, the 

strategies of individuals being distributed as in [1], or that it consists of individuals whose behaviour 

differs from contest to contest as in [1]. There is no stable pure strategy, and hence no behaviourally 

uniform population15 can be stable.”16 

In simple terms, a population that consists solely of specimen adopting a single pure strategy is highly 

exposed to invasion by another species or pack, as stated by the pure strategy attempt. Instead, a 

population who adopts different pure strategies 𝑥 with frequences p(𝑥) = !
1
𝑒0 '

1
, or where everyone 

adopts a mixed strategy and behaves differently accordingly to the contest, allows for flexibility and 

adaptability, reaching a long-term equilibrium. 

CONTINUATIONS 

Previous analyses have focused on conflicts between animals where no injury at all could be inflicted 

and victory was assigned to the contestant prepared to endure the longest. In such contests strategies 

are shaped by persistence and the ability to sustain effort. However, when offensive weapons and 

potential escalation are introduced in the game the dynamics of contests change fundamentally. 

Victory is no longer solely determined by endurance, but also by the capacity to inflict or avoid injury, 

making escalation a critical factor in the outcome. 

 
13 Made with Geogebra.org 
14 A population capable of adopting diherent strategies. 
15 A population adopting a single pure strategy. 
16 J. Maynard Smith “The theory of Games and the Evolution of Animal Conflicts” 



Maynard Smith and Price in “The Logic of Animal Conflict” of 1973 demonstrated that in contexts 

where escalated fighting is possible, an ESS must account for both the benefits of escalation and its 

associated costs, such as the risk of injury or death. The stability of a strategy then depends on its 

ability to balance these trade-offs efficiently. For instance, a species employing a retaliatory strategy, 

who escalates only in response to an opponent's escalation, might achieve a stable equilibrium, 

deterring excessive aggression while minimizing the risk of mortal injuries. 

THE LOGIC OF ANIMAL CONFLICT 
INTRODUCTION 
The work will then proceed with a modern reinterpretation of Maynard Smith’s 1973 paper, offering 

an alternative approach to identifying the ESS when accounting for the possibility of injury. A fully 

developed fictitious model has been constructed, allowing for the observation of the ESS and how it 

shifts in response to changes on the initial conditions. Finally, a broader comparison will be drawn 

with human behavior in conflicts, examining how the model predicts the deterrence war and the 

survival of nations. This analysis will focus on the strategic interactions of the world’s two most 

powerful rivals, discovering the evolutionary principles that govern large-scale competition. 

THE PREFACE 

When conflicts between animals of the same species occur, the range of strategies that might be 

adopted are usually of a limited war kind, that is they are usually tournaments rather than displays 

where no serious injury is typically inflicted. In most competitive encounters, where food, territory 

or reproduction is at stake, one might expect animals to adopt the most effective weapons and fighting 

styles in a fight to the death (total war). Yet, in nature we observe how animals persevere in fighting 

with limited-war strategies. How can one explain this at first glance paradox? 

Recalling what already stated in the introduction, one early explanation offered by Huxley explains 

that nature tends to preserve the species avoiding dangerous behaviours that would militate against 

survival; thus, it operates under the principle of “group selection”. However, this reason seemed not 

enough to Maynard and Price to fully account for animal behaviour. Instead, they proposed that there 

must be also an individual benefit alongside group selection that leads animals to opt for limited war. 

To support their hypothesis, they constructed a computer-based model to simulate conflicts and 

collect data with the aim of analysing whether the limited-war strategy is beneficial to individuals as 



well rather than only species. Specifically, by determining if a retaliator strategy has the 

characteristics of an ESS compared to other possible behaviours. 

THE MODEL 

For the development of the model the authors constructed a rather peculiar and innovative computer-

based procedure for their time. It is based under a simple yet efficient rationale: a simulation of an 

indefinite number of encounters between animals capable of inflicting serious injuries adopting 

different strategies is carried on testing whether escalation to total war would result optimal, as logic 

might suggest. 

The model incorporates two distinct tactics: “Conventional” denoted as C, which are unlikely to cause 

serious damages, and “Dangerous” or D for situations where serious injury is likely. Each strategy is 

characterized by a different use of C or D tactics, as the underlying logic and associated probabilities 

differ across species. Consequently, each encounter takes the following form: 

A’s move: C C C D C C C D 

B’s move: C C C D C C C R 

In this example, individual A initiates the encounter with a conventional move which might inflict 

only a minor scratch to the opponent. Individual B responds in kinds for three times, after which A 

plays a dangerous tactic to provoke the opponent (or probe). In response, B uses a dangerous move 

too (or retaliates). After some conventional moves, lastly A escalates again, and B finally retreat (R) 

from the contest. At the end of each encounter, the payoffs are calculated and stored for subsequent 

statistical analysis. 

For the computer simulation five different strategies are assumed, where “A “strategy” for a 

contestant is a set of rules which ascribes probabilities to the C, D and R plays, as functions of what 

has previously happened in the course of the current contest.”17 and each strategy might be suggested 

by logic as an optimal strategy under specific circumstances: 

1. Mouse: “Never plays D. If receives D, they retreat immediately before any possibility of being 

injured.”18 Otherwise, they play C until the contest lasts. 

2. Hawk: Always plays D, until they are seriously injured or the opponent retreats. 

 
17 J. Maynard Smith & G. R. Price “The Logic of Animal Conflict” 
18 J. Maynard Smith & G. R. Price “The Logic of Animal Conflict” 



3. Bully: Plays D when making the first move or in response to C. “Plays C in response to D and 

retreats after the opponent played D a second time.”19 

4. Retaliator: Plays C when making the first move or in response to C. If the opponent plays D, 

they retaliate by playing D. 

5. Prober-Retaliator: In response to C, they play C with high probability and D with a low 

probability. After probating, they revert to C if the opponent retaliates, otherwise they 

continue playing D. After receiving a probe, they retaliate. 

For a total of fifteen different types of two opponent contests. 

The Hawk strategy corresponds to what we have defined as “total war” so far, while the other 

strategies represent various forms of limited war. If Maynard and Price’s thesis is incorrect, then the 

Hawk strategy will emerge as the evolutionarily stable strategy, indicating that limited war is driven 

solely by group selection. Conversely, if their thesis is correct, then one or more of the limited war 

strategies will prove to be evolutionarily stable equilibria. 

As for the previous article, a personal attempt to rewrite the game in the modern approach of Game 

Theory follows in order to replicate the simulation and facilitate a comprehension of the results.  

The probability distribution and payoff assignment criteria employed in the paper is the following: 

• number of contests =2000. 

• number of rounds for each contest =20. 

• probability of serious injury after D is received =0.10. 

• probability that Prober-Retaliator will probe after receiving C =0.05. 

• payoff for winning =60. 

• payoff for exiting the contest due to a serious injury = -100. 

• payoff for each D received that it doesn’t inflict serious damage (scratch) = -2. 

• payoff for saving time and energy =20 (uniformly distributed on the number of rounds). 

 
19 J. Maynard Smith & G. R. Price “The Logic of Animal Conflict” 



 
Figure 1 

In the table reported from the article, each number represents the average payoff assigned to the row 

strategy when played against the column strategy, for instance the average payoff of the Hawk when 

he encounters a Mouse is 60. 

REPLICATION AND EXPLANATION OF THE MODEL 

Here it follows a personal attempt to rewrite the payoffs in modern terms aiming to capture the 

mathematical formulas behind them, accounting for small deviations from the expected value that 

may arise due to sampling variation. Due to lacks in the original paper, it must be stressed that it is 

only an attempt to figure out the logic behind, and in the most difficult cases (mainly concerning 

prober-retaliators) a comparative approach has been used to get at least the intuition behind the 

authors’ results. In the following script, the capital letter “E” stands for “expectation” (of the payoff), 

the subscript indicates the strategy we are computing the expectation for, and the capital letter in the 

square brackets is the strategy against our player is fighting: 

- Mouse vs. Mouse: 𝐸9[𝑀] =
!
"
⋅ 0 + !

"
⋅ 60 = 30 

Since two equal strategies are duelling against each other, in the case of two mice the contest 

will simply end by one of the two retreating. Thus, half of the times a mouse win and the other 

half leaves uninjured, without any reward for saving time as they retreat only at the end. 

- Mouse vs. Hawk: 𝐸9[𝐻] = 20 

Any mouse when playing against a hawk will receive a payoff of 20, since they are retreating 

immediately (recalling hawks play always D) before any possibility of being injured. Their 

positive expectation is solely given by the whole time they save as the game stops at the first 

round.  

- Mouse vs. Bully: 𝐸9[𝐵] = 20 



In a match were a mouse and a bully fight each other, the payoff is the same as in the case 

Mouse vs. Hawk, since both hawks and bullies play D at the first round. 

- Mouse vs. Retaliator: 𝐸9[𝑅] =
!
"
⋅ 0 + !

"
⋅ 60 = 30 

When a mouse encounters a retaliator, the same situation as two mice fighting each other will 

occur, since the retaliators always play C if not probed. 

- Mouse vs. Prober-retaliator: 𝐸9[𝑃] = 0.64 ⋅ /"(
"
0 + 0.36 /!

"
⋅ 60 + !

"
⋅ 00 = 17.2 

For this match a peculiar approach has been used due to the complexity of the Prober-retaliator 

strategy. Since prober-retaliators probes after receiving C with 5%, it allows us to simplify 

the game into two scenarios:  

1. The event that Prober-retaliator probes “X” never happened in 20 rounds: 𝑃(𝑋 = 0) =

0.95"( = 0.36. 

2. The event that at least once the prober-retaliator has played D and the mouse left the 

contest: 𝑃(𝑋 ≥ 1) = 1 − 0.95"( = 0.64. 

In the former case, the pattern of Mouse vs. Retaliator repeats. In the latter case, the mouse 

leaves uninjured the contest and wins a positive amount for having saved time. Such 

quantity is proportional to the amount of time they save, thus on a basis of 20 rounds on 

average it happens at the tenth, which corresponds to the factor "(
"

. 

- Hawk vs. Mouse: 𝐸:[𝑀] = 60 + 20 = 80 

Since hawks always play D making the opponent retreat at the first round, they win the payoff 

for winning plus the time saved.  

- Hawk vs. Hawk: 𝐸:[𝐻] =
!
"
(60 + 14 + 2 ⋅ 6) + !

"
(−100) = −19 

When two hawks fight against each other always playing D, half of the times a hawk wins 

and the other half loses injured to death (-100), since D is lethal at 10% there’s equal chances 

this event is going to benefit the first or the second player. The hawk who wins, is going to 

receive 60 plus a particular amount which should be further explained. The term “14 + 2 ⋅ 6” 

is because hawks save 14 rounds by playing on average only the first 6, where they receive 2 



each time after receiving but surviving to D (scratch). The intuition behind the fact that one 

of the two hawks is going to die on average round 6 is that each round both the players play 

D, with a total probability of 0.90" = 0.81 that both survive. Thus, the probability that at least 

one hawk dies is (1 − 0.81) = 0.19, and the expectation (average) of such geometric random 

variable20 is !
(.!<

≈ 6 by eccess. 

- Hawk vs. Bully: 𝐸:[𝐵] =
!
"
,0.10(60 + 20) + 0.90(60 + 19). + !

"
/0.10(−100) +

0.90,0.10(60 + 20 − 2) + 0.90(60 + 19 − 2).0 = 69.2 

For some cases, it is important to consider who starts first and combining then the results, 

assigning to each a weight of 50% (or a half). If Hawk starts, there is a 10% of probability 

that Bully suffers a lethal damage, giving immediately a payoff of 60 plus 20 for the time 

saved to the hawk. Instead, the remaining 90% represents the scenario in which the attack is 

not lethal, the bully plays C in and, after playing the second D, finally the bully retreats before 

being injured. The hawk gains 19 for the time saved since the bully retreats during the second 

round. If Bully starts playing D, Hawk dies with a 10%, or survive and plays D, so the process 

described in the first half of the equation repeats, with the difference of a “ − 2” due to the 

scratch inflicted by the first move of the bully (if not lethal). 

- Hawk vs. Retaliator: 𝐸:[𝑅] > 𝐸:[𝐻]  

To simplify this case, it is enough to understand that the expectation for a hawk against a 

retaliator is going to be slightly higher than a hawk against itself. It is a more favorable case 

since the retaliator never starts probing, it will always be the hawk who starts, after which 

both the players will play D for all the rounds. Thus, the probability that the hawk inflicts a 

deadly damage is slightly higher than the one of the retaliator, since the hawk makes always 

the first dangerous move. 

- Hawk vs. Prober-retaliator: 𝐸:[𝐻] < 𝐸:[𝑃] < 𝐸:[𝑅] 

The expectation of a hawk vs a prober-retaliator collocates in between those of two hawks 

fighting and a hawk between a retaliator. The logic behind of this expectation being higher 

than E_H[H] is the same as the previous case. However, we must consider that a prober-

 
20 A random variable X follows a Geometric distribution when, repeating an experiment independently many 
times, X represents the first round in which there is a success. 



retaliator might start probing with a 5% of probability. This information makes the expectation 

being slightly lower than 𝐸:[𝑅] at the same time, since (despite in a small number of 

encounters) the prober-retaliator might start probing, rising the chances of a Hawk to receive 

deadly injures. 

- Bully vs. Mouse: 𝐸=[𝑀] = 𝐸:[𝑀] = 80 

Given mice always play C, bullies will behave exactly as hawks in this type of game by 

playing always D, receiving their same expected payoff. 

- Bully vs. Hawk: 𝐸=[𝐻] =
!
"
,0.10(−100) + 0.90(18 − 2). + !

"
/0.10(60 + 20) +

0.90,0.10(−100) + 0.90(18 − 2).0 = 8 

The intuition behind is the same as in Hawk vs. Bully, but the point of view this time is that 

of the bully, who is going to retreat from the second time they receive D (when alive). 

- Bully vs. Bully: 𝐸=[𝐵] =
!
"
,0.10(60 + 20) + 0.90(60 + 19). + !

"
,0.10(−100) +

0.90(19 − 2). = 42.2 

When two bullies meet, the scheme is fixed: the first bully probes with D, receive C in 

response and probes again making the opponent retreat immediately. Consequently, half of 

the assigned payoff is from the bully who starts first, the other half from that who retreats. 

The first part of the equation represents the first bully who is going to win either at the first 

round for inflicting a deadly scar, or at the second when its opponent retreat. The second part 

stands for the second bully, who either dies at the first round or retreats at the second one. 

- Bully vs. Retaliator: 𝐸=[𝑅] =
!
"
|0.10(60 + 20) + 0.90 /0.10(−100) + 0.90,0.10(60 +

17 − 2) + 0.90(16 − 2).0} + !
"
|0.10(60 + 19) + 0.90 /0.10(−100) + 0.90,0.10(60 +

16 − 2) + 0.90(15 − 2).0} = 14.8 

Again, the equation is divided into two halves according to who is going to open the contest. 

If a bully starts, they have 10% of probability to win immediately the contest, otherwise the 

opponent will retaliate by playing D, lethal at 10%. If the bully survives, he plays C, and 

receive C as response since retaliators escalate only when probed. Then, Bully will now 



provoke again playing D, which will make him either win at the third round (17 for the time 

saved minus 2 for the scratch) or receive another D and finally retreating at the fourth before 

being injured (16 minus 2). The second half of the equation represents the same scheme 

shifted by 1 round, since the initial move C of the retaliator will make the game have the same 

pattern. 

- Bully vs. Prober-retaliator: 𝐸=[𝑃] < 𝐸=[𝑅] 

This game is similar to the previous case, the only difference is that a prober-retaliator will 

play D even in response to a C with 5%. This information slightly lowers the expected payoff 

of the bully, due to the fact that there are more chances he might suffer a lethal damage. 

- Retaliator vs. Mouse: 𝐸>[𝑀] = 𝐸9[𝑀] = 30 

Since mice never probe, the expected payoff is equal to the case Mouse vs. Mouse. 

- Retaliator vs. Hawk: 𝐸>[𝐻] =
!
"
|!
"
(60 + 14 − 2 ⋅ 6) + !

"
(−100)} + !

"
|!
"
(60 + 13 − 2 ⋅

7) + !
"
(−100)} = −20 

When a retaliator fights against a Hawk the scheme is reminds that of two hawks against each 

other. Indeed, the first part is identical, since when the hawk starts both the players use 

dangerous moves. If the retaliator starts the pattern is shifted by one round but still identical: 

Hawk will respond with D to the first move C of his opponent, and from then on it is the same 

as the previous case. 

- Retaliator vs. Bully: 𝐸>[𝐵] =
!
"
|0.10(−100) + 0.90 /0.10(60 + 19 − 2) +

0.90,0.10(−100) + 0.90(60 + 17 − 2 ⋅ 2).0} + !
"
|0.10(−100) + 0.90 /0.10(60 + 18 −

2) + 0.90,0.10(−100) + 0.90(60 + 16 − 2 ⋅ 2).0} = 41.5 

The intuition behind is the same of the Bully vs. Retaliator case, but from the point of view 

of the retaliator. 

- Retaliator vs. Retaliator: 𝐸>[𝑅] = 𝐸9[𝑀] = 30 

Since no one probes, players will never adopt dangerous weapons, thus behaving as two mice. 



- Retaliator vs. Prober-retaliator: 𝐸>[𝑃] < 𝐸>[𝑅] 

The Prober-retaliator strategy is characterized by a high level of complexity with respect to 

the other strategies, thus it requires a more sophisticated approach. However, for the purpose 

of this thesis I deem not useful nor easy to explain the application of such methods. (For all 

the experts in the field, the payoff equation of the Retaliator when playing against a Prober-

retaliator would exploit the Markov Chain stochastic process). Therefore, it is sufficient to 

understand how the comparative approach can be used to conclude that 𝐸>[𝑃] < 𝐸>[𝑅]. When 

a Prober-retaliator and a retaliator fight, the standard scheme is that of two retaliators against 

each other. But the Prober-retaliator can generate some deviations from the normal pattern as 

they probe with a 5% of probability. When it is the case, the encounter escalates as if two 

hawks were fighting, making the game end for a death rather than for round exhaustion. 

Therefore, the Retaliator’s payoff is lower for two main causes:  

1. They might be the ones to die and receive a -100; 

2. Even if they win, the payoff is lowered by scratches (at least one) to which 

they survived. 

- Prober-retaliator vs. Mouse: 𝐸?[𝑀] = 0.64(60 + 10) + 0.36 ⋅ 30 = 55.6 

The same approach of Mouse vs. Prober-retaliator has been used to compute the probabilities 

of the scenario in which the prober retaliator never probes and of its counter event. In the first 

part the prober-retaliator gains a surplus for the time saved of 10 since we take the expected 

value at which the 5% of probing realises. In the last part the “30” is due to the expectation of 

a retaliator against a mouse (since prober-retaliator at 36% hasn’t played D). 

- Prober-retaliator vs. Hawk: 𝐸?[𝐻] ≈ 𝐸>[𝐻] = −20 

Due to the complexity of accounting for the 5% of the prober-retaliator using aggressive 

weapons as first move, we can simplify to the case of Retaliator vs. Hawk. Indeed, the scheme 

is almost identical, the only difference stems from the fact that when doing the opening move 

a prober-retaliator might start playing dangerously with a 5%, which has an impact on the 

expectation small enough to be approximated to zero. 

- Prober-retaliator vs. Bully: 𝐸?[𝐵] > 𝐸>[𝐵] 



Following the same logic as in other fights were prober-retaliators are involved, the 

expectation is slightly higher than it is in the Retaliator case. Again, due to the 5% of 

probability of a prober-retaliator probing. 

- Prober-retaliator vs. Retaliator: 𝐸?[𝑅] > 𝐸>[𝑃] 

The inequality stems from the fact that, since it is certain that only prober-retaliators could 

start playing dangerously, the chances of their attack being lethal (rather than their opponent’s 

one) are in favor of prober-retaliators. 

- Prober-retaliator vs. Prober-retaliator: 𝐸?[𝑃] < 𝐸>[𝑃] 

In this case, the payoff is lowered with respect to a Retaliator vs. Prober-retaliator game by 

the decrease in the probability that a game would end with a tie (as Mouse vs. Mouse). This 

time, both the players could start probing and the chances of the game escalating increase. As 

a consequence, it will happen more frequently that a fight ends for a deadly damage, reducing 

the expectation in the payoff. 

This model calls for a slight different approach than usual when looking for the ESS given the way it 

was built. Unlike the theory imposes, in this case there is no need to look at NE first, since the authors 

make already such assumption, stating that “[…] we programmed five possible strategies, each of 

which might be thought on a priori grounds to be optimal in certain circumstances.”21.  Specifically, 

one must examine each column and interpret the numbers therein to assess the evolutionary stability 

of such strategy. The logic behind is that if a strategy is an ESS, no alternative strategy should yield 

a higher payoff against it than it does when played against itself. To make an example, in figure [1] 

the Hawk strategy is not an ESS, since when observing the Hawk column, the row strategy Mouse 

would obtain a higher payoff against Hawk than Hawk earns it against itself (as 19.5>-19.5). Thus, 

the Hawk strategy would be bested out by the Mouse strategy. According to this line of reasoning, 

the only ESS in figure [1] is the Retaliator strategy, with Prober-Retaliator being nearly an ESS. 

Consequently, one expects the population to evolve such that the other strategies remain at a low 

frequency, while Retaliator and Prober-Retaliator dominate. The balance between the two will be 

influenced by the frequency of strategy Mouse, given that probing is only an advantage against 

Mouse. 

 
21 J. Maynard Smith & G. R. Price “The Logic of Animal Conflict” 



Finally, the simulations show that “limited war” strategies are beneficial for individuals as well. Even 

after excluding the possibility of group selection as the sole driver, such strategies remain 

evolutionarily stable, whereas the Hawk (or total war) strategy does not. 

IMPLICATIONS 

Real animal conflicts are vastly more complex than the simulated model presented in the paper. In 

nature, animals can employ a wide range of strategies and tactics, but most of all they are equipped 

with diverse weapons, such as horns, claws, fangs, and spines, that significantly influence their 

combat behaviour. As well as different levels of dangerous move they could employ it might vary in 

intensity according to environmental conditions, individual physical capabilities and prior 

experiences. 

In addition, natural conflicts involve intricate signalling, a careful assessment of an opponent’s 

strength and often the presence of third parties either as allies or enemies. Despite the model reduces 

these complex behaviours to a limited set of strategies, its conclusions remain robust: even when 

allowing for a range of modifications, the Hawk strategy will consistently fail to emerge as an 

Evolutionarily Stable Strategy. 

CONTINUATIONS 

It is now licit to ask: how far can the conclusions of the last chapters really go? Maynard and Price 

analysed five different strategies, each named after a particular species. But in the end, these are just 

simplifications, how much truth can be extracted from them when considering a still indefinite 

number of species who possess different cognitive abilities? 

The Earth is home to an incredibly diverse range of species, each fascinating in its own way. Yet, 

there’s one among them that stands out for the complexity and superiority of its brain: the human. 

Our brain has allowed us to diverge significantly from the animal world, so much so that we now ask 

to what extent can humans still be considered animals? 

It’s a question that keeps leading to fascinating answers and new discoveries. In the final chapter of 

this thesis, I’ll explore how much of what it has been concluded so far can actually be applied to 

humans. The results might either reveal surprising similarities (proving how powerful Mother Nature 

is, even when working with limited brain capacity) or highlight a fundamental difference, showing 

how our ability to reason has led us toward a more efficient way of fighting, one that goes beyond 

what nature alone would have shaped. 



HUMAN CONFLICTS: THE WAR OF DETERRENCE 
PREFACE 

To continue from the question left in the previous paragraph, I created a model with the aim of 

exploring whether humans are still children of their own mother, following natural instincts, or they 

have become something else, slaves to a technology destined to redesign the balance set by nature. 

In other words, the model tries to understand if the pattern observed in animal fights is still valid to 

explain human strategies, or if human equilibriums have been altered, far from their roots. 

The object of study is the deterrence war: a way of holding back, of fighting without fighting that 

avoids destruction by holding it constantly on the edge of possibility. This is the limited way for 

humans to fight. It is far away from what nature alone has thought of, as human conflicts are 

influenced by macro-forces as politics, religion, power. Indeed, simplifications have been made, as 

well as realistic assumptions. The model does not rely on empirical data, but rather a theoretical 

framework built to make the problem manageable and isolate the mechanisms of the deterrence 

strategy.  

Lastly, the result will be discussed with a broader reflection on today’s global equilibriums. The aim 

is to rethink the way large-scale conflicts are perceived: not only as a threat, but also as a mean to 

maintain stability, where damage is not maximised, but rather minimised instead. Such perspective 

may offer a different understanding of modern deterrence, seeing it less as a source of fear and more 

as a tool for balance. 

THE MODEL 

Before diving into the model construction, it is useful to outline the key aspects of modern conflicts 

in order to justify the following choices. Nowadays, contemporary warfare is characterized by a 

strategic balance between deterrence and escalation, centred around the possession or non-possession 

of nuclear weapons. Countries may assume different positions on the use of force: from direct 

employment of highly destructive weapons, to mere possession as a form of deterrence or complete 

disarmament relying only on conventional tactics. These strategic differences affect deeply the 

stability of international relations and peace. By considering these elements, the model aims to study 

the real dilemma faced by nations between security and responsibility, and to explore under which 

conditions deterrence can be considered an Evolutionary Stable Strategy. 



When building the model, I decided to opt for an approach that combines the front lectures of the 

Games & Strategies course, for completeness and modernity, and the model used by Maynard & Price 

in “The Logic of Animal Conflicts”, for similarity of the subject matter. My aim is to recreate such a 

model to assess whether the limited war in societal conflicts is an Evolutionary Stable Strategy as in 

the natural world. By analogy with the animal world, the deterrence war is the equivalent of the 

limited war in animals. Nuclear weapons are the most dangerous and lethal weapons ever created by 

men, thus when considering the use of them one should account also for all the negative consequences 

they will have, unlike animal weapons. 

When defining a game based on a modern game theory approach, there are some key steps that must 

be followed: 

1. Define the players. 

Nowadays, wars are fought between countries not men themselves. Thus, I considered two 

generical countries 𝐶! and 𝐶" who do not refer to any real-world case. 

2. Define the set of strategies 𝛺! and 𝛺". 

Since the aim is to investigate whether the deterrence approach is an ESS, I shall compare it 

to all the alternative countries have today, to make the work complete and truthfulness. I 

identified three main strategies each country could adopt: 

a. 𝑁 = use of nuclear weapons (or, in general, extremely dangerous weapons) as a mean 

to solve conflicts. 

b. 𝐷 = detention of nuclear weapons for protection and defence, refraining from using 

them first and employing “normal” weapons otherwise. 

c. 𝑈 = disarmed of nuclear weapons, unable to reply to a nuclear attack, employing 

solely normal means. 

Thus, Ω! = Ω". 

3. Describing the payoffs assigned to each strategy. 

It is not any easy job to assign payoff when simplifying a real-world case, as no exact number 

can be suggested. Therefore, I decided not to distribute any number, which is a common 

practice when just comparisons are enough to draw conclusions. It must be remarked the 

complexity of social warfare scenarios, where diplomacy, timing, fear and so on have an 

influence on the outcome. Indeed, we can imagine the use of nuclear weapons as only a part 

of a bigger equation, but even if ignoring the general form of it, it can be assessed whether 

deterrence increases, decrease or none a general country’s payoff with respect to its 

alternatives. For the scope of the model, I chose four components that should be taken into 

account when determining a strategy’s payoff: 



a. 𝑃 = profit from a victory (i.e. territory and resources, net of losses). 

b. 𝐶 = cost of receiving a nuclear attack. 

c. 𝑆 = sanctions and alliances against the country who employed nuclear weapons. 

d. 𝑊 = cost of using alternative and less dangerous weapons. 

Note that they are all constructed to be positive quantities a priori. 

4. Drawing the payoff matrix. 

Before plotting the matrix, I decided to report the expected payoff of each strategy against the 

others for clarity purposes (which will then inserted in the matrix), recalling the approach used 

in “Replication and Explanation of the Model” in “The Logic of Animal Conflict”. Given the 

three strategies described above, nine different situations can verify: 

a. 𝐸@[𝑁] =
!
"
𝑃 − 𝐶 − 𝑆, since when two 𝑁 fight each other, both employ nuclear 

weapons receiving 𝐶 and 𝑆 in response. The half is due to the fact that only one will 

win, with equal possibility in our simplified model. 

b. 𝐸@[𝐷] =
!
"
𝑃 − 𝐶 − 𝑆, equal to the previous case since when 𝑁 attacks, 𝐷 will reply 

with a nuclear attack too, behaving like two 𝑁 fighting. 

c. 𝐸@[𝑈] = 𝑃 − 𝑆, as the unarmed country can’t reply with a nuclear attack, leading the 

opponent to a guaranteed victory without incurring in the risk of receiving 𝐶. 

d. 𝐸A[𝑁] =
!
"
𝑃 − 𝐶 − 𝑆, analogous concept of 𝐸@[𝐷]. 

e. 𝐸A[𝐷] =
!
"
𝑃 −𝑊, where each country wins with probability a half, employing only 

normal weapons at a cost 𝑊, since no one will ever start probing first. 

f. 𝐸A[𝑈] = 𝑃 −𝑊, since the country who adopts strategy 𝐷 against 𝑈 always wins due 

to the nuclear threat, even if adopting only nuclear weapons. 

g. 𝐸B[𝑁] = −𝐶, as 𝑈 loses against 𝑁, incurring in the cost of receiving a nuclear weapon 

to which they can’t counterattack in any way.  

h. 𝐸B[𝐷] = −𝑊, according to the same logic as in the previous cases. 

i. 𝐸B[𝑈] =
!
"
𝑃 −𝑊, the classic conflict without extremely dangerous moves, where 

each country wins with probability a half and face costs 𝑊. 

Here it follows the corresponding matrix, where the comma separates the payoff of the two 

players (or countries): 



 
Now that the game has been defined, the next step is to study such game, finding its Nash Equilibria 

and its ESS. Since the aim of my attempt is to demonstrate if (𝐷, 𝐷) is evolutionary stable, only pure 

strategies will be considered, disregarding the game in its mixed form. 

Firstly, it must be noticed the symmetry of the matrix, where in Game Theory it is defined as the 

condition in which both players have the same set of strategies (Ω! = Ω") and they have a symmetric 

payoff (𝐸!,D[𝐽] = 𝐸",E[𝐼]). The utility of such symmetry will be revealed later in the text, but it is a 

good practice to notice such matrix properties a priori. Secondly, before starting the NE search, the 

existence of strictly dominated strategies should be checked. It is not a compulsory step, but it proves 

to simplify both the investigations on NE and ESS to a variable extent, according to the complexity 

of the matrix. In this case, for player 1, strategy 𝑈 is strictly dominated by 𝐷 since all its payoffs are 

strictly lower:  
!
"
𝑃 − 𝐶 − 𝑆 > −𝐶, !

"
𝑃 −𝑊 > −𝑊 and 𝑃 −𝑊 > !

"
𝑃 −𝑊. 

And again, for player 2, strategy 𝑈 is strictly dominated by strategy 𝐷: 
!
"
𝑃 − 𝐶 − 𝑆 > −𝐶 and !

"
𝑃 −𝑊 > −𝑊 (since the last row has just been eliminated form the 

game). 

Therefore, our matrix game reduces to: 

 

Once the game has such form, it is easier to find its Nash Equilibria, if they exist. Indeed, there are 

two NE: (𝑁,𝑁) and (𝐷, 𝐷) under the assumption that !
"
𝑃 − 𝐶 − 𝑆 < !

"
𝑃 −𝑊 and so 𝐶 + 𝑆 > 𝑊. If 

the assumption holds, when the game in is (𝑁,𝑁) no player has incentive to deviate since other 

strategies has equal expectation. When it is in	(𝐷, 𝑁) or (𝑁, 𝐷), respectively 𝐶" or 𝐶!, has incentive 

to deviate toward strategy 𝐷, where a highest payoff is expected.  

The logic behind the assumption, is that a deterrence strategy can be a Nash Equilibrium and (maybe) 

an Evolutionary Stable Strategy only in the case where the damages suffered by a counterattack plus 



the sanctions received and alliances against the country are higher than the simple cost of using less 

dangerous weapons. Since nuclear attacks have disastrous consequences, the reality confirms the 

assumption. Indeed, even in the case of weak sanctions, the countereffects are so serious that the 

inequality can still be verified. 

Finally, the last step of the analysis asks to verify which among the Nash Equilibria is evolutionary 

stable among time. As explained in “Preface on Game Theory”, there exists a precise algorithm to 

establish whether a NE is also an ESS. The utility of the matrix symmetry can now be understood, 

since to exploit the algorithm, the NE must be a symmetric one.  

Here it follows the algorithm, repeated both for (𝑁,𝑁) and (𝐷, 𝐷) since they are symmetric NE (note 

how the process has been simplified by the elimination of the strictly dominated strategies). 

 (𝑁,𝑁): 

1. Denoting σ = 𝑁, then 𝑓(σ, σ) = 𝑓(𝑁,𝑁) = !
"
𝑃 − 𝐶 − 𝑆. 

2. Investigating how each pure strategy behaves with respect to σ: 

𝑁: σ(𝑁) = 1 since the pure strategy 𝑁 is played with probability 1 under σ, so it is case 1; 

𝐷: σ(𝐷) ≠ 1, it is not case 1. 

      𝑓(𝐷, σ) = 𝑓(𝐷,𝑁) = !
"
𝑃 − 𝐶 − 𝑆 which is equal to 𝑓(σ, σ), thus it is not case 2. 

      𝑓(𝐷, 𝐷) = !
"
𝑃 −𝑊 > 𝑓(σ, 𝐷) = !

"
𝑃 − 𝐶 − 𝑆, it is case 3b. 

3. Since one of the pure strategies is case 3b, (𝑁,𝑁) is not an ESS. 

(𝐷, 𝐷): 

1. σ = 𝐷, 𝑓(σ, σ) = !
"
𝑃 −𝑊. 

2. 𝑁: σ(𝑁) ≠ 1, thus it is not case 1. 

     𝑓(𝑁, σ) = !
"
𝑃 − 𝐶 − 𝑆 < 𝑓(σ, σ), it is case 2. 

𝐷: σ(𝐷) = 1, case 1. 

3. Therefore, (𝐷, 𝐷) is an ESS. 

CONCLUSION 
As shown by the game, the deterrence strategy proves to be evolutionarily stable over time. This lead 

to the conclusion that, in certain respects, human behaviour is more similar to that of animals than 

one might initially assume. Humans have naturally converged toward this equilibrium, consciously 

or not, recognizing that a limited war strategy is often the optimal way to manage conflict, as it 

minimizes unnecessary damage and preserves life. It is a striking result, highlighting the power of 

Mother Nature, who still models and shape the world. Einstein famously remarked that a mouse 



would never build a mousetrap, implicitly criticizing human folly; yet in reality, even a mouse can 

harm its own kind, but no animal would challenge an opponent they cannot possibly defeat. That 

must be folly. In this sense, the deterrence strategy reflects a deeply rooted, almost instinctive logic 

shared across species. 

FINAL DISCUSSION 
The analysis presented in this thesis leads to a somewhat unsettling but realistic reflection on the 

nature of human conflicts. While deterrence strategies often rise fear and some criticism, they may 

instead represent the approach that causes the least harm in an “imperfect” world. Unfortunately, the 

dream of a world ruled only by diplomacy is for now unfeasible. Deterrence strategies offer instead 

a way to prevent large-scale violence. Despite deterrence not being flawless nor a universal optimal 

solution, it faces the difficulty to overcome certain aspects of the human nature.  

 

As much as we like to see ourselves as rational and cooperative, history suggests that conflict is not 

just a mistake or failure, but sometimes it is a reflection of deeper instincts. Beneath the surface of 

civilization, humans might show occasionally a tendency for aggression and competition, especially 

when survival or vital interests are at stake: the so-called love for the war. There is some truth in the 

idea that the humankind has an ambiguous relationship with war, they are attracted by its power of 

resolution while fearing the destruction it brings. 

TODAY 
 

To understand how these primordial forces play out today, it is enough to look at how states manage 

conflict and avoid escalation. The global system is shaped by rules, agreements, and balances of 

power that reflect the same logic seen in the model developed in this thesis. The behaviour of modern 

states shows how deterrence works in practice, confirming the model’s conclusions about the balance 

between threat, cost, and restraint.  

 

The ongoing rivalry between the United States and Russia is a clear example of such dynamics. 

Though the Cold War ended long ago, the logic of deterrence still shapes their relations. Both nations 

finance vast nuclear arsenals, managed by carefully designed systems to avoid accidents or 

unauthorized use. Coherently with the model built in the last section of this thesis, economic sanctions 

have been employed as a tool of pressure and signalling: from the sanctions imposed on Russia after 

the annexation of Crimea in 2014 (Council of the European Union, 2014) to the measures taken 

following the invasion of Ukraine in 2022 (U.S. Treasury, 2022). But as real cases reveal, even weak 



sanctions do not deny the validity of the model assumption (𝐶 + 𝑆 > 𝑊), which should be better 

referred to as a general law. Indeed, the threat and damages from a counterattack are so high that 

makes the improbability very close to the impossibility of a nuclear use. As the model developed in 

this thesis shows, the combination of potential damages from a counterattack and the heavy costs 

imposed through international sanctions creates a powerful disincentive for the use of nuclear 

weapons. The anticipation of destruction, loss of human lives and international isolation is sufficient 

to keep nuclear powers locked in a delicate balance.  

 

In this sense, today’s geopolitical patterns confirm the conclusions of the model: it is precisely the 

awareness of the unbearable costs that pushes countries to avoid crossing the red line. At the same 

time, this observation invites a deeper reflection on the delicate balance we depend on. While 

deterrence has so far been effective in preventing the most extreme forms of conflict, it is not a 

permanent solution nor a guarantee of lasting peace. Yet it offers a working framework, which if 

carefully managed can strengthen stability and explore more sustainable forms of balance over time. 

Recognizing the tensions built into human nature does not mean bowing to them, rather it opens the 

way to gradually building a system where caution, restraint and cooperation can coexist, even in a 

world shaped by competition and risk. 

A LESSON FROM DETERRENCE 
 

This delicate balance between threat and restraint not only shapes international relations, but also 

recalls patterns long observed in the natural world. Just as many animal species rely on displays of 

strength and signals of warning to avoid deadly fights, human societies have developed complex 

strategies to manage conflict and preserve peace. To better understand these dynamics and the deeper 

lessons they hold for the humankind, I deemed helpful to report some extracts of thinkers who have 

explored deterrence before at different époques. 

 

The economist and strategist Thomas Schelling, who was awarded the Nobel Prize in Economic 

Sciences in 2005, offers one of the most game-changing insights into deterrence. In The Strategy of 

Conflict (1960) he shows that peace is not achieved by removing danger, but by using it as a tool to 

shape behaviour. Schelling argues that the calculated use of threats, combined with a degree of 

unpredictability, can prevent opponents from making reckless moves. His lesson is both subtle and 

powerful: in a world where conflict cannot always be avoided, the real challenge is to learn how to 

manage risk, turning potential threats into instruments for stability. This idea finds an often 

underestimated parallel in nature that has always been under the eyes on many, indeed many animals 



turn danger to their advantage too: a pufferfish inflates to appear larger when threatened, some snakes 

mimic the appearance of venomous species or some insects even have a plant-like appearance. 

Deterrence in this sense teaches that danger itself can be transformed into a safeguard not by 

eliminating it, but by harnessing it wisely. 

 

The philosopher Thomas Hobbes in his classic work Leviathan (1651) offers a perspective that helps 

explain why deterrence can work. Hobbes argued that humans, by nature, live in a state of fear and 

mistrust, where the absence of a strong authority leads to a constant conflict (in latin “homo homini 

lupus” from Plauto’s work Asinaria: “man is a wolf to man”). According to him, what keeps people 

from attacking each other is not trust or morality, but the fear of punishment and defeat. The lesson 

Hobbes offers is clear and relevant: peace is often preserved not through goodwill, but through the 

fear of consequences. This reminds patterns found in nature, where many animals avoid dangerous 

fights not out of empathy, but because the cost of injury or exhaustion is too high. Wolves, for 

instance, engage in ritualized displays rather than deadly fights for dominance and many predators 

abandon a chase when the risk of injury outweighs the potential reward. Hobbes’s insight reminds us 

that fear, while uncomfortable, can play a constructive role in limiting violence and that 

understanding these instincts allows us to build more realistic and stable form of peace. 

 

Taken together, the lessons of Schelling and Hobbes remind that the roots of deterrence lies not only 

in political systems, but in human nature itself. Both thinkers show that peace is rarely the product of 

perfect trust or moral progress, but often the result of managing risk, fear and competition with care. 

Their reflections is an invite to look forward, where understanding the forces at play is the first step 

toward reducing tension and exploring new ways to prevent conflict, without ignoring the realities of 

the world. 

Perhaps the greatest challenge is not only to recognize these patterns, but to imagine how they might 

evolve or how the same instincts that once drove survival through confrontation could be redirected 

toward cooperation, restraint and security. This calls for a kind of creativity and courage: the ability 

to work with our nature without being trapped by it, to transform the logic of conflict into 

opportunities for balance and coexistence. 

“By understanding the instincts we share with the natural world, we may yet 
find the wisdom to rise above them.” 
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