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Abstract

This paper delves into the process of strategic decision-making in Formula 1 racing by
combining elements of game theory, behavioural models, and simulations. First, an overview
of Formula 1 and the main factors that influence its race strategy is established. Subsequently,
a literature review investigating previous works on game theory concepts applied to race
strategy is provided. This is followed by a section exploring mathematical and game theoretic
concepts present in real life Formula 1 racing and race strategy simulations. Lastly, several
models that replicate F1 racing scenarios are presented, analyzed, and ultimately simulated in

order to examine and explore strategic decision-making in F1-like races.

It is important to mention that artificial intelligence in the form of ChatGPT was used for the

creation of the model’s Python scripts.
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1. Introduction

1.1 Motorsport and Formula 1 History

Automotive racing started soon after the development of the gasoline-powered
combustion engine at the end of the 19th century. According to Encyclopadia Britannica
(Britannica), since the invention of transportation, humans have always found a way to make
it enjoyable. That marked the beginning of motorsport, and it has not stopped to fascinate and
captivate the world, providing people with adrenaline rushes from witnessing
high-performance vehicles race each other. Several categories, such as Rally Racing,
MotoGP, and Formula 1, have allowed people to connect and bond over their shared interests,
fostering a sense of community.

Formula 1, since its first official race in 1950 in France, represents the pinnacle of
motorsports and continues to fascinate all over the globe, creating a fan base of over 826
million people. Since its inauguration, F1 (1) has not stopped developing, introducing races
in South & North America, Africa, Asia, Australia, and, most recently, the Middle East,
making it a truly global championship. People are attracted to the thrill produced by the 20
drivers' competing for the most prestigious and sought-after prize, the F1 Drivers'
Championship. Simultaneously, the teams® fight for the F1 Constructors' Championship and
the corresponding prize money, which depends on their position in the rankings at the end of
the season.

The constant thrill of watching teams implement cutting-edge technology and the
finest automotive engineering to develop and deliver the most competitive car has captivated
the interest of an increasing number of people in recent years. As indicated by Max Simon
(Simon), since 2021, F1°’s global fanbase experienced a growth of over 12% and a general rise
of interest of 5.7%. This growth is mainly explained by an increase in social media following
and the impact of the “Drive to Survive” Netflix series, publicizing the sport on a
transnational level.

Moreover, with the passing of years and advancements in technology, F1 has become
more complex, making it more difficult for teams to get the upper hand on their competitors.

Therefore, teams try to optimize every single aspect of each race, such as the setup of the car,

! Drivers currently competing in the 2025 F1 season: Norris, Piastri, Russell, Antonelli, Hamilton, Leclerc,
Verstappen, Tsunoda, Hadjar, Lawson, Alonso, Stroll, Bearman, Ocon, Bortoleto, Hiilkenberg, Gasly, Doohan,
Sainz, Albon.

2 Constructors currently competing in the 2025 F1 season: Mclaren, Mercedes, Ferrari, Red Bull Racing, Racing
Bulls, Aston Martin, Haas, Kick Sauber, Alpine, Williams.



tire choice, and when to pit. Teams try to develop and implement both on- and off-track
strategies, which allow them to unlock and use the full potential of their car. Such strategies

are, for example, deciding when to pit during a race or which tires to choose at the start.

1.2 F1 and Strategies

Strategies have always played a major role in motorsport and are a crucial part of
Formula 1. Teams and drivers tend to implement strategies in a multitude of situations, both
before and during the race, as there are some events you can not prepare for. In F1, race
strategy is all about trying to achieve the best possible race outcome. This is done through a
mix of data analysis and predictive simulations, typically executed by a team of strategists
and engineers to optimize certain factors, such as choosing tire compounds, when to pit, and
fuel management. As stated by Catapult (Catapult 2023), a commercial sports technology
company that develops data analysis tools, every team on the grid® employs a range of tactics
to beat their competitors, from predicting the weather to anticipating their rivals' next move.
Ultimately, race strategy is centered around maximising performance while simultaneously
minimising the time lost during pits, resulting in a plan which unfolds during a race.

Data and predictive simulations play a key role in F1, as executing a winning strategy
often involves drivers making split-second decisions based on real-time insights. To do so
effectively, Formula 1 teams continuously gather thousands of data points throughout each
race via telemetry, real-time data gathering sensors mounted on the cars. These sensors
capture a vast array of information, such as tire temperature, speed, fuel consumption, and
engine performance, powering millions of simulations that predict and create a plan for any
scenario that can arise during a race. F1 teams rely heavily on data to make informed
decisions and optimise their chances of gaining an edge on their competitors and ultimately

securing championships.

3 The F1 “grid” refers to the 10 teams and 20 drivers participating in the current season.



1.2.1 Predictive Simulations

Predictive models have become vital in Formula 1, combining data from sensors with
simulation tools to predict certain situations in advance. Teams often rely on data from past
races held at specific tracks to uncover patterns and key performance indicators that influence
their strategic planning. This retrospective analysis enables them to refine crucial elements
such as pit stop timing, tire degradation, and overtaking zones. Formula 1 teams employ
sophisticated modelling systems to replicate race conditions, taking into account factors like
weather predictions, track dynamics, and rival performance. These models enable the testing
of various scenarios, ranging from when to pit and what tires to use to how much fuel to load,
helping teams determine the most effective strategy by assessing potential outcomes.
Furthermore, predictive simulations enhance strategic capabilities by integrating real-time
data with machine learning and statistical tools. As stated by Intrafocus (Intrafocus), a
performance management software firm, these models process numerous variables, including
vehicle performance, meteorological inputs, and competitor behaviour, to estimate finishing
positions and lap times. With this foresight, teams can adapt strategies dynamically during the
race, capitalising on new opportunities and responding swiftly to unfolding events to improve
their chances of a strong finish. During races, teams utilize algorithms such as Bayesian
networks to refine their race strategies. Moreover, machine learning techniques, particularly
Recurrent Neural Networks (RNNs), are used to detect intricate patterns within the data. This
allows for a more nuanced understanding of race behaviour and improves the precision of
performance predictions.

To better understand race strategy, F1 teams use gapper or race history plots, visual
tools used to identify the time gap between drivers throughout a race. A gapper plot measures
the time difference between a car and a reference car throughout a race (Figure 1, Appendix).
According to Catapult (Catapult 2024), gapper plots help strategists monitor how the race is
unfolding and allow them to simultaneously track the performance of both their cars and
those of their competitors. Specifically, it plots the relative position of each car to a given
zero on the y-axis, which in the case of Figure 1 is the race winner’s average lap time, while
the x-axis tracks the relative time progression during a race. As specified by MIA School of
Race Engineering (MIA4), gapper plots play a significant role in pit stop tactics as race
engineers use them to spot undercut/overcut* opportunities, or to identify the best possible

time to pit safely without losing track position. An example of a data analysis and predictive

* Undercut: driver pits before their rival to gain an advantage with fresher tires. Overcut: driver stays out longer
and pits after their rival, gaining an advantage by being faster on older tires.



model tool used by 7 out of 10 teams on the current F1 grid and the FIA® is RaceWatch.
RaceWatch is an advanced system that combines machine learning models with real-time
tracking of tire degradation, fuel consumption, driver performance, and pit stop tactics. It
constantly simulates essential race factors, providing strategists with refined forecasts for a

wide range of race scenarios.

1.2.2 Pit Stop Tactics

A factor that influences race strategy and plays a major role in Formula 1 is the pit
stop. Its execution and timing can impact the outcome of races. On average, pit stops result in
a total time loss of 20-25 seconds. Thus, timing is crucial, as a wrongly-timed pit stop can
have major setbacks. Pit stops allow teams to change tires, make minor adjustments to the
car, or repair any damage. In 2007, a rule was introduced obliging drivers to change tire
compounds at least once during a race, making one pit stop per race mandatory. This was
done to make the races more interesting to watch, and resulted in an added layer of difficulty
to pit stop strategy. Optimizing pit stop timing involves the simultaneous monitoring of
several elements, such as tire wear, current track position, and competitors’ strategies. Race
strategists must stay alert and responsive throughout races, frequently adjusting their
approach in real-time to seize advantages or reduce potential threats. Elements like on-track
traffic, the deployment of safety cars, and shifting weather conditions all play a role in

shaping pit stop tactics, making it one of the most dynamic elements in Formula 1 racing.

1.2.3 Fuel Management

Fuel management is another important aspect of race strategy, although refuelling is
no longer allowed. As outlined by Motorsport Engineer (Motorsport Engineer), an online
platform focusing on the engineering side of Formula 1, teams focus on balancing the car’s
fuel load to optimize performance® while ensuring that the car does not run out of gas.
Strategists use both historical data to run simulations, such as expected race pace and fuel
consumption rates, and information on the track layout to develop a fuel management plan.
Moreover, race engineers must observe fuel levels throughout races and fine-tune their

strategy. For example, when a safety car is introduced, engineers might want to save fuel by

® FIA: Fédération Internationale de 1'Automobile, governing body for world motorsport.
6 The less fuel the car has, the lighter it becomes and, as a result, the faster it laps around the circuit.



maintaining a steady pace, enabling the car to finish the race with less fuel onboard. On the
other hand, if a driver is engaged in a close fight for position, the team might decide to burn

more fuel to gain an advantage.

1.2.4 Tire Management

Another factor that the pit wall monitors throughout a race weekend is tire
performance. Engineers observe tire wear, temperature, and degradation throughout race
sessions to gather information about which tire to select and when to pit. By using predictive
models, teams can measure the influence of tire strategy on race outcomes. Moreover,
reviewing several variables such as track temperature and tire degradation allows teams to

predict which tires will deliver the best results during a race.



2. Literature Review

This study focuses on understanding and examining the multiple ways in which game
theory concepts are applied in the strategic decision-making process of Formula 1 teams.
Race strategy is the ideal domain for the application of game theory, as several
non-cooperative agents’ try to select and implement a strategy that optimizes their pay-off®.
The pay-off received is in the form of championship points, and the amount depends on the
position the drivers finish the race in; the higher their placement, the more points’ they
receive. Moreover, in 2021, the head of vehicle performance of the Williams Racing'® team
(McCabe) stated that preparing for an F1 race is “sort of a game theory problem” itself.

F1 is a highly complex sport, where every race weekend, teams try to maximize their
cars’ performance to obtain the best possible result during the race. However, car
performance is often not solely enough, as teams try to get the upper hand on their
competitors by anticipating their decisions and applying winning strategies.

At the end of the 2010s, McLaren Racing'_Limited (Mulholland) looked at the
optimization of fuel consumption, pit stops, and their influence on lap times during F1 races
in their paper “Formula One Race Strategy”. They explored how game theory and
mathematical concepts such as algebra, integration, differentiation, and graphical analysis can
be applied to a simplified F1 model to enhance race strategy and maximize pit stop planning.
They focused on the effect that different initial amounts of fuel at the start of a race have on
total race time, and calculated the additional lap time brought about by carrying more fuel.
All this was done to ultimately decipher the optimal pit stop lap during a Formula 1 race.

From then onwards, many official papers and blogs have examined Formula 1 race

strategy through a game-theoretic lens. Gordon McCabe (McCabe), in his blog post,

investigated whether Nash equilibria, a state where no player benefits from changing their
strategy, were applicable in racing scenarios. In a similar direction, Artem Filatov (Filatov),
in his blog post, analyzed how mathematics and game theory can be used to model and
optimize race strategy decision-making.

Over the last couple of years, simulation techniques have been used to solve the pit

stop strategy optimization problem. The model created by Maria Michele Crudele et al.

7 Agents: entities that make decisions that affect the results of the game.

8 Pay-off: reward received for a certain strategy chosen in a game.

? Points system: only drivers finishing in positions 1 to 10 receive points, respectively: 25, 18, 15, 12, 10, 8, 6, 4,
2, 1.

% Williams Racing is a British Formula 1 team founded by Sir Franck Williams and Patrick Head in 1977.

" McLaren Racing is a British Formula 1 racing team founded by Bruce McLaren in 1963.



(Crudele), “Formula 1 Grand Prix Simulator: a Dynamic Game Theory Approach”,
investigates F1 drivers’ optimal strategies. They established a simulator where each driver is
a rational decision-maker who makes their decisions based on the Nash equilibrium. The
simulation considers several factors such as tire wear, speed, and drivers’ experience to
predict their next moves, such as whether they would overtake or defend. The simulator
utilizes dynamic programming to update the status of each driver and the evolving race
conditions after every lap. This resulted in a model that mirrors real-world F1 racing
behaviour, where regardless of the drivers’ starting position, the more experienced they are
and the more their car performs, the higher the probability that they will end up dominating
the race. Analogously, J. Bekker and W. Lotz (Lotz) established a model in their paper,
“Planning Formula One Race Strategies Using Discrete-Event Simulation”, that is meant to
assist F1 teams in planning race strategies. The authors developed a simulator using
discrete-event simulation'> (DES) that mimics and replicates real-world racing events, such as
overtaking maneuvers and pit stops, to help improve and maximize teams’ race outcomes.
They implemented real-world data on base lap times, starting grid positions, and fuel loads,
to analyze the influence of various race strategies on race outcomes and the impact of random
events on strategy success. Also utilizing modelling, Heilmeier et al. (Heilmeier) used
historical data on practice and qualifying sessions, machine learning, and neural networks to

optimize pit stop strategies. Correspondingly, Andrew Phillips (Phillips), in his blog

Flmetrics, published an article discussing his process of building a mathematical race
simulator mirroring Formula 1 competitions. The model aimed to recreate F1 races to
examine and investigate the effect of certain strategies on race outcome.

Later in the paper, taking inspiration from the above stated works, several simplified
models replicating strategic decision-making during F1 races are developed, explained, and

simulated.

12 DES definition: method used to model processes which vary at determined time instances. It focuses on states
and events, rather than tracking system states continuously.
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3. Preliminary Mathematics

Mathematical and game-theoretic concepts play a fundamental role in Formula 1’s
strategic decision-making. In the papers covered in the previous chapter, we got a glimpse
into how mathematical and game-theoretic principles, such as the Nash equilibrium and many
more, are utilized in the creation of simulations and analysis of F1 race strategies. To fully
grasp why these were used and why I decided to apply some of these concepts to my own

models, we must first understand what they are and mean.

3.1 F1: A Non-Cooperative Game

Formula 1 can be considered a non-cooperative game, as each driver and team tries to
maximize their results, without directly cooperating with rival teams. ScienceDirect
(ScienceDirect) states that non-cooperative game theory is based on interactive strategic
decision making, where agents act independently and selfishly. Players aim to find strategies
that maximize their outcomes without binding agreements or cooperating with other game
participants. Non-cooperative game theory furnishes insights into strategic decision-making
processes among agents that share the same interest and are maximizing personal utility.
However, non-cooperative games often do not provide the most efficient outcome, as they do
not always ensure Pareto efficiency, a condition where no player can change strategy and be
made better off without damaging another player’s pay-off.

If the non-cooperative model obtains an equilibrium, it is usually displayed in the
form of a Nash equilibrium. A Nash equilibrium can be defined as a combination of strategies
such that no player can increase its pay-off by deviating to a different strategy while all other
players’ strategies remain constant. As stated by John Nash (Nash) himself, “Any n-tuple of
strategies, one for each player, may be regarded as a point in the product space obtained by
multiplying the n strategy spaces ... One such n-tuple counters another if each player'’s
strategy yields the highest obtainable expectation against the others’ strategies... A
self-countering n-tuple is called an equilibrium point.” Simply put, in a game with several
agents, where each one selects a strategy, a certain set of strategies maximize the players’
pay-offs. If each player in the pay-off maximizing set holds their selected strategy, then no

one is willing to switch to a different strategy. This set of strategies is called the Nash
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equilibrium. Each player’s strategy in the Nash equilibrium is therefore the best response to
the strategies of other players.

Moreover, non-cooperative games can be split into 2 different groups based on the
information available. There are complete information games, where all players have full
knowledge of the game, and incomplete information games, where agents have limited
knowledge of the game. Formula 1 is therefore an example of an incomplete information
game, as drivers’ strategies and preferences are hidden and not shared between teams. Due to
a consideration of simplicity, I chose to create models which are complete information games
where all drivers know each other’s possible strategies. It reduces complexity as there are
fewer unknowns, and the simulation does not need to model players’ anticipation and

reaction to opponents’ moves.

3.2 Closed-Loop Systems

Formula 1 is full of unknowns and unexpected events during races, resulting in
unpredictable race conditions. As race strategy is continuously updated in response to the
constantly evolving track environment, strategic decision-making in F1 can be regarded as a
closed-loop game. As mentioned by Fudenberg et al. (Fudenberg), in their article
"Open-Loop and Closed-Loop Equilibria in Dynamic Games with Many Players" open-loop
and closed-loop systems are two different information structures used for multi-stage
dynamic games. Closed-loop models are often a more realistic representation of real-life
scenarios, as players can observe and react to opponents’ actions, and all past play up to the
current stage is known. Information on the game is available to players, allowing them to
analyze their opponents’ moves and adjust their strategies accordingly in real time. As a
result, agents consider the probability of opponents shifting from the equilibrium.
Closed-loop equilibria are often subgame perfect, meaning that the strategy profiles represent
a Nash equilibrium in all subgames of the dynamic game. This indicates that the players’
flexibility to adapt their strategies throughout the game results in outcome-maximizing
actions at each decision point, not just overall. Nash equilibria are therefore often stable and
resist any deviations from the equilibrium. However, closed-loop systems can be complex to
examine due to their dynamic nature, as the interconnection between agents, coupled with the

anticipation and prediction of opponents’ next moves, leads to a more complex strategic
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landscape. This complexity also influences the calculation of the Nash equilibrium, making it
computationally more intensive and occasionally impossible to solve.

To establish a model that mimicked reality as much as possible, I decided to start by
designing an F1 simulation based on a closed-loop system. The idea was to create a 2 driver
model, where one driver’s actions would impact the strategies chosen by the second driver.
However, coding a Python script for the model turned out to be quite intricate and complex,
as dynamic programming" was required. Mainly my limited Python knowledge, and the
restricted computational power of my computer, kept me from continuing the application of
dynamic programming and closed-loop systems. Thus, I decided to focus on a simpler game
theoretic principle, the open-loop system, which mimics reality less but significantly

decreases the computational complexity of the simulation.

3.3 Open-Loop Systems

In contrast to closed-loop models, open-loop systems are distinguished by players
choosing their strategy at the beginning of the game and committing to it. Agents act on their
behalf, with no information on opponents’ choices. It is presupposed that players cannot
detect each other’s actions and strategies, and can therefore not adjust their strategies
throughout the game. Due to the lack of information available, players define their actions
based on their interests and objectives. According to Stewart et al.'"* (Stewart), open-loop
Nash equilibria are not always Pareto-efficient, as other outcomes could exist from which all
agents would benefit. Inefficiencies rise as a consequence of the lack of feedback during
games, and players fixing their strategy at the start. Thus, players may be incentivized to
deviate from their pre-chosen strategy if it becomes disadvantageous throughout the game,
leading to subgame imperfection. Their initially chosen strategy might not end up being the
optimal one once the model unfolds, leading to the formation of Nash equilibria that lack
Pareto efficiency.

Nonetheless, the simplicity advantages received from designing an open-loop
simulation significantly outweigh the associated inaccuracies. Thus, I chose to implement

open-loop systems in my simulations.

8 Dynamic programming: method used for solving complex problems, by breaking them down into smaller
subproblems and solving them singularily.
4 Researchers from the International Institute for Applied System Analysis.
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3.4 Dynamic Games’ Structure

While developing my initial models, I looked at which factors were necessary to
develop the structure of dynamic games. State and action spaces, transitions, and pay-off
functions play a fundamental role in defining the formal layout of strategic models. State
spaces represent all possible scenarios and positions of a model at a given point in time. For
example, lap 1 in a 10-lap race is considered a state of the race. At each state, players have a
certain set of possible actions they can take (overtake, defend, etc.), shaping the action space.
Transitions are the rules or probabilities that occur between states, determining how the
model continues after an action. Each strategy or action chosen during a game result in a
certain reward received, that is determined by the pay-off function. A pay-off function is a
mathematical representation that assigns a value to each possible outcome of a game,
quantifying each players’ satisfaction associated with that result.

In the models displayed in the next chapter, I integrated the mathematical and game

theoritic knowledge outlined earlier into the creation of my own F1 race simulations.
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4. Simulating Race Strategies

4.1 Outline

Throughout the process of model building, I underwent multiple approaches and
established various simulations to examine strategic decision-making in F1. However, to keep
a logical and coherent flow in this paper, I decided to only include models that I found
relevant and provide meaningful insights. Thus, I excluded models involving dynamic
programming, as I ultimately decided against pursuing this path due to the computational
complexity involved. I also decided not to include models based on Monte Carlo simulations
due to the lack of accuracy associated with random sampling, and simulations investigating
the existence of Mixed Nash equilibria, due to the lack of significant findings. It is also worth
reminding that ChatGPT was used to assist me in the coding of Python scripts to run my

models.

4.2 Time Difference - 2 Driver Model

To replicate real-life racing and understand strategic decision-making in Formula 1, I
started by designing a simple model that takes into account a few variables that can have an
impact on race outcomes. I included some of the most important factors of race strategy: tire
management, fuel management, and the driver’s driving style. The aim of this first model was
to measure and examine the impact these three variables have on strategy choice.

I started my investigation by creating a simple model that examines the influence of
tire management, fuel management, and driving styles on the time difference between two
cars during a race. The model was set up in a way that replicated a race between two drivers,
where the time difference between the two drivers’ cars was measured and updated
throughout the race. The aim was to find out how different driving styles, such as aggressive
and passive driving, would impact tire degradation and fuel consumption, and how that in
turn would influence state variables, such as the time difference at each lap of the race

between the two drivers. Pit stops were excluded from this model for simplicity.
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In this simulation, two drivers are fighting for position'. To establish this scenario, I
set up the following state-action framework to analyse the impact different strategies have on

the time difference between two drivers.

Driver 1 (leader): Driver 2 (follower):
If Passive: If Passive:

- Tire degradation per lap: d1 - Tire degradation per lap: d2

- Fuel consumption per lap: fl - Fuel consumption per lap: f2
If Aggressive: If Aggressive:

- Tire degradation per lap: 2d1 - Tire degradation per lap: 2d2

- Fuel consumption per lap: 2f1 - Fuel consumption per lap: 212
t(n) = current time difference at lap n t(n) = current time difference at lap n
t(n+1) = new time difference t(n+1) = new time difference

Table 1: Drivers’ available strategies and their impact on the steady state variables.

I started by defining state variables, such as the time difference between the two
drivers, and established a system where driving styles influence the amount of tire
degradation and fuel consumed during a lap. As can be seen in Table 1 above, aggressive
driving results in twice as much tire degradation and fuel consumption as passive driving for
both drivers, mimicking real-world racing, where faster driving is often associated with
higher tire degradation and fuel consumption. Utilizing these variables and parameters, |
created formulas that test and calculate how various driving styles affect the time difference
between two drivers.

I began by predefining strategies for drivers' actions. For example, for a given lap, I
set that both drivers would be passive. Therefore, I created functions that would have as an
output t(n+1), the new time difference after the lap was completed, and as an input, state
variables: tire degradation, fuel consumption, and t(n), the current time difference. I
established several formulas that calculate the new time difference (t(n+1)) between drivers at
the end of a lap based on their chosen driving styles. These formulas can be seen in Figure 2

in the Appendix.

(d1 +f1) + t(n) - (d2 + £2) = t(n+1)

The formula above is an example where both drivers have predefined actions passive.

Therefore, parameters d1, f1, d2, and f2 are used. This formula takes the current amount of

15 “fighting for position”: one driver (the follower) attempts an overtake, while the driver ahead (leader) defends
his position.
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fuel and tire degradation for both drivers, and correspondingly either subtracts or adds those
values from the current time difference to find the new time difference. As driver 1 is set as
the leading car (Table 1), and therefore wants to defend his position by extending the gap t(n)
to driver 2 following behind, his tire degradation and fuel consumption (d1 + f1) are added to
the current time difference t(n). Conversely, driver 2’s tire degradation and fuel consumption
(d2 + £2) are subtracted from t(n) as he is trying to decrease the gap to driver 1 as much as
possible to attempt an overtake. Thus, this formula produces the new time difference based
on the actions and driving styles chosen by the drivers during the previous lap, and each

strategy results in a different outcome during the race.

4.2.1 Numerical Example

When put to the test, the model displayed interesting results. To set up the simulation,
I defined both the tire degradation and fuel consumption per lap for both drivers, and set the
time difference between the two drivers to 3 seconds at race start. I set the race length to 5
laps, and to increase the probability of an overtake occuring, I set that driver 2, the car
behind, would have a faster car than the leader. Driver 2’s tire degradation per lap is higher
for both passive and aggressive driving styles compared to driver 1’s (respectively 0.5 vs. 0.3,
and 1 vs. 0.6), thus, resulting in faster lap times. Regarding the drivers’ strategies, I randomly
selected the drivers’ race strategies. The following information regarding the 5 lap race

simulation is displayed in Table 2 below.
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Driver 1 (leader): Driver 2 (follower):
Race strategy (From left to right, left is lap | Race strategy (From left to right, left is lap
1): 1):
PAAPA APAAP
If Passive: If Passive:
- Tire deg (d1): 0.3 per lap - Tire deg (d2): 0.5 per lap
- Fuel cons. (f1): 0.1 per lap - Fuel cons. (£2): 0.1 per lap
If Aggressive: If Aggressive:
- Tire deg (2d1): 0.6 per lap - Tire deg (2d2): 1 per lap
- Fuel cons. (2f1): 0.2 per lap - Fuel cons. (2£2): 0.2 per lap

Race length (n=5): 5 laps

Time difference at race start (t(0)) =3
seconds

t(n+1): new time difference

Table 2: Variable values and assigned race strategies for the 5 lap race simulation.

The outcomes of the 5 lap race simulation were the following, and can be seen in Table 3
below: Driver 2 reduced the time difference from 3 seconds at the start to 1.4 seconds at the
end of lap 5, catching up to driver 1 in front. This illustrates that having a faster car setup
significantly influences the outcome of a race, as both drivers’ strategies weren’t too
different. Both drivers had aggressive driving styles for 3 laps of the race, and had 2 laps in
which they drove passively. Thus, the major difference that allowed driver 2 to reduce the
time difference to driver 1 by 1.6 seconds was his faster car setup. Furthermore, when
analysing the race strategies chosen, we can see that aggressive driving results in a gain in the
time difference for both drivers. For example, on lap 1, driver 1 is passive while driver 2 is
aggressive. Driver 1 gains a total of 0.4 seconds during that lap, while driver 2 gains 1.2
seconds, resulting in a net gain of 0.8 seconds for driver 2. Here we can see that driving
aggressively and the faster setup given to driver 2 results in him significantly decreasing the
gap to driver 1. If driver 1 wants to defend his position by driving as fast as possible, the best
he can do is drive aggressively, such as in laps 2, 3 and 5, where the gains made by driver 2
were reduced to -0.2 in laps 2 and 5 (driver 1 gained 0.2 seconds on driver 2, as driver 2 was
driving passively) and 0.4 in lap 3 (driver 2 is driving aggressively). This highlights the fact
that driver 1’s best chance to defend his position against a faster driver 2 behind is driving
aggressively. However, in the long term, for example, if the race length is extended to 50

laps, driver 2 will eventually overtake driver 1.
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5 Lap Race Simulation

t0 = 3seconds Driver 1’s strategy: PAAPA  Driver 2’s strategy: APAAP

Lap 1: Passive - Aggressive
(dl+fl1)+t0-(2d2+2f2)=tl - (0.3+0.1)+3-(1+0.2)=2.2 t1 =2.2 seconds

Lap 2: Aggressive - Passive
2d1 +2f1)+tl - (d2+2) =12 - (0.6 +0.2) +2.2-(0.5+0.1)=24  ¢2=2.4 seconds

Lap 3: Aggressive - Aggressive
(2d1 +2f1)+t2-(2d2 +2f2)=t3 - (0.6 + 0.2) +24 - (1 +0.2)=2 t3 =2 seconds

Lap 4: Passive - Aggressive
(dl +f1)+t3-(2d2 +2f2)=t4 - (0.3+0.1)+2-(1+0.2)=1.2 t4 = 1.2 seconds

Lap 5: Aggressive - Passive
2d1 +2f1)+t4-(d2+£2)=t5 > (0.6 +0.2) +1.2-(0.5+0.1)=14  t5=1.4 seconds

End result: ¢5, the time difference between the 2 drivers at the end of the 5 lap race, is equal
to 1.4 seconds.

Table 3: Calculations and outcomes of the 5 lap race simulation.

4.2.2 Limitations and F1 Implications

Although this model provides useful and interesting insights into F1 racing’s strategic
decision-making, there are quite a few limitations to it. The first and most significant
limitation is that drivers do not get penalized for driving aggressively. In real-life racing,
driving aggressively is linked to higher tire degradation and fuel consumption, which in the
long term results in slower lap times or having to pit earlier. In the Time Difference Model,
this is the opposite, as drivers are quicker when having higher tire degradation and consume
more fuel, as they gain extra speed from driving aggressively. A further limitation is that the
model is solely based on the time difference between the two drivers, without taking into
consideration lap times. Lap times are significant outputs of driver behaviour, and by only
modelling relative time difference, drivers’ absolute performance is somewhat ignored.

Nonetheless, in this simulation, there are some valuable implications for strategy
selection in Formula 1. This model displays that timing your strategies is significant, because
choosing when to be aggressive is as relevant as choosing the frequency. Driver 2 reduces the

time difference significantly more when driver 1 is passive than when he is aggressive.
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Lastly, the simulation also underlines the value of models in race planning, as they allow

teams to analyse several strategies before races.

4.3 Optimal Pit Stop Model

From this simulation onwards, I took the previous model’s limitations into
consideration, and tried to establish models that replicate real-world racing more closely. In
this model, I decided to focus on solving the optimal pit stop problem, and established a
simulation that finds the optimal lap to pit for a single driver completing an n-lap long race.
The only factors that influence pit stop timing in this model are tire degradation, fuel
consumption, race length, and the pit stop duration. All other factors, such as competitors
(other drivers) and driving styles, have not been taken into consideration.

Moreover, in comparison to the previous model, some adjustments and changes were
made. | established a new formula, which, in contrast to the formulas used in the Time
Difference Model, does not calculate the time difference between 2 cars, but it computes the

driver’s lap time. The new formula can be seen below.

Lap time (L(n)) = 75 - (0.5d) + (0.5f)

In this formula, lap time is calculated based on three terms: a constant 75, 0.5d, and 0.5f. Lap
time is measured in seconds, and the average race lap time in Formula 1 is 75 seconds,
therefore, I chose it as the constant. The terms 0.5d and 0.5f represent, respectively the tire
degradation and fuel consumption, and their impact on lap times. Tire degradation and fuel
consumption accumulate in this model, mimicking real-life racing. Both parameters start at
100% and then slowly decrease as the race unfolds. On one hand, the more tires degrade, the
slower the car becomes due to a decrease in traction. On the other hand, the more fuel is
consumed, the lighter the car’s weight, therefore, the quicker it laps. This is represented in the
formula above; lap time L(n) increases when tire degradation d increases (starting at 100% —
accumulation causes d to decrease, but virtually tire degradation is increasing). When fuel
consumption increases, and thus f decreases (starts at 100% and decreases as fuel is
consumed), lap time L(n) decreases.

Based on these assumptions, I established a model simulating a race with a single

driver. The aim was to find out when the optimal pit time would be, minimizing the total time
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needed to complete the race. To solve this problem, I established the following race

simulation displayed in Table 4 below.

Race length (n): 57 laps
Lap time = L(n): 75 - (0.5d) + (0.5%)
Tire degradation (d):
- decreases by 3% per lap
- starts at 100%
- If a pit stop occurs, tire degradation goes back to 100%
Fuel consumption (f):
- decreases by 1.5% per lap
- starts at 100%
Pit stop duration (P): 20 seconds

p = number of pit stops

Total race time = (X L(n)) + pP

Table 4: Optimal Pit stop model simulation.

This model simulates a 57-lap long race scenario, where a driver wishes to minimize total
race time. I set that tire degradation decreases by 3% per lap, while fuel consumption
decreases by 1.5% per lap. Thus, the driver knows that he has to pit at least once, otherwise
his tires will not last until the end of the race, as he will be forced to retire once his tires reach
0%. Pit stop duration was set to 20 seconds, mirroring the average time lost for a pit stop in
F1. The total race time is calculated using the following formula: (X L(n)) + pP, which
represents the sum of all lap times throughout the whole race, plus the time lost during pit
stops.

This simulation aims to find the optimal pit stop strategy that allows the driver to
complete the race in the least amount of time possible. To find out what the best strategy is, |
established a Python script that runs all possible strategies and prints the optimal one. The
code can be seen in Figure 3 in the Appendix. It calculates and examines all possible pit stop
strategies for the driver, taking into account all the parameters set and displayed in Table 4.
The result after running the code is that the optimal pit stop occurs on Lap 28, with a total
race time of 4274 seconds (71.2 minutes). This illustrates that lap 28 is the optimal balance

point, as pitting earlier would mean having higher tire degradation at the end of the race,
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while pitting later would mean staying out too long with worn tires, sacrificing race time.
Thus, this result indicates that mid-race pit stops, approximately halfway through a 57-lap
race, establish an optimal trade-off between tire degradation, fuel consumption (weight loss),
and the time lost during pit stops. Moreover, although this model is a simplified version of
what F1 teams use, it illustrates how predefined parameters, such as tire degradation and fuel

consumption, can influence strategic decision-making both before and during a race.

4.4 Predefined Strategies Models

To understand how distinct race strategies impact total race time and car performance,
I designed multiple models based on predefined strategy selection during F1 races. These
simulations build upon the Optimal Pit Stop Model’s core structure and enable controlled
experimentation with several combinations of drivers’ actions, such as aggressive, passive,
and pit stops, offering insight into the trade-offs drivers face in real-life F1 racing. Three
models are presented in this section, forming a complete analysis on how car setup, strategic

timing, and driver interaction shape the results of Formula 1 races.

4.4.1 Different Car Performance

In this model, I developed a system that focuses on calculating a driver’s total race
time based on the different strategies and driving styles chosen. This was done to see how
different driving styles influence lap times throughout a race. I added a second driver to this
race, to compare strategies between drivers, and see which strategies used during races
minimize total race time. To establish this simulation and test some strategies, I created a
simple 3-lap race, where drivers’ strategies were predefined. The three different possible
strategies drivers could use during a lap included the two different driving styles also
mentioned in the Time Difference Model, aggressive and passive, and the possibility of doing
a pit stop. In a 3-lap race, where drivers have three different strategies to choose from, there
are a total of 27 different pure strategies'® per driver and 729 distinct strategy profiles'’

present. Thus, I utilized strategy vectors'® to display the strategies picked by drivers for each

'8 Pure strategy: plan of action (strategy) that tells a player what to do at every step of the game.
7 Strategy Profile: a collection of strategies, one for each player in the game.
'8 Strategy vectors: list of strategies chosen by each player.
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lap before the race start: (X1, X2, X3) — X1 represents driver 1’s strategy chosen for lap 1,
X2 for lap 2, and X3 for lap 3. (Y1, Y2, Y3) represent the same thing for driver 2.

In this model, T established distinct formulas for lap time calculation, which vary
depending on the driving style selected. In real-life racing, different strategies and driving
styles result in varying lap times. For example, aggressive driving results in quicker lap times
than passive driving. Thus, I chose to replicate this phenomenon and designed the following

formulas for the calculation of the different strategies’ lap times.

Aggressive:
Lap time (L(n)) = 70 - (0.5d) + (0.5f)

Passive:

Lap time (L(n)) = 75 - (0.5d) + (0.5%)

Pit:
Lap time (L(n)) = 75 - (0.5d) + (0.5f)

As illustrated in the formulas above, aggressive driving, compared to passive driving, results
in quicker lap times. I decreased the constant in the aggressive driving formula from 75 to 70
to lower the lap time when driving aggressively, therefore symbolizing that choosing
aggressive as a strategy results in faster lap times. When pitting, for simplicity, I chose that
the drivers complete the lap passively, and on top of that, they lose 20 seconds during the pit
stop while tire degradation goes back to 100%.

Taking into account the limitations of the Time Difference Model, I tried to
implement some improvements to this model to better mimic real-life racing. Thus, I
included that aggressive driving would result in higher tire degradation than passive driving,
and in the long run make drivers suffer, mirroring what occurs in real-world racing. All of the

relevant information describing this model is summarized in Table 5 below.



23

Race length: 3 laps
Total race time: X L(n)

Tire degradation (d) and Fuel consumption (f) at the start: 100%

Driver 1:
Strategy vector: (X1, X2, X3)

Possible strategies: Aggressive (A), Passive
(P), Pit (Pit)

If Aggressive:
- L(n)=70-(0.5d1) + (0.5f1)
- Tire degradation (d1): -4% per lap
- Fuel consumption (f1): -3% per lap

If Passive:
- L(n)=75-(0.5d1) + (0.5f1)
- Tire degradation (d1): -2% per lap
- Fuel consumption (f1): -2% per lap

- L(n)=75-(0.5d1) + (0.5f1)

- 120 seconds

- Tire degradation (d1): -2% per lap

- Fuel consumption (f1): -2% per lap

- At the end of the lap tire degradation
(d1): goes back to 100%

Driver 2:
Strategy vector: (Y1, Y2, Y3)

Possible strategies: Aggressive (A), Passive
(P), Pit (Pit)

If Aggressive:
- L(n)=70-(0.5d2) + (0.5f2)
- Tire degradation (d2): -5% per lap
- Fuel consumption (2): -3% per lap

If Passive:
- L(n): 75 - (0.5d2) + (0.52)
- Tire degradation (d2): -3% per lap
- Fuel consumption (£2): -2% per lap

- L(n): 75 - (0.5d2) + (0.512)

- +20 seconds

- Tire degradation (d2): -3% per lap

- Fuel consumption (2): -2% per lap

- At the end of the lap tire degradation
(d2): goes back to 100%

Table 5: Predefined strategies model s parameter values and formulas.

As displayed in Table 5 above, driver 2 has higher tire degradation than driver 1. This was

done on purpose to investigate how different car setups influence lap time and race time, and

again, to mirror real-life racing more closely, as opponents’ cars rarely have perfectly equal

performance. The first thing I looked into was exploring how the two drivers’ setups differed

in total race time when both selected the same race strategy. To calculate the race and lap

times, I once again created a Python script that computed total race times based on the

strategies chosen by the drivers and the parameters defined in Table 5. The Python script can

be found in the Appendix, Figure 4.

Thus, I decided to establish and test two identical strategy vectors for both drivers.
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Strategies:
Driver 1: (P, P, P) — passive in all 3 laps of the race
Driver 2: (P, P, P) — passive in all 3 laps of the race

The results of running the above strategies on Python were the following: Driver 1 completed
the race in 225 seconds, while driver 2 completed the race in 228 seconds. Due to driver 2’s
tire degradation disadvantage, it took him 3 seconds longer to complete the race. This
underlines the fundamental role that car performance plays in race outcomes. This is further

highlighted by the following example, where I set the following strategies.

Strategies:
Driver 1: (P, P, A) — passive, passive, aggressive

Driver 2: (A, A, P) — aggressive, aggressive, passive

Here, the results further highlight the fact that car performance has a large influence on race
outcome. Although driver 2 drove aggressively in 2 laps while driver 1 only did so in one,
they both had the same total race time of 220.5 seconds. Driver 2’s higher tire degradation
kept him from finishing the race in less time than driver 1, despite driving aggressively in 2
laps, while driver 1 only did so in one. This exemplifies that car performance is a major
determinant of race results, as even with a better strategy it is difficult to beat your

opponent’s superior car.

4.4.2 Same Car Performance - Pace vs Degradation Trade-off

To focus solely on how different strategy choices affect race outcomes, I wanted to
test how different strategies affect the race outcomes of two cars that have equal performance.
Therefore, I slightly adapted the parameters illustrated above in Table 5 to equalize the cars’
performance. The only changes made to the variables were adjusting the tire degradation and
fuel consumption for both drivers in all driving styles, resulting in two equally performing
cars.

This allows for an isolated investigation of strategic decision-making on race
outcomes. It enabled me to conduct an analysis on how the timing of strategies affects race

outcomes and which strategy combinations end up being the most beneficial for drivers over
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a 3 lap race. I started this process by testing the same strategy for both drivers, to be sure that

the car's performance is equal.

Strategies:
Driver 1: (P, P, P) — passive in all 3 laps of the race
Driver 2: (P, P, P) — passive in all 3 laps of the race

This resulted in both drivers finishing the race in 225 seconds as expected. From here, I tried
to test how setting an aggressive lap at different laps of the race would affect total race time.

For example, I tested the following two strategies.

Strategies:
Driver 1: (A, P, P) — aggressive, passive, passive

Driver 2: (P, A, P) — passive, aggressive, passive

In this case, driver 1 completed the race in 221.5 seconds, while driver 2 interestingly crossed
the finish line in 221 seconds. This shows that the timing of a strategy plays a crucial role.
Not only does it matter whether a driver is aggressive or passive, but more importantly, when
they choose to be aggressive or passive. Driver 2 completed the race in 0.5 seconds less than
driver 1 because he managed his tires better. Driver 1 sacrificed his lap times in laps 2 and 3
by being aggressive at the start, resulting in higher tire degradation and worn rubber for the
rest of the race. If drivers are immediately aggressive at the start of the race, they sacrifice
future lap time because of significant tire degradation affecting their lap times. Thus, being
aggressive at the start results in slower lap times in the future. This strategy scenario
replicates real-life F1 racing, where race pace and degradation are seen as a trade-off.

Let us break this 3-lap race down lap by lap.

Lap 1: Driver 1 (A): 70.5s; Driver 2 (P): 75s
Lap 2: Driver 1 (P): 75.5s; Driver 2 (A): 70.5s
Lap 3: Driver 1 (P): 75.5s; Driver 2 (P): 75.5s

The Lap times above display the loss that driver 1 incurs in laps 2 and 3 by being
aggressive in lap 1. Driver 1 completes laps 2 and 3 passively in 75.5 seconds. Contrastingly,

driver 2, by being aggressive in lap 2, loses less time in total, because his first passive lap on
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fresher tires results in a faster lap (75 seconds) than driver 2’s passive laps on used rubber.
Driver 2 on lap 3 drives at the same pace as driver 1, as his tire degradation reaches the same
level as driver 1’s after his aggressive second lap. This underlines the importance of strategic
timing in Formula 1 races, and that using the right strategy at the right time can result in
gaining an upper hand on opponents. This racing scenario is further exemplified in the

following example:

Strategies:
Driver 1: (A, P, P) — aggressive, passive, passive

Driver 2: (P, P, A) — passive, passive, aggressive

In this simulation, driver 1 finished the 3-lap race in 221.5 seconds, while driver 2 completed
it in 220.5. This further highlights the time benefit drivers receive from driving aggressively
later in the race and saving their tires at the beginning. This illustrates the benefits and
importance of timing strategies correctly.

A further racing scenario I wanted to examine was the timing of pit stops in this 3-lap
race, and find out when the optimal pit occurs. In the case where drivers are forced to pit at
least once during the race, there are three different laps at which drivers can pit, resulting in 3
different possible strategies. For simplicity, and to isolate the effects of pit stop timing, I set

all non-pit strategies to aggressive. The three different strategies are shown below.

1. (Pit, A, A)
2. (A, Pit, A)
3. (A, A, Pit)

The results were interesting, as the first strategy (Pit, A, A) was the second fastest,
completing the race in 234.5 seconds. The second strategy vector, (A, Pit, A), ended up being
the quickest strategy, finishing the race in 234 seconds. The last, and slowest strategy profile
(A, A, Pit) completed the race in 237.5 seconds. To understand why this occurred, we must
examine each strategy's lap times and see in which cases drivers tend to lose time and where

they are quicker.
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Laps 1. (Pit, A, A) 2. (A, Pit, A) 3. (A, A, Pit)
1 95 seconds 70.5 seconds 70.5 seconds

2 69.5 seconds 95.5 seconds 71 seconds

3 70 seconds 68 seconds 96 seconds

Total race time 234.5 seconds 234 seconds 237.5

Table 6: Optimal pit stop problem strategy analysis.

As shown in Table 6 above, the third strategy, where the pit stop is made at the end of
the race, is by 3 seconds the slowest. This time loss can be justified by the high tire
degradation in the first 2 laps, and the extra loss of time by pitting on the last lap. By making
a pit stop on the last lap, drivers are not benefitting from the fresher tires, as the race ends
once new tires are equipped.

Strategies 1 and 2 have a similar total race time, with strategy 2 being only half a
second quicker. The small advantage received from strategy 2 is due to the utilization of fresh
tires at the end, occurring in combination with the decrease in the amount of fuel in the car
(lighter car), resulting in a quick final lap of 68 seconds. This scenario mimics real-world
racing, as pitting too early in the race gives little gains, because tires degrade before the race
ends. It also highlights that pitting midway through races is the quickest option, minimizing

total race time.

4.4.3 An Interactive Model

One vital factor that plays a major role in Formula 1 has been excluded from the
models until now: interaction. Interaction between cars is what makes motorsport and F1
racing so breathtakingly interesting to watch. Thus, I wanted to try and implement drivers’
interactions into my models to see how they influence strategic decision-making.

I designed a model, taking the Predefined Strategies Model’s core structure as a base,
which includes interaction between 2 drivers and examines the effect of possible overtakes
and corresponding penalties on strategy choice. I added a part to the Predefined Strategies
Model which, on one hand, allows the driver behind to overtake more easily, but, on the other
hand, penalizes both drivers for fighting for position. To replicate this real-life overtaking
scenario | established the following conditions to incentivize and boost overtaking throughout

the simulation.



If driver 1°s total race time (total timel) > driver 2’s total race time (total time 2),

and total timel - total time2 < 5 seconds, and driver 1 is aggressive (“A”) — then

total timel increases by 5 seconds, and total time2 increases by 15 seconds.

If driver 2’s total race time (total time2) > driver 1’s total race time (total time 1),

and total time2 - total timel < 5 seconds, and driver 2 is aggressive (“A”)— then

total time2 increases by 5 seconds, and total timel increases by 15 seconds.

The following information is summarized in Table 7 below.

If total timel > total time2

and total timel - total time2 <5 seconds
and Driver 1 is “A”

— then

total timel: +5 seconds

total time2: +15 seconds

If total time2 > total timel

and total time2 - total timel <5 seconds
and Driver 2 is “A”

— then

total timel: +15 seconds

total time2: +5 seconds

Table 7: Explanation of how the overtaking condition works.

This simulates the situation in which one driver is behind another, trying to attempt an
overtake. Lets start by looking at the scenario where driver 1 is behind driver 2. For driver 1
to be behind driver 2 at a certain point of a race, driver 1’s total race time at that point must
be larger than the total race time of driver 2, thus, the inequality total timel > total time2
must hold. For driver 1 to attempt an overtake on driver 2, he must be close to the car infront.
In this model, to incentivize and boost overtakes, the car behind overtakes once its at a
distance of 5 seconds or less from the car infront. Therefore, driver 1 overtakes driver 2 when
total timel - total time2 < 5 seconds. Additionally, to overtake, driver 1 must be driving
aggressively. If these 3 conditions are met, then driver 1 overtakes driver 2. The overtake is
registered by driver 1 receiving a time penalty of 5 seconds and driver 2 obtaining a time
penalty of 15 seconds. They both receive a penalty because overtaking and battling leads to a
loss of time for all drivers involved, replicating the consequences of overtaking in real-life
racing. However, driver 2 receives a 10 second longer penalty, allowing driver 1 to virtually

pass and overtake him.
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I continued by establishing a python script which simulates this model, and started to
test how different strategies affect total race time and drivers’ finishing position. The Python
code can be found in Figure 5 in the Appendix. One should keep in mind that driver 1 and 2

have different car setups, as displayed in Table 8 below, resulting in distinct car performance.

Driver 1: Driver 2:
If Aggressive: If Aggressive:
- Tire degradation (d1): -4% per lap - Tire degradation (d2): -5% per lap
- Fuel consumption (f1): -3% per lap - Fuel consumption (2): -3% per lap
If Passive: If Passive:
- Tire degradation (d1): -2% per lap - Tire degradation (d2): -3% per lap
- Fuel consumption (f1): -2% per lap - Fuel consumption (2): -2% per lap
If Pit: If Pit:
- Tire degradation (d1): -2% per lap - Tire degradation (d2): -3% per lap
- Fuel consumption (f1): -2% per lap - Fuel consumption (2): -2% per lap
- Tire degradation goes back to 100% - Tire degradation goes back to 100%

Table 8: Different Paramters between drivers.

I began by investigating both drivers’ behaviour over a five lap race where they chose the
same strategy. Thus, I simulated a race in which both drivers selected aggressive as their
driving style for the whole race. The results were quite surprising, as 2 overtakes occurred

throughout the race.

Strategies:
Driver 1: (A, A, A, A, A) — only aggressive
Driver 2: (A, A, A, A, A) — only aggressive

The whole race can be visualized in Table 9 below.
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S Lap Race: Aggressive Strategy
Laps Driver 1 Lap Driver 2 Lap Driver 1 Driver 1
Time (in Time (in Accumulated Accumulated
seconds) seconds) Race time (in Race time (in
seconds) seconds)

1 (overtake) 70.5 71 70.5 + 15 71 + 5 (overtake
(overtake penalty)
penalty)

2 71 72 156.5 148

3 71.5 73 228 221

4 (overtake) 72 74 300+ 5 310+ 15
(overtake (overtake
penalty) penalty)

5 72.5 75 377.5 385

Table 9: 5 Lap race simulation.

In this simulation, driver 2 overtakes driver 1 at the end of the first lap, as driver 1 gains a
slight advantage on him throughout the first lap. At the end of lap 1, driver 2 is behind driver
1 by 0.5 seconds, and all conditions for driver 2 to overtake driver 1 are met. Thus, at the end
of lap 1 driver 2 overtakes him. However, in laps 2, 3, and 4 driver 1 catches up to driver 2,
and at the end of lap 4, driver 1 is 5 seconds behind driver 2 and all conditions for an
overtake are met, so driver 1 goes past driver 2. Driver 1 completed the race before driver 2,
respectively in 377.5 seconds and 385 seconds. Due to driver 1’s faster car setup and driver 2
suffering from higher tire degradation, driver 1 manages to catch up to driver 2 and ends up
winning the race. Therefore, tire degradation and car performance play a major role in
determining race outcomes. As driver 1 had a favourable car set up compared to driver 2
(lower tire degradation per lap) he managed to catch up to driver 2 and overtake him for the
win.

A limitation to this model is driver 2’s overtake at the end of lap 1. Although driver 1
had a faster first lap, driver 2 overtook him at the end of the lap because all conditions for an
overtake boost were met, providing driver 2 with an unfair advantage.

The conditions established at the start (Table 7) do not exactly mirror real-world
Formula 1 racing. The driver leading the race after the first lap will most probably lose his

position to the driver behind, because it is uncommon to gain 5 seconds on your rival in the
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first lap. Therefore, the driver who completes the first lap in the lead will always be penalized
and lose his position at the end of the lap when the second driver is behind by 5 seconds or
less. This is quite unrealistic, as in F1 racing the driver with the faster first lap often holds his

position for a long time.

4.5 Nash Equilibrium-Based Strategy Selection Models

After establishing various models where I determined drivers’ strategies ex-ante, I
developed simultaions in which drivers select their strategies based on best response
mechanisms. The aim is to analyze and identify the best-possible strategies that drivers
choose based on the strategies selected by their opponents. This was done by designing
models that simulate all strategy combinations, establish pay-off matrices, and determine

their Nash equilibria.

4.5.1 Best Response Model

The first model I established is the Best Response Model which builds upon the
Predefined Strategies Model while retaining its core structure. The drivers have the same set
of strategies to choose from, and lap times are calculated in same way aswell. The Best
Response Model extends the previous one by adding systems and functions which find and
examine the nash equilibria present in race simulations.

The aim of this model is to find the best response strategies for both drivers
competing in a race. To find these strategies, the first step is the generation of the strategy
space, which consists of all possible strategy combinations. The race strategy outcomes,
represented by the corresponding total race times, are stored in a pay-off matrix, with driver
I’s strategies assigned to the rows, and driver 2’s strategies to the columns. Each cell of the
matrix is checked, until the cell in which each driver’s individual race time is minimized is
found, given the other driver’s strategy. This process is utilized to identify pure-strategy Nash
equilibria in the race simulations. To execute this mechanism and find the drivers’
best-responses to their opponents’ strategies, the Python script displayed in Figure 6 in the

Appendix was utilized.
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Due to the computational complexity associated with the generation of all possible
strategy combinations, issues started to arise. For example, in a five lap long race with three
different actions drivers can choose from each lap, Python had to analyse a total of 59049
strategy profiles to find the Nash equilibrium. Thus, due to the computational intensity, from
a race length of seven laps (4,782,969 different strategy profiles) onwards Python would stop
working. To increase race length, I tried to decrease the amount of strategies Python would

have to examine, while simultaneously making the model more realistic.

4.5.2 Dynamic Interaction Model

To solve the difficulties encountered in the Best Response Model, I made some
adjustments and improved model efficiency in order to decrease computational intensity and
simulate longer races. I implemented conditions and rules which not only decrease
complexity, but also make the race simulations mimic real-life racing more closely.

I started by establishing a condition where strategies without a pit stop are rejected, as
in Formula 1 drivers must at least pit once during a race. Moreover, other factors were
limited, such as the aggressiveness of drivers. In real-life racing, F1 drivers can not drive
aggressively forever, as they need to manage their resources such as tires and fuel until the
end of the race.

Furthermore, during a race each driver has to manage their ERS (Energy Recovery
System) battery, which they can use for extra horsepower during an overtake, or to defend
their position. This battery is fully loaded at the start of the race, and when deployed uses up
its power, and restores it via braking or turbocharger heat. Therefore, drivers can use this
battery to their advantage, but must actively manage it as it is a finite resource. To mirror this
racing scenario I set that each driver can not be aggressive for more than two consecutive
laps.

Additionally, I decided to include driver interaction in this model, implementing an
improved version of the Predefined Strategies Interaction Model, fixing the limitations and
challenges I encountered.

In this refined model, I got rid of the overtake penalty system, and introduced a new
system that tracks overtakes during a race simulation. I established a mechanism that detects
overtakes based on total race time after each lap. For example, if the total race time of driver
1 is higher than the total race time of driver 2 at the end of lap 2, then driver 2 is leading the

race. If at the end of the next lap (lap 3), the total race time of driver 1 is lower than the total
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race time of driver 2, then an overtake in lap 3 must have occurred. This system is applied
throughout the whole race simulation, and keeps track of all the overtakes that take place.

The Python script for this model can be found in Figure 7 in the Appendix.

4.5.2.1 Example 1

By decreasing the strategy space as a result of the conditions added to the model, it
was possible to simulate races up to the length of 7 laps. Thus, I began by simulating a 7 lap
race with the parameters displayed in Table 8, and examined the drivers’ best responses to the

other driver’s chosen strategy. The results were the following.

Nash Equilibrium:
Driver 1: (A, A, Pit, A, P, A, A) — total race time: 510 seconds
Driver 2: ((A, A, Pit, A, P, A, A)) — total race time: 518 seconds
Overtakes: 0

Both drivers selected the same strategy. However, it took driver 1 8 seconds less to complete
the race than driver 2. This 8 second disadvantage occurs due to driver 2’s higher tire
degradation throughout the race (5% vs. 4% per lap). Nonetheless, he can not do anything to
improve his result with his current car setup. By picking the above strategy, he is maximising
his race outcome and total race time relative to the strategy chosen by driver 1, making it a
best response and part of the Nash equilibrium. Driver 2 can not improve his total race time

by unilaterally changing his strategy.

4.5.2.2 Example 2

To investigate how varying levels of tire degradation and fuel consumption per lap
affect the strategies selected by drivers, I attempted to alter the race simulation’s parameters
and examined how these changes impacted decision-making.

I decided to investigate how drivers’ strategy changes in reaction to increased tire
degradation and fuel consumption per lap. Thus, I decided to explore the strategies drivers

would choose as best responses if they were given the car setups displayed in Table 10 below.
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Driver 1:

If Aggressive:
- Tire degradation (d1): -7% per lap
- Fuel consumption (f1): -3% per lap

If Passive:
- Tire degradation (d1): -5% per lap
- Fuel consumption (f1): -2% per lap

- Tire degradation (d1): -5% per lap
- Fuel consumption (f1): -2% per lap
- Tire degradation goes back to 100%

Driver 2:

If Aggressive:
- Tire degradation (d2): -14% per lap
- Fuel consumption (2): -7% per lap

If Passive:
- Tire degradation (d2): -10% per lap
- Fuel consumption (2): -5% per lap

If Pit:
- Tire degradation (d2): -10% per lap
- Fuel consumption (2): -5% per lap
- Tire degradation goes back to 100%

Table 10: Driver s car setups.

The Nash Equilbrium received was the following.

Nash Equilibrium:
Driver 1: (A, A, Pit, A, P, A, A) — total race time: 534 seconds
Driver 2: (A, A, Pit, A, Pit, A, A) — total race time: 530 seconds

Overtakes: Lap 7: driver 2 overtakes driver 1

Compared to the previous example (Example 1) both drivers have higher tire degradation per

lap, and driver 2 has higher fuel consumption per lap as well. In this simulation, driver 2 has

double the tire degradation per lap driver 1 has in both the aggressive and passive state

(respetively 14% vs. 7% and 10% vs. 5%). Driver 2 also has higher fuel consumption per lap

in both states (respectively 7% vs. 3% and 5% vs. 2%).

As displayed in the Nash equilibrium above, driver 1 chose the same strategy as in the

previous example. However, due to higher tire degradation it took him 24 seconds longer to

complete the 7 lap race. Driver 2 having double the tire degradation of driver 1, and a slightly

higher fuel consumption, chose to implement a different race strategy. Instead of only pitting

once, driver 2 made a pit stop twice, losing time to driver 1 due to the second pit stop but

ultimately benefitting from new tires, and finishing the race ahead of driver 1.

To analyse how the race unfolded, I broke it down lap by lap in Table 11 below.
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7 Lap Race
Laps Driver 1 Driver 2 Driver 1 Lap | Driver 2 Lap | Driver 1 Driver 2
Strategy Strategy Time (in Time (in Accumulated | Accumulated
seconds) seconds) Race time (in | Race time (in
seconds) seconds)
1 A A 72 73.5 72 73.5
2 A A 74 77 146 150.5
3 Pit Pit 80.5+20 84.5+20 246.5 255
4 A A 68 64 314.5 319
5 P Pit 74.5 71.5+20 389 410.5
6 A A 71.5 58 460.5 468.5
7 A 73.5 61.5 534 530
(overtake)

Table 11: Second example, 7 Lap race simulation.

Remembering that tire degradation and fuel consumption start at 100%, and decrease

throughout the race accordingly to the parameters outlined in Table 10 above, Table 12 below

exhibits the changes in tire degradation and fuel consumption during the 7 lap race.

Laps Driver 1 Driver 2 Driver 1 Driver 2 Driver 1 Driver 2
Strategy Strategy Accumulated | Accumulated | Accumulated | Accumulated

Tire Tire Fuel Fuel
Degradation Degradation Consumption | Consumption
(in %) (in %) (in %) (in %)

1 A A 93 86 97 93

2 A A 86 72 94 86

3 Pit Pit 81 62 92 81

4 A A 93 86 &9 74

5 P Pit 88 76 87 69

6 A A 81 86 84 62

7 A A 74 72 81 55

Table 12: Changes in tire degradation and fuel consumption.



36

Throughout this race simulation, we can see that the 2 drivers’ distinct car
performances resulted in different strategic decisions. In laps 1 and 2 both drivers drove
aggressively, and driver 2 immediately suffered from higher tire degradation and fell behind
driver 1 by 4.5 seconds at the end of lap 2 (150.5s vs. 146s). On lap 3 both drivers chose to
make a pit stop, losing 20 seconds but acquiring new tires. Due to higher degradation, driver
2 had 62% of his tires left at the end of lap 3 compared to driver 1’s 81%. On lap 4 both
drivers chose the same strategy and drove aggressively, however, this is where driver 2 begins
to catch up to driver 1. Driver 2 has a faster lap than driver 1 (64s vs. 68s), as he starts to gain
from his higher fuel consumption advantage, making his car lighter every lap. On lap 4, as
shown in Table 12 above, driver 2 has less fuel left in his tank than driver 1 (74% vs. 89%)),
making his car significantly lighter and resulting in quicker lap times. Driver 2’s lap time loss
due to high tire degradation is compensated in the long run by high fuel consumption. On lap
5 the drivers strategies diverge. Driver 1 selects passive, managing his tires, while driver 2
decides to make a second pit stop, in order to benefit from fresher rubber on the last two laps
of the race. At the end of lap 5, driver 2 was behind driver 1 by 21.5 seconds after his pit
stop, making it quite difficult for driver 2 to recover and win the race. On laps 6 and 7 both
drivers choose to drive aggressively again, trying to minimize their lap times in order to win
the race. Driver 1 completes the last 2 laps in 71.5 and 73.5 seconds, while driver 2 completes
them in 58 and 61.5 seconds. Driver 2 laps significantly faster than driver 1 in the last 2 laps
due to both the tire advantage received after pitting and the lighter car, resulting in driver 2
overtaking driver 1 on lap 7 and winning the race. This underlines the advantage driver 2
received at the end of the race from having a significantly lighter car, due to higher fuel
consumption compared to driver (55% vs 81% of fuel left in the tank after lap 7) .

In this simulation driver 1 can allow himself to make fewer pit stops due to his
advantageous tire efficiency. Driver 2 is obligated to pit more often due to high tire
degradation, but significantly benefits from his higher fuel consumption, especially towards
the last laps of the race. This model highlights how tire degradation and fuel consumption
impact not only lap time, but also strategic decision-making in F1, as choosing and timing

your strategies correctly based on your car’s performance is crucial to beat your opponents.
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4.5.2.3 Example 3

I established another simulation to investigate how strategy choice would be impacted
if only driver 2’s strategy from the previous example was marginally modified. I further
increased driver 2’s tire degradation and fuel consumption per lap for his aggressive state (d2:
14% — 17%, 2: 7% — 8%), and made passive driving more convenient by lowering tire
degradation and moderately increasing fuel consumption per lap (d2: 10% — 9%, 2: 5% —

6%). The following information is summarized in Table 13 below.

Driver 1: Driver 2:
If Aggressive: If Aggressive:
- Tire degradation (d1): -7% per lap - Tire degradation (d2): -17% per lap
- Fuel consumption (f1): -3% per lap - Fuel consumption (2): -8% per lap
If Passive: If Passive:
- Tire degradation (d1): -5% per lap - Tire degradation (d2): -9% per lap
- Fuel consumption (f1): -2% per lap - Fuel consumption (2): -6% per lap
If Pit: If Pit:
- Tire degradation (d1): -5% per lap - Tire degradation (d2): -9% per lap
- Fuel consumption (f1): -2% per lap - Fuel consumption (2): -6% per lap
- Tire degradation goes back to 100% - Tire degradation goes back to 100%

Table 13: Driver s car setups.

The Nash Equilbrium for this simulation was the following.

Nash Equilibrium:
Driver 1: (A, A, Pit, A, P, A, A) — total race time: 534 seconds
Driver 2: (A, Pit, A, Pit, P, P, A) — total race time: 527 seconds
Overtakes: Lap 3: Driver 2 overtakes driver 1,

Lap 4: Driver 1 overtakes driver 2, Lap 7: Driver 2 overtakes driver 1

These adjustments done to driver 2’s car setup resulted in a more dynamic and interactive
race with distinct strategies selected by the driver. Driver 1, having the same parameters as in
the previous model chose the same strategy, while driver 2 adjusted his strategy accordingly
to the changes in tire degradation and fuel consumption. As aggressive driving became

slightly less advantageous due to an increase in tire degradation, driver 2 made his pit stops
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earlier in the race and utilized the more beneficial passive driving style. To examine what

occurred throughout the race, I looked at the drivers’ lap times.

7 Lap Race
Laps Driver 1 Driver 2 Driver 1 Lap | Driver 2 Lap | Driver 1 Driver 2
Strategy Strategy Time (in Time (in Accumulated | Accumulated
seconds) seconds) Race time (in | Race time (in
seconds) seconds)
1 A A 72 74.5 72 74.5
2 A Pit 74 81+20 146 175.5
3 Pit A 80.5+20 67.5 246.5 243
(overtake)
4 A Pit 68 74 + 20 314.5 337
(overtake)
5 P P 74.5 62.5 389 399.5
6 P 71.5 64 460.5 463.5
7 A A 73.5 63.5 534 527
(overtake)
Table 14: Third example, 7 Lap race simulation.
Laps Driver 1 Driver 2 Driver 1 Driver 2 Driver 1 Driver 2
Strategy Strategy Accumulated | Accumulated | Accumulated | Accumulated
Tire Tire Fuel Fuel
Degradation | Degradation | Consumption | Consumption
(in %) (in %) (in %) (in %)
1 A A 93 83 97 92
2 A Pit 86 74 94 86
3 Pit A 81 83 92 78
4 A Pit 93 74 89 72
5 P P 88 91 87 66
6 A P 81 82 84 60
7 A A 74 65 81 52

Table 15: Changes in tire degradation and fuel consumption.
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In this simulation, as displayed in Table 14 above, more interaction and overtakes occured
due the significant difference in race strategies selected between the drivers. On only 3 out of
7 laps (laps, 1, 5, and 7) both drivers selected the same driving style. Driver 2’s high tire
degradation, especially when driving aggressively, forced him to choose a 2 stop strategy.
The 2 drivers made their pit stops at different points in time throughout the race, resulting in
several overtakes and many changes in race lead. Driver 1 had an advantage in the first laps
of the race due to lower tire degradation, as illustrated in Table 15 above. However, once
driver 2 completed his second pit stop on lap 4, he caught up to driver 1 and ultimately
overtook him on the last lap for the race win. This lap time advantage driver 2 receives at the
end of the race is a consequence of the higher fuel consumption he benefits from throughout
the race. Moreover, it is worth to note that once driver 2 completes his pit stop on lap 4, he
does 2 consecutive passive laps. This is due to the better tire to fuel efficiency received from
driving passively, and the long term tire advantage received from not degrading new tires
immediately after pitting. By driving aggressively driver 2 degrades his tires 17% per lap and
consumes 8% of fuel, while driving passively he burns 9% of his tires per lap and 6% of fuel.
Driving passively provides a more advantageous tire degradation to fuel consumption ratio,
as by not driving aggressively 8% of his tire per lap is saved, and only 2% less of fuel are
consumed. Thus, for the long-term driving passively is substantially more beneficial to driver
2 than driving aggressively, as you manage your tires while consistently consuming a similar
amount of fuel.

Therefore, drivers choose their strategy based on a careful balance between immediate
performance and long-term efficiency. Driver 2’s decision to drive passively after making his
second pit stop on lap 4 reflects an effort to manage tires and ultimately optimize his overall
race outcomes. This behavior highlights how strategy selection is not solely driven by lap
time optimization in the short term, but also by considerations of resource management that

influence competitiveness over the entire race duration.

4.5.2.4 Example 4

Lastly, I examined how making aggressive driving a lot more costly in terms of tire
degradation would impact strategy choice. Therefore, I increased driver 2’s tire degradation
to 25% per lap, and made passive driving more beneficial, by decreasing the tire degradation
per lap and increasing the fuel consumption slightly more. The aim was to see how high

drivers would manage having high tire degradation when driving aggressively, whilst also



40

having an advantageous passive option. The parameters for this simulation are displayed in

Table 16 below.

Driver 1:

If Aggressive:
- Tire degradation (d1): -14% per lap
- Fuel consumption (f1): -7% per lap

If Passive:
- Tire degradation (d1): -10% per lap

Driver 2:

If Aggressive:
- Tire degradation (d2): -25% per lap
- Fuel consumption (2): -11% per lap

If Passive:
- Tire degradation (d2): -8% per lap

- Fuel consumption (f1): -5% per lap - Fuel consumption (£2): -6% per lap

If Pit:
- Tire degradation (d1): -10% per lap -
- Fuel consumption (f1): -5% per lap -
- Tire degradation goes back to 100% -

Tire degradation (d2): -8% per lap
Fuel consumption (f2): -6% per lap
Tire degradation goes back to 100%

Table 16: Driver s car setups.

The following Nash equilibrium was received.

Nash Equilibrium:
Driver 1: (A, A, Pit, A, Pit, A, A) — total race time: 530 seconds
Driver 2: (P, A, Pit, P, P, P, P) — total race time: 522 seconds

Overtakes: Lap 5: Driver 2 overtakes driver 1

Driver 2 completed the race in first position and did so in 8 seconds less than driver 1. Driver
I’s strategy is similar to the ones we have seen in the previous examples, alternating
aggressive driving with frequent pit stops, in order to take advantage of fresher tires.
Contrastingly, driver 2’s strategy is different to the ones we have seen so far. Driver 2, on 5
laps out of 7, drives passively, and nonetheless ends up winning the race. He only selects
aggressive driving once due to the high tire degradation of 25% per lap. Thus, driver 2
frequently chose passive driving to take advantage of the significantly lower tire degradation
compared to when driving aggressively (8% vs. 25% per lap). Inversely, driver 1 has a less
beneficial passive driving set up than driver 2, consuming less fuel (f1: 5% vs. £2: 6% per
lap) and burning more tire rubber per lap (d1: 10% vs. fl: 8%). However, driver 1 has an

advantage in aggressive driving, degrading his tire significantly less compared to driver 2
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(14% vs. 25% per lap). To analyse how the race unfolded, and see how driver 2 ended up

winning, I looked at the overall race progression.

7 Lap Race
Laps Driver 1 Driver 2 Driver 1 Lap | Driver 2 Lap | Driver 1 Driver 2
Strategy Strategy Time (in Time (in Accumulated | Accumulated
seconds) seconds) Race time (in | Race time (in
seconds) seconds)
1 A P 73.5 76 73.5 76
2 A A 77 78 150.5 154
3 Pit Pit 84.5+20 84 + 20 255 258
4 A P 64 64.5 319 322.5
5 Pit P 71.5+20 65.5 410.5 388
(overtake)
6 A P 58 66.5 468.5 454.5
7 A P 61.5 67.5 530 522
Table 17: Fourth example, 7 Lap race simulation.
Laps Driver 1 Driver 2 Driver 1 Driver 2 Driver 1 Driver 2
Strategy Strategy Accumulated | Accumulated | Accumulated | Accumulated
Tire Tire Fuel Fuel
Degradation | Degradation | Consumption | Consumption
(in %) (in %) (in %) (in %)
1 A P 86 92 93 94
2 A A 72 67 86 &3
3 Pit Pit 62 59 81 77
4 A P 86 92 74 71
5 Pit P 76 84 69 65
6 A P 86 76 62 59
7 A P 72 68 55 53

Table 18: Changes in tire degradation and fuel consumption.

Table 17 above exhibits how the race simulation unfolded, and where each driver gained and

lost time. Excluding the time added to lap times due to pit stop penalties, driver 1 was quicker

in every lap except lap 5. However, due to to the extra pit stop on lap 5 and the corresponding
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addition of 20 seconds to his total race time, he finished the race behind driver 2. Driver 2
drove a more resource-efficient strategy and stayed consistent by driving passively for the
last four laps of the race after his pit stop on lap 3. Despite the seemingly “slower” strategy,
he completed the race ahead due to better resource management and less pit stops. As
illustrated in Table 18, driver 1’s tire degradation varies between highs and lows due to the
resets after pit stops and aggressive driving. Driver 2 has a more consistent decrease in tire
degradation, especially from lap 4 onwards, highlighting his efficient management of tires.

This race simulation highlights that aggressive driving results in faster lap times, but
requires drivers to complete more pit stops due to higher tire degradation. Passive driving is
slower, but with less needs for pit stops drivers can gain an advantage over the full length of a
race. Thus, the choice and timing of strategies is more important than optimizing individual
lap times or trying to be as fast as possible each lap, as displayed in this example, managing
your resources effectively is also a vital factor.

Throughout these simulations, in order to best respond to opponents’ strategies,
drivers tend to utilize the driving styles from which they benefit the most. In a Nash
equilibrium, each player chooses an action or strategy that represents their best response to
the other player’s strategy. In the last simulation, for driver 1, aggressive driving in
combination with 2 pit stops was the most advantageous option, minimizing his total race
time. Conversely, driver 2, having a more favourable set up for passive driving, takes
advantage of it, and mainly drives passively in order to maximize his race outcome. Neither
driver has an incentive to unilaterally deviate from their selected strategy, as it would not
improve their pay-off of winning the race. Therefore, both drivers are driving optimally in

response to one another's selected strategies, characterizing a Nash equilibrium.
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5. Conclusion

F1 is a complex sport with several predictable and unpredictable variables shaping
race outcomes. To control and influence race results, teams gradually rely more and more on
strategy and predictive simulations. These instruments play a major role in guiding the
actions drivers and teams select both prior and during races, making them vital components
of the sport. Throughout this paper, strategic decision-making in Formula 1 was investigated,
in order to understand how strategic choices are taken throughout races. Particular regard was
given to tire degradation, fuel consumption, and pit stop tactics, factors that play a significant
role in race strategy formulation. Their impact on strategic planning was analysed through a
series of simulation models that aim to replicate real-life F1 race scenarios.

Although the models discussed in the previous chapter have various limitations,
several interesting findings arose. The simulations underlined that optimal strategies were not
always intuitive, as passive driving styles could result in better race outcomes due to fewer pit
stops. Moreover, the optimal strategies drivers choose tend to vary depending on the different
car performance they have at their disposal. Different levels of tire degradation and fuel
consumption influence the way drivers approach their races and select strategies. For
example, a car with high tire degradation tends to make pit stops more often or drive more
passively than drivers with lower degradation and advantageous fuel efficiency. In the Best
Response Model we saw that drivers adjust their actions based on their opponent’s strategy,
resulting in strategies that are mutual best responses and form a Nash equilibrium. Another
key finding observed in the Predefined Strategies Model is the importance of timing
strategies correctly. Even with identical car setups, strategy influences race outcomes, as
timing aggressiveness optimally or pitting on the ideal lap can significantly impact drivers’
total race times. In the models that include interaction we noticed drivers adapting their
strategies based on the penalties and benefits administered when overtaking, resulting in
models that mirror real world F1 racing to some extent.

However, the models also have considerable limitations. The most apparent is the
simplicity of the race simulations, as in real-life Formula 1 racing many variables impact
strategic decision-making, more than the ones utilized in my models. Furthermore, for the
sake of simplicity, the simulations designed were based on complete information games,
while in reality F1 races are considered incomplete information games, where drivers and

teams do not reveal their strategies.
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Throughout the process of designing my models I encountered various difficulties
regarding the creation of the Python scripts. As I attempted to increase the race length of my
simulations, I realized that the computational complexity increased as the number of
strategies Python had to analyze incremented exponentially. To solve this issue I tried
decreasing the number of strategies, but the maximum race length I achieved was 7 laps.

Lastly, an improvement I would suggest for future studies would be to include random
events like crashes, safety cars, and mechanical failures in models, in order to mimic real

world racing more closely.
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7. Appendix

Figure 1: Gapper plot displaying the race history for the 2019 Australian Grand Prix (racewatch,).

Aggressive - Aggressive
(2d1 + 2f1) + t0 - (2d2 + 2£2) = t1

Aggressive - Passive
(2d1 +2f1) +t0 - (d2 + £2) = t1

Passive-Aggressive
(d1+£1)+t0- (2d2 +2f2) = t1

Passive-Passive
(d1+f1)+t0- (d2 +2) =t1

Figure 2: Time Difference - 2 Drivers Model s formulas.
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import numpy as np

def simulate_race(pit_lap):

laps = 57
tyre_deg = 100 # Tyre degradation starts at 0%
fuel = 100 # Fuel percentage

total_time = @ # Total race time in seconds

for lap in range(1l, laps + 1):
lap_time = 75 - (8.5 % tyre_deg) + (0.5 % fuel)
total_time += lap_time

tyre_deg —= 3 # Tyre degradation per lap
fuel -= 1.5 # Fuel consumption per lap

if tyre_deg <= @:
return float{('inf') # Car retires, invalid pit strategy

if lap == pit_lap:
total_time += 20 # Pit stop penalty (estimated at 20 seconds)
tyre_deg = 100 # New tyres

return total_time

def find_optimal_pit():
best_pit_lap = 1
best_time = float('inf')

for pit_lap in range(l, 57): # Try different pit lap strategies
total_time = simulate_race(pit_lap)
if total_time < best_time:
best_time = total_time
best_pit_lap = pit_1lap

return best_pit_lap, best_time

optimal_pit, min_time = find_optimal_pit()
print(f"Optimal pit stop: Lap {optimal_pit} with total race time: {min_time:.2f} seconds")

Figure 3: Optimal Pit Stop Model’s Python script.



import itertools

def simulate_race(strategyl, strategy2):
l1=1len(strategyl)

laps=11
total_timel = @
total_time2 = 0

# Initial values for both drivers
tyre_degl, fuell = 100, 100
tyre_deg2, fuel2 = 100, 100

for lap in range(laps):
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# Driver 1
if strategyl[lap]l == 'A': # Aggressive

tyre_degl —= 4

fuell —= 3

lap_timel = 70 — (0.5 * tyre_degl) + (0.5 x fuell) # Aggressive lap time
elif strategylllapl == 'P': # Passive

tyre_degl —= 2

fuell —= 2

lap_timel = 75 — (0.5 % tyre_degl) + (0.5 x fuell) # Passive lap time

elif strategylllapl == 'Pit':
# Passive-style driving this lap
tyre_degl -= 2
fuell —= 2
lap_timel = 75 — (0.5 * tyre_degl) + (0.5 * fuell)
lap_timel += 20 # pit stop time
tyre_degl = 100 # reset after lap

total_timel += lap_timel

# Driver 2
if strategy2[lap]l == 'A': # Aggressive

tyre_deg2 = 5

fuel2 —= 3

lap_time2 = 70 — (0.5 * tyre_deg2) + (0.5 x fuel2) # Aggressive lap time
elif strategy2[lap]l == 'P': # Passive

tyre_deg2 —= 3

fuel2 —= 2

lap_time2 = 75 — (0.5 % tyre_deg2) + (0.5 x fuel2) # Passive lap time

elif strategy2[lapl == 'Pit':
# Passive-style driving this lap
tyre_deg2 -= 3
fuel2 —= 2
lap_time2 = 75 — (0.5 * tyre_deg2) + (0.5 x fuel2)
lap_time2 += 20 # pit stop time
tyre_deg2 = 100 # reset after lap

total_time2 += lap_time2
return total_timel, total_time2
# Generate all possible strategy combinations
strategies = ['A", 'P', 'Pit']
strategy_combinations = list(itertools.product(strategies, repeat=1))
print(strategy_combinations)
# Test specific strategies

test_strategyl = ('P*, 'P', 'P")
test_strategy2 = ('P', 'P', 'P')|

timel, time2 = simulate_race(test_strategyl, test_strategy2)
print(f"Driver 1 strategy {test_strategyl}: Total time = {timel
print(f"Driver 2 strategy {test_strategy2}: Total time = {time2

Figure 4: Predefined Strategies Model's Python script.

:.2f} seconds")
:.2f} seconds")



import itertools

def simulate_race(strategyl, strategy2):
11 = len(strategyl)

laps = 11
total_timel = 0@
total_time2 = 0@

# Initial values for both drivers
tyre_degl, fuell 100, 100
tyre_deg2, fuel2 100, 100

overtake_log = []

for lap in range(laps):
# Driver 1

if strategyl[lap]l == 'A': # Aggressive

tyre_degl —-= 4

fuell -= 3

lap_timel = 70 - (0.5 * tyre_degl) + (0.5 *
elif strategyl[lap]l == 'P': # Passive

tyre_degl -= 2

fuell —= 2

lap_timel = 75 - (0.5 * tyre_degl) + (0.5 *
elif strategyl[lap] == 'Pit':

tyre_degl —-= 2

fuell —-= 2

lap_timel = 75 - (0.5 * tyre_degl) + (0.5 *
lap_timel += 20 # pit stop time
tyre_degl = 100

total_timel += lap_timel

# Driver 2

if strategy2[lap]l == 'A': # Aggressive

tyre_deg2 -= 5

fuel2 —= 3

lap_time2 = 70 - (0.5 * tyre_deg2) + (0.5 *
elif strategy2[lap]l == 'P': # Passive

tyre_deg2 -= 3

fuel2 —= 2

lap_time2 = 75 - (0.5 * tyre_deg2) + (0.5 *
elif strategy2[lap] == 'Pit':

tyre_deg2 -= 3

fuel2 -= 2

lap_time2 = 75 - (0.5 * tyre_deg2) + (0.5 *
lap_time2 += 20 # pit stop time
tyre_deg2 = 100

total_time2 += lap_time2

# Overtake check at end of lap
if total_timel > total_time2 and (total_timel -
total_timel += 5
total_time2 += 15
overtake_log.append(f“Lap {lap+1l}: Driver 1
elif total_time2 > total_timel and (total_time2
total_time2 += 5
total_timel += 15
overtake_log.append(f"Lap {lap+1}: Driver 2

return total_timel, total_time2, overtake_log

fuell)

fuell)

fuell)

fuel2)

fuel2)

fuel2)

total_time2) <= 5:

overtakes Driver 2")
- total_timel) <= 5:

overtakes Driver 1")
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# Test specific strategies
test_strategyl = ['A', 'A', 'A', 'A', 'A']
test_strategy2 = ['Pit', 'P', 'A', 'A', 'A']

timel, time2, overtakes = simulate_race(test_strategyl, test_strategy2?)

print(f"Driver 1 strategy {test_strategyl}: Total time
print(f"Driver 2 strategy {test_strategy2}: Total time
print("Overtake log:")
for event in overtakes:

print(event)

{timel:.2f} seconds")
{time2:.2f} seconds")

Figure 5: Predefined Strategies: An Interactive Model s Python script.



itertools
multiprocessing Pool, cpu_count

simulate_race(strategyl, strategy2):
laps = len(strategyl)

total_timel = @

total_time2 = @

tyre_degl, fuell = 100, 100

tyre_deg2, fuel2 = 100, 100

overtake_log = []

prev_leader = 1 total_timel < total_time2

lap range(laps):
prev_timel = total_timel
prev_time2 = total_time2

# Driver 1

strategyl[lap] == 'A':

tyre_degl —= 14

fuell —= 7

lap_timel = 70 - 0.5 * tyre_degl + 0.5
strategyl[lap] == 'P':

tyre_degl -= 10

fuell -= 5

lap_timel = 75 - 0.5 * tyre_degl + 0.5
strategyl[lap] == 'Pit':

tyre_degl -= 10

fuell —= 5

lap_timel 75 - 0.5 * tyre_degl + 0.5

tyre_degl 100
total_timel += lap_timel

# Driver 2

strategy2[lap] == 'A':
tyre_deg2 -= 25
fuel2 -= 11
lap_time2 = 70 - 0.5 x tyre_deg2 + 0.5
strategy2([lap] == 'P':
tyre_deg2 -= 8
fuel2 -= 6
lap_time2 = 75 - 0.5 % tyre_deg2 + 0.5
strategy2[lap] == 'Pit':
tyre_deg2 -= 8
fuel2 -= 6
lap_time2 = 75 - 0.5 % tyre_deg2 + 0.5
tyre_deg2 = 100
total_time2 += lap_time2
new_leader = 1 total_timel < total_time2
new_leader != prev_leader:

fuell

fuell

fuell + 20

fuel2

fuel2

fuel2 + 20

2
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overtake_log.append(f“Lap {lap+1}: Driver {new_leader} overtakes Driver {prev_leader}")

prev_leader = new_leader

total_timel, total_time2, overtake_log



is_valid_strategy(strategy):

'Pit’ strategy:
count = @
s strategy:
s == "A":
count += 1
count > 2:
count = 0@

simulate_wrapper(args):
sl, s2 = args

t1l, t2, overtakes = simulate_race(list(sl),

(s1, s2, t1, t2, overtakes)

find_nash_equilibria_parallel(laps):
strategies = ['A', 'P', 'Pit']

all_strats = list(itertools.product(strategies,

valid_strats = [s S all_strats

pairs = list(itertools.product(valid_strats,

list(s2))

repeat=1laps))

is_valid_strategy(s)]

Pool(processes=cpu_count()) pool:
results = pool.map(simulate_wrapper, pairs)

payoff_matrix = {(s1, s2): (t1, t2)

best_response_1 = {}
s2 valid_strats:
min_time = float('inf"')
best_s1s = []
sl valid_strats:
tl, _ = payoff_matrix[(sl, s2)]
t1l < min_time:
min_time = t1
best_sls = [s1]
t1l == min_time:
best_sls.append(sl)
sl best_sls:
best_response_1[(s1, s2)] =

best_response_2 = {}
sl valid_strats:
min_time = float('inf")
best_s2s = []
s2 valid_strats:
_, t2 = payoff_matrix[(sl, s2)]
t2 < min_time:
min_time = t2
best_s2s = [s2]
t2 == min_time:
best_s2s.append(s2)
s2 best_s2s:
best_response_2[(s1, s2)] =

s1,

repeat=2))

s2, t1, t2, _

results}
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nash_equilibria = []
for s1, s2, tl, t2, overtakes in results:
if (s1, s2) in best_response_1 and (sl, s2) in best_response_2:
nash_equilibria.append((sl, s2, tl1l, t2, overtakes))

return nash_equilibria

def run_nash_search_parallel(lap_count):
nash_eqs = find_nash_equilibria_parallel(lap_count)

print(f"\n\U@@O1F3AF Nash Equilibria for {lap_count} laps (with multiprocessing):\n")
for i, (sl1, s2, tl1, t2, overtakes) in enumerate(nash_eqs, 1):
print(f"{i}. Driver 1: {sl1}, Time: {t1:.2f} | Driver 2: {s2}, Time: {t2:.2f}")
print(" Overtake log:")
it overtakes:
for line in overtakes:

print(" >", line)
else:
print(" — No overtakes")
print()
if __name__ == "__main__":

run_nash_search_parallel(lap_count=7)

Figure 6: Best Response Model s Python script.



itertools

multiprocessing Pool, cpu_count
simulate_race(strategyl, strategy2?):
laps = len(strategyl)

total_timel = @
total_time2 = @
tyre_degl, fuell
tyre_deg2, fuel2
overtake_log = []

100
100

100,
100,

prev_leader = 1 total_timel < total_time2
lap
prev_timel = total_timel
prev_time2 = total_time2

range(laps):

# Driver 1

strategyl[lap] == "A':

tyre_degl = 4

fuell -= 3

lap_timel = 70 - 0.5 x tyre_degl + 0.5
strategyl([lap] == 'P':

tyre_degl -= 2

fuell -= 2

lap_timel = 75 - 0.5 x tyre_degl +
strategyl[lap] == 'Pit’:
tyre_degl -= 2
fuell —= 2
lap_timel = 75 - 0.5 * tyre_degl +
tyre_degl = 100
total_timel += lap_timel

# Driver 2

strategy2[lap] == 'A':

tyre_deg2 -= 5

fuel2 —= 3

lap_time2 = 70 — 0.5 x tyre_deg2 + 0.5
strategy2[lap] == 'P':

tyre_deg2 -= 3

fuel2z -= 2

lap_time2 = 75 - 0.5 x tyre_deg2 +
strategy2[lap] == 'Pit':
tyre_deg2 -= 3

lap_time2 75 — 0.5 % tyre_deg2 +
tyre_deg2 100
total_time2 += lap_time2

new_leader =1
new_leader != prev_leader:

0.5

total_timel < total_time2

fuell

fuell

fuell

fuel2

fuel2

fuel2

2

overtake_log.append(f"Lap {lap+1}: Driver {new

prev_leader = new_leader

total_timel, total_time2, overtake_log
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_leader} overtakes Driver {prev_leader}")
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is_valid_strategy(strategy):

'Pit' strategy:
count = @
s strategy:
s == 'A':
count += 1
count > 2:
count = 0

simulate_wrapper(args):

sl, s2 = args

tl, t2, overtakes = simulate_race(list(s1), list(s2))
(s1, s2, t1, t2, overtakes)

find_nash_equilibria_parallel{laps):

strategies = ['A', 'P', 'Pit']

all_strats = list(itertools.product(strategies, repeat=laps})
valid_strats = [s s all_strats is_valid_strategy(s)]

pairs = list(itertools.product(valid_strats, repeat=2))
Pool(processes=cpu_count()) pool:
results = pool.map(simulate_wrapper, pairs)

payoff_matrix = {(s1, s2): (t1, t2) sl, s2, t1, t2, _ results}

best_response_1 = {}
52 valid_strats:
min_time = float('inf"')
best_sl1s = []
sl valid_strats:
t1l, _ = payoff_matrix[(s1l, s2)]
t1l < min_time:
min_time = t1
best_sls = [s1]
t1 == min_time:
best_sls.append(sl)
sl best_sls:
best_response_1[(s1, s2)] =

best_response_2 = {}
sl valid_strats:
min_time = float('inf"')
best_s2s = []
s2 valid_strats:
_, t2 = payoff_matrix[(sl, s2)]
t2 < min_time:
min_time = t2
best_s2s = [s2]
t2 == min_time:
best_s2s.append(s2)
s2 best_s2s:
best_response_2[(s1, s2)] =

nash_equilibria = []
sl, s2, t1, t2, overtakes results:
(s1, s2) best_response_1 (s1, s2) best_response_2:
nash_equilibria.append((sl1, s2, t1, t2, overtakes))

nash_equilibria
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def run_nash_search_parallel(lap_count):
nash_eqs = find_nash_equilibria_parallel(lap_count)

print(f"\n\UBOO1F3AF Nash Equilibria for {lap_count} laps (with multiprocessing):\n")
for i, (s1, s2, tl, t2, overtakes) in enumerate(nash_eqs, 1):
print(f"{i}. Driver 1: {s1}, Time: {t1l:.2f} | Driver 2: {s2}, Time: {t2:.2f}")
print(" Overtake log:")
if overtakes:
for line in overtakes:

print(" >, line)
else:
print(" — No overtakes")
print()
if __name__ == "__main__":

run_nash_search_parallel(lap_count=7)

Figure 7: Dynamic Interaction Model's Python script.
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