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Introduction 
Innovation sits at the heart of economic growth and social change, yet it emerges in landscapes 

that resist complete description. The most valuable breakthroughs often materialise in 

territories that no agent can map or price beforehand. This thesis poses a pointed question: 

“How can decision makers navigate benefits and risks that lie beyond the reach of standard 

forecasting?” The answer pursued here blends insights from complexity science with 

economics. Innovation is approached as the unfolding of a complex, nonlinear system whose 

boundaries expand endogenously, what Stuart Kauffman calls the adjacent possible. In such 

open ended environments, traditional optimisation loses power; decision makers frequently 

resort to heuristics, concise rules of thumb that trade precision for speed and tractability. Yet 

these same shortcuts, while sometimes indispensable, can also reinforce biases and lag behind 

structural change. The analysis therefore treats heuristics as context bound tools, useful but 

never universally sufficient. 

The thesis unfolds over four cumulative chapters. Chapter 1 surveys dynamical, chaotic and 

complex systems, showing why long range economic prediction is structurally limited. Chapter 

2 formalises the adjacent possible through combinatorial models, demonstrating how each act 

of novelty redefines the future choice set in ways that undermine probabilistic closure. Chapter 

3 turns to decision theory, assessing when heuristics such as recognition cues or equal weight 

rules outperform elaborate forecasts. Chapter 4 scales the discussion to the macro level: using 

an agent based framework (Dosi, Fagiolo, Roventini), it evaluates whether pairing 

Schumpeterian innovation incentives with Keynesian demand stabilisers yields more robust 

outcomes than single target policy rules. 

Recognising the limits of foresight neither mandates blind faith in heuristics nor calls for their 

wholesale rejection. Instead, it argues for disciplined pragmatism: employ simple rules when 

information is sparse or time is short but subject them to continual testing and stand ready to 

refine or abandon them as environments evolve. The chapters that follow develop this cautious 

but constructive stance, outlining a pathway beyond today’s optimisation paradigm and 

illustrating how economic actors can navigate the unknown without assuming that any single 

method, heuristic or otherwise will suffice in all contexts. 
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Chapter 1: Dynamical systems 
"It is better to be roughly right than precisely wrong." 

-John Maynard Keynes 

Introduction  
Innovation is often associated with novelty, uncertainty, and the exploration of previously 

unknown possibilities. The central question of this thesis “Is it possible to benefit from the 

unknown?” motivates an examination of innovation as a dynamic process. In particular, we ask 

whether innovation can be understood as the evolution of a complex system over time. To 

address this, we draw on the mathematical theory of dynamical systems and on modern 

complexity science.  

Innovation can be understood as a dynamic process that unfolds and transforms over time, but 

what does this actually imply? In this chapter, we examine the nature of dynamical systems 

and identify which type most accurately models the process of innovation. We begin by 

defining what constitutes a dynamical system, followed by a historical overview of how 

different forms of these systems have been recognized and interpreted across centuries. The 

chapter concludes with the introduction of the theory of the adjacent possible, offering a 

framework through which innovation can be interpreted as a specific type of dynamical system.  
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1.1 Dynamical systems 

1.1.1. Dynamical systems, definition  
The study of dynamical systems is a branch of mathematics and in the last centuries the 

mathematicians tried to understand every detail of these systems. The goal of studying 

dynamical systems is to understand processes in motion that occur in all branches of science1. 

These studies are fascinating because they do not involve a singular disciplinary subject, they 

vary from chemistry to biology, from physiscs to social sciences (included economics).  

“Dynamical systems theory (or dynamics) concerns the description and prediction of systems 

that exhibit complex changing behavior at the macroscopic level, emerging from the collective 

actions of many interacting components. The word dynamic means changing, and dynamical 

systems are systems that change over time in some way.”2  

Examples of dynamical systems are the stock market, the solar system, the weather, the world 

population, the motion of a single pendulum and many others. 

What is the reason for the studying of dynamical systems?  

Since they change in time the scientists tries to predict where those systems are heading. Some 

dynamical systems are predictable others are not. We know that the sun will raise tomorrow, 

we know also that if we heat a pot of water,  after a while it will start to bubble and boil. On 

the other hand, if we spill milk we can't predict exactly how it will spread and it seems 

impossible to predict NASDAQ a month from now. A solution can be stating that this 

unpredictability is the result of too many variables present in the system (for example in the 

economic system). In some cases this is true but this is not the complete answer.3 

What are those systems we are talking about and what does it mean when we say that the 

systems evolve over time? 

We can define a system as a collection of interacting agents or entities. “A dynamical system is 

a system whose state (and variables) evolve over time, doing so according to some rule. How 

a system evolves over time depends both on this rule and on its initial conditions, that is, the 

system’s state at some initial time. ”4 

 
1 Robert L. Devaney, An Introduction to Chaotic Dynamical Systems, 3rd ed. (Boca Raton, 
FL: CRC Press, 2022). 
2 Melanie Mitchell, Complexity: A Guided Tour (Oxford: Oxford University Press, 2009), 
[page 15]. 
3 Devaney, An Introduction to Chaotic Dynamical Systems. 
4 Dean Rickles, Penelope Hawe, and Alan Shiell, “A Simple Guide to Chaos and 
Complexity,” Journal of Epidemiology and Community Health 61, no. 11 (2007): 933–937, 
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This initial condition is represented by the variables that form the system. These variables can 

be the number of people in a population, the velocity of the wind, the price of a commodity, 

etc. At any given moment, the specific values of a system’s variables define its current state. 

We can visualize a dynamical system by plotting it in a phase space, where each point 

represents a possible state of the system, that is, a unique combination of variable values at a 

certain time. As the system changes over time, it traces a path through this space. This path, 

known as a trajectory, illustrates how the system evolves from one state to another. 

1.1.2. Dynamical systems, linear and nonlinear 
Dynamical systems also posses various type of properties. There can be simple or complicated 

system, linear or non-linear, discrete or continuos, deterministic or indeterministic, in 

equilibrium or non in equilibrium, chaotic or complex. In this paragraph we will focus on the 

differences between linear and non-linear systems which is foundamental to understand how a 

system behaves. Later on in the chapter the study will focus on the main differences between 

deterministic, chaotic and complex systems.  

Let us defyine a linear and non linear system. “A linear system is one you can understand by 

understanding its parts individually and then putting them together. … A nonlinear system is 

one in which the whole is different from the sum of the parts.”5 A linear system is governed by 

a system of linear equation (equation of the type 𝑦 = 	𝑚𝑥 + 𝑞); wherease a non linear system 

is governed by a system of non linear equation (all of the other types: quadratics, logarithmics, 

trigonometrics, …). To understand better the implications of this difference and how these two 

type of functions behave it is useful to provide an example.  

The example we present here is taken from Melanie Mitchell’s “Complexity: A Guided Tour”. 

Imagine a population of rabbits that doubles in size each year. Starting with 2 rabbits, the 

population grows to 4 in the second year, 8 in the third, and so on. Now, consider a variation: 

we place one rabbit on each of two separate islands and apply the same doubling rule. After 

one year, each island has 2 rabbits, totaling 4; in the second year, each has 4 rabbits, totaling 

8; and this pattern continues. Table 1 below illustrates the results. The first column lists the 

years. The second and third columns show the populations on the two separate islands (the split 

scenario), while the fourth column represents the original case with the entire population on a 

single island. 

 

 

 
5 Mitchell, Complexity, [page 22]. 
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Year n. of rabbit in island 1 n. of rabbit island 2 N of rabbit in case 1 

1 1 1 2 

2 2 2 4 

3 4 4 8 

4 8 8 16 

Table 1 

 

The table reveals that dividing the rabbit population at the start, as in the second scenario, does 

not affect the total number of rabbits by the end of each year. This outcome indicates that the 

system behaves linearly: we can grasp the overall dynamics by understanding the behavior of 

each part and then combining them. In other words, the whole is simply the sum of its parts. 

As illustrated in Figure 1, when we plot the population of one generation on the vertical axis 

and the next generation’s population on the horizontal axis, the result is a straight line, an 

indication of the system’s linear structure. 

  
Figure 16 

 

However in the real world the growth is not infinite, so let us put a limit on this duplication of 

rabbits. To do this we introduce the birth rate, the death rate (the probability an individual will 

die) and the maximum carrying capacity (the upper limit of the population that the habitat will 

support).  

Suppose we start with: 

birth rate=2; 

death rate=0.4;  

 
6 Mitchell, Complexity, [page 25]. 
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carrying capacity, 𝑘 =32.  

In biology to compute the population growth from a period to another is used an equation called 

the logistic equation7. The logistic model formula is the following:  

𝑛!"# = (birthrate− deathrate) ⋅
𝑘 ⋅ 𝑛! − 𝑛!$

𝑘  

where 𝑛!"# is the population at the period t+1. The key question now is what happens when 

we start with a single population of 20 rabbits compared to two separate populations of 10 

rabbits each, one on each island.  

In the first scenario, we begin with a single population of 20 rabbits, so 𝑛! = 20. Applying the 

formula, we get:  

𝑛!"# = (2 − 0.4) ⋅
32 ⋅ 20 − 20$

32 = 1.6 ⋅ 7.5 = 12 

This result shows that by the end of the first period, the population decreases to 12 rabbits.  

In the second scenario, we start with two separate groups of 10 rabbits each, so 𝑛! = 10 for 

both subsets. Applying the same formula to each subset:  

𝑛!"# = (2 − 0.4) ⋅
32 ⋅ 10 − 10$

32 = 1.6 ⋅ 6.875 = 11 

Since there are two identical groups, the total population becomes 11+11=22.  

This outcome is significantly different from the first case: 12¹22.  

“A nonlinear system is one for which inputs are not proportional to outputs: a small (large) 

change in some variable or family of variables will not necessarily result in a small (large) 

change in the system.” 8 Figure 2 illustrates how this function behaves differently compared to 

the one presented earlier, highlighting the nonlinear nature of the system. 

 

 
7 The logistic equation is a model of population growth published by Pierre Verhulst (1845). 
In this thesis it is not important to understand what is the logistic model but what are the 
effect of functions of these type, the non linear functions. 
8 Rickles, Hawe, and Shiell, “A Simple Guide to Chaos and Complexity,” 935. 
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Figure 29 

“Why are nonlinear systems so much harder to analyze than linear ones? The essential 

difference is that linear systems can be broken down into parts. Then each part can be solved 

separately and finally recombined to get the answer. This idea allows a fantastic simplification 

of complex problems.”10 

Understanding the distinction between linear and nonlinear functions, and between linear and 

nonlinear systems, is essential for grasping why some systems behave predictably while 

others do not. This distinction serves as a foundation for exploring determinism in complex 

systems. We will revisit these implications when we examine chaotic systems later on, but 

first, let us explore the nature of deterministic systems in more detail.  

 
9 Mitchell, Complexity, [page 26]. 
10 Steven H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, 
Biology, Chemistry, and Engineering, 2nd ed. (Boca Raton, FL: CRC Press, 2019), [page 39]. 
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1.2. Deterministic systems 

1.2.1. Deterministic systems, history 
“Nature and Natures laws lay hid in night: God said, let Newton be! and all was light.” 

-Alexander Pope, proposed Epitaph for Isaac' Newton, who died in 1727. 

Is it possible to predict precisely the future state of a dynamical system? For more than one 

century the humankind (to be fair just the western society) thought that the answer to this 

question was yes. During the 18th and 19th centuries western scientists were sure that, given a 

specific knowledge, it would have been possible to know precisely the past and the future. Isaac 

Newton constructed the basis for a model in which the universe is seen as a gigantic clock and 

the nature is governed by immutable and absolute universal physical laws11. Nevertheless, it is 

with Pierre-Simon de Laplace that this vision reaches its most radical expression. In its famous 

determinism formulation, Laplace ipotize the excistence of an intellect able to know 

simoultaneously all the law of the nature and all the initial conditions of it. This intellect is 

capable of predicting, in theory, every past and future event.  

" We may regard the present state of the universe as the effect of its past and the cause of its 

future. An intellect which at a certain moment would know all forces that set nature in motion, 

and all positions of all items of which nature is composed, if this intellect were also vast enough 

to submit these data to analysis, it would embrace in a single formula the movements of the 

greatest bodies of the universe and those of the tiniest atom; for such an intellect nothing would 

be uncertain and the future just like the past could be present before its eyes.”12 

How did we come to this point? How did humanity reach such a level of confidence, perhaps 

even arrogance, in its understanding of the world?  

The theory of dynamical systems has deep historical roots, stretching back to ancient Greek 

thought. Aristotle was among the first to formulate a structured theory of motion, based in two 

key principles. First, he proposed that on Earth, an object naturally comes to rest unless a force 

acts upon it, if a force is applied, it moves in a straight line. In contrast, celestial bodies were 

believed to move endlessly in perfect circles centered on the Earth. Second, Aristotle asserted 

that the motion of earthly objects depends on their composition: a rock falls because it is made 

of the element earth, while smoke rises because it is composed of air. It is worth emphasizing 

 
11 Isaac Newton, The Principia: Mathematical Principles of Natural Philosophy, trans. I. 
Bernard Cohen and Anne Whitman (Berkeley: University of California Press, 1999). 
12 Pierre-Simon Laplace, A Philosophical Essay on Probabilities, trans. Frederick Wilson 
Truscott and Frederick Lincoln Emory (New York: Dover Publications, 1951). 
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Aristotle’s method of reasoning and his approach to developing theoretical models of motion. 

He “was not one to let experimental results get in the way of his theorizing. His scientific 

method was to let logic and common sense direct theory; the importance of testing the resulting 

theories by experiments is a more modern notion. ”13 Aristotele and more in general all the 

ancient greeks thought was based on the idea that the universe had a rational principle called 

logos. The human being then could understand this principle through the nature and the 

philosophy. The Greeks in fact, adapted their theory with what was happening in their 

surroundings. Aristoteles, Plato and the ancient philosophers conceived the nature as a cosmos, 

a qualitative order in which the elements of the reality were interconnected following a 

universal equilibrium. This stability was not just a set of quantitative laws and it was the main 

way of thinking of western society until XVI century. 

After the institution of the scientific revolution and the philosophical contribution of Descartes, 

this conception of the reality totally changed in the XVI and XVII centuries. The modern 

science progressively substituted the qualitative vision of the Greeks. The new approach was 

based on the reduction of nature to mathematical laws .The universe started to be seen as a 

perfect machine in which universal and deterministic laws were able to predict every effect of 

an event. This method was based on the principle of cause effect. The classic science affirmed 

that the nature has no history, it does not evolve: the laws are eternal, immutable and valid 

everywhere and everytime. 14 

In this perspective, the reality is reducible to a set of mathematical and physical laws that 

determine the unique evolution of every natural system. The consequence of this statement is 

the negation of creativity, uncertainty and unpredictability. The universe is conceived as a 

closed and reversable system where time is only a simple mathematical parameter. This 

mathematic paradigm influenced the development of classic physic and engineer science, and 

it produced science model based on linearity. The reality was seen as the sum of the single 

components and its understanding derived from the analysis of those single components 

isolated. This model denied and found useless a science whose goal was the investigation of 

the interaction of the agents.   

 

 
13 Mitchell, Complexity, [page 17]. 
14 Ilya Prigogine and Isabelle Stengers, Order out of Chaos: Man’s New Dialogue with Nature 
(New York: Bantam Books, 1984). 
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1.2.2. Deterministic systems, definition  
Let us now examine the mathematical definition and formalization of the determinism 

paradigm. ” A process is called deterministic if its entire future course and its entire past are 

uniquely determined by its state at the present time. The set of all states of the process is called 

the phase space.”15 This property is called unique evolution and from it we can derive that 

“given a state at a specific time there is only one history of transitions consistent with the 

laws.”16 In other words, no two different outcomes can arise from identical starting conditions. 

Deterministic dynamics are typically expressed as equations in state-space form. The system’s 

state is represented by a vector of variables x(t) in an appropriate state space (or phase space), 

and the time-evolution rule is given by a fixed function or law.  

For a continuous-time system, the evolution is often specified by a differential equation: 

𝑥̇(𝑡) = 𝑓;𝑥(𝑡)< 

Where, 

𝑥(𝑡) ∈ 𝑅%,	is the state vector, all the variables that describe the systems at time t; 

𝑥̇(𝑡)	 is the time derivative of the state; 

𝑓: 𝑅% → 𝑅%	𝑖𝑠	𝑎	𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	(𝑡ℎ𝑒	𝑠𝑦𝑠𝑡𝑒𝑚′𝑠	𝑟𝑢𝑙𝑒	𝑜𝑟	𝑙𝑎𝑤); 

The equation tells how the system evolves from the initial condition 𝑥(0) = 𝑥&.Ordinary 

differential equations can be described within a general theoretical framework using the 

following system: 

𝑥#̇ = 𝑓#(𝑥#, … , 𝑥%) 

⋮ 

𝑥%̇ = 𝑓%(𝑥#, … , 𝑥%) 17 

In discrete time, the evolution is given by an iteration: 

𝑥%"# = 𝑓(𝑥%) 

𝑥&, 	𝑓(𝑥&), 	𝑓;𝑓(𝑥&)<, 	𝑓 Q𝑓;𝑓(𝑥&)<R, 

Where 𝑛 indexes time steps. This recursive map produces a sequence of states 𝑥&, 𝑥#, 𝑥$, 

determined entirely by the initial value 𝑥&.18 

 
15 Vladimir I. Arnold, Ordinary Differential Equations, trans. Roger Cooke (New York: 
Springer, 1992), [page 13]. 
16https://plato.stanford.edu/entries/chaos/#:~:text=A%20mathematical%20model%20is%20d
eterministic,if%20it%20exhibits%20unique%20evolution  
17 Strogatz, Nonlinear Dynamics and Chaos. 
18 Devaney, An Introduction to Chaotic Dynamical Systems. 
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A contiuous time-system is a system in which the state 𝑥(𝑡) changes continuously over time. 

It is possible to compute the state at any real-valued time 𝑡 ∈ 𝑅%. In a discrete time system the 

state 𝑥%	changes at discrete time steps (e.g., every second, every iteration). In both cases 

(continuous or discrete), no external randomness enters: the “rule” 𝑓 alone drives the dynamics. 

Determinism thus implies a well-defined trajectory (path in phase space) passing through one 

state to the next. 

It is important to note that deterministic does not necessarily mean simple or predictable in 

practice. It only guarantees that the outcome is uniquely determined by initial conditions, not 

that we can easily calculate it.  
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1.3. Chaotic systems 

1.3.1. Chaotic systems, definition 
“Deterministic chaos is the rule, not the exception.” 

- Edward Lorenz 

Deterministic systems can nevertheless behave in ways that appear irregular, erratic, or 

unpredictable over the long term. Chaos refers to such complicated behavior arising within a 

deterministic framework. In a chaotic dynamical system, the underlying evolution rules are 

fixed and non-random, yet the system’s trajectory shows an aperiodic and seemingly random 

pattern over time. Crucially, chaotic behavior does not violate determinism: the system still 

follows one unique trajectory from any given initial state. Chaotic behavior is always 

deterministic, despite popular confusion of chaos with true randomness. The difference is that 

chaotic systems are extremely sensitive and complex, making their long-term behavior 

effectively unpredictable even though it is in principle determined by initial conditions.19  

Currently, there is no single, universally accepted definition of chaos. However, the scientific 

community generally agrees on a three-point description, outlined below.  

“Chaos is aperiodic long-term behaviour in a deterministic system that exhibits sensitive 

dependence on initial conditions.”20  

In which: 

1) Aperiodic long-term behaviour refers to the fact that the system’s trajectory does not 

converge to fixed points or repeat in regular cycles, even as time approaches infinity. 

2) Determinism implies that the system operates without any random external inputs; the 

observed irregularity in behavior stems entirely from its inherent nonlinear structure. 

3) Sensitive dependence on initial condition indicates that trajectories starting from nearly 

identical states diverge rapidly over time, with small initial differences growing 

exponentially.21 

Before presenting the mathematical formulation, it is essential to first introduce the concepts 

of 1) topological transitivity and 2) sensitivity to initial conditions. 

1)	"𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛: 	𝑓: 𝐽 → 𝐽 is said to be 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑙𝑦	𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒 if, for any pair of open  

sets 𝑈, 𝑉 ⊂ 𝐽, there exists 𝑘 > 0 such that 𝑓'(𝑈) ∩ 𝑉 ≠ ∅. "22 

 
19 plato.stanford.edu 
20 Strogatz, Nonlinear Dynamics and Chaos, [page 798]. 
21 Strogatz, Nonlinear Dynamics and Chaos. 
22 Devaney, An Introduction to Chaotic Dynamical Systems, [page 61]. 
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𝑓'(𝑈) denotes the k-th iterate of the function	𝑓 applied to the set U. Specifically: 

𝑓'(𝑈) = 𝑓;𝑓(…𝑓(𝑥)… )<`aaaabaaaac
' times

 . 

Basically it means that points from any regions can evventualy reach any other region. In this 

way every region of the space interact with all of the other region as the time continues.  

2)	"𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛: 	𝑓: 𝐽 → 𝐽 has 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒	𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒	𝑜𝑛	𝑖𝑛𝑖𝑡𝑖𝑎𝑙	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 on 𝐽 if there 

exists 𝛿 > 0 such that, for any 𝑥 ∈ 𝐽 and any neighborhood 𝑁 of 𝑥, there exists 𝑦 ∈

𝑁  and 𝑛 ≥ 0 such that |𝑓%(𝑥) − 𝑓%(𝑦)| > 𝛿.  

Intuitively, a map possesses sensitive dependence on initial conditions if, for each point x in 𝐽, 

there exist points arbitrarily close to x whose orbits eventually separate from the orbit of x by 

at least 𝛿 under iteration of 𝑓.”23 

Now it is possible to formulate a mathematical definition of a chaotic system: 

𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛: 	Let 𝑉 be a set. 𝑓:	𝑉 → 𝑉	is said to be chaotic on 𝑉	if 𝑓 has the following  

three properties: 

1. 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐	𝑝𝑜𝑖𝑛𝑡𝑠	𝑎𝑟𝑒	𝑑𝑒𝑛𝑠𝑒	𝑖𝑛	𝑉; 
2. 𝑓	𝑖𝑠	𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑙𝑦	𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒; 
3. 𝑓	ℎ𝑎𝑠	𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒	𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒	𝑜𝑛	𝑖𝑛𝑖𝑡𝑖𝑎𝑙	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠. 

The first propertie states that it is possible to find periodic point in every neighborhood. A 

periodic point is one that returns to its original position after a finite number of iterations of the 

function. A chaotic system posses 3 important characteristics: unpredictability, 

indecomposability, and an element of regularity.24 

1.3.2. Chaotic systems, history 
The journey from deterministic predictability to chaotic unpredictability has its roots in the 

foundational problem of Newtonian dynamics: the n-body problem. Newton was able to solve 

the 2 bodies problem but, when a third body was added, the conclusions seemed impossible. 

What does it mean? Newton's laws of motion, when combined with his universal law of 

gravitation, could precisely describe the motion of two celestial bodies, such as the Earth and 

the Moon. However, as soon as a third body was introduced, the equations became intractably 

complex. In 1887, the Swedish King Oscar II announced a mathematical competition to 

determine the long-term stability of the solar system. The king promised to award a prize to 

the one who succeeded in solving the problem. Henri Poincaré entered the contest by 

 
23 Devaney, An Introduction to Chaotic Dynamical Systems, [page 61]. 
24 Devaney, An Introduction to Chaotic Dynamical Systems. 



 16 

attempting to solve the three-body problem using Newton’s laws, but he failed. Or better he 

found that the question was impossible to solve due to approximation problems. He infact 

stated that: 

“A very small cause which escapes our notice determines a considerable effect that we cannot 

fail to see, and then we say that that effect is due to chance. If we knew exactly the laws of 

nature and the situation of the universe at the initial moment, we could predict exactly the 

situation of that same universe at a succeeding moment. But, even if it were the case that the 

natural laws had no longer any secret for us, we could still only know the initial situation 

approximately. If that enabled us to predict the succeeding situation with the same 

approximation, that is all we require, and we should say that the phenomenon had been 

predicted, that it is governed by laws. But it is not always so; it may happen that small 

differences in the initial conditions produce very great ones in the final phenomena A small 

error in the former will produce an enormous error in the latter. Prediction becomes 

impossible, and we have the fortuitous phenomenon.”25 

It is worth highlighting that Poincaré, although he did not formally prove it, recognized the 

profound effect that even minimal measurement errors can have within nonlinear systems. This 

insight marked the earliest formal acknowledgment of what we now refer to as chaos, though 

the term itself was not yet in use. Poincaré’s observations were remarkably ahead of his era, 

and as a result, their significance was not immediately appreciated by the broader mathematical 

community. For much of the early twentieth century, the investigation of chaotic dynamics 

remained largely neglected, as attention shifted toward other emerging fields such as topology 

and quantum mechanics. 

In the early 1960s, Edward Lorenz, a meteorologist at MIT, constructed a simplified 

computational model of the atmosphere. The machine printed numbers that simulated wind and 

temperature patterns. Although limited in memory and processing power, this toy model had 

the ability to mimic actual weather behavior. It did not reproduced it exactly, but showed 

aperiodicity (non-repeating patterns) and unpredictability. The system never returned to the 

same state, even when inputs seemed almost identical. 

Lorenz discovered chaos by accident. During a test, he rounded off input numbers to three 

decimal places instead of six, expecting identical results. But the simulation quickly diverged 

into a radically different trajectory. This minor numerical change amplified into a large-scale 

 
25 Henri Poincaré, Science and Method, trans. Francis Maitland (London: Thomas Nelson and 
Sons, 1914), [page 67]. 
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alteration. It was an early demonstration of what later became known as sensitive dependence 

on initial conditions.  

1.3.3. Chaotic systems, demonstration  
To reproduce this effect, we used the classic Lorenz system, a set of three coupled nonlinear 

differential equations derived from fluid dynamics26: 

i
𝑥̇ = 𝜎(𝑦 − 𝑥)

𝑦̇ = 𝑥(𝑟 − 𝑧) − 𝑦
𝑧̇ = 𝑥𝑦 − 𝑏𝑧

  

where the standard parameter values are σ=10, r=28, and b=8/3. 

We performed a numerical simulation using Euler’s method with two sets of initial conditions: 

Case A (3-decimal precision): 𝑥 =1.235, 𝑦 =1.346, 𝑧 =1.457 

Case B (6-decimal precision): 𝑥 =1.234567, 𝑦 =1.345678, 𝑧 =1.456789  

Euler’s method is a simple numerical technique used to approximate solutions to ordinary 

differential equations (ODEs) by iteratively advancing the solution using the slope at each step: 

𝑥%"# = 𝑥% + ℎ ⋅ 𝑓(𝑥%, 𝑡%),  

where ℎ is the step size and in this case it is ℎ =0.01. 

At every iteration step, all calculations were constrained to either three or six decimal digits, 

just as Lorenz had experienced due to the limited precision of 1960s computing. 

The following Table 2 displays the results at selected iteration steps, along with the Euclidean 

distance between the states of the two systems: 

Step x_3dec y_3dec z_3dec x_6dec y_6dec z_6dec Distance 

1 1,246 1,66 1,435 1,245678 1,659915 1,434555 0,000556 

2 1,287 1,974 1,417 1,287102 1,974236 1,416977 0,000258 

5 1,568 2,993 1,4 1,568334 2,993617 1,39919 0,001072 

20 7,288 15,188 5,103 7,289412 15,19025 5,10427 0,002941 

50 -4,021 -15,286 33,587 -4,0237 -15,2863 33,58725 0,002726 

100 -5,303 -7,64 18,389 -5,3009 -7,63854 18,38485 0,004877 

200 -13,508 -21,229 23,741 -13,4603 -21,209 23,59644 0,153534 

500 -1,12 0,579 22,632 -0,9949 0,759842 22,6675 0,222741 

Table 2 

Even though both systems use the same mathematical laws and extremely similar initial values, 

their paths diverge measurably over time. This is not due to randomness, but to the 

 
26 Once again here it is not important to understand where these equations came from, but 
what are the implications 
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amplification of numerical noise inherent to chaotic systems. The divergence begins gradually 

but persists and grows as the simulation progresses. Figure 3 provides a visual confirmation of 

this exponential trend, illustrating the rapid divergence between the two trajectories over time. 

  
Figure 3 

 

This experiment underscores a fundamental limitation of deterministic modeling in chaotic 

regimes: perfect predictability is impossible in practice, not because of flaws in the equations, 

but because no measurement or computation can ever be infinitely precise. 

1.3.4. Chaotic systems, implications  
The deterministic paradigm assumed that science could build models to fully describe and 

predict natural phenomena. Chaos theory challenges this idea. It shows that there are structural 

limits to what science can predict. In non-linear systems, the issue is not a lack of knowledge 

or measurement errors. The problem lies in the system’s inherent instability, which amplifies 

minimal perturbations beyond any reasonable predictive capacity.27 

 “In short, the presence of chaos in a system implies that perfect prediction à la Laplace is 

impossible not only in practice but also in principle, since we can never know 𝑥& to infinitely 

many decimal places.”28 

 
27 James Gleick, Chaos: Making a New Science (New York: Open Road Integrated Media, 
2011). 
28 Mitchell, Complexity, [page 33]. 
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The discovery and development of chaos theory have fundamentally transformed science and 

reshaped humanity’s understanding of nature. In the 19th century, such ideas would have 

seemed implausible, even absurd, to many scientists of the time. Yet, modern research has 

revealed several groundbreaking insights: 

• Apparently random behavior can arise from purely deterministic systems, without any 

external source of randomness. 

• Certain simple, deterministic systems can exhibit behavior that, due to their sensitivity 

to initial conditions, becomes inherently unpredictable over the long term. 

• Despite this unpredictability, chaotic systems often display an underlying structure, a 

kind of “order within chaos”,reflected in universal properties shared across diverse 

chaotic systems.29 

This new lens on unpredictability opened the door to a broader scientific revolution: the 

emergence of complexity theory. If chaos revealed the limits of predictability in simple 

deterministic systems, complexity expanded that insight to systems composed of many 

interacting parts, systems where unpredictable, emergent behavior arises not just from 

sensitivity to initial conditions, but from the structure of interactions themselves. It marked a 

shift from asking how systems behave to understanding how systems organize, adapt, and 

evolve. 

 

 

  

 
29 Mitchell, Complexity. 
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1.4. Complex systems 

1.4.1. Complex systems, definition 
“More is different.”  

- Philip W. Anderson, nobel laureate in physics 1977. 

The studies of complex systems started in the lasts decades of the previous centuries. As for 

chaos theory, we do not have a globally accepted definition of complex system. Despite its 

growing influence across disciplines, it is often described as a broad field that concern how 

independent agents interact and evolve over time in response to each other and the 

environment. An informal definition can be that: complexity science is “a field of research that 

explores how independent agents interact with each other in a variety of ways.”30 The most 

important thing to analyze is that the agents produce collective dynamics that cannot be traced 

back solely to the characteristics of individual agents. This fact reflects the field’s intellectual 

necessity for interdisciplinarity. Complexity theory draws upon contributions from biology, 

computer science, systems theory, economics, cognitive science, and social theory, among 

others. Each discipline brings different models and methods, but all converge on the 

recognition that real-world systems are not best understood by breaking them down into 

isolated parts.  

This departure from classical reductionism marks a decisive shift in scientific thinking. 

Classical models, especially the ones derived from Newtonian physics, assumed that if all parts 

of a system were understood, then it was possible to understand also the collective behaviour 

of the system. Complexity theory directly challenges this assumption. What it emphasizes is 

that the whole may be greater than, or even qualitatively different from, the sum of its parts.31 

It focuses in particular on dynamic interactions, non-linear feedback loops, and the emergence 

of novel structures over time. Instead of offering universal law, complexity offers a language 

of patterns and change. It helps us understanding how societies transform, how innovation 

unfolds, and how living systems sustain themselves amid uncertainty. In this light, complexity 

theory is not merely a scientific theory but a new paradigm for understanding systemic 

transformation, one that privileges relational thinking, contextuality, and the co-evolution of 

structure and behavior. 

Complexity theory and chaos theory might seem very similar since they share rejection of 

linear, deterministic frameworks, yet they are conceptually distinct in both scope and 

 
30 John R. Turner and Rose M. Baker, “Complexity Theory: An Overview with Potential 
Applications for the Social Sciences,” Systems 7, no. 1 (2019): 1–23. 
31 Turner and Baker, “Complexity Theory,” 5. 
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application. As we have seen chaos theory states the unpredictability of a system deriving from 

sensitive dependance on initial conditions. Such systems are deterministic yet appear random 

in the long term. Complexity theory, on the other hand, investigates systems composed of 

multiple interacting components whose collective behavior gives rise to new, emergent pattern. 

Complex theory concern not only unpredictability but also self-organization, adaptation and 

evolution over time. Complex systems are often high-dimensional and exhibit behaviors not 

deducible from their components alone.32 One of the most important difference between 

chaotic and complex system is that chaotic systems are typically closed and memoryless; they 

evolve in ways that are highly sensitive to their initial states but do not learn or adapt. In 

contrast, complex adaptive systems (CAS), a central concept in complexity theory, are open 

systems that incorporate feedback, adjust their behavior based on experience, and modify their 

internal rules in response to environmental changes.33 Despite these differences, both 

frameworks share crucial methodological affinities. They emphasize non-linearity and 

challenges the classical assumption about causality. 

1.4.2. Complex systems, CAS (complex adaptive systems) 
A central notion in complexity theory is the notion of complex adaptive system (CAS): systems 

composed of multiple agents that interact with each other and their environment according to 

local rules, and that are capable of adaptation and learning over time. Differently from static 

and merely complex system, CAS are defined by their capacity to evolve, aggregate behaviour 

and anticipation34. Each agent within the system follows a limited set of rules, but their 

collective interactions generate emergent global behaviors that cannot be predicted by 

analyzing single agents. According to Holland, what distinguishes CAS from other forms of 

complex systems is their ability to learn and self-organize in ways that increase their fitness in 

changing environments. These systems evolve by balancing exploitation of known strategies 

and exploration of new possibilities. In this context, “credit assignment” becomes essential: 

effective rules or patterns are reinforced while ineffective ones are discarded or recombined. 

Such mechanisms parallel those found in evolutionary biology and neural learning models.35 

Moreover, CAS are open systems that continually exchange energy, information, or resources 

with their environment. They do not seek equilibrium, and their structure is often the result of 

 
32 Rickles, Hawe, and Shiell, “A Simple Guide to Chaos and Complexity,” 935. 
33 Turner and Baker, “Complexity Theory,” 5. 
34 John H. Holland, “Complex Adaptive Systems,” Daedalus 121, no. 1 (1992): 17–30. 
35 Holland, “Complex Adaptive Systems,” 25. 
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ongoing, decentralized interactions rather than centralized control. This makes them highly 

responsive to contextual changes but also difficult to model using classical equations.36 

Complex Adaptive Systems are not abstract constructs limited to theoretical models, they are 

present in the natural and social world. One of the most illustrative examples is the immune 

system. It consists of a decentralized network of cells that continuously adapt to new pathogens. 

Each immune cell follows simple recognition rules but their interactions result in complex 

behaviors such as memory, response modulation, and self/non-self differentiation.37 Similarly, 

economic markets function as prototypical CAS: they comprise countless agents (consumers, 

firms, regulators) whose decisions, collectively shape market trends. These systems do not 

converge toward a single equilibrium but evolve in response to policy shifts, technological 

changes, and cultural trends. Another example is ecosystems, where species interact in food 

webs, compete for resources, and evolve. As Holland notes, ecosystems exhibit adaptive 

behavior over time as populations fluctuate, niches evolve, and environmental pressures 

reshape the dynamics of interdependence. CAS can also be found in social organizations, such 

as governments or universities. They operate without a singular controlling entity yet adapt to 

political, economic, and social demands through distributed decision-making.38 These 

organizations frequently reorganize their internal structures in response to environmental 

changes, demonstrating the core traits of emergence, self-organization, and adaptability. In the 

digital age, online social networks and digital ecosystems (such as app stores or e-commerce 

platforms) also are CAS dynamics. Agents engage in real-time feedback cycles that shape 

content visibility and platform evolution. 

These examples highlight the practical relevance of CAS across domains. Their defining 

features allow them to navigate environments marked by uncertainty, interdependence, and 

constant change. 

1.4.3. Complex systems and information theory 
To fully grasp the inner workings of complex adaptive systems, one must consider not only 

their dynamic structure and emergent behavior, but also how they process, store, and transmit 

information. Information theory offers a powerful framework for analyzing complexity at a 

fundamental level, particularly through its capacity to quantify the informational content 

required to describe or reproduce a system. One of the most profound bridges between complex 

 
36 Turner and Baker, “Complexity Theory,” 5. 
37 Holland, “Complex Adaptive Systems,” 25. 
38 Turner and Baker, “Complexity Theory,” 5. 
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systems and information theory emerged in the 1960s, when mathematician Andrey 

Kolmogorov, along with Gregory Chaitin and (independently) Ray Solomonoff, proposed 

defining an object’s complexity as the length of the shortest computer program that can 

generate a complete description of that object.39 This quantity, now known as Kolmogorov 

complexity or algorithmic information content, measures an object’s irreducible information: 

the more easily a pattern can be compressed into a short description, the “simpler” it is, whereas 

a pattern that is truly random (lacking any regularity) has no description shorter than a literal 

transcription of itself and thus possesses maximal complexity40. For example, a DNA sequence 

consisting of a simple repeating motif can be generated by a brief algorithm (“print AC ten 

times”), yielding low complexity, whereas an equal-length sequence with no apparent pattern 

would require an algorithm essentially as long as the sequence itself, making it incompressible 

and highly complex.41 Kolmogorov first articulated this idea in 1965 (unaware that Solomonoff 

had already hinted at a similar principle in 1960), and around the same time Chaitin arrived at 

the same definition from a computational perspective.42 Their contributions inaugurated the 

field of algorithmic information theory and inspired further refinement of the concept; over the 

next decade the initial formulations were improved and their soundness confirmed in practice. 

Kolmogorov complexity thus provides a universal, machine-independent measure of 

complexity in abstract systems, marrying the intuitions of complexity science with a rigorous 

information-theoretic framework. In mathematics, Chaitin used this notion to reveal 

fundamental limits to knowledge: essentially, no formal axiomatic system of limited size can 

prove that a given sequence is random if that sequence’s Kolmogorov complexity exceeds the 

information contained in the system’s axioms, a result that casts Gödel’s incompleteness 

phenomenon as a natural consequence of information constraints. In the realm of scientific 

inquiry, Solomonoff’s related work showed how algorithmic complexity can guide inductive 

reasoning: the best theory is the one with the shortest description that reproduces the observed 

data, an algorithmic form of Occam’s razor in which the simplest adequate program (minimum 

Kolmogorov complexity) is preferred as the explanation of phenomena.43 Even in the social 

sciences, this view of complexity has resonated: it implies that truly complex phenomena 

(whether in biology, society, or economics) carry a high information content and are inherently 

 
39 Mitchell, Complexity. 
40 Gregory J. Chaitin, “Randomness and Mathematical Proof,” Scientific American 232, no. 5 
(May 1975): 47–52. 
41 Mitchell, Complexity. 
42 Chaitin, “Randomness and Mathematical Proof,” 49. 
43 Chaitin, “Randomness and Mathematical Proof,” 49. 
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unpredictable. Indeed, organizations understood as complex systems have been described as 

“radically unpredictable,” defying any straightforward, compact description or top-down 

control.44 In sum, Kolmogorov and Chaitin’s work provided a new theoretical lens for 

complexity, one that equates complexity with information, and in doing so it has enriched our 

understanding of randomness, structure, and the limits of compressibility in mathematical, 

scientific, and even social domains. 

  

 
44 W. Brian Arthur, “Complexity and the Economy” Science 284, no. 5411 (1999): 107–109. 
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1.5 Introduction to adjacent possible theory 
As we have seen, Complex Adaptive Systems (CAS) are defined not only by the richness of 

their internal interactions, but also by their ability to respond to changing environments through 

continual adaptation. What makes them especially resilient is their capacity to oscillate between 

two essential dynamics: the efficient use of what is already known (exploitation) and the 

cautious pursuit of what remains unexplored (exploration). This balance is not a marginal 

feature, it is fundamental to how these systems evolve, learn, and survive in conditions of 

uncertainty.45 It is precisely this dynamic interplay that opens the door to a broader conceptual 

framework: the theory of the Adjacent Possible. 

Stuart Kauffman’s notion of the Adjacent Possible offers a convincing way to interpret how 

complex systems generate novelty. Rather than moving toward chaotic or implausible futures, 

adaptive systems tend to move incrementally, testing the limits of their current configuration 

while stretching into new but structurally reachable directions.46 In other words, at any given 

moment, a system is surrounded by a range of “next steps” that were not accessible before but 

become viable as the system evolves. The Adjacent Possible, then, is not just a metaphor for 

innovation; it is a structural property of complexity itself. As Kauffman explains, the growth 

of possibility unfolds in tandem with the history of what has already emerged. 

This shift in perspective, from solving problems within a known landscape to generating new 

landscapes entirely, marks a significant extension of complexity theory. It suggests that 

adaptive systems are not merely reactive or rule following; they are inherently inventive, 

continually reshaping the profile of their future through the choices they make in the present. 

The Adjacent Possible thus serves as a conceptual bridge between the descriptive power of 

complexity science and the creative logic of innovation and transformation. 

 
45 Turner and Baker, “Complexity Theory,” 5. 
46 Stuart A. Kauffman, The Origins of Order: Self-Organization and Selection in Evolution 
(New York: Oxford University Press, 1993). 
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Chapter 2: Adjacent possible theory 

2.1. Link with Complex adaptive systems 
Complex Adaptive Systems (CAS) occupy a central place within the broader field of 

complexity science due to their unique capacity to generate emergent behaviors through the 

dynamic interplay of heterogeneous agents, feedback loops and nonlinear interactions. Unlike 

purely deterministic or chaotic systems, which evolve within fixed and predefined state spaces, 

CAS are characterized by their ability to evolve with their environment, continuously altering 

the landscape of possibilities through endogenous novelty production.47 This ability to 

transform not only in response to external conditions but also through self-organization and the 

internal recombination of existing structures leads to a distinctive mode of evolution that cannot 

be fully captured by traditional models of linear causality or optimization. 

It is within this conceptual framework that the Theory of the Adjacent Possible (TAP) becomes 

particularly salient. Introduced by Stuart Kauffman in the context of evolutionary biology, TAP 

describes the dynamically expanding space of potential states that become accessible to a 

system as a direct consequence of the states it has already actualized.48 At any given moment, 

a CAS is surrounded not by an infinite array of options but by a set of adjacent possibilities: 

configurations that were previously inaccessible but become viable due to recent structural 

transformations within the system.49 This conception of adjacent possibilities as emerging at 

the edge of the current state space reframes our understanding of adaptation, it emphasize a 

process not merely of selection among fixed alternatives but of endogenous expansion into 

novel, structurally coherent futures.50 

The relevance of TAP to CAS lies precisely in this capacity to model evolution as an open 

ended, path dependent process. Each act of exploration or recombination within a CAS does 

not merely yield a new element, it also alters the configuration of the possibility space itself. 

As Devereaux, Koppl and Kauffman argue, this leads to a non ergodic movement through an 

unlistable and generative landscape, where neither the full set of future options nor their 

associated outcomes can be known ex ante.51 In this context, the adjacent possible functions as 

 
47 Kauffman, “The Origins of Order.” 
48 Andrew Devereaux, Roger Koppl and Stuart Kauffman, “Creative Evolution in 
Economics.” Journal of Evolutionary Economics 34 (2024): 489–514. 
49 Vittorio Loreto et al., “Dynamics on Expanding Spaces: Modeling the Emergence of 
Novelties.” Nature Physics 12, no. 10 (2016): 842–847. 
50 Joakim Taalbi, “Long-Run Patterns in the Discovery of the Adjacent Possible,” arXiv 
(2023). 
51 Devereaux, Koppl and Kauffman, “Creative Evolution in Economics.” 
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a generative grammar for novelty, enabling us to understand how systems can evolve in ways 

that are both constrained by historical precedent and yet radically inventive. The system’s 

trajectory, far from being teleologically determined or statistically predictable, becomes a 

function of emergent path dependencies, where each realized novelty conditions the set of 

subsequent possible innovations.52 

Moreover, empirical and computational modeling work, particularly in social and 

technological systems, has demonstrated that TAP dynamics are not merely metaphorical. 

Studies using urn models and combinatorial algorithms have formalized how the appearance 

of novelty, represented as the addition of new balls or categories, triggers the subsequent 

emergence of further possibilities in a reinforcing cascade.53 These dynamics have been shown 

to explain observed innovation patterns across diverse contexts, such as patent networks, 

cultural production and social media interactions, where waves of novelty are continuously 

mixed with the exploitation of past successes.54 Theoretically, such models support the view 

that innovation arises not from isolated breakthroughs but from a combinatorial exploration of 

proximate possibility spaces, aligning with the core logic of CAS as systems that evolve by 

investigating the edges of their own structure. 

In light of the conceptual alignment between Complex Adaptive Systems and the Theory of 

the Adjacent Possible, this chapter aims to provide a structured and analytical exploration of 

the Adjacent Possible as a framework for understanding innovation and systemic evolution. It 

begins by defining the notion of the adjacent possible space, clarifying its theoretical 

foundations and distinguishing it from adjacent but unrelated concepts in complexity science. 

The discussion then turns to the temporal evolution of the adjacent possible, structured into 

four key phases: initial exploration, the emergence of structured complexity, the onset of 

accelerated combinatorial growth, and the appearance of new systemic constraints that shape 

future innovation trajectories. The chapter will also delineate the intrinsic characteristics of the 

adjacent possible space, including its dynamic expansion, path dependence and irreversibility. 

In addition, it will classify different types of adjacent possible spaces, such as accessible and 

cognitive adjacent, and it will analyze the implications of each for adaptive processes. Finally, 

the chapter concludes by examining empirical evidence and statistical regularities observed in 

 
52 Kauffman, “The Origins of Order”; Loreto et al., “Dynamics on Expanding Spaces.” 
53 Loreto et al., “Dynamics on Expanding Spaces.”; Francesca Tria et al., “The Dynamics of 
Correlated Novelties.” Scientific Reports 4, no. 5890 (2014). 
54 Bernardo Monechi et al., “Waves of Novelties in the Expansion into the Adjacent 
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real world systems, such as the emergence of power-law distributions, which support the 

theoretical predictions of adjacent possible dynamics in domains ranging from technological 

innovation to social networks and linguistic evolution. 
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2.2 APT: Definition and concepts 
The concept of the Adjacent Possible (APT) emerged in the context of evolutionary biology 

and complexity theory, it was originally formulated by Stuart A. Kauffman to describe the 

generative mechanisms underlying biological innovation and the expansion of the biosphere. 

Dissatisfied with purely Darwinian explanations based solely in selection and variation, 

Kauffman introduced the idea that the biosphere does not evolve merely through adaptive 

walks on fitness landscapes, but also by expanding the very configuration space within which 

these adaptive moves occur.55 In “The Origins of Order”, Kauffman posited that each novel 

biological entity (whether a molecule, metabolic function, or species) does not just occupy a 

previously empty niche, it actively reshapes the landscape of what is possible next by creating 

new affordances for further combinations, adaptations and co evolution.56 This conceptual shift 

implied that evolution is not only an exploration within a fixed space of possibilities but also a 

process that dynamically constructs and enlarges that very space. This perspective resonates 

across diverse fields including innovation studies, information theory, economics and cultural 

evolution.57 

At its core, the Theory of the Adjacent Possible posits that, at any given moment, a system, 

biological, technological or social, is surrounded by a set of potential states or configurations 

that are not currently actualized but become reachable due to what already exists.58 This set of 

states, the “adjacent possible space”, is not infinite but contextually constrained by the 

components, knowledge and interactions presently available within the system. The adjacent 

possible thus comprises all the novel configurations that can be generated by recombining, 

modifying or extending current elements through minimal steps. For example, in molecular 

evolution, once a new protein folds into a viable structure, it enables new biochemical pathways 

that were previously inaccessible. In cultural innovation, the invention of the printing press 

enables the creation of public newspapers, which in turn leads to the emergence of mass media 

systems. As such, the adjacent possible represents the structured perimeter of innovation: what 

can be done next, but not what can be done eventually.59 This concept stands in contrast to the 

classical optimization frameworks where exploration is often viewed as a search across a static 
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landscape. Instead, the adjacent possible evolves with each innovation, continuously redrawing 

the boundaries of feasible change. 

2.2.1. Exploration and exploitation 
One of the foundational dynamics underlying the theory of the adjacent possible is the interplay 

between exploitation and exploration, two competing, yet interdependent, modes of systemic 

behavior that shape the trajectory of innovation and evolution in Complex Adaptive Systems 

(CAS). Exploitation can be understood as the incremental refinement and repeated use of 

existing structures, practices or knowledge. It leverages what the system has already actualized, 

deepening capabilities and improving efficiency by reinforcing known pathways.  

As we can see in panel (a) of  Figure 4, exploitation corresponds to the red arrows operating 

entirely within the space of already realized nodes (represented in grey), where internal 

linkages reinforce the current configuration of the system without extending its structural 

boundaries. In contrast, exploration involves the system’s outward movement toward novel 

configurations that were not previously present but become accessible due to existing 

structures. Panel (b) of Figure 4 illustrates this process clearly: the red arrows now extend from 

the actualized network into a green frontier of new nodes, representing the adjacent possible. 

These nodes were previously unreachable but now become structurally available due to the 

specific position and evolution of the current system state. 

 
Figure 4, Lars Björneborn, “Adjacent Possible,” in Springer MRW (2023). 

 

This dichotomy between exploration and exploitation is crucial for adaptive performance: a 

system that overcommits to exploitation risks entrenchment in suboptimal equilibria, while one 

that favors unrestricted exploration may suffer from volatility, incoherence or premature 

abandonment of viable innovations.60 

 
60 Loreto et al., “Dynamics on Expanding Spaces.” 
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Within the framework of the adjacent possible, this tension takes on a particularly generative 

role. The adjacent possible functions as a dynamic, structurally delimited perimeter that 

expands in tandem with the system’s own evolution. It contains all those novel configurations 

that are reachable through minimal changes, combinations, interactions or recompositions, 

based on what already exists.61 What distinguishes the adjacent possible from the merely 

hypothetical or imaginable is its dependency on actualized history: it is not a universal space 

of options but a situated, system contingent set of next step innovations. With each realization 

of novelty the adjacent possible enlarges recursively reshaping itself and opening pathways to 

further innovations.62 In this sense, the adjacent possible does not merely describe potential 

futures, it describes how the very structure of potentiality is transformed by present action. In 

empirical contexts, such as the evolution of technological platforms or cultural trends, this 

manifests in the emergence of stable yet open ended innovation paths, where agents 

continuously negotiate between optimizing known solutions and reaching beyond them into 

uncertain terrain.63 

While theoretical models such as the modified Polya’s urn have been developed to capture 

these dynamics formally, their detailed mechanics will be addressed in the following sections. 

What is crucial to emphasize here, however, is that the adjacent possible is not merely 

unpredictable, it is, in a fundamental sense, unknowable in advance. As Kauffman famously 

argued, the growth of the biosphere exemplifies a process in which “not only do we not know 

what will happen, we do not even know what can happen.”64 This radical unknowability stems 

from the generative nature of each novel realization, which redefines the structure of the system 

and produces new affordances that were previously inaccessible and inexpressible.65 The 

adjacent possible is therefore not a fixed frontier of well specified alternatives but an emergent 

and combinatorially expanding field of potentialities. Its boundaries are contingent, recursive 

and unprestatable. As such, exploration into the adjacent possible implies confronting a shifting 

horizon: one cannot enumerate the full space of possibilities ex ante because the act of 

innovation continuously reshapes the possibility space itself. This insight marks a profound 

epistemological boundary for models of adaptive systems: we are not merely ignorant of future 
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selections, we are fundamentally incapable of foreseeing the very space in which those 

selections will unfold. 

2.2.2 How the adjacent possible evolves 
From an evolutionary perspective, the development of the adjacent possible can be 

conceptualized as a dynamic, non linear process unfolding across four major phases: initial 

exploration, the emergence of structured complexity, accelerated combinatorial growth, and 

eventual systemic constraint. In the initial phase, a system is typically composed of a small 

number of elements or basic units, which limits the range of available recombinations but also 

renders the adjacent possible relatively simple and tractable. Because the system’s components 

are few and the interactions among them are minimally constrained, novelty tends to emerge 

through straightforward combinations of already available elements. As such, this phase is 

characterized by a relatively linear and incremental innovation trajectory, where each newly 

realized state adds only modestly to the space of accessible configurations.66 This early stage 

reflects the low dimensional geometry of the possibility space, in which the adjacent possible 

expands gradually and predictably, driven primarily by direct linkages between actualized and 

nearby unactualized nodes.67 

As the system evolves, it transitions into a phase marked by the emergence of structured 

complexity. This is facilitated by the cumulative integration of novel elements and the 

formation of increasingly sophisticated interactions among them. Here, the adjacent possible 

expands in a non linear manner: each realized novelty not only enlarges the set of available 

options but also enhances the system’s capacity to combine elements across greater distances 

in conceptual or physical space.68 The system begins to exhibit modularity, hierarchical 

organization and specialized subsystems, each contributing to the diversification of the 

innovation landscape. In this phase, the adjacent possible is no longer a simple shell around 

current actualizations but a multi dimensional space whose topography becomes increasingly 

difficult to map in advance.69 

The third phase is characterized by a sharp acceleration in the rate of novelty production, a 

combinatorial explosion that arises once the system has accumulated a sufficiently large and 

diverse repertoire of elements. At this point, the adjacent possible begins to grow at a super 
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exponential rate, as each new configuration enables disproportionately more recombinations. 

This phenomenon is formally captured in the TAP (Theory of the Adjacent Possible) equation, 

which models the number of new elements generated at time t as a function of all possible 

combinations of previously existing elements. According to the TAP equation, when the 

number of combinable components crosses a certain threshold, the system can enter a blow up 

regime, in which the number of reachable new states increases so rapidly that the system 

approaches a practical infinity of possibilities in finite time.70 This phase is not merely 

theoretical: empirical patterns in technological evolution, patent networks and innovation 

genealogies frequently exhibit such bursts of radical expansion, confirming the TAP model’s 

predictive power.71 

However, such explosive growth is neither sustainable nor unbounded. Eventually, the system 

encounters a series of internal and external constraints that act to modulate and channel the 

evolution of the adjacent possible. These constraints may take the form of physical resource 

limitations, cognitive saturation, institutional or regulatory barriers or even path dependencies 

that restrict viable trajectories. As the complexity of the system increases, so too does the 

likelihood that new configurations will interfere with or destabilize existing ones, resulting in 

diminishing returns on novelty and a slowdown in effective exploration.72 Moreover, feedback 

mechanisms, both positive and negative, begin to structure which areas of the adjacent possible 

are accessible, feasible or desirable. This stage does not imply stagnation; rather it introduces 

a pattern of punctuated equilibrium, in which phases of rapid expansion alternate with periods 

of consolidation and constraint. In this way, the evolution of the adjacent possible space 

resembles a dialectic between generativity and limitation, a recursive loop through which 

systemic innovation is simultaneously enabled and bounded by the history of its own 

emergence.73  
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2.3. Characteristics and types of adjacent possible 
A further analytical deepening of the theory of the adjacent possible requires a discussion of 

its defining characteristics and the various types of adjacency that can structure the evolving 

possibility space. Among the most distinctive features of the adjacent possible is the ambiguity 

of causality that arises in systems embedded in creatively evolving environments. In 

traditionally modeled systems, causality is assumed to be deductive or probabilistically 

determinable, with outcomes following clearly from antecedents. However, within the adjacent 

possible framework, this linear causality breaks down. As Devereaux, Koppl and Kauffman 

argue, agents operating within such systems are not merely observers of a pre existing state 

space; they are themselves creators of that space through their decisions and interactions.74 In 

this epistemological position, causal chains are not only hard to trace, they are being rewritten 

in real time. When an agent actualizes a novel configuration, that action does not simply select 

from known options, it restructures the landscape of what is even possible. As a result, actions 

are not only contingent but generative, making causality in these systems both distributed and 

temporally non local. This characteristic ambiguity disrupts standard notions of optimization 

and forecasting, replacing them with path dependence and a radical openness to unforeseen 

trajectories.75 

A second critical feature of the adjacent possible is the pluralism of knowledge among agents, 

which allows for disagreement without contradiction. In creatively evolving systems, no central 

observer has access to a complete or stable representation of the entire adjacent possible space. 

Instead, agents operate with locally bounded, historically situated knowledge, leading to a 

multiplicity of perspectives and strategies. As Devereaux point out, “all action is 

entrepreneurial action”, meaning that each decision is based on the actor’s particular horizon 

of knowledge and interpretation of the system’s dynamics.76 This epistemic plurality implies 

that agents may “agree to disagree” on what is possible, desirable or even real, because the 

adjacent possible is not a fixed ontological entity but an evolving set of affordances that appears 

differently depending on one’s position within the system. This characteristic challenges 

classical assumptions of rational consensus and stable expectations, suggesting instead a model 

of decision making that is speculative, creative and inherently non convergent. Moreover, the 

process of navigating the adjacent possible is shaped by what Devereaux and colleagues term 

“local knowledge” which is both the cognitive resource and the generative mechanism through 
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which novelty emerges. This implies that not only is the adjacent possible unknowable in its 

entirety, but that even its partial contours are subject to disagreement, reinterpretation and 

invention.77 

Beyond its defining characteristics, the theory of the adjacent possible also entails a taxonomy 

of different types of adjacency, which help clarify the structural conditions under which novelty 

may emerge. One important distinction is between accessible and inaccessible regions of the 

adjacent possible. Accessibility here refers not to physical reachability per se, but to structural 

compatibility and developmental readiness. Some portions of the possibility space are adjacent 

in principle but cannot be accessed in practice without the prior realization of certain precursor 

states. For example, in the evolution of technology, the invention of the internet made the 

development of social media platforms structurally possible but these platforms remained 

inaccessible until key intermediate tools (web browsers, user interfaces) were actualized.78 This 

distinction mirrors concepts in systems biology and evolutionary theory where certain 

mutations or phenotypes become available only after the establishment of specific genetic or 

environmental conditions.79 In this sense, accessibility is not static but path dependent: what is 

reachable now depends on what has already been achieved. 

A second typology concerns the difference between physical adjacency and cognitive 

adjacency. Physical adjacency pertains to material or spatial relationships, such as the 

proximity of molecules in a chemical reaction network or the compatibility of technologies in 

an engineering context. In contrast, cognitive adjacency relates to conceptual or perceptual 

relationships between ideas, theories or problem solving strategies. For example, in the process 

of scientific discovery, new hypotheses are often generated not by direct observation but by 

analogical reasoning, by cognitively leaping to a domain that is structurally similar but 

physically remote.80 This distinction is crucial because many high impact innovations occur 

through shifts in cognitive adjacency rather than mere physical recombination. The case of 

Einstein’s theory of relativity, as often cited in historical epistemology, did not arise from a 

new physical component but from a reconceptualization of time and space, a paradigmatic shift 

in cognitive adjacency. Importantly, physical and cognitive adjacencies are often connected: a 
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new material configuration may reveal new conceptual affordances and vice versa, creating a 

recursive loop between doing and thinking that propels the adjacent possible forward.81 

In summary, the adjacent possible is not merely an abstract model of future potential; it is a 

richly structured and deeply contextual framework governed by a set of epistemological, 

ontological and relational characteristics. Its generative power derives from its ambiguity: of 

causality, of representation, and of accessibility. The space of the possible is shaped not only 

by what exists but by how agents interpret, engage with and construct the affordances around 

them. Whether physically adjacent or cognitively adjacent, accessible now or dependent on 

prior actualizations, each node in this evolving space redefines the landscape it belongs to. 

Understanding these features is essential to modeling not only the structure of innovation but 

the deep unpredictability and creative logic that underlies complex adaptive systems. 
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2.4. Empirical evaluation 
This section concludes the chapter by examining empirical evidence and statistical regularities 

observed in real world systems, offering a critical test of the theoretical claims underpinning 

the adjacent possible framework. Specifically, it presents an empirical evaluation of the 

Generalized Urn Model with Triggering (GUMT) by applying a set of formally defined 

metrics: Gini coefficient, Youth coefficient, Recentness and Local Entropy, to diverse datasets 

drawn from domains such as digital music consumption, social media, collaborative software 

development, online encyclopedias and literary corpora. These systems, though heterogeneous 

in form and function, each exhibit innovation dynamics that can be interpreted through the lens 

of the adjacent possible: as new elements are introduced, they reshape the landscape of what is 

next possible. By quantitatively assessing how novelty competes with familiarity across time, 

this empirical analysis not only validates the theoretical predictions of the model but also 

illustrates how different environments foster or inhibit the expansion into adjacent possible 

spaces. 

2.4.1. GUMT (Generalized Urn Model with Triggering) 
The dynamics of novelty emergence in complex adaptive systems can be formally captured 

using probabilistic reinforcement schemes, among which the Polya urn model is foundational. 

In its classical formulation the model assumes an urn initially filled with balls of various colors, 

each color representing a categorical element within a bounded possibility space. At each 

discrete time step t a ball is drawn at random, its color is noted and it is then returned to the urn 

along with ρ≥1 additional balls of the same color. This reinforcement process, where frequent 

events become increasingly likely results in a power law distribution over frequencies, a 

statistical signature frequently observed in self organizing systems such as language formation, 

citation networks and economic growth models.82 Mathematically, if 𝑋! ∈ 𝒞 denotes the color 

drawn at time t, and 𝐶!(𝑐) the number of balls of color 𝑐 ∈ 𝒞 at time t, then the selection 

probability follows: 

𝑃(𝑋! = 𝑐) =
𝐶!(#(𝑐)

∑ 𝐶!(#(𝑐))*!∈𝒞
 

 

The key dynamic of the model lies in its update rule, where  𝐶!(𝑐) = 𝐶!(#(𝑐) + ρ if the drawn 

color is 𝑐, and remains unchanged otherwise. While this model elegantly formalizes 
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reinforcement and path dependency, it is inherently limited by the assumption of a fixed 

possibility space and it cannot accommodate the introduction of genuinely new elements. 

To overcome this limitation, the Generalized Urn Model with Triggering (GUMT) introduces 

two critical extensions: a semantic labeling of elements and a mechanism for the endogenous 

expansion of the space of possibilities.83 Each element in the urn, now interpreted not merely 

as a static type but as a contextually situated entity, is assigned a label κ ∈ 𝒦, denoting its 

semantic or functional category (a music genre, topic, or technological domain). At time step t 

the last drawn element bears label 𝜅 and the urn is partitioned accordingly into elements that 

are semantically related (share the label 𝜅) and those that do not. Let us define the following 

quantities: 

• 𝑁-: the number of elements in the urn with label 𝜅, 

• 𝑁¬-: the number of elements in the urn without label 𝜅, 

• γ ∈ [0,1]: a tunable parameter that controls the system’s tendency to favor exploitation 

of familiar categories. 

The weight associated with drawing an element that does not share the label of the last drawn 

item (a known but semantically unrelated element) is given by the expression  

γ𝑓(𝑁-, 𝑁¬-), 

where 𝑓 is a bounded, monotonic function reflecting the semantic relevance between the 

current context and the new candidate.84 Two typical forms for 𝑓 are employed in the literature: 

• A weighted ratio, accounting for exploration bias: 𝑓(𝑁/ , 𝑁¬/) =
0"

0""10¬"
,  

• An unweighted ratio, where all elements contribute equally: 𝑓(𝑁/ , 𝑁¬/) =
0"

0""0¬"
. 

To illustrate the model's mechanics, consider a music recommendation platform where each 

song is categorized by genre. Suppose the user has just listened to a jazz track and the system 

records this as a draw of an element with label 𝜅 =jazz. Let the urn now contain 𝑁/ = 3 jazz 

tracks and 𝑁¬/	= 5 non-jazz tracks (pop, electronic). Using the unweighted choice of 𝑓, we 

have: 

𝑓(𝑁/ , 𝑁¬/) =
2

2"3
=0.375 

Assuming an exploitation parameter of 𝛾=0.8, the computed weight for drawing a previously 

encountered but semantically unrelated song becomes:  
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γ𝑓(𝑁-, 𝑁¬-) = 0.8 × 0.375 = 0.3 

This weight is then compared to those of other competing categories (known and related, or 

novel and related items) to determine the probability distribution over possible next selections. 

The function 𝑓 thus plays a central role in regulating the system’s exploration and exploitation 

trade off. It ensures that semantic similarity is not a fixed attribute but one dynamically inferred 

from the current composition of the urn, reflecting what has already been discovered and 

reinforced. The parameter 𝛾, in turn, governs how strongly the system favors previous 

knowledge, thereby encoding a tunable cognitive inertia.85 

In this formulation, the GUMT model not only preserves the reinforcement dynamics of the 

classical Polya process but crucially introduces a mechanism for novelty generation, contextual 

dependency and semantic proximity. It provides a principled, probabilistic framework through 

which the adjacent possible unfolds over time, where each new draw potentially reshapes the 

underlying space of what can be next discovered.86 

2.4.2. The coefficients 
To validate such models and render their dynamics intelligible from an economic perspective, 

a set of empirical coefficients has been defined to quantify how novelty emerges, competes and 

persists in real world data. These metrics provide economists with interpretable indicators of 

innovation cycles, popularity inequality and the temporal structure of adoption patterns to 

characterize the waves of novelties observed in data. 

The Gini coefficient, originally developed to quantify income inequality in economics, can be 

adapted to measure inequality in the distribution of popularity across elements introduced over 

time. It provides a critical insight into the reinforcement dynamics underlying systems 

governed by the adjacent possible.87 The primary goal of using the Gini coefficient in this 

context is to assess whether older elements (those introduced early in a sequence) dominate 

cumulative attention or whether popularity is more evenly distributed across items regardless 

of their introduction time.88 The computation begins by sorting all elements (songs, hashtags, 

or words) in the order of their appearance in the dataset and then calculating their total 

popularity, defined as the number of times each element occurs in the sequence.  

Let us say we have 5 elements (A to E), introduced in this order: 

 
85 Monechi et al., “Waves of Novelties.” 
86 Kauffman, “Investigations.” 
87 Corrado Gini, “Measurement of Inequality of Incomes.” The Economic Journal 31, no. 121 
(1921): 124–126. 
88 Monechi et al., “Waves of Novelties.” 



 40 

Element First Introduced Popularity (Number of Occurrences) 

A 1 40 

B 2 30 

C 3 20 

D 4 7 

E 5 3 

Table 3 

Their cumulative popularity would be 40+30+20+7+3=100.89 From this, one computes the 

cumulative share of both the population (ordered by time of introduction) and popularity, as 

shown in Table 4. 

Cumulative % of Elements Cumulative % of Popularity 

1/5 = 0.20 40/100 = 0.40 

2/5 = 0.40 (40+30)/100 = 0.70 

3/5 = 0.60 (40+30+20)/100 = 0.90 

4/5 = 0.80 (40+30+20+7)/100 = 0.97 

5/5 = 1.00 1.00 

Table 4 

These values are then plotted to construct the Lorenz curve, where the x-axis represents the 

cumulative share of elements and the y-axis the cumulative share of popularity (Figure 5).  

 
Figure 5 

 
89 Peter Lambert, “The Distribution and Redistribution of Income.” 3rd ed. (Manchester: 
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The Lorenz curve is then compared to the 45 degree line of perfect equality, and the Gini 

coefficient is defined as twice the area between this diagonal and the curve.90 Mathematically 

this is expressed as G=1−2A, where A is the area under the Lorenz curve normalized to fall 

within the interval [0,1].91 A Gini coefficient near 1 indicates that a small fraction of early items 

capture the vast majority of popularity (a highly unequal distribution), whereas a Gini near 0 

implies that attention is more evenly spread regardless of age. In the context of the adjacent 

possible, this coefficient becomes a tool for understanding systemic inertia: a high G suggests 

that early discoveries continue to dominate, limiting the emergence of novel items, while a low 

G reflects a system more open to innovation.92 

The Youth coefficient (Y) is a temporal indicator designed to measure how quickly a system 

renews its trending or popular elements, offering a dynamic lens through which one can assess 

the pace at which novelty emerges in an evolving environment.93 While the Gini coefficient 

evaluates inequality in cumulative popularity, the Youth coefficient captures whether newly 

introduced items are increasingly present in the most recent periods of system activity.94 This 

is particularly relevant in systems driven by innovation, where one wishes to understand 

whether new items such as songs, ideas, or technologies are quickly gaining traction or whether 

older elements persist over time. To compute Y, the sequence of events is divided into equal-

length, non overlapping time windows (say every 100 observations) and in each window the 

average introduction time of the items that appear is calculated. This creates a sequence of 

average values, one for each interval.95 These values are then plotted against the index of each 

window (first, second, third, etc.), and a linear regression is applied to fit a line through the 

data. The slope of this line, denoted by λ, indicates the rate at which the system is adopting 

newer items: a steeper slope suggests a greater presence of recent elements in successive 

windows.96 To ensure comparability across datasets with different time window lengths, the 

coefficient is normalized as 𝑌 = 4
56
, where Δ𝜏 is the length of the time window. This 

normalization constrains Y to the interval [0,1] allowing for intuitive interpretation.97 A value 

 
90 Donald B. Rubin, “The Calculation of Gini Coefficients.” The Review of Economics and 
Statistics 45, no. 1 (1963): 50–52. 
91 Loreto et al., “Statistical Physics of Social Dynamics.” 602. 
92 Monechi et al., “Waves of Novelties.” Table 1. 
93 Tria et al., “The Dynamics of Correlated Novelties.” 
94 Monechi et al., “Waves of Novelties.” 
95 Monechi et al., “Waves of Novelties.” 
96 Peter J. Brockwell and Richard A. Davis,  “Introduction to Time Series and Forecasting”, 
2nd ed. (New York: Springer, 2002). 
97 Monechi et al., “Waves of Novelties.” 



 42 

of Y close to 1 indicates that every new window contains almost exclusively novel items, 

suggesting a system characterized by constant innovation and high temporal turnover. By 

contrast, Y near 0 implies that the composition of active or popular items remains largely 

unchanged over time, signaling stagnation or inertia. 

The Recentness coefficient (R) captures the degree to which the most popular elements in a 

system at each moment in time are newly introduced.98 Unlike the Youth coefficient, which 

examines the average age of all items in use during a given time window, Recentness focuses 

specifically on the leading item, the single most popular entry in each interval. To compute R, 

the dataset is divided into equal time windows. In each window the system identifies the most 

popular item and records the time at which that item was first introduced.99 The sum of these 

introduction times forms the numerator. The denominator represents the theoretical maximum 

this sum could take: it is the sum of the latest possible introduction times had the most popular 

item in each window always been the most recently introduced.100 The ratio between the two 

values yields the Recentness coefficient, which ranges from 0 (purely conservative system) to 

1 (system fully favoring the newest items). A simple example illustrates the extremes of the 

metric. Imagine a system divided into three time windows where, in each, the most popular 

item is also the newest available one, as seen in Table 5.  

Window Most Popular Item Time of Introduction 

1 A 1 

2 B 2 

3 C 3 

Table 5 

Numerator (actual sum of intro times): 1 + 2 + 3 = 6; 

Denominator (max possible sum): still 1 + 2 + 3 = 6 

 𝑅 = 7
7
= 1 

This means the system is highly recent, new items quickly become the most popular. 

By contrast, consider a system in which the same item, say item A introduced at time 1, remains 

the most popular across all three windows (Table 6). 
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Window Most Popular Item Time of Introduction 

1 A 1 

2 A 1 

3 A 1 

Table 6 

Numerator (actual sum): 1 + 1 + 1 = 3; 

Denominator (max possible sum): 1 + 2 + 3 = 6, 

𝑅 =
3
6 = 0.5 

This means the system tends to keep old items in the spotlight, even when new ones appear. 

In the framework of adjacent possible theory, R offers a lens into how quickly a system 

capitalizes on new possibilities: a high Recentness score suggests that novelties do not just 

expand the space of potential choices but are actively elevated to prominence, while a low score 

reflects structural conservatism, in which innovation is permitted but rarely rewarded with 

immediate visibility.101 

The Local Entropy coefficient, denoted ⟨h⟩, measures the diversity of attention or popularity 

within each time window of a dynamic system, providing a statistical lens through which to 

assess whether attention is monopolized by a few dominant items or more evenly distributed 

among many.102 Unlike the Gini or Recentness coefficients, which assess long term 

accumulation or leading trends, ⟨h⟩ captures the short term competitive structure of the system. 

To compute it the sequence of events is divided into equally sized time windows. In each 

window the relative popularity (frequency of appearance) of each item is calculated. These 

frequencies are then used to compute the Shannon entropy, a measure from information theory 

that quantifies uncertainty or dispersion in a probability distribution.103 Formally, for a given 

window w, the entropy is calculated as: 

ℎ8 = −�𝑝9

%$

9:#

log 𝑝9 

 

 
101 Kauffman, “Investigations.” 
102 Monechi et al., “Waves of Novelties.” 
103 Claude E. Shannon, “A Mathematical Theory of Communication.” Bell System Technical 
Journal 27, no. 3 (1948): 379–423. 



 44 

where 𝑝9 is the relative frequency of item j in window w, and 𝑛8 is the number of distinct items 

in that window. To allow comparison across windows with different numbers of items, this 

entropy value is normalized by dividing it by the maximum possible entropy log 𝑛8, yielding 

a value between 0 and 1.104 The Local Entropy coefficient ⟨h⟩ is then the average of these 

normalized entropies across all time windows: 

⟨ℎ⟩ =
1
𝑊�

ℎ8
log 𝑛8

;

8:#

 

where 𝑊 is the total number of windows.105 A value of ⟨h⟩ close to 1 indicates high diversity, 

meaning that many items share attention within each window, while values near 0 indicate that 

popularity is concentrated on just one or two items. For example, consider two windows: in the 

first, if one song accounts for 95% of plays while others are barely played the entropy will be 

very low. In contrast, if ten songs are all played roughly equally the entropy will be much 

higher. 

2.4.3 Empirical evaluation in different domains 
To assess the empirical validity of the adjacent possible theory and the predictive capacity of 

the Generalized Urn Model with Triggering (GUMT), this section draws upon data and 

analyses presented in the article “Waves of Novelties in the Expansion into the Adjacent 

Possible” by Monechi, Tria, Ruiz-Serrano, and Loreto. The authors apply the GUMT 

framework to a diverse set of large scale, real world datasets spanning various domains of 

cultural and technological activity. By evaluating the behavior of four key statistical indicators: 

the Gini coefficient, Youth coefficient, Recentness, and Local Entropy. The study examines 

how novelty emerges and is reinforced across systems such as music streaming, social media, 

software development, encyclopedic knowledge production, and literary composition. These 

empirical investigations offer a quantitative test of the adjacent possible hypothesis: that each 

realized novelty opens up new pathways for further innovation and that the structure of 

attention and popularity within a system reflects its capacity to explore and populate those new 

possibilities. 

The datasets were drawn from Last.fm, Twitter, GitHub, Wikipedia, and Project Gutenberg, 

capturing a spectrum from online social behavior to textual production. Last.fm provides a 
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sequence of songs played on a music platform (revealing how new artists or genres enter 

listeners’ repertoires); Twitter offers a stream of hashtags created in tweets (tracking the 

emergence of new topics in social discourse); GitHub contains the history of software project 

creations and contributions (reflecting innovation in open-source development); Wikipedia 

covers the sequential editing or word introduction in a large scale crowd sourced knowledge 

base; Gutenberg comprises the text of literary works (a proxy for the introduction of new words 

or concepts in written language over the course of a novel). These five contexts were chosen 

because they mirror human activities with an element of novelty creation: music consumption, 

communication trends, software innovation, knowledge accumulation, and literary creativity. 

The question was whether all these systems, despite their differences, exhibit similar patterns 

in how novelty competes with the familiar. The empirical results show both commonalities and 

clear contrasts across the datasets. The results are displayed in Table 7 below, taken from the 

article “Waves of Novelties in the Expansion into the Adjacent Possible” by Monechi, Tria, 

Ruiz-Serrano, and Loreto. 

System G Y R ⟨h⟩ 

Last.fm 0.491 0.379 0.516 0.982 

Twitter 0.405 0.463 0.448 0.961 

GitHub 0.706 0.339 0.386 0.907 

Wikipedia 0.889 0.035 0.020 0.930 

Gutenberg 0.950 0.0103 0.0277 0.909 

Table 7 

 In all cases the Gini-like coefficient G was found to be positive (G > 0), underscoring a baseline 

advantage for early entrants (the first elements introduced tend to accumulate more total 

popularity than those introduced later). However, the magnitude of G varied significantly: in 

the music (Last.fm), social media (Twitter) and coding (GitHub) data G was moderate (around 

0.4-0.7 in value), meaning that while older songs, hashtags, or projects do have an edge, newer 

ones collectively still command a substantial share of attention. In fact, G in these systems was 

considerably lower than it would be under a randomized baseline, indicating that real temporal 

dynamics allow more egalitarian popularity outcomes than a static null model. By contrast, in 

the textual datasets (Wikipedia and Gutenberg) G was very high (≈0.9), close to the theoretical 
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maximum, implying that the first introduced words or topics utterly dominate the frequency 

distribution. This resonates with intuition: in a book or encyclopedia core terms introduced 

early (characters, common concepts) appear repeatedly whereas later introduced words are 

comparatively rare.  

The Youth coefficient Y further highlights this difference. For Last.fm, Twitter and GitHub, Y 

ranged roughly 0.35-0.46, signaling a meaningful pace of renewal: on average, each successive 

time window contains a fair number of newly introduced popular items (Y well above 0). These 

systems exhibit a rejuvenation effect: the trending content in, say, each week tends to be newer 

than that of the previous week, to a much greater degree than one would expect by chance. In 

the randomized (time shuffled) version of the data, Y fell near zero (since shuffling breaks any 

temporal novelty pattern), whereas the real data’s Y was an order of magnitude higher. For 

example, Twitter’s Y≈0.46 suggests that trending hashtags are frequently fresh ones rather than 

the same old tags, reflecting the platform’s preference for constantly evolving conversations. 

In GitHub, Y was a bit lower (0.339), consistent with the idea that, while new projects do 

emerge, developers also continue to star or fork older, established repositories for longer. 

Meanwhile, Wikipedia and Gutenberg showed negligible Youth coefficients (Y≈0.01-0.04): 

the content that fills each successive segment of text is almost entirely drawn from the pool of 

words introduced early on, with virtually no new trending words later. This means a novel or 

an encyclopedia doesn’t keep introducing popular new terms in later chapters, it largely 

exploits the vocabulary set that was established initially.  

The Recentness R metric paints a similar picture. In Last.fm and Twitter, R was about 0.45-

0.52, meaning that the most popular item in a given interval was as likely to be a recently 

introduced song or hashtag as it was to be a long established hit. In fact, R≈0.5 in those cases 

indicates a balance: sometimes an old favorite tops the charts but other times a brand new 

release (or meme) becomes the most popular of that interval. In GitHub, R was a bit lower 

(≈0.39), implying that the top project in each time window was more often an older repository 

(perhaps well known libraries getting more attention), but still sometimes a newcomer would 

become the most popular. In contrast, Wikipedia and Gutenberg had R near 0 (around 0.02-

0.03), meaning that in essentially every segment of text the most frequent word was among the 

earliest introduced (often a common function word or a main subject word). A new word 

virtually never overtook the older ones in usage frequency at any point. 
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Finally, all domains showed high local entropy 〈h〉, generally between 0.90 and 0.98, indicating 

that within any given short time frame popularity was not totally concentrated in one item but 

rather spread across several items. Even in the presence of viral hits, people (or words in a text) 

still distribute attention to multiple options in parallel. The entropy was slightly lower in 

GitHub (〈h〉 ≈0.91) and the literary texts (≈0.91 in Gutenberg) than in music or Twitter (〈h〉 

≈0.96-0.98), suggesting that occasionally a single repository or a single concept could dominate 

a time period more strongly in those former cases. But overall, 〈h〉 ≈ 1 for both empirical and 

shuffled data, which implies that each interval typically had a diversity of popular elements 

rather than a monopoly.  

Together, these results illustrate how the expansion into the adjacent possible unfolds 

differently across socio technical environments. In highly dynamical systems like online music 

consumption, social media and open-source development, we observe a moderate but palpable 

level of novelty turnover. New entries consistently arise and capture attention locally (high Y 

and R relative to baseline), yet older entries are never completely displaced (G remains 

positive). This corresponds to a balanced exploitation and exploration regime: the community 

continually explores adjacent possible innovations (new songs, topics or projects) while still 

remembering and exploiting the successful creations of the past. From an economics 

perspective, these findings underscore the importance of a mixed strategy in innovation 

dynamics: systems that foster ongoing novelty (analogous to competitive markets with new 

entrants) tend to show transient surges of new successes without entirely overturning the old 

hierarchy, whereas systems that are too exploitative can stagnate with entrenched incumbents. 

The adjacent possible theory, quantified through GUMT and its empirical validation, suggests 

that the key to sustained innovation lies in maintaining a balance, allowing the exploration of 

new possibilities at a reasonable rate while retaining some continuity with the past.  
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Chapter 3: Heuristics and ecological rationality 

3.1. Introduction 
The previous chapter explored how innovation expands the adjacent possible, an ever evolving 

space of new opportunities that cannot be fully mapped in advance. Each novel discovery opens 

further possibilities, making the future fundamentally open ended. In such an environment of 

radical uncertainty (in the Knightian sense, where not all outcomes or probabilities are known), 

traditional models of fully informed optimization lose traction.106 This raises a set of important 

questions: What can agents do under uncertainty? How should they act when the very structure 

of possibilities is uncharted and continually unfolding? And how can innovation be pursued in 

these conditions, given that no deterministic method or algorithm can reliably chart a course 

through wholly novel terrains? These questions set the stage for the present chapter. 

One plausible answer is that agents rely on heuristics, that is, simplified decision rules or rules 

of thumb based on experience, which guide action when calculation is impractical. Rather than 

attempting to compute an optimal strategy (impossible under genuine uncertainty), boundedly 

rational decision makers fall back on heuristics as practical guides. The notion of bounded 

rationality, introduced by Herbert Simon, holds that real economic agents face cognitive limits 

and incomplete information and thus satisfice (seek outcomes that are good enough via 

heuristics) instead of optimizing in any global sense.107 Far from being irrational, such 

heuristics may be adaptive responses to complexity. Indeed, simple heuristics can outperform 

elaborate models in environments where the future is fundamentally unpredictable and 

outcomes are not enumerable. Heuristics are seen as part of an adaptive toolbox of strategies 

that are selected not to maximize a known objective but to fit the specific demands of the 

environment. Rather than treating heuristics as biased approximations, this approach frames 

them as necessary and effective tools for coping with uncertainty.108 

Emerging research in economics similarly suggests that heuristic driven behavior can be not 

only effective but rational under conditions of deep uncertainty. For example, in an agent based 

model of a complex evolving economy with technological change, it has been shown that firms 

using simple fast and frugal rules of thumb can perform as well as, and occasionally better than, 

those relying on more sophisticated predictors. In such contexts, robust heuristics are not 

 
106 Frank H. Knight, “Risk, Uncertainty and Profit.” (Boston: Houghton Mifflin, 1921). 
107 Herbert A. Simon, “Administrative Behavior.” 4th ed. (New York: Free Press, 1997), 88–
90. 
108 Gerd Gigerenzer and Wolfgang Gaissmaier, “Heuristic Decision Making.” Annual 
Review of Psychology 62 (2011). 
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merely second best approximations but rational responses to ever changing environments.109 

In the absence of a clearly defined optimizing solution, economic agents and organizations rely 

on such heuristics to experiment, adapt and progressively expand the frontier of the adjacent 

possible. 

In summary, heuristics offer a compelling framework for understanding how boundedly 

rational agents navigate open ended complex settings. They provide plausible answers to the 

challenges of uncertainty and innovation when formal optimization fails. This chapter opens 

with a conceptual definition of heuristics within the context of decision making under 

uncertainty. It then illustrates their practical applications through selected examples, followed 

by an analysis of their origins and development.  

  

 
109 Giovanni Dosi, “Rational Heuristics: Expectations and Behaviors in Evolving Economies 
with Heterogeneous Agents.” Economic Inquiry 58, no. 1 (2020). 
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3.2. Definition and Concepts 
Gerd Gigerenzer’s “Why Heuristics Work”110 situates heuristics alongside logic and 

probability as a fundamental approach to human rationality in the face of uncertainty. Whereas 

classical logic and probabilistic models strive for exhaustive consistency or optimality, 

heuristics are characterized by frugality. They deliberately ignore portions of available 

information and by satisficing rather than optimizing, seeking good enough solutions instead 

of mathematically optimal ones. Contrary to the common view that heuristics are merely 

second best shortcuts necessitated by cognitive limitations, Gigerenzer argues that simple 

heuristics can often rival or even surpass more complex analytic methods in real world decision 

tasks. He challenges several misconceptions about heuristic reasoning: for example the notion 

that optimization is always superior to heuristics or that humans use heuristics only because of 

mental constraints, does not hold universally. In many situations, finding the optimal solution 

is impossible or impractical, either because the problem is computationally intractable or 

because attempting to optimize leads to overfitting errors, and in such cases a well chosen 

heuristic can yield more robust and accurate judgments. This perspective reframes heuristics 

not as cognitive biases or imperfections but as adaptive strategies shaped by both mind and 

environment to deal with complexity and uncertainty. 

At the heart of Gigerenzer’s thesis is the concept of the adaptive toolbox, a Darwinian inspired 

model of the mind as a collection of specialized cognitive heuristics, their building blocks and 

the evolved capacities that support them. In this view, human rationality is bounded but not 

irrational, our minds evolved mental abilities (such as memory, perception of frequencies or 

recognition) to make decent decisions with limited time and information. Each heuristic in the 

toolbox is a module tuned to particular types of tasks or environments. For instance, the 

recognition heuristic capitalizes on the simple fact of whether one recognizes an option or not, 

leveraging the basic cognitive capacity for recognition memory. Such capacities are not 

unlimited; indeed, a degree of forgetting or ignorance can improve decision making, an idea 

captured by the “less is more” effect, where knowing less can lead to better judgments if 

knowledge beyond a point only adds noise. Gigerenzer builds on Herbert Simon’s notion of 

bounded rationality and the analogy of mind and environment as two blades of scissors: a 

heuristic’s effectiveness comes from the fit between the cognitive strategy and the structure of 

the environment in which it operates. Rather than viewing departures from logic or probability 

 
110 Gerd Gigerenzer, “Why Heuristics Work,” Perspectives on Psychological Science 3, no. 1 
(2008): 20–29. 
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as errors, this ecological view defines rationality by how well a thinking process succeeds in 

the world, highlighting that what counts as a rational decision strategy depends on the 

environment’s demands. 

3.2.1. Principles Explaining Why Heuristics Work 
Gigerenzer and colleagues111 outline several key principles that explain the power of heuristics 

in uncertain, complex domains. These principles form a framework for understanding when 

and why simple rules of thumb can be so effective: 

Formal Modeling and Precision: Cognitive heuristics should be described with explicit 

computational models, not just vague labels like availability or ad hoc dual system accounts. 

By formalizing a heuristic’s process (specifying how information is searched and stopped), 

researchers can derive clear predictions and rigorously test them. Such models have revealed 

cases where a simple heuristic predicts outcomes more accurately than do sophisticated 

multivariate models, undermining the assumption that heuristic reasoning is necessarily 

inferior. Formal models thus help identify the conditions where more information and 

computation improve decision accuracy versus where ignoring information is advantageous. 

Tractability: Human minds (and even computers) often face decision problems that are 

computationally intractable, that is, no feasible computation can guarantee the optimal answer. 

Many real world problems (finding an optimal investment portfolio, planning complex routes, 

playing games like chess) are NP hard, meaning an exhaustive search of options is practically 

impossible. Heuristics succeed by simplifying these problems, making decision making 

tractable. Rather than attempting the impossible task of optimizing over astronomically many 

possibilities, a heuristic focuses on a manageable subset of cues or alternatives, trading some 

theoretical accuracy for immense gains in speed and feasibility. In short, we use heuristics not 

only because our cognitive resources are limited, but because the world’s complexity often 

exceeds the capacities of any optimization approach. 

Robustness to Uncertainty: A well designed heuristic tends to be robust, it avoids overfitting 

noisy data and thus predicts better in new situations. Complex models that finely tune 

themselves to past observations (for instance, by weighing dozens of factors) can capture 

idiosyncrasies that won’t repeat, thereby mispredicting future cases. In contrast, heuristics 

deliberately ignore the noise and only use the most important information, thereby generalizing 

more reliably. Research shows that limiting information and computation, even traits like 
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memory constraints or forgetting, need not be regrettable deficiencies but can actually enhance 

performance in an uncertain world. By cutting through irrelevant details, heuristics reduce the 

risk of mistaking random variation for enduring signal. 

Evolved Capacities: Heuristics are effective in part because they use natural cognitive abilities 

that evolution has already optimized. Instead of mirroring statistical equations, heuristics often 

find solutions that a human brain can execute easily by exploiting innate or learned capacities. 

For example, the recognition heuristic relies on our ability to quickly recognize familiar names 

or objects, a capacity that required no formal training. The adaptive toolbox perspective holds 

that our minds contain many such domain specific skills (from visual perception to social 

intuition) and heuristics are tailored to take advantage of them. Notably, these capacities 

themselves might be bounded (memory is fallible and attention is limited) but those bounds 

can be features, not bugs, when they allow heuristics to ignore low priority information and 

focus on what matters. 

Ecological Fit: The success of a heuristic depends on the match between its structure and the 

environment’s structure, a concept known as ecological rationality. A given heuristic will work 

well in environments that provide the patterns or cues it needs, and will fail if applied in the 

wrong context. Gigerenzer emphasizes studying the environment (the second blade of the 

scissors) alongside the cognitive process: factors like the distribution of information, the cost 

of time and the typicality of cases determine which heuristic is appropriate. This principle 

explains why there is no universally best strategy, each heuristic has an intermediate range of 

problems to which it applies. The mind appears to adapt by selecting heuristics suited to the 

task at hand, through individual learning, social learning (imitation or instruction) or 

evolutionary selection of successful rules of thumb. In sum, heuristics work when they exploit 

the regularities of the environment and understanding those regularities is as important as 

understanding the cognitive rule itself. 
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3.3. Examples of heuristics 
Heuristics, as practical cognitive strategies for decision making under uncertainty, come in 

diverse forms tailored to specific contexts.  

The recognition heuristic is a decision making strategy that exploits a person’s ability to 

recognize one option over another. It is predicated on the idea that when individuals are faced 

with a choice between two alternatives and only one of them is recognized, they infer that the 

recognized object has a higher value with respect to a certain criterion. This heuristic is 

especially effective in environments where recognition correlates with the desired outcome. 

Formally introduced by Goldstein and Gigerenzer, the recognition heuristic is defined as 

follows: “If one of two objects is recognized and the other is not, then infer that the recognized 

object has the higher value with respect to the criterion.”112 The cognitive efficiency of the 

recognition heuristic lies in its frugality, it makes a decision using minimal information, often 

just a single binary cue: recognition. It avoids the need to recall or evaluate other potentially 

available data. For example, consider a scenario where an individual is asked: which of two 

cities, Heidelberg or Erlangen has a larger population. If the individual recognizes Heidelberg 

but has never heard of Erlangen the heuristic would lead them to infer that Heidelberg is the 

more populous of the two. This inference is based not on any calculated evaluation, but solely 

on the recognition of the name Heidelberg. Empirical studies have demonstrated that this 

simple strategy can lead to highly accurate inferences, especially in domains where recognition 

is systematically related to the criterion being judged, such as city size, academic citation 

counts or company revenue.113 

The 1/N heuristic embodies a simple allocation strategy in which resources are distributed 

equally across all available options, without accounting for the specific characteristics or 

statistical profiles of each alternative. This rule based approach avoids the complexity of 

optimization and sidesteps the need for precise estimations of probabilities or payoffs, making 

it useful under conditions of uncertainty and limited information. In practical terms, it has been 

extensively studied in the domain of financial decision making, particularly in portfolio 

diversification. For instance, when an investor is faced with five different mutual funds and 

limited knowledge about their expected returns or covariances, applying the 1/N heuristic 

would result in allocating an equal 20% share to each fund. Despite its simplicity, research has 

shown that this heuristic can perform comparably to, and at times even outperform, more 
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sophisticated optimization based models, especially when those models suffer from estimation 

errors in small samples or unstable environments. This robustness underscores its ecological 

rationality: the 1/N heuristic trades precision for reliability in complex real world contexts.114 

The fluency heuristic is a cognitive shortcut that builds on recognition by considering the ease 

and speed with which information is recalled. When individuals recognize two options, they 

tend to prefer the one that comes to mind more fluently, assuming it holds greater value or 

relevance. This heuristic is efficient in environments where fluency correlates with meaningful 

outcomes, such as frequency or success115. For instance, Alter and Oppenheimer demonstrated 

that stocks with names easy to pronounce (“JAGA”) outperformed those with complex names 

(“XAGY”) in early market performance, showing how fluency can guide financial decisions116. 

Similarly, in consumer contexts, products with more readable labels are often judged as more 

effective117. 

The take the best heuristic functions by evaluating options based on a list of cues ordered by 

predictive validity. It searches through these cues sequentially and bases its decision on the 

first cue that discriminates between the alternatives. Importantly, once a distinguishing cue is 

found, the process stops, subsequent cues are ignored. For example, when predicting which of 

two German cities has a larger population, if one recognizes Hamburg but not Heidelberg, 

recognition alone might suffice; but if both cities are recognized, one might look at whether 

either is a state capital (a high validity cue). If only one is, the decision is made without 

considering further information. This strategy has been shown to match or even outperform 

more complex compensatory models in domains such as consumer choice and political 

forecasting.118 

Tallying does not rank cues or stop after a single discriminating one. Instead, it considers all 

available cues equally, counting how many cues favor each alternative and choosing the one 

with the higher tally. For instance, when deciding between two job candidates, if one has 
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experience in leadership, speaks two foreign languages, and holds a relevant degree (three 

positive cues), while the other has only two of these traits, the first candidate is preferred119. 

The availability heuristic operates on the principle that the ease with which instances come to 

mind serves as a proxy for estimating frequency or probability. When individuals are asked 

whether tornadoes occur more often in Kansas or Nebraska, they are more likely to choose 

Kansas, not necessarily because of statistical data, but because media portrayals like The 

Wizard of Oz make tornadoes in Kansas more memorable. This mental shortcut, while 

efficient, can lead to systematic biases when vivid or recent events dominate memory recall, 

even if they are statistically rare.120 

The anchoring and adjustment heuristic refers to the cognitive tendency to rely heavily on an 

initial reference point (the “anchor”) and insufficiently adjust away from it when making 

quantitative judgments. In one classic experiment, participants asked to estimate the percentage 

of African countries in the United Nations were influenced by a random number generated by 

a spinning wheel: those shown a high number guessed higher percentages than those shown a 

low number.121 This heuristic explains why sellers might set high initial prices, anchoring buyer 

expectations, even if the final price is negotiated down. While the initial anchor may be 

arbitrary or unrelated, its influence on subsequent judgments is substantial and persistent. 

Finally, the satisficing heuristic, introduced by Herbert Simon, involves setting an aspiration 

level and selecting the first option that meets or exceeds this threshold, rather than exhaustively 

searching for the optimal choice.122 For instance, a person searching for an apartment may 

decide in advance on a set of acceptable criteria (price under €800, less than 30 minutes from 

work, natural light) and choose the first listing that satisfies all conditions, rather than 

evaluating every possible apartment in the market. Satisficing is particularly useful in complex 

or time constrained environments, where exhaustive comparison is not feasible. This approach 

reflects bounded rationality in practice: decision makers aim for good enough solutions, 

conserving cognitive resources while still making effective choices. 
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These heuristics demonstrate how individuals make adaptive use of mental shortcuts when 

confronted with limited time, incomplete information, or cognitive constraints. Although they 

can lead to errors in certain contexts, they also often yield sufficiently accurate judgments for 

navigating everyday decisions in a complex world. 
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3.4. History of ecological rationality 
For much of the twentieth century, economic thought was dominated by the neoclassical 

paradigm, which posited a model of rationality grounded in the figure of Homo economicus: 

an agent endowed with perfect information, unlimited cognitive resources and stable 

preferences, capable of calculating and optimizing outcomes to maximize utility in all 

conceivable situations. This portrayal, while mathematically elegant and normatively coherent, 

increasingly appeared inadequate in light of empirical evidence from psychology and 

behavioral studies that revealed systematic deviations from such idealized rationality. 

Beginning in the 1970s, Daniel Kahneman and Amos Tversky launched a transformative 

research agenda aimed at empirically documenting the limits of human judgment and decision 

making under uncertainty. Through a series of influential experiments, they demonstrated that 

people often rely on intuitive mental shortcuts (heuristics) which frequently led to systematic 

errors or cognitive biases. These findings culminated in the development of prospect theory, 

which showed that individuals evaluate outcomes relative to reference points and display loss 

aversion, contradicting the assumptions of consistent utility maximization.123 Yet, despite their 

groundbreaking contributions, Kahneman and Tversky's interpretation of heuristics remained 

tethered to a deficiency model: heuristics were seen as byproducts of cognitive limitations, fast 

but flawed approximations of an unattainable rational ideal.124 

This pessimistic view of heuristics, as sources of bias and irrationality, set the tone for much 

of behavioral economics for decades, reinforcing the idea that deviation from formal logical or 

probabilistic norms equated to error. However, a major conceptual shift emerged with the work 

of Gerd Gigerenzer and colleagues, who proposed an alternative framework known as 

ecological rationality.125 In this paradigm, the rationality of a decision strategy is not judged 

by its internal consistency or alignment with formal models, but by its adaptive success in real 

world environments. That is, a decision rule is considered rational if it leads to successful 

outcomes given the structure of the environment in which it operates. This correspondence 

view of rationality stands in contrast to the coherence view of Kahneman and Tversky, which 

emphasized consistency with axioms of logic or probability theory. Within this reframed 

understanding, heuristics are not inferior substitutes for optimization; rather they are functional, 

evolved strategies that work precisely because they ignore information, reduce computational 
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demand and exploit statistical regularities in the environment. In conditions of deep 

uncertainty, where the space of possible outcomes is ill defined and information is costly or 

incomplete, adding more data or complexity does not necessarily improve decision quality. On 

the contrary, effective decisions often emerge from simple rules that deliberately ignore some 

information, leveraging domain specific cues to guide behavior efficiently. 

The distinction between logic, probability and heuristics helps further clarify this shift. Logic 

demands deductive validity and internal consistency; probability theory prescribes the updating 

of beliefs based on new evidence via Bayesian norms; heuristics, by contrast, are fast and frugal 

rules that prioritize adaptability over formal rigor.126 While logic and probability are suited to 

closed and defined problems, heuristics excel in open, complex and dynamically evolving 

environments, those that closely resemble the conditions in which humans actually operate. 

The implication is significant: rather than treating heuristics as cognitive flaws or second best 

solutions, the ecological rationality approach redefines them as indispensable cognitive tools. 

These tools are not merely shortcuts, but tailored responses to the structural features of 

particular tasks or environments. Their effectiveness lies not in approximating formal 

optimization, but in achieving sufficient accuracy with minimal effort.127 

This reconceptualization has sparked the development of a science of heuristics, which seeks 

to empirically identify the environmental conditions under which particular heuristics succeed 

or fail.128 This shift moves the field from cataloging biases to understanding the adaptive 

functions of decision strategies. Moreover, it has had practical applications in areas like 

medicine, finance and policy design, where simpler heuristics have been shown to outperform 

complex algorithms in noisy and uncertain settings. For example, in certain diagnostic tasks, 

physicians using fast and frugal trees made more accurate assessments than those relying on 

exhaustive checklists or probabilistic scoring systems. Similarly, financial investors relying on 

recognition based heuristics often outperform those attempting to integrate and weigh all 

available data, particularly under volatile market conditions.129 These findings support 

Gigerenzer’s broader thesis: the measure of rationality is not how closely decision makers 

adhere to normative axioms, but how well their heuristics match the demands of the 
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environment.130 In this sense, ecological rationality does not reject the insights of Kahneman 

and Tversky, but reframes them, acknowledging that while heuristics may sometimes produce 

biases, they are also the best available tools for navigating an uncertain, information rich world. 
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3.5. Conclusions on ecological rationality  
The evidence assembled in this chapter compels a fundamental re evaluation of what it means 

to be rational when choices must be made in a world that is noisy and only partially knowable. 

Under such conditions, the normative benchmark of global optimisation dissolves into an ideal 

that cannot, even in principle, be realised. What survives is a repertoire of heuristics: fast, frugal 

rules that deliberately ignore large amounts of information yet succeed by aligning with the 

broad patterns of their environments. Herbert Simon’s classic insight that decision makers 

satisfice rather than maximise was the first systematic recognition that scarcity of time, 

attention and computational power makes selective ignorance a necessity.131 Subsequent 

experimental and formal work by Gigerenzer and colleagues has shown that these seemingly 

crude strategies often equal or surpass complex algorithms.132 Rather than aiming for 

unattainable perfection, heuristics define a practicable middle ground: they substitute 

procedural economy for exhaustive calculation, robustness for fragile precision, and adaptive 

fit for abstract coherence.133 

Seen through this ecological lens, the long catalogue of biases documented by behavioural 

research is reconceived not as a series of errors but as evidence of the mind’s adaptive toolbox. 

Each tool is specialised for a recurring class of problems and shaped by evolutionary, 

developmental, and cultural feedback.134 In domains where uncertainties are radical and data 

sparse, the best strategy is often to know what to ignore. The recognition heuristic, the 1/N 

portfolio rule and the take the best heuristic exemplify how purposeful ignorance can yield 

outcomes that are good enough in practice and sometimes quantitatively superior to 

optimisation that underestimates model error. What emerges is a positive programme for the 

study of rationality: evaluate decision rules by their performance in context, not by their 

conformance to a context free ideal. This shift has already influenced medicine, legal reasoning 

and finance, where simpler, transparency friendly heuristics now routinely match or outperform 

statistical black boxes.135 
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Only after we grasp this broader cognitive architecture does it make sense to ask how entire 

economies, vast ensembles of boundedly rational actors, can move toward resilience and 

prosperity. The final section of this thesis applies the heuristic perspective to macroeconomic 

policy, showing how a deliberately simple combination of Schumpeterian innovation 

incentives and Keynesian demand stabilisers outperforms single objective optimisation in 

volatile evolutionary environments. By treating that combination of policies as an institutional 

framework, we illustrate concretely how the principles defended here scale from individual 

decision making to the broader design of economic systems.   
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Chapter 4: The Role of Heuristics in Macroeconomics 

4.1. Introduction 
Heuristics play a quiet but significant role in economic reasoning and policymaking. Everyday 

economic behaviors follow simple rules: consumers might allocate a fixed percentage of 

income to savings, firms might set prices by applying a standard markup and investors might 

follow basic diversification rules (such as the 1/N portfolio heuristic). These practices persist 

because they are adaptively rational: they work well enough in an uncertain changing world. 

Indeed, evidence shows that many firms predominantly use cost plus pricing heuristics, setting 

prices by adding a markup to production cost, rather than continuously resolving profit 

maximization calculus.136 Such rules of thumb are not mere anomalies; they reflect the fact that 

economic agents, constrained by limited information and computational capacity, develop 

robust strategies that satisficingly achieve their goals.137 Recent contributions in behavioral and 

computational economics have begun to formally study these heuristic strategies.138 Rather 

than assuming an impossible level of rationality, newer approaches incorporate boundedly 

rational agents who use simple decision rules. This chapter explores the macroeconomic 

implications of these ideas. It argues that heuristics are not only descriptively realistic, but often 

normatively desirable in a complex economy. In what follows, we first examine the economy 

as a complex evolving system in which agents' bounded rationality is a feature, not a bug. We 

then critique the standard neoclassical macro assumptions through the lens of ecological 

rationality, emphasizing how real world decision making relies on heuristics. Next, we contend 

that in such a complex environment, satisficing heuristics are more appropriate than any single 

rule optimization strategy. Building on this foundation, the chapter makes the case that a 

combination of Schumpeterian (innovation driven) and Keynesian (demand management) 

policies constitutes a robust satisficing macroeconomic strategy, one that may not be optimal 

in narrow theoretical terms, but which performs well across a range of scenarios. We support 

this argument with mathematical and empirical evidence, especially drawing on the agent based 

model of Dosi, Fagiolo, and Roventini (2010)  “Schumpeter meeting Keynes.”139 Finally, we 
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conclude by proposing an ecologically rational approach to macroeconomic policy design that 

values robustness and adaptability. 
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4.2. The Economy as a Complex Evolving System 
Modern complexity economics views the macroeconomy as a dynamic complex system, 

continually evolving and often volatile. The aggregate patterns we observe (growth, cycles, 

crises) are emergent phenomena arising from these interactions.140 Crucially, the economy is 

subject to fundamental uncertainty in the Knightian sense: not all future states of the world or 

their probabilities are known.141 It is also driven by incessant innovation, which continually 

generates novelty.142 Disequilibrium is the norm in an innovative economy; the system evolves 

as new technologies and behaviors disrupt old patterns.143 Because of these factors, the 

economy does not gravitate toward a single static equilibrium. Instead, it may exhibit multiple 

possible equilibria or regimes, path dependence and sudden phase transitions (for example, a 

financial crisis as a turning point). Tiny perturbations or different initial conditions can lead to 

different outcomes in the long run.144 In such a world, precise prediction and optimization are 

difficult. 

In complex evolving systems the assumption of unbounded rationality, that agents can compute 

optimal decisions with full knowledge of the future, no longer holds. Agents face pervasive 

uncertainty and limitations in information and processing. They are boundedly rational, 

meaning they must cope with complexity using imperfect mental tools.145 Instead of solving 

impossible optimization problems, real economic actors interpret their environment and adapt. 

They form expectations by extrapolating from past trends or analogies, they experiment and 

learn over time, and they employ heuristics as cognitive shortcuts. Indeed, to navigate genuine 

uncertainty, agents make sense of problems by guessing, using past knowledge and experience 

and by using simple decision making heuristics or rules of thumb.146 By relying on a heuristic 

that works in their environment, agents can make decisions with reasonable success without 

exhaustive calculation. These heuristics might be as simple as basing this year’s plans on last 
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year’s outcomes plus an adjustment, a common strategy for firms forecasting demand or 

individuals managing budgets. As agents use feedback to update their rules, their behavior 

evolves.147 The economy thus has an adaptive character: individuals and firms learn from 

experience, revise their heuristics and occasionally imitate successful strategies of others. This 

adaptive evolutionary dynamic means the system is never static. It also underscores why a 

diversity of behaviors (heterogeneity) persists: there is no single objectively optimal strategy 

in an environment that itself keeps changing. Instead, different heuristics may perform well in 

different periods.148 The overall macro dynamics (growth, volatility, etc.) emerge from the 

collective interaction of these heterogeneous, learning agents. Significantly, this complexity 

perspective validates the use of heuristics as not only necessary (given human limits) but often 

appropriate responses to an unpredictable economic context. Agents survive by being 

ecologically rational, by matching their decision rules to the structure of the environment they 

face. The economy’s complexity, volatility and openness thus go hand in hand with bounded 

rationality and heuristic decision making by its participants. 
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4.3. A Critique to Neoclassical Macro Assumptions 
Neoclassical macroeconomics rests on a foundation of assumptions that appear increasingly 

restrictive in light of real world complexity. The representative agent in the dynamic stochastic 

general equilibrium (DSGE) model is typically depicted as an infinitely rational optimizer, 

solving intertemporal utility maximization with full information and forming rational 

expectations. From an ecological rationality standpoint, this portrayal is deeply problematic. 

Rational choice theory, as conventionally applied, demands context independent adherence to 

axioms of optimization and consistency.149 But in the messy reality of the macroeconomy, 

context is everything. What is rational in a formal model might be practically unattainable for 

real households who face shocks, incomplete markets and limited foresight. Ecological 

rationality argues that true rationality lies in fitness to the environment, the effectiveness of a 

decision rule given the situation.150 By that measure, the neoclassical agent’s behavior is often 

ill suited for an uncertain world, while simpler heuristic behaviors may perform more 

succesfully. For example, the common heuristic of setting aside a fixed percentage of income 

as savings each month might not solve an intertemporal optimization problem, but it yields 

prudent outcomes in an environment where future earnings are unpredictable. Likewise, firms 

sticking to a target inventory to sales ratio or a markup pricing rule are using historically learned 

heuristics that keep operations viable without solving a complex constrained optimization 

every period. These heuristics are ecologically rational if they exploit stable features of the 

environment (like habitual customer behavior or cost structures) to make good decisions.151 

A key critique is that neoclassical macro models ignore the cognitive constraints and adaptive 

behavior of actual economic agents. The assumption of perfect rationality and its unique 

equilibrium often imposes a false sense of precision and determinacy on open ended processes. 

In reality, agents do not have the knowledge to form truly rational expectations about the future 

path of the economy. Instead, they fall back on adaptive expectations or other forecasting 

heuristics which can lead to systematic errors or waves of optimism and pessimism (Keynes’s 
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“animal spirits”).152 Traditional models treat such behavior as exogenous noise or error, rather 

than a natural outcome of decision making under uncertainty. By contrast, an ecological 

rationality perspective recognizes these behaviors as meaningful adaptations. They are what 

one ought to do, not in an idealized world of certainty, but in the actual environment people 

face. As Gigerenzer and colleagues point out, more is not always better in decision making; 

more information and computation can lead to poorer outcomes in high uncertainty contexts.153 

Using a heuristic that ignores certain information can actually improve decision outcomes if 

that information is unreliable or confounding.154 This insight directly challenges the 

neoclassical presumption that any departure from full information optimization is inherently 

problematic. 

Another target of critique is the optimization paradigm of neoclassical macroeconomics. In 

mainstream models, all behavior is derived from a single utility or profit maximizing principle 

applied uniformly across contexts. This assumes away the diverse heuristics and norms that 

actual people use. It also assumes agents somehow solve extremely complex problems (like 

forming expectations over infinite future contingencies) that are well beyond human (or even 

computer) capacities. The ecological view instead finds rationality in procedures, in the process 

of reasoning that agents use, not just in outcomes relative to a model.155 An agent who uses a 

simple rule that usually yields decent results is procedurally rational, even if an economist’s 

model shows a theoretically superior result was available. The neoclassical paradigm’s focus 

on outcome optimality (often defined narrowly, like maximizing expected utility) misses this 

procedural adaptiveness. Bounded rationality complements classical rationality by addressing 

the discrepancy between the assumed perfect rationality of human behavior and the reality of 

human cognition.156 In practical terms, boundedly rational agents satisfice and use heuristics 

because the world is complex and their minds are finite. Ignoring this, leads mainstream macro 

to fragile conclusions. Indeed, prior to the 2008 financial crisis, DSGE models built on these 
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assumptions largely failed to anticipate the collapse or to provide useful guidance, partly 

because their agents, by assumption, could not even contemplate such out of equilibrium 

events.157 Complexity oriented economists note that mainstream equilibrium models offered 

little policy insight during that crisis. In response, there has been growing interest in alternative 

approaches that dispense with the usual assumptions of individual optimization and systemic 

equilibrium. These approaches, including agent based modeling and behavioral 

macroeconomics, explicitly incorporate heuristics, heterogeneity and out of equilibrium 

dynamics, providing a richer framework to analyze macroeconomic phenomena.158 

Empirically, the case against the neoclassical assumptions is supported by observations of 

actual behavior. Surveys and studies find, for example, that many firms use simple pricing 

heuristics (like markup pricing or sticky nominal price rules) instead of continuously 

recalculating profit maximizing prices.159 In labor markets, wage setting often follows norms 

and fairness considerations (rules of thumb) rather than clearing the market via auction each 

period. Households often follow budgeting heuristics or rely on rules like paying oneself first 

(automatically saving a fixed amount). Financial market actors, notoriously, use heuristic 

devices (from credit rating shortcuts to trend following) that do not fit the fully rational model 

but seem indispensable given the complexity of assessing each investment. These patterns 

underscore that the representative agent with perfect optimization is a fiction. By insisting on 

it, neoclassical macro misses how real economies operate and why they sometimes malfunction 

(feedback loops of heuristic driven behavior can generate instability, like speculative bubbles). 

The ecological rationality critique therefore calls for a more realistic foundation: one 

acknowledging that agents use heuristics that are often adaptive to their environment, even if 

they violate abstract rational choice axioms.160 It is a shift from viewing such behavior as errors 

to seeing it as an essential feature of a complex economy. 
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4.4. Satisficing Heuristics vs Single Rule Optimization 
Herbert Simon’s notion of satisficing provides a crucial bridge between individual heuristics 

and broader economic outcomes. To satisfice is to aim for an outcome that is adequate on 

multiple fronts rather than maximize any single objective in a isolation. In a complex economy 

characterized by multiple goals and trade offs a satisficing approach can be more appropriate 

than strict optimization. Optimization typically requires reducing a problem to one objective 

function subject to constraints, yielding one best policy or decision rule. But complex systems 

defy such simplification, the real economy has many moving parts and actors with different 

goals. A single rule optimization strategy (for example, a central bank targeting only inflation 

with a fixed rule or a government single mindedly maximizing GDP growth) risks overlooking 

important dimensions and can produce fragility. By contrast, satisficing heuristics 

acknowledge the need to balance and fulfill multiple criteria well enough without assuming a 

precise trade off can be optimized. This approach is more robust to uncertainty. Rather than 

betting everything on one model’s definition of optimality, satisficing means securing 

acceptable outcomes under a range of plausible scenarios.161 

Consider how individuals make complex decisions, like career choices or retirement planning: 

they rarely perform an exhaustive optimization. Instead, they set aspiration levels (desired 

salary, location, work life balance) and search until they find an option that meets these 

criteria.162This multi dimensional satisficing is a heuristic approach suited to complex realities. 

Similarly, firms often set satisfactory thresholds for profits or market share and pursue 

strategies (marketing, innovation, etc.) aimed at meeting those targets, rather than 

mathematically maximizing profit each quarter (which is not even computationally tractable 

given uncertainties). In macroeconomic policy, the analog would be pursuing strategies that 

ensure key indicators (employment, inflation, growth) remain in acceptable ranges, rather than 

optimizing one at the expense of others. Satisficing does not mean settling for mediocrity; it 

means being prudent about the limits of knowledge and the dangers of pushing any single goal 

to an extreme. In fact, aiming for the theoretical optimum can be risky if the underlying model 

is wrong or incomplete, a concept known in decision theory as the risk of model uncertainty. 

Mathematically, the advantage of heuristics in complex environments can be understood 

through concepts like the bias/variance tradeoff in predictive modeling. Highly complex 

optimization strategies may overfit to a specific environment (yielding low bias but high 
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variance), performing brilliantly under ideal conditions but failing badly when conditions 

change.163 A simpler heuristic, while suboptimal in the idealized case, may generalize better 

across different environments, it has a bit more bias but far less sensitivity to changing 

circumstances. In other words, heuristics can offer robustness.164 This is mirrored in 

macroeconomic contexts: a policy rule or private decision rule that is modest and adaptive may 

yield more stable outcomes across booms and busts than an aggressive optimization that 

assumes steady conditions. For instance, a firm that adopts a conservative debt to equity ratio 

(a heuristic financial policy) may generate lower profits in favorable times due to restrained 

leverage. However this conservatism enhances its resilience in downturns, helping it avoid 

bankruptcy, a satisficing approach to survival. At the macro level, a government might 

maintain buffers (like higher bank capital requirements or fiscal reserves) based on simple 

heuristics of prudence, sacrificing a bit of growth in the short run but preventing crises, again 

a satisficing strategy.165 

The case for satisficing heuristics over single rule optimization is also supported by 

computational economics experiments. Agent based models, which explicitly simulate 

heterogeneous agents using simple rules, find that making agents more rational in the classical 

sense often yields little improvement and can even destabilize outcomes.166 Dosi et al. (2010) 

report that in their agent based macro model, increasing firms’ computational sophistication 

(having them use more complex expectation formation rules) did not significantly change 

average growth rates or the stability of the economy. In their model, firms initially use a naive 

heuristic, they simply expect demand next period to equal demand in the last period (a basic 

adaptive expectation). When the authors allowed firms to employ more advanced forecasting 

or optimization, the macro level results (growth and stability) remained essentially unchanged. 

This suggests that simple rules were already sufficient to coordinate outcomes; the added 

complexity did not buy much, and the system’s emergent properties were robust to agents’ 

behavioral rules.167 In fact, the persistence of outcomes hints that the macro dynamics are 

driven by deeper structural interactions, not by the micro level optimality of agents’ decisions. 
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Such findings reinforce the idea that forcing agents to optimize single objectives yields 

diminishing returns in a complex adaptive system. The economy may self organize in such a 

way that simple agent heuristics are good enough, or even exactly what is needed, for the 

system to function.168 This aligns with Gigerenzer’s argument that in an uncertain world, less 

can be more, and a heuristic matched well to an environment can outperform complex 

strategies.169 In sum, satisficing heuristics offer a philosophy of decision making and policy 

design that prioritizes robust acceptability over fragile optimality.  
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4.5. Combining Schumpeterian and Keynesian Policies 
What might a satisficing macroeconomic policy strategy look like? This chapter argues that it 

resembles a pragmatic combination of Schumpeterian and Keynesian elements, supporting 

innovation and long run growth on one hand, while stabilizing demand and employment on the 

other. These two pillars correspond to addressing the supply side and demand side of the 

economy, respectively. In orthodox theory, one might attempt to derive an optimal policy by, 

say, maximizing a social welfare function subject to a macroeconomic model’s constraints. 

Such an optimal plan could, for example, prioritize price stability above all or assume that free 

markets alone will optimally allocate resources for growth. However, in the real economy a 

policy that satisfices multiple objectives is more robust. Schumpeterian policies refer to 

measures that promote innovation, technological progress and structural transformation. These 

include investments in R&D, education and infrastructure, support for entrepreneurship and 

industrial policies that foster new industries. Such policies drive the economy’s evolutionary 

growth engine, increasing productivity and the frontier of potential output. Keynesian policies 

refer to demand management tools, such as countercyclical fiscal spending, monetary policy 

aimed at full employment and automatic stabilizers like unemployment insurance. These 

policies seek to maintain adequate aggregate demand, mitigate recessions, and avoid prolonged 

unemployment or excess capacity.170 

Each of these policy sets addresses a crucial dimension of economic performance: the 

Schumpeterian aims for high long run growth, while the Keynesian aims for stable short run 

fluctuations and high employment. In theory, one could try to focus on just one dimension, for 

example, a singular focus on innovation led growth, assuming the benefits will trickle down 

eventually; or an exclusive focus on short run stabilization, assuming the long run will take 

care of itself. However, an ecologically rational view suggests that these objectives are closely 

connected and that the most robust strategy satisfies both to a reasonable degree rather than 

maximizing one at the expense of the other.171 The innovation engine cannot reach its potential 

if demand is chronically weak, new technologies will not find markets, firms won’t invest in 

R&D if recessions constantly undercut profitability and human capital will deteriorate under 

prolonged high unemployment. Conversely, stimulating demand without attention to 

productivity and innovation can lead to overheating or stagnation once the limits of existing 
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capacity are reached. The complementarity between Schumpeterian and Keynesian policies 

means that doing both yields more than the sum of its parts. Simulations of an economy where 

these policies work in tandem show long run growth paths characterized by mild fluctuations 

and acceptable unemployment levels.172 

Critically, this combined strategy is satisficing rather than optimizing in the sense that it does 

not seek a theoretical optimum in one dimension. It accepts, for instance, that aggressive 

innovation policy might need to be tempered by demand concerns, for example by allocating 

some resources to social safety nets, which may limit short run productivity gains. Conversely, 

stabilizing the economy might involve tolerating some inefficiencies, such as not fully allowing 

market forces to eliminate unproductive firms during downturns, because doing so can have 

long run costs on innovation ecosystems.The goal is to achieve robust prosperity, reasonably 

high growth with manageable volatility and unemployment, even if neither growth nor stability 

is pushed to an extreme theoretical maximum. This approach draws inspiration from the real 

world observation that economies which successfully industrialized and grew rapidly (the East 

Asian miracles, postwar Western economies) often combined forward looking development 

policies with active demand management.173 For example, post World War II America and 

Europe saw governments investing heavily in science and infrastructure (Schumpeterian) while 

also institutionalizing Keynesian demand tools (such as built in stabilizers and countercyclical 

fiscal policy), leading to a period of unprecedented stable growth. Conversely, periods of policy 

that overly emphasized one side often resulted in either stagnant growth or unstable boom bust 

cycles.174 

The agent based computational evidence strongly supports the synergy of these policies. In 

Dosi, Fagiolo, and Roventini’s model of a “Schumpeter meeting Keynes” economy, the authors 

find that Keynesian demand policies are in fact a necessary condition for sustained long run 

growth in a technologically evolving economy. When the model is run with only 

Schumpeterian (innovation) forces active but inadequate demand support, the economy can get 

trapped in a low growth, high unemployment regime. Innovations occur, but their benefits do 

not translate into output and employment because demand falls short, a result mirroring secular 

stagnation concerns. Conversely, with robust Keynesian demand management, the economy is 
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delocked from the bad trajectory and can attain a high growth path. The presence of strong 

aggregate demand allows innovative firms to expand and encourages continual investment, 

reinforcing growth. Importantly, the model also shows that Keynesian policies dramatically 

reduce macroeconomic volatility and unemployment.175 Countercyclical fiscal measures act 

like an economic parachute during recessions, preventing severe downturns and thereby 

indirectly sustaining private investment (which might otherwise collapse in a recession). 

Meanwhile, Schumpeterian policies (like R&D subsidies or higher innovation propensity) also 

have distinct effects: holding demand policy constant, greater support for innovation tends to 

raise long term growth potential, but it can come with higher volatility if not 

counterbalanced.176 Only when paired with stabilizing demand policies do the fruits of 

innovation translate into steady growth with mild cycles. The complementary nature of the two 

policy types means that neither alone is sufficient for the best outcomes: innovation policy 

alone cannot guarantee low unemployment and smooth cycles, and demand policy alone cannot 

generate high growth without technological progress. The most resilient macroeconomic 

performance emerges when both are pursued together.177 

This combined approach can be seen as a macro level heuristic or rule of thumb: always 

encourage innovation and always stabilize demand to an extent. It may not satisfy those who 

seek an elegant one target optimum rule (for instance, a pure inflation targeting central bank or 

a single minded growth maximization agenda). But it satisfices the multiple goals society cares 

about, livelihoods, innovations and stability, yielding robustly good outcomes across different 

scenarios. Even if such a policy mix is not optimal under a particular model’s assumptions, it 

guards against the model being wrong. In a complex economy with uncertainty about correct 

models, this robustness is immensely valuable. Indeed, Dosi et al.’s model underscores that 

pushing either policy too far has diminishing returns: once the economy is on a high growth, 

low volatility path, further increases in fiscal stimulus, for example don’t raise growth much 

more but do slightly, improve stability.178 There are pragmatic limits and trade offs, so 

policymakers must use judgment to keep policies in balance, another sign of satisficing 

behavior.  
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4.6. Mathematical and Empirical Support 
The arguments above gain firmer ground when we examine formal models and empirical 

evidence. The agent based model developed by Dosi, Fagiolo, and Roventini (2010)179 provides 

a quantitative, mathematical demonstration of how heuristics and policy combinations can 

shape macro outcomes. In their model, the economy consists of heterogeneous firms in two 

sectors (capital goods and consumption goods), consumers/workers and a public sector. 

Crucially, the firms in this model are boundedly rational: they do not solve intertemporal 

optimization problems. Instead, they follow simple behavioral rules for decisions like 

production, pricing, investment and R&D. For example, consumption good firms set prices 

with a fixed markup over costs, a rule grounded in empirical observation of how businesses 

price. Firms form their expectations of demand in a highly simplified way (one version of the 

model assumes firms just expect demand to repeat last period’s level). Investment decisions 

are modeled with rules such as: expand production capacity when customer orders exceed 

current production capability, or invest a certain fraction of profits in R&D each period. 

Workers/consumers in the model spend their income based on simple consumption rules (with 

some propensity to consume out of wages and unemployment benefits). There is no omniscient 

rational planner among these agents, each is following boundedly rational heuristics adapted 

to its role. 

Mathematically, the model is specified by a system of equations describing these behavioral 

rules and constraints (a production function, an R&D innovation process, accounting identities 

ensuring consistency). The public sector in the model implements Keynesian policies: it 

collects taxes and pays unemployment benefits (injecting demand during downturns) and the 

authors can vary the tax rate or benefit level to simulate more or less aggressive fiscal policy. 

Schumpeterian policy enters via parameters affecting innovation, such as the fraction of 

revenues firms devote to R&D or the efficiency of R&D expenditure (these can be interpreted 

as influenced by policy incentives or technological opportunities). The model is stochastic: 

innovation success, for instance, is partly random, and firms’ productivity evolves 

stochastically, capturing the uncertainty and heterogeneity of real economies. Rather than 

solving for a closed form equilibrium, the model is run through computer simulations (Monte 

Carlo), generating synthetic time series data that can be analyzed. 

The findings from this agent based model strongly support the chapter’s thesis. First, the model 

can replicate many stylized facts of macroeconomic data (such as business cycle fluctuations, 
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firm size distributions, productivity dispersion, etc.) despite its reliance on simple heuristics. 

This shows that a heuristic driven, out of equilibrium model is capable of producing realistic 

macro dynamics, a domain once dominated by equilibrium models. Second, the model’s policy 

experiments directly illustrate the interplay of Schumpeterian and Keynesian levers. When the 

authors simulate a scenario with only innovation drives (high R&D propensity) but minimal 

fiscal stabilizers, the economy exhibits high output volatility and periods of stagnation or high 

unemployment. In contrast, a scenario that adds strong Keynesian demand management (higher 

taxes and benefits that kick in during recessions) moves the economy to a much better 

trajectory, what they term the good regime. In this regime, output grows at a healthy long run 

rate and cyclical swings are much gentler, with lower average unemployment. 

Notably, the model identifies two distinct regimes of growth depending on policy: one 

characterized by robust growth with mild cycles and another by either low growth or more 

severe cycles with high unemployment. These correspond to the presence or absence of the 

right mix of policies. The matching of high innovation with strong demand support yields the 

favorable regime, whereas a mismatch (innovation without demand, or demand stimulus 

without innovation) yields subpar outcomes. This aligns perfectly with our earlier qualitative 

argument about complementarity. 

Quantitatively, the simulations showed that Keynesian policies not only reduce short run 

volatility and unemployment, but are indeed necessary for maintaining long run growth. 

Without them, even an innovation rich economy can falter with demand deficiency. On the flip 

side, the presence of innovation (Schumpeterian forces) is what allows the demand stabilized 

economy to grow rather than just achieving full employment at static output. Another important 

quantitative result is that beyond a certain point, increasing the intensity of Keynesian policy 

(making fiscal stimulus larger or more automatic) yields diminishing returns in terms of 

growth. After the economy has been lifted to the high growth path, extra stimulus doesn’t raise 

the growth rate further, it does, however, further reduce output volatility and time spent in 

unemployment, effectively enhancing the stability of the system. This indicates an optimal 

intermediate range for policy, too little and the economy is unstable, too much and you get 

stability but no additional growth. Such nonlinear responses are typical in complex systems 

and warn against extreme policies, reinforcing the idea of satisficing balance. The authors 

conclude that there is a clear  complementarity between Keynesian and Schumpeterian policies 

in sustaining long run growth paths characterized by mild fluctuations and acceptable 

unemployment. 
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Empirical evidence outside of models also supports these claims. Historical data studies (cited 

by Dosi et al. as well) have found that economies with more aggressive countercyclical policies 

tend to experience not just shorter recessions but also faster long run growth recoveries, 

especially in environments with credit constraints or other market imperfections. One empirical 

study by Aghion and Marinescu (2007) showed that countries with stronger stabilizers had 

higher average growth, suggesting that preventing deep recessions helps preserve the drivers 

of growth, a real world validation of the model’s insight.180 Meanwhile, the importance of 

innovation policy is evident in the divergent productivity and growth trajectories of countries 

or regions that invest in R&D and human capital versus those that do not. The synergy is 

perhaps most clearly visible in extraordinary cases like the wartime and post war U.S., where 

massive demand stimulus (WWII spending, then Cold War investments) coincided with rapid 

technological innovation (much of it spurred by war and government R&D), yielding the long 

post war boom with high growth and low unemployment. While such historical episodes are 

complex, they exemplify how demand and innovation factors working together create robust 

prosperity. 

  

 
180 Philippe Aghion and Ioana Marinescu, “Cyclical Budgetary Policy and Economic 
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4.7. Conclusion on Heuristics in Macroeconomics 
The exploration of heuristics in macroeconomics leads to a profound rethink of what rational 

policy design means in an uncertain complex world. Ecological rationality offers a guiding 

philosophy: it advises economists and policymakers to design rules and institutions that are 

well matched to the structure of the economic environment, rather than assuming an idealized 

world of rational agents and predictable dynamics. An ecologically rational macroeconomic 

policy would be one that remains effective under the true conditions of the economy, conditions 

that include fundamental uncertainty, innovation driven change and human cognitive 

limitations. The chapter has argued that heuristics, once viewed with suspicion, are in fact 

essential building blocks for such policy. Just as individual agents use heuristics to make 

reasonable decisions, policymakers can adopt simple robust rules that secure broadly 

satisfactory outcomes across many scenarios. The recommended combination of 

Schumpeterian and Keynesian policies represents precisely this type of rule. A straightforward 

principle of encouraging innovation and maintaining demand can serve as a reliable formula 

for long run growth with stability, without requiring the solution of an intractable dynamic 

optimization problem for the entire economy.181 

In contrast to the neoclassical tradition of seeking an optimal policy (often characterized by 

complex rules or targets that assume away uncertainty), the ecological rationality approach 

emphasizes robustness and adaptability. Policymakers should acknowledge what they don’t 

know and cannot know. Rather than placing all faith in a single model’s recommendation 

(which might fail if the model is wrong), it is more reasonable to pursue policies that are 

justifiable across a range of models and experiences, policies that satisfice multiple goals and 

guard against extreme outcomes.182 This perspective resonates with the concept of minimizing 

regret or pursuing robust control in macroeconomic policy, techniques that explicitly account 

for model uncertainty and aim for policies that do reasonably well in many potential situations 

instead of optimizing one forecast.183 Ecologically rational policy design also values 

institutional heuristics that have stood the test of time. For instance, automatic stabilizers (like 

progressive taxes and welfare programs) can be seen as heuristic policies built into fiscal 

systems. They don’t require real time optimization, they simply operate by rule to stabilize 

demand when income falls and decades of experience show their effectiveness in mitigating 

 
181Gigerenzer, “Simple Heuristics That Make Us Smart.” 
182 Gigerenzer, “Why Heuristics Work.” 
183 Lars Peter Hansen and Thomas J. Sargent, “Robust Control and Model Uncertainty.” 
American Economic Review 91, no. 2 (2001). 
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the negative effects of downturns.184 Similarly, innovation policy often operates through simple 

mechanisms like grants for research, patent systems and education funding. These may not be 

optimized each year, but as heuristics they continuously foster the ecosystem needed for 

innovation.185 

By embracing ecological rationality, macroeconomics can become more relevant and realistic. 

It moves away from the sterile elegance of fully optimal but fragile policies, toward robustly 

good policies that acknowledge complexity. The conclusions drawn from our discussion and 

the Dosi et al. model exemplify this shift.186 They suggest that the best way to ensure a healthy 

economy is not to adjust a single lever (like inflation) with unfailing precision. However,  to 

put in place a framework of heuristics that will guide the economy toward desirable outcomes 

even when surprises happen. This does not mean there is no role for optimization or 

sophisticated analysis; rather, it means those analyses should be employed in service of 

designing and improving heuristics and institutions, not as a replacement for them. In practice, 

an ecologically rational macroeconomic strategy might involve a policymaking process that is 

experimental and adaptive. This means trying combinations of policies, monitoring outcomes 

and adjusting heuristics over time based on feedback, much as agents in the economy adapt 

their rules.187 

In conclusion, heuristics are not only a cornerstone of individual decision making in economics, 

but also a cornerstone of wise macroeconomic policy in a complex world. Recognizing the 

economy as an evolving open system of boundedly rational agents compels us to abandon the 

mirage of perfect optimization. In its place, we adopt ecological rationality, designing strategies 

that are simple, sensible and matched to our environment. The marriage of Schumpeter and 

Keynes in policy is a prime example: it rejects any notion of a perfect, one dimensional solution 

and instead relies on a heuristic that combines two essential elements to secure a satisficing 

outcome. Such an approach may not satisfy those who seek the certainty of optimality, but it 

offers something more valuable in the real world: resilience. As we face future economic 

challenges, whether technological disruptions, financial cycles or unforeseen shocks, the lesson 
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is that a heuristic, adaptive approach grounded in ecological rationality will guide us to more 

robust and humane outcomes than rigid and outdated attempts at theoretical optimization.188 

  

 
188 Gerd Gigerenzer, “Heuristics.” in Heuristics and the Law, ed. Gerd Gigerenzer and 
Christoph Engel (Cambridge, MA: MIT Press, 2006). 
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Conclusions 
The core insight of this thesis is simple yet far reaching: in an economic world shaped by 

innovation, complexity and radical uncertainty, the future is not merely unknown, it is 

unknowable in principle. No amount of data, modelling or analytical power can fully anticipate 

the emergence of genuinely novel states, technologies or behaviours. This undermines the 

foundational assumptions of classical optimisation frameworks, which rely on closed, well-

defined sets of outcomes and stable preferences. In such conditions, even heuristics, those 

practical, experience based rules designed to cope with limited information, cannot guarantee 

success. They may simplify choices and offer robustness in some cases, but they too are fallible. 

When applied without regard to context, heuristics can mislead, distort judgement, or fail to 

adapt to changing conditions. 

What this thesis offers, then, is not a defence of heuristics as universal solutions, but a broader 

invitation to rethink how we approach decision making. The chapters have shown that 

alternatives to dominant optimisation models exist, alternatives that are grounded in ecological 

rationality, evolutionary learning and the structural properties of the environment itself. Rather 

than seeking abstract optimality, these approaches prioritise adaptability, feedback and context 

sensitivity. 

The key lesson is that no decision can be judged in isolation from its environment. To act 

wisely under uncertainty requires first recognising the structure and dynamics of the system in 

which one is embedded. This means designing strategies, rules and institutions that are not just 

efficient under known conditions but resilient when those conditions change. By focusing on 

the interplay between cognition and environment, between rules and contexts, this thesis 

encourages a shift from rigid precision to informed flexibility. 

In a world where surprises are inevitable and prediction has limits, success lies less in mastering 

the future than in learning how to navigate it. Acknowledging this is not a call to surrender, but 

an argument for a more grounded, adaptive and realistic economics; one that begins not with 

perfect foresight, but with an honest reading of the world as it is. 

 

  



 82 

Bibliography 

Aghion, Philippe, and Ioana Marinescu. “Cyclical Budgetary Policy and Economic Growth: 

What Do We Learn from OECD Panel Data?” NBER Macroeconomics Annual 22 (2007): 

251–278. 

Aghion, Philippe, Ufuk Akcigit, and Peter Howitt. “What Do We Learn From Schumpeterian 

Growth Theory?” Journal of Economic Perspectives 30, no. 1 (2016): 3–28. 

Akerlof, George A., and Robert J. Shiller. “Animal Spirits: How Human Psychology Drives 

the Economy, and Why It Matters for Global Capitalism.” Princeton: Princeton University 

Press, 2009. 

Alter, Adam, and Daniel M. Oppenheimer. “Predicting Short-Term Stock Fluctuations by 

Using Processing Fluency.” Proceedings of the National Academy of Sciences 103, no. 24 

(2006): 9369–9372. 

Amsden, Alice. “Asia’s Next Giant: South Korea and Late Industrialization.” Oxford: Oxford 

University Press, 1989. 

Anderson, P. W., Kenneth J. Arrow, and David Pines, eds. “The Economy as an Evolving 

Complex System”. Reading, MA: Addison-Wesley, 1988. 

Arthur, W. Brian. “Increasing Returns and Path Dependence in the Economy.” Ann Arbor: 

University of Michigan Press, 1994. 

Arthur, W. Brian. “Complexity and the Economy.” Science 284, no. 5411 (1999): 107–109. 

Auerbach, Alan J., and Daniel Feenberg. “The Significance of Federal Taxes as Automatic 

Stabilizers.” Journal of Economic Perspectives 14, no. 3 (2000): 37–56. 

Banks, J., J. Brooks, G. Cairns, G. Davis, and P. Stacey. “On Devaney's Definition of Chaos.” 

The American Mathematical Monthly. 99, no. 4 (1992): 332–334. 

Beinhocker, Eric D. ”The Origin of Wealth: Evolution, Complexity, and the Radical Remaking 

of Economics.” Boston: Harvard Business School Press, 2006. 

Björneborn, Lars. “Adjacent Possible.” In Springer MRW, 2023. 

Blinder, Alan S., et al. “Asking About Prices: A New Approach to Understanding Price 

Stickiness.” New York: Russell Sage Foundation, 1998. 

Brock, W. A. “Distinguishing Random and Deterministic Systems.” Journal of Economic 

Theory. 40, no. 1 (1986): 168–195. 

Brockwell, Peter J., and Richard A. Davis. “Introduction to Time Series and Forecasting.” 2nd 

ed. New York: Springer, 2002 

Byrne, David S. ”Complexity Theory and the Social Sciences: An Introduction.” London: 

Routledge, 1998. 



 83 

Caballero, Ricardo J. “Macroeconomics after the Crisis: Time to Deal with the Pretense-of-

Knowledge Syndrome.” Journal of Economic Perspectives 24, no. 4 (2010): 85–102.  

Chaitin, Gregory J. “Randomness and Mathematical Proof.” Scientific American 232, no. 5 

(1975): 47–52. 

Cortês, Marina, Cristina Juárez, Tom F. Varley, and Stuart Kauffman. “The TAP Equation: 

Evaluating Combinatorial Innovation.” arXiv, 2022. 

Devaney, Robert L. ”An Introduction to Chaotic Dynamical Systems.” 3rd ed. Boca Raton, 

FL: CRC Press, 2022. 

Devereaux, Andrew, Roger Koppl and Stuart Kauffman. “Creative Evolution in Economics.” 

Journal of Evolutionary Economics 34 (2024): 489–514. 

Dosi, Giovanni. “Rational Heuristics: Expectations and Behaviors in Evolving Economies with 

Heterogeneous Agents.” Economic Inquiry 58, no. 1 (2020): 1–18. 

Dosi, Giovanni, Giorgio Fagiolo, and Andrea Roventini. “Schumpeter Meeting Keynes: A 

Policy-Friendly Agent-Based Model of Schumpeterian Growth and Fluctuations.” Journal 

of Economic Dynamics and Control 34, no. 9 (2010): 1748–1767. 

Dosi, Giovanni, Mauro Napoletano, Andrea Roventini, and Tania Treibich. “Micro and Macro 

Policies in an Agent-Based Keynesian Model.” Journal of Economic Behavior & 

Organization 155 (2018): 35–52. 

Eichengreen, Barry. “Globalizing Capital: A History of the International Monetary System.” 

Princeton: Princeton University Press, 2008. 

Fabiani, Silvia, et al. “Pricing Decisions in the Euro Area: How Firms Set Prices and Why.” 

Oxford Economic Papers 58, no. 3 (2006): 449–478. 

Foster, John. “From Simplistic to Complex Systems in Economics.” Cambridge Journal of 

Economics 29, no. 6 (2005): 873–892. 

Gell-Mann, Murray. “The Quark and the Jaguar: Adventures in the Simple and the Complex.” 

New York: W.H. Freeman, 1994. 

Gigerenzer, Gerd. “Heuristics.” In Heuristics and the Law, edited by Gerd Gigerenzer and 

Christoph Engel, 17–44. Cambridge, MA: MIT Press, 2006. 

Gigerenzer, Gerd. “Homo Heuristicus: Why Biased Minds Make Better Inferences.” Topics in 

Cognitive Science 1, no. 1 (2009): 107–143. 

Gigerenzer, Gerd. “The Rationality Wars: Why Heuristics Work.” The Rationality Wars: A 

Personal Reflection, Max Planck Institute for Human Development, 2021. 

Gigerenzer, Gerd. “Why Heuristics Work.” Perspectives on Psychological Science 3, no. 1 

(2008): 20–29. 



 84 

Gigerenzer, Gerd, and Daniel Goldstein. “Reasoning the Fast and Frugal Way: Models of 

Bounded Rationality.” Psychological Review 103, no. 4 (1996): 650–669. 

Gigerenzer, Gerd, and Peter M. Todd. “Simple Heuristics That Make Us Smart.” New York: 

Oxford University Press, 1999. 

Gigerenzer, Gerd, and Reinhard Selten, eds. “Bounded Rationality: The Adaptive Toolbox.” 

Cambridge, MA: MIT Press, 2002. 

Gigerenzer, Gerd, Wolfgang Gaissmaier. “Heuristic Decision Making.” Annual Review of 

Psychology 62 (2011): 451–82. 

Gilboa, Itzhak, Andrew Postlewaite, and David Schmeidler. “Rationality of Belief or: Why 

Savage’s Axioms Are Neither Necessary Nor Sufficient for Rationality.” Synthese 187, no. 

1 (2012): 11–31.     

Gini, Corrado. “Measurement of Inequality of Incomes.” The Economic Journal 31, no. 121 

(1921): 124–126. 

Gleick, James. “Chaos: Making a New Science.” New York: Open Road Integrated Media, 

2011. 

Goldstein, Daniel G., and Gerd Gigerenzer. “Models of Ecological Rationality: The 

Recognition Heuristic.” Psychological Review 109, no. 1 (2002): 75–90. 

Grüne-Yanoff, Till, and Sven Ove Hansson. “Modeling Rationality, Rationalizing Models.” 

Minds and Machines 19, no. 3 (2009): 301–316.   

Hanel, Rudolf, Stuart A. Kauffman, and Stefan Thurner. “Towards a Physics of Evolution: 

Critical Diversity Dynamics at the Edges of Collapse and Bursts of Diversification.” 

Biological Theory 2, no. 4 (2007): 1–12. 

Hansen, Lars Peter, and Thomas J. Sargent. “Robustness”. Princeton: Princeton University 

Press, 2008. 

Hansen, Lars Peter, and Thomas J. Sargent. “Robust Control and Model Uncertainty.” 

American Economic Review 91, no. 2 (2001): 60–66. 

Harremoës, Peter, and Flemming Topsøe. “Maximum Entropy Fundamentals.” Entropy 3, no. 

3 (2001): 191–226. 

Holland, John H. “Complex Adaptive Systems.” Daedalus 121, no. 1 (1992): 17–30. 

Hommes, Cars. “Heterogeneous Agent Models in Economics and Finance.” In Handbook of 

Computational Economics, edited by K. Judd and L. Tesfatsion, Vol. 2, 1109–1186. 

Amsterdam: Elsevier, 2006. 

Hommes, Cars. “The Heterogeneous Expectations Hypothesis: Some Evidence from the Lab.” 

Journal of Economic Dynamics and Control 35, no. 1 (2011): 1–24. 



 85 

Isler, Martine M., Nikolaus Becker, and Gerd Gigerenzer. “Simple Heuristics in a Complex 

World: Health Care Decisions.” Medical Decision Making 41, no. 1 (2021): 16–27. 

Johnson, Steven. “Where Good Ideas Come From: The Natural History of Innovation.” New 

York: Riverhead Books, 2010. 

Kauffman, Stuart A. “Investigations.” Oxford: Oxford University Press, 2000. 

Kahneman, Daniel, and Amos Tversky. “Prospect Theory: An Analysis of Decision under 

Risk.” Econometrica 47, no. 2 (1979): 263–291. 

Kauffman, Stuart A. “The Origins of Order: Self-Organization and Selection in Evolution.” 

New York: Oxford University Press, 1993. 

Katsikopoulos, Konstantinos V. “Psychological Heuristics for Making Inferences: Definition, 

Performance, and the Emerging Theory and Practice.” Decision Analysis 8, no. 1 (2011): 

10–29. 

Kirman, Alan. “The Economy as an Interactive System.” In The Economy as an Evolving 

Complex System II, edited by W. B. Arthur, S. N. Durlauf, and D. Lane, 491–531. Reading, 

MA: Addison-Wesley, 1997. 

Knight, Frank H. “Risk, Uncertainty and Profit.” Boston: Houghton Mifflin, 1921.   

Lambert, Peter. “The Distribution and Redistribution of Income.” 3rd ed. Manchester: 

Manchester University Press, 2001. 

Laplace, Pierre-Simon. “A Philosophical Essay on Probabilities.” Translated by Frederick 

Wilson Truscott and Frederick Lincoln Emory. New York: Dover Publications, 1951. 

Laplace, Pierre-Simon. “Essai Philosophique sur les Probabilités.” Paris: Courcier, 1814. 

Levin, Simon A. “Ecosystems and the Biosphere as Complex Adaptive Systems.” Ecosystems 

1, no. 5 (1998): 431–436. 

Loreto, Vittorio, Andrea Baronchelli, Alain Barrat, Luca Dall’Asta, and Alessandro 

Vespignani. “Statistical Physics of Social Dynamics.” Reviews of Modern Physics 81, no. 

2 (2009): 591–646. 

Loreto, Vittorio, Vito D. P. Servedio, Stefano H. Strogatz, and Francesca Tria. “Dynamics on 

Expanding Spaces: Modeling the Emergence of Novelties.” Nature Physics 12, no. 10 

(2016): 842–847. 

Lorenz, Edward N. “Deterministic Nonperiodic Flow.” Journal of the Atmospheric Sciences 

20, no. 2 (1963): 130–141. 

MacKay, David J. C. “Information Theory, Inference and Learning Algorithms.” Cambridge: 

Cambridge University Press, 2003. 

Mitchell, Melanie. “Complexity: A Guided Tour”. Oxford: Oxford University Press, 2009. 



 86 

Monechi, Bernardo, Francesca Tria, Pierluigi Vellucci, and Vittorio Loreto. “Waves of 

Novelties in the Expansion into the Adjacent Possible.” PLOS ONE 12, no. 6 (2017). 

Morin, Jean Frédéric, Joost Pauwelyn, and James Hollway. “The Trade Regime as a Complex 

Adaptive System: Exploration and Exploitation of Environmental Norms in Trade 

Agreements.” Journal of International Economic Law 20, no. 2 (2017): 365–390. 

Newton, Isaac. “Philosophiæ Naturalis Principia Mathematica.” London: Royal Society, 

1687. 

Poincaré, Henri. “Science and Method.” Translated by Francis Maitland. London: Thomas 

Nelson and Sons, 1914. 

Prigogine, Ilya, and Isabelle Stengers. “Order out of Chaos: Man’s New Dialogue with 

Nature.” New York: Bantam Books, 1984. 

Rickles, Dean, Penelope Hawe, and Alan Shiell. “A Simple Guide to Chaos and Complexity.” 

Journal of Epidemiology and Community Health 61, no. 11 (2007): 933–937. 

Rubin, Donald B. “The Calculation of Gini Coefficients.” The Review of Economics and 

Statistics 45, no. 1 (1963): 50–52. 

Schooler, Lael J., and Ralph Hertwig. “How Forgetting Aids Heuristic Inference.” 

Psychological Review 112, no. 3 (2005): 610–628. 

Schuck, Nicolas W., et al. “Medial Prefrontal Cortex Predicts Internally Driven Strategy 

Shifts.” Neuron 86, no. 2 (2015): 331–340. 

Schumpeter, Joseph A. “Capitalism, Socialism and Democracy.” New York: Harper, 1942. 

Shannon, Claude E. “A Mathematical Theory of Communication.” Bell System Technical 

Journal 27, no. 3 (1948): 379–423. 

Simon, Herbert A. “The Sciences of the Artificial.” 3rd ed. Cambridge, MA: MIT Press, 1996. 

Simon, Herbert A. “A Behavioral Model of Rational Choice.” Quarterly Journal of Economics 

69, no. 1 (1955): 99–118. 

Simon, Herbert A. “Invariants of Human Behavior.” Annual Review of Psychology 41, no. 1 

(1990): 1–19. 

Simon, Herbert A. “Administrative Behavior.” 4th ed. New York: Free Press, 1997. 

Simon, Herbert A. “Models of Bounded Rationality.” Vol. 1. Cambridge, MA: MIT Press, 

1982. 

Simon, Herbert A. “Rational Choice and the Structure of the Environment.” Psychological 

Review 63, no. 2 (1956): 129–138. 

Simon, Herbert A. “Theories of Decision-Making in Economics and Behavioral Science.” 

American Economic Review 49, no. 3 (1959): 253–283.   



 87 

Strogatz, Steven H. “Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, 

Chemistry, and Engineering.” 2nd ed. Boca Raton, FL: CRC Press, 2019. 

Taalbi, Joakim. “Long-Run Patterns in the Discovery of the Adjacent Possible.” arXiv, 2023. 

Taleb, Nassim Nicholas. “The Black Swan: The Impact of the Highly Improbable.” New York: 

Random House, 2007. 

Tesfatsion, Leigh. “Agent-Based Computational Economics: Modeling Economies as Complex 

Adaptive Systems.” Information Sciences 149, no. 4 (2003): 262–268.   

Tria, Francesca, Vittorio Loreto, Vito D. P. Servedio, and Stefano H. Strogatz. “The Dynamics 

of Correlated Novelties.” Scientific Reports 4, no. 5890 (2014). 

Todd, Peter M., Gerd Gigerenzer, and the ABC Research Group. “Ecological Rationality: 

Intelligence in the World.” New York: Oxford University Press, 2012. 

Turner, John R., and Rose M. Baker. “Complexity Theory: An Overview with Potential 

Applications for the Social Sciences.” Systems 7, no. 1 (2019): 1–23. 

Tversky, Amos, and Daniel Kahneman. “Availability: A Heuristic for Judging Frequency and 

Probability.” Cognitive Psychology 5, no. 2 (1973): 207–232. 

Tversky, Amos, and Daniel Kahneman. “Judgment under Uncertainty: Heuristics and 

Biases.” Science 185, no. 4157 (1974): 1124–1131. 

Ubaldi, Elisa, Alessio Cardillo, Francesco Tria, Vito D. P. Servedio, and Vittorio Loreto. 

“Emergence and Evolution of Social Networks through Exploration of the Adjacent 

Possible.” Communications Physics 4, no. 28 (2021). 

Waldrop, M. Mitchell. “Complexity: The Emerging Science at the Edge of Order and Chaos.” 

New York: Simon & Schuster, 1992. 

 
 
 
 
 


