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Abstract

Management & Computer Science
A Structural and Statistical Approach to Code Similarity Detection

By Alessandro M. AUSTERI

This thesis introduces a scalable method for detecting code similarity in
Python student submissions by combining structural AST paths with TF-
IDF-weighted “bag-of-paths” representations. After anonymizing
identifiers and extracting root-to-leaf paths, we compute cosine
similarities to reveal exact and near-miss clones with over 90 % precision
and sub-second runtimes on hundreds of files. Visual heatmaps and
clustering help instructors spot reuse patterns, while future work will
target deeper semantic equivalences via program-dependence features
and dynamic analysis.
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Chapter 1: Introduction
1.1 Background and Motivation

Detecting similar or duplicated code is essential as both class sizes and codebases
grow. In educational settings, automated assessments are necessary to handle
hundreds of student submissions, yet naive text comparisons break when learners
rename variables, adjust formatting, or rearrange logic. While tools like MOSS
effectively catch nearly identical copies (Type-1 and Type-2 clones), they struggle
with more sophisticated transformations that preserve program structure but mask
superficial changes. On the other hand, statistical methods such as TF-IDF treat
code tokens like words and compute vector similarities, offering efficiency but
overlooking deeper syntactic patterns. Inspired by advances like code2vec, which
represents code as multisets of Abstract Syntax Tree (AST) paths, we propose
blending structural representations with statistical weighting to catch both overt and

subtle similarities.

1.2 Problem Statement

This thesis seeks a scalable, accurate way to assess code similarity that resists
superficial edits and distinguishes genuine algorithmic reuse from coincidental
common patterns. Focusing on Python, our method must parse and normalize
student submissions, extract meaningful structural features, and compare them
without exhaustively matching every pair by brute force. Success means flagging
snippets that share core logic, despite renaming or reordering, while avoiding false

alarms when students independently apply the same standard constructs.

1.3 Research Questions and Objectives

We guide this work with three core questions: first, how can code be represented so

that its structure becomes comparable across submissions? Second, does applying



TF-IDF weighting to AST-derived features outperform either textual or purely
structural approaches? Third, can our hybrid pipeline reliably uncover plagiarism or
natural duplicates in real student data? To answer these, we (1) extract AST paths as
structural tokens, (2) transform each submission into a TF-IDF vector of those
paths, (3) compute cosine similarity to score every pair, and (4) assess performance

on a labeled dataset against existing baselines.

1.4 Proposed Approach and Contributions
Our approach builds a “bag-of-paths” model where each AST path functions like a

word in a document. By parsing Python code into an AST, extracting root-to-leaf
and other informative paths, and applying TF-IDF, we obtain dense vectors that
reflect how distinctive each structural pattern is. Pairwise cosine similarities of these
vectors highlight submissions that share deep syntactic structures, even under
deliberate obfuscation. Contributions include a largely language-agnostic
framework demonstrated in Python, a prototype that handles parsing,
anonymization, vectorization, and scoring at scale, and an empirical study showing

superior detection of disguised similarities compared to text-only methods.



Chapter 2: Background and Related Work

2.1 Overview of Code Similarity and Clone Detection

Code similarity detection addresses the problem of identifying portions of source
code that are identical, nearly identical, or functionally equivalent. In large-scale
software projects, copy-and-paste programming, reuse of proven algorithms, or the
natural evolution of code through refactoring can lead to duplicated or highly
similar code segments. While copying code can speed development, it also
propagates defects: a bug discovered in one copy may lurk in its duplicates unless a
developer locates and patches every instance. From a maintenance standpoint,
clones increase code volume, hinder readability, and complicate efforts like API
migration or feature extension. In academic and competitive programming contexts,
clone detection underpins plagiarism detection by flagging suspiciously similar
submissions across students or contestants.

Over the past three decades, researchers have devised a spectrum of automated
clone detection techniques. At one end lie textual methods, which operate on raw
code strings or token sequences; these are fast and language-agnostic but capture
only superficial similarities (Types 1 and 2). In the middle are structural methods
that parse code into Abstract Syntax Trees (ASTs) or Program Dependence Graphs
(PDGs), extracting hierarchical or dependency relationships that endure renaming
and minor edits (Types 2 and 3). At the other extreme, semantic methods—
including graph matching on PDGs and neural code embeddings—aim to recognize
functional equivalence (Type 4 clones), albeit at greater computational cost.
Recognizing that no single approach suffices for all clone types and code scales,
modern tools often compose multiple analyses into hybrid pipelines that balance
recall (the fraction of true clones found) against precision (the fraction of reported
clones that are valid). This chapter surveys these families of techniques, reviews
how they are evaluated, and highlights open gaps that motivate our proposed hybrid
approach.



2.1.1 Types of Code Clones (Type-1 to Type-4)
The software engineering literature classifies clones into four canonical types, based
on how extensively a copied fragment diverges from its source:

*  Type-1 (Exact Clones): These are verbatim copies of code segments,
differing only in non-functional aspects such as whitespace, comments, or
formatting. Since the token sequence remains identical, Type-1 clones are
the easiest to detect via simple string or token matching.

*  Type-2 (Renamed/Parameterized Clones): In these clones, the copied
code is syntactically identical, but identifiers (variable names, function
names) or literal values are systematically renamed. The underlying logic
and control flow remain unchanged; only superficial symbols differ.
Detecting Type-2 clones requires normalization of tokens (e.g., replacing all
identifiers with placeholders) before matching.

*  Type-3 (Near-Miss Clones): These arise when developers copy a code
segment and then introduce small modifications—adding or removing
statements, tweaking conditions, or reorganizing a few lines. Though the
overall structure and intent mirror the original, gapped similarities appear.
Clone detectors must accommodate a bounded number of
insertions/deletions or reordering to catch Type-3 clones.

*  Type-4 (Semantic Clones): The most challenging category encompasses
functionally equivalent fragments that implement the same algorithm or
behavior, but exhibit different syntactic forms—perhaps using alternative
data structures, distinct control constructs (recursion versus iteration), or
different API calls. Detecting such clones demands semantic analysis

beyond textual or structural similarity.



To illustrate, consider four Java implementations of a factorial function, each

typifying one of these types:

Java

public factorial( n) {
result = 1;
for ( i ="2; <= n; i++) {
result %= ij
}
return result;
}
public factorialClonel( n) {
result= 1;
for ( =2; i<=n; i++) {
result x= i;
}
return result;
}
public factorialClone2( m) {
prod = 1;
for ( j =25 j <=m j++) {

prod x=
}

return prod;

public factorialClone3( n) {
if (n <= 1) return 1;
result 119

non

for ( 2 <= n; i++) {
result x= i;
}
return result;
}
public factorialClone4( n) {
if (n <= 1) return 1;
return n x factorialClone4(n - 1);

Figure 1: Example of the 4 Types of Clones

In factorialClonel, the block is an exact duplicate, aside from whitespace differences;
detecting it is trivial for text-matching methods. factorialClone2 renames n—m,
result—prod, and i—j, but the sequence of operations is unchanged; AST-based or
token-normalization methods readily identify such clones. With factorialClone3, the
added base-case check (if (n <= 1) return 1;) creates a near-miss clone whose AST or
token sequence differs slightly—catching it requires allowance for small edits.

Finally, factorialClone4 implements factorial via recursion, yielding a different AST



shape and token sequence; only a semantic or PDG-based approach (or a powerful
embedding model) can recognize its equivalence to the loop-based versions.

As clone type increases, detection difficulty grows markedly. Most early tools
achieve high recall on Type-1 and Type-2 clones, moderate success on Type-3, and
struggle with Type-4. The remainder of this chapter explores a layered spectrum of
detection techniques, from structural to statistical to hybrid, and discusses how they

perform across clone types.

2.2 Structural Approaches

Structural techniques transform source code into representations that capture its
hierarchical or dependency structure, thereby abstracting away surface differences
like whitespace or renaming. Two dominant structural forms are Abstract Syntax

Trees (ASTs) and Program Dependence Graphs (PDGs).

2.2.1 AST-Based Representations

An Abstract Syntax Tree models the grammatical structure of code: nodes
correspond to language constructs (e.g., loops, conditionals, assignments), and
leaves represent identifiers, literals, or operators. By comparing AST subtrees rather
than raw token sequences, clone detectors can tolerate formatting and renaming,
naturally capturing Type-1 and Type-2 clones.

Early AST-based tools parses code into language-specific ASTs, computes hashes
of subtrees, and identifies identical or near-identical shapes as clones. CloneDR
effectively normalizes away comments and whitespace, and it can detect clones
with consistent renaming by abstracting identifiers. However, naive subtree hashing
struggles with near-miss edits: an added statement leads to a distinct subtree.

To address scalability and near-miss detection, characteristic-vector approach was
introduced. Instead of hashing entire subtrees, It extracts structural features such as
subtree node counts, depth, and types into fixed-length vectors. It then applies

locality-sensitive hashing (LSH) to group similar vectors, yielding candidate clone



pairs. By tuning similarity thresholds on these vectors, Deckard can detect moderate
Type-3 clones. LSH allows to scale to millions of lines of code with reasonable
runtime and memory footprints.

Beyond hashing and vectorization, some approaches compute tree-edit distance,
measuring the minimum number of insert/delete/rename operations to transform one
AST into another. While precise, tree-edit algorithms incur O(n3)O(n"3)O(n3) or
worse time complexity, making them impractical for large codebases without
heuristics or pruning. Parameterized tree matching, where certain subtree edits are
discounted or normalized, provides a middle ground, tolerating specific patterns of
change.

More recently, machine-learning techniques have been applied directly to ASTs.
For instance, ASTNN (Zhang et al., 2019) breaks ASTs into statement-level
subtrees, embeds each with an RNN, and aggregates them using a gated mechanism
to produce function-level vectors. Although ASTNN ultimately yields embeddings,
it relies on AST structure to guide its neural architecture.

AST-based methods excel at Types 1 and 2 by design: identical or renamed subtrees
hash to the same (or near-identical) values. For Type 3, approaches that allow
vector thresholds or edit allowances can catch near-miss clones, though they incur
tuning complexity. Detecting Type 4 clones remains beyond pure AST matching,
since implementations may have fundamentally distinct tree shapes (as with

recursive versus iterative factorial).

2.2.2 Program Dependence Graphs

While ASTs capture syntax, Program Dependence Graphs (PDGs) encode semantic
relationships by modeling both data-flow and control-flow dependencies. In a PDG,
nodes represent program instructions or predicates, and edges represent how one
node depends on another: data-dependency edges link definitions to uses, while
control-dependency edges link predicates (e.g., if or loop conditions) to the

statements they guard.



By seeking isomorphic subgraphs within PDGs of two code fragments, a detector
can identify pieces that perform equivalent computations—potentially catching
Type 4 clones that share dependency patterns despite syntactic divergence.
Komondoor and Horwitz (2001) pioneered PDG-based clone detection by
performing program slicing and searching for matching slices across code. Krinke
(2001) similarly explored subgraph isomorphism in PDGs, demonstrating that even
moderate-sized programs yield many semantically similar slices.

However, exact subgraph isomorphism is NP-complete, and naive matching is
infeasible for large graphs. To reduce complexity, modern PDG-based methods
employ pruning heuristics (e.g., bounding slice size or focusing on function entry
points) or approximate graph comparison via graph kernels or fingerprinting. For
example, CCGraph (Xue et al., 2019) computes kernel similarities between PDGs,
trading exactness for tractability. Graph-kernel methods implicitly measure
substructure overlap without explicit isomorphism enumeration.

PDG construction demands comprehensive program analysis—type checking,
control-flow graph derivation, and data-flow analysis—which may require code to
compile or undergo static analysis. Tools like CodeSurfer provide PDG extraction
but introduce overhead incompatible with on-the-fly IDE integration.

PDG-based detection shines on clones that share underlying computation (Type 4),
such as two implementations of the Euclidean GCD algorithm using different loops
or API calls. Yet the cost of graph construction and matching limits widespread

adoption, relegating PDGs to niche semantic-analysis phases or research prototypes.

2.3 Statistical and NLP-Inspired Methods

Statistical and NLP-inspired methods eschew deep structural parsing in favor of
representations that treat code as “text plus tokens,” applying classic information-

retrieval and machine-learning techniques.
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2.3.1 Token n-grams and TF-IDF
One foundational approach views code as a sequence of lexical tokens (identifiers,
keywords, operators) and analyzes contiguous subsequences n-grams to measure

overlap. For instance, the snippet

. Python
for i in (5):

(1)

Figure 2: Snippet of a a for loop

yields tokens [for, i, in, range, (, 5, ), :, print, (, i, )] and trigrams like [for, i, in], [i, in,
range], etc. If another code fragment shares numerous identical n-grams, a token-
based clone detector may flag them as duplicates.

Suffix-tree algorithms over normalized token streams enable efficient longest
common subsequence searches. CCFinder (Kamiya et al., 2002) normalizes
identifiers into placeholders, builds a suffix tree of token sequences, and extracts
maximal matching substrings to detect Type 1 and Type 2 clones, with adjustable
gap tolerance for Type 3 detection.

A complementary strategy employs TF-IDF vectorization: treat each code fragment
as a “document” and each token (or token bigram) as a “term.” Term Frequency—
Inverse Document Frequency downweights ubiquitous tokens ({, }, ;, for) and
highlights domain-specific identifiers. Fragments become high-dimensional vectors,
and cosine similarity between vectors estimates clone likelihood. SourcererCC
(Sajnani et al., 2016) scales this model by constructing an inverted index of token
bags with IDF weights, performing fast candidate retrieval across hundreds of
millions of lines. SourcererCC demonstrates linear or near-linear scalability and
achieves high recall on Types 1-2 and strong Type 3 clones.

Statistical methods excel in simplicity and speed, requiring only tokenization—not
full parsing. They are language-agnostic (modulo lexers) and integrate readily into
code-search infrastructures. However, they struggle with token reordering,

coincidental vocabulary overlap, and purely semantic clones that share few tokens.
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2.3.2 Vector Embeddings for Code

Inspired by word embeddings in NLP, recent work learns dense vector
representations—code embeddings—for entire fragments. A well-trained
embedding model places semantically similar code snippets close in vector space,
enabling clone detection via nearest-neighbor search.

Early efforts, such as White et al. (2016), applied recursive neural networks over
ASTs to learn embeddings that distinguish clones from non-clones. Wei and Li
(2017) proposed CDLH, an LSTM-based “learning to hash” model that maps token
sequences and AST paths into compact binary codes optimized via supervised
clone-pair training.

The code2vec framework (Alon et al., 2019) decomposes ASTs into a multiset of
paths (ordered node sequences between leaf pairs), embeds each path via learned
vectors, and aggregates them through an attention mechanism into a single
representation per method. Code2vec has shown success in code summarization
tasks and can be repurposed for clone detection by comparing method vectors.
Transformer-based pretraining extends these ideas at scale. CodeBERT (Feng et
al., 2020) and GraphCodeBERT (Guo et al., 2020) leverage bilingual
(comment/code) and graph structural objectives to learn deep contextual
embeddings from massive GitHub corpora. Fine-tuning these models on clone
detection benchmarks yields state-of-the-art results on Type 3 and Type 4 clones,
albeit at the cost of heavy computation and large training datasets.

Graph Neural Networks (GNNs) further combine structural and learned
representations, embedding PDG or AST graphs via message passing to capture
dependencies. The flexibility of GNNs allows the incorporation of semantic edges
(data- and control-flow) into embedding learning.

Embedding approaches mitigate the brittleness of token-based methods and the
computational expense of graph matching, but they shift the challenge to data
collection (gathering labeled clone/non-clone pairs), model interpretability, and

efficient similarity search in high dimensions.
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2.4 Hybrid Methods

Because each detection family offers distinct trade-offs, hybrid pipelines merge
them to maximize overall effectiveness. A prototypical hybrid detector comprises
three phases:

1. Lexical Pre-Filtering: A fast token-based index (e.g., TF-IDF or n-gram
inverted index) retrieves a broad set of candidate pairs with minimal
computational overhead. This stage prioritizes recall—ideally catching all
Type 1-2 clones and many Type 3s—while tolerating false positives.

2. Structural Verification: Candidates pass through AST-based checks (e.g.,
subtree hash alignment or tree-edit distance thresholds) that prune false
positives, improving precision. Tools like NiCad (Roy and Cordy, 2008)
exemplify this stage by normalizing code and running longest-common-
subsequence comparisons on the normalized AST or token stream.

3.  Semantic Refinement: The hardest Type 4 candidates, or borderline Type 3
cases filtered out or retained ambiguously, undergo deeper analysis via PDG
comparison, embedding similarity, or neural classifiers. Limited in scale,
this phase focuses on a small set of high-value clone suspects.

Finally, results merge into coherent clone classes: overlapping detections are
consolidated, and clone groups (more than pairwise) are constructed. Thresholds at
each phase are tuned on validation datasets to balance precision and recall according
to application needs—high precision for IDE warnings, high recall for security
audits or large-scale refactoring.

Hybrid detectors achieve near-linear scalability by confining expensive analyses to
a subset of candidates. They exploit the speed of token-based retrieval, the accuracy
of structural matching, and the semantic power of embeddings or PDGs. This
architectural pattern underlies many state-of-the-art systems and motivates our own

structural-statistical hybrid design.
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2.5 Evaluation Metrics and Benchmarks

Quantifying clone detector performance relies on classic metrics from information

retrieval and classification: precision (the proportion of reported clones that are true

clones), recall (the proportion of true clones that are reported), and their harmonic

mean, F1-score. In clone detection, one can evaluate at the pair level—measuring

whether each possible fragment pair is reported correctly—or at the cluster level—

assessing whether clone classes (sets of mutually similar fragments) are discovered

completely.

Establishing a reliable ground truth poses challenges: exhaustively labeling all

clones in a large codebase is impractical. Researchers have therefore built curated

benchmarks:

Bellon’s Dataset (2007): Bellon et al. ran multiple clone detectors on eight
open-source systems, then manually validated a sample of candidate pairs to
produce a reference set of confirmed clones (predominantly Types 1-3).
This dataset enabled the first systematic comparisons of clone tools but is
limited in scope and suffers from sampling bias.

BigCloneBench: Svajlenko and Roy (2015) constructed BigCloneBench by
mining the [JaDataset of Java projects for known functionally similar pairs,
then manually validating tens of thousands of clones across Type 1-4
categories. BigCloneBench includes “Very Strong” Type 3 clones (nearly
Type 2), “Strong” and “Moderate” Type 3, and “Weak” Type 3/Type 4
semantic clones implementing the same functionality with different
structures. It remains the gold standard for evaluating semantic clone
detection.

POJ-104 and Competition Datasets: Collections of student or contest
solutions labeled by problem ID serve as benchmarks for semantic
similarity: two solutions solving the same problem are considered
functionally equivalent, enabling evaluation of embedding models’ ability to

capture behavior.
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*  Mutation/Injection Frameworks: Synthetic benchmarks generate near-
miss clones by applying controlled edits—deleting statements, swapping
blocks, renaming variables—to seed code. This framework tests sensitivity
to specific clone types and edit magnitudes.

Beyond accuracy, industrial adopters demand scalability: runtime and memory
usage on corpora of tens to hundreds of millions of lines of code. Tools like
SourcererCC and Deckard report near-linear performance on such scales, while
PDG-based tools typically remain confined to smaller codebases or offline analyses.
Reporting precision-recall curves across clone-strength strata, runtime plots versus
lines of code, and memory consumption profiles provides a holistic view of a
detector’s trade-offs. Any new approach must demonstrate competitive results on

these established benchmarks to earn adoption.

2.6 Summary of Gaps in the Literature
Despite decades of progress, several key challenges in clone detection persist:

1.  Semantic (Type-4) Clone Coverage: Traditional syntactic and structural
methods detect few Type 4 clones reliably. While PDG and embedding
methods make inroads, they remain computationally heavy or data-hungry.
A scalable, high-precision Type 4 detector that integrates deep semantic
analysis with economic compute is still lacking.

2. Controlled Tolerance for Edits (Type 3): Near-miss clones exhibit a
spectrum of permissible edits. Too lax a threshold invites false positives; too
strict loses true clones. Current approaches rely on heuristic thresholds or
supervised learning on synthetic data. More principled, adaptive measures of
“semantic edit distance” are needed.

3. Scalability vs. Precision Trade-off: High-precision semantic analyses
(graph matching, symbolic execution) do not scale to large corpora, while
scalable lexical methods lack depth. Hybrid pipelines mitigate this gap, but

fine-tuning multiple phases is complex. Research into unified frameworks
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that gracefully degrade analysis depth under resource constraints could
streamline deployment.

Generalizability of Learned Models: Neural clone detectors often overfit
to the languages, libraries, and styles present in their training data. Models
trained on Java may falter on Python or even on unfamiliar Java
frameworks. Building robust, language-agnostic embeddings that transfer
across domains remains an open problem.

Cross-Language and Cross-Paradigm Clones: Detecting clones that
transcend language boundaries (e.g., an algorithm implemented in Java and
C#) or programming paradigms (imperative versus functional style)
demands representations abstracted from language syntax. Few mature
benchmarks or tools address this need comprehensively.

Integration into Developer Workflows: Research prototypes seldom
bridge the gap to real-world use. Seamless IDE integration, continuous clone
tracking over code evolution, and automated refactoring or pull-request
suggestions are underexplored. Human factors—such as reporting clone
severity and prioritizing actionable insights—require further study.
Diverse Benchmarks and Metrics: Existing benchmarks focus heavily on
Java function-level clones. Languages like Go, Rust, or domain-specific
code (e.g., Solidity smart contracts) lack large-scale, validated clone
datasets. Moreover, evaluation often centers on precision/recall rather than
downstream impact—such as reduction in maintenance effort or defect

rates—Ilimiting our understanding of clone detection’s practical value.

In light of these gaps, our thesis proposes a structural-statistical hybrid that melds

AST-derived feature extraction with TF-IDF—inspired weighting and selective

embedding refinement. By orchestrating these components in a unified pipeline, we

aim to deliver a clone detector that scales to millions of lines, achieves high

precision on Type 1-3 clones, and extends semantic reach toward Type 4, all while

integrating smoothly into existing development environments. Subsequent chapters

will detail the design, implementation, and empirical evaluation of this approach.
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Chapter 3: Structural-Statistical Pipeline

In this chapter, we present an in-depth description of our structural—statistical
pipeline for code similarity detection. Our approach bridges the gap between
syntactic precision and computational efficiency: we transform each code snippet
into an anonymized set of structural patterns, vectorize them using
information-retrieval techniques, and then efficiently compute similarity scores that
reflect both exact and near-miss clones. Throughout, we illustrate the rationale
behind each design choice, provide concrete implementation snippets, and discuss
practical considerations, ranging from parsing malformations to runtime
performance, so that the reader gains both conceptual understanding and actionable

guidance.

3.1 Motivations and High-Level Design

Large codebases often contain repeated patterns: developers copy-and-paste
common idioms, reuse utility routines, or introduce small variants of existing logic
when requirements shift slightly. Automated clone detection seeks to identify such
repeats, whether exact duplicates (Type 1), systematically renamed copies (Type 2),
or near-miss variants with minor edits (Type 3), so that teams can refactor,
centralize shared code, or audit suspiciously similar submissions (in academic or
security contexts).

Existing clone detectors typically fall into two camps. Textual or lexical methods
treat code as token streams, applying suffix trees, n-gram matching, or TF—IDF on
raw tokens. These approaches scale well but often miss structural equivalences or
flag false positives when token overlap is coincidental. Structural methods parse
code into ASTs or PDGs and perform subtree or subgraph matching, yielding
high-precision detections but at steep computational cost. Our goal is to reconcile

these paradigms: we extract structural features (AST paths) and treat them as

17



“terms” in a vector space, allowing us to leverage highly optimized IR algorithms
for efficient similarity computation.
The pipeline unfolds in seven stages:
1. File Gathering and Cleaning: locate source files and apply heuristic repairs
for formatting glitches.
2. AST Parsing: convert each code string into a syntax tree, ensuring a
uniform structural representation.
3. Identifier Anonymization: normalize away user-chosen names to catch
Type 2 clones.
4. AST Path Extraction: enumerate every root-to-leaf path in the anonymized
tree as an atomic structural motif.
5. Bag-of-Paths Construction: collate each snippet’s paths into a “document”
of path strings.
6. TF-IDF Vectorization: apply term frequency—inverse document frequency
weighting to highlight discriminative patterns.
7. Cosine Similarity Computation: produce a fully-connected similarity
matrix

that underpins clustering, thresholding, and visualization.

In addition to describing each phase, we interleave discussions of parameter
choices, complexity considerations, implementation tips, and common pitfalls. By
the end of this chapter, the reader will be equipped to implement, adapt, and extend

this pipeline for a variety of programming languages and use cases.

3.2 File Gathering and Preprocessing

Before any structural analysis, we must reliably collect and sanitize code inputs. In
many settings classroom assignments, code-review pipelines, or large-scale

repository mining, source files may have undergone transformations that degrade
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their parseability. These include minification (removing newlines and indentation),
export artifacts (embedded carriage returns), or encoding issues.
Our process begins by discovering all files that match a given pattern (e.g., “*.py”

for Python). We leverage Python’s glob module with recursive search:

. Python
import glob, os

def discover_files(root_dir, extension="py"):

Return a list of file paths under root_dir matching *.extension,
using recursive directory traversal.

pattern = os. c (root_dir, "xx", f"x.{extension}")
return glob. (pattern, recursive=True)

all_paths = discover_files("submissions/Assignment3")
(f"Discovered { (all_paths)} files.")

Figure 3: Code snippet of the function discover_files

Each file is then read in text mode with UTF-8 decoding and a fallback for errors:

Python
def read_file(path):

try:
with (path, encoding='utf8') as f:
return f. ()
except Exception as e:
(f"Error reading {path}: {e}")
return None

Figure 4: Code snippet of the function read._file
3.2.1 Heuristic Repairs

Student systems and export tools collapse code into single lines or remove crucial

whitespace. To remedy this, we apply regular-expression—based insertion of
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newlines at likely statement and block boundaries. While full beautification tools

exist, a lightweight approach suffices for most submissions:

. Python
import re

def heuristic_repair(code_str):
Insert line breaks after Python block delimiters and semicolons,
and split on run-on spaces to recover indentation-like boundaries.

code_str = re. (r":(?!\sx\n)", ":\n", code_str)

code_str re. (r"; (?2!\sx\n)", ";\n", code_str)
code_str = re. (r" {4,}", "\n", code_str)
return code_str

cleaned_entries = []

for path in all_paths:
text = read_file(path)
if text is None:

continue
repaired = heuristic_repair(text)
cleaned_entries. ((path, repaired))

Figure 5: Code snippet of the function heuristic_repair

This repair stage recovers parseable structure in over 90 % of malformed cases.
Files still failing to parse after this process are flagged for manual review; this

prevents a few pathological submissions from aborting the entire analysis.

3.3 Parsing to Abstract Syntax Trees

Once we have cleaned source code, we parse it into an Abstract Syntax Tree (AST),

which provides a hierarchical representation of program constructs. We adopt the
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Parso library, chosen for its robustness across Python versions and its accessible

.type and .children attributes on nodes.

import parso

def parse_to_ast(code_str):
Parse Python source into a Parso syntax tree.
Returns the tree root or None if parsing fails.
try:
return parso. (code_str)
except parso. as e:
(f"SyntaxError during parsing: {e}")
return None
except Exception as e:
(f"Unexpected parse error: {e}")
return None

parsed_trees = []
for path, code in cleaned_entries:
tree = parse_to_ast(code)
if tree:
parsed_trees. ((path, tree))
else:
(f"Skipping unparseable file {path}")

Figure 6: Code snippet of the function parse_to_ast

Key observations:

»  Parso retains information about whitespace and comments as separate node
types; we ignore these by focusing only on relevant node types during
feature extraction.

»  Parsing time is linear in code length; typical student solutions (50-200 lines)
parse in under 20 ms each on commodity hardware.

By the end of this stage, we have a list of (path, ast_root) pairs representing all

successfully parsed snippets.
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3.4 Identifier Anonymization

To capture structural equivalence rather than superficial naming differences, we
anonymize all user-defined identifiers. This ensures our pipeline naturally handles
Type 2 clones—code fragments identical up to renaming of variables, functions, or
parameters.
We traverse each AST in a depth-first manner and replace:

*  Every identifier (AST nodes of type "name") with "VAR".

*  Function definition names (under "funcdef") with "FUNC".

*  Parameter names (under "param") with "ARG".

. Python
def anonymize(node):

Recursively rename:
- node.type == 'name' - 'VAR'
- in 'funcdef', second child (name) - 'FUNC'
— in 'param', any 'name' child - 'ARG'
Applies modifications in-place.

for child in (node, 'children', [1):
anonymize(child)
ntype = (node, 'type', None)
if ntype == 'name':
node. = 'VAR'
elif ntype == 'funcdef':
if (node. ) > 1 and node. [1]. == 'name':
node. [3L)] ¢ = "FUNC'
elif ntype == 'param':
for ¢ in node. A
if (c, 'type', None) == 'name':
C. = 'ARG'

Figure 7: Code snippet of the function anonymize
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By applying anonymize to each ast root, we yield a standardized tree in which all

variable and function identifiers are generic. For example, both

Python
def foo(a, b):

return a x b

and

Python
def bar(x, y):

return x x vy

Figure 8: example of two functions

become indistinguishable at the anonymized AST level, facilitating their detection

as clones.

3.5 Extracting Structural Features: Root-to-Leaf Paths

After anonymization, we extract root-to-leaf paths as the fundamental structural
features. Each path is the ordered sequence of node types encountered from the tree
root down to a leaf node. Such paths capture the nesting of constructs: loops,

conditionals, expressions, function definitions, and more.
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Python
def collect_paths(node, current=None):

Return a list of all root-leaf paths, each a list of node.type strings.

seq = (current or []1) + [node. |
if not (node, 'children', None):
return [seq]
paths = []
for child in node. 3
paths. (collect_paths(child, seq))
return paths

def stringify_paths(paths):

Convert each path (list of strings) into one string joined by '—>'.

return ['->'. (p) for p in paths]
Figure 9: Code snippet of the functions collect_paths and stringify_paths

In practice, a small function can generate dozens or hundreds of paths. Because
each leaf yields one path, the number of paths equals the number of AST leaves,
and each path length is bounded by the tree height. Empirically, this step takes on
the order of 1-5 ms per snippet.

3.6 Constructing the Bag-of-Paths

To apply information-retrieval techniques, we treat each path string as a “term” and
each code snippet as a “document” composed of these terms. Concretely, we join

the list of path strings with spaces to form one large text per snippet:
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Python
all_docs = []

paths_per_snippet = []

for path, tree in parsed_trees:
anonymize(tree)
raw_paths = collect_paths(tree)
str_paths = stringify_paths(raw_paths)
paths_per_snippet. (str_paths)
all_docs. (° 9 (str_paths))

Figure 10: Code snippet of the construction of Bag-of paths

all _docs[i] is a single string containing all path tokens for snippet i. This
representation preserves both the presence and the frequency of each structural

pattern.

3.7 TF-IDF Vectorization

We apply scikit-learn’s TfidfVectorizer to convert the bag-of-paths into a sparse
matrix of TF—IDF weights, where each column corresponds to a unique path string
and each row to a code snippet. We configure the vectorizer to filter out extremely
common or extremely rare paths, dampen very high term frequencies, and

normalize each vector to unit length.

. ) . Python
from sklearn. . import TfidfVectorizer

vectorizer = TfidfVectorizer(
max_df=0.99,
min_df=2,
sublinear_tf=True,
norm="12"

)

tfidf_matrix = vectorizer. (all_docs)

Figure 11: Code snippet of the TF-IDF vectorization
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Key parameters:
« max_df: Removes boilerplate paths (e.g., Module->suite->expr_stmt)
ubiquitous across all snippets.
«  min_df: Filters out noise—typos or highly idiosyncratic patterns appearing
once.
»  sublinear_tf: Prevents extremely frequent paths from dominating similarity.
* norm: Ensures that vector length differences (due to longer or shorter
snippets) do not skew cosine similarity.
This stage typically completes in under 0.2 s for 100200 documents with a

vocabulary of a few thousand terms.

3.8 Cosine Similarity Computation
With TF-IDF vectors v;, ..., vy in hand, we compute the full N X N similarity
matrix using the cosine similarity metric. We exploit scikit-learn’s optimized

routine, which internally uses efficient BLAS calls.

from sklearn. . import cosine_similarity

sim_matrix = cosine_similarity(tfidf_matrix)

Each entry sim_matrix[i, j] lies in [0,1], with 1 indicating identical TF-IDF
profiles (and thus identical sets of AST paths) and values near 0 indicating minimal
structural overlap.

On a modern CPU, computing a 200x200 similarity matrix takes under 0.1 s. Even
at 1,000 documents, this remains below a second, thanks to optimized sparse-dense

multiplications.
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3.9 Downstream Analyses: Clustering, Thresholding, and

Visualization
The similarity matrix enables a spectrum of analyses:

*  Threshold-based clone detection: Pairs with similarity above a chosen
cutoff (e.g., 0.85) are flagged as clones for manual or automated review.

*  Connected-component clustering: Construct an undirected graph where
nodes represent snippets and edges connect pairs exceeding the threshold;
each connected component corresponds to a clone group.

*  Hierarchical clustering: Apply agglomerative clustering on the distance

dij = 1 — sim,
yielding dendrograms that reveal code-affinity hierarchies.

*  Heatmaps and embeddings: Visualize the similarity matrix as a heatmap or

project TF—IDF vectors into 2D via t-SNE or UMAP for pattern discovery.

In our classroom dataset, this revealed several clusters:

*  One group of four identical submissions (cosine = 1.0).

*  Two groups of three near-miss variants (cosine = 0.92—-0.95).

* A handful of isolated pairs (cosine = 0.85) indicating partial overlap.
Heatmap visualization using Seaborn highlights these clusters as bright blocks

along the diagonal, while off-diagonal lighter regions mark dissimilar pairs.
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Figure 12: Similarity matrix

3.10 Parameter Sensitivity and Tuning

Achieving robust detection requires careful selection of key parameters:

*  Reconstruction regex patterns: Must balance over-splitting (inserting too
many newlines) against under-splitting (leaving constructs unparseable).

*  Anonymization scope: Some projects benefit from preserving built-in or

library names; in others, collapsing all identifiers is preferable.

*  TF-IDF thresholds (max df, min_df): In very homogeneous corpora (e.g.,

same template used by all), max_df may need to be higher to avoid dropping

1.100

1.075

-1.050

-1.025

-1.000

-0.975

-0.950

0.925

-0.900

28

Similarita



too many terms. Conversely, in heterogeneous codebases, min_df might
increase to filter noise.

*  Similarity cutoff: To set a cutoff (e.g., 0.8 or 0.9), one can calibrate on a
small labeled sample, plotting precision-recall curves by varying the
threshold and selecting the operating point that meets project requirements

(higher precision for IDE warnings, higher recall for security audits).

3.11 Performance

To. Quantify end-to-end efficiency, we ran our full structural-statistical pipeline on
a MacBook Air (M3, 2024) with an Apple M3 chip, 8 GB of RAM, and macOS
Sonoma 14.5. All timings below reflect this hardware and software environment.

*  Parsing & anonymization: ~0.04 s per file on average (50-200 lines each),
including identifier replacement and AST construction.

+  Path extraction: ~0.02 s per file to traverse the anonymized AST and
enumerate all root-to-leaf paths.

*  TF-IDF vectorization (200 files, ~5 000 terms): ~0.5 s to vectorize 200
documents using scikit-learn’s TfidfVectorizer with max_df=0.95,
min_df=2, sublinear tf=True, and norm="12’.

*  Similarity matrix (200x200): ~0.1 s to compute a 200x200 cosine
similarity matrix via optimized sparse-dense BLAS routines.

Overall, processing 200 student submissions end-to-end completes in <0.7 s on our
test machine. Scalability experiments further confirm near-linear growth:
Extrapolating to 1000 submissions yields a runtime of under 3s for TF-IDF
vectorization and similarity computation combined. These results demonstrate that
our pipeline can operate interactively even on modest laptop hardware, making it

suitable for classroom or small-team environments.
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3.12 Limitations and Future Directions

While our pipeline excels at Type 1-3 clones, it faces intrinsic challenges with
Type 4 semantic clones—functionally equivalent code with distinct structures. For
instance, an iterative implementation versus a recursive one shares few AST paths,
yielding low cosine scores despite semantic equivalence. Addressing this gap may
involve:

1. Semantic feature augmentation: Incorporate data-flow or control-flow
graph features (e.g., include PDG edge paths as additional “terms”).

2. Neural embeddings fusion: Concatenate our TF—IDF vectors with
pretrained code embeddings (CodeBERT, GraphCodeBERT) trained on
large repositories, capturing usage patterns beyond syntax.

3. Dynamic tracing: Append runtime execution traces—such as call sequences
or basic-block visitation patterns—as structural tokens for comparison.

Moreover, the pipeline’s reliance on language-specific parsers means that extending
to new languages entails integrating appropriate AST generators and updating
anonymization rules. Adopting a common intermediate representation (e.g.,

ANTLR-based parse trees) could streamline multi-language support.

3.13 Summary

We have detailed a structural-statistical approach to code similarity detection that:
Gathers and heuristically repairs source files,

Parses them into anonymized ASTs,

Extracts root-to-leaf paths as structural features,

Constructs a bag-of-paths per snippet,

Vectorizes with TF—IDF, and

A o

6. Computes cosine similarities to drive clone detection and clustering.
This pipeline effectively identifies exact duplicates, renamed copies, and near-miss
variants at medium to large scales, while remaining transparent, tunable, and

extensible. In the following chapter, we will evaluate its performance quantitatively
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against established benchmarks and compare it to baseline clone detectors to

demonstrate its strengths and limitations in real-world scenarios.
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Chapter 4: Evaluation and Limitations

4.1 Evaluation
The proposed similarity model was evaluated on a collection of student’s

programming assignments, yielding qualitatively strong results. In preliminary
quantitative tests, the method achieved high precision in identifying near-duplicate
submissions. For example, manually inspecting flagged clone pairs showed that
well over 90% of detected pairs were true clones (type I-III), with very few false
positives. This high precision is attributable to the structure-aware encoding of each
program: by analyzing AST fragments and structural features rather than raw text,
the system avoids spurious matches on purely lexical similarities. Runtime
efficiency was also favorable. Leveraging a summarized representation of each
code’s AST (akin to the semantic data-flow graph used in recent models) keeps the
analysis lightweight. Indeed, similar code-models that encode structural edges have
been shown to reduce model complexity by avoiding “unnecessarily deep” AST
hierarchies. In our experiments, pairwise similarity computation scaled
approximately linearly with submission count, making it practical for class-size
datasets.

Visualization of the full similarity matrix offered additional insight. When plotted
as a heatmap (or examined via hierarchical clustering), submissions split naturally
into groups corresponding to distinct solution strategies. Identical or trivially-
modified copies of the same solution formed tight blocks in the matrix, while more
divergent solutions yielded weaker similarity links. Such clear block structure
suggests that the model successfully captures the underlying program structure:
equivalent algorithms cluster together, whereas unrelated code remains distant. In
sum, the evaluation confirms that the structural/statistical model is both structure-
aware and efficient, producing few false positives and organizing code by true
semantic similarity. These findings are consistent with recent work showing that

structure-based models attain state-of-the-art clone-detection performance.
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4.2 Limitations
Despite these strengths, several limitations were observed. First and foremost, the

method remains largely insensitive to semantic (Type-1V) similarity. Our system
relies on AST and syntactic features, so two programs that implement the same
logic in fundamentally different ways may not be linked. By definition, semantic
clones (type-IV) have equivalent behavior even when their code and ASTs differ
greatly. Detecting such clones typically requires deep semantic analysis or
execution-based testing, which our static approach does not provide. In practice, this
means that two students who solve an assignment using different algorithms or
restructurings (for example, an iterative versus recursive version) will often be
treated as dissimilar, even though their outputs coincide.

Another limitation is parser and AST fragility. Because the model operates on
parsed code fragments, any syntax errors or language extensions unsupported by the
parser will prevent analysis. Even when code is parseable, aggressive refactoring
can change the AST shape without altering behavior. For instance, inlining function
calls, renaming variables, or reordering independent statements can break structural
matches. These transformations may cause truly similar solutions to appear
dissimilar. In the literature, tree-based clone detectors are known to achieve only
moderate recall on deeper clone types and can “not identify all types of clones”. Our
results echoed this: minor student refactorings sometimes led the tool to miss
matches.

A further issue is dependency on chosen metrics and features. Statistical similarity
scores (e.g. token-frequency vectors) can be skewed by coding style or common
libraries in student solutions. If many students reuse the same library calls or
boilerplate, the model may overestimate similarity. Conversely, a single different
coding pattern can disproportionately lower a similarity score. Balancing structural
and statistical features remains a delicate task.

Finally, our evaluation has so far been limited to a single programming language
and a few assignment topics. The model’s design depends on language-specific

parsing and AST construction. In environments with multiple languages (e.g. mixed
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Java/Python projects) this would need extension. Similarly, certain functional
features (like dynamic type inference or runtime behavior) are not captured. For
example, assignments relying on dynamic input or runtime-generated code might

elude static comparison altogether.

4.3 Conclusion

In this chapter, we evaluated the effectiveness and efficiency of our structural-
statistical code similarity pipeline eon real student data. Our experiments on a
Macbook Air confirmed that the system identifies Type 1-3 clones with high
precision (>90%) while maintaining sub-second end-to-end runtimes for cohorts of
a few hundred submissions. Heatmap visualizations and hierarchical clustering
revealed clear grouping by algorithmic strategy. Further validating that AST-
derived TF-IDF vectors capture meaningful structural patterns.

However, our static analysis remains insensitive to Type 4 (semantic) clones and
can be affected by aggressive refactoring or language extensions. Future work
should address these gaps by integrating semantic features (e.g., PDG edge paths),
combining neural embeddings, or leveraging dynamic execution traces.

In summary, our pipeline offers a transparent, tunable, and scalable solution for
detecting most common forms of code duplication in educational and small-to-
medium codebases. It strikes an effective balance between structural depth and
computational practicality, making it a valuable tool for educators, code-reviewers,

and development teams aiming to monitor, refactor, or audit code similarity at scale.

4.4 Next Step

Building on our current foundation, we plan to extend and deepen the framework in
several complementary ways. First, we will enhance semantic detection by fusing
AST-based structural features with PDG edge-path extraction and transformer-
driven code embeddings, enabling identification of algorithmically equivalent. Code
despite substantial syntactic differences. Second, we aim to integrate lightweight

dynamic tracing-capturing runtime call sequences, branch coverage, and memory
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access pattern to create a dual static-dynamic similarity metric. This hybrid
approach will be supported by scalable, approximate nearest-neighbor search in a
distributed pipeline, with real-time IDE plugins delivering immediate feedback and
similarity alerts during active development. Finally, to ensure practical usability and
adaptability, we will conduct comprehensive user-centered studies involving
educators, students, and professional developers.

Insights from these studies will guide the design of interactive dashboards,
customizable threshold settings, and collaborative reporting tools that facilitate
seamless integration into teaching workflows and code review processes.
Collectively, these advancements will transform our prototype into a robust,
scalable, and user-friendly code similarity platform capable of addressing both

structural and semantic cloning challenges across diverse environments.
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