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Abstract 

In this thesis, I compare traditional A* search and tabular Q-learning in their performance for the 

task of finding routes in grids. I adopted useful ideas from heuristic and reinforcement learning 

to design and carry out both algorithms in custom maze environments set up with OpenAI Gym. 

I analyze performance across different sized mazes, both with standard setup and with the 

‘Plus’ variations which include added portals. Path length, computation time, how much of the 

state-space is covered and resource use are tracked throughout the test process. Results 

confirm that A* routinely outperforms Q-learning regarding both efficiency and finding the 

optimal solution, but the latter’s results can be greatly enhanced with the aid of reward shaping. 

Still, Q-learning is not suitable for running in real-time due to being computationally complicated 

and less trustworthy. The investigation concludes by looking at Deep Q-Networks (DQN) as a 

viable way to solve the issues of tabular methods, pointing out that deep reinforcement learning 

may help in dynamic and high-dimensional applications. 
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1. Introduction 

1.1 Motivation 

Since November 2022, after public release of ChatGPT, Artificial Intelligence has become more 

popular. It didn’t take long for AI tools in Code and Development, Image and Video areas and AI 

Voice Assistants to become available in many countries (Google Trends, 2025). At some 

stages, how fast the job market changed led to concerns about being replaced in work. This 

worry may be due to what abilities AI tools have. In some jobs, creativity is most important, 

while in others it depends on being accurate and precise. AI can now be developed in artistic 

areas in which come up with fresh thoughts and learns. Before, machines had different aspects 

to what was important to us in living creatures. Because of AI, the two were able to be matched. 

 

 
Figure 1. Interest over time in "Artificial Intelligence" (Google Trends, 2025) 

 

Our view of AI was again brought into question with the growth of autonomous driving. Many 

companies are now developing delivery and taxi services without human drivers (Amazon Prime 

Air, Wing, Waymo one, AutoX).  

 

Being a Management and Computer Science student and a gamer, I was interested in exploring 

how smart algorithms show up in games. After noticing AI’s performance in the games I play, I 

have become even more drawn to this area, because these technologies introduce new, much 

larger approaches to problem-solving. 

 

Trying to figure out the best way to go from where you are to where you want to be is a basic 

issue. A good pathfinder in video games is important for making characters that can travel 

around the map. Commonly, developers have depended on algorithms like A* to quickly find 

short, effective paths for many years. Meanwhile, Q-Learning is a different approach used for 

solving these problems. With Q-Learning, the computer will find out the best movement by 

testing different choices and getting rewards when it chooses wisely.  
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1.2 Objective 

This thesis explores the ways in which reinforcement learning differs from the usual A* path 

finding algorithm. The results are used to judge how effective using reinforcement learning is in 

making decisions on pathfinding for games and to see what implementation issues arise. 

 

The source code for this study and detailed graphs are freely available in the following link: 

https://github.com/itsDevo/thesis 

  

https://github.com/itsDevo/thesis
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2. Background 

2.1 Grid Systems 

Grid systems are used in fields such as robotics, video games, architecture and AI-driven 

navigation to discretize spatial environments. These systems rely on a set of vertices and are 

usually in square or hexagonal shapes; they allow spatial data to be managed through discrete 

graph-based or array-based traversal algorithms (Goldstein, Walmsley, Bibliowicz, & Tessier, 

2022). 

Grids can be considered as simplified spatial representations where each vertex corresponds to 

a location in space and neighbors are based on the geometric rules (e.g. for square grids either 

4 or 8 based on diagonal movement and 6 neighbors for hexagonal or triangular grids). 

 

 
Figure 2. Examples of Standard Neighbors for grids (Goldstein, Walmsley, Bibliowicz, & Tessier, 2022) 

In this study, in order to implement A* algorithm, a 4-neighborhood square grid is used. 
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2.2 Pathfinding Algorithms in Game Development 

In this section, I will be focusing on the most used Pathfinding algorithms in video game 

development. Pathfinding algorithms are used to find the route to the goal for the agent or non-

player characters. A game is particularly enjoyable when the characters from the story are as 

close to real people as possible. Therefore, a good pathfinding algorithm is crucial to ensure 

realism during gameplay. Nonetheless, determining the most efficient actions for non-player 

characters continues to be a big problem in video games. (Rafiq, Asmawaty, Kadir , & No, 2020) 

 

According to a study in 2020, A* is the algorithm mostly relied on to discover the shortest path. 

Alternatively, Dijkstra, Ant Colony Optimization and Genetic Algorithms are applied to discover 

the lowest cost route through a graph (Rafiq, Asmawaty, Kadir , & No, 2020). 

 

 
Figure 3. Most Popular Algorithms (Rafiq, Asmawaty, Kadir , & No, 2020) 

Figure 2 shows the most popular algorithms which were used in game development based on 

Abdul Rafiq’s study of 10 different game development related papers published between 2007 

and 2018. The figure shows that A* was researched in 7 different papers.   
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2.2.1 A* Algorithm 

A* was initially published as an extension of Dijkstra’s algorithm. It is a best-first graph search 

algorithm used to find the shortest path between two nodes for pathfinding problems because of 

its accuracy and good performance. Heuristic techniques are used instead of classic methods 

when the performance is not good enough. Heuristic techniques focus on calculating the cost of 

the cheapest path which is useful for pathfinding problems because it never overestimates the 

cost (Cui & Shi, 2011) 

2.2.1.1 Algorithm Principles 

The A* algorithm uses a heuristic function 𝑓(𝑛) to determine the node. The function is:  

 

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) 

 

𝑔(𝑛) is the cost from starting node to the node n (i.e. calculates the cost which was taken from 

the beginning node by far). ℎ(𝑛) is the heuristic value, it represents the estimated cost from 

point n to the destination. In case of obstacles 𝑓(𝑛) will estimate another route which has the 

lowest cost to the goal. A* is very similar to Dijkstra’s algorithm however it differs by the use of 

ℎ(𝑛). A* guarantees to find a path from the start to the goal if a path exists. And it is optimal if 

ℎ(𝑛) is always less than or equal to the actual cheapest path cost from n to the goal. (Pardede, 

et al., 2022) 

 

There are different heuristics (e.g. Squared heuristic distance, Euclidean distance) for each type 

of grid system. For example, in 4 and 8 neighborhood systems Manhattan distance is one of the 

popular used heuristics. It provides a decent estimate of remaining distance without 

overestimating (Cui & Shi, 2011). 

 

 
Figure 4. A* Algorithm Demonstration (Pardede, et al., 2022) 

2.2.1.2 Strengths and Limitations 

A* is a solid algorithm for single-agent grid pathfinding problems. As was mentioned previously, 

it will always find a solution if one exists and it is suitable for moderate map sizes, mainly thanks 

to heuristic functions. Besides that, A* is deterministic which allows reproducibility. It will always 
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produce the same path on the same map, which is desirable in games for predictability and 

fairness (Pardede, et al., 2022). 

 

However, A* often faces some serious limits. The environment must stay the same and 

unchanging for the algorithm to work because A* relies on a fixed network and edge costs. 

Besides that, since it doesn’t learn, each time a pathfinding query is made, one solution is 

provided independently. Computational costs and the use of memory can run into trouble on as 

grids size increase since A* places every node in memory as open and closed lists and as a 

result, the algorithm can run slowly or use too much memory. In fact, A* can be improved with 

hierarchical pathfinding or by pruning the search space, but the original A* can’t handle 

extremely large grids (Cui & Shi, 2011). 

2.3 Markov Decision Process (MDP) 

Markov Decision Process (MDP) is a formal mathematical framework which forms the basis for 

numerous reinforcement learning algorithms. It aims to assist with decision processes within an 

environment where the outcomes are uncertain and only partially influenced by the agent. It 

serves as a theoretical base, and as a practical base in robotics and game AI (Sigaud & Buffet, 

2013). 

 

The structure is defined by a tuple (𝑆, 𝐴, 𝑇, 𝑝, 𝑟), a set containing states, actions, time step 

needed to take a decision, transition probabilities and reward function. An MDP Environment 

usually consists of a set of states which the agent can be in, a set of actions that agent can take 

and the reward which agent will receive after realizing the action. Each transition provides a 

reward which is numerical feedback and the agent’s goal is to find the optimal policy which 

maximizes the cumulative reward over time. MDPs are useful in pathfinding problems, since the 

agents must navigate from a start state to a goal state while avoiding the obstacles and 

optimizing the performance metrics such as distance, time or energy consumption. 

2.3.1 The Markov Property 

Markov property is the assumption behind MDPs which says that future outcomes in the 

process are affected only by the present state and the action performed, not by all the earlier 

states ( Sutton & Barto, 2018). Simply, the state holds all important past data, so we can focus 

only on the present for future outcomes. Changes from one state to another always depend only 

on the present state and the action taken and not on how the agent reached the present state. 

Because of the Markov property, operations in MDPs and reinforcement learning are very 

efficient because the algorithms do not depend on past states. Applying this approach reduces 

the difficulty of analyzing and using learning algorithms in practical systems. When an agent 

updates the reward that it might get in the future, it will only need the current state which action 

is taken, the received reward and the next state. 
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2.3.2 Action Policy 

Action policy in an MDP is the way the agent decides what action to take. It is often called 𝜋∗ 

and it assigns an action to every state. Action policies can be deterministic or stochastic to, but 

in both cases the policy gives a clear method for selecting actions from the current state (Sigaud 

& Buffet, 2013).  

 

The Goal of an MDP is to identify an optimal policy 𝜋∗ that ensures the agent obtains the 

highest probable cumulative reward. The cumulative reward is equal to the rewards the agent 

gets starting from the current step into the future, in which future rewards are slightly 

discounted. As a result, by following 𝜋∗ , the agent can obtain the most reward possible over the 

long run in the MDP. The task of finding an optimal policy is considered the solution to the 

decision-making problem with uncertainty, it shows the agent how to behave in each situation 

for the best outcome. A lot of MDP theory is focused on checking the effectiveness of a chosen 

policy and continuously improving it until the best one is found.  

 

It is good to mention that in some cases, the best expected return can be reached by choosing 

among several policies. Nonetheless, MDP guarantees that there is always at least one optimal 

policy under usual conditions (Puterman, 2014). Optimal policies for the problems are computed 

with policy and value iteration techniques, relying on Markov property and the recursive 

structure. These techniques iteratively measure the success of a policy (policy evaluation) and 

adjust it to improve, until the policy reaches 𝜋∗.  

2.3.3 Value Functions 

Value functions are applied to evaluate and compare policies by showing how desirable states 

or state-actions are in long terms. Value function calculates how much reward or loss expect 

when it is following a certain policy and it provides the results of being in a specific situation or 

taking a specific action with numerical values ( Sutton & Barto, 2018).  

 

There are 2 main types of value functions in MDPs: 

1. State-Value function 𝜈𝜋  is the expected return if you start in state 𝑠 and continue with 

policy 𝜋 afterwards and this value is used to sort or rank states under a particular policy 

in which a higher 𝜈𝜋 (𝑠) means a state is better for the agent in the long run (Puterman, 

2014). 

2. Action-Value function 𝑄𝜋  is the expected reward after decision-making from state 𝑠, 

taking action 𝑎 while the agent uses policy 𝜋 from that point onward. 𝑄𝜋 (𝑠, 𝑎) reflects the 

value of choosing action 𝑎 in state 𝑠 and then proceeding according to 𝜋. It shows us the 

value of a state-action pair from that policy. Using action values helps make better 

decisions. In case of states having the same state-value, the action-value function can 

help to see which action taken in that state will be more rewarding in the long term. 

 

The main reason value functions matter is that they allow us to assess the quality of a policy 

indirectly. Once the policy 𝜋 is known, we can compute 𝜈𝜋 (𝑠) for all main states which means 

we learn how effectively it will do the job from each starting point. Policies can be improved by 
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taking actions with the highest action-value. The relationship between state and action values 

helps us to find an optimal policy, since it should take the action with the highest value at any 

state under the optimal policy.  

2.4 Reinforcement Learning 

This section gives a general overview and theoretical background of Machine Learning and 

Reinforcement Learning subfield. Machine learning has several subfields. In Supervised 

Learning the model receives labeled data as input and the model is trained to predict new data. 

In Unsupervised learning which the models receive unlabeled data and the models are trained 

to discover the patterns and clusters within the data (Murphy, 2012) and in Reinforcement 

learning, which is built on the interactions of the agent with the environment, the agent learns 

the optimal actions with rewards and punishments ( Sutton & Barto, 2018). 

 

 
Figure 5. The Subfields of Machine Learning 

This study was focused on Q-Learning which is in the Reinforcement Learning subfield. 

2.4.1 Q-Learning 

Q-learning is a model-free method. This means that the environment’s details are irrelevant. It 

does not require prior knowledge regarding the MDP’s transition probabilities or the reward 

function. It simply adapts and responds through trial and error. (Sigaud & Buffet, 2013) 

2.4.1.1 Algorithm Principles 

Q-Learning uses a q-table and functions by updating the table in which there is 1 value (q-

values) from the action which was taken for the state as a pair. These values estimate the 

expected total reward for taking a particular action from a given state and then following the 

optimal policy. The values are updated repeatedly using the following update rule: 
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𝑄(𝑠𝑡 , 𝑎𝑡)  ←  𝑄(𝑠𝑡 , 𝑎𝑡)  +  𝛼[𝑟𝑡+1 +  𝛾 max
𝛼

𝑄(𝑠𝑡+1 , 𝑎)  −  𝑄(𝑠𝑡 , 𝑎𝑡)]  

 

Here, α is the learning rate, γ is the discount factor, and the max term indicates we’re pursuing 

optimal action value, not necessarily the action taken during the episode. 

Learning rate determines how quickly the agent updates its knowledge based on new 

information and the discount factor affects the importance of future rewards. 

The algorithm follows these steps: 

1. Starts with a blank table 

2. At each step 

a. The agent observes the current state 𝑠 

b. It selects an action 𝑎. It can be exploring (random) or exploiting 

depending on the exploration rate. 

c. It takes the action and receives a reward 𝑟, and then enters the next state 

𝑠’. 

3. The Q-Values are updated by applying the update rule 

4. The process repeats on many episodes. And over time the Q-Values converge to 

the actual expected rewards 

2.4.1.2 Strengths and Limitations 

Q-learning is an off-policy algorithm. It learns from actions that weren’t even executed, 

assuming they’re optimal. That makes convergence simpler to prove and implementations less 

constrained. Of course, it’s not flawless; early learning phases are often noisy, and convergence 

can be slow. 

 

Large or complex environments bring exploration challenges. The agent might need to explore 

most of the space to learn optimal actions. Which turns into an issue since the rewards will be 

delayed and often the agent sticks at loops. So, in such scenarios more advanced strategies 

might be required. In such scenario, most state-action pairs remain unvisited or poorly 

estimated and it increases the training time ( Sutton & Barto, 2018). 

 

This is where reward shaping enters. Instead of waiting for sparse, delayed rewards, you inject 

informative signals that guide learning. The original MDP reward function 𝑅(𝑠, 𝑎) can be 

supplemented with additional feedback without changing the optimal policy. A trick often done 

using potential-based shaping. It makes learning faster and more stable, especially in larger or 

sparser environments (Chintala, Dornberger, & Hanne, 2022). 
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3. Methodology 

3.1 Environment 

Open AI Gym is a toolkit for creating and evaluating reinforcement algorithms. It was released 

by OpenAI in 2016, and it offers a standard interface to a wide range of environments. 

Gym is an extensible and modular architecture. Environment class defines a basic interaction 

loop with reset and step functions. This structure standardizes the way agents interact with their 

surroundings, understand state transitions, and receive rewards. 

Because of this consistency, the users can focus on designing algorithms rather than dealing 

with creating an environment (Brockman, et al., 2016). 

 

Each environment in Gym is set up as a Markov Decision Process (MDP). As mentioned in the 

earlier chapters, after observing a state, the agent chooses an action from a continuous or 

discrete action space, gets rewarded, changes states and finding a policy that optimizes 

cumulative rewards is the aim. 

 

 
Figure 6. Symbolic interaction between the agent and environment 
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To evaluate the performance of the Q-Learning Algorithm, a custom 2D maze environment was 

used. The objective of this environment is showed by a red square, and the agent, visually 

represented by a blue circle. It must move from the top-left corner (0,0) to the right-bottom 

corner. The objective is to reach the goal in the fewest steps. 

 

 

Figure 7. 10x10 Maze     Figure 8. 10x10 Plus Maze 

 

The four cardinal directions, (“N”, “S”, “E” and “W”) designed as North, South, East and West, 

are the environment’s defined discrete action space, and it uses a 4-neighbor grid system (no 

diagonal movement). If it runs into a wall or a boundary, the agent will stay wherever it is. 

 

In the plus mode of the environment, random portals are located within the map. Each portal 

has two edges with the same colors, and it teleports the agent to the other edge when it comes 

to the teleport state. 

 

The reward function uses a small shaped component. The agent gets a reward of +1 after 

achieving the objective. Every intermediate step is penalized with a small negative reward, 

which is determined as follows: 

 

Reward = −
0.1

# 𝑜𝑓 𝐶𝑒𝑙𝑙𝑠
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3.2 Experimentation Process 

The experiments were run on a laptop device (plugged) with the following specifications: 

i5-1135G7; 8 GB DDR4 3200 MT/s Single Channel; Windows 11 Pro 64-Bit; Python 3.12.6. 

 

The experimental process used to assess and compare the A* and Q-learning algorithms’ 

performance in a supervised maze-solving environment. Each algorithm was evaluated on 50 

randomly generated maze environments to guarantee comparability. The same custom 

environment that was previously described was used to create these mazes. Both A* and Q-

learning were assessed sequentially for every scenario, which means that A* was executed first 

and then the Q-learning algorithm right after, using the same maze instance. This ensured that 

the structural obstacles that both algorithms faced (i.e. wall locations, potential routes and dead 

ends) were the same. 

 

Each scenario’s outcome is reported using the evaluation metrics at Section 3.3.3. 

3.2.1 Implementation of A* 

As it was explained in the previous chapter, A* is a deterministic, graph-based search technique 

that uses a heuristic estimate of the remaining distance to the goal in addition to the actual path 

cost. In this study, classic A* algorithm was used and since it complies with the environment’s 4-

directional grid movement restrictions, the Manhattan distance was chosen as the heuristic 

function. 

 

The algorithm maintains an open list of states to explore, using a priority queue(min-heap), 

arranged according to their estimated cost 𝑓(𝑛) =  𝑔(𝑛)  +  ℎ(𝑛) where 𝑔(𝑛) is the cost to reach 

state n and ℎ(𝑛) is the Manhattan distance from n to goal.  

 

Based on the wall structure of the maze, the algorithm looks for neighboring cells that are 

accessible for each state that is explored. Only when a shorter path is discovered, it updates the 

cost of each neighbor. And lastly, the route is reversed once the goal has been reached.  

3.2.2 Implementation of Q-Learning 

In this study, a Tabular Q-Learning algorithm with an epsilon-greedy exploration strategy was 

used. Each maze environment is considered as a Markov Decision Process (MDP), in which the 

agent chooses an action from a discrete set of options after observing its current coordinate (x, 

y). 

 

Agent’s exploration or exploitation decision is dependent on Epsilon (i.e. exploration rate) in 

which a higher epsilon has a higher chance of exploration and lower epsilon has a higher 

chance of exploitation. As the strategy, epsilon decays logarithmically over episodes and 

besides that to stabilize the convergence, the learning rate decays logarithmically as well. The 

implementation uses the Bellman update rule to learn the expected return of state-action pairs, 

keeping the regular off-policy formulation. As for the hyperparameters (e.g. learning rate, 
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discount rate, epsilon, decay factor, max step for episode, max steps for streak, minimum 

learning and minimum decay rate), they were set differently for different maze sizes in which 

larger mazes maintain flexibility and exploration for longer, while in smaller mazes decay more 

quickly.  

 

 
Figure 9. Q-Learning Performance on The Sample Maze at figure 7 

Figure 9 shows the results of the implementation of Q-learning algorithm in a sample 10x10 

maze environment which was shown in figure 7. As was expected, there is noise in the 

beginning for Reward convergence and Steps per episode which stabilizes as the agent 

proceeds. Q-Value Heat Map indicates higher Q-Values on the top-right corner of the map 

which means the agent has prioritized that corner during its exploration. 

 

For scaling up larger mazes like 30x30 and 50x50, the default reward structure (where the 

agent received a reward of +1 for reaching the goal and a small constant penalty per step) was 

insufficient. Therefore, a shaped reward function was implemented to improve inefficiency. 

There are two main changes.  

1. A terminal shaping component was introduced, which applied a negative penalty based 

on the agent’s final distance to the goal if it failed to reach it within the maximum number 
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of steps. This penalty provides a scaled gradient that encourages the agent to follow 

shorter routes.  

2. The agent receives a small reward boost if it reaches the goal in fewer steps than the 

predetermined maximum path length. 

 

Training continues until a streak condition is met or a predetermined number of episodes are 

reached. The streak mechanism tracks if the agent reaches the goal in a feasible number of 

steps (defined as the maze’s field). The agent will be considered as converged if it reaches the 

predetermined threshold by fulfilling the streak condition continuously. This dynamic stopping 

criterion makes the training process adaptive and computationally feasible by preventing 

overtraining in smaller mazes and providing eff iciency in larger ones. 

3.3 Evaluation Metrics 

A set of evaluation metrics was set up to evaluate both algorithms’ behavior and performance in 

a systematic and controlled way. These metrics are designed to measure a few features of the 

algorithms’ performance, such as computational costs, execution time, search complexity and 

solution efficiency. The following metrics were collected for every experiment. 

3.3.1 Path Length 

The number of steps is taken along the chosen path from the starting point to the goal. This 

metric shows how effective the algorithm’s chosen direction was. It is equivalent to the 

calculated optimal or near-optimal path for deterministic solvers such as A* and it represents the 

quality of the learned policy after training in learning-based agents such as Q-Learning 

3.3.2 Time to Solve 

The time needed to finish the maze for each episode. This metric was considered instead of 

execution time of the entire algorithm since A* would always outperform Q-Learning because of 

its training requirement. It measures the quickness of decision-making and general method 

responsiveness. 

3.3.3 Unique Visited States 

The total number of unique maze states (cell) visited in one run. This metric shows the search 

method of the algorithm and indicates whether it’s exploratory and exhaustive or direct and 

efficient. While a lower value might suggest more concentrated movement, a higher value could 

suggest a wider search. It is good to mention that since the experiment is run on 50 random 

mazes, the highness or lowness of the value can be related to the complexity of the maze as 

well. 
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3.3.4 Steps per Episode (Q-Learning) 

It tracks how many steps the agent takes in each learning episode until termination. Specifically, 

Q-Learning, it helps in tracking the stability and convergence rate of the policy. With time, fewer 

steps often indicate better learning results. 

3.3.5 CPU and Memory Usage 

System resource usage is tracked during execution in terms of CPU usage (%) and memory 

allocation (MB). Although CPU percentage is hardware-dependent and may differ between 

devices, it still offers a relative indication of computational need. 
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4. Results 

This chapter covers the results of tests that were done to see how well the A* algorithm and the 

Q-learning algorithm could find paths in maze environments. At first, the A* algorithm was 

compared to the traditional Q-learning method (without reward shaping) and after that, the 

comparison was made bigger by adding the modified Q-learning with reward shaping. 

4.1 Random Environments 

 

Maze Size Algorithm Path Length Solve Time (s) Unique 
States Visited 

CPU Usage 
(%) 

3x3 A* 4.12 ± 0.47 0.0004 ± 0.0002 7.58 ± 1.25 0.00 ± 0 

 Q-Learning 4.12 ± 0.47 0.0018 ± 0.0007  4.31 ± 0.84 30.57 ± 
19.27 

5x5 A* 10.00 ± 2.08 0.0006 ± 0.0003 17.30 ± 4.31 1.95 ± 13.68 

 Q-Learning 10.04 ± 2.06 0.0043 ± 0.0011 11.00 ± 1.99 21.84 ± 

10.82 

10x10 A* 33.52 ± 9.38 0.0024 ± 0.0011 63.42 ± 17.71 7.81 ± 32.92 

 Q-Learning 49.28 ± 11.35 0.0209 ± 0.0043 38.06 ± 8.87 19.65 ± 5.44 

20x20 A* 99.64 ± 25.83 0.0036 ± 0.0014 241.58 ± 67.64 5.86 ± 23.20 

 Q-Learning 299.16 ± 84.09 0.0249 ± 0.0080 121.57 ± 19.07 30.77 ± 5.78 

30x30 A* 221.76 ± 74.52 0.0090 ± 0.0024 603.90 ± 
136.28 

20.32 ± 
40.66 

 Q-Learning 598.38 ± 201.52 0.0652 ± 0.0125 269.82 ± 64.68 45.79 ± 4.72 

50x50 A* 537.56 ± 149.55 0.0262 ± 0.0083 1695.28 ± 
375.11 

36.13 ± 
36.39 

 Q-Learning 4262.98 ± 
8383.71 

0.1545 ± 0.0448 969.75 ± 3.20 54.83 ± 3.20 

Table 1. A* and Q-Learning Performances on 50 Random Mazes 
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4.2 Random Plus Environments 

 

Maze Size Algorithm Path Length Solve Time (s) Unique 
States 
Visited 

CPU Usage 
(%) 

10x10 Plus A* 19.36 ± 2.35 0.0013 ± 
0.0005 

55.90 ± 
14.56 

8.21 ± 27.84 

 Q-Learning 22.66 ± 9.14 0.0062 ± 
0.0015 

24.99 ± 5.89 13.29 ± 6.14 

20x20 Plus A* 41.96 ± 4.01 0.0048 ± 
0.0023 

192.84 ± 
84.84 

15.89 ± 
36.43 

 Q-Learning 88.78 ± 37.96 0.0245 ± 
0.0052 

78.98 ± 
16.05 

27.22 ± 4.72 

30x30 Plus A* 63.92 ± 3.73 0.0135 ± 
0.0068 

485.10 ± 
177.61 

22.45 ± 
45.71 

 Q-Learning 187.02 ± 68.54 0.0468 ± 
0.0102 

132.46 ± 
25.68 

36.25 ± 3.88 

Table 2. A* and Q-Learning Performances on 50 Random Plus Mazes 
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4.3 Random Environments with Reward Shaping 

 

Maze Size Algorithm Path Length Solve Time (s) Unique 
States 
Visited 

CPU Usage 
(%) 

3x3 A* 4.32 ± 0.84 0.0001 ± 0 7.42 ± 1.23 0.00 ± 0 

 Q-Learning 4.34 ± 0.89 0.0002 ± 0.0001 4.58 ± 0.81 4.31 ± 19.27 

5x5 A* 10.08 ± 2.59 0.0002 ± 0.0001 17.18 ± 
3.85 

0.00 ± 0 

 Q-Learning 10.08 ± 2.59 0.0007 ± 0.0002 10.95 ± 
2.51 

11.70 ± 
16.37 

10x10 A* 33.68 ± 9.49 0.0009 ± 0.0004 65.36 ± 
20.99 

2.08 ± 14.59 

 Q-Learning 35.36 ± 11.30 0.0047 ± 0.0012 41.39 ± 
11.09 

23.36 ± 8.00 

20x20 A* 106.52 ± 34.98 0.0034 ± 0.0010 256.00 ± 
69.76 

1.95 ± 13.68 

 Q-Learning 121.24 ± 46.06 0.0290 ± 0.0049 135.25 ± 
36.59 

57.22 ± 4.64 

30x30 A* 230.08 ± 83.36 0.0090 ± 0.0031 617.84 ± 
177.23 

36.89 ± 
47.64 

 Q-Learning 306.54 ± 150.85 0.0628 ± 0.0134 319.57 ± 
94.27 

70.50 ± 4.63 

50x50 A* 490.28 ± 118.94 0.0219 ± 0.0068 1573.98 ± 
449.30 

59.71 ± 
44.28 

 Q-Learning 965.68 ± 573.61 0.1693 ± 0.0333 773.32 ± 
149.66 

83.51 ± 2.34 

Table 3. A* and Q-Learning with Reward Shaping Performances on 50 Random Mazes 
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5. Discussion and Conclusion 

5.1 Performance Comparison 

The tests show that A* and Q-learning had similar average path lengths in small mazes (e.g. 

3x3 and 5x5) which show that they were equally good at finding the optimal path at small sizes. 

But there was a big difference in computational resources and time to solve. A* was much faster 

than Q-learning. Also, Q-learning had a higher CPU usage, which shows that its learning 

process is very CPU-intensive, even at this smaller scale. But as Memory usage there was not 

any noticeable difference during the experiments except in extreme sizes. 

As the maze became harder the differences between the two algorithms became clearer. A* 

solved the problem in less time. As the size increases, inefficiencies in Q-learning were more 

noticeable in path lengths and times to solve. On the other hand, A* maintained faster solution 

times and shorter path lengths which were sometimes 3 or 4 times shorter than those found by 

Q-Learning.  

A* had an optimal and efficient performance in Plus environments as well. This shows clearly 

that A* has better efficiency and accuracy in situations with more complex navigational parts. 

In the third phase of the experiments, reward shaping was introduced and there was an 

improvement in Q-Learning’s performance. Especially in terms of efficiency and computational 

resources. Despite the average path length not being reduced for small maze sizes, there is a 

reduction in average solving time. Even so, A* continued to show superior efficiency, especially 

in terms of resource stability and time to solve speed. As the size increases the effects of 

reward shaping are more visible. Although Q-learning showed lower path lengths and quicker 

results, still it couldn’t maintain its results close to A*.  

The results validate the improvement after reward shaping. However, A* continuously 

outperformed Q-learning even with the adjustments, showing its applicability for applications 

with limited resources and time. Besides that, A* continuously showed lower CPU usage for all 

maze sizes. So, we can conclude that Q-Learning has limitations for real-time or resource-

constrained applications unless significant optimizations are done. 

As extra, A* was tested for larger environment sizes like 100x100, 200x200 and 500x500 

mazes. Unfortunately, it was not possible to run the tests for Q-Learning due to lack of 

computational resources. 

Interested readers are recommended to look at the appendix for detailed plots of these larger 

benchmarks. 
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5.2 Conclusion 

As conclusion, the results showed us the potential of AI. It is good to mention that Q-Learning is 

only one of the techniques in the AI world and these technologies are still in development. So, 

we can say that AI performs better in terms of quickness and efficiency than humans, however it 

doesn’t perform as good as traditional algorithms for more complex cases now, but maybe it will 

in the close future.  

5.3 An Alternative for Tabular Q-Learning 

Deep Q-Networks (DQN) is the combination of classical Q-learning and a deep neural network 

(Vijay Ram Reddy et al., 2024). Instead of using a table for all 𝑄(𝑠, 𝑎) values, a multi-layer 

neural network (typically a convolutional network) is used to estimate Q values. With this 

approach, DQN can handle high-dimensional inputs that were not feasible for tabular methods. 

This means that for the first time, DQN showed that learning policies from high visual 

information is possible directly with Q-learning. The authors’ main work showed that their DQN 

agent could outperform previous approaches and even surpass human experts on several of 

the classic video games (Mnih, et al., 2013).  

 

DQN adds some important changes to the Q-learning algorithm to train the network. Using 

sequential, correlated game frames with a nonlinear function approximator can cause Q-

learning to perform unstable or divergent (François-Lavet, Henderson, Islam, Bellemare, & 

Pineau, 2018). DQN uses 2 techniques to solve this issue: 

1. Experience replay, during training, the agent uses experience replay to randomly choose 

mini batches that contain elements (𝑠, 𝑎 , 𝑟, 𝑠′) to overcome the issue of consecutive 

samples.  

2. Target network is the secondary network which is used to compute stable Q-Values and 

its network weights are updated less often than the primary network’s. It reduces the 

feedback loops which helps to prevent divergence. 

 

These techniques help DQN to perform better in more complex and high dimensional 

environments in which tabular Q-Learning was insufficient.  

 

DQN provides beneficial empirical results over traditional tabular Q-learning whenever situations 

are complicated. It is mainly scalable, since tabular Q-learning handles only smaller or 

discretized state spaces by storing and updating every entry vector (Lyl, Dazeley, Vamplew, 

Cruz, & Aryal, 2022). Dealing with this in situations with a huge number of states (for instance, 

an Atari screen with 160*210 pixels) is too hard to implement. As DQN generalizes across 

different states, the neural network reduces the need to memorize all states, helping it to solve 

the problems without storing every state.  

 

As a result, DQN’s network can handle large continuous spaces by providing useful estimates of 

state-action values, surpassing what a tabular method could achieve. In practice, DQNs have 

achieved results with input spaces that are much too large for any tabular agent to analyze. 
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Furthermore, using function approximation in DQN allows it to generalize better than a lookup-

table agent which only works well for exact states it has trained on (Myhre, 2019).  

 

Researchers found that a tabular Q-learning agent struggled when the environment was 

changed, while a DQN agent adapted easily to such small changes. Since DQN can be used 

with modern computations (GPU acceleration with mini-batch updates) instead of the simple 

table method, it can complete many learning tasks more quickly at large scale. Overall, the use 

of deep neural networks in Q-learning gives agents the ability to address much greater 

challenges than was the case with simple tabular methods (Lyl, Dazeley, Vamplew, Cruz, & 

Aryal, 2022).   
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