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Abstract

In this thesis, | compare traditional A* search and tabular Q-learning in their performance for the
task of finding routes in grids. | adopted useful ideas from heuristic and reinforcement learning
to design and carry out both algorithms in custom maze environments set up with OpenAl Gym.
| analyze performance across different sized mazes, both with standard setup and with the
‘Plus’ variations which include added portals. Path length, computation time, how much of the
state-space is covered and resource use are tracked throughout the test process. Results
confirm that A* routinely outperforms Q-learning regarding both efficiency and finding the
optimal solution, but the latter’s results can be greatly enhanced with the aid of reward shaping.
Still, Q-learning is not suitable for running in real-time due to being computationally complicated
and less trustworthy. The investigation concludes by looking at Deep Q-Networks (DQN) as a
viable way to solve the issues of tabular methods, pointing out that deep reinforcement learning
may help in dynamic and high-dimensional applications.
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1. Introduction

1.1 Motivation

Since November 2022, after public release of ChatGPT, Artificial Intelligence has become more
popular. It didn’t take long for Al tools in Code and Development, Image and Video areas and Al
Voice Assistants to become available in many countries (Google Trends, 2025). At some
stages, how fast the job market changed led to concerns about being replaced in work. This
worry may be due to what abilities Al tools have. In some jobs, creativity is most important,
while in others it depends on being accurate and precise. Al can now be developed in artistic
areas in which come up with fresh thoughts and learns. Before, machines had different aspects
to what was important to us in living creatures. Because of Al, the two were able to be matched.
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Figure 1. Interest over time in "Atrtificial Intelligence" (Google Trends, 2025)

Our view of Al was again brought into question with the growth of autonomous driving. Many
companies are now developing delivery and taxi services without human drivers (Amazon Prime
Air, Wing, Waymo one, AutoX).

Being a Management and Computer Science student and a gamer, | was interested in exploring
how smart algorithms show up in games. After noticing Al’s performance in the games | play, |
have become even more drawn to this area, because these technologies introduce new, much
larger approaches to problem-solving.

Trying to figure out the best way to go from where you are to where you want to be is a basic
issue. A good pathfinder in video games is important for making characters that can travel
around the map. Commonly, developers have depended on algorithms like A* to quickly find
short, effective paths for many years. Meanwhile, Q-Learning is a different approach used for
solving these problems. With Q-Learning, the computer will find out the best movement by
testing different choices and getting rewards when it chooses wisely.



1.2 Objective

This thesis explores the ways in which reinforcement learning differs from the usual A* path
finding algorithm. The results are used to judge how effective using reinforcement learning is in
making decisions on pathfinding for games and to see what implementation issues arise.

The source code for this study and detailed graphs are freely available in the following link:
https://github.com/itsDevo/thesis



https://github.com/itsDevo/thesis

2. Background

2.1 Grid Systems

Grid systems are used in fields such as robotics, video games, architecture and Al-driven
navigation to discretize spatial environments. These systems rely on a set of vertices and are
usually in square or hexagonal shapes; they allow spatial data to be managed through discrete
graph-based or array-based traversal algorithms (Goldstein, Walmsley, Bibliowicz, & Tessier,
2022).

Grids can be considered as simplified spatial representations where each vertex corresponds to
a location in space and neighbors are based on the geometric rules (e.g. for square grids either
4 or 8 based on diagonal movement and 6 neighbors for hexagonal or triangular grids).
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Figure 2. Examples of Standard Neighbors for grids (Goldstein, Walmsley, Bibliowicz, & Tessier, 2022)

In this study, in order to implement A* algorithm, a 4-neighborhood square grid is used.



2.2 Pathfinding Algorithms in Game Development

In this section, | will be focusing on the most used Pathfinding algorithms in video game
development. Pathfinding algorithms are used to find the route to the goal for the agent or non-
player characters. A game is particularly enjoyable when the characters from the story are as
close to real people as possible. Therefore, a good pathfinding algorithm is crucial to ensure
realism during gameplay. Nonetheless, determining the most efficient actions for non-player
characters continues to be a big problem in video games. (Rafig, Asmawaty, Kadir , & No, 2020)

According to a study in 2020, A* is the algorithm mostly relied on to discover the shortest path.
Alternatively, Dijkstra, Ant Colony Optimization and Genetic Algorithms are applied to discover
the lowest cost route through a graph (Rafig, Asmawaty, Kadir , & No, 2020).

Pathfinding Algorithms on Game Development
(from 2010to 2018)

A* alj Genetic algorithm  Ant Colony Others

rivnr | JKSLr
|gorithm

Figure 3. Most Popular Algorithms (Rafig, Asmawaty, Kadir , & No, 2020)
Figure 2 shows the most popular algorithms which were used in game development based on

Abdul Rafig’s study of 10 different game development related papers published between 2007
and 2018. The figure shows that A* was researched in 7 different papers.



2.2.1 A* Algorithm

A* was initially published as an extension of Dijkstra’s algorithm. It is a best-first graph search
algorithm used to find the shortest path between two nodes for pathfinding problems because of
its accuracy and good performance. Heuristic techniques are used instead of classic methods
when the performance is not good enough. Heuristic techniques focus on calculating the cost of
the cheapest path which is useful for pathfinding problems because it never overestimates the
cost (Cui & Shi, 2011)

2.2.1.1 Algorithm Principles

The A* algorithm uses a heuristic function f(n) to determine the node. The function is:

f) =g@+h(n)

g(n) is the cost from starting node to the node n (i.e. calculates the cost which was taken from
the beginning node by far). h(n) is the heuristic value, it represents the estimated cost from
point n to the destination. In case of obstacles f(n) will estimate another route which has the
lowest cost to the goal. A* is very similar to Dijkstra’s algorithm however it differs by the use of
h(n). A* guarantees to find a path from the start to the goal if a path exists. And it is optimal if
h(n) is always less than or equal to the actual cheapest path cost from n to the goal. (Pardede,
et al., 2022)

There are different heuristics (e.g. Squared heuristic distance, Euclidean distance) for each type
of grid system. For example, in 4 and 8 neighborhood systems Manhattan distance is one of the
popular used heuristics. It provides a decent estimate of remaining distance without
overestimating (Cui & Shi, 2011).
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Figure 4. A* Algorithm Demonstration (Pardede, et al., 2022)

2.2.1.2 Strengths and Limitations

A* is a solid algorithm for single-agent grid pathfinding problems. As was mentioned previously,
it will always find a solution if one exists and it is suitable for moderate map sizes, mainly thanks
to heuristic functions. Besides that, A* is deterministic which allows reproducibility. It will always



produce the same path on the same map, which is desirable in games for predictability and
fairness (Pardede, et al., 2022).

However, A* often faces some serious limits. The environment must stay the same and
unchanging for the algorithm to work because A* relies on a fixed network and edge costs.
Besides that, since it doesn’t learn, each time a pathfinding query is made, one solution is
provided independently. Computational costs and the use of memory can run into trouble on as
grids size increase since A* places every node in memory as open and closed lists and as a
result, the algorithm can run slowly or use too much memory. In fact, A* can be improved with
hierarchical pathfinding or by pruning the search space, but the original A* can’t handle
extremely large grids (Cui & Shi, 2011).

2.3 Markov Decision Process (MDP)

Markov Decision Process (MDP) is a formal mathematical framework which forms the basis for
numerous reinforcement learning algorithms. It aims to assist with decision processes within an
environment where the outcomes are uncertain and only partially influenced by the agent. It
serves as a theoretical base, and as a practical base in robotics and game Al (Sigaud & Buffet,
2013).

The structure is defined by a tuple (S, A4,T,p, r), a set containing states, actions, time step
needed to take a decision, transition probabilities and reward function. An MDP Environment
usually consists of a set of states which the agent can be in, a set of actions that agent can take
and the reward which agent will receive after realizing the action. Each transition provides a
reward which is numerical feedback and the agent’s goal is to find the optimal policy which
maximizes the cumulative reward over time. MDPs are useful in pathfinding problems, since the
agents must navigate from a start state to a goal state while avoiding the obstacles and
optimizing the performance metrics such as distance, time or energy consumption.

2.3.1 The Markov Property

Markov property is the assumption behind MDPs which says that future outcomes in the
process are affected only by the present state and the action performed, not by all the earlier
states ( Sutton & Barto, 2018). Simply, the state holds all important past data, so we can focus
only on the present for future outcomes. Changes from one state to another always depend only
on the present state and the action taken and not on how the agent reached the present state.
Because of the Markov property, operations in MDPs and reinforcement learning are very
efficient because the algorithms do not depend on past states. Applying this approach reduces
the difficulty of analyzing and using learning algorithms in practical systems. When an agent
updates the reward that it might get in the future, it will only need the current state which action
Is taken, the received reward and the next state.



2.3.2 Action Policy

Action policy in an MDP is the way the agent decides what action to take. It is often called =*
and it assigns an action to every state. Action policies can be deterministic or stochastic to, but
in both cases the policy gives a clear method for selecting actions from the current state (Sigaud
& Buffet, 2013).

The Goal of an MDP is to identify an optimal policy ©* that ensures the agent obtains the
highest probable cumulative reward. The cumulative reward is equal to the rewards the agent
gets starting from the current step into the future, in which future rewards are slightly
discounted. As a result, by following * , the agent can obtain the most reward possible over the
long run in the MDP. The task of finding an optimal policy is considered the solution to the
decision-making problem with uncertainty, it shows the agent how to behave in each situation
for the best outcome. A lot of MDP theory is focused on checking the effectiveness of a chosen
policy and continuously improving it until the best one is found.

It is good to mention that in some cases, the best expected return can be reached by choosing
among several policies. Nonetheless, MDP guarantees that there is always at least one optimal
policy under usual conditions (Puterman, 2014). Optimal policies for the problems are computed
with policy and value iteration techniques, relying on Markov property and the recursive
structure. These techniques iteratively measure the success of a policy (policy evaluation) and
adjust it to improve, until the policy reaches *.

2.3.3 Value Functions

Value functions are applied to evaluate and compare policies by showing how desirable states
or state-actions are in long terms. Value function calculates how much reward or loss expect
when it is following a certain policy and it provides the results of being in a specific situation or
taking a specific action with numerical values ( Sutton & Barto, 2018).

There are 2 main types of value functions in MDPs:

1. State-Value function v, is the expected return if you start in state s and continue with
policy m afterwards and this value is used to sort or rank states under a particular policy
in which a higher v,; (s) means a state is better for the agent in the long run (Puterman,
2014).

2. Action-Value function Q,, is the expected reward after decision-making from state s,
taking action a while the agent uses policy  from that point onward. Q,; (s, a) reflects the
value of choosing action a in state s and then proceeding according to «. It shows us the
value of a state-action pair from that policy. Using action values helps make better
decisions. In case of states having the same state-value, the action-value function can
help to see which action taken in that state will be more rewarding in the long term.

The main reason value functions matter is that they allow us to assess the quality of a policy
indirectly. Once the policy 7 is known, we can compute v, (s) for all main states which means
we learn how effectively it will do the job from each starting point. Policies can be improved by

7



taking actions with the highest action-value. The relationship between state and action values
helps us to find an optimal policy, since it should take the action with the highest value at any
state under the optimal policy.

2.4 Reinforcement Learning

This section gives a general overview and theoretical background of Machine Learning and
Reinforcement Learning subfield. Machine learning has several subfields. In Supervised
Learning the model receives labeled data as input and the model is trained to predict new data.
In Unsupervised learning which the models receive unlabeled data and the models are trained
to discover the patterns and clusters within the data (Murphy, 2012) and in Reinforcement
learning, which is built on the interactions of the agent with the environment, the agent learns
the optimal actions with rewards and punishments ( Sutton & Barto, 2018).
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Figure 5. The Subfields of Machine Learning

This study was focused on Q-Learning which is in the Reinforcement Learning subfield.

2.4.1 Q-Learning

Q-learning is a model-free method. This means that the environment’s details are irrelevant. It
does not require prior knowledge regarding the MDP’s transition probabilities or the reward
function. It simply adapts and responds through trial and error. (Sigaud & Buffet, 2013)

2.4.1.1 Algorithm Principles

Q-Learning uses a g-table and functions by updating the table in which there is 1 value (g-
values) from the action which was taken for the state as a pair. These values estimate the
expected total reward for taking a particular action from a given state and then following the
optimal policy. The values are updated repeatedly using the following update rule:



Q(sp ar) < Q(spap) + afry, + ymo?XQ(St+1'a) — Q(sp.ae)]m

Here, a is the learning rate, y is the discount factor, and the max term indicates we’re pursuing
optimal action value, not necessarily the action taken during the episode.

Learning rate determines how quickly the agent updates its knowledge based on new
information and the discount factor affects the importance of future rewards.

The algorithm follows these steps:
1. Starts with a blank table
2. Ateach step
a. The agent observes the current state s
b. It selects an action a. It can be exploring (random) or exploiting
depending on the exploration rate.
c. Ittakes the action and receives a reward r, and then enters the next state
s,
3. The Q-Values are updated by applying the update rule
4. The process repeats on many episodes. And over time the Q-Values converge to
the actual expected rewards

2.4.1.2 Strengths and Limitations

Q-learning is an off-policy algorithm. It learns from actions that weren’t even executed,
assuming they’re optimal. That makes convergence simpler to prove and implementations less
constrained. Of course, it's not flawless; early learning phases are often noisy, and convergence
can be slow.

Large or complex environments bring exploration challenges. The agent might need to explore
most of the space to learn optimal actions. Which turns into an issue since the rewards will be
delayed and often the agent sticks at loops. So, in such scenarios more advanced strategies
might be required. In such scenario, most state-action pairs remain unvisited or poorly
estimated and it increases the training time ( Sutton & Barto, 2018).

This is where reward shaping enters. Instead of waiting for sparse, delayed rewards, you inject
informative signals that guide learning. The original MDP reward function R(s,a) can be
supplemented with additional feedback without changing the optimal policy. A trick often done
using potential-based shaping. It makes learning faster and more stable, especially in larger or
sparser environments (Chintala, Dornberger, & Hanne, 2022).



3. Methodology

3.1 Environment

Open Al Gym is a toolkit for creating and evaluating reinforcement algorithms. It was released
by OpenAl in 2016, and it offers a standard interface to a wide range of environments.

Gym is an extensible and modular architecture. Environment class defines a basic interaction
loop with reset and step functions. This structure standardizes the way agents interact with their
surroundings, understand state transitions, and receive rewards.

Because of this consistency, the users can focus on designing algorithms rather than dealing
with creating an environment (Brockman, et al., 2016).

Each environment in Gym is set up as a Markov Decision Process (MDP). As mentioned in the
earlier chapters, after observing a state, the agent chooses an action from a continuous or
discrete action space, gets rewarded, changes states and finding a policy that optimizes
cumulative rewards is the aim.

Observation

Reward

Action

Figure 6. Symbolic interaction between the agent and environment
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To evaluate the performance of the Q-Learning Algorithm, a custom 2D maze environment was
used. The objective of this environment is showed by a red square, and the agent, visually
represented by a blue circle. It must move from the top-left corner (0,0) to the right-bottom
corner. The objective is to reach the goal in the fewest steps.

mHe || N _
e

| | |
| =

Figure 7. 10x10 Maze Figure 8. 10x10 Plus Maze

The four cardinal directions, (“N”, “S”, “E” and “W”) designed as North, South, East and West,
are the environment’s defined discrete action space, and it uses a 4-neighbor grid system (no
diagonal movement). If it runs into a wall or a boundary, the agent will stay wherever it is.

In the plus mode of the environment, random portals are located within the map. Each portal
has two edges with the same colors, and it teleports the agent to the other edge when it comes
to the teleport state.

The reward function uses a small shaped component. The agent gets a reward of +1 after
achieving the objective. Every intermediate step is penalized with a small negative reward,
which is determined as follows:

0.1

Reward = ————
#of Cells
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3.2 Experimentation Process

The experiments were run on a laptop device (plugged) with the following specifications:
i5-1135G7; 8 GB DDR4 3200 MT/s Single Channel; Windows 11 Pro 64-Bit; Python 3.12.6.

The experimental process used to assess and compare the A* and Q-learning algorithms’
performance in a supervised maze-solving environment. Each algorithm was evaluated on 50
randomly generated maze environments to guarantee comparability. The same custom
environment that was previously described was used to create these mazes. Both A* and Q-
learning were assessed sequentially for every scenario, which means that A* was executed first
and then the Q-learning algorithm right after, using the same maze instance. This ensured that
the structural obstacles that both algorithms faced (i.e. wall locations, potential routes and dead
ends) were the same.

Each scenario’s outcome is reported using the evaluation metrics at Section 3.3.3.

3.2.1 Implementation of A*

As it was explained in the previous chapter, A* is a deterministic, graph-based search technique
that uses a heuristic estimate of the remaining distance to the goal in addition to the actual path
cost. In this study, classic A* algorithm was used and since it complies with the environment’s 4-
directional grid movement restrictions, the Manhattan distance was chosen as the heuristic
function.

The algorithm maintains an open list of states to explore, using a priority queue(min-heap),
arranged according to their estimated cost f(n) = g(n) + h(n) where g(n) is the cost to reach
state n and h(n) is the Manhattan distance from n to goal.

Based on the wall structure of the maze, the algorithm looks for neighboring cells that are
accessible for each state that is explored. Only when a shorter path is discovered, it updates the
cost of each neighbor. And lastly, the route is reversed once the goal has been reached.

3.2.2 Implementation of Q-Learning

In this study, a Tabular Q-Learning algorithm with an epsilon-greedy exploration strategy was
used. Each maze environment is considered as a Markov Decision Process (MDP), in which the
agent chooses an action from a discrete set of options after observing its current coordinate (x,

y)-

Agent’s exploration or exploitation decision is dependent on Epsilon (i.e. exploration rate) in
which a higher epsilon has a higher chance of exploration and lower epsilon has a higher
chance of exploitation. As the strategy, epsilon decays logarithmically over episodes and
besides that to stabilize the convergence, the learning rate decays logarithmically as well. The
implementation uses the Bellman update rule to learn the expected return of state-action pairs,
keeping the regular off-policy formulation. As for the hyperparameters (e.g. learning rate,

12



discount rate, epsilon, decay factor, max step for episode, max steps for streak, minimum
learning and minimum decay rate), they were set differently for different maze sizes in which
larger mazes maintain flexibility and exploration for longer, while in smaller mazes decay more
quickly.

Q-Learning Performance on the Sample 10x10 Maze
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Figure 9. Q-Learning Performance on The Sample Maze at figure 7

Figure 9 shows the results of the implementation of Q-learning algorithm in a sample 10x10
maze environment which was shown in figure 7. As was expected, there is noise in the
beginning for Reward convergence and Steps per episode which stabilizes as the agent
proceeds. Q-Value Heat Map indicates higher Q-Values on the top-right corner of the map
which means the agent has prioritized that corner during its exploration.

For scaling up larger mazes like 30x30 and 50x50, the default reward structure (where the
agent received a reward of +1 for reaching the goal and a small constant penalty per step) was
insufficient. Therefore, a shaped reward function was implemented to improve inefficiency.
There are two main changes.
1. Aterminal shaping component was introduced, which applied a negative penalty based
on the agent’s final distance to the goal if it failed to reach it within the maximum number

13



of steps. This penalty provides a scaled gradient that encourages the agent to follow
shorter routes.

2. The agent receives a small reward boost if it reaches the goal in fewer steps than the
predetermined maximum path length.

Training continues until a streak condition is met or a predetermined number of episodes are
reached. The streak mechanism tracks if the agent reaches the goal in a feasible number of
steps (defined as the maze’s field). The agent will be considered as converged if it reaches the
predetermined threshold by fulfilling the streak condition continuously. This dynamic stopping
criterion makes the training process adaptive and computationally feasible by preventing
overtraining in smaller mazes and providing efficiency in larger ones.

3.3 Evaluation Metrics

A set of evaluation metrics was set up to evaluate both algorithms’ behavior and performance in
a systematic and controlled way. These metrics are designed to measure a few features of the
algorithms’ performance, such as computational costs, execution time, search complexity and
solution efficiency. The following metrics were collected for every experiment.

3.3.1 Path Length

The number of steps is taken along the chosen path from the starting point to the goal. This
metric shows how effective the algorithm’s chosen direction was. It is equivalent to the
calculated optimal or near-optimal path for deterministic solvers such as A* and it represents the
quality of the learned policy after training in learning-based agents such as Q-Learning

3.3.2 Time to Solve

The time needed to finish the maze for each episode. This metric was considered instead of
execution time of the entire algorithm since A* would always outperform Q-Learning because of
its training requirement. It measures the quickness of decision-making and general method
responsiveness.

3.3.3 Unique Visited States

The total number of unique maze states (cell) visited in one run. This metric shows the search
method of the algorithm and indicates whether it's exploratory and exhaustive or direct and
efficient. While a lower value might suggest more concentrated movement, a higher value could
suggest a wider search. It is good to mention that since the experiment is run on 50 random
mazes, the highness or lowness of the value can be related to the complexity of the maze as
well.
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3.3.4 Steps per Episode (Q-Learning)

It tracks how many steps the agent takes in each learning episode until termination. Specifically,
Q-Learning, it helps in tracking the stability and convergence rate of the policy. With time, fewer
steps often indicate better learning results.

3.3.5 CPU and Memory Usage

System resource usage is tracked during execution in terms of CPU usage (%) and memory
allocation (MB). Although CPU percentage is hardware-dependent and may differ between
devices, it still offers a relative indication of computational need.
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4. Results

This chapter covers the results of tests that were done to see how well the A* algorithm and the
Q-learning algorithm could find paths in maze environments. At first, the A* algorithm was
compared to the traditional Q-learning method (without reward shaping) and after that, the
comparison was made bigger by adding the modified Q-learning with reward shaping.

4.1 Random Environments

Maze Size Algorithm Path Length Solve Time (s) Unigue CPU Usage
States Visited (%)
3x3 A* 4.12 +0.47 0.0004 + 0.0002 7.58 +1.25 0.00 £ 0
Q-Learning 4.12 +0.47 0.0018 + 0.0007 4.31 +£0.84 30.57 +
19.27
5x5 A* 10.00 + 2.08 0.0006 +0.0003 | 17.30 +4.31 | 1.95 +13.68
Q-Learning 10.04 + 2.06 0.0043 +0.0011 | 11.00 +1.99 21.84 +
10.82
10x10 A* 33.52 +9.38 0.0024 +0.0011 | 63.42 +17.71 | 7.81 +32.92
Q-Learning 49.28 +11.35 0.0209 +0.0043 | 38.06 +8.87 | 19.65 +5.44
20x20 A* 99.64 + 25.83 0.0036 + 0.0014 | 241.58 +67.64 | 5.86 + 23.20
Q-Learning 299.16 +84.09 | 0.0249 +0.0080 | 121.57 +19.07 | 30.77 +5.78
30x30 A* 221.76 +74.52 | 0.0090 + 0.0024 603.90 * 20.32 +
136.28 40.66
Q-Learning 598.38 +201.52 | 0.0652 + 0.0125 | 269.82 + 64.68 | 45.79 + 4.72
50x50 A* 537.56 +149.55 | 0.0262 +0.0083 1695.28 + 36.13 +
375.11 36.39
Q-Learning 4262.98 + 0.1545 +0.0448 | 969.75 +3.20 | 54.83 +3.20
8383.71

Table 1. A* and Q-Learning Performances on 50 Random Mazes
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4.2 Random Plus Environments

Maze Size Algorithm Path Length Solve Time (s) Unique CPU Usage
States (%)
Visited
10x10 Plus A* 19.36 £2.35 0.0013 £ 55.90 + 8.21 £ 27.84
0.0005 14.56
Q-Learning 22.66 +9.14 0.0062 + 2499 +5.89 | 13.29 +6.14
0.0015
20x20 Plus A* 41.96 +4.01 0.0048 + 192.84 + 15.89 +
0.0023 84.84 36.43
Q-Learning | 88.78 +37.96 0.0245 + 78.98 + 27.22 £4.72
0.0052 16.05
30x30 Plus A* 63.92 + 3.73 0.0135 + 485.10 22.45 +
0.0068 177.61 45.71
Q-Learning | 187.02 + 68.54 0.0468 + 132.46 + 36.25 + 3.88
0.0102 25.68

Table 2. A* and Q-Learning Performances on 50 Random Plus Mazes
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4.3 Random Environments with Reward Shaping

Maze Size Algorithm Path Length Solve Time (s) Unique CPU Usage
States (%)
Visited
3x3 A* 432 +0.84 0.0001 +0 7.42 +£1.23 0.00+0
Q-Learning 4.34 +0.89 0.0002 £ 0.0001 | 458 +0.81 | 4.31 £19.27
5x5 A* 10.08 + 2.59 0.0002 + 0.0001 17.18 + 0.00+0
3.85
Q-Learning 10.08 + 2.59 0.0007 + 0.0002 10.95 + 11.70 +
2.51 16.37
10x10 A* 33.68 £ 9.49 0.0009 + 0.0004 65.36 + 2.08 + 14.59
20.99
Q-Learning 35.36 +11.30 | 0.0047 +0.0012 41.39 + 23.36 +8.00
11.09
20x20 A* 106.52 + 34.98 | 0.0034 +0.0010 | 256.00 + | 1.95 +13.68
69.76
Q-Learning | 121.24 +46.06 | 0.0290 +0.0049 | 135.25+ |[57.22 +4.64
36.59
30x30 A* 230.08 +83.36 | 0.0090 £ 0.0031 | 617.84 + 36.89 +
177.23 47.64
Q-Learning | 306.54 + 150.85 | 0.0628 £ 0.0134 | 319.57 + | 70.50 £ 4.63
94.27
50x50 A* 490.28 +£118.94 | 0.0219 + 0.0068 | 1573.98 + 59.71 +
449.30 44.28
Q-Learning | 965.68 + 573.61 | 0.1693 £+ 0.0333 | 773.32+ |8351+234
149.66

Table 3. A* and Q-Learning with Reward Shaping Performances on 50 Random Mazes
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5. Discussion and Conclusion

5.1 Performance Comparison

The tests show that A* and Q-learning had similar average path lengths in small mazes (e.qg.
3x3 and 5x5) which show that they were equally good at finding the optimal path at small sizes.
But there was a big difference in computational resources and time to solve. A* was much faster
than Q-learning. Also, Q-learning had a higher CPU usage, which shows that its learning
process is very CPU-intensive, even at this smaller scale. But as Memory usage there was not
any noticeable difference during the experiments except in extreme sizes.

As the maze became harder the differences between the two algorithms became clearer. A*
solved the problem in less time. As the size increases, inefficiencies in Q-learning were more
noticeable in path lengths and times to solve. On the other hand, A* maintained faster solution
times and shorter path lengths which were sometimes 3 or 4 times shorter than those found by
Q-Learning.

A* had an optimal and efficient performance in Plus environments as well. This shows clearly
that A* has better efficiency and accuracy in situations with more complex navigational parts.

In the third phase of the experiments, reward shaping was introduced and there was an
improvement in Q-Learning’s performance. Especially in terms of efficiency and computational
resources. Despite the average path length not being reduced for small maze sizes, there is a
reduction in average solving time. Even so, A* continued to show superior efficiency, especially
in terms of resource stability and time to solve speed. As the size increases the effects of
reward shaping are more visible. Although Q-learning showed lower path lengths and quicker
results, still it couldn’t maintain its results close to A*.

The results validate the improvement after reward shaping. However, A* continuously
outperformed Q-learning even with the adjustments, showing its applicability for applications
with limited resources and time. Besides that, A* continuously showed lower CPU usage for all
maze sizes. So, we can conclude that Q-Learning has limitations for real-time or resource-
constrained applications unless significant optimizations are done.

As extra, A* was tested for larger environment sizes like 100x100, 200x200 and 500x500
mazes. Unfortunately, it was not possible to run the tests for Q-Learning due to lack of
computational resources.

Interested readers are recommended to look at the appendix for detailed plots of these larger
benchmarks.
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5.2 Conclusion

As conclusion, the results showed us the potential of Al. It is good to mention that Q-Learning is
only one of the techniques in the Al world and these technologies are still in development. So,
we can say that Al performs better in terms of quickness and efficiency than humans, however it
doesn’t perform as good as traditional algorithms for more complex cases now, but maybe it will
in the close future.

5.3 An Alternative for Tabular Q-Learning

Deep Q-Networks (DQN) is the combination of classical Q-learning and a deep neural network
(Vijay Ram Reddy et al., 2024). Instead of using a table for all Q(s, a) values, a multi-layer
neural network (typically a convolutional network) is used to estimate Q values. With this
approach, DQN can handle high-dimensional inputs that were not feasible for tabular methods.
This means that for the first time, DQN showed that learning policies from high visual
information is possible directly with Q-learning. The authors’ main work showed that their DQN
agent could outperform previous approaches and even surpass human experts on several of
the classic video games (Mnih, et al., 2013).

DQN adds some important changes to the Q-learning algorithm to train the network. Using
sequential, correlated game frames with a nonlinear function approximator can cause Q-
learning to perform unstable or divergent (Frangois-Lavet, Henderson, Islam, Bellemare, &
Pineau, 2018). DQN uses 2 techniques to solve this issue:

1. Experience replay, during training, the agent uses experience replay to randomly choose
mini batches that contain elements (s, a, r,s") to overcome the issue of consecutive
samples.

2. Target network is the secondary network which is used to compute stable Q-Values and
its network weights are updated less often than the primary network’s. It reduces the
feedback loops which helps to prevent divergence.

These techniques help DQN to perform better in more complex and high dimensional
environments in which tabular Q-Learning was insufficient.

DQN provides beneficial empirical results over traditional tabular Q-learning whenever situations
are complicated. It is mainly scalable, since tabular Q-learning handles only smaller or
discretized state spaces by storing and updating every entry vector (Lyl, Dazeley, Vamplew,
Cruz, & Aryal, 2022). Dealing with this in situations with a huge number of states (for instance,
an Atari screen with 160*210 pixels) is too hard to implement. As DQN generalizes across
different states, the neural network reduces the need to memorize all states, helping it to solve
the problems without storing every state.

As a result, DQN'’s network can handle large continuous spaces by providing useful estimates of
state-action values, surpassing what a tabular method could achieve. In practice, DQNs have
achieved results with input spaces that are much too large for any tabular agent to analyze.
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Furthermore, using function approximation in DQN allows it to generalize better than a lookup-
table agent which only works well for exact states it has trained on (Myhre, 2019).

Researchers found that a tabular Q-learning agent struggled when the environment was
changed, while a DQN agent adapted easily to such small changes. Since DQN can be used
with modern computations (GPU acceleration with mini-batch updates) instead of the simple
table method, it can complete many learning tasks more quickly at large scale. Overall, the use
of deep neural networks in Q-learning gives agents the ability to address much greater
challenges than was the case with simple tabular methods (Lyl, Dazeley, Vamplew, Cruz, &

Aryal, 2022).
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