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Chapter 1: Introduction  

Understanding how financial distress spreads across interconnected institutions has become 

increasingly important in today’s financial landscape. Traditional risk models, which focus 

primarily on the individual solvency of financial institutions, often fail to account for the 

complex network of dependencies that define modern financial systems. Moreover, as 

financial markets continue to evolve, the emergence of new actors such as fintech firms 

introduces additional complexity, further complicating efforts to assess systemic risk using 

traditional methods. 

This thesis tries to address the challenge of modelling systemic financial risk through a 

network-based approach, with particular attention to the structural differences between 

traditional banking institutions and fintech players. Unlike traditional models that treat 

institutions as isolated entities, a network approach emphasises how the pattern of 

connections between them shapes the likelihood and extent of financial contagion. Indeed, 

recent literature suggests that the structure of these connections can influence whether 

financial shocks are amplified or contained.  

To capture these dynamics, this study proposes a novel agent-based simulation framework 

based on a modified epidemiological model, the SIIS (Susceptible-Infected1-Infected2-

Susceptible) contagion model. This approach introduces different levels of infection to mimic 

the varying degrees of financial distress across three distinct types of financial networks: a 

Traditional network, a Fintech network, and a Joint network combining both sectors. By 

comparing how these systems respond to different policies, the research explores how 

institutional structures and adaptive responses affect the spread of systemic risk. 

The thesis is organised as follows: Chapter 2 reviews the theory behind modelling systemic 

risk in financial networks, comparing traditional and fintech ecosystems. Chapter 3 outlines 

the methodology for constructing the simulated financial networks, grounded in empirical 

features observed in real-world interbank markets. Chapter 4 presents the SIIS contagion 

model, including both its agent-based and mean-field formulations, and describes the 

simulation scenarios used to evaluate policy responses. Chapter 5 discusses the findings 

across various contagion scenarios. Finally, Chapter 6 concludes by summarising key 

insights, acknowledging model limitations, and proposing directions for future research. 
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Chapter 2: Theoretical Background  

This chapter begins by examining systemic risk as a network-driven phenomenon, 

referencing past literature which proves the important role played by interinstitutional ties in 

shaping financial stability. It then turns to a comparative approach, focusing on how the 

structural differences between traditional financial institutions and fintech firms shape their 

respective vulnerabilities and roles in the propagation of financial distress.  

2.1. Modelling Systemic Risk with Social Network Analysis 

Systemic risk refers to the potential for the distress or failure of a single financial institution 

to spread through the entire system, thereby compromising the system’s overall financial 

stability. This risk is not merely defined as the sum of individual weaknesses; rather, it 

emerges from the complex network of interdependencies between institutions. Most 

importantly, systemic risk is economically significant because of its ability to interfere with 

financial intermediation, affect credit markets, and negatively impact the broader economy. In 

this regard, the structure of financial networks plays a crucial role in determining whether 

financial distress is amplified or contained. 

The first key insight from the literature is that the same network structure can either help 

stabilise the financial system or make it more vulnerable, depending on the magnitude of 

shocks. Acemoglu et al. (2015)1 show that when shocks are relatively small, a more 

connected network helps spread the risk, making the system more resilient. But when the 

shocks are large, those same connections can work against the system, allowing distress to 

quickly spread through many pathways and trigger widespread failures. This structural 

duality, often described as “robust-yet-fragile”, shows the extent to which the configuration 

of financial networks can influence the scale and impact of a crisis. 

Moreover, this dual nature of fragility in financial networks is also evident in the work of Li 

et al. (2020)2, which explores how financial distress spreads between fintech firms and 

traditional institutions under different market conditions. By analysing U.S. financial data 

through a network-based approach, the study shows that the intensity and direction of risk 

transmission can vary widely depending on the specific sector and the current state of the 

market. Notably, the findings reveal that both fintech and traditional firms are not only 

 
1 Acemoglu, Ozdaglar, and Tahbaz-Salehi, ‘Systemic Risk and Stability in Financial Networks’. 
2 Li et al., ‘Risk Spillovers between FinTech and Traditional Financial Institutions’. 
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affected by systemic shocks but also contribute to spreading them in different ways, 

especially in times of high volatility. These results demonstrate the importance of treating 

different types of institutions separately in contagion models, and they prove how variations 

in network structure and market conditions shape the way financial risk moves through the 

system. 

Finally, the work of Bianchi et al. (2023)3 stresses that financial networks are not just 

descriptive tools, but they play a key role in assessing how crises unfold. Their review shows 

that the specific placement of an institution in the network (whether it is a central hub, a 

connecting bridge, or a more isolated node) can have a major impact on how vulnerable it is 

to contagion and how much it contributes to spreading distress. Considering this, the way 

financial institutions are connected matters just as much as their individual financial 

resilience. 

Indeed, social network analysis has proven useful in revealing the network-based drivers of 

systemic risk. Instead of looking at institutions in isolation, it shifts the focus to the web of 

relationships that connect them. This approach shows how factors like a firm’s position in the 

network, its level of interconnectedness, and the overall topology of the network can all 

influence whether a firm is more likely to endure shocks or contribute to spreading them.  

2.2. Traditional vs FinTech Financial Ecosystems  

Over the past decade, the financial sector has undergone major changes, bringing in new 

players, new structures, and new types of connections into an already complex system. One 

of the most notable shifts has been the rise of fintech firms. Once operating on the margins of 

traditional banking, these companies are now taking on a much more central role in providing 

essential financial services. As a result, this shift in the industry’s structure has significant 

implications for the way risk propagates through financial networks. 

Traditional financial institutions, especially large banks, are often part of centralised, 

hierarchical networks. Their connections are shaped by regulations, long-standing 

relationships between banks, and shared financial infrastructure. According to Suprun et al. 

(2020)4, these institutions usually maintain strong and stable connections with one another, 

 
3 Bianchi et al., ‘Social Networks Analysis in Accounting and Finance’. 
4 Suprun, Petrishina, and Vasylchuk, ‘Competition and Cooperation between Fintech Companies and 
Traditional Financial Institutions’. 
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which can help keep the system resilient in normal times. But this stability can be misleading: 

if instability begins or affects a major player in the network, the impact can spread quickly, 

revealing the hidden risks that come with having so much connectivity concentrated in a few 

key nodes. 

On the other hand, fintech firms are structurally different. As Siddiqui and Rivera (2022)5 

describe, the fintech ecosystem appears decentralised, fast-moving, and composed of a wide 

range of players working at the intersection of finance and digital innovation. These firms 

tend to have more flexible connections and can quickly form or end partnerships. From a 

network point of view, fintech ecosystems resemble small-world networks, with tighter 

clusters, shorter paths between nodes, and frequent rewiring of connections. While these 

features encourage innovation and agility, they can also create tightly interwoven local 

clusters that allow risk to spread quickly, especially in times of market stress. 

Moreover, as fintech becomes more integrated into the core of the financial system, it also 

creates new paths for risk to spread. Harsono and Suprapti (2024)6 point out that while 

fintech firms bring clear benefits (such as better access to services, increased efficiency, and 

improved customer experience), they also come with potential vulnerabilities. These include 

growing reliance on technology, gaps in regulation, and operational risks. As a result, the 

traditional ways of assessing systemic risk are no longer enough.  

Ultimately, the structure of the ecosystem in which financial institutions operate has an 

immediate impact on the system as a whole. Due to their function and central roles, 

traditional firms often help stabilise the system, until a failure on their part becomes a 

significant point of collapse. At the same time, fintech firms bring speed and adaptability, but 

they also introduce some degree of structural volatility that has the potential to escalate minor 

disruptions into major issues. Thus, systemic risk becomes a shared concern for the entire 

network as the distinction between the traditional and fintech sectors becomes blurred. 

2.3. Toward a Network-Based Analysis of Financial Distress 

The previous sections have highlighted two key ideas at the heart of this study. First, systemic 

financial risk is not just about individual institutions; it is rather a network phenomenon 

shaped by how financial entities are connected and interact. Second, traditional banks and 

 
5 Siddiqui and Rivera, ‘FinTech and FinTech Ecosystem’. 
6 Harsono and Suprapti, ‘The Role of Fintech in Transforming Traditional Financial Services’. 
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fintech firms operate within distinct financial ecosystems, each with its own structure and 

way of transmitting risk. 

To move from theory to analysis, the next chapters present a network-based simulation 

framework which reflects the structural features of real-world financial systems. This model 

serves as the foundation for exploring how financial contagion propagates, and how different 

configurations of interconnectivity influence the dynamics of systemic risk. 
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Chapter 3: Network Construction and Data Description 

This chapter outlines the construction of financial network models and the data used for 

simulation. It details the modelling techniques, structural assumptions, and sector-specific 

variants used to represent Traditional, Fintech, and Joint financial systems. 

3.1. Modelling Financial Networks 

Building a realistic and reliable financial network is central to understanding how financial 

distress spreads between interconnected institutions. Based on empirical research on 

interbank systems and complex network theory, this framework attempts to reflect the 

structural differences between traditional and fintech sectors, as well as the blended 

interactions that occur in more integrated financial environments. 

3.1.1. Empirical Basis and Structural Characteristics 

Empirical studies of interbank networks across multiple national contexts (including Japan, 

Austria, the United Kingdom, Germany, Hungary, the United States, Italy, and Brazil) 

demonstrate that financial systems can be accurately characterised as complex networks (Li, 

He, & Zhuang, 2010)7. These systems consistently exhibit three interrelated structural 

properties: scale-free topology, small-world connectivity, and preferential attachment with 

embedded randomness. 

Scale-Free Structure 

In a scale-free network, the distribution of links across nodes follows a power law, where a 

small number of nodes (or institutions) maintain a disproportionately high number of 

connections, while most nodes have only a few. These highly connected nodes, known as 

hubs, are crucial for holding the system together. In financial networks, hubs often represent 

major players like central banks or other systemically important institutions. Because of their 

central roles, these entities can act as stabilisers in normal times, but they also pose serious 

risks: if one of them experiences distress, the effects can quickly spread through the network. 

This kind of hierarchical structure mirrors what we see in the real world, where institutions 

 
7 Li, He, and Zhuang, ‘A Network Model of the Interbank Market’. 



 

 7 

with more resources, stronger reputations, or regulatory importance tend to attract more 

connections and influence8. 

Small-World Property 

Even though financial networks can include thousands of institutions, they often show what’s 

known as the small-world property, meaning that most institutions are only a few steps away 

from one another, and many are grouped into tight clusters. This structure reflects the types of 

connected relationships present in actual banking groups or industry alliances. In practice, it 

allows information and liquidity to move quickly across the system, which helps with 

coordination and day-to-day operations. However, it also implies that issues can spread just 

as quickly, leaving little time to respond once a crisis begins9. 

Randomness and Preferential Attachment 

Two mechanisms control the creation of links in financial networks: preferential attachment, 

which makes it statistically more likely for new nodes to connect to nodes that are already 

well-connected, and a degree of randomness, which represents random interactions or 

opportunistic trading. However, this behaviour is not strictly arbitrary: in order to obtain 

stability and access to resources, smaller or newer institutions frequently look to form 

alliances with more established players. Over time, this pattern reinforces the dominance of 

key players and creates a “hub-and-spoke” structure in the network. By concentrating risk 

around a small number of crucial nodes, this structure increases systemic fragility, even 

though it might render the network more resilient under normal conditions10. 

These three structural features (scale-free structure, small-world property, and preferential 

attachment) collectively define the topology of the financial systems modelled in this study. 

They form the empirical and theoretical basis for building simulated networks that can 

replicate the dynamics of actual financial contagion, as explored in the following sections. 

3.1.2. Modelling with Barabási-Albert and Watts-Strogatz Networks 

To realistically simulate the topology of financial systems, this study employs two well-

established network generation models: the Barabási-Albert (BA) model and the Watts-

 
8 Barabási and Albert, ‘Emergence of Scaling in Random Networks.’ 
9 Duncan J. Watts and Strogatz Steven H. Strogatz, 'Collective Dynamics of Small-World Networks' 
10 Albert and Barabási, ‘Statistical Mechanics of Complex Networks’. 
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Strogatz (WS) model. Each provides a complementary set of structural properties that 

together help replicate the observed complexity of real-world financial networks. 

Barabási-Albert model 

The Barabási-Albert (BA) model is a network generation mechanism that captures two 

fundamental properties observed in real-world systems: growth and preferential attachment. 

In this model, a network evolves over time by continuously adding new nodes, each of which 

forms links preferentially to existing nodes that already have a higher degree of connectivity. 

This “rich-get-richer” dynamic leads to the emergence of a scale-free topology, where the 

degree distribution follows a power law. That is, most nodes have few connections, while a 

small number of hubs accumulate disproportionately many links. In the context of financial 

systems, these hubs often correspond to systemically important institutions, such as large 

commercial banks and major payment platforms. Their central role makes them both 

stabilisers under normal conditions and critical risk factors under distress. Using the BA 

model to construct the network backbone ensures that the simulation faithfully reproduces 

this asymmetry in systemic influence, that is, the unequal distribution of connections within 

the network.  

Watts-Strogatz model 

The Watts-Strogatz (WS) model provides a generative mechanism for constructing networks 

that simultaneously exhibit high clustering and short average path lengths, two defining 

features of so-called small-world networks. Starting from a regular lattice where each node is 

connected to its nearest neighbours, the model randomly rewires a fraction of the edges with 

a certain probability. This rewiring process maintains the local connectivity patterns typical of 

regular graphs while introducing shortcuts that drastically reduce the typical distance between 

nodes. In the context of financial systems, small-world properties are particularly relevant for 

modelling flexible and interconnected ecosystems, such as those emerging in fintech sectors. 

High clustering reflects the tendency of firms to form dense ties, while short paths between 

institutions facilitate rapid information diffusion and potential contagion. By incorporating 

the WS model into the network construction process, the simulation framework captures the 

coexistence of local resilience and global vulnerability. 

Hence, to build a network that mirrors both the scale-free and small-world features found in 

real-world financial systems, this thesis uses a hybrid modelling strategy. The core structure 
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is created using the Barabási-Albert model, which helps capture the formation of hubs and 

variation in connectivity across institutions. Then, to introduce more clustering and reduce 

the average distance between nodes (without disrupting the overall power law structure), 

some edges are randomly rewired based on the Watts-Strogatz model. This layered approach 

captures the dual nature of today’s financial systems: the dominance of a few key institutions 

and the evolving connections between smaller players (especially where traditional banks and 

fintech platforms intersect through contractual ties). Together, the BA and WS models offer a 

realistic framework for simulating different network types (Traditional, Fintech, and Joint) 

and for testing how each responds to financial contagion in the scenarios presented and 

analysed in Chapters 4 and 5. 

3.1.3. Node and Edge Definitions, Weights, and Directionality 

In this simulation framework, financial institutions are modelled as nodes within a directed, 

weighted graph, where edges represent financial exposures between them and the edge 

weights quantify the magnitude of these exposures. 

In particular, each node in the network represents a financial entity, either a traditional 

institution or a fintech firm, depending on the simulation scenario. For the purposes of the 

simulation, each node is assigned a unique identifier, a list of directly connected institutions 

to represent its financial relationships and a counter tracking consecutive periods in financial 

distress.  

As for the edges, since they represent the channels through which financial distress 

propagates, their weights are determined according to a simple risk-sharing assumption: each 

outgoing edge distributes risk equally among the node’s neighbours. Formally, the weight wij 

of an edge from node i to node j is defined as: 

This approach bases weights solely on the number of outgoing edges, rather than the total 

degree, reflecting the intuition that a node spreads its obligations across all its outgoing links. 

In financial networks, an outgoing edge from node i to node j signifies a financial exposure of 

j to i (for instance, a loan or a liquidity provision that j depends on). If node i were to default, 

the loss would propagate outward to all connected institutions according to the distributed 

weights. Importantly, this structure captures the directionality of exposures: a directed edge 
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from node i to node j indicates that cash flows from i to j, implying that j bears potential 

losses if i defaults. This design mirrors real-world financial contagion dynamics, where 

shocks travel downstream through credit or liquidity. Assigning weights based only on 

outgoing edges emphasises that institutions transmit risk outward, while incoming edges 

reflect the risks they absorb from others. 

Using degree-based weighting offers a straightforward way to model how institutions share 

risk, but it doesn’t take into account differences in their size. Since larger organisations are 

more likely to have an impact on a larger range of counterparties, taking into account the 

originating institution's size (such as its total assets or capital buffer) could increase realism. 

However, including this kind of detail would make the model more complex and would 

require reliable data that may not always be available or easy to compare. Still, the current 

approach effectively shows how institutions spread risk through their connections while also 

capturing how they absorb risk from others. In this way, the network doesn’t just show who’s 

connected to whom, but it also reflects the direction in which financial risk moves and how it 

can lead to systemic contagion. 

3.2. Data Generation and Parameter Definition 

In this thesis, three distinct types of financial networks are constructed and analysed: a 

Traditional network, a Fintech network, and a Joint network. To ensure comparability, the 

number of nodes across all three configurations is maintained constant. However, two key 

structural parameters are varied to reflect the differing patterns of connectivity and risk-

sharing dynamics empirically observed. In particular, we adjust the number of connections 

that new nodes establish upon entry and the probability of edge rewiring for each network.  

Number of nodes 

The network size in the simulations is fixed at N = 1,000 nodes across all configurations. This 

choice is driven by precedents in the financial contagion literature, seeking a balance between 

realistic structure and manageable complexity. Gai and Kapadia (2010)11 explicitly use 

networks of 1,000 institutions to represent national banking systems and study systemic 

fragility under different shock scenarios. Similarly, Amerongen et al. (2019)12 generate a 

 
11 Gai and Kapadia, ‘Contagion In Financial Networks’. 
12 Amerongen et al., ‘Agent-Based Models for Assessing the Risk of Default Propagation in Interconnected 
Sectorial Financial Networks’. 
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synthetic financial client-supplier network with 103 nodes based on transaction-level data 

from 140,000 Spanish firms, later using subsets of this size for running simulations. Fixing N 

= 1,000 allows us to realistically capture sectoral heterogeneity while ensuring convergence 

of simulations across scenarios. 

Number of entry connections 

The number of entry connections m that a new node establishes upon joining the network 

influences the system’s resilience, clustering, and vulnerability to contagion. In this thesis, 

different values of this parameter for each network type are assigned following empirical 

studies on real-world interbank networks. According to data compiled by the European 

Systemic Risk Board (2017)13, which surveyed 13 national financial systems, the average 

node degree typically ranges between 3 and 10, with median degrees around 3 to 8, reflecting 

sparse but considerable interconnectedness across institutions. These findings provide a 

baseline for constructing networks that are neither overly dense nor unrealistically 

disconnected. For the Traditional banking network, the number of entry connections m is set 

in order to achieve an average degree <k> = 8, aligning with both ESRB’s observations and 

prior modelling work that highlighted the hierarchical structure of traditional interbank 

networks (Suprun et al., 2020; Gai and Kapadia, 2010)14,15. Conversely, for the Fintech 

network, a lower entry degree m is assigned in order to achieve an average degree <k> = 4, 

reflecting the more decentralised character of fintech ecosystems, as described by Siddiqui 

and Rivera (2022)16. Finally, the Joint network, integrating both types of institutions, achieves 

an intermediate average degree <k> = 7 to mimic hybrid sector structures.  

Rewiring probability 

The rewiring probability (which regulates the rewiring mechanism during the Watts–Strogatz 

phase) governs the extent to which the network deviates from a regular structure by randomly 

reassigning connections between nodes and introducing shortcuts that significantly reduce the 

average path length while maintaining a high level of clustering. As a result, the network 

acquires small-world properties, characterised by a combination of local cohesion and global 

 
13 European Systemic Risk Board, "How Does Risk Flow in the Credit Default Swap Market?” 
14 Suprun, Petrishina, and Vasylchuk, ‘Competition and Cooperation between Fintech Companies and 
Traditional Financial Institutions’. 
15 Gai and Kapadia,  ‘Contagion In Financial Networks’. 
16 Siddiqui and Rivera, ‘FinTech and FinTech Ecosystem’. 
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reachability. In this thesis, different rewiring probabilities are assigned across the three 

network types to reflect their distinct structural dynamics. For the Traditional banking 

network, a low rewiring probability is used, consistent with the relatively rigid and 

hierarchical structures observed in conventional interbank systems, while the Fintech network 

is assigned a higher rewiring probability, capturing the decentralised and dynamic 

connections of fintech ecosystems. Finally, for the Joint network, an intermediate rewiring 

probability is selected to represent a blended topology, where traditional stability and fintech 

dynamism coexist.  

3.3. Network Variants and Sectoral Representations 

Having established the general framework and the data generation process (including the 

parameters used to construct the networks), we now turn to the implementation of the 

different network variants. This section outlines how each network is generated in practice. 

Additionally, a set of structural metrics is introduced to assess the networks, highlighting how 

their properties realistically capture the key differences between traditional and fintech 

financial ecosystems. 

3.3.1. Traditional vs FinTech Financial Network 

As already discussed in the previous paragraphs of this chapter, the Traditional and Fintech 

financial networks are constructed following a structured procedure aimed at replicating the 

key topological features observed in real-world financial systems. Following the already 

presented method in Section 3.1.2., the network generation process is based on the Barabási-

Albert (BA) and Watts-Strogatz (WS) models, and it is formalised through the pseudo-code 

outlined below for clarity and reproducibility. 

Step 1: Generate Base Graph (Scale-Free Structure) 
CREATE scale-free graph using Barabási–Albert model with (num_nodes, 
num_connections_entry_banks) 
CONVERT graph to directed graph (DiGraph) 
 
Step 2: Assign Weights and Attributes to Nodes 
FOR each node in graph: 

GET list of neighbouring nodes 
SET num_connections = number of neighbours 
 
IF num_connections > 0: 

SET weight = 1 / num_connections 
ELSE: 
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SET weight = 0 
 

ADD attributes to node 
ADD weighted directed edges to graph 

 
Step 3: Rewire Edges for Clustering (Watts-Strogatz Style) 
FOR each node in graph: 

GET list of outgoing edges (successors) 
 
IF node has at least 2 neighbours: 
FOR each pair of neighbours: 
WITH probability rewire_prob: 
IF edge does not exist between neighbours: 
ADD directed edge between them with weight = 1 / num_neighbours 
 

Therefore, while the basic construction methodology is shared by both networks, the intrinsic 

topological characteristics differ significantly between the traditional financial system and the 

fintech ecosystem thanks to the use of distinct parameter settings (as discussed in Section 

3.2.).  

These differences are examined through a range of structural metrics and centrality measures, 

which are presented below, with their corresponding values reported in Table 1. Thus, the 

goal is to assess whether the networks generated for this study effectively replicate the 

characteristics observed in real-world financial systems.  

Distance Metrics 

The average shortest path length (defined as the average number of steps along the shortest 

paths between all pairs of nodes in a network) in the Traditional banking network is lower, 

meaning that institutions can generally reach each other through fewer intermediaries. This 

reflects the presence of central hubs in traditional systems, enabling rapid transmission of 

financial flows or contagion across the network. Conversely, the Fintech network displays a 

higher average shortest path length, indicating a more fragmented structure where institutions 

may require more steps to connect, consistent with a decentralised topology.                                                                                                                                      

The diameter (measured as the maximum shortest path between any two nodes) follows the 

same pattern: it is smaller in the Traditional network and larger in the Fintech network. This 

confirms that traditional systems, despite being less locally clustered, achieve faster global 

connectivity through centralised hubs, while fintech systems exhibit slower cross-network 

reachability. 
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Structural Properties 

The Fintech network exhibits a higher average clustering coefficient (measured as the 

tendency of a node’s neighbours to also be connected to each other) compared to the 

Traditional network. This indicates that institutions in the fintech sector tend to form densely 

interconnected groups, a feature driven by the collaborative nature of fintech firms, which 

often establish flexible partnerships. In contrast, the Traditional banking network displays a 

lower clustering coefficient, reflecting its more centralised and hierarchical organization 

around a few dominant hubs.                                                                                           

Similarly, transitivity (defined as the likelihood that two institutions connected to a common 

third party are themselves directly connected) is higher in the Fintech network. This outcome 

aligns with the fintech sector’s decentralised configuration, where firms frequently engage in 

mutual partnerships, fostering strong local interconnectivity. The Traditional network, on the 

other hand, shows lower transitivity, consistent with the “hub-and-spoke” system where 

smaller institutions are typically connected through major banks rather than directly to each 

other. 

Centrality Measures 

The Traditional network achieves a higher maximum closeness centrality (which measures 

how easily a node can reach all other nodes in the network based on the inverse of the 

average shortest path length from that node to all others), suggesting that in the traditional 

banking system, key institutions are able to reach other nodes more efficiently across the 

network, thanks to the centralised hub structure that reduces the number of intermediaries 

needed. On the other hand, the Fintech network, despite its decentralised design, shows lower 

closeness centrality, indicating that, on average, institutions are relatively less efficient in 

reaching the broader system, likely due to the fragmented nature of fintech interconnections.  

Thus, while the fintech sector maintains a more decentralised and locally clustered structure, 

the traditional banking sector facilitates faster global connectivity through central hubs. 

Overall, the Fintech network exhibits features of a modular system, characterised by high 

clustering, high transitivity, longer average path lengths, a larger diameter, and a more 

decentralised distribution of centrality. This architecture fosters innovation, flexibility, and 

local resilience, but at the cost of slower global reachability and increased vulnerability to 

fragmentation between clusters. In contrast, the Traditional banking network presents 
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characteristics typical of a scale-free architecture, with lower clustering and transitivity, 

shorter path lengths, and a smaller diameter. Its organisation around centralised hubs enables 

more efficient system-wide communication and faster global contagion spread, but also 

concentrates systemic risk within a few dominant institutions.                                                

Accordingly, the metrics obtained from the generated networks are consistent with the 

structural patterns observed in the real-world financial systems discussed in Sections 3.1.1. 

and 3.2. 

 

 

 

 

  

Figure 1 Sampled Traditional Financial Network with Highlighted 
Hubs and Clusters 
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Figure 2 Sampled Fintech Financial Network with Highlighted Hubs 
and Clusters 

Figure 3 Sampled Joint Financial Network 
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3.3.2. Joint Financial Network 

The Joint financial network is designed to capture the interconnected structure of modern 

financial systems, where traditional institutions and fintech firms coexist and interact within a 

common environment. The construction methodology follows the general procedure outlined 

previously, combining the Barabási-Albert (BA) growth process with the Watts-Strogatz 

(WS) rewiring procedure, as discussed in Section 3.1.2. and in Section 3.3.1. 

However, to the pseudo-code presented in Section 3.3.1, a fourth step is added to explicitly 

distinguish between traditional and fintech entities inside the Joint network: 

Step 4: Assign Fintech (F) and Traditional (T) Labels 
SET n_fintech = fintech_fraction * num_nodes   
 
SORT nodes by degree in ascending order   
SELECT first n_fintech nodes as fintech firms 
FOR each node in selected fintech firms: 

SET node['type'] = 'F' 
FOR each remaining node: 

SET node['type'] = 'T' 

 

Thus, following the generation of the base graph and the assignment of weights and node 

attributes (Steps 1 to 3), nodes are partitioned into traditional and fintech institutions based on 

their degree centrality. A fraction of nodes, corresponding to 40% of the total, is designated as 

fintech firms (represented with the colour red in Figure 3) by assigning this role more often to 

nodes with lower degrees. This proportion reflects the increasing presence of fintech 

institutions in the global financial landscape, which, while growing rapidly, still represent a 

minority compared to traditional players. Moreover, this approach mirrors the empirical 

observation that fintech firms typically maintain peripheral positions compared to established 

banks, which often occupy highly central positions in the network.  

Structurally, the Joint network exhibits intermediate topological features between those 

observed in the pure Traditional and Fintech systems, as shown by the values reported in 

Table 1. While the presence of highly connected traditional hubs guarantees wider 

reachability, the inclusion of decentralised fintech nodes promotes localised clustering and 

flexibility. As a result, the Joint network displays a balance between long-range connectivity 
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and local cohesiveness, combining the structural stability of traditional financial systems with 

the modular adaptability of fintech ecosystems. 

Centrality measures within the Joint network similarly reflect this hybrid nature. Fintech 

nodes tend to occupy peripheral positions, while traditional institutions dominate in terms of 

connectivity. However, the overall distribution of centrality is more balanced compared to the 

pure traditional network, indicating that systemic influence is more evenly distributed, 

although key hubs continue to play a significant role in maintaining the cohesion of the 

system. 

 

 

Metric Traditional 
Network 

Fintech Network Joint Network 

Average Clustering 
Coefficient 

0.048 0.059 0.053 

Transitivity 0.022 0.029 0.023 

Average Shortest 
Path Length 

4.051 7.757 5.041 

Diameter 7 17 9 

Maximum Closeness 
Centrality 

0.002 0.0008 0.001 

Table 1 Structural and centrality metrics for Traditional, Fintech, and Joint financial 
networks. 
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Chapter 4: Methodological Framework 

This chapter presents the methodological framework used to model financial contagion 

through the SIIS approach. It introduces both micro-level (agent-based) and macro-level 

(mean-field) contagion dynamics, alongside the simulation design, calibration, and scenarios 

evaluated. The aim is to enable a comprehensive assessment of how systemic risk spreads. 

4.1. The SIIS contagion model 

Having established a network formation process that mimics the structural properties of real-

world financial systems, this section introduces the SIIS contagion model. It adapts 

epidemiological principles to simulate how financial distress spreads through both micro-

level and macro-level contagion dynamics. 

4.1.1. Overview of Classical Epidemiological Models and SIIS 

Epidemiological modelling is a mathematical approach traditionally used to study how 

diseases spread within populations. These models, such as the Susceptible-Infected-

Susceptible (SIS) and the Susceptible-Infected-Recovered (SIR) frameworks, simplify 

individuals into compartments based on “health” states and simulate transitions between them 

over time. In recent years, this approach has been applied to financial systems to understand 

systemic risk, where “infection” corresponds to financial distress spreading through a 

network of institutions. Just as diseases spread through social contact, financial contagion 

propagates via interbank exposures. Both models have been instrumental in assessing 

systemic risk, allowing researchers to simulate how initial defaults can propagate through 

financial networks. 

SIS contagion model 

The Susceptible-Infected-Susceptible (SIS) model is a classical compartmental framework in 

epidemiology designed to capture scenarios in which individuals, after being infected and 

recovering, return to a state of susceptibility rather than acquiring immunity. This cyclical 

structure makes it particularly relevant for modelling processes characterised by recurrent 

exposure and vulnerability. Formally, agents transition between two states: susceptible (S), 

meaning healthy but exposed to potential infection, and infected (I), meaning currently 

infected and capable of spreading the disease. Over time, infected agents recover and become 

susceptible again, and the cycle continues, or it stops when an eventual steady state is 
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reached. In financial systems, the SIS model has been adapted to study contagion dynamics 

where institutions oscillate between solvency (S) and financial distress (I). This modelling 

approach has been effectively applied in the study by Van Amerongen, Mir Mora, and 

Sánchez de la Blanca Contreras (2019)17, where an agent-based SIS framework was 

developed to simulate the spread of default risk across several financial networks, offering 

insights into how distress propagates through these systems. 

SIR contagion model 

The Susceptible-Infected-Recovered (SIR) model is another foundational framework in 

epidemiological modelling, designed to represent processes in which individuals, once 

infected and recovered, gain immunity and do not re-enter the susceptible state. The model 

consists of three states: susceptible (S), infected (I), and recovered (R). Susceptible 

individuals may contract the infection and transition to the infected state, from which they 

eventually recover, and enter the recovered state permanently. This one-way transition 

reflects contagion scenarios where agents are removed from further propagation cycles after 

infection. In financial systems, the SIR model has been adapted to study contagion in 

contexts where financial distress leads to the permanent removal (R) of institutions from the 

market (such as bankruptcies or long-term regulatory interventions), or where the recovered 

(R) state may symbolise a bank resolution or merger that makes the institution no longer 

vulnerable to further contagion. For instance, Gai and Kapadia (2010)18 introduced a 

network-based contagion model that mirrors SIR progression to show how small shocks can 

lead to widespread defaults depending on network density and connectivity. 

SIIS contagion model 

For the purpose of this thesis, a modified epidemiological framework is implemented, the 

Susceptible-Infected1-Infected2-Susceptible (SIIS) model, to better capture the heterogeneity 

of financial distress across complex financial networks. While classical SIS and SIR models 

have proven effective in modelling contagion, they assume uniform severity of infection. 

However, real-world financial systems often experience multiple stages of distress, such as 

liquidity pressure followed by insolvency risk, especially in interconnected ecosystems 

 
17 Amerongen et al., ‘Agent-Based Models for Assessing the Risk of Default Propagation in Interconnected 
Sectorial Financial Networks’. 
18 Gai and Kapadia, ‘Contagion In Financial Networks’. 
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involving both traditional banks and fintech entities. The SIIS model extends the SIS 

structure by introducing two distinct states of infection, allowing for the simulation of 

escalating risk propagation. That is, at each iteration, a node can be found in one of four 

possible states: Susceptible (S), First-degree Infected (I₁), Second-degree Infected (I₂), or 

Removed (R), with transitions governed by probabilistic rules based on exposure and 

institutional resilience. This allows for a more granular representation of contagion dynamics, 

where institutions may move from mild distress (e.g., short-term funding strain) to severe 

distress (e.g., insolvency) before potentially recovering. The choice of SIIS over SIIR is 

motivated by the need to capture recurrent exposure and recovery cycles, reflecting the 

empirical observation that institutions may return to stability and re-engage in the financial 

network after distress, rather than gaining permanent immunity. In contrast, nodes in the 

Removed (R) state represent institutions that have exited the system and are, from a network 

perspective, no longer active participants, thus physically removed from the graph and 

excluded from further contagion dynamics. 

4.1.2. Agent-Based Modelling of SIIS: Micro-Level Contagion Dynamics 

From a micro-level perspective, the SIIS model is formulated as a stochastic agent-based 

model (ABM). A stochastic ABM simulates the behaviour of a system by modelling the 

interactions of individual agents, each following probabilistic rules. Indeed, the stochasticity 

reflects real-world uncertainty (such as unexpected defaults) by introducing random variation 

in each agent’s state transitions at every time step. Unlike deterministic models, where the 

system evolves in a fixed and predictable way, stochastic ABMs allow different simulation 

runs to yield different outcomes, even under identical initial conditions.  

In the case of the SIIS model, transitions between the different states depend not only on the 

institution’s own characteristics and current state, but also on its network neighbours and 

their level of distress. At every time step, a random value is generated (from a uniform 

distribution between 0 and 1) for each possible transition (infection, escalation, recovery, or 

removal). This random value is then compared to the corresponding computed transition 

probability, which is derived from factors such as exposure intensity (edge weights), infection 

rate, and institutional persistence. If the random draw falls below the threshold, the transition 

occurs.  
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To operationalise these transitions, the model uses a set of core parameters that regulate the 

dynamics of contagion and recovery: 

- Λ (lambda): the external entry rate, representing the inflow of new healthy institutions 

into the financial system over time. 

- β (beta): the infection rate, determining the likelihood that a susceptible node becomes 

infected based on its exposure to distressed neighbours. 

- α (alpha): the escalation probability, which governs the transition from first-degree 

(I1) to second-degree (I2) infection under persistent distress.  

- μ (mu): the recovery probability, controlling how likely a node is to return to the 

susceptible state from either I1 or I2. 

- ν (nu): the failure probability, governing the chance that a severely distressed node 

(I2) exits the system.  

- τ (tau): the sector-specific persistence threshold, representing the number of 

consecutive distressed periods a node can withstand before forced removal once it 

enters the severely distressed state I2. 

The following part of this section formalises the agent-based implementation of the SIIS 

contagion process by detailing the specific transition dynamics that govern the behaviour of 

each financial institution (node) in the network. At each time step, every agent updates its 

state based on a set of probabilistic rules presented below, according to the stochastic process 

mentioned above. Thus, the logic is executed at the node level and encoded directly into the 

agent-based simulation engine, enabling the model to replicate non-linear contagion 

pathways under stochastic uncertainty.  

The general transition dynamics for both the Traditional and Fintech sectors are described as 

follows: 

1.  Susceptible (S): a node in the S state represents a financially healthy institution that is 

not currently in distress, but it is exposed to risk from its distressed neighbours.  

- Transition to First-Degree Infected (I₁): if the institution has connections to 

infected nodes (I₁ or I₂), it may transition to financial distress with a 

probability dependent on the infection rate β and on the financial exposure 

(represented by the edge weights) to distressed neighbours. 
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The probability of infection for a healthy node due to the influence of its 

neighbours is computed iteratively by initialising qi = 1 (which represents the 

probability of avoiding infection) and updating it for each infected neighbour 

based on the infection rate β and the edge weight between the two nodes.                           

The formula qi(t) = ΠNj=1 (1−βrji) progressively lowers qi as more infected 

neighbours apply their influence, where rji represents the weight of the edge 

between node i and node j. The final infection probability is given by 1 – qi, 

meaning that a node is more likely to be infected if it has multiple distressed 

neighbours or strong financial ties to them.  

- Remains in S: if no transmission occurs, the node stays in S. 

        IF node is Susceptible (S): 
            SET q_i = 1  “” probability of NOT getting infected “” 
 
            FOR each neighbour in neighbours: 
                IF neighbour is infected (I1 or I2): 
                    IF an edge exists between neighbour and current node: 
                        RETRIEVE edge weight 
                        UPDATE q_i using infection probability formula: 
                         q_i *= (1 - beta * edge_weight) 
 
            COMPUTE infection probability: infection_prob = (1 - q_i) 
 
            GENERATE random value rand_val between 0 and 1 
            IF rand_val < infection_prob:  
                  SET node's state to I1 
            ELSE:  
                      node remains S 
 

2. First-Degree Infected (I1): nodes in I₁ have entered a state of financial distress, 

representing institutions facing liquidity issues, delayed payments, or other financial 

instability. 

- Transition to Second-Degree Infected (I₂): if distress persists, the institution 

escalates to I₂ with probability α, reflecting a worsening financial condition. 

- Recovery to Susceptible (S): the institution may recover and return to S with 

probability μ, indicating that it has regained stability.  
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- Remains in I1: if neither escalation nor recovery occurs, the node stays in I₁ 

while accumulating defaulted consecutive turns, increasing its risk of being 

removed. 

ELIF node is First-Degree Infected (I1): 
            INCREMENT defaulted consecutive turns 
            GENERATE random value rand_val between 0 and 1 
 
            IF rand_val < escalation rate (α): 
                SET node's state to I2 
                INCREMENT defaulted consecutive turns 
            ELIF rand_val < (α + recovery rate μ): 
                SET node's state to S 
                RESET defaulted consecutive turns 
            ELSE: 
                node remains in I1 
 

3. Second-Degree Infected (I2): institutions in I₂ face increased financial instability and a 

greater likelihood of failure. 

- Transition to Removed (R): if distress persists, the institution fails with 

probability ν and is permanently removed from the network. An institution 

could also transition to R from I2 if the number of consecutive turns it has been 

in I2 exceeds the removal threshold τ.  

- Recovery to Susceptible (S): the institution may recover and return to S with 

probability μ, indicating that it has regained stability. 

- Remains in I2: if neither failure nor recovery occurs, the node stays in I2 while 

accumulating defaulted consecutive turns, increasing its risk of being 

removed. 

        ELIF node is Second-Degree Infected (I2): 
            INCREMENT defaulted consecutive turns 
            GENERATE random value rand_val between 0 and 1 
 
            IF rand_val < removal probability (ν): 
                ADD node to removal list 
            ELIF rand_val < (ν + recovery rate μ): 
                SET node's state to S 
                RESET defaulted consecutive turns 
            ELIF defaulted consecutive turns exceed removal threshold: 
                ADD node to removal list 
            ELSE: 
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                node remains in I2 

4.  Removed (R): institutions in R have permanently exited due to failure, bankruptcy, or 

regulatory intervention. Once a node enters R, it is removed from the network, and its 

edges might be rewired to maintain connectivity among the remaining institutions, 

according to the selected reconnection policy presented in section 4.2.3. 

FOR each node in nodes_to_remove: 
        REMOVE node from graph 
        REWIRE remaining neighbours to maintain network connectivity 

 

Finally, to further reflect the intrinsic differences between traditional and fintech institutions 

within the Joint financial network simulation, an additional modification to the standard SIIS 

contagion mechanism is introduced. Specifically, while susceptible traditional institutions 

exposed to financial distress transition first into a mildly distressed state (Infected₁), fintech 

firms in the Joint setting escalate immediately to the severely distressed state (Infected₂) after 

infection. This sector-specific escalation rule is applied only in the Joint network to capture 

the hybrid dynamics of an integrated financial system. Note that in the distinct Traditional 

and Fintech network simulations, all institutions initially transition to the Infected₁ stage 

regardless of their type. Formally, under the Joint network specification:  

GENERATE random value rand_val between 0 and 1 
            IF rand_val < infection_prob:  
                  node becomes infected 
                  IF the node is Fintech (`F`): 
                            SET node's state to I2 
                  ELSE: 
                            SET node's state to I1 
            ELSE:  
                      node remains S 
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4.1.3. Mean-Field Approximation of SIIS: Macro-Level Contagion Dynamics  

While the agent-based model captures contagion dynamics through local interactions and 

stochastic transitions at the node level, it is often analytically useful to approximate the 

aggregate behaviour of the system using a deterministic framework. This is achieved through 

a mean-field approximation, a technique that replaces the individual stochastic processes with 

average quantities representing the behaviour of a large population. In the context of the SIIS 

model, the mean-field approach translates the micro-level contagion mechanics into a system 

of three ordinary differential equations (ODEs), describing the time evolution of the 

proportions of nodes in each state, that is, Susceptible (S), First-degree Infected (I₁), and 

Second-degree Infected (I₂). For simplicity, the total population is assumed to remain 

constant over time, such that N = S + I1 + I2, with removed nodes (R) permanently excluded 

from the system. 

                                                                                                                

 

The first equation models the overall change in the population of financially healthy 

institutions. It balances new entries into the system, losses due to contagion from distressed 

neighbours, and gains from institutions recovering from either mild or severe distress:  

- + Λ represents the external inflow of new solvent institutions (e.g., market entrants). 

- - 𝛽⟨𝑘⟩ ("!#"")%
&

		is the expected infection rate: susceptible nodes become infected 

through interactions with both I₁ and I₂ neighbours.  

- + μ(I1+I2) accounts for recovery: infected institutions that regain stability re-enter the 

susceptible pool. 

The second equation tracks the total share of institutions in early-stage distress. It reflects 

how many new cases arise due to contagion, and how many agents leave this state either by 

recovering or deteriorating further:  
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- + 𝛽⟨𝑘⟩ ("!#"")%
&

		models new infections entering the I₁ state due to exposure from 

infected neighbours. 

- - μI1 represents recovery from mild distress back to the susceptible state.	

- - αI1  reflects escalation: institutions whose condition worsens move from I₁ to I₂. 

The third equation measures the evolution of the severely distressed institutions in the 

network. It accounts for inflows from escalating I₁ nodes, and outflows due to either recovery 

or failure: 

- + αI1 models the inflow into I₂ from escalation of I₁ institutions. 

- - μI2  represents recovery from severe distress. 

- - νI2  captures permanent removal of highly distressed institutions. 

Note that in the mean-field formulation, the persistence threshold τ used in the agent-based 

model is indirectly reflected in the choice of the removal rate parameter ν. The continuous 

system does not explicitly track time spent in a given state, but rather aggregates expected 

outflows based on average duration. 

Steady-State Analysis  

Understanding the steady-state behaviour of the SIIS contagion model is essential for 

assessing the long-term resilience or vulnerability of financial networks under distress. The 

steady state refers to the equilibrium condition where the proportions of susceptible, mildly 

distressed, and severely distressed institutions stabilise over time, and no further significant 

changes occur. 

In this section, the equilibrium values of the system are derived to identify the conditions 

under which financial distress stabilises. By setting the time derivatives of the state variables 

equal to zero, we determine the steady-state values of susceptible institutions S*, mildly 

distressed institutions I1*, and severely distressed institutions I2*. 
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1. The first step in the steady-state analysis focuses on solving for the proportion of 

severely distressed institutions, I2, under equilibrium conditions. At steady state, by 

definition, the rate of change of each state variable becomes zero. Rearranging the 

third equation from the system allows us to solve explicitly for I2 in terms of I1:  

													
dI'
dt = αI( − µI' − νI' = 0 

																				α𝐼( = (µ + ν)𝐼' 

																					𝐼' =
α𝐼(
µ + ν 

2. In the second step, we solve for the steady-state proportion of mildly distressed 

institutions, I1, ensuring a non-trivial equilibrium condition where I1 > 0. Then, we 

solve for S in order to obtain the first steady-state condition for S*: 

dI(
dt = β⟨k⟩

(I( + I')S
N − µI( − αI( = 0 

β⟨k⟩
7I( +

αI(
µ + ν8 S

N − µI( − αI( = 0 

𝐼( 9β⟨k⟩
)(# #

$%&*+

,
− µ − α: = 0  

β⟨k⟩
71 + α

µ + ν8 S

N = µ + 	α 

𝑺∗ =
𝐍(𝛍 + 𝛂)

𝛃⟨𝐤⟩ 7𝟏 + 𝛂
𝛍 + 𝛎8

 

3. In the third step, we determine the steady-state value of I1* by substituting the 

previously derived expressions for S* and I2 into the steady-state equation for S, and 

solving for I1 explicitly: 

Λ − β⟨k⟩
7I( +

αI(
µ + ν8 S

∗

N + µEI( +
αI(
µ + νF = 0 
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𝐼(Gβ⟨k⟩
71 + α

µ + ν8 S
∗

N − µE1 +
α

µ + νFH = Λ 

𝐼(Gβ⟨k⟩
71 + α

µ + ν8

N ⋅
N(µ + α)

β⟨k⟩ 71 + α
µ + ν8

− µ E1 +
α

µ + νFH = 	Λ 

I( 9µ + α − µE1 +
α

µ + νF: =  Λ 

𝐼( Eα −
µα
µ + νF = 	Λ 

𝐼(α
ν

µ + ν = 	Λ 

𝑰𝟏∗ =
𝚲(𝛍 + 𝛎)

𝛂𝛎  

4. In this step, we compute the steady-state value of I2* by substituting the previously 

obtained expression for I1* into the relationship between I1 and I2 derived in Step 1: 

𝐼'∗ =
α

µ + ν ×
Λ(µ + ν)
αν  

𝑰𝟐∗ =
𝚲
𝛎 

5. In the final step, we substitute the expressions for I1* and I2* back into the steady-

state condition for S to solve for the explicit equilibrium value S*, since                              

N* = S* + I1* + I2*:  

S∗ =
)+∗#(($%&)#& #(&*(0#1)

2⟨4⟩)(# #
$%&*

  

S∗ =
7S∗ + Λν ⋅

µ + ν + α
α 8 (µ + α)

β⟨k⟩ 71 + α
µ + ν8

 

𝑆∗ ⋅ β⟨k⟩ E1 +
α

µ + νF = ES∗ +
Λ
ν ⋅
µ + ν + α

α F (µ + α) 
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𝑆∗ ⋅ β⟨k⟩ ⋅
µ + ν + α
µ + ν = S∗(µ + α) +

Λ
ν ⋅
(µ + ν + α)(µ + α)

α  

𝑆∗ Oβ⟨k⟩ ⋅
µ + ν + α
µ + ν − (µ + α)P =

Λ
ν ⋅
(µ + ν + α)(µ + α)

α  

𝑆∗ =
Λ
ν ⋅
(µ + ν + α)(µ + α)

α
β⟨k⟩ ⋅ µ + ν + αµ + ν − (µ + α)

 

𝐒∗ =
𝚲
𝛎 ⋅

(𝛍 + 𝛎 + 𝛂)(𝛍 + 𝛂)

𝛂 R𝛃⟨𝐤⟩ ⋅ 𝛍 + 𝛎 + 𝛂𝛍 + 𝛎 − (𝛍 + 𝛂)S
 

As demonstrated by the computations above, each steady-state variable is determined by a 

specific combination of model parameters: the infection rate β, escalation probability α, 

recovery rate μ, failure rate ν, network connectivity ⟨k⟩, and external inflow Λ. 

The share of severely distressed institutions at equilibrium (I2*) is driven by the ratio of the 

inflow rate Λ to the failure rate ν, indicating that systems with high external inflows or slow 

failure dynamics are more likely to accumulate vulnerable nodes. Similarly, I1* depends on 

both escalation (α), and recovery plus failure parameters (μ, ν), reflecting the tension between 

deterioration and resilience among mildly distressed institutions. Finally, the equilibrium 

proportion of healthy institutions S* is jointly influenced by the infection pressure (captured 

by β⟨k⟩), the internal recovery capacity of the system (μ), and escalation dynamics (α, ν); this 

points out how stability depends not only on the network’s structural connectivity, but also on 

the balance between internal resilience and the pressure applied by incoming shocks. 

These steady-state relationships offer a quantitative benchmark for interpreting simulation 

outcomes. In Chapter 5, they will help assess whether the micro-level dynamics align with 

the macro-level expected results derived from the mean-field model.  

4.2. Simulation Design 

After defining how contagion spreads through the network, this section outlines the 

simulation setup used to implement the agent-based SIIS model. It details the parameter 

calibration strategy and the policy interventions embedded within the agent-based 

environment. 
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4.2.1. Parameter Calibration 

To simulate the contagion dynamics accurately across the Traditional, Fintech, and Joint 

financial networks, the key parameters of the SIIS model were calibrated to reflect the 

empirical characteristics observed in each sector. In particular, constant values were set for 

infection probability (β) and recovery rate (μ) across all simulations, while the values for 

escalation probability (α) and removal probability (ν) were varied to capture sector-specific 

resilience and vulnerability patterns.  

The infection probability β and recovery rate μ are kept constant across all network scenarios 

to reflect the assumption that general economic conditions are common to all institutions in 

the simulated environment, consistent with the modelling choices proposed by Cheng and 

Zhao (2019)19 in their study. This choice ensures that differences in contagion outcomes are 

due to network structure and specific sectoral fragilities. 

In contrast, the escalation probability α and removal probability ν are varied between 

traditional and fintech institutions to reflect their distinct financial architectures. Higher 

escalation rates (α) are assigned to fintech firms to account for their generally lower buffers 

against shocks and their faster deterioration once distress begins. Lower escalation rates are 

chosen for traditional banks, which benefit from deeper capital reserves and historically 

slower paths toward failure. This distinction mirrors findings by Li, Tan, and Huang (2023)20, 

which show that fintech institutions move more quickly from stability to distress and are 

more fragile when facing contagion shocks than traditional financial firms. Similarly, 

removal probabilities (ν) are set higher for fintech firms due to weaker systemic safeguards, 

while lower values are assigned to traditional institutions, reflecting their stronger chances of 

recovery or support from regulators. 

Finally, both the external inflow rate of new healthy institutions (Λ) and the removal 

threshold (τ) are also differentiated across network types. The external inflow rate is set 

higher for the fintech network to capture its dynamic nature, where continuous innovation 

drives a more frequent arrival of new institutions compared to the more mature traditional 

banking sector. Conversely, the removal threshold τ is set lower for fintech firms to reflect 

 
19 Cheng and Zhao, 'Modeling, analysis and mitigation of contagion in financial systems'. 
20 Li, Tan, and Huang, ‘Research on Risk Contagion Mechanism of Big Fintech Based on the SIRS Model’. 
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their higher vulnerability and limited capacity to resist prolonged distress, whereas traditional 

banks are allowed longer persistence under stress, consistent with their stronger financial 

buffers. 

4.2.2. Reconnection Policies 

Following the removal of a node due to persistent distress or failure, its former neighbours 

are allowed to reconnect to maintain network continuity. Inspired by the framework proposed 

by Van Amerongen, Mir Mora, and Sánchez de la Blanca Contreras (2019)21, three different 

reconnection policies are presented to model alternative network adaptation processes.  

- None: the node’s neighbours do not rewire their disconnected edges after the node’s 

removal, leading to progressive fragmentation of the network. 

- Random: the node's neighbours select a new partner uniformly at random from all 

available nodes in the network, regardless of the health state of the target node (that 

is, both healthy and distressed nodes can be selected). 

- Risk-Aware: the node's neighbours reconnect only to nodes that are currently healthy 

(i.e., nodes in the susceptible state 'S'), avoiding connections to already distressed or 

defaulted institutions. 

For the purpose of this thesis, both the None and Risk-Aware reconnection policies are 

employed in the simulation for each network configuration. The random reconnection policy 

is intentionally excluded from the main simulations, as it introduces excessive noise and 

unrealistic dynamics by allowing distressed institutions to reconnect randomly with both 

healthy and unhealthy nodes. Such behaviour would not align with the rational risk-averse 

strategies typically observed in financial systems, where entities aim to minimise exposure to 

already vulnerable counterparties during crises. Focusing on None and Risk-Aware 

reconnection thus ensures a more realistic and policy-relevant exploration of systemic risk 

evolution. 

 

  

 
21 Amerongen et al., ‘Agent-Based Models for Assessing the Risk of Default Propagation in Interconnected 
Sectorial Financial Networks’. 
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4.2.3. Simulation Scenarios 

To study how network structure and reconnection rules affect contagion, we run simulations 

combining different policies with different network setups. The goal is to compare how the 

system behaves depending on whether agents reconnect in certain ways and whether a 

precautionary saving rule is used or not. 

In all simulations, initial shocks are assigned at random to a subset of nodes. The structural 

parameters of the SIIS model (e.g., infection rate, escalation rate, removal threshold) are 

customised for each network configuration (Traditional, Fintech, Joint) as described in 

section 4.2.1., but kept constant across the three policy scenarios to ensure comparability. 

Each simulation is run until a steady state is reached, defined as the point at which changes in 

the states of nodes fall below a tolerance threshold of 0.1%, indicating convergence of the 

system’s dynamics. 

To ensure reproducibility, the full set of parameters used in the simulations is presented in 

Table 2. This tabular overview serves as a reference point for interpreting simulation 

outcomes and for evaluating the relative impact of policy design across different financial 

network topologies. These parameters were chosen after preliminary simulation testing, as 

they produced the clearest differentiation in systemic outcomes across network types and 

policy regimes, while preserving internal consistency with the model’s behavioural 

assumptions. 

 Λ β α μ ν τ 

Traditional 2 0.7 0.3 0.03 0.07 15 

Fintech 4 0.7 0.4 0.03 0.1 10 

Joint 3 0.7 0.35 0.03 0.08 13 

Table 2 Simulations Parameters 

Each network type is tested under the following three scenarios: 

- Scenario 1)  No Reconnection, No Saving Mechanism: agents that lose connections 

due to the removal of distressed neighbours do not attempt to rewire. The network is 

allowed to fragment as contagion progresses, and no saving mechanism is 

implemented to mitigate shocks. This scenario serves as a baseline to evaluate the 

unmitigated spread of systemic risk in the absence of adaptive behaviour. 
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- Scenario 2) Risk-Aware Reconnection without Saving Mechanism: agents that lose 

links only reconnect to susceptible nodes. However, there is no external intervention 

for systemically important institutions, making the system reliant solely on agent-

level adaptation.  

- Scenario 3) Risk-Aware Reconnection with Saving Mechanism (Too-Big-to-Fail): in 

addition to risk-aware rewiring, the simulation activates a too-big-to-fail (TBTF) 

mechanism, which means that nodes identified as systemically important (e.g., highly 

connected hubs) are protected from removal through external intervention. Upon 

default, these nodes are automatically transitioned back to a recovered state, 

simulating emergency support aimed at preserving systemic stability. 

Combining the three policy scenarios with the three network configurations (Traditional, 

Fintech, and Joint) results in 9 simulation runs in total. These runs allow us to isolate both the 

effect of network structure and the efficacy of policy designs under conditions of systemic 

vulnerability. 
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Chapter 5: Findings and Discussion 

This chapter presents and interprets the key simulation outcomes of the contagion dynamics 

modelled in Chapter 4. The discussion focuses on how systemic risk develops and how 

severe it becomes across different network types and policy setups, as well as on how well 

the mean-field model matches the outcomes of the agent-based simulations. 

5.1. Failure Cascades Analysis 

In the context of financial contagion modelling, failure cascades describe the chain reaction 

of defaults that can be triggered after one or more institutions in a network fail. Because 

financial entities are connected through relationships like credit or trading, the collapse of a 

single node can spread distress across the system. As each institution fails, it puts additional 

pressure on its neighbours, potentially pushing them into failure too, amplifying the initial 

shock and threatening the stability of the entire network. 

In this thesis, failure cascades are used as a key measure of systemic fragility. They help 

assess systemic risk by showing how far contagion spreads in simulations. For the purpose of 

this study, a failure cascade is evaluated using its failure density, defined as the proportion of 

institutions that fail at each time step relative to the total number of institutions present before 

failure occurs. Specifically, it is computed as the number of nodes removed in a given 

iteration divided by the sum of active nodes and nodes marked for removal at that step. 

Unlike cumulative counts, failure density provides a normalised measure that adjusts for the 

system’s size at each time step. Hence, this metric captures the intensity of systemic distress 

over time, indicating the extent of propagation in each round of contagion. 

This dynamic view helps compare the resilience of different financial network structures and 

evaluate how well mitigation tools, like reconnection strategies or too-big-to-fail protections, 

can help contain systemic risk. 

Scenario 1: No Reconnection, No Saving Mechanism 

Scenario 1 represents the baseline contagion environment, where no reconnection policies or 

internal saving mechanisms (such as the too-big-to-fail intervention) are in place. The 

observed failure cascades in this setting reflect the system’s raw vulnerability to shock 

propagation. The Traditional network displays a slower but more persistent failure trajectory, 
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with the failure density peaking around iteration 13 and unsteadily declining. This pattern 

reflects a hub-and-spoke architecture in which risk initially concentrates within central nodes 

but eventually propagates broadly, amplifying systemic risk as central institutions fail. In 

contrast, the Fintech network exhibits a slightly earlier spike in failures (around iteration 7), 

followed by a more rapid attenuation. This suggests a more fragile early-stage response due 

to its decentralised structure, yet its modular design limits the contagion’s reach, restricting 

systemic risk to localised clusters. The Joint network reveals an intermediate behaviour: 

although it reflects the decentralisation of Fintech and the connectivity of Traditional banks, 

it experiences both an early rise in failure density and a sustained level of systemic distress. 

This combination indicates a mix of vulnerabilities: rapid shock spread from fintech nodes 

and wide contagion through traditional network hubs. Overall, the results demonstrate that 

systemic risk spreads more extensively in centralised networks, while modular systems 

localise but do not fully neutralise shock propagation. 
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Scenario 2: Risk-Aware Reconnection without Saving Mechanism 

In Scenario 2, the introduction of a risk-aware reconnection mechanism (where agents 

reconnect to healthy neighbours) leads to a slight improvement in systemic resilience 

compared to the uncontrolled contagion observed in Scenario 1. This adaptive behaviour 

helps reduce failure cascades across all three network types. In the Traditional network, 

failure density still peaks around iteration 13, but the decline is slightly more sustained, 

showing that even centralised systems can benefit from dynamic reconnection by reducing 

the persistence of contagion. The Fintech network shows some earlier and sharper failure 

spikes compared to Scenario 1, but in Scenario 2 the system recovers more quickly and ends 

with a lower failure density. This faster recovery shows how modular networks with adaptive 

rewiring can contain shocks and limit wider contagion. In the Joint network, the interaction 

between traditional and fintech nodes initially leads to both central vulnerability and local 

sensitivity, resulting in a higher failure peak in Scenario 2. However, the decline that follows 

is steadier than in Scenario 1, indicating that the risk-aware reconnection helps contain the 

cascade more effectively over time. This suggests improved shock absorption and a reduction 

in long-term systemic risk. Overall, these findings show that risk-aware reconnection helps 

reduce systemic risk by reshaping the network, improving resilience even in mixed financial 

systems. 
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Scenario 3: Risk-Aware Reconnection with Saving Mechanism (Too-Big-to-Fail): 

In this scenario, the system uses both targeted reconnection and a saving rule that protects 

key nodes, like major hubs, from failing. This setup reflects real-world emergency support for 

critical institutions. Notably, Scenario 3 differs from the previous ones in terms of timing: 

equilibrium is reached significantly later across all network configurations. While in 

Scenarios 1 and 2 the system typically stabilises within 20-30 iterations, Scenario 3 sees 

persistent but declining failure activity that extends up to iteration 180 in the Traditional  
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network. This slower convergence can be attributed to the introduction of the saving 

mechanism, which prevents the immediate removal of key nodes. While this intervention 

limits sudden collapses, it also allows mild levels of distress to propagate at a slower pace. As 

a result, the system avoids sharp cascades but takes longer to fully stabilise. In the Traditional 

network, the failure peak in Scenario 3 is slightly lower than in the earlier scenarios, showing 

that the saving mechanism helps soften the initial shock. By protecting key hubs from failing, 

the system avoids a sudden rise in default, but this also slows down recovery. The Fintech 

network experiences a similarly sharp initial failure peak (around 0.13 at iteration 8), but it 

recovers even more quickly than the Traditional network, with failure density returning to 

near zero by iteration 30. This fast recovery shows the strength of the saving mechanism in 

decentralised systems, where local clusters can stabilise more effectively when key nodes are 

protected. The Joint network shows the most significant improvement. Unlike Scenarios 1 

and 2 (where failure peaks exceeded 0.15 and 0.17), Scenario 3 exhibits a smaller peak (just 

above 0.12 around iteration 12), while the system reaches near-zero failure density by 

iteration 60. This outcome highlights again the effectiveness of combining saving 

mechanisms and adaptive reconnection.   
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Comparing the three scenarios shows how policy mechanisms progressively improve 

systemic stability and reduce failure cascades. In Scenario 1, with no reconnection or saving 

rules, contagion spreads freely, leading to higher and prolonged failure rates, especially in the 

Traditional and Joint networks. This highlights how fragile centralised or mixed structures 

can be when left unregulated. In Scenario 2, adding risk-aware reconnection helps slow down 

the spread of failures, particularly in the Fintech network, which benefits from its more 

decentralised structure. Still, reconnection alone doesn’t fully prevent systemic risk, 

especially in networks with key hubs. Scenario 3 provides the most effective containment: 

failure peaks are lower, and a more sustained stabilisation is consistent across all network 

types. Even the Joint network, previously the most vulnerable, stabilises well when critical 

hubs are protected. However, this improved resilience comes with a longer time to reach 

equilibrium. Failures decline more slowly, but this reflects a healthier adjustment process, 

where the network absorbs shocks gradually rather than facing concentrated distress early on. 

Thus, by combining reconnection and hub protection, the system stays flexible and 

responsive for longer before fully stabilising. 
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5.2. State Evolution Over Time 

While the previous section looked at how failure spreads over time, it’s also important to see 

how the system’s internal composition changes as it moves toward stability. By tracking the 

shares of susceptible nodes (S), mildly distressed (I1), and severely distressed (I2) nodes, we 

can better understand how shocks move through the network and eventually fade. 

Scenario 1: No Reconnection, No Saving Mechanism 

Without any policy measures, in Scenario 1, the Traditional and Joint networks show a steep 

drop in healthy nodes (S) and a rapid rise in severely distressed nodes (I2), indicating a fast 

and intense spread of contagion. The Joint network worsens the quickest, with I2 overtaking S 

early on, highlighting its structural fragility due to both central hubs and dense clustering. 

The Traditional network follows a similar pattern, with slightly slower dynamics. By contrast, 

the Fintech network shows a more gradual decline in S and a lower peak in I2. While distress 

still spreads, the process appears less severe overall. The number of susceptible nodes begins 

to stabilise earlier, suggesting that the Fintech network’s more decentralised structure helps 

slow contagion and limit its reach. Overall, the absence of intervention in Scenario 1 leads to 

high infection levels across all networks. While decentralisation offers some delay, structural 

design alone is not enough to prevent widespread systemic distress. 
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Scenario 2: Risk-Aware Reconnection without Saving Mechanism 

In Scenario 2, the introduction of risk-aware reconnection leads to a moderate improvement 

in system behaviour, though the differences with Scenario 1 are less evident than expected. 

Across the networks, the decline in susceptible nodes (S) remains steep, and the rise of 

infected nodes is still substantial. In the Traditional network, the S population still drops 

rapidly, and I2 and I1 both reach similar peaks as in Scenario 1, although they begin to decline 

slightly earlier. This suggests only a modest containment effect from reconnection. The Joint 

network shows similar dynamics: I2 again surpasses both S and I1, but it falls more steadily. 

These results indicate that while reconnection may help delay or smooth the peak, it does not 

drastically alter the trajectory of contagion. In contrast, the Fintech network benefits more 

visibly from reconnection. While S still declines, it visibly rises again when converging to 

equilibrium, and the I2 curve grows more slowly than in Scenario 1. This supports the idea 

that decentralised networks are better suited to benefit from adaptive behaviours like link 
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rewiring, which help contain contagion locally and reduce systemic exposure. Overall, 

Scenario 2 shows that risk-aware reconnection offers some benefit, especially in networks 

with decentralised structures, even if in more centralised or hybrid systems, its impact is 

limited. 

  



 

 44 

Scenario 3: Risk-Aware Reconnection with Saving Mechanism (Too-Big-to-Fail): 

In Scenario 3, the combination of risk-aware reconnection and a saving mechanism leads to a 

different system trajectory. All networks show an initial spike in contagion (reflected in the 

rise of I1 and I2 values), especially in the Traditional and Joint configurations. However, this 

time, the contagion spread is more effectively contained. In the Traditional network, I1 and I2 

rise quickly but then fall steadily, while the number of healthy nodes (S) begins to recover. 

Unlike previous scenarios, this recovery is strong and sustained, showing that saved nodes 

can reintegrate and support system stability over time. The Fintech network also experiences 

an early contagion spike, but the recovery in S begins even earlier and is smoother, likely 

thanks to its decentralised structure. The Joint network shows behaviour between the two: the 

early spike in distress resembles the Traditional case, but recovery starts sooner. This 

suggests that hybrid networks benefit significantly from having both protection for key nodes 

and dynamic reconnection paths. By the end of the simulation, 314 traditional and 218 fintech 

institutions remain active, meaning around 41% of the fintech nodes survive, closely 

matching their original proportion in the system. This outcome suggests that the combined 

use of reconnection and targeted protection not only limits systemic damage but also 

preserves the original composition of the network, highlighting the efficiency of these 

intervention strategies in maintaining long-term resilience.  
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5.3. Steady-State Benchmarking  

To check how well the simulation model performs, this section compares the steady states 

obtained from the simulations once equilibrium was reached to the values predicted by the 

mean-field approximation introduced in Section 4.1.3. The focus is on Scenario 1, which has 

no reconnection or saving mechanisms. This scenario is chosen because it matches the 

assumptions of the mean-field model best: a fixed network structure and no adaptive 

behaviours. These conditions reduce complexity, making it easier to compare the simulated 

and analytical results. 

Traditional Network 

Using the analytical expressions presented in Section 4.1.3 and the parameter values listed in 

Section 4.2.3, we compute the theoretical steady-state distribution for the Traditional 

network. From the simulation in Scenario 1, we obtain an average degree of ⟨k⟩ = 0.63 and a 
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total system size of N = 246 at equilibrium. Substituting these values into the steady-state 

formulas: 

 

 

Comparing the theoretical predictions to the steady-state results from Scenario 1 shows a 

noticeable difference in the number of susceptible nodes. In one of the closest simulation 

runs, the system converged at S = 205, I₁ = 12, and I₂ = 29. While the computed values for I₁ 

(9) and I₂ (28) closely match the simulated results, the mean-field approximation 

underestimates the number of susceptible nodes. This difference is likely due to the 

Traditional network’s centralised structure, which accelerates early contagion but also causes 

it to fade quickly, allowing more nodes to avoid long-term distress. In contrast, the mean-

field model assumes uniform behaviour, which can’t fully account for this early saturation 

effect. Still, the strong alignment in the infected groups suggests that the model captures the 

core contagion dynamics fairly well, supporting its use as a reasonable baseline. 

Fintech Network 

From the simulation of the Fintech network under Scenario 1, we extract an average degree 

of ⟨k⟩ = 1.2 and a total population size of N = 487 at equilibrium. Substituting these values 

and the parameters presented in Section 4.2.3 into the steady-state formulas derived from the 

maen-field approximation we obtain: 
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When comparing the computed steady state for the Fintech network to the closest result from 

repeated simulations under Scenario 1, which are S = 432, I₁ = 7, and I₂ = 48, we observe 

again partial alignment. The infected groups (I₁ = 7 and I₂ = 48) are fairly close to the derived 

values (13 and 40, respectively), but the number of healthy nodes (S = 432) is much higher 

than the mean-field model’s estimate of 61. This gap might come from the Fintech network’s 

sparse and decentralised structure, which limits how easily contagion can spread. Because the 

mean-field model assumes that every node has an equal chance of interacting with others, it 

overestimates infection levels in networks that are more fragmented and locally clustered. 

Joint Network 

From the simulation of the Joint network under Scenario 1, the average degree is 

approximately ⟨k⟩ = 0.97, and the total population size at equilibrium is N = 323. Applying 

the steady-state equations from Section 4.1.3 and the parameter values reported in Section 

4.2.3 we compute: 

 

 

 

When we compare the computed steady states to the closest simulation results for the Joint 

network (S = 273, I₁ = 10, and I₂ = 40) we again see a good match for the infected segments. 

However, the number of susceptible nodes is still much higher in the simulation than the 

value obtained from the mean-field approximation. A possible reason lies in the network’s 

hybrid structure, which combines centralised hubs with more loosely connected nodes. These 

peripheral areas act as a buffer, slowing down contagion and helping more nodes avoid 

infection. As a result, the simulation shows more healthy agents than the homogeneous mean-

field model can account for, highlighting how network heterogeneity can moderate the spread 

of systemic risk. 

Looking across the steady states of the Traditional, Fintech, and Joint networks, it appears 

clear that a system’s structure plays a central role in how vulnerable it is to long-term 
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distress. The Traditional network, with its lower number of susceptible nodes at the 

equilibrium reached through the simulation, shows how centralised systems allow contagion 

to spread widely; indeed, tight connections mean that once distress starts, it travels fast. On 

the other hand, the Fintech network retains a much larger group of nodes unaffected, thanks 

to its decentralised and loosely connected design. This structure acts like a natural buffer, 

slowing the spread and reducing overall risk, though it might also mean less coordination or 

mutual support between agents. The Joint network falls somewhere in between. Its final 

infection levels, once the simulation reaches equilibrium, are close to the Fintech case, but it 

ends with more removed nodes and fewer remaining susceptible ones. This suggests that 

while it benefits from decentralisation, it still carries vulnerabilities from its more centralised 

components. 

Across all three networks, the mean-field model, even with its simplified assumptions, 

captures the system’s behaviour with fair accuracy. It closely matches the number of infected 

nodes and reflects the overall patterns seen in the simulations. While it tends to underestimate 

how many nodes finish as susceptible once the equilibrium is reached, especially in 

decentralised networks, this gap is likely due to structural details like clustering and non-

uniform connectivity, which are not captured by the homogeneous mixing assumption of the 

mean-field model. This assumption treats all nodes as equally likely to interact, failing to 

consider the uneven interaction patterns that shape real network dynamics. Still, the strong 

alignment in infection levels shows that the simulation model is a reliable tool for 

understanding how different network structures shape long-term systemic risk. 
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Chapter 6: Conclusion 

This chapter summarises the key findings of the thesis and discusses their implications for 

understanding financial contagion. It also considers the strengths and limitations of the model 

and outlines possible directions for future improvements. 

6.1. Summary of Key Findings 

This thesis introduced and applied a new agent-based SIIS contagion model to simulate how 

systemic risk spreads through three types of financial networks: Traditional, Fintech, and 

Joint. Using a set of different simulation scenarios, the model examined how network 

structure and policy responses affect both the severity and control of financial contagion. The 

analysis focused on three key areas: failure cascades, state evolution over time, and 

comparison between simulation outcomes and steady-state values derived from the mean-

field model. 

The failure cascade analysis (Section 5.1.) showed that centralised networks, like the 

Traditional configuration, are more exposed to deep and prolonged contagion. In contrast, the 

Fintech network, despite being vulnerable to early failures, tends to localise shocks due to its 

decentralised structure. The Joint network combined vulnerabilities from both types, 

experiencing wide contagion and early instability. Policy measures introduced in Scenario 2 

(risk-aware reconnection) and Scenario 3 (reconnection with a saving mechanism) 

strengthened system resilience, with Scenario 3 proving most effective, especially in 

stabilising the Joint network by protecting key hubs. 

The state evolution analysis (Section 5.2.) supported these results. In Scenario 1, all networks 

showed clear signs of systemic stress, while Scenarios 2 and 3 enabled higher recovery and 

more effective stabilisation. The Fintech network consistently retained more healthy nodes, 

and Scenario 3 stood out for lowering the contagion peak and enabling a more gradual 

transition to equilibrium, thanks to the combined effect of adaptive rewiring and targeted 

node protection. 

In Section 5.3., the model’s steady-state results from simulations were compared with mean-

field predictions. While the mean-field approach underestimated the number of healthy 

nodes, especially in decentralised networks, it closely matched the infection levels, validating 

the core model assumptions. Network structure emerged as a key driver of outcomes: the 
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Traditional network ended with more infections, the Fintech network preserved more healthy 

nodes, and the Joint network reflected a mixed pattern. 

Overall, these findings highlight the critical role of network topology in shaping systemic risk 

and demonstrate how targeted, adaptive interventions can meaningfully reduce contagion in 

complex financial systems. 

6.2. Limitations 

While the simulation model provides useful insights into how systemic risk spreads, it’s 

important to recognise its limitations. First, the mean-field approximation assumes that all 

nodes interact equally, ignoring real-world structural features like clustering or uneven 

connectivity. This leads it to underestimate the share of susceptible nodes, especially in sparse 

or decentralised networks, making it less accurate in those settings. 

Second, the model treats all financial institutions as identical agents that follow fixed rules. It 

doesn’t capture differences in size, risk tolerance, regulation, or how institutions might 

change their behaviour in response to stress. It also assumes a constant inflow of new nodes 

(through the parameter Λ), which simplifies growth but doesn’t reflect how institutions might 

enter or exit the market under real economic pressures. 

Finally, the network structures (Traditional, Fintech, and Joint) are static throughout the 

simulations. In reality, connections between institutions often shift as they respond to shocks, 

regulations, or market conditions. These simplifications were necessary to keep the model 

manageable, but they also point to opportunities for future improvements, especially in 

making the model more dynamic and behaviourally realistic. 

6.3. Directions for Future Research 

Based on the results presented in this thesis, several extensions could enhance the analysis of 

systemic risk in financial networks. One important step would be to introduce agent 

heterogeneity, allowing institutions to differ in size, risk exposure, and how they respond to 

contagion. This would make it easier to study the effects of targeted interventions and how 

shocks impact different parts of the system. 

Another valuable improvement would be to make network formation dynamic, so agents can 

form or break connections based on market conditions or learning over time. This would 
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reflect real-world behaviour more accurately and test how policy tools hold up as networks 

evolve. 

Finally, future research could use real-world data from interbank networks or fintech 

ecosystems to calibrate the model. This would allow for more realistic testing and evaluation 

of policy measures under actual historical shock scenarios. 
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