
1

Department of Business Management

Teaching: Databases and Big Data [ING-INF/05]

Vector Databases at the Intersection of Space and

Similarity: A Case Study on Image Retrieval

Using Qdrant and DINOv2

SUPERVISOR

Prof. Blerina Sinaimeri

CANDIDATE

Alexandra Tabarani

ID: 282091

Academic Year 2024/2025

2

"Without data, you’re just another person with an opinion."

W. Edwards Deming

3

Abstract.

Have you ever wondered how Amazon suggests related products when the one you are

searching for is no longer available? Or how does Netflix recommend movies that

others have liked based on your preferences? The answer lies in vector databases.

This work focuses on vector databases, with a particular focus on embeddings and

distance metrics in the context of similarity search and data retrieval. Vector databases

are systems designed to manage high-dimensional unstructured data and store

information as mathematical representations (vectors) to enable accurate, similarity-

based queries.

The study begins with a comprehensive explanation of how vector databases work and

an analysis of embeddings. Following that, an application of common distance metrics

used in vector spaces is analyzed, including Cosine Similarity, Dot Product, Manhattan

distance, and Euclidean distance, which are essential to filter the data points closer to

the query request.

An analysis of a case study follows, focusing on around 1,300 painting images. This

section demonstrates the embedding process, investigates the use of distance metrics in

data retrieval, and highlights concrete, real-world applications of vector databases.

Finally, further analysis is presented to highlight the limitations of current approaches

and explore possible avenues for future research.

4

Contents.

Abstract. .. 3

Contents. ... 4

1 Introduction ... 6

1.1 Research Scope ... 6

1.2 Outline .. 7

2 Fundamentals of Vector Databases .. 8

2.1 Overview of Vector Databases .. 8

2.1.1 How do Vector databases work? .. 9

2.2 Vector Embeddings ... 10

2.2.1 What is a vector? .. 10

2.2.2 What are embeddings? .. 11

2.3 Similarity search: Approximate Nearest Neighbor (ANN) 14

3 Distance Metrics in Vector Space ... 16

3.1 Overview of Distance Metrics .. 16

3.2 Common Distance Metrics Used in Vector Spaces ... 16

3.2.1 Euclidean Distance ... 16

3.2.2 Manhattan Distance .. 19

3.2.3 Dot Product .. 20

3.2.4 Cosine Similarity .. 22

3.3 Beyond the Basics: Reflections and Other Distance Metrics 25

4 Case Study: Implementing Vector Databases for Painting Similarity Search 28

4.1 Project Overview and Objectives ... 28

4.1.2 Dataset Description .. 28

4.1.2 Project Goals and Tools .. 29

4.2 Technology Stack: Qdrant and DINOv2 ... 29

4.2.1 DINOv2: Self-Supervised Image Embeddings .. 29

4.2.2 Qdrant: Vector Database ... 31

4.3 Project Implementation ... 33

4.3.1 Image Preprocessing and Embedding Generation ... 33

4.3.2 Qdrant collection Setup .. 34

4.3.3 Streamlit Application.. 37

5

4.4 Reflections and Future Work .. 42

4.4.1 Limitations of the current approach ... 42

5 Conclusions .. 43

References .. 44

6

Chapter 1

Introduction

Over the past few years, there has been a dramatic increase in the amount of data

created over the various digital channels, with a notable share of this increase being

attributed to unstructured data like images, audio, video, and text documents. While

structured data fits precisely into traditional database schemas, unstructured data

presents unique challenges due to its variable format and complex nature. Conventional

relational databases, designed to deal with structured data, find it difficult to manage

these new types of data.

The limitations of conventional databases become particularly evident when dealing

with tasks that require understanding semantic relationships and patterns within data.

Such operations as those of finding similar images or recommending associated

documents require more than performing simple, exact matching tasks. This divergence

between the capabilities of classical databases and the requirements of modern data

treatment has triggered the coming of vector databases.

Vector databases represent a significant advancement in data management technology,

offering solutions for efficient similarity searches and seamless integration with

machine learning. Such systems convert unstructured and complex types of data into

simpler forms of representations or mathematical forms known as vectors, making it

easier and quicker to compare the two objects and determine their similarities on a

larger scale. This change in data management systems is accompanied by a more drastic

change in how organizations deal with and create wealth from unstructured data.

1.1 Research Scope

This work strives to evaluate the architecture and the features of vector databases, in

particular exploring distance metrics and embedding techniques used for similar data.

The distance metrics and embedding techniques are critical for handling high-

7

dimensional data, and it is interesting to see how they enable efficient and accurate

retrieval. By using a vector database of paintings as a case study, the practical

applications and the opportunities of this technology in the real world are shown.

1.2 Outline

The thesis is composed of five major chapters, each covering some aspects of the said

technology. After this short preface, chapter 2 is devoted to the essential terminology

that one needs to be aware of regarding vector databases, with specific attention to

vector space embeddings. Chapter 3 explores the distance metrics in vector space,

addresses the mathematical basis for distance metrics, and shows their use in the

analysis of vectors. Chapter 4 instead presents my case study of a quantitative analysis

of 1,300 paintings employing the Qdrant vector database to demonstrate the potential of

this technology. Finally, Chapter 5 presents the conclusions of the thesis.

8

Chapter 2

Fundamentals of Vector Databases

These days, you're not merely creating a set of data structures. You are creating a

universe in which every data point—now a star—has a distinct location based on its

characteristics. The stars are increasingly alike the closer they are to each other. It is

analogous to navigating through a galaxy of data, with your clusters of related data

points acting as the constellations (Gutsch, 2023).

2.1 Overview of Vector Databases

Most of the millions of terabytes of data we generate each day are unstructured. Think

of the voice memos you record, the PDFs shared at work, or the photos of works of art.

These types of data are difficult to fit into the conventional rows and columns that

characterize relational databases (Aquino, 2024), and the need to deal with this complex

type of data has led to the emergence of vector databases.

A vector database is a specialized system designed to store and retrieve data in the form

of vector embeddings, therefore transforming data into vectors. Vectors are numerical

representations that effectively capture the patterns within the data and are therefore

capable of surpassing the limitations of relational databases in dealing with complex

data structures to allow users to quickly retrieve similar objects for given purposes.

For example, in a relational database, finding similar images to a specific photo would

require predefined tags or metadata that represent the features of the picture itself,

requiring the user of mechanical labeling for each specific piece of data (e.g., for all

images). In contrast, a vector database uses embeddings to compare the inherent

features of the images automatically (e.g., color, texture, style), retrieving (e.g., similar

results) without requiring manual labeling. This capability makes vector databases

perfectly suitable for recommendation system algorithms, semantic search, and

similarity-based requests.

9

2.1.1 How do Vector databases work?

Approximately 80% of the data in use today is unstructured (Monigatti and Hasan,

2023). We all know how traditional databases work, through specific queries leveraging

the potential of languages like SQL whose aim is to filter data based on a specific

request (e.g., filtering females having a range of salary between 1500€ and 3000€).

Moreover, relational databases allow us to create visual representations, like Entity-

Relationship (ER) diagrams, to map out how pieces of data connect. These diagrams

help analysts to spot patterns and relationships that they can later use to filter data

effectively and extract insights through targeted queries.

In vector databases, however, the situation is different. Given the complex structure of

our data, each point is embedded into a numerical representation that summarizes the

features of the point itself. Then, all points are stored in a vector space following

specific rules that enable similar points to be closer. Indeed, a similarity metric is

needed to enable the retrieval of points that are closer to the one requested. Because of

this, points that are clustered showcase similar features, and the use of algorithms that

participate in Approximate Nearest Neighbor search is needed. This means, in practical

terms, that points closer to each other are more similar than points farther apart, as their

proximity reflects shared features or patterns in the data. These distance-based

algorithms are combined to create a pipeline that retrieves a query vector's neighbors

quickly and accurately. The primary trade-offs we consider are between accuracy and

speed because the vector database only yields approximate results. The query will be

slower if the result is more accurate. A good system, however, can offer extremely quick

searches with almost flawless accuracy (Schwaber-Cohen, 2023).

10

Figure 1. Workflow of a Vector Database Query Pipeline

The image summarizes the general functioning of vector databases. The DB is fed with

unstructured data, whose form may vary itself (images, PDFs, audio, etc.). Then, an

embedding model is leveraged to transform each data point into a vector, therefore

translating the characteristics of the point itself into a sequence of numbers. All the

points are then stored in a vector database, therefore a space where all vectors are

inserted and allocated based on the embedding itself.

We will now go more in-depth with these specific aspects, therefore explaining vectors,

how embeddings work, and how the similarity search is made, including some visuals

that clarify and further explain the main concepts.

2.2 Vector Embeddings

As noted by Shivanandhan (2023), "Word embeddings serve as the digital DNA for

words in the world of natural language processing (NLP)," highlighting how vector

embeddings are a powerful way to turn complex data into a format that machine

learning models can understand.

Unstructured data, such as images, must be transformed into a sequence of numbers, or

a vector, for machines to interpret their meaning, and this translation is typically

achieved using deep neural networks, which convert each data point into a numerical

representation. Once transformed, these vectors are stored in a vector database, enabling

machine learning models to efficiently process the information and provide users with

relevant insights.

11

2.2.1 What is a vector?

Vectors are numerical representations that belong to the larger category of tensors,

which in machine learning is a generic term for an array of numbers in n-dimensional

space, "functioning like a mathematical bookkeeping device for data" (Bergmann and

Stryker, 2024).

“A vector is a one-dimensional (or first-degree or first-order) tensor, containing multiple

scalars of the same type of data. For example, the weather model might represent the

low, mean, and elevated temperatures of that single day in vector form as (25, 30, 33).

Each scalar component is a feature—that is, a dimension—of the vector, corresponding

to a feature of that day’s weather” (Bergmann and Stryker, 2024).

Vectors are characterized by three main elements that coexist and form the data point

itself. These features are the ID, the dimension, and the payloads. The ID is just a

unique identifier for each vector point, with the main objective being to enable the

system to associate the vector back to the real data point. The dimension represents the

number of features that characterize a vector; for instance, in 512-dimensional space,

the vector has 512 numerical values. Usually, the dimension depends on the embedding

model used, and it is the same for all vectors within the same database in order to

guarantee consistency and to ensure accurate similarity search with vectors having

uniform features. The payload is the additional information given to each data point to

further categorize and cluster searches. It holds metadata, which is essential to provide

context and meaning to vectors to allow for interpretable information. As an example,

we will see later in the case study that each painting will include the author's name as

part of its specific payload, enabling similarity searches to be restricted to works by a

particular artist (e.g., "Find vectors similar to this one, but only where the 'author' is

'Vincent van Gogh'.").

2.2.2 What are embeddings?

Unstructured data is transformed into numbers using machine learning models like

BERT for text, ResNet for images, or OpenL3 for audio, which generate vector

embeddings that capture the patterns within the data. Usually, a deep convolutional

neural network is used to train these models.

12

“That is the beauty of embeddings. The complexity of the data is distilled into

something that can be compared across a multi-dimensional space” (Aquino, 2024).

Figure 2. Functional diagram of a vector database

Source: Taipalus, T. (2024). Vector database management systems: Fundamental concepts, use-cases, and

current challenges. arXiv:2309.11322v2 [cs.DB], p. 4.

This diagram summarizes how embedding works and how, in general, the vector

database system is structured. In this case, for instance, three sentences extracted from

Greek plays are embedded within a Vector DB. Then, through this application, a

specific query is given, requiring the system to retrieve the most tragic plays from the

ones within the database. The query itself, then, passes through the vectorization

process. Next, using specific distance metrics that we will discuss further in Chapter 3,

the points above a specific threshold of similarity are retrieved, outputting the points

closer to the query vector itself. As a result, the most tragic plays are retrieved to the

user and results are returned, receiving ‘Antigone’ and ‘The Knights’ as the most tragic

ones.

How do word embeddings ensure that words with similar meanings are represented by

similar vectors? What is the process behind this?

13

This can happen thanks to the embedding models, usually trained with deep

convolutional neural networks. These models are able to identify patterns and

relationships between words and consider the context of the whole sentence, leveraging

both statistical relationships and contextual information. Regarding the statistical

approach, the models record the frequency with which words appear together in a

sentence (for example, "sand" is frequently found in combination with "sea"), which

enables them to understand that these words are semantically related. Consequently,

these two words will be close to each other when translated into data points.

The contextual approach instead helps the model to understand the meaning of a word

by looking at the other words within the sentence. This process enables the model to

interpret the context of an entire paragraph and distinguish between words with multiple

meanings. For example, the model can determine whether "light" refers to brightness or

something not heavy, depending on the specific context of the query.

Similarly, embedding image models guarantees the degree of similarity between the

content should also correlate with the generated vectors. These models are often

developed through deep convolutional neural networks (CNNs), which are very

effective in identifying features such as edges, textures, shapes, and colors. With

convolution and pooling layers, the model is able to capture more abstract and complex

features of the image, allowing for both the statistical and contextual approaches to deal

with all unstructured data types.

Figure 3. Indexing and retrieval in a vector database

Source: Besbes, A. (2023). The Tech Buffet #12: Improve RAG Pipelines With These 3 Indexing Methods

https://thetechbuffet.substack.com/p/rag-indexing-methods.

https://thetechbuffet.substack.com/p/rag-indexing-methods

14

The above diagram is a concise illustration of the key concepts discussed so far. The

process is divided into two essential parts: indexing and retrieval. During indexing, the

system takes a document and converts its content into a special mathematical format

(vectors) that computers can easily process and store. In the retrieval step, when

someone types in a question, the system turns the user's input into the same math format

used in indexing and looks through the database to find the most similar information. In

practical terms, the user query is embedded and inserted into the vector database to find

the closest points. This method works like having a clever librarian who knows every

book in the library and can get what you're looking for, removing the need for the

librarian (or analyst) to manually search through every document to find relevant

information for the client (Fajri, 2024).

2.3 Similarity search: Approximate Nearest Neighbor (ANN)

Which technique is leveraged to find data points closest to a given query point?

The answer lies in the nearest neighbor search.

“The nearest neighbor problem is defined as follow: Given a set P of n points in a

metric space defined over a set X with distance function D, build a data structure that,

given any ‘query’ point q ϵ X, returns its ‘nearest neighbor’ arg min
{𝑝∈𝑃}

𝐷(𝑞, 𝑝)” (Andoni,

Indyx, Razenshteyn, 2018).

When dealing with high-dimensional data, however, a specific nearest-neighbor method

that prioritizes scalability and speed while maintaining a reasonable level of accuracy is

needed. Indeed, the Approximate Nearest Neighbor can be introduced as the search

method commonly used when dealing with complex and unstructured data.

Why this? Traditional nearest neighbor search works by evaluating the distance between

the query request and each specific data point within the dataset. This search approach

requires high computational costs and becomes impractical to adopt when dealing with

large datasets.

On the other hand, Approximate Nearest Neighbor is an efficient alternative that

sacrifices a bit of accuracy to achieve higher speed levels (a trade-off between accuracy

and speed). This means that instead of calculating the distance between the query and

each data point, ANN identifies a point that is very close to the query in an approximate

15

way, within a predefined margin of error. The key to ANN’s efficiency lies in graph-

based methods, where data points are represented by nodes in the graph, or on

algorithms like locality-sensitive hashing that place similar items into the same bucket

(reduce search time) (MongoDB, 2024).

The ANN search method achieves this by evaluating the distance between points in the

vector space, leveraging various distance metrics, which will be discussed further in

Chapter 3.

For instance, when the user query is converted into a vector, the algorithm quickly

identifies the area of the graph where similar points are located. The search is then

narrowed down to the most closely related vectors, and once the closest ones are

identified, these vectors are translated back into the original data points and presented to

the user (Aquino, 2024).

Figure 4. Approximate Nearest Neighbor (ANN) Search in a Vector Space

Source: Aquino, S. (2024). An Introduction to Vector Databases. Qdrant.

https://qdrant.tech/articles/what-is-a-vector-database/.

In conclusion, Approximate Nearest Neighbor (ANN) techniques offer a scalable and

efficient solution for similarity search in high-dimensional spaces. Their balance of

accuracy and speed makes them well-suited for handling unstructured data. The next

chapter will explore distance metrics and how they quantify similarity between vectors.

https://qdrant.tech/articles/what-is-a-vector-database/

16

Chapter 3

Distance Metrics in Vector Space

3.1 Overview of Distance Metrics

“A similarity score 𝑓: ℝᴰ × ℝᴰ → ℝ maps two D-dimensional vectors, a and b, onto a

scalar 𝑓(𝑎, 𝑏), with larger value indicating greater similarity. Similarity is often

measured via distance in practice, with values closer to 0 indicating greater similarity”

(Pan, Wang, Li, 2023).

Distance metrics are essential to determine the similarity between data points based on

their proximity. Consequently, points closer to each other are more similar than those far

apart, highlighting the importance of finding the neighbors of our query point to retrieve

the most relevant output. But how is this distance evaluated? Is it that simple, like the

straight line that directly connects two points?

Obviously not. There are several distance metrics, each having their own strengths and

weaknesses, depending on the specific situation you are dealing with.

In order to leverage their potential and to exploit to the fullest their capabilities, it is

important to know the mathematics behind them and their properties to choose the best

distance metric depending on your specific task.

3.2 Common Distance Metrics Used in Vector Spaces

The most famous and commonly used distance metrics in vector spaces are the

following: Euclidean distance, Manhattan distance, Cosine similarity, and Dot Product.

We will now go through them one by one in more detail.

3.2.1 Euclidean Distance

The Euclidean distance is the most straightforward one. Imagine two points on a vector

space and draw a straight line to connect the dots and you’ll get the Euclidean distance.

17

Points that will have a shorter absolute distance will be closer and, therefore, more

similar than those having a longer straight line.

Consider two points in a two-dimensional space: 𝑃1 = (𝑥1, 𝑦1) 𝑎𝑛𝑑 𝑃2 = (𝑥2, 𝑦2): the

Euclidean distance between these two points is derived using the Pythagorean theorem

which states that the hypotenuse's square in a right-angled triangle is equal to the sum of

the squares of the other two sides.

Consequently, the distance 𝑑 is calculated as: 𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1) 2 .

Figure 5. Illustration of Euclidean Distance Between Two Points in 2D Space

When dealing with vector databases each data point is represented as a high-

dimensional vector. Suppose we have two vectors 𝑎 = 𝑎1, 𝑎2, … , 𝑎𝑛 𝑎𝑛𝑑 𝑏 =

𝑏1, 𝑏2, … , 𝑏𝑛 the formula for the Euclidean distance between these two vectors will be

the following:

𝑑(𝑎, 𝑏) = √∑(𝑎𝑖 − 𝑏𝑖) 2
𝑛

𝑖=1

The formula calculates the root of the sum of the squared differences between

corresponding components of the two vectors. The result represents the closeness

18

between the two points, and, therefore, their similarity. The smaller the distance, the

higher the similarity.

The Euclidean distance can also be understood in terms of vector norms as the L2 norm.

In particular, the L2-norm is just a generalization of the Euclidean distance in higher

dimensional space (Kanungo, 2023). This norm is one of the 𝐿𝑝 norms, which are

mathematical functions that measure the magnitude and the length of vectors.

The L2 norm of vector v is defined as:

||𝑣||
2

= √∑ 𝑣1
2

𝑛

𝑖=1

When comparing two vectors 𝑎, 𝑏 the Euclidean distance is equivalent to the L2 norm

of their difference:

𝑑(𝑎, 𝑏) = ||𝑎 − 𝑏||
2

The Euclidean distance involves operations like squaring, summing, and taking the

square root, making this metric computationally intensive when dealing with high-

dimensional data. Moreover, it is sensitive to the scale of the features as it squares the

differences. Larger feature values can, therefore, skew the results by dominating the

calculations (ML Journey, 2024).

When to choose the Euclidean distance? This distance metric is useful when working

with low-dimensional data and interpretability is required. In fact, it’s the most

straightforward and the easiest to interpret since it corresponds to our intuitive

understanding of distance in physical space. Its weaknesses include the fact that it can

be computationally expensive for large datasets and that the results may become less

accurate in high-dimensional spaces.

Euclidean distance is useful when the embeddings contain information pertaining to

counts or measures of items since it is sensitive to magnitudes. Euclidean distance, for

instance, can be used to quantify the absolute difference between the embeddings of the

times an item was purchased in a recommendation system whose objective is to suggest

products that are comparable to a user's prior purchases (Schwaber-Cohen, 2023).

19

3.2.2 Manhattan Distance

When working with grid-like paths, the Manhattan distance—also referred to as the L1

distance, city block distance, or taxicab distance—is a helpful metric to assess the

distance between points. If you were walking through the streets of Manhattan and you

needed to go from point A to point B, you would have to combine horizontal and

vertical paths because you couldn't go from point A to point B in a straight line.

Mathematically, the distance between two points 𝐴 = (𝑥1, 𝑥2) 𝑎𝑛𝑑 𝐵 = (𝑦1, 𝑦2) in a

two-dimensional space is the sum of the absolute differences of their Cartesian

coordinates:

𝑑(𝐴, 𝐵) = |𝑥1 − 𝑥2| + |𝑦1 − 𝑦2|

This formula can be extended to higher dimensions when dealing with n-dimensional

vectors.

In this scenario, the Manhattan distance between vector 𝑃 = (𝑝1, 𝑝2, … , 𝑝𝑛) 𝑎𝑛𝑑 𝑄 =

(𝑞1, 𝑞2, … , 𝑞3) is calculated as:

 𝑑(𝑃, 𝑄) = ∑ |𝑝𝑖 − 𝑞𝑖|

𝑛

𝑖=1

Here, n represents the number of dimensions while 𝑝𝑖 𝑎𝑛𝑑 𝑞𝑖 are the coordinates of

their respective vectors in the i-th dimension.

Figure 6. Illustration of Manhattan Distance Between Two Points in 2D Space

20

For vector similarity search, Manhattan Distance provides a grid-based distance

measurement system. It works best in situations with restrictions where movement

adheres to gridlines. This makes it especially useful for structured analysis tasks, such

as route planning, spatial navigation, and structured data analysis, especially when the

pathway is grid-aligned or constrained (Haziqa, 2023).

The Manhattan distance is quicker and requires less computing power than the

previously examined distance because, in contrast to the Euclidean, it only requires

addition and subtraction. Manhattan distance is therefore computationally lighter, which

is especially helpful and advantageous when working on tasks that have limited

resources and time. Additionally, because it only adds up the absolute differences, it is

less impacted by scale variations: The Manhattan distance is more resilient to feature

magnitudes than the Euclidean distance, which requires feature scaling and

normalization methods (ML Journey, 2024).

To conclude, Manhattan distance is the best option for grid-based systems or situations

where movement is limited to only vertical and horizontal paths. It is especially useful

in high-dimensional data analysis and machine learning applications due to its

computational efficiency and resilience to feature scaling. However, if the data or

movement is not constrained to grid-like structures, or if diagonal or straight-line paths

are feasible, other distance metrics may be more appropriate.

3.2.3 Dot Product

The Dot Product, sometimes referred to as the scalar product, is a similarity metric that

shows how closely two vectors align with respect to their angle. Specifically, two vector

points are more similar to one another when the angle between them decreases.

Mathematically, the formula for calculating the Dot Product between vector v1 and v2 in

n-dimensional space is the following:

𝑣1 ⋅ 𝑣2 = ∑ 𝑣1𝑖
𝑣2𝑖

𝑛

𝑖=1

Geometrically, it can also be expressed as the product of the magnitudes (norms) of

vectors and the cosine of the angle between them:

21

𝑣1 ⋅ 𝑣2 = |𝑣1||𝑣2|cos (𝜃)

Figure 7. Geometric Interpretation of the Dot Product Between Two Vectors

In the other distance metrics discussed, we observed that similarity and distance are

inversely correlated, meaning that as the distance decreases, the similarity score

increases, indicating a greater degree of similarity between the vectors. In contrast, with

the dot product, a higher value signifies a greater degree of alignment between the

vectors, while a lower value indicates increasing divergence between them.

Consequently, a positive dot product suggests that the vectors point in the same

direction, whereas a negative value implies they are oriented in opposite directions,

making them more divergent.

When using the dot product to measure similarity, it is crucial to recognize that if the

vectors are not normalized, the dot product is influenced not only by their directional

alignment but also by their magnitudes, which can distort similarity interpretations. By

normalizing vectors to unit length, the resulting values will range between -1 and 1,

guaranteeing that the dot product directly relates to the cosine of the angle between

them. A value of -1 indicates that the vectors are diametrically opposed, pointing in

completely opposite directions (i.e., an angle of 180 degrees), indicating maximum

dissimilarity, whereas a value of 1 indicates perfect alignment, with the vectors pointing

in the same direction (i.e., an angle of 0 degrees). A value of 0 indicates that there is no

correlation between the vectors' directions because they are perpendicular, or at a 90-

22

degree angle. A more accurate depiction of directional similarity is obtained by

normalizing the vectors, which makes the similarity measure independent of their

magnitudes. In high-dimensional applications like text and image similarity, where

directional alignment is frequently more significant than raw magnitude differences, this

method is especially helpful. It's also crucial to remember that using cosine similarity is

the same as applying dot product similarity to normalized vectors. The effectiveness of

these techniques varies in practice; in certain situations, dot product similarity can be

calculated faster than cosine similarity, while in other situations, the opposite may be

true (Verrier, Hirschfeld, & Vikram, 2025).

Figure 8. Similarity relationships in a vector space

Source: Rosebrock, A. (2014). Building an Image Search Engine: Defining Your Similarity Metric (Step 3

of 4). PyImageSearch https://pyimagesearch.com/page/2/?s=image+vector+similarity.

3.2.4 Cosine Similarity

The Cosine Similarity is a distance metric that measures the relative angle between two

vectors in a high-dimensional vector space, where a smaller angle between two data

points indicates a higher degree of similarity between them. It is calculated as the dot

product between the two vectors divided by the product of their magnitudes:

cos(𝜃) =
𝑎 ∙ 𝑏

‖𝑎‖‖𝑏‖

This metric is influenced solely by the angle between vectors, not by their magnitudes.

Thus, vectors pointing in the same direction exhibit the same similarity, regardless of

their lengths. This is particularly helpful in applications like semantic search or

document classification, where two documents can be distant by Euclidean metrics if

https://pyimagesearch.com/page/2/?s=image+vector+similarity

23

a certain word, e.g., 'computer', varies significantly in frequency (e.g., 100 times in one

document and only 20 in the other).

However, these documents could still share similar content, which would be reflected

by a small angle between their vectors, indicating their similarity despite the difference

in magnitude.

You will see that the formula is essentially the dot product of the vectors, measuring the

alignment of their directions, and is then divided by the magnitudes of the vectors, thus

normalizing this value. The resulting similarity measure ranges from -1 to 1, where 1

indicates an angle of 0 degrees—representing the highest possible similarity between

them, 0 indicates orthogonal vectors, and -1 means the vectors are pointing in opposite

directions, signifying no shared features.

Figure 9. Visualization of Cosine Similarity Between Two Vectors

For example, In this graph, we have two vectors that, although they have different

magnitudes, have a small angle between them. What it's actually saying to us here is

that while one of the vectors is shorter than another, they both point in essentially the

same direction and this is a useful method of recognizing that things - whether

documents or sets of data - can be very similar in subject matter or content even when

they differ in size or in the frequency of specific elements.

Cosine similarity is not just a theoretical concept; it has many practical applications

across various domains. Ranging from search ease in large data to natural language

24

processing, from user experience tailoring to document categorization, cosine similarity

is a valuable asset. It is most frequently applied in most fields due to its high efficiency

in calculating similarity irrespective of vector length, focusing on the cosine of the angle

rather than on magnitudes. Cosine similarity in natural language processing and text

mining assists document comparison by mapping text to vectors, facilitating document

clustering and sentiment analysis. Upon entering a search query, the engine employs

cosine similarity to assess the relevance of documents in its database, thereby ensuring

the retrieval of the most pertinent and analogous content. It is employed in

recommendation systems, which include those used in streaming services, to

recommend content based on user preferences and comparison of item features. Cosine

similarity is applied in image processing to calculate the similarity between images,

which is helpful in facial recognition and medical image analysis. It also has significant

uses in information retrieval systems, enhancing search precision by evaluating the

relevance of documents to user queries (Miesle, 2023).

Figure 10: Similarity relationships in a vector space

Source: Microsoft Learn. (2025). RAG Generate Embeddings Phase. Retrieved from

https://learn.microsoft.com/en-us/azure/architecture/ai-ml/guide/rag/rag-generate-embeddings.

This image provides a visual representation of how cosine similarity works. In this

example, two sentences of different lengths discuss similar topics (cats), resulting in a

smaller angle between their embedding vectors. In contrast, another sentence, despite

potentially having a similar length to one of the others, covers an entirely different

topic, leading to a larger angle between its vector and the others, indicating lower

similarity.

https://learn.microsoft.com/en-us/azure/architecture/ai-ml/guide/rag/rag-generate-embeddings

25

3.3 Beyond the Basics: Reflections and Other Distance Metrics

Selecting an appropriate distance metric is fundamental to achieving accurate results

and optimal performance across various applications. Hence, a comprehensive

understanding of these measures and their relevant applications becomes critical for

effective decision-making. As discussed in prior sections, Euclidean Distance,

Manhattan Distance, Dot Product, and Cosine Similarity are some of the most well-

known metric, each offering specific advantages contingent upon data types and task

objectives:

• Euclidean Distance is appropriate when the geometric (straight-line) distance

between points best captures important relationships in the data. This measure of

distance is extremely common in clustering algorithms such as K-Means and

in most classification problems.

• Manhattan Distance, or L1 norm, is better suited for scenarios involving grid-

like structures or when varying dimensions contribute differently to the overall

outcome. Typical applications include urban planning models, certain types of

regression, and routing algorithms.

• The Dot Product is particularly important in machine learning models and

recommendation systems where vector alignment or projection determines how

similar two vectors are.

• Cosine Similarity is most effective in high-dimensional contexts, such as natural

language processing, where the direction of the vectors carries more weight than

their magnitude. As previously mentioned, it is widely used in document

similarity tasks, image analysis, and recommendation systems.

26

In addition to these well-established metrics, recent research has introduced a range of

specialized distance measures designed to address more complex or domain-specific

challenges. By addressing sparsity, non-Euclidean geometry adaptability, or the

structural characteristics of the data, these new measures tend to offer better

performance. The forthcoming section is brief in its view of the developed techniques,

touching on their key characteristics while also bringing into focus the scenarios where

they apply best.

• Minkowski Distance: This versatile distance metric essentially measures how far

two points are in a vector space, depending on a parameter 𝑝. Specifically, this

metric provides more versatility than many others since, by changing the value

𝑝, it can be Manhattan, Euclidean or even Chebyshev distance. As a result, it

offers greater flexibility and freedom to modify the distance calculation to fit the

features of the vector space. This is how it is calculated:

𝐷(𝑥, 𝑦) = (∑|𝑥𝑖 − 𝑦𝑖|
𝑝)

𝑛

𝑖=1

1
𝑝

By evaluating various values of 𝑝 during cross-validation, you may ascertain

which value offers the greatest model performance for your dataset. The

parameter 𝑝 basically controls the sensitivity to the differences in individual

components, with 𝑝 = 1 meaning that all differences contribute linearly. As the

parameter increases the Minkowski distance generally decreases. This is because

larger values of 𝑝 reduce the impact of smaller differences and assign greater

weight to the largest differences between vector components. As a result,

Minkowski distance converges to the Chebyshev one, which is the highest

absolute difference between matching components, as 𝑝 approaches infinity

(Chugani, 2024).

• Chebyshev Distance: As anticipated in the previous distance metric, Chebyshev

distance (also known as L∞) measures the distance between two points by

considering the greatest difference among their coordinates. This metric is

computed as follows:

𝐷𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣(𝑝, 𝑞) = maxi(|𝑎𝑖 − 𝑏𝑖|)

27

The Chebyshev distance is frequently used in robotics, chess, path planning, and

more generally, when working with grid-based systems.

• Hamming Distance: this metric works by comparing two strings of equal length

by counting the number of positions in which the two strings differ.

For two strings 𝑎 and 𝑏 of equal length, the Hamming distance 𝑑(𝑎, 𝑏) is

calculated as:

𝑑(𝑎, 𝑏) = ∑(𝑎𝑖 ≠ 𝑏𝑖)

𝑛

𝑖=1

where n is the length of the strings and i represents a specific index of an

element in the string. For instance, consider two binary strings like “1001101”

and “1010101”; the Hamming distance in this case would be 2, as they differ in

the third and fourth positions.

The functional areas of this metric include domains like bioinformatics,

cryptography, and error detection and correction, in which it becomes necessary

to compare elements and sequences to detect errors or mutations-e.g. in DNA

sequence analysis (Yan, 2024).

Apart from the commonly used distance metrics, specific other metrics such as

Levenshtein Distance and Jaccard Similarity have their own advantages in various

situations. Jaccard Similarity measures the degree of similarity between finite sample

sets; hence it finds its applications in text analysis and classification. On the other hand,

in fields including spell-checking, computational biology, and speech recognition,

Levenshtein Distance quantifies the bare minimum of single-character modifications

needed to change one string into another.

In vector databases for similarity search, those metrics are undoubtedly the most well-

known. Selecting the appropriate distance metric is like selecting the best tool for a task:

it can make all the difference in ensuring that your algorithms operate at their best and

produce accurate results.

In the following chapter we’ll finally dive into a case study that brings all this theory to

life, showing a real-world practical application of vector databases.

28

Chapter 4

Case Study: Implementing Vector

Databases for Painting Similarity Search

4.1 Project Overview and Objectives

Imagine uploading your favorite painting to a website and instantly discovering

artworks that share a similar aesthetic, composition, or style. Imagine also walking

through a museum and having the possibility to instantly compare paintings based on

their similarity or the option to upload one of your own paintings (or any image you

choose) to discover artworks that showcase a high degree of visual similarity.

This project turns all those ideas into reality, combining modern computer vision

techniques with scalable vector search technology, presenting the implementation of an

image similarity search engine. In particular, this project explores the use of Qdrant as a

vector database backend and DINOv2 as the embedding model, applied to a curated

dataset of approximately 1,360 images of paintings sourced from the Kaggle dataset

Best Artworks of All Time.

Essentially, this project translates all the theory discussed so far into a concrete

application, demonstrating how those techniques can be implemented in real-world

scenarios.

The complete source code and app can be accessed via GitHub at:

https://github.com/tabbba/Art-Vector-Search

4.1.2 Dataset Description

The main objective of this project is to demonstrate the possible applications of vector

databases. Based on this main purpose, I decided to consider only a fraction of the

selected dataset, working with approximately 1,360 images - an amount equal to the

30% of the original dataset. The decision to work with a reduced subset was made in

order to ensure faster experimentation, easier data handling, and better performance in

https://www.kaggle.com/datasets/ikarus777/best-artworks-of-all-time?resource=download-directory&select=images
https://github.com/tabbba/Art-Vector-Search

29

the development phase, while still ensuring enough variety to make the similarity search

meaningful and visually interesting. This dataset has thousands of iconic paintings

created by the most well-known and most important artists of all time, such as Vincent

Van Gogh, Claude Monet, Frida Kahlo, and Leonardo da Vinci. As we will see, their

brushstrokes are so unique and distinctive that machine learning models are able to

capture and recognize their stylistic signatures, or at least the main characteristics of the

artistic period to which they belong.

4.1.2 Project Goals and Tools

The main goal of this project is to build a full-stack system that applies vector search

techniques to the domain of art, generating deep embeddings using DINOv2 and

indexing them in Qdrant. The application is presented through a Streamlit interface to

allow users to interact with the system in an intuitive way: users can either view a

randomly selected painting from the dataset along with its most visually similar results

or upload any image of their choice to discover which artworks from the dataset share

the highest degree of similarity.

4.2 Technology Stack: Qdrant and DINOv2

This paragraph presents the two core technologies used in the application: DINOv2, the

model used to generate vector embeddings, and Qdrant, the vector database responsible

for indexing and querying data points.

4.2.1 DINOv2: Self-Supervised Image Embeddings

DINOv2 stands for “Distillation with NO labels, version 2.” What does this mean, and

how does it reflect the model’s self-supervised learning approach?

In recent years, popular computer vision solutions have relied on conventional image-

text pretraining practices. In this approach, models are trained using datasets in which

images are associated with labels or captions in such a way that the model learns a

correspondence between visual and textual information. While this strategy has led to

significant advancements, it has also introduced some limits, one of which is the strong

dependence on the quality and accuracy of the labels: when captions are oversimplified,

inconsistent, or inaccurate, the ability of the model to generalize can be significantly

30

compromised. For instance, a caption for Van Gogh’s “Starry Night” might be simply

“night sky full of stars”, missing the emotional intensity, the vibrant colors, and

expressive brushwork that make the painting unique. DINOv2 addresses this by using

self-supervised learning, a technique that requires no labeled data. Instead, it learns to

recognize visual patterns and structures directly from unlabeled image datasets,

eliminating the dependency on metadata and resulting in a more flexible representation.

The DINOv2 models are pretrained on a diverse dataset of 142 million images and

demonstrate strong performance across a wide range of tasks, making DINOv2 an ideal

choice for this project’s image retrieval system, where high-quality visual embeddings

are essential for working with unlabeled images (Meta AI, 2023).

DINOv2 uses Vision Transformers (ViTs) in order to capture patterns in images without

the need for human guidance, providing a scalable and flexible approach for computer

vision tasks. Vision Transformers allow DINOv2 to analyze different parts of the image

simultaneously in order to recognize the same object from different perspectives and in

different scenarios (e.g. zooming in/out, rotating the image etc.). DINOv2 is essentially

learning how to recognize objects, thus viewing a daisy from different angles or

rotations and still recognizing that it is always a daisy flower (Mishra, 2024).

How is the image translated into a vector? The process begins by dividing the image

into patches, usually of 16×16 pixels, transforming the 2D image into a sequence of

smaller image blocks. These patches are then flattened into a single-dimensional array

(a vector), effectively converting the 2D picture into a 1D representation. These patches

are then passed through a linear layer to map each pixel vector to an embedding that is

given as an input token to the Transformer. Positional embeddings are then added

to every patch to incorporate information about the position of each object in the image,

helping the model understand the order and spatial arrangement of the patches. The

sequence of patch embeddings, enriched with positional information, is then fed into the

Transformer encoder. The encoder is formed of multiple layers consisting of multi-head

self-attention followed by a feedforward neural network. By that, the model can weigh

the relevance of each patch relative to the others, while the feedforward network

processes that information to extract higher-level features. With the help of these layers,

the Vision Transformer (ViT) is able to construct a comprehensive understanding of the

image entirely (Dosovitskiy et al., 2020). The image below summarizes this process.

31

Figure 11: Visualization of the Vision Transformer (ViT) architecture

Source: Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,

M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2020). An Image is Worth 16x16

Words: Transformers for Image Recognition at Scale. Retrieved from https://arxiv.org/pdf/2010.11929

With the embedding process established, we now shift our focus to Qdrant, the vector

database system that stores and retrieves these embeddings.

4.2.2 Qdrant: Vector Database

Qdrant is an open-source vector database optimized for similarity search over high-

dimensional embeddings, providing a ready-to-use service through an API that enables

us to search, store, and manage data points. In this project, Qdrant was selected as the

vector database for managing and querying image embeddings due to its robust support

for similarity search and its ease of integration with Python-based tools. In particular,

you can start using Qdrant with the Python qdrant-client, either by using the cloud

version or by pulling a Docker image of Qdrant and connecting to it locally.

Qdrant implements ANN search with filtering capabilities that are very sophisticated. It

adopts an indexing algorithm known as HNSW (Hierarchical Navigable Small World),

which is kind of graph-like structure that allows the system to stay from comparing all

data points to find the closest ones. Instead, the search is allowed to find nearest

https://arxiv.org/pdf/2010.11929

32

neighbors in sublinear time by considering only a small subset of candidates in the

whole dataset (Qdrant Documentation, n.d.).

Figure 12: Transforming text into embeddings using a deep neural network

Source: Qdrant Documentation. (n.d.). Overview – What is Qdrant? Retrieved from

https://qdrant.tech/documentation/overview/

The graph above represents the functioning of the HNSW algorithm, demonstrating an

example of a similarity search. In this process, the sentence is not compared to all

vectors within the database but rather just a portion of them is considered.

But how does this algorithm specifically work?

The search starts at the highest and most sparse layer of the data structure, where points

are more dispersed. With this configuration, the algorithm can traverse the data rapidly,

jumping between vectors that span large regions and assisting it in rapidly approaching

the target vector. Once the algorithm identifies a promising region, it transitions to

denser and lower layers of the graph, making more granular comparisons with vector

points that are closer to the initial high-level estimates. By using this layered and

hierarchical approach, the algorithm guarantees speed and optimized computational

resources, ensuring that the most similar points are identified quickly and efficiently.

Qdrant supports the following distance metrics: Cosine Similarity, Dot Product, and

Euclidean Distance. For the reasons outlined in the previous chapter, I chose to utilize

https://qdrant.tech/documentation/overview/

33

Cosine Similarity in my research. Specifically, this metric tends to work well because it

highlights the directional similarity of feature vectors, which frequently closely

resembles the visual similarity that humans perceive.

4.3 Project Implementation

With the theoretical foundations laid the project enters the implementation phase: the

image similarity search system.

4.3.1 Image Preprocessing and Embedding Generation

In this research, we performed an analysis utilizing a dataset from Kaggle, which

consists of images of artworks by famous artists. Each image file was named after the

artist, something that facilitated the extraction of the author's information easily. This

name was then utilized as a payload for each vector point, enhancing the clarity of data

visualization and frontend application integration. To reduce computational complexity

and enhance processing speed, images were processed in batches of about

80, for about one minute per batch.

After preprocessing the images, the DINOv2 model was utilized to extract feature

embeddings from each image. These embeddings were extracted from the average of

the last hidden state of the model in all dimensions, resulting in one vector

that summarized the main features of each image. Essentially, this last hidden state

output illustrates the collection of features recognized in the images, considering

various visual elements such as colors, shapes, and textures.

Subsequently, the gathered information, including the image URLs, artist metadata, and

the newly generated embeddings, was organized into a DataFrame. This DataFrame was

then converted into a series of PointStruct objects, each containing an image's URL, its

metadata, and the embedding vector that were, consequently, uploaded to the Qdrant

vector database.

34

4.3.2 Qdrant collection Setup

The selection of Qdrant as the vector database was based on its scalability, performance,

and user-friendly interface. It offers the flexibility of both local and cloud deployments,

providing powerful dashboards for real-time visualization of stored vectors. In fact, for

any collection inserted into a Qdrant cluster, it is possible to either visualize the entire

vector database and the distribution of all data points, or construct a specific graph that

showcases the functionality of the HNSW algorithm. Let us now take a closer look at

the two types of dashboards available for this collection of paintings.

Figure 13. 2D Visualization of Painting Embeddings in Qdrant

This graph represents a 2D visualization of the embeddings stored in the Qdrant

collection, where each blue dot corresponds to a specific painting. Since embedding

typically exist in high-dimensional space, a dimensionality reduction algorithm was

used to project the data points into two dimensions for visualization purposes. The result

provides a clear overview of how the paintings are organized within the vector space,

showing how some are clustered and grouped more closely (indicating higher

similarity) while others are more isolated. Given that each vector point in the dataset is

associated with metadata specifying the author's name, it becomes particularly insightful

to analyse clustering patterns based on authorship. The next visualization shows the

equivalent projection on the preceding one, where each point is color-coded with

respect to its corresponding artist. Thus, we can explore whether some artists have their

35

unique stylistic features leading to a defining separation in the vector space or whether

some authors' works clustered at a given point demonstrate dissimilar visual

characteristics or shared artistic tendencies.

Figure 14. 2D Visualization of Painting Embeddings Colored by Author

This visualization is particularly interesting as it provides a clearer view of the

distribution of the data points. Several distinct clusters can be observed, particularly for

authors like William Turner, Paul Klee, Andy Warhol, and Joan Miro, where it can be

said that the works by these authors have stylistic features that can easily be recognized

by the embedding model. The same cannot be said for some other authors like Salvador

Dali or Henri Matisse whose works seem to have a wide spread because of possibly

diverse unequal themes or styles they portray. Interestingly, some authors are frequently

positioned near one another, as is the case with Caravaggio and Raphael, possibly due to

shared characteristics in their use of composition, lighting, or subject matter. Thus said,

these colors show how well the model would decipher visual or compositional

similarities across different painters, giving insight into what the dataset sees as art

uniqueness and intersection of styles.

With this in mind, one would now like to obtain some insight into Qdrant's similarity

search implemented via HNSW. The graph presented here delineates Qdrant's internal

structure for locating most similar items from the query efficiently. The Qdrant interface

offers interactivity to this graph; viewers start with a small selection of points, click on

them, and gradually see connected neighbours, dynamically expanding the graph in a

36

stepwise approach. The interaction simulates how the HNSW algorithm operates:

instead of comparing the query vector with every point in the database, it traverses

through the layered graph and only visits promising connections, thus effectively

avoiding full linear scans. Although the theoretical downside to complexity remains set

at O(N), HNSW is sublinear in practical application, with an average-case complexity

approaching O(log N), making it a preferred option when dealing with large-scale

similarity search tasks.

Figure 15. Visualization of the HNSW Graph Structure Used by Qdrant

The graph shown above provides a concrete visualization of how Qdrant internally

structures part of the vector space using the HNSW algorithm. Each node represents a

stored vector (such as a painting embedding), while edges indicate connections between

vectors that are considered close in the high-dimensional space. The orange nodes

typically represent centroids or high-connectivity points that serve as key reference

nodes during the similarity search process. The light-blue nodes are individual data

points linked to each other by the graph, thus creating local neighbourhoods. As the

graph is utilized, either via a query or interactively at the dashboard, clicking a blue

node boosts it to orange and retrieves its neighbours, progressively widening the visible

part of the structure. This mechanism mirrors how HNSW executes greedy layer-by-

layer navigation-only on the most-promising paths toward the target instead of scanning

the entire dataset.

37

4.3.3 Streamlit Application

For visualization purposes, I decided to develop a custom web application using

Streamlit, a Python-based framework that simplifies the development of interactive web

apps. As such, it proved to be an effective solution for building a prototype capable of

showcasing the functionalities of the image retrieval system.

I decided to organize the application into two main pages to make it easy and intuitive

to use. The first page allows users to explore all the paintings stored in the vector

database, with the possibility of clicking an associated button that retrieves the most

similar paintings to the one selected. This enables users to quickly understand how the

system groups similar artworks.

The second page is designed to be more interactive. Here, in the “Upload and Discover”

section, users can upload any image they like (from personal photos to famous

paintings), and the system will search through the database to find the artworks that are

most similar to the uploaded image. This feature gives users a hands-on way to

experiment with the image similarity search and see how their own input is interpreted

by the model. Indeed, when a user uploads a specific image, the image itself is

embedded within the database, and the most similar paintings—those with the closest

embeddings—are retrieved.

Below, we will look at some practical examples of how these features work and discuss

the main insights and results that emerged from using the application.

Figure 16 – Similarity Search Results from a Selected Andy Warhol Painting

38

The image above shows how the "Painting Collection" page works in the Streamlit

application. On the left side, the interface displays the painting selected by the user

along with a button to return to the full collection. Once a painting is selected, the

system uses vector embeddings to find and display other artworks that are visually

similar. By using cosine similarity, the system is able to retrieve the paintings in the

database that are closest in terms of visual features. For example, in this case, I selected

a painting of a woman by Andy Warhol. As a result, the system returned several similar

images, most of which are also portraits of women in Warhol’s distinctive pop art style.

It’s not a coincidence that nearly all the results (except for the last one) are by the same

artist. Warhol’s use of colour, shapes, and brushstrokes is highly recognizable, and the

model accurately identifies other artworks that share these visual characteristics.

Figure 17 – Similarity Search Results from a Selected Leonardo Da Vinci Painting

In this second example, we see the results of selecting a drawing by Leonardo da Vinci.

The five most similar images returned share some visual qualities with the selected

work, such as subtle shading, soft facial expressions, and a monochrome colour scheme.

Three of the images returned are also works by Leonardo da Vinci, but the other two

are drawings by Salvador Dalí, showing the system's ability to recognize visual

similarities across artists.

It must be mentioned that the system is not influenced by any metadata that the

images might carry. The embedding model used (DINOv2) only looks at the visual

content of the image and disregards any other information that may be carried in the

payload, such as the artist's name. Therefore, the fact that the system manages to

retrieve paintings by the same artist is used to attest to both the individual visual style of

each painter and the model's quality.

39

Although Dalí and da Vinci belong to entirely different artistic periods, the retrieved

Dalí drawings exhibit a similarly ethereal atmosphere, muted tones, and detailed facial

rendering. This result suggests, first, that the model picks up on deeper visual patterns

between works, and second, that vector search can unlock unexpected but important

artistic connections.

Figure 18 – Similarity Search Results from a Selected Raphael Painting

In this third example, the selected artwork is a religious-themed painting by Raphael.

Most of the retrieved paintings are also by Raphael and share the same stylistic

components: balanced compositions, soft yet vibrant colour tones, delicate facial

expression, and recurring themes of maternal tenderness and divinity. Interestingly,

among the results, we also find works by Rubens and Caravaggio, two artists from

different regions and slightly later periods. Their presence would presumably be

because of the frequent religious imagery that pervades their work, as well as the shared

characters and compositional themes that permeate these works.

40

Figure 19 – Using the “Upload and Discover” Feature with an Image of Sunflowers

In this example from the “Upload and Discover” section, I decided to upload an image

of sunflowers with the specific goal of testing whether the system would be able to

recognize and retrieve Vincent van Gogh’s iconic sunflower paintings as the most

visually similar. As shown in the results, this goal was successfully achieved: the top

two matches include two versions of Van Gogh’s famous sunflower artworks, with the

highest similarity score reaching 75%.

Each painting in this section is accompanied by a similarity score, visualized through a

horizontal bar and a percentage value. This score is computed using cosine similarity

between the vector embedding of the uploaded image and each painting in the database.

Additionally, we can observe that only paintings of flowers are retrieved, by different

artists such as Manet, Rousseau, and Degas, all depicting floral arrangements in vases.

41

Figure 20 – Using the “Upload and Discover” Feature with an Image of a Cubist

Portrait

In this final example, I uploaded an image of a cubist portrait by Pablo Picasso to test

the system’s ability to recognize and retrieve artworks within the same artistic style. The

results clearly confirm the system’s effectiveness: the top matches are other paintings by

Picasso, all sharing strong cubist characteristics such as fragmented forms, geometric

shapes, and bold, contrasting colours. The system also retrieved a painting by Paul Klee,

whose work, while not strictly cubist, incorporates similar abstract and geometric

elements.

The examples in this section highlight the main features of the web application and help

bring to life the theory discussed in the first three chapters. Through these experiments,

abstract concepts like embedding generation, distance metrics, and vector search

become easier to understand and more concrete!

42

4.4 Reflections and Future Work

This project demonstrated how vector databases and visual embeddings can be

combined to build an interactive application for exploring artworks. One of the key

takeaways was realizing how well modern vision models like DINOv2 can capture

stylistic features without relying on metadata, focusing solely on visual elements.

Working on this application also helped me understand what could be improved or

expanded in the future. One possible enhancement would be to combine visual

similarity with textual information from the paintings such as the title, description, or

artistic period. In this regard, it would be interesting to experiment with embedding

models like CLIP, which can handle both images and textual information. This would

enable more advanced search options, allowing users to upload an image and filter

results based on specific styles, periods, or keywords. Moreover, it would support

multimodal search, where visual similarity could be combined with textual queries to

tailor the results even further based on user preferences. Another useful feature would

be integrating a feedback mechanism, where users can rate or mark results as relevant or

not. This would allow the system to learn over time and improve the quality and

accuracy of its suggestions.

During this project, I also came across other creative applications that explore similar

ideas. One that stood out was ArtButMakeItSports (ArtButMakeItSports, 2023), a

system that compares artworks with sports photographs, often producing unexpected

and humorous visual pairings. Although it differs in purpose, it showcases the potential

of embedding models in making surprising visual connections across domains!

4.4.1 Limitations of the current approach

Despite the promising results, this project also presents some limitations. Most notably,

the system’s performance is entirely dependent on the dataset stored in the vector

database, which currently contains only around 1,300 paintings. This relatively small

dataset limits the variety and depth of possible matches, especially when exploring less

common styles or subjects. Expanding the database to include a larger and more diverse

collection of artworks would likely improve both the accuracy and reliability of the

results, enabling more meaningful comparisons and richer discoveries.

43

Chapter 5

Conclusions

Vector databases have definitely been one of the most fascinating topics I've had the

privilege to study throughout my bachelor's degree. From the beginning, I was

fascinated by how they combine mathematics and deep learning to create useful tools

for dealing with unstructured data. Through this thesis, I was able to explore them

further—not only theoretically, but also by developing a real-world application that

demonstrates their potential in the field of art and image analysis.

Although my case study involved paintings, the same process can be applied to virtually

any other use case—such as medical imaging, e-commerce, and recommendation

systems—where discovery of patterns and similarities is key. That reflects the flexibility

and versatility of vector databases, especially when combined with strong embedding

models. As an example, in medicine, the same process can be employed to assist with

cancer diagnosis by matching patient scans to known instances so that doctors can make

faster, more informed diagnoses.

In the coming years, vector databases will play an increasingly vital role across

computer science and data science. As the volume of unstructured data—particularly in

the form of images, videos, and text—continues to grow, the ability to efficiently store,

search, and interpret this data will become not just valuable, but essential.

Developing expertise in these capabilities is already a highly valued asset, and their

relevance is expected to grow significantly in the near future.

44

References

Andoni, A., Indyk, P., & Razenshteyn, I. (2018). Approximate Nearest Neighbor Search

in High Dimensions. arXiv:1806.09823.

Aquino, S. (2024). An Introduction to Vector Databases.

https://qdrant.tech/articles/what-is-a-vector-database/.

ArtButMakeItSports. (2023). Art But Make It Sports

https://www.artbutmakeitsports.com/

Bergmann, D., & Stryker, C. (2024). Vector Embedding: Transforming Data Analysis

and AI Applications. https://www.ibm.com/think/topics/vector-embedding.

Chugani, V. (2024). Minkowski Distance: A Comprehensive Guide. DataCamp.

https://www.datacamp.com/tutorial/minkowski-

distance?dc_referrer=https%3A%2F%2Fwww.google.com%2F

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,

Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N.

(2020). An image is worth 16x16 words: Transformers for image recognition at

scale (arXiv:2010.11929). arXiv. https://arxiv.org/pdf/2010.11929

Fajri, R. (2024). Introduction to Vector Databases: All You Need to Know About Vector

Databases. Medium. https://medium.com/@rfajri912/introduction-to-vector-

databases-c0a4a855765d.

Gutsch, D. (2023). Vector Databases: The Secret Sauce of the AI Revolution – Part 1.

Medium. https://medium.com/@david.gutsch0/vector-databases-the-unseen-

powerhouse-of-the-ai-revolution-part-1-6685653abd92.

Han, Y., Liu, C., & Wang, P. (2023). A Comprehensive Survey on Vector Database:

Storage and Retrieval Technique, Challenge. arXiv:2310.11703.

Haziqa (2023). An Exhaustive List Of Distance Metrics For Vector Similarity Search.

https://medium.datadriveninvestor.com/an-exhaustive-list-of-distance-metrics-

for-vector-similarity-search-09c4db84f0b4

https://qdrant.tech/articles/what-is-a-vector-database/
https://www.ibm.com/think/topics/vector-embedding
https://www.datacamp.com/tutorial/minkowski-distance?dc_referrer=https%3A%2F%2Fwww.google.com%2F
https://www.datacamp.com/tutorial/minkowski-distance?dc_referrer=https%3A%2F%2Fwww.google.com%2F
https://arxiv.org/pdf/2010.11929
https://medium.com/@rfajri912/introduction-to-vector-databases-c0a4a855765d
https://medium.com/@rfajri912/introduction-to-vector-databases-c0a4a855765d
https://medium.com/@david.gutsch0/vector-databases-the-unseen-powerhouse-of-the-ai-revolution-part-1-6685653abd92
https://medium.com/@david.gutsch0/vector-databases-the-unseen-powerhouse-of-the-ai-revolution-part-1-6685653abd92

45

Kanungo, N. (2023). How Vector Databases Search by Similarity: A Comprehensive

Primer. https://medium.com/kx-systems/how-vector-databases-search-by-

similarity-a-comprehensive-primer-c4b80d13ce63.

Meta AI. (2023). DINOv2: State-of-the-art computer vision models with self-supervised

learning. https://ai.meta.com/blog/dino-v2-computer-vision-self-supervised-

learning/

Miesle, P. (2023). Exploring the Real-World Applications of Cosine Similarity.

https://www.datastax.com/guides/real-world-applications-of-cosine-similarity

Microsoft Learn. (2025). RAG generate embeddings phase.

https://learn.microsoft.com/en-us/azure/architecture/ai-ml/guide/rag/rag-

generate-embeddings.

Mishra, M. (2024, September 12). DINOv2: A complete guide to self-supervised

learning and vision transformers. https://medium.com/data-science-in-your-

pocket/dinov2-a-complete-guide-to-self-supervised-learning-and-vision-

transformers-d5c1fb75d93f

ML Journey. (2024). Manhattan Distance vs Euclidean Distance: Key Differences.

https://mljourney.com/manhattan-distance-vs-euclidean-distance-key-

differences/

Monigatti, L., & Hasan, Z. (2023). A Gentle Introduction to Vector Databases.

https://weaviate.io/blog/what-is-a-vector-database.

MongoDB. (2024). What is ANN Search?

https://www.mongodb.com/resources/basics/ann-search.

Pan, J. J., Wang, J., & Li, G. (2023). Survey of Vector Database Management Systems.

arXiv:2310.14021.

Qdrant Documentation. (n.d.). Overview – What is Qdrant?

https://qdrant.tech/documentation/overview/

https://medium.com/kx-systems/how-vector-databases-search-by-similarity-a-comprehensive-primer-c4b80d13ce63
https://medium.com/kx-systems/how-vector-databases-search-by-similarity-a-comprehensive-primer-c4b80d13ce63
https://ai.meta.com/blog/dino-v2-computer-vision-self-supervised-learning/
https://ai.meta.com/blog/dino-v2-computer-vision-self-supervised-learning/
https://learn.microsoft.com/en-us/azure/architecture/ai-ml/guide/rag/rag-generate-embeddings
https://learn.microsoft.com/en-us/azure/architecture/ai-ml/guide/rag/rag-generate-embeddings
https://medium.com/data-science-in-your-pocket/dinov2-a-complete-guide-to-self-supervised-learning-and-vision-transformers-d5c1fb75d93f
https://medium.com/data-science-in-your-pocket/dinov2-a-complete-guide-to-self-supervised-learning-and-vision-transformers-d5c1fb75d93f
https://medium.com/data-science-in-your-pocket/dinov2-a-complete-guide-to-self-supervised-learning-and-vision-transformers-d5c1fb75d93f
https://mljourney.com/manhattan-distance-vs-euclidean-distance-key-differences/
https://mljourney.com/manhattan-distance-vs-euclidean-distance-key-differences/
https://weaviate.io/blog/what-is-a-vector-database
https://www.mongodb.com/resources/basics/ann-search
https://qdrant.tech/documentation/overview/

46

Rosebrock, A. (2014). Building an Image Search Engine: Defining Your Similarity

Metric. PyImageSearch

https://pyimagesearch.com/page/2/?s=image+vector+similarity.

Schwaber-Cohen, R. (2023). What is a Vector Database & How Does it Work? Use

Cases + Examples. https://www.pinecone.io/learn/vector-database/.

Schwaber-Cohen, R. (2023). Vector Similarity Explained.

https://www.pinecone.io/learn/vector-similarity/.

Shivanandhan, M. (2023). Understanding Word Embeddings: The Building Blocks of

NLP and GPTs. https://www.freecodecamp.org/news/understanding-word-

embeddings-the-building-blocks-of-nlp-and-gpts/?utm_source=chatgpt.com.

Taipalus, T. (2024). Vector database management systems: Fundamental concepts, use-

cases, and current challenges. arXiv:2309.11322v2 [cs.DB].

Verrier, J.-F., Hirschfeld, S., & Vikram, S. (2025). Oracle Database Oracle AI Vector

Search User's Guide, 23ai.https://docs.oracle.com/en/database/oracle/oracle-

database/23/vecse/index.html.

Yan, C. (2024, July 24). Understanding Hamming Distance: A Measure of Similarity.

Medium. https://chrisyandata.medium.com/understanding-hamming-distance-a-

measure-of-similarity-698ae2cb0ef6

https://pyimagesearch.com/page/2/?s=image+vector+similarity
https://www.pinecone.io/learn/vector-database/
https://www.pinecone.io/learn/vector-similarity/
https://www.freecodecamp.org/news/understanding-word-embeddings-the-building-blocks-of-nlp-and-gpts/?utm_source=chatgpt.com
https://www.freecodecamp.org/news/understanding-word-embeddings-the-building-blocks-of-nlp-and-gpts/?utm_source=chatgpt.com
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/index.html
https://chrisyandata.medium.com/understanding-hamming-distance-a-measure-of-similarity-698ae2cb0ef6
https://chrisyandata.medium.com/understanding-hamming-distance-a-measure-of-similarity-698ae2cb0ef6

