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The Impact of Al on Productivity and Growth:
A Labour Market Perspective through Occupational Exposure

Abstract

This thesis examines the impact of artificial intelligence (AI) on productivity and
economic growth through a labour market lens, with a focus on the occupational structure
of the Italian economy. Building on recent advances in the literature, it develops novel
indicators of Al exposure and potential complementarity by measuring the semantic
similarity between AI domain capabilities and occupational abilities, and by
incorporating work context and job complexity features. These indicators are then
aggregated to the sectoral level and interacted with a proxy for Al adoption—sectoral

R&D intensity—to estimate their relationship with labour productivity.

Using a semi-parametric panel model over 21 Italian macro-sectors between 1996 and
2022, the analysis finds that productivity gains are not driven by exposure alone but
emerge when exposure is accompanied by high complementarity and realized adoption.
The results confirm that Al's effects on economic performance are conditional on the
structure of work, investment in innovation, and the ability to harness Al for augmentation

rather than substitution.
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1. A Definition of Artificial Intelligence
Before beginning to analyse the effect of a disruptive innovation such as Al, it is of utmost
importance to clearly define the various nuances of this technology in order to fully
understand the source of its transformative impact. In this section, I will provide a general

analysis of the different classifications and denominations of Al

Artificial Intelligence is defined as “a technical and scientific field devoted to the
engineered system that generates output such as content, forecasts, recommendations or
decisions for a given level of human-defined objectives!”. It emerged after the Second
World War, with the term “Artificial Intelligence” first gaining recognition in 1956. Since
then, Al has expanded significantly, permeating various aspects of human life. It can be
classified into several application domains: computer vision, natural language processing

(NLP), data mining and knowledge discovery, and planning and decision systems.?
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Figure 1- A General Framework for Al Classification based on Functionality

The diagram in Figure 1 illustrates the hierarchical structure of Al, from foundational
models (left) to practical applications (right), showing how Al models influence system
types, which in turn define Al domains and real-world applications. This classification

serves as a foundation for understanding how Al is integrated into various fields,

'ISO/IEC 22989:2022
2 ISO/IEC, 2022, Clause 9



providing the necessary context for evaluating AI’s impact on labour markets through

exposure indicators.

1.1 Natural Language Processing

Natural Language Processing (NLP) refers to the ability of Al systems to acquire, process,
and understand human language. It is widely applied across various Al fields and relies
on Language Models (LMs), which predict the probability distribution of language
expressions to interpret and generate text. > NLP enables applications such as speech

recognition, machine translation, sentiment analysis, and conversational Al.

1.2 Computer Vision

Computer Vision encompasses a different perception sensitivity in Al, enabling systems
to recognize, interpret, and process physical objects and images. Using pattern
recognition techniques and point descriptors, these systems can identify both two-
dimensional and three-dimensional objects, extract meaningful features, and apply or
store the gathered information. Common applications include medical imaging, facial

recognition (e.g., FacelD), autonomous vehicles, and surveillance systems.

1.3 Data Mining and Knowledge Discovery

Data Mining is a subset of Al that focuses on transforming large volumes of data into
meaningful knowledge by identifying patterns, correlations, and trends within extensive
databases.* Tt involves the use of statistical, machine learning, and computational
techniques to uncover hidden insights that might not be immediately apparent. As
described by Hand et al. (2001) “Data mining is the analysis of (often large) observational
data sets to find unsuspected relationships and to summarize the data in novel ways that
are both understandable and useful to the data owner.”.

Common applications of data mining include fraud detection, recommendation systems,

market analysis, customer segmentation, and predictive analytics.

3 (Russell & Norvig, 2016)
4 (Han et al., 2012)



1.4 Planning and Decision Systems

As the name suggests, Planning and Decision Systems are designed to optimize processes,
automate complex workflows, and enhance predictive analytics.’> These systems enable
Al to evaluate different courses of action, anticipate outcomes, and support strategic
decision-making. Just as planning in everyday life requires analysing potential
consequences before taking action, Al-driven planning systems help structure approaches
to complex problems, ensuring efficiency, adaptability, and informed decision-making.
Common applications include logistics optimization, autonomous systems, business

strategy modelling, and financial forecasting.

2. Revision of Developed Metrics for AI Exposure

The impact of Al on labour markets is a subject of increasing debate, as Al-driven
technologies continue to reshape job roles, alter task structures, and influence
employment dynamics. To quantify these effects, researchers have developed Al
exposure metrics, which attempt to measure how different occupations and industries are
affected by Al advancements.

Understanding these exposure measures is essential for evaluating how Al transforms
work, whether through task automation, augmentation, or displacement. These indices
offer a structured approach to assessing which jobs are most at risk and which may benefit

from Al integration.

This chapter reviews the key Al exposure metrics developed in the literature, analysing
their methodologies, strengths, and limitations. By critically assessing these indicators, it
is possible to identify gaps and challenges that will inform the construction of a more

comprehensive Al exposure index in the following chapter.

5 (Ghallab et al., 2004)



2.1 Different Methods for Al exposure

Different indices of Al exposure can be categorized into 3 main areas:
1. Task-based indices, which assess Al’s impact by evaluating its ability to automate
or complement specific tasks.
2. Occupation-based indices, which aggregate Al exposure at the job level,
considering the skills and abilities required for different occupations.
3. Patent-based indices, which estimate AI’s impact based on technological
advancements reflected in patent filings and their relevance to occupational tasks.
Each of these approaches offers unique insights into how Al affects the labour market but
also comes with methodological limitations. The following sections will examine the
distinct nuances pertaining to each indicator, with particular attention to their structure,

while presenting their main findings.

2.1.1 Task-based exposure indices
Task-based indices measure Al exposure by assessing how Al capabilities align with
specific job tasks, typically based on occupational databases like O*NET®. This approach
allows for a granular understanding of AI’s impact but often overlooks task adaptation

and workforce reallocation effects.

Frey & Osborne (2017)

Frey and Osborne assess automation risk for 702 O*NET occupations by first
categorizing 70 occupations as either fully automatable (1) or not automatable (0) based
on expert judgment. Consequently, they apply a Gaussian process classifier’ to estimate
the probability of computerization for the remaining 632 occupations.

Their study is based mainly on general Machine Learning (ML) and Machine Reasoning
(MR) characteristics and capabilities— as of 2017 —without a particular focus on LLMs

or GenAl, which have since become major drivers of concern.

% The O*NET Database comprehends information on careers and occupations, as provided by the U.S. Department of
Labor Employment and Training Administration. https://www.onetcenter.org/db_releases.html

7 A Gaussian Process Classifier (GPC) is a probabilistic model used for classification tasks, characterized by defining
a distribution over possible functions rather than assuming a fixed functional form. This allows for flexible decision
boundaries and uncertainty-aware predictions.



https://www.onetcenter.org/db_releases.html

Main Findings: Al has significant potential to substitute labour in non-routine cognitive
tasks, especially in low-skill and low-wage occupations. However, jobs relying on social

and creative intelligence are safer.

Brynjolfsson, Mitchell, et al. (2018)

The indicator developed by Brynjolfsson and Mitchell, called “Suitability for Machine
Learning” (SML) evaluates the potential for Machine Learning to automate a set of tasks
described in the O*NET database. Experts rate 23 features on a scale from 1 (strongly
disagree) to 5 (strongly agree), then aggregated at the occupational level.

Unlike Frey & Osborne (2017), this study explicitly accounts for task complementarity,
acknowledging that ML will transform jobs rather than completely automate them.
Main findings: Machine Learning technology has the potential to significantly transform
various jobs across the economy; however, its primary impact will be in the reengineering
of processes and the restructuring of tasks rather than full automation. The data supports
the argument that ML is more likely to augment or reshape jobs, particularly in fields

involving structured decision-making, data processing, and administrative tasks.

Tolan et al. (2021)

Tolan et al. (2021) propose a three-layer framework to assess Al exposure, consisting of
tasks, cognitive abilities, and Al benchmarks. Their approach maps occupations from
worker surveys and occupational databases to cognitive tasks using Al research
benchmarks. Unlike previous approaches such as Brynjolfsson, Mitchell, et al. (2018),
which focus on broad ML applicability, this method evaluates Al exposure based on the
degree to which Al research is directed toward specific cognitive abilities required for
different occupations, without assuming immediate substitution.

Building on Felten et al. (2021)’s work, their framework broadens the scope of Al
benchmarks beyond perception-related tasks to include language processing, planning,
information retrieval, and automated deduction/induction. They also refine the
measurement of Al research intensity, addressing the issue of nonlinear performance
trends that hinder comparability across benchmarks. To overcome this, they translate Al
benchmarks into Al research activity, ensuring a more accurate alignment between

technological advancements and occupational exposure.



Expanding on Webb (2020) methodology, they link research intensity in Al domains—
such as computer vision and NLP —to the specific abilities required for performing job
tasks.

Main findings: Their findings indicate that the occupations most at risk are concentrated
in high-income sectors, including medical professionals, office clerks, and teachers, not
due to automation but because of augmentation and transformation. Unlike previous
waves of automation that primarily displaced workers, AI’s impact in these fields is more
focused on reshaping and enhancing jobs rather than replacing them. The most affected
abilities are those related to problem-solving and idea generation, emphasizing that AI’s
role is primarily in transforming work processes rather than substituting human labour

entirely.

Eloundou et al. (2023)

Eloundou et al. (2023) analyse the impact of Large Language Models (LLMs), such as
Generative Pre-trained Transformers (GPTs), on occupational exposure. Their approach
builds on previous work by Brynjolfsson, Mitchell, et al. (2018), Felten et al. (2021), and
Webb (2020) but does not differentiate between labour-augmenting and labour-displacing
effects. Instead, it measures Al exposure using the O*NET database, following Felten’s
framework for automation potential and aggregating exposure estimates at both the
occupational and industry levels.

The methodology is based on matching detailed work activities (DWAs) from the O*NET
database with expert assessments and ChatGPT evaluations. The core metric categorizes
tasks as either “Directly Exposed” or “Indirectly Exposed”, depending on whether LLMs
can reduce the time required to complete a task by more than 50%. This threshold serves
as a proxy for the degree of automation potential but assumes a direct correlation between
task completion time and Al substitutability, which is a notable limitation.

Main Findings: Their findings suggest that higher-wage occupations are the most
exposed, as tasks in these jobs tend to involve significant information processing, text
generation, and decision-making, all areas where LLMs demonstrate high proficiency.
Overall, the study estimates that approximately 19% of jobs in the U.S. have at least 50%
of their tasks exposed to LLMs, signalling a substantial potential impact on knowledge-

intensive professions. However, the approach has limitations, particularly in its reliance



on ChatGPT’s own assessment of its capabilities, which introduces subjectivity and
potential biases into the analysis. Moreover, the use of a 50%-time reduction threshold as
the primary determinant of exposure oversimplifies the complexities of AI’s impact on

labour dynamics.

Briggs and Kodnani, (2023)

Briggs and Kodnani (2023) analyse Al exposure using data from the O*NET database,
focusing on task content to assess the extent of labour-saving automation. Based on
existing literature on AI’s potential use cases, they identify 13 out of 39 work activities
as exposed to automation. They then estimate occupational exposure using an importance
and complexity-weighted average, which allows them to determine the share of workload
Al could automate.

Main findings: Around two-thirds of current jobs in the U.S. and Europe are exposed to
Al automation to varying degrees. However, up to a quarter of these jobs could face
disruptive substitution effects, highlighting the uneven impact of Al across different
sectors. Additionally, they estimate that Generative Al (GenAl) could increase annual
U.S. labour productivity growth by just under 1.5 percentage points over a 10-year period,
assuming successful adoption and realization of AI’s projected capabilities. The study
also suggests that Al could contribute to a 7% increase in global GDP, contingent on the

pace of adoption and the accuracy of Al development projections.

2.1.2  Occupation-based exposure indices
Occupation-based indices aggregate task-level exposure into broader occupational
categories, offering a more structured view of AI’s labour market impact. However, these
models may oversimplify job heterogeneity, failing to capture within-occupation

differences.

Felten et al. (2021)
Felten, Raj, and Seamans (2021) developed the Al Occupational Exposure Index (AIOE),
an indicator that maps specific Al applications to occupational abilities while remaining

neutral on whether Al complements or substitutes jobs. The measure relies on expert

10



assessments to evaluate how Al capabilities interact with different job roles, offering a
broad and flexible approach to analysing Al exposure across occupations.

Main Findings: High-skill occupations tend to have the highest Al exposure, particularly
roles requiring analytical and cognitive abilities, such as financial examiners, actuaries,
genetic counsellors, and mathematicians. These professions are highly susceptible to Al-
driven advancements in data analysis, pattern recognition, and complex decision-making.
Conversely, occupations with low Al exposure are typically non-office jobs requiring
significant physical abilities, including dancers, athletes, fitness trainers, and manual
labourers such as roofers, brick masons, and block masons. The study highlights that AI’s
impact is unevenly distributed across the labour market, with cognitive-intensive roles
being more exposed to transformation while physical and manual jobs remain relatively

insulated.

Bonfiglioli et al. (2024)

The indicator developed by Bonfiglioli is one of the most comprehensive in the literature,
based on task exposure, job mobility, and economic transitions. It focuses on the effect
of Al at a sectoral level, analysing shifts due to Al and implementation rates. The indicator
combines industry-level Al adoption, tracked through job growth in Al-related
occupations, with local industry employment shares to assess regional exposure across
U.S. commuting zones. Unlike static task-based measures, this approach captures both
displacement effects (job losses due to automation) and complementarity effects (Al
augmenting labour), offering a dynamic view of AI’s impact on employment and labour
market adjustments.

Main findings: unlike previous technological waves, Al’s effects are more prominent in
services than in manufacturing. While Al adoption has a negative employment effect on
low-skilled and production workers, it positively impacts high-wage earners and STEM
occupations, suggesting that AI’s labour market influence is highly skill-biased and

sector-dependent.
Pizzinelli et al. (2023)

Pizzinelli et al. (2023) expand on the Al Occupational Exposure Index (AIOE) developed
by Felten et al. (2021), introducing the Complementarity-Adjusted AI Occupational

11



Exposure (C-AIOE). This refined indicator incorporates AI complementarity potential at
the occupational level, using O*NET data to assess how Al interacts with different job
roles. Unlike traditional exposure measures that primarily focus on automation risk, the
C-AIOE accounts for the extent to which Al complements, rather than replaces, human
labour. A key distinction of this approach is its broader assessment of occupational
exposure, considering not only task-based automation potential but also the social and
physical context of work, which influences AI’s role in workplace dynamics.

Main findings: The study finds that high-skilled occupations with high Al exposure also
tend to have high complementarity scores, suggesting that Al will likely enhance
productivity in these jobs rather than replace them. Conversely, occupations such as
clerical support roles—where Al is more likely to serve as a direct substitute—are more
prone to labour market disruptions. This framework underscores the heterogeneous
impact of Al, where certain professions benefit from augmentation, while others face

higher risks of displacement.

Arntz et al. (2017)

Arntz et al. (2017) adopt an occupational-level approach to automation risk, emphasizing
within-occupation heterogeneity rather than treating entire occupations as fully
automatable. Their methodology integrates automation probabilities from Frey &
Osborne (2017) with job-level characteristics from the PIAAC (Programme for the
International Assessment of Adult Competencies) database, allowing for a more nuanced
assessment of automation exposure.

Instead of assigning automation risks to entire occupations, they apply Frey and
Osborne’s task-level automation probabilities to individual job tasks, then re-estimate
overall automation risk while accounting for variation within occupations.

Main findings: Their adjustment reveals that only 9% of U.S. jobs are at risk of
automation, a significant revision compared to the 38% projected by Frey and Osborne’s
task-based approach. Their findings suggest that previous models overestimated
automation risk by not considering the complexity of job roles, as many occupations
involve a mix of automatable and non-automatable tasks, making full displacement less

likely.

12



2.1.3 Patent-based exposure indices
Patent-based indices estimate Al’s labour market impact by analysing technological

progress and its relevance to different occupations.

Webb (2020)

Webb (2020) develops a hybrid model that combines a task-based approach with Al-
related patents to measure the alignment between technological advancements and job
tasks. The methodology involves text-matching between job descriptions and patents,
assigning task-level scores that are then aggregated into occupational scores on a
percentage scale. This approach enables a quantitative assessment of Al exposure at the

job level.

In addition to Al-related patents, Webb extends the analysis by examining similarities
between patents linked to Al robotics, and software and occupational task descriptions,
providing insight into how these technologies affect employment growth across different
occupations. A key innovation in this model is the direct patent-to-occupation mapping,
which refines the task-exposure measurement by extracting verb-noun pairs from patent
titles and job descriptions. This method improves the accuracy of linking Al innovations
to specific job functions, offering a more detailed picture of how technological progress
reshapes labour demand.

Main Findings: Al exposure is unevenly distributed across occupations, with high-skill
cognitive jobs—particularly those involving data analysis, decision-making, and
prediction—being the most affected. Using a patent-to-task text-matching approach, the
study shows that occupations more exposed to Al-related patents tend to experience
slower employment growth, indicating that Al advancements may be influencing labour
demand. Additionally, Webb distinguishes between Al, robotics, and software patents,
finding that Al is more closely linked to cognitive and analytical tasks, whereas robotics
patents align with manual and repetitive tasks. By mapping patent text to job descriptions,
the study provides a task-specific measure of Al exposure, offering a more precise
understanding of how technological progress interacts with different jobs and potentially

contributes to occupational shifts and employment reallocation.

13



Kogan et al. (2024)

Kogan et al. (2024) construct a technology exposure measure focused on capturing the
displacement of existing tasks from the perspective of incumbent workers. Their approach
is similar to Webb (2020) but improves on it by using natural language processing (NLP)
and text embeddings instead of word hierarchies. By representing words as vectors
trained on large text datasets, this method enables more precise similarity scoring between
patents and occupational descriptions. Unlike prior approaches that relied on verb-noun
pairs, their full-text analysis allows for more context-aware differentiation of tasks,
improving the accuracy of Al exposure assessment across different occupations.

Main findings: labour-saving technologies have a negative impact on wages across all
worker levels while labour-augmenting technologies produce heterogeneous effects—
increasing earnings for new entrants but leading to wage declines for incumbents.
Ultimately, their research indicates that technological advancements that enhance
industry productivity can contribute to overall earnings growth, as aggregate labour

demand rises, regardless of whether the technology is labour-saving or labor-augmenting.

Autor et al. (2022)

Autor (2022) develops an exposure measure that examines how technological progress
contributes to the creation of new tasks and occupations. The methodology is patent-
based, leveraging Natural Language Processing (NLP) techniques to quantify how closely
patent descriptions align with occupational descriptions from the Census Alphabetical
Index (CAI). Specifically, the indicator computes a similarity score based on the textual
overlap between patent documentation and occupational micro-titles listed in the CAI,
focusing on breakthrough innovations—patents characterized as both novel (distinct from
prior innovations) and impactful (widely cited by subsequent patents).

This approach provides a comprehensive overview of the impact of “breakthrough
technologies,” considering both labour-saving innovations (automated tasks) and skill
obsolescence (where innovations may complement activities but require new skills that
incumbent workers lack, thus making their expertise outdated). The significance of this
framework lies in its influence on subsequent studies analysing the impact of Al as it has
established a theoretical foundation for measuring how new technologies transform work

dynamics.

14



Meindl et al. (2021)

Meindl, Frank, and Mendonga (2021) develop a task-level technology exposure indicator
that maps over 900 occupations to patents using Natural Language Processing (NLP),
providing a real-world measure of technology diffusion rather than merely estimating
theoretical automation potential. Their methodology distinguishes between traditional
patent exposure and Fourth Industrial Revolution (4IR) patent exposure, reflecting how
new technologies are adopted and diffused in the labour market. Instead of assessing
automation potential in isolation, their approach first accounts for differences in task
exposure and then aggregates these effects at the occupational level. Their method is
similar to Kogan et al. (2024) in that it uses a distance matrix approach, but instead of
comparing occupations to patents directly, it matches O*NET task descriptions to patent
descriptions to improve the accuracy of exposure measurement.

Main Findings: Their findings indicate that manual and production occupations, such as
those in construction, manufacturing, and transportation, are more exposed to traditional
technologies but have low exposure to 4IR technologies. In contrast, cognitive and
analytical occupations, including those in finance, marketing, and data entry, show high
exposure to 4IR innovations. The study also highlights that 4IR technologies influence
job growth with a lag of 10 to 20 years, reinforcing the idea that technological adoption
takes time to reshape labour markets. Among the most exposed occupations are credit
authorizers, statistical assistants, and computer network support specialists, while
physically intensive roles like meat cutters and floor sanders remain largely unaffected.
Compared to prior Al exposure measures, such as Frey & Osborne (2017) and
Brynjolfsson, Mitchell, et al. (2018), which focus on theoretical automation potential, this
study provides a more precise tool for labour market analysis by capturing real-world

technological diffusion.

The review presented in this chapter has outlined the principal methodologies developed
to measure occupational exposure to artificial intelligence. While each approach offers
valuable insights, they differ in scope, assumptions, and applicability. This comparative

overview has served to contextualize the diverse ways in which exposure has been
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conceptualized and operationalized. Having considered these contributions, the next
chapter turns to the construction of the specific indicator used in this thesis. Building on
the foundations reviewed here, it introduces a bi-dimensional measure designed to capture
both Al exposure and potential complementarity in a way that can be operationalized

within a macroeconomic framework.

3. A Novel Exposure Measure

3.1 Introducing the need for a new indicator

As artificial intelligence (Al) technologies have advanced, so too has the effort to measure
their potential effects on work. In recent years, a variety of occupational exposure
indicators have been developed to quantify the alignment between Al capabilities and
human tasks. These measures have helped frame the debate around job automation and
the future of work. However, as discussed in Chapter 2, important methodological and
conceptual limitations remain that constrain their usefulness for dynamic, productivity-

oriented analysis.

Many of the most cited indicators—such as Frey & Osborne (2017) occupation-level
automation probabilities—rely on static, binary classifications of task susceptibility, often
extrapolated from expert judgment about the technological frontier at a fixed point in
time. While this approach was foundational, subsequent critiques, such as Arntz et al.
(2017), demonstrated that it significantly overstates risk by ignoring intra-occupational
variation in task content. Similarly, task-based indices like the Suitability for Machine
Learning (SML) measure Brynjolfsson, Mitchell, et al. (2018) and the benchmark-
matching framework of Tolan et al. (2021) incorporate more granularity, but remain
reliant on subjective features or limited to narrow domains like cognitive ability—

excluding increasingly relevant areas such as embodied or perceptual work.
Another recurring limitation across these indicators is the merge of technological

exposure with economic impact. For example, Eloundou et al. (2023) define exposure

based on whether GPT-4 is estimated to reduce task completion time by 50%, but offer

16



no differentiation between substitution and augmentation. This distinction is critical, as
emphasized in the task-based framework developed by Acemoglu & Restrepo (2019),
which highlights that the effects of automation depend not only on the technical feasibility

of task performance but also on the reallocation and transformation of human roles.

Some more recent approaches have begun to address this shortcoming. Pizzinelli (2023)
introduce a Complementarity-Adjusted Occupational Exposure Index (C-AIOE), which
combines a traditional exposure score with features intended to capture whether an
occupation is more likely to be complemented or substituted by AIl. While this dual-
dimensional structure is conceptually valuable, their method is still limited by its use of
fixed task taxonomies and lacks a mechanism for incorporating new or evolving Al

capabilities over time.

These constraints are particularly problematic when the goal is not just to assess risk, but
to understand how Al interacts with labour to influence productivity. A valid indicator in
this context must be capable of capturing the evolving technological landscape, reflect
heterogeneity within and across occupations, and distinguish between exposure and
complementarity as analytically separate forces. Moreover, it must be empirically

replicable, updateable, and capable of integration into sectoral frameworks.

To meet these requirements, this thesis constructs a new Al exposure and
complementarity indicator. The approach departs from expert-driven and static
classification methods by leveraging recent advances in semantic modelling. Following
the logic of Webb (2020) and Kogan et al. (2021), the exposure component is calculated
through the cosine similarity between Al domain descriptions and occupational abilities
as defined in the O*NET system. These embeddings allow for unsupervised, dynamic
alignment between language used in Al capabilities and the skill requirements of jobs,

improving both accuracy and adaptability.
In parallel, complementarity is computed using structural features of occupations—

including Job Zone classifications and selected Work Context variables—following and

extending the methodology introduced by Pizzinelli (2023). Rather than collapsing
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exposure and complementarity into a composite index, they are retained as separate but
jointly interpretable dimensions, enabling more nuanced classification of how Al may

augment, substitute, or leave unchanged different categories of work.

The indicator developed here offers three primary advantages over existing alternatives.
First, it provides ability-level granularity, capturing intra-occupational variation often
ignored in aggregate scores. Second, it is entirely computational and semantically based,
allowing for continuous updates as Al technologies evolve. Third, its bi-dimensional
structure reflects the economic insight that exposure alone does not determine
outcomes—complementarity conditions are equally important, especially when

productivity is the object of analysis.

Considering these methodological, theoretical, and empirical considerations, the
construction of a new indicator is a necessary step toward answering the central question
of this research: under what structural conditions does Al adoption translate into

productivity gains?

3.2 Building the Exposure and Complementarity Index
3.2.1 Data Sources

The construction of the exposure and complementarity index relies on the following data
sources:
(1) The O*NET database, from which I extract 52 occupational abilities, their
associated “importance” and “level” scores, and job-level metadata including
Job Zones and Work Contexts.®
(i1) A set of Al domain descriptions (e.g., natural language processing, computer
vision, planning and decision-making, data mining), which are formulated in
natural language based on existing literature.
(iii) A pre-trained transformer model is employed to compute semantic similarity

between Al domain descriptions and the text of O*NET ability descriptions. °

8 Available at https://www.onetonline.org
? Specifically, the all-mpnet-base-v2 model from HuggingFace, available at
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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3.2.2 Methodology
The construction of the final occupation impact framework follows a three-step
methodology. Each step builds upon and extends the established methodologies analysed

in the previous chapter.

First, I derive a general measure of exposure to Al across occupations using semantic
similarity between different Al domains capabilities. Specifically, I consider four key Al
Domains discussed in Chapter |—Natural Language Processing, Computer Vision, Data
Mining, Planning and Decision System— and compute a cosine similarity score between
their functional description derived from existing literature and textbooks, and the 52
abilities descriptors provided in the O*NET database. These scores contribute to each
occupational score € by an importance and level weighted average. This step provides a
general measure of the extent to which Al can perform the core cognitive, physical,

psychomotor, and sensory functions required by each job.

Unlike prior studies such as Tolan et al. (2021) or Martinez-Plumed et al. (2021), which
focus exclusively on cognitive abilities when measuring Al occupational exposure, my
approach deliberately includes the full range of O*NET abilities—cognitive, sensory,
physical, and psychomotor. This broader scope reflects the increasing capacity of Al
systems, especially when integrated with robotics or advanced control technologies, to
perform not only reasoning or language-based tasks but also perception-driven and
embodied interactions with the physical environment. Incorporating these additional
ability domains enables a more comprehensive assessment of potential AI impact across

the entire occupational spectrum.

Secondly, I incorporate a measure of complementarity following the approach of
Pizzinelli (2023) to differentiate between the substitution and the augmentation potential
of Al This dimension, denoted 8, is derived from two occupation-level features in the
O*NET database:

(1) Job Zones: classify occupations in 5 categories based on the level of

education, training and experience needed. Categories with a higher score are
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typically more complex and abstract, thus not easily substitutable by Al, but
rather complemented.
(i1))  Work Contexts: describe aspects under which the work is carried out, such as
communication, responsibility, physical conditions and others.
Combining these measures, the derived complementarity score distinguishes between

roles likely to be enhanced by Al (high 8) and those at higher risk of automation (low 6).

Finally, I integrate the two measures in a bivariate scatter plot.

This allows for a typology of occupations along two axes: high vs. low exposure and high
vs. low complementarity. Occupations are thus categorized into four quadrants
representing distinct Al impact profiles to visualize the heterogeneity of AI’s potential

effects across the labour market.

I then compare the results of this classification with those obtained by Pizzinelli (2023),

as well as with other relevant contributions in the literature.

3.2.3 Exposure Score

3.2.3.1 Preliminary Steps
As a first step in the analysis, I compute an Al exposure score for each occupation. This
score reflects the extent to which Al systems can potentially perform the core abilities
required by a given occupation, based on semantic similarity between Al domain

capabilities and occupational abilities.

To start constructing the exposure index, I collected and organized the relevant textual
descriptors for both occupational abilities and Al capabilities. I began by extracting and
unifying ability descriptions from the O*NET database, focusing on the 52 abilities
categorized into four main groups: cognitive, physical, psychomotor, and sensory. For
each ability, I retained the official definition provided by O*NET, ensuring consistency

and comparability across occupations.

In parallel, I defined textual descriptions for a selected set of Al functional domains—

namely, Natural Language Processing, Computer Vision, Data Mining, and Planning and
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Decision-Making Systems. These descriptions were constructed using a combination of
authoritative academic sources, textbooks, and international standards. Specifically, the

main references included:

o Russell & Norvig (2016) Artificial Intelligence: A Modern Approach

o Hand et al, (2001), Principles of Data Mining

o Hanetal, (2012), Data Mining: Concepts and Techniques

o Ghallab et al. (2004), Automated Planning: Theory and Practice

o Information Technology — Artificial Intelligence —— Artificial Intelligence
Concepts and Terminology, (2022)

o Mandi et al. (2024) Decision-Focused Learning: Foundations, State of the Art,

Benchmark and Future Opportunities

These sources were carefully reviewed to synthesize concise yet semantically rich

descriptions for each Al domain, capturing their functional focus and core capabilities.

Once the textual descriptors were refined, I proceeded to compute semantic similarity
scores using a sentence transformer model.'°
The degree of similarity is measured using cosine similarity, assessing how similar the

text meanings are withing a high-dimensional space. This yielded a score €;, € [-1,1],

representing the semantic alignment between ability j and AI domain n. The result was a
matrix of exposure scores spanning all 52 abilities and four AI domains.

In the intermediate steps of the calculation, I chose to retain the disaggregation by both
ability category and Al domain, to ensure interpretability and analytical flexibility before
aggregating the results per occupation. This decision enables a more granular and
differentiated assessment of how various Al capabilities relate to specific categories of

human abilities, and how their effects may vary across different types of occupations. It

10 Specifically, I employed the pre-trained all-mpnet-base-v2 model from HuggingFace, which belongs to
a family of models known as sentence transformers. These models are designed to understand and represent
the meaning of sentences or short texts in a way that allows for meaningful comparisons between them. A
sentence transformer works by converting each sentence or phrase into a vector embedding—a fixed-length
numerical representation that captures the semantic content of the text. https://huggingface.co/sentence-
transformers/all-mpnet-base-v2
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also facilitates domain- and ability-specific analyses, allowing for more nuanced insights

into the heterogeneity of AI’s potential impact across the labour market.

3.2.3.2 Computation
After obtaining the exposure scores of each ability j to each Al domain n, denoted as €; ,,,
I proceeded to compute their impact at the occupational level. The first step was to
determine the relative weight of each ability within each occupation k, based on O*NET’s
“Importance” and “Level” indicators. These two scores jointly reflect how central an

ability is within an occupation and to what degree it must be mastered.
For each ability j and occupation k, I computed the raw ability weight:
Weightj'k = Ij,k . Lj,k

where I ;. is the importance score and L; j is the level score of ability j in occupation k.
The values were then scaled to ensure comparability across abilities within each

occupation:

RawWeightj, k
Wi =

Jk T 52
Yizalik - Lk

This gives a set of weights w; , summing to 1 for each occupation k, representing the

relative contribution of each ability to the overall skill profile of the occupation.

Next, I computed the impact of each Al domain n on each O*NET ability category c (i.e.,

cognitive, physical, psychomotor, sensory) by aggregating the weighted exposure scores

Exnc = E Wik * €in

j€Ec

within each category:

This yields a set of disaggregated exposure scores for each occupation k, Al domain n,

and ability category c. This intermediate step allows for a detailed understanding of how
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each domain of Al capability is aligned with different human ability types, and how this

varies across occupations.

After calculating &, . for all occupations, ability categories, and Al domains, I
proceeded to two levels of aggregation:
1. Category-level aggregation by Al domain: For each occupation k, I computed the

total exposure to each Al domain n by summing across all ability categories:

total __
Een — E Ekn,c

C

2. Overall Al exposure: Finally, I computed the total Al exposure score for each

occupation k, aggregating across all AI domains:

This final score €}, subsequently normalized, reflects the overall exposure of occupation
k to AI technologies, incorporating both the structure of required abilities and their
semantic alignment with Al functional domains. By preserving domain-specific and
ability-specific detail throughout the process, this method provides a highly granular and

interpretable measure of Al exposure at the occupational level.

3.2.4 Complementarity Effect
To complement the exposure score and reflect the heterogeneity in how Al may interact
with different types of work, I construct a complementarity index, building on the
framework developed by Pizzinelli (2023). This index assesses whether an occupation is
more likely to be augmented or substituted by Al, based on contextual and skill-based

features extracted from the O*NET database.

3.2.4.1 Variables
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As in Pizzinelli (2023), I rely on a set of Work Contexts and the Job Zones classification,
which capture relevant non-task-specific job characteristics. Work Contexts describe the
physical, interpersonal, and organizational conditions of work, while Job Zones indicate

the level of education, experience, and training required for a given occupation.

Following the same framework, I group these features into six thematic components as:

1. Communication: Includes face-to-face interaction and public speaking, reflecting
the importance of both spoken and written interpersonal communication.

2. Responsibility: Includes responsibility for outcomes and responsibility for others’
health.

3. Physical Conditions: Includes exposure to outdoor environments and physical
proximity to others.

4. Criticality: Includes consequence of errors, frequency of decision-making, and
freedom to make decisions.

5. Routine: Includes degree of automation and—unlike Pizzinelli (2023)—
importance of repeating the same tasks, capturing the level of task repetition and
routineness (which correlates negatively with complementarity).

6. Skills: Based on Job Zones, which I re-scale by multiplying the original values by

20 to ensure consistency with the broader scale of the Work Context variables.

3.2.4.2 Computation

For each of the six thematic groups, I calculated a group-specific score for each
occupation based on the selected Work Context variables (or Job Zone score, in the case
of Group 6), as described above. For each group g, I computed the average of the
standardized values of the relevant variables for each occupation k. This approach
captures the intensity of each group’s characteristics while giving equal weight to each
component.

Mathematically, for a group g composed of m variables vy, v,, ..., V), the group score

for occupation k is calculated as:

1
Group Scorey, = EZ Vik

i=1
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where v; . is the value of variable v; for occupation k.

As noted earlier, for Group 5 (Routine)—which conceptually works in the opposite
direction (higher scores imply lower complementarity)—I apply a flipping transformation
around the median to align its direction with the other groups:

Adjusted v; 5 = v; 5 + Z(MedianS - Ui,s)

Finally, the complementarity score for each occupation k, denoted 6, is computed as the

sum of the six group scores:

9k=
g

6
Group Scorey, 4

1

This unweighted sum represents the overall potential of Al to complement human labour
in occupation k, based on a range of contextual and skill-based dimensions. I chose not
to normalize the final scores, maintaining their raw scale to preserve interpretability and

comparability with the exposure scores.
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3.3 Results
3.3.1 General Review of Results

Al Exposure and Potential Complementarity
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Figure 2

The bi-dimensional indicator developed in this thesis offers a structured and intuitive
representation of how different occupations are positioned in relation to two core
dimensions of the current wave of artificial intelligence: Exposure (€), which captures the
share of tasks likely to be performed by contemporary Al systems, and Potential
Complementarity (8), which measures the share of tasks rooted in human-specific skills
that resist substitution. By assigning each of the 879 occupations a position in the -6
space, I aim toward a richer understanding of how the composition of work interacts with

machine capabilities.

The exposure index (¢) ranges from highly negative values (e.g., —2.3 for Dancers) to
strongly positive ones (e.g., +1.4 for Actuaries), reflecting a wide variation in the presence
of Al-performable tasks. The complementarity index (6) displays a narrower range of

values compared to the exposure index (&), with most occupations falling between 0.33
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and 0.78. This more limited variation stems from how the index is built: it combines
standardized measures of occupational features such as education requirements, decision-
making frequency, and interpersonal interaction, all of which are bounded by design.
Unlike exposure, which reflects the degree to which Al systems can technically perform
a task, complementarity captures how much human input remains essential despite Al
capabilities. Because nearly all jobs include some repetitive or structured elements, even
highly interpersonal or judgment-based roles cannot reach the maximum possible
complementarity score. As a result, the index is naturally compressed within a moderate
range of values, reflecting both the structure of the underlying data and the economic

reality that few occupations are entirely resistant to automation.

Graphically, the occupations do not distribute uniformly across the -6 plane. Rather,
they cluster within a central region—approximately between ¢ € [-0.5,+0.5] and 6 €
[0.45, 0.65]—suggesting that most occupations involve a moderate mix of both Al-
exposed and human-centric tasks. However, splitting the space at the median values of
each axis (¢ = 0; 8 = 0.55) reveals four distinct typologies of work that reflect

fundamentally different interactions with Al

I. High Exposure — High Complementarity (¢ > 0; 8 > 0.55):

This quadrant includes Lawyers, Judges, Flight Engineers, and Medical Specialists. These
occupations are characterized by a substantial presence of tasks that Al can already
perform—such as document review, data mining, or diagnostic support—yet they
simultaneously feature a high concentration of tasks requiring interpretative judgment,
ethical reasoning, interpersonal communication, and trust-building. These are core

features of high-cognitive, high-stakes professions.

Such results confirm the insight of Acemoglu & Restrepo (2019), who argue that Al
differs from past technological waves (e.g., robotics) by extending automation into non-
routine cognitive occupations. However, rather than signalling direct displacement, high-
€, high-6 occupations represent spaces where Al is more likely to augment rather than
substitute human labor. These workers might experience productivity gains, but the task

structure remains resistant to full automation.
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I1. Low Exposure — High Complementarity (¢ < 0; 8 > 0.55):

This group includes occupations such as Early Childhood Educators, Social Workers,
Psychotherapists, and Creative Artists. These roles are dominated by non-routinized tasks
deeply embedded in emotional intelligence, context sensitivity, creativity, and social
interaction. Their low & scores reflect the current limitations of Al in replicating such
capabilities. The high 6 scores reinforce the resilience of these professions in the face of

automation.

These results align with the broader literature on the limits of algorithmic replication of
emotional labour, confirming that complementarity is not a generic defence against Al,
but is domain-specific, particularly strong in the caring, cultural, and educational

professions.

I11. Low Exposure — Low Complementarity (¢ < 0; 8 < 0.55):

Occupations in this quadrant, such as Maids and Housekeeping Cleaners, Dishwashers,
and Elementary Production Workers, are currently unexposed to Al systems—often due
to the physical nature of the tasks or the low economic returns to automation—but they
also lack strong human-centred features. Their low 8 scores signal that the tasks are

largely repetitive, low-discretion, and do not require higher-order cognitive skills.

IV. High Exposure — Low Complementarity (¢ > 0; 8 < 0.55):

This is the quadrant where occupations face the greatest short-term risk of disruption.
Examples include Telemarketers, Receptionists, Data Entry Clerks, and Routine
Diagnostic Technicians. These jobs involve a high share of tasks that can already be
handled by Al tools—such as form-filling, transcription, or scripted interactions—but

offer little in terms of creativity, discretion, or person-sensitive judgment.

The high € and low 0 scores place these occupations at the core of the ongoing automation
process. These are jobs where Al is not only able to perform a large number of tasks but
can do so without significant loss in quality, because the complementarity with human

skills is minimal. This is the segment where substitution is most advanced.
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A key empirical insight from the distribution of € and 8 is that high exposure does not
imply low complementarity, nor does low exposure guarantee high complementarity. The
correlation between the two dimensions is modestly negative (around —0.2), indicating
that many occupations contain a complex blend of replaceable and irreplaceable tasks.
This suggests that future labour market adjustments will not be uniform: some jobs will
be transformed, some displaced, and some reinforced, depending on their position in the

&- 0 space.

In addition, cognitive intensity plays a critical role. Occupations involving high levels of
information processing, problem-solving, and language comprehension tend to score
higher on exposure (&), while those that also involve high levels of discretion, decision-
making under uncertainty, and social interaction score higher on complementarity ().
This confirms that task-level analysis, rather than occupation-level typologies, is essential

to capturing the true nature of Al's economic effects.

3.4 Comparison with existing indicators

The results produced by the exposure () and complementarity (6) analysis developed in
this thesis exhibit broad consistency with recent contributions—most notably the
Complementarity-Adjusted AI Occupational Exposure (C-AIOE) index proposed by
Pizzinelli (2023)—but reveal several important empirical distinctions. In both
frameworks, highly exposed occupations are concentrated in knowledge-intensive
domains such as ICT, finance, law, and analytics, where core tasks include language use,
information retrieval, decision-making, and planning. This shared result is expected given

the alignment between these tasks and current capabilities of language-based Al systems.
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Figure 3

However, when analysing my results (Figure 2), the distribution of occupations appears
more dispersed and polarized than the pattern found in Pizzinelli (2023) (Figure 3). High-
exposure/high-complementarity occupations such as oral surgeons, legal arbitrators, and
university professors form a clear upper-right cluster, indicating roles that, while exposed,
are more likely to be augmented by Al This result contrasts with the C-AIOE, which
merges exposure and complementarity into a single scalar and produces a more
compressed occupational cloud, limiting the capacity to distinguish between occupations

with similar exposure but differing Al interaction profiles.

The distinction is particularly salient among mid-level occupations. For example,
administrative support and clerical roles display greater variation in my indicators, with
some appearing moderately complementary due to contextual features like decision-
making autonomy or interpersonal responsibility. In the C-AIOE index, such variation is
less evident, as complementarity is fixed across five standardized dimensions and

combined early in the aggregation process.
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3.4.1 Comparison with Other Indicators
It is informative to contrast the results produced by the present framework with those
emerging from other earlier and alternative indicators, focusing specifically on how

occupations are classified in terms of exposure and potential impact.

The most widely cited benchmark, Frey & Osborne (2017), assigns high automation
probabilities to a large share of middle- and even high-skill jobs, including legal clerks,
diagnostic technicians, and some healthcare professionals. These classifications rely on
expert assessments of task characteristics and machine learning models trained on binary
“automatable” labels. However, when matched to my ¢ — findex, many of these same
occupations appear as high-exposure but also high-complementarity—indicating that
they involve complex, judgment-intensive tasks not easily reduced to deterministic
substitution. This discrepancy is especially visible for physicians and legal professionals,
who appear highly exposed in both models, but are assigned much greater
complementarity in my framework due to contextual factors like ethical responsibility
and decision-making autonomy. Thus, while Frey & Osborne (2017) approach broadly

anticipates exposure, it tends to overestimate displacement.

The Suitability for Machine Learning (SML) index by Brynjolfsson, Mitchell, et al.
(2018) shifts the focus to task suitability rather than entire occupations. It classifies tasks
as more or less amenable to machine learning, relying on expert ratings. In my results,
occupations composed of such tasks—e.g., financial analysts or insurance underwriters—
do indeed rank as highly exposed. However, my complementarity scores show greater
dispersion within these roles, again highlighting heterogeneity in how Al may affect task
bundles within jobs. Moreover, the SML scores are fixed in time and technological scope,
while my semantic similarity model allows for dynamic reassessment as Al capabilities

evolve, including emerging domains like multimodal systems and planning agents.

Tolan et al. (2021) introduce a benchmark-task alignment approach using Al system
performance scores on cognitive tasks. While this method provides quantitative precision,
it is limited to a narrow subset of abilities, often omitting embodied or social tasks.

Accordingly, my results diverge most in low-exposure occupations: my indicator assigns
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uniformly low & scores to roles involving physical movement, dexterity, and sensory
feedback (e.g., janitors, machine operators), whereas Tolan’s index lacks coverage of
these dimensions. The 6 index, by including interpersonal and physical work context
variables, captures more clearly the non-cognitive barriers to substitution in such

occupations.

Finally, Eloundou et al. (2023) present a novel approach based on the performance of
GPT-4 across thousands of tasks, estimating task completion acceleration. Their measure
equates time savings with exposure but does not differentiate between productivity-
enhancing augmentation and displacement. My results clarify this ambiguity.
Occupations flagged as exposed in Eloundou’s analysis—such as customer service agents
or content creators—are confirmed in my € scores but diverge in 6 depending on whether
the role involves human interaction, unpredictability, or emotional labour. This adds

interpretive value and avoids conflating acceleration with substitution.

Therefore, the framework developed in this thesis produces results that are more granular,
structurally flexible, and sensitive to contextual nuance. By explicitly separating exposure
from complementarity, and grounding both in semantic alignment and occupational
metadata, my results provide a differentiated map of risk and opportunity that better

reflects the multi-dimensional nature of Al-human interaction in the workplace.

3.5 Aggregation

To analyse the potential macroeconomic impact of artificial intelligence on labour
productivity, the occupation-level indicators of Al exposure and complementarity must
be mapped onto a structure compatible with Italy’s economic statistics. This section
details how occupational-level scores were aligned with the Italian labour market and

translated into sectoral indicators, enabling empirical analysis at the macro-sector level.

Occupational characteristics determine how Al interacts with work, but productivity—
the main outcome of interest—is measured at the sectoral level. As highlighted in
Bonfiglioli et al. (2024), task-based indicators must be adapted to sector-level data to

support empirical modelling of productivity. Aggregation is also necessary to match
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other economic variables such as R&D intensity, capital investment, and value added,

which are typically published by national statistical agencies using sectoral taxonomies.

Moreover, given Italy’s diverse economic structure—characterized by a large services
sector, strong manufacturing base, and highly fragmented employment patterns—
aggregating exposure and complementarity to ATECO macro-sectors (A—R) is essential

for interpreting how Al might affect the broader economy.

3.5.1 Mapping to the Italian Classification System
The first step involved mapping the original Al exposure and complementarity scores—
computed for 879 SOC-2019 occupations—onto the Italian CP2021 classification
system at the 4-digit level. This mapping was conducted manually and cross-referenced
using ISTAT documentation to ensure the closest possible correspondence between
U.S. and Italian occupations. Where multiple SOC occupations corresponded to a single
CP2021 code, values were harmonized through simple averaging, due to the lack of

high-resolution occupational employment data for every match.

Once occupation-level scores were assigned to CP2021 codes, a crosswalk between
occupations and sectors was used to assign them to ATECO macro-sectors. This mapping
was informed by publicly available employment data and documentation on occupational
distribution by sector. For each sector, the corresponding scores were obtained by taking
the arithmetic mean of the Al exposure and complementarity values of the associated

occupations.

This method ensures that sectoral indicators remain empirically tractable and
conceptually grounded. Importantly, the aggregation preserves the conceptual distinction
between exposure (how Al-capable the occupational content is) and complementarity

(how amenable the tasks are to human—AlI collaboration)
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3.5.2 Sectoral Patterns in the Italian Economy
The aggregated sector-level indicators highlight meaningful heterogeneity across the

Italian economy.

High-Exposure and High-Complementarity Sectors include Information and
Communication (J), Financial and Insurance Activities (K), and Professional and
Scientific Activities (M). These sectors are composed of occupations that align closely
with AI’s functional domains, especially in areas like data analysis, planning, and
language processing. Their high complementarity suggests that Al may serve an
augmentative role, rather than a substitutive one, potentially reinforcing productivity

dynamics when paired with adequate investment and institutional readiness.

Low-Exposure, Low-Complementarity Sectors such as Agriculture (A), Construction
(F), and Accommodation and Food Services (I) remain less affected by cognitive Al
technologies. These sectors typically involve manual, embodied tasks or spatial
interactions that current Al systems cannot easily replicate. Consequently, both the
exposure and potential for augmentation are limited, echoing international findings that

embodied labour remains relatively insulated from Al-driven disruption.!!

Intermediate or Ambiguous Sectors, such as Wholesale and Retail Trade (G) and
Transport and Storage (H), show moderate exposure but low complementarity. These
sectors may face productivity challenges without organizational transformation or
workforce reskilling, as Al could replace some routine tasks without substantially

enhancing human roles.

3.6 Link to the Empirical Framework

These sectoral exposure and complementarity scores form the core variables in the
empirical model introduced in the next chapter. By interacting them with lagged R&D
intensity—a proxy for sector-level Al adoption—the model explores how Al’s labour

market potential translates into actual productivity performance. This structure aligns

! (Francesca Borgonovi, Flavio Calvino, Chiara Criscuolo, Julia Nania, Julia Nitschke, Layla O’Kane,
Lea Samek, Helke, 2023)
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with findings from Dalla Zuanna et al. (2024), who stress the importance of connecting

micro-level exposure indicators with macro-level economic outcomes.

The aggregation strategy adopted in this thesis is therefore a conceptual bridge between
task-based labour market insights and macroeconomic measurement—allowing Al’s
sectoral impact to be studied in a way that is both empirically feasible and economically

meaningful.
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4. The Effect on Productivity

Chapter 3 established two task-level indicators that capture how Italian occupations relate
to current artificial-intelligence capabilities. Al exposure (€) measures the share of core
abilities that can in principle be automated by existing systems, while task
complementarity (8) proxies the scope for Al to augment rather than substitute human

effort.

The central objective of Chapter 4 is to determine whether this job structure helps explain
the persistent heterogeneity in sectoral labour-productivity growth observed since the
mid-1990s (Syverson, 2010). Despite successive waves of digitalisation—and the recent
popularity gained by large-language models—Italy, like most OECD economies, has
witnessed sluggish aggregate productivity (Calligaris et al., 2018). A growing literature
suggests that general-purpose technologies (GPTs) such as Al raise output only when
three conditions coincide:
(1) the technology can be technically deployed in the tasks performed (high €);
(i1))  those tasks possess characteristics—autonomy, problem-solving,
interpersonal interaction—that make Al a complement rather than a substitute
(high 6);
and
(ii1))  firms invest in the intangible assets needed to absorb the technology (R&D,
re-organisation, data infrastructure).
These arguments are formalised by (Acemoglu & Restrepo, 2019) and echoed in recent
firm-level evidence (Babina et al., 2024) and sectoral analyses of absorptive capacity
(Aghion et al., 2017).
To test these ideas, the chapter estimates a semi-parametric panel model in which
standardised log labour-productivity is regressed on the interaction of € and 6 with lagged
R&D intensity (a proxy for realised Al adoption). A penalised-spline term captures non-
linear returns to capital deepening, while sector and year fixed effects control for time-
invariant heterogeneity and common shocks. Full variable definitions and transformations
appear in Appendix A — Variable Distributions and Transformations; the regression

equations and diagnostic graphs are reported in Appendix B — Model Diagnostics.
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By moving from micro-level task indicators to macro-sectoral outcomes, this chapter
aims to provide new evidence on the structural pre-conditions under which Al adoption

translates into productivity gains.

The empirical analysis proceeds as follows. Section 4.1 develops the conceptual
framework and states the hypotheses. Section 4.2 presents the econometric model.
Section 4.3 describes the data assembly. In Section 4.4, I highlight the chapter’s analytical
contributions. Section 4.5 reports the estimation results, and Section 4.6 examines
robustness checks and discusses key limitations. Section 4.7 concludes with policy

implications.

4.1 Conceptual Framework and Hypotheses

The link between artificial intelligence and aggregate performance is best understood
through task-based models of technological change. In this setting, each occupation is
viewed as a bundle of granular tasks, some of which are automatable by current Al, while
others rely on skills that machines cannot easily replicate and may even amplify when

combined with software (Acemoglu & Restrepo, 2019; Autor et al., 2018).

4.1.1 From task structure to productivity
In Acemoglu (2025), aggregate labour productivity rises when two conditions hold
simultaneously: (i) the stock of effective tasks performed per worker expands, and (ii) the
technology that contributes those tasks diffuses widely. Condition (i) depends on € and
0; condition (ii) on firms’ absorptive capacity, proxied in this research by R&D intensity
(Cohen & Levinthal, 1990). Without investment in complementary assets (data
infrastructure, process re-design, worker training) exposure merely displaces labour

without increasing output (Babina et al., 2024).
Capital deepening offers a third channel, with diminishing returns to physical capital once

intangible assets are scarce (Andrews et al., 2016). Section 4.5 therefore models capital

intensity with a non-parametric spline.
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4.1.2 Hypotheses
The framework yields two propositions:

(1) H1 Conditional exposure effect. In sectors with above-average R&D intensity,
a one-standard-deviation increase in € is associated with a positive change in
subsequent labour productivity.

(i)  H2 Conditional complementarity effect. Conditional on R&D, sectors scoring
higher on 8 enjoy higher productivity growth, even if their exposure is
moderate.

Together, H1 and H2 imply that Al-induced productivity gains are neither automatic nor
uniform: they materialise only where technical feasibility, human-task complementarity

and absorptive investment intersect.

4.2 Model Specification

The model is estimated using both fixed-effects panel regressions and a Generalized
Additive Model (GAM) to allow for nonlinear relationships. The core regression equation
is:
log_Productivity;

= B;Exposure_RD;;_; + B,Complementarity_RD; ,_,

+ s(Capital Intensityi’t) +o; + 6+ €t
Where:
- log_Productivity; . is the log of value added per employee in sector i, year ¢,
standardized.
- Exposure_RD; ,_; is the lagged interaction between Al exposure and log R&D intensity
in sector i.
- Complementarity_RD;,_; is the corresponding lagged interaction between Al
complementarity and log R&D.
- S(Capital Intensityi't) is a smooth function (penalized spline) of log capital-to-labour
ratio.
- a; and O, are sector and year fixed effects, respectively.

- €;¢ 1s the residual error term.
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Exposure and complementarity enter the model as standardised indices to facilitate the
economic interpretation of coefficients. They are interacted with the one-year-lagged
logarithm of R&D intensity to reflect the diffusion lag documented by Guarascio et al.
(2023).

The lag structure reflects the notion that the benefits of Al adoption, like those of any
general-purpose technology, are not instantaneous but require time to diffuse through
firms and institutions.

By lagging the interaction terms, this model improves temporal ordering and addresses
potential concerns over simultaneity bias, although endogeneity cannot be fully ruled out

due to the observational nature of the data.

The use of R&D intensity as a proxy for Al adoption follows the precedent of Calvino
and Fontanelli (2023), which find that firms in R&D-intensive sectors are significantly
more likely to implement Al technologies and restructure tasks accordingly. R&D thus

serves as a credible and measurable proxy for latent adoption dynamics.

To control for unobserved heterogeneity, the model includes:
— Sector fixed effects (a;), capturing time-invariant characteristics such as
regulatory frameworks, institutional setups, or typical capital-labor structures;
— Year fixed effects (&;), which absorb macroeconomic fluctuations, technological

shocks, and common policy shifts across the economy.

4.2.1 Estimation and Diagnostics
The model was estimated in multiple stages:

(1) Fixed Effects Model (FE): the baseline included standardized interaction
terms and a linear capital control. Initial results showed good fit, but residual
plots and LOESS diagnostics revealed nonlinearities in capital intensity,
prompting a transition to a semi-parametric model.

(i1) Quadratic Model: Including squared terms improved fit marginally but
introduced multicollinearity and reduced interpretability.

(iii))  Generalized Additive Model (GAM): The final model included a penalized

spline for log capital intensity and lagged interaction terms. Residuals passed
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normality tests (Shapiro-Wilk), and no major heteroskedasticity or
misspecification was detected.
The next section (§ 4.3) details the construction of the dataset, variable transformations

and descriptive patterns.

4.3 Data and Sample Construction
To empirically examine the relationship between Al-related occupational structures and

productivity, a balanced panel dataset was constructed covering 21 Italian macro-sectors
(ATECO A-R) over the period 1996-2022. The dataset integrates occupational exposure
and complementarity indicators with sector-level data on productivity, R&D investment,

and capital accumulation.

4.3.1 Data Sources, Cleaning, Diagnostics, and Validation
The occupational indicators for Al exposure and complementarity were computed as
detailed in Aggregation (§ 3.5), ensuring that the final indicators represent the average

occupational structure within each sector.

Sector-level economic variables—labour productivity, capital stock, employment, and

R&D expenditure—were sourced from ISTAT!? and the OECD STAN database!s.

All datasets were reshaped, merged on consistent sector-year identifiers, and harmonized
to ensure alignment across classification systems. Observations with missing values in
any core variable were excluded. R&D intensity reporting was incomplete in early years,

leading to the removal of a small number of pre-2000 observations.

12

https://esploradati.istat.it/databrowser/#/it/dw/categories/ITI, DATAWAREHOUSE,1.0/UP_ACC_MISP
RO/IT1,98 197 DF_DCCN_PRODUTTIVITA 4,1.0

13 https://data-
explorer.oecd.org/vis?fs[0]=Topic%2C1%7CScience%252C%20technology%20and%20innovation%231
NT%23%7CResearch%20and%20development%20%28R%26D%29%23INT _RD%23&fs[1]=Reference
%20area%2C0%7ClItaly%231TA%23&pg=0&fc=Reference%20area&snb=19&vw=tb&df[ds]=dsDissem
inateFinal DMZ&df]id]=DSD_ANBERD%40DF_ANBERDi4&df[ag]=OECD.STLSTP&df[vs]=1.0&dq=
ITA.A.. XDC.V.&pd=%2C&to[ TIME PERIOD]=false
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https://data-explorer.oecd.org/vis?fs%5b0%5d=Topic%2C1%7CScience%252C%20technology%20and%20innovation%23INT%23%7CResearch%20and%20development%20%28R%26D%29%23INT_RD%23&fs%5b1%5d=Reference%20area%2C0%7CItaly%23ITA%23&pg=0&fc=Reference%20area&snb=19&vw=tb&df%5bds%5d=dsDisseminateFinalDMZ&df%5bid%5d=DSD_ANBERD%40DF_ANBERDi4&df%5bag%5d=OECD.STI.STP&df%5bvs%5d=1.0&dq=ITA.A...XDC.V.&pd=%2C&to%5bTIME_PERIOD%5d=false
https://data-explorer.oecd.org/vis?fs%5b0%5d=Topic%2C1%7CScience%252C%20technology%20and%20innovation%23INT%23%7CResearch%20and%20development%20%28R%26D%29%23INT_RD%23&fs%5b1%5d=Reference%20area%2C0%7CItaly%23ITA%23&pg=0&fc=Reference%20area&snb=19&vw=tb&df%5bds%5d=dsDisseminateFinalDMZ&df%5bid%5d=DSD_ANBERD%40DF_ANBERDi4&df%5bag%5d=OECD.STI.STP&df%5bvs%5d=1.0&dq=ITA.A...XDC.V.&pd=%2C&to%5bTIME_PERIOD%5d=false
https://data-explorer.oecd.org/vis?fs%5b0%5d=Topic%2C1%7CScience%252C%20technology%20and%20innovation%23INT%23%7CResearch%20and%20development%20%28R%26D%29%23INT_RD%23&fs%5b1%5d=Reference%20area%2C0%7CItaly%23ITA%23&pg=0&fc=Reference%20area&snb=19&vw=tb&df%5bds%5d=dsDisseminateFinalDMZ&df%5bid%5d=DSD_ANBERD%40DF_ANBERDi4&df%5bag%5d=OECD.STI.STP&df%5bvs%5d=1.0&dq=ITA.A...XDC.V.&pd=%2C&to%5bTIME_PERIOD%5d=false
https://data-explorer.oecd.org/vis?fs%5b0%5d=Topic%2C1%7CScience%252C%20technology%20and%20innovation%23INT%23%7CResearch%20and%20development%20%28R%26D%29%23INT_RD%23&fs%5b1%5d=Reference%20area%2C0%7CItaly%23ITA%23&pg=0&fc=Reference%20area&snb=19&vw=tb&df%5bds%5d=dsDisseminateFinalDMZ&df%5bid%5d=DSD_ANBERD%40DF_ANBERDi4&df%5bag%5d=OECD.STI.STP&df%5bvs%5d=1.0&dq=ITA.A...XDC.V.&pd=%2C&to%5bTIME_PERIOD%5d=false
https://data-explorer.oecd.org/vis?fs%5b0%5d=Topic%2C1%7CScience%252C%20technology%20and%20innovation%23INT%23%7CResearch%20and%20development%20%28R%26D%29%23INT_RD%23&fs%5b1%5d=Reference%20area%2C0%7CItaly%23ITA%23&pg=0&fc=Reference%20area&snb=19&vw=tb&df%5bds%5d=dsDisseminateFinalDMZ&df%5bid%5d=DSD_ANBERD%40DF_ANBERDi4&df%5bag%5d=OECD.STI.STP&df%5bvs%5d=1.0&dq=ITA.A...XDC.V.&pd=%2C&to%5bTIME_PERIOD%5d=false

Variable transformations were motivated by visual diagnostics: Figure A. 5 and Figure A.

6 show a correction of skewness after log-transformation; Figure A. 7 reveals

normalization after log-scaling R&D.

Standardization was necessary for Exposure x R&D and Complementarity x R&D due to

dispersion observed in Figure A. 8 and Figure A. 9.

4.4 Analytical Contribution

This model specification makes four novel contributions to the Al-productivity debate:

(1)

(ii)

(iii)

(iv)

It incorporates a dual indicator structure for Al exposure and
complementarity, building on task-based and semantic Al mapping
frameworks.

It tests whether productivity effects arise conditionally on adoption, using
R&D as a credible proxy.

It models capital intensity flexibly, capturing threshold and diminishing
returns that are missed in linear models.

It combines these elements within a semi-parametric fixed-effects framework,

integrating both structural theory and empirical diagnostics.

By capturing the structural, temporal, and nonlinear dynamics of Al adoption, the model

enhances the understanding of when and where Al delivers productivity gains—and,

crucially, where it does not. This has direct implications for policies targeting sectoral

R&D incentives, workforce reskilling, and Al integration strategies.

4.5 Estimation Results

The estimation results presented in this section aim to assess whether sectors

characterized by higher occupational exposure to Al—and to Al complementarity in

particular—tend to exhibit systematically higher levels of productivity. The results of the

Generalized Additive Model (GAM) incorporating sector and year fixed effects show that

both Al exposure and complementarity, when interacted with R&D intensity as a proxy

for actual Al adoption, are positively associated with labour productivity.
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Variable Coefficient Std. t Significance
Error value

Lagged Exposure x R&D Intensity 3.15 0.66 477  FxE
iﬁilgl:icinOmplementarlty x R&D 0.43 0.16 308 ks
s(log(Capital Intensity)) EDF = 8.09 F = 28.7 ok
Sector Fixed Effects Included

Year Fixed Effects Included

Adjusted R? 0.818

Deviance Explained 84.6%

Significance codes: *** p <0.001, ** p <0.01, * p<0.05

Table C.4 — GAM with Lagged Regressors and Fixed Effects

Both  lagged interaction terms—lagged  Exposure_ RD_z and lagged
Complementarity_RD_z—are positive and highly significant. The coefficient for lagged
Al exposure (B = 3.15,p < 0.001) indicates that sectors whose workforce is more
functionally aligned with AI capabilities, and where Al adoption is higher, are
systematically associated with higher levels of labour productivity in the following year.
Similarly, the coefficient for lagged complementarity (f = 0.43,p < 0.001) suggests
that productivity benefits are stronger when Al exposure is coupled with high potential

for augmentation, as captured by occupational context and job complexity.

The smooth term for capital intensity is also highly significant (F = 28.7,p < 0.001),
confirming the presence of nonlinear effects. The estimated spline reveals a concave
relationship: productivity gains increase steeply with early capital accumulation but
plateau beyond a certain threshold. This pattern is consistent with prior findings on
capital-skill complementarity and diminishing returns in capital-intensive industries
(Bartel et al., 2005), where capital deployment must be matched by organizational and

skill-based adaptation to yield sustainable gains.
The adjusted R? of the model exceeds 0.8, and the deviance explained is above 84%,

indicating high explanatory power. These values suggest that occupational Al exposure

and complementarity—when weighted by sectoral Al investment—explain a substantial
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share of the variation in productivity across sectors, even after accounting for unobserved
heterogeneity. The robustness of these results is reinforced by the diagnostic figures in
Appendix B — Model Diagnostics, which confirm model adequacy in terms of residual

behaviour, variable interactions, and multicollinearity

Notably, the results highlight the asymmetric nature of AI’s productivity effects. Sectors
with low exposure and low complementarity, such as traditional manual services and low-
tech manufacturing, appear less likely to benefit from Al in the near term. This echoes
conclusions from the report from EY, ManPower Group, Sanoma Italia, I/ Futuro delle
competenze nell’era dell’Intelligenza Artificiale (2023), which emphasizes that many
low-qualification or procedural office roles are increasingly vulnerable to stagnating

demand and automation exposure.

Conversely, sectors such as information and communication technologies, finance, and
professional services exhibit both high AI exposure and high complementarity,
suggesting that they are ideally positioned to absorb Al productively. These findings
confirm earlier macro-level insights from Acemoglu (2025), who emphasizes that
productivity-enhancing gains from Al will depend heavily on sectoral context and the
nature of human—machine interaction, with long-run TFP impacts only partially

manifesting within a decade .

From a substantive perspective, these findings support the hypothesis that Al does not
exert uniform effects across the labour market. Instead, productivity gains are most

pronounced in sectors where:
(1) Al capabilities are aligned with task profiles (high exposure),
(i1) Work conditions enable human—AlI collaboration (high complementarity),

(iii))  Sufficient capital is available to integrate and scale new technologies.

The joint inclusion of exposure and complementarity also reveals an important

distinction: exposure alone, while necessary, may be insufficient to yield productivity
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benefits unless occupations are structured in ways that allow for effective augmentation
(Acemoglu & Restrepo, 2019).

The results highlight not only where Al is likely to have the strongest economic impact,
but under what conditions—offering important implications for sector-specific
investment, workforce training, and policy prioritization. Although derived from a sector-
level labour productivity model, these findings have broader relevance beyond their
immediate empirical scope. In particular, they raise important considerations for the

macroeconomic interpretation of Al-driven growth patterns.

A possible extension of this work concerns the connection between the empirical findings
and the broader macroeconomic debate on the aggregate productivity impact of artificial
intelligence. While this thesis focuses on sector-level productivity and does not directly
model total factor productivity (TFP) growth or long-run dynamics, the evidence
presented—namely when conditions (i) to (iii) coincide—is highly relevant to recent
theoretical contributions. In particular, (Filippucci et al., 2025) show that, even in the
presence of strong task-level productivity gains, the aggregate effect on TFP can be
severely limited by structural constraints such as low factor mobility or inelastic sectoral
demand (Baumol effect)!*. Although these general equilibrium channels are beyond the
scope of the present model, the results obtained here provide microeconomic conditions
that can inform such macro calibrations: productivity gains from Al are not automatic,
but conditional on the alignment of technological capabilities with the sectoral capacity
to absorb and complement them. This suggests that the labour market structure—
specifically, the distribution of tasks and skills—plays a critical mediating role in

translating Al potential into realized productivity growth.

4.6 Robustness and Limitations

A series of sensitivity checks confirms that the headline finding—productivity rises only
where Al-exposed tasks coincide with high complementarity and substantive R&D

effort—does not rest on a particular functional form.

14 (Baqaee & Farhi, 2019)
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I first re-estimated the benchmark with a conventional two-ways fixed-effects regression
in which capital intensity enters linearly (Table C. 1). The coefficients on the lagged
Exposure x R&D and Complementarity X R&D terms remain virtually unchanged in
magnitude and significance, indicating that the semi-parametric treatment of capital is not
driving the interaction effects. Adding quadratic terms for each regressor (Table C. 2)
likewise leaves the core estimates intact, although the extra curvature slightly inflates

standard errors and raises variance-inflation factors toward—but never beyond—two.

A preferred specification (Table C. 3) replaces the linear capital term with a penalized
thin-plate spline, capturing the well-documented concave relationship between capital
deepening and productivity once intangible complements become scarce. This
adjustment lifts the adjusted R? to roughly 0.81 and increases the share of deviance
explained to more than 84 %, yet the two interaction coefficients continue to be positive
and highly significant. Alternative lag structures, reported in Table C. 4, show that a one-
year delay between R&D effort and productivity response delivers the best fit—consistent
with the diffusion lag observed in Italian manufacturing by Guarascio et al. (2023).

Diagnostic evidence collected in Appendix B — Model Diagnostics supports the
statistical soundness of these specifications.  Variance-inflation factors for all
covariates—including the spline basis—stay below 2 (Table B. 1), ruling out
multicollinearity. Residual-versus-fitted plots and Q—Q diagrams (Figure B. 1 and Figure
B. 2) reveal no material departures from homoskedasticity or normality, while the
Shapiro—Wilk statistics confirm well-behaved errors. Finally, the smooth-term graph in
Figure B. 9 displays the expected diminishing-returns pattern in capital intensity without

signs of over-fitting, validating the choice of spline complexity.

These robustness checks notwithstanding, two caveats deserve emphasis. First, the
fixed-effects framework cannot fully purge contemporaneous, sector-specific shocks—
such as sudden regulatory changes or regionally targeted digital-infrastructure
programmes—that might correlate with both R&D spending and productivity. Future
work could incorporate explicit policy dummies or difference-in-difference designs to
sharpen identification. Second, using R&D spending as a proxy for Al adoption

remains an indirect measure of absorptive capacity. Sector-wide surveys that record the
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share of firms actively deploying machine-learning systems would offer a more granular

view of diffusion intensity.

Recognising these limitations clarifies the contribution of the present analysis: it shows
that the productivity dividend from Al is conditional, emerging only where technical
feasibility (high €), human-task complementarity (high 8) and sustained intangible

investment intersect.

4.7 Policy Implications

The empirical exercise shows that labour-productivity gains materialize only where three
ingredients overlap: a large bundle of Al-performable tasks (high €), work organisation
that lets human skills complement those tasks (high 6), and sustained intangible
investment (high, lagged R&D intensity). Because those conditions are satisfied in only
a handful of Italian sectors—chiefly ICT, finance and professional services—the
aggregate productivity effect of Al is small and uneven. Two broad policy priorities

follow.

First, government should concentrate on raising absorptive capacity in the “middle” of
the economy, not simply subsidizing frontier adopters. The evidence that € and 6 yield
economic payoffs only when paired with R&D implies that tax credits (or direct grants)
for intangible capital—data pipelines, process redesign, training time—can unlock
dormant productivity potential in otherwise exposed sectors such as machinery, transport
equipment and high-end retail. The results presented justify extending incentives to
organisational Al projects that embed large-language models or predictive maintenance
tools in existing task flows. Crucially, evaluation criteria should privilege projects that
redeploy workers into judgement or interaction-intensive tasks rather than merely

automating headcount.

Second, task-level complementarity must be cultivated directly inside firms and local
labour markets. For sectors sitting on high exposure but low complementarity—personal
services, hospitality, traditional back-office activities—the risk is displacement without

productivity gain. Active labour-market policies therefore need to move toward teaching
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specific hybrid competences that raise 8: prompt engineering, human-Al supervisory

skills and domain-specific data stewardship.

The results also caution against relying on Al to revive productivity unless
complementary reforms accompany technological rollout. Without deeper product-
market competition and faster reallocation of capital toward high-6 establishments, the
sectors that already sit on the steep part of the € — 8 — R&D surface will keep pulling
ahead, widening the dual economy. Conversely, a coordinated package of intangible-
investment incentives, targeted up-skilling, and competition-enhancing regulation can
move more sectors onto a shared productive frontier, translating AI’s technical promise

into broad-based growth.
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5. Conclusions
This thesis has investigated the impact of artificial intelligence on productivity and
economic growth from a labour market perspective, focusing on the occupational
structure of the Italian economy. By constructing novel indicators of Al exposure and
complementarity and matching them to detailed Italian sectoral data, the analysis aimed
to shed light on the channels through which Al interacts with the labour force and

contributes to productivity dynamics.

The findings suggest that Al exposure alone is not a sufficient condition for productivity
gains. Rather, sectors characterized by high complementarity—where Al systems are
more likely to augment rather than replace human labour—tend to experience stronger
productivity performance, particularly when matched with sustained R&D investment.
These results support the growing body of literature emphasizing that the macroeconomic
effects of Al depend not only on technical feasibility, but also on the structure of tasks,

the adoption environment, and the potential for human—AI collaboration.

By focusing on Italy, the thesis adds empirical evidence to a context marked by digital
transformation challenges, persistent productivity stagnation, and heterogeneous sectoral
performance. The country’s structural features make it an important case for

understanding the conditions under which Al adoption can yield macroeconomic benefits.

While the model does not intend to establish causal relationships, it provides a robust
empirical framework for identifying patterns that are consistent with the theoretical
literature. The exposure and complementarity indicators developed here may serve as
useful tools for future research aiming to study AI’s impact on labour and growth across

different national contexts.

Future work could extend this analysis by incorporating firm-level data, refining
measures of Al adoption, or modelling general equilibrium effects. Nonetheless, this
thesis contributes to the ongoing effort to quantify and understand the economic
consequences of Al, offering a labour market lens on one of the most transformative

technologies of our time.
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Appendix A — Variable Distributions and Transformations

This appendix presents the distributional properties and transformation choices for the

main variables included in the empirical analysis.

Capital Data Histogram of capital
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Figure A. I—Histogram of Sectoral Capital Values

Capital Data Histogram of labor
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Figure A. 2 — Histogram of Sectoral Labor Input
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Capital Data Histogram of capital_intensity
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Figure A. 3 — Histogram of Capital Intensity (Capital per Labor)

Model Vars Histogram of log_capital_intensity_z
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Figure A. 4 — Histogram of Log-Transformed Capital Intensity (z-scored)

Productivity Histogram of productivity
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Figure A. 5 — Histogram of Raw Productivity
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Model Vars Histogram of log_productivity_z
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Figure A. 6 — Histogram of Log-Transformed Productivity (z-scored)

Al R&D (log) Histogram of log_rd_proxy
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Figure A. 7— Histogram of Log R&D Intensity

Model Vars Histogram of Exposure_RD_z
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Figure A. 8 — Histogram of Exposure_RD z
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Model Vars Histogram of Complementarity_RD_z
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Figure A. 9 — Histogram of Complementarity RD z
These distributions show that transformations (especially log and standardization) were

necessary to address skewness and heteroscedasticity, improving comparability across
sectors and time.
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Appendix B — Model Diagnostics

This appendix provides graphical and statistical diagnostics to assess the robustness and

validity of the estimated models.

Residuals

Sample Quantiles
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Figure B. 1 — Residuals vs Fitted Values (GAM)
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Figure B. 2 — Q-Q Plot of Residuals (GAM)
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Figure B. 3— Histogram of Residuals
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Figure B. 4 — Residuals vs Linear Predictor (FE Model)
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Figure B. 5 — Deviance Residuals vs Quantiles (GAM)
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Figure B. 6 — LOESS Fit: log_productivity 7 ~ Exposure_RD 7

log_productivity_z ~ Complementarity_ RD_z
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Figure B. 7— LOESS Fit: log_productivity 7z ~ Complementarity RD z

log_productivity_z ~ log_capital_intensity_z

%

log_productivity z

2
log_capital_intensity_z

Figure B. 8 — LOESS Fit: log_productivity z ~ log_capital_intensity z
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Figure B. 9 — Smooth Terms in GAM: s(Exposure_RD z) and s(log_capital_intensity 7)

Variable VIF

Exposure X R&D Intensity 1.12
Complementarity X R&D Intensity 1.09
log(Capital Intensity) 1.18

Table B. 1 — Variance Inflation Factors (VIF) for Main Regressors

Note: Multicollinearity tests show all VIF values < 1.2, confirming low correlation among

predictors.
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Appendix C — Extended Estimation Results

This appendix reports the full output of the alternative model specifications discussed in

Section 4.6.

Variable Coefficient  Std. Error Significance
Exposure x R&D (z) 4.026 0.762 (*¥**)
Complementarity x R&D (z) 0.574 0.119 (**%)
log(Capital Intensity) (z) 0.643 0.058 (*¥**)
Sector Fixed Effects Included
Year Fixed Effects Included
Adjusted R? 0.249

Note: Standard linear fixed effects model. All continuous variables z-standardized.
Significance codes: *** p <0.001, ** p <0.01, * p <0.05

Table C. 1 — Fixed Effects Model Estimates

Variable Coefficient Std. Error t-value Significance
Exposure x R&D Intensity 3.592 0.792 4.54  w*x
(Exposure x R&D)? —0.707 0.400 -1.76
Complementarity x R&D Intensity 0.647 0.130 4.97  H*x
(Complementarity X R&D)? —0.02 0.046 —0.43
log(Capital Intensity) 0.437 0.101 434  Hkx
(log(Capital Intensity))>? —0.067 0.027 —2.46 *
Sector Fixed Effects Included
Year Fixed Effects Included
Adjusted R? 0.270

Note: Inclusion of quadratic terms leads to modest improvement in fit but introduces
multicollinearity, as reflected in VIF values approaching 2.
Significance codes: *** p <0.001, ** p <0.01, * p <0.05

Table C. 2 — Quadratic Fixed Effects Model Estimates
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Variable Coefficient Std. Error t-value Significance

Exposure x R&D Intensity 3.176 0.68 4.44  wxx
Complementarity x R&D Intensity 0.435 0.17 4.02  Hkx
s(log(Capital Intensity)) EDF = 7.839 F = 26.5 *oxk
Sector Fixed Effects Included

Year Fixed Effects Included

Adjusted R? 0.805

Deviance Explained 83.2%

Note: Penalized spline applied to log capital intensity. GAM estimated using REML.
All predictors standardized.
Significance codes: *** p <0.001, ** p <0.01, * p <0.05

Table C. 3 — Generalized Additive Model (GAM) Estimates

Variable Coefficient Esrtlf:).r Vatl-ue Significance
Lagged Exposure x R&D Intensity 3.15 0.66 4.77  kxE
Lagqu Complementarity x R&D 0.43 016 398 ok
Intensity
s(log(Capital Intensity)) EDF = 8.09 F = 28.7 ok
Sector Fixed Effects Included
Year Fixed Effects Included
Adjusted R? 0.818
Deviance Explained 84.6%

Note: This is the final model specification used in the thesis. Lag structure reflects
delayed impact of Al adoption. Splines allow nonlinear capital effects. Model
diagnostics reported in Appendix B.

Significance codes: *** p <0.001, ** p <0.01, * p <0.05

Table C. 4 — GAM with Lagged Regressors and Fixed Effects

All models confirm the significance of the interaction terms between Al
exposure/complementarity and R\&D intensity. The spline term for capital intensity is
statistically significant and displays a concave shape, consistent with non-linear capital
returns.

Together, these tables and diagnostics provide evidence of model stability and robustness

across specifications.
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