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The Impact of AI on Productivity and Growth: 
A Labour Market Perspective through Occupational Exposure 

 
 

Abstract 
 
This thesis examines the impact of artificial intelligence (AI) on productivity and 

economic growth through a labour market lens, with a focus on the occupational structure 

of the Italian economy. Building on recent advances in the literature, it develops novel 

indicators of AI exposure and potential complementarity by measuring the semantic 

similarity between AI domain capabilities and occupational abilities, and by 

incorporating work context and job complexity features. These indicators are then 

aggregated to the sectoral level and interacted with a proxy for AI adoption—sectoral 

R&D intensity—to estimate their relationship with labour productivity. 

 

Using a semi-parametric panel model over 21 Italian macro-sectors between 1996 and 

2022, the analysis finds that productivity gains are not driven by exposure alone but 

emerge when exposure is accompanied by high complementarity and realized adoption. 

The results confirm that AI's effects on economic performance are conditional on the 

structure of work, investment in innovation, and the ability to harness AI for augmentation 

rather than substitution. 
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1. A Definition of Artificial Intelligence 

Before beginning to analyse the effect of a disruptive innovation such as AI, it is of utmost 

importance to clearly define the various nuances of this technology in order to fully 

understand the source of its transformative impact. In this section, I will provide a general 

analysis of the different classifications and denominations of AI.  

 

Artificial Intelligence is defined as “a technical and scientific field devoted to the 

engineered system that generates output such as content, forecasts, recommendations or 

decisions for a given level of human-defined objectives1”. It emerged after the Second 

World War, with the term “Artificial Intelligence” first gaining recognition in 1956. Since 

then, AI has expanded significantly, permeating various aspects of human life. It can be 

classified into several application domains: computer vision, natural language processing 

(NLP), data mining and knowledge discovery, and planning and decision systems.2  

 
Figure 1- A General Framework for AI Classification based on Functionality 

The diagram in Figure 1 illustrates the hierarchical structure of AI, from foundational 

models (left) to practical applications (right), showing how AI models influence system 

types, which in turn define AI domains and real-world applications. This classification 

serves as a foundation for understanding how AI is integrated into various fields, 

 
1 ISO/IEC 22989:2022 
2 ISO/IEC, 2022, Clause 9 
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providing the necessary context for evaluating AI’s impact on labour markets through 

exposure indicators. 

 

1.1 Natural Language Processing 
Natural Language Processing (NLP) refers to the ability of AI systems to acquire, process, 

and understand human language. It is widely applied across various AI fields and relies 

on Language Models (LMs), which predict the probability distribution of language 

expressions to interpret and generate text. 3 NLP enables applications such as speech 

recognition, machine translation, sentiment analysis, and conversational AI.  

 

1.2 Computer Vision 
Computer Vision encompasses a different perception sensitivity in AI, enabling systems 

to recognize, interpret, and process physical objects and images. Using pattern 

recognition techniques and point descriptors, these systems can identify both two-

dimensional and three-dimensional objects, extract meaningful features, and apply or 

store the gathered information. Common applications include medical imaging, facial 

recognition (e.g., FaceID), autonomous vehicles, and surveillance systems. 

 

1.3 Data Mining and Knowledge Discovery  
Data Mining is a subset of AI that focuses on transforming large volumes of data into 

meaningful knowledge by identifying patterns, correlations, and trends within extensive 

databases.4 It involves the use of statistical, machine learning, and computational 

techniques to uncover hidden insights that might not be immediately apparent. As 

described by Hand et al. (2001) “Data mining is the analysis of (often large) observational 

data sets to find unsuspected relationships and to summarize the data in novel ways that 

are both understandable and useful to the data owner.”.  

Common applications of data mining include fraud detection, recommendation systems, 

market analysis, customer segmentation, and predictive analytics. 

  

 
3 (Russell & Norvig, 2016) 
4 (Han et al., 2012) 
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1.4 Planning and Decision Systems 
As the name suggests, Planning and Decision Systems are designed to optimize processes, 

automate complex workflows, and enhance predictive analytics.5 These systems enable 

AI to evaluate different courses of action, anticipate outcomes, and support strategic 

decision-making. Just as planning in everyday life requires analysing potential 

consequences before taking action, AI-driven planning systems help structure approaches 

to complex problems, ensuring efficiency, adaptability, and informed decision-making. 

Common applications include logistics optimization, autonomous systems, business 

strategy modelling, and financial forecasting. 
 
 

2. Revision of Developed Metrics for AI Exposure 
 

The impact of AI on labour markets is a subject of increasing debate, as AI-driven 

technologies continue to reshape job roles, alter task structures, and influence 

employment dynamics. To quantify these effects, researchers have developed AI 

exposure metrics, which attempt to measure how different occupations and industries are 

affected by AI advancements. 

Understanding these exposure measures is essential for evaluating how AI transforms 

work, whether through task automation, augmentation, or displacement. These indices 

offer a structured approach to assessing which jobs are most at risk and which may benefit 

from AI integration. 

 

This chapter reviews the key AI exposure metrics developed in the literature, analysing 

their methodologies, strengths, and limitations. By critically assessing these indicators, it 

is possible to identify gaps and challenges that will inform the construction of a more 

comprehensive AI exposure index in the following chapter. 

 

  

 
5 (Ghallab et al., 2004) 
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2.1 Different Methods for AI exposure 
Different indices of AI exposure can be categorized into 3 main areas: 

1. Task-based indices, which assess AI’s impact by evaluating its ability to automate 

or complement specific tasks. 

2. Occupation-based indices, which aggregate AI exposure at the job level, 

considering the skills and abilities required for different occupations.  

3. Patent-based indices, which estimate AI’s impact based on technological 

advancements reflected in patent filings and their relevance to occupational tasks.  

Each of these approaches offers unique insights into how AI affects the labour market but 

also comes with methodological limitations. The following sections will examine the 

distinct nuances pertaining to each indicator, with particular attention to their structure, 

while presenting their main findings.  

 

2.1.1 Task-based exposure indices 

Task-based indices measure AI exposure by assessing how AI capabilities align with 

specific job tasks, typically based on occupational databases like O*NET6. This approach 

allows for a granular understanding of AI’s impact but often overlooks task adaptation 

and workforce reallocation effects. 

 

Frey & Osborne (2017) 

Frey and Osborne assess automation risk for 702 O*NET occupations by first 

categorizing 70 occupations as either fully automatable (1) or not automatable (0) based 

on expert judgment. Consequently, they apply a Gaussian process classifier7 to estimate 

the probability of computerization for the remaining 632 occupations. 

Their study is based mainly on general Machine Learning (ML) and Machine Reasoning 

(MR) characteristics and capabilities— as of 2017 —without a particular focus on LLMs 

or GenAI, which have since become major drivers of concern.  

 
6 The O*NET Database comprehends information on careers and occupations, as provided by the U.S. Department of 
Labor Employment and Training Administration. https://www.onetcenter.org/db_releases.html  
7 A Gaussian Process Classifier (GPC) is a probabilistic model used for classification tasks, characterized by defining 
a distribution over possible functions rather than assuming a fixed functional form. This allows for flexible decision 
boundaries and uncertainty-aware predictions. 

https://www.onetcenter.org/db_releases.html
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Main Findings: AI has significant potential to substitute labour in non-routine cognitive 

tasks, especially in low-skill and low-wage occupations. However, jobs relying on social 

and creative intelligence are safer.   

 
Brynjolfsson, Mitchell, et al. (2018) 

The indicator developed by Brynjolfsson and Mitchell, called “Suitability for Machine 

Learning” (SML) evaluates the potential for Machine Learning to automate a set of tasks 

described in the O*NET database. Experts rate 23 features on a scale from 1 (strongly 

disagree) to 5 (strongly agree), then aggregated at the occupational level. 

Unlike Frey & Osborne (2017), this study explicitly accounts for task complementarity, 

acknowledging that ML will transform jobs rather than completely automate them. 

Main findings: Machine Learning technology has the potential to significantly transform 

various jobs across the economy; however, its primary impact will be in the reengineering 

of processes and the restructuring of tasks rather than full automation. The data supports 

the argument that ML is more likely to augment or reshape jobs, particularly in fields 

involving structured decision-making, data processing, and administrative tasks. 

 

Tolan et al. (2021) 

Tolan et al. (2021) propose a three-layer framework to assess AI exposure, consisting of 

tasks, cognitive abilities, and AI benchmarks. Their approach maps occupations from 

worker surveys and occupational databases to cognitive tasks using AI research 

benchmarks. Unlike previous approaches such as Brynjolfsson, Mitchell, et al. (2018), 

which focus on broad ML applicability, this method evaluates AI exposure based on the 

degree to which AI research is directed toward specific cognitive abilities required for 

different occupations, without assuming immediate substitution.  

Building on Felten et al. (2021)’s work, their framework broadens the scope of AI 

benchmarks beyond perception-related tasks to include language processing, planning, 

information retrieval, and automated deduction/induction. They also refine the 

measurement of AI research intensity, addressing the issue of nonlinear performance 

trends that hinder comparability across benchmarks. To overcome this, they translate AI 

benchmarks into AI research activity, ensuring a more accurate alignment between 

technological advancements and occupational exposure.  
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Expanding on Webb (2020) methodology, they link research intensity in AI domains— 

such as computer vision and NLP —to the specific abilities required for performing job 

tasks.  

Main findings: Their findings indicate that the occupations most at risk are concentrated 

in high-income sectors, including medical professionals, office clerks, and teachers, not 

due to automation but because of augmentation and transformation. Unlike previous 

waves of automation that primarily displaced workers, AI’s impact in these fields is more 

focused on reshaping and enhancing jobs rather than replacing them. The most affected 

abilities are those related to problem-solving and idea generation, emphasizing that AI’s 

role is primarily in transforming work processes rather than substituting human labour 

entirely. 

 

Eloundou et al. (2023) 

Eloundou et al. (2023) analyse the impact of Large Language Models (LLMs), such as 

Generative Pre-trained Transformers (GPTs), on occupational exposure. Their approach 

builds on previous work by Brynjolfsson, Mitchell, et al. (2018), Felten et al. (2021), and 

Webb (2020) but does not differentiate between labour-augmenting and labour-displacing 

effects. Instead, it measures AI exposure using the O*NET database, following Felten’s 

framework for automation potential and aggregating exposure estimates at both the 

occupational and industry levels. 

The methodology is based on matching detailed work activities (DWAs) from the O*NET 

database with expert assessments and ChatGPT evaluations. The core metric categorizes 

tasks as either “Directly Exposed” or “Indirectly Exposed”, depending on whether LLMs 

can reduce the time required to complete a task by more than 50%. This threshold serves 

as a proxy for the degree of automation potential but assumes a direct correlation between 

task completion time and AI substitutability, which is a notable limitation. 

Main Findings: Their findings suggest that higher-wage occupations are the most 

exposed, as tasks in these jobs tend to involve significant information processing, text 

generation, and decision-making, all areas where LLMs demonstrate high proficiency. 

Overall, the study estimates that approximately 19% of jobs in the U.S. have at least 50% 

of their tasks exposed to LLMs, signalling a substantial potential impact on knowledge-

intensive professions. However, the approach has limitations, particularly in its reliance 



 10 

on ChatGPT’s own assessment of its capabilities, which introduces subjectivity and 

potential biases into the analysis. Moreover, the use of a 50%-time reduction threshold as 

the primary determinant of exposure oversimplifies the complexities of AI’s impact on 

labour dynamics. 

 

Briggs and Kodnani, (2023) 

Briggs and Kodnani (2023) analyse AI exposure using data from the O*NET database, 

focusing on task content to assess the extent of labour-saving automation. Based on 

existing literature on AI’s potential use cases, they identify 13 out of 39 work activities 

as exposed to automation. They then estimate occupational exposure using an importance 

and complexity-weighted average, which allows them to determine the share of workload 

AI could automate. 

Main findings: Around two-thirds of current jobs in the U.S. and Europe are exposed to 

AI automation to varying degrees. However, up to a quarter of these jobs could face 

disruptive substitution effects, highlighting the uneven impact of AI across different 

sectors. Additionally, they estimate that Generative AI (GenAI) could increase annual 

U.S. labour productivity growth by just under 1.5 percentage points over a 10-year period, 

assuming successful adoption and realization of AI’s projected capabilities. The study 

also suggests that AI could contribute to a 7% increase in global GDP, contingent on the 

pace of adoption and the accuracy of AI development projections. 

 

2.1.2 Occupation-based exposure indices 

Occupation-based indices aggregate task-level exposure into broader occupational 

categories, offering a more structured view of AI’s labour market impact. However, these 

models may oversimplify job heterogeneity, failing to capture within-occupation 

differences. 

 

Felten et al. (2021) 

Felten, Raj, and Seamans (2021) developed the AI Occupational Exposure Index (AIOE), 

an indicator that maps specific AI applications to occupational abilities while remaining 

neutral on whether AI complements or substitutes jobs. The measure relies on expert 
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assessments to evaluate how AI capabilities interact with different job roles, offering a 

broad and flexible approach to analysing AI exposure across occupations. 

Main Findings: High-skill occupations tend to have the highest AI exposure, particularly 

roles requiring analytical and cognitive abilities, such as financial examiners, actuaries, 

genetic counsellors, and mathematicians. These professions are highly susceptible to AI-

driven advancements in data analysis, pattern recognition, and complex decision-making. 

Conversely, occupations with low AI exposure are typically non-office jobs requiring 

significant physical abilities, including dancers, athletes, fitness trainers, and manual 

labourers such as roofers, brick masons, and block masons. The study highlights that AI’s 

impact is unevenly distributed across the labour market, with cognitive-intensive roles 

being more exposed to transformation while physical and manual jobs remain relatively 

insulated. 

 

Bonfiglioli et al. (2024) 

The indicator developed by Bonfiglioli is one of the most comprehensive in the literature, 

based on task exposure, job mobility, and economic transitions. It focuses on the effect 

of AI at a sectoral level, analysing shifts due to AI and implementation rates. The indicator 

combines industry-level AI adoption, tracked through job growth in AI-related 

occupations, with local industry employment shares to assess regional exposure across 

U.S. commuting zones. Unlike static task-based measures, this approach captures both 

displacement effects (job losses due to automation) and complementarity effects (AI 

augmenting labour), offering a dynamic view of AI’s impact on employment and labour 

market adjustments. 

Main findings: unlike previous technological waves, AI’s effects are more prominent in 

services than in manufacturing. While AI adoption has a negative employment effect on 

low-skilled and production workers, it positively impacts high-wage earners and STEM 

occupations, suggesting that AI’s labour market influence is highly skill-biased and 

sector-dependent. 

 

Pizzinelli et al. (2023) 

Pizzinelli et al. (2023) expand on the AI Occupational Exposure Index (AIOE) developed 

by Felten et al. (2021), introducing the Complementarity-Adjusted AI Occupational 
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Exposure (C-AIOE). This refined indicator incorporates AI complementarity potential at 

the occupational level, using O*NET data to assess how AI interacts with different job 

roles. Unlike traditional exposure measures that primarily focus on automation risk, the 

C-AIOE accounts for the extent to which AI complements, rather than replaces, human 

labour. A key distinction of this approach is its broader assessment of occupational 

exposure, considering not only task-based automation potential but also the social and 

physical context of work, which influences AI’s role in workplace dynamics. 

Main findings: The study finds that high-skilled occupations with high AI exposure also 

tend to have high complementarity scores, suggesting that AI will likely enhance 

productivity in these jobs rather than replace them. Conversely, occupations such as 

clerical support roles—where AI is more likely to serve as a direct substitute—are more 

prone to labour market disruptions. This framework underscores the heterogeneous 

impact of AI, where certain professions benefit from augmentation, while others face 

higher risks of displacement. 

 

Arntz et al. (2017) 

Arntz et al. (2017) adopt an occupational-level approach to automation risk, emphasizing 

within-occupation heterogeneity rather than treating entire occupations as fully 

automatable. Their methodology integrates automation probabilities from Frey & 

Osborne (2017) with job-level characteristics from the PIAAC (Programme for the 

International Assessment of Adult Competencies) database, allowing for a more nuanced 

assessment of automation exposure. 

Instead of assigning automation risks to entire occupations, they apply Frey and 

Osborne’s task-level automation probabilities to individual job tasks, then re-estimate 

overall automation risk while accounting for variation within occupations. 

Main findings: Their adjustment reveals that only 9% of U.S. jobs are at risk of 

automation, a significant revision compared to the 38% projected by Frey and Osborne’s 

task-based approach. Their findings suggest that previous models overestimated 

automation risk by not considering the complexity of job roles, as many occupations 

involve a mix of automatable and non-automatable tasks, making full displacement less 

likely. 
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2.1.3 Patent-based exposure indices 

Patent-based indices estimate AI’s labour market impact by analysing technological 

progress and its relevance to different occupations. 

 

Webb (2020) 

Webb (2020) develops a hybrid model that combines a task-based approach with AI-

related patents to measure the alignment between technological advancements and job 

tasks. The methodology involves text-matching between job descriptions and patents, 

assigning task-level scores that are then aggregated into occupational scores on a 

percentage scale. This approach enables a quantitative assessment of AI exposure at the 

job level. 

 

In addition to AI-related patents, Webb extends the analysis by examining similarities 

between patents linked to AI, robotics, and software and occupational task descriptions, 

providing insight into how these technologies affect employment growth across different 

occupations. A key innovation in this model is the direct patent-to-occupation mapping, 

which refines the task-exposure measurement by extracting verb-noun pairs from patent 

titles and job descriptions. This method improves the accuracy of linking AI innovations 

to specific job functions, offering a more detailed picture of how technological progress 

reshapes labour demand. 

Main Findings: AI exposure is unevenly distributed across occupations, with high-skill 

cognitive jobs—particularly those involving data analysis, decision-making, and 

prediction—being the most affected. Using a patent-to-task text-matching approach, the 

study shows that occupations more exposed to AI-related patents tend to experience 

slower employment growth, indicating that AI advancements may be influencing labour 

demand. Additionally, Webb distinguishes between AI, robotics, and software patents, 

finding that AI is more closely linked to cognitive and analytical tasks, whereas robotics 

patents align with manual and repetitive tasks. By mapping patent text to job descriptions, 

the study provides a task-specific measure of AI exposure, offering a more precise 

understanding of how technological progress interacts with different jobs and potentially 

contributes to occupational shifts and employment reallocation. 
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Kogan et al. (2024) 

Kogan et al. (2024) construct a technology exposure measure focused on capturing the 

displacement of existing tasks from the perspective of incumbent workers. Their approach 

is similar to Webb (2020) but improves on it by using natural language processing (NLP) 

and text embeddings instead of word hierarchies. By representing words as vectors 

trained on large text datasets, this method enables more precise similarity scoring between 

patents and occupational descriptions. Unlike prior approaches that relied on verb-noun 

pairs, their full-text analysis allows for more context-aware differentiation of tasks, 

improving the accuracy of AI exposure assessment across different occupations. 

Main findings: labour-saving technologies have a negative impact on wages across all 

worker levels while labour-augmenting technologies produce heterogeneous effects—

increasing earnings for new entrants but leading to wage declines for incumbents. 

Ultimately, their research indicates that technological advancements that enhance 

industry productivity can contribute to overall earnings growth, as aggregate labour 

demand rises, regardless of whether the technology is labour-saving or labor-augmenting. 

 

Autor et al. (2022)  

Autor (2022) develops an exposure measure that examines how technological progress 

contributes to the creation of new tasks and occupations. The methodology is patent-

based, leveraging Natural Language Processing (NLP) techniques to quantify how closely 

patent descriptions align with occupational descriptions from the Census Alphabetical 

Index (CAI). Specifically, the indicator computes a similarity score based on the textual 

overlap between patent documentation and occupational micro-titles listed in the CAI, 

focusing on breakthrough innovations—patents characterized as both novel (distinct from 

prior innovations) and impactful (widely cited by subsequent patents).  

This approach provides a comprehensive overview of the impact of “breakthrough 

technologies,” considering both labour-saving innovations (automated tasks) and skill 

obsolescence (where innovations may complement activities but require new skills that 

incumbent workers lack, thus making their expertise outdated). The significance of this 

framework lies in its influence on subsequent studies analysing the impact of AI, as it has 

established a theoretical foundation for measuring how new technologies transform work 

dynamics. 
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Meindl et al. (2021) 

Meindl, Frank, and Mendonça (2021) develop a task-level technology exposure indicator 

that maps over 900 occupations to patents using Natural Language Processing (NLP), 

providing a real-world measure of technology diffusion rather than merely estimating 

theoretical automation potential. Their methodology distinguishes between traditional 

patent exposure and Fourth Industrial Revolution (4IR) patent exposure, reflecting how 

new technologies are adopted and diffused in the labour market. Instead of assessing 

automation potential in isolation, their approach first accounts for differences in task 

exposure and then aggregates these effects at the occupational level. Their method is 

similar to Kogan et al. (2024) in that it uses a distance matrix approach, but instead of 

comparing occupations to patents directly, it matches O*NET task descriptions to patent 

descriptions to improve the accuracy of exposure measurement. 

Main Findings: Their findings indicate that manual and production occupations, such as 

those in construction, manufacturing, and transportation, are more exposed to traditional 

technologies but have low exposure to 4IR technologies. In contrast, cognitive and 

analytical occupations, including those in finance, marketing, and data entry, show high 

exposure to 4IR innovations. The study also highlights that 4IR technologies influence 

job growth with a lag of 10 to 20 years, reinforcing the idea that technological adoption 

takes time to reshape labour markets. Among the most exposed occupations are credit 

authorizers, statistical assistants, and computer network support specialists, while 

physically intensive roles like meat cutters and floor sanders remain largely unaffected. 

Compared to prior AI exposure measures, such as Frey & Osborne (2017) and 

Brynjolfsson, Mitchell, et al. (2018), which focus on theoretical automation potential, this 

study provides a more precise tool for labour market analysis by capturing real-world 

technological diffusion. 

 

 

The review presented in this chapter has outlined the principal methodologies developed 

to measure occupational exposure to artificial intelligence. While each approach offers 

valuable insights, they differ in scope, assumptions, and applicability. This comparative 

overview has served to contextualize the diverse ways in which exposure has been 
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conceptualized and operationalized. Having considered these contributions, the next 

chapter turns to the construction of the specific indicator used in this thesis. Building on 

the foundations reviewed here, it introduces a bi-dimensional measure designed to capture 

both AI exposure and potential complementarity in a way that can be operationalized 

within a macroeconomic framework. 

 

 

3. A Novel Exposure Measure 
 

3.1 Introducing the need for a new indicator 
As artificial intelligence (AI) technologies have advanced, so too has the effort to measure 

their potential effects on work. In recent years, a variety of occupational exposure 

indicators have been developed to quantify the alignment between AI capabilities and 

human tasks. These measures have helped frame the debate around job automation and 

the future of work. However, as discussed in Chapter 2, important methodological and 

conceptual limitations remain that constrain their usefulness for dynamic, productivity-

oriented analysis. 

 

Many of the most cited indicators—such as Frey & Osborne (2017) occupation-level 

automation probabilities—rely on static, binary classifications of task susceptibility, often 

extrapolated from expert judgment about the technological frontier at a fixed point in 

time. While this approach was foundational, subsequent critiques, such as Arntz et al. 

(2017), demonstrated that it significantly overstates risk by ignoring intra-occupational 

variation in task content. Similarly, task-based indices like the Suitability for Machine 

Learning (SML) measure Brynjolfsson, Mitchell, et al. (2018) and the benchmark-

matching framework of Tolan et al. (2021) incorporate more granularity, but remain 

reliant on subjective features or limited to narrow domains like cognitive ability—

excluding increasingly relevant areas such as embodied or perceptual work. 

 

Another recurring limitation across these indicators is the merge of technological 

exposure with economic impact. For example, Eloundou et al. (2023) define exposure 

based on whether GPT-4 is estimated to reduce task completion time by 50%, but offer 
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no differentiation between substitution and augmentation. This distinction is critical, as 

emphasized in the task-based framework developed by Acemoglu & Restrepo (2019), 

which highlights that the effects of automation depend not only on the technical feasibility 

of task performance but also on the reallocation and transformation of human roles. 

 

Some more recent approaches have begun to address this shortcoming. Pizzinelli (2023) 

introduce a Complementarity-Adjusted Occupational Exposure Index (C-AIOE), which 

combines a traditional exposure score with features intended to capture whether an 

occupation is more likely to be complemented or substituted by AI. While this dual-

dimensional structure is conceptually valuable, their method is still limited by its use of 

fixed task taxonomies and lacks a mechanism for incorporating new or evolving AI 

capabilities over time. 

 

These constraints are particularly problematic when the goal is not just to assess risk, but 

to understand how AI interacts with labour to influence productivity. A valid indicator in 

this context must be capable of capturing the evolving technological landscape, reflect 

heterogeneity within and across occupations, and distinguish between exposure and 

complementarity as analytically separate forces. Moreover, it must be empirically 

replicable, updateable, and capable of integration into sectoral frameworks. 

 

To meet these requirements, this thesis constructs a new AI exposure and 

complementarity indicator. The approach departs from expert-driven and static 

classification methods by leveraging recent advances in semantic modelling. Following 

the logic of Webb (2020) and Kogan et al. (2021), the exposure component is calculated 

through the cosine similarity between AI domain descriptions and occupational abilities 

as defined in the O*NET system. These embeddings allow for unsupervised, dynamic 

alignment between language used in AI capabilities and the skill requirements of jobs, 

improving both accuracy and adaptability. 

 

In parallel, complementarity is computed using structural features of occupations—

including Job Zone classifications and selected Work Context variables—following and 

extending the methodology introduced by Pizzinelli (2023). Rather than collapsing 
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exposure and complementarity into a composite index, they are retained as separate but 

jointly interpretable dimensions, enabling more nuanced classification of how AI may 

augment, substitute, or leave unchanged different categories of work. 

 

The indicator developed here offers three primary advantages over existing alternatives. 

First, it provides ability-level granularity, capturing intra-occupational variation often 

ignored in aggregate scores. Second, it is entirely computational and semantically based, 

allowing for continuous updates as AI technologies evolve. Third, its bi-dimensional 

structure reflects the economic insight that exposure alone does not determine 

outcomes—complementarity conditions are equally important, especially when 

productivity is the object of analysis. 

 

Considering these methodological, theoretical, and empirical considerations, the 

construction of a new indicator is a necessary step toward answering the central question 

of this research: under what structural conditions does AI adoption translate into 

productivity gains? 

 

3.2  Building the Exposure and Complementarity Index 
3.2.1 Data Sources 

The construction of the exposure and complementarity index relies on the following data 

sources: 

(i) The O*NET database, from which I extract 52 occupational abilities, their 

associated “importance” and “level” scores, and job-level metadata including 

Job Zones and Work Contexts.8 

(ii) A set of AI domain descriptions (e.g., natural language processing, computer 

vision, planning and decision-making, data mining), which are formulated in 

natural language based on existing literature. 

(iii) A pre-trained transformer model is employed to compute semantic similarity 

between AI domain descriptions and the text of O*NET ability descriptions. 9 

 
 

8 Available at https://www.onetonline.org  
9 Specifically, the all-mpnet-base-v2 model from HuggingFace, available at 
https://huggingface.co/sentence-transformers/all-mpnet-base-v2  

https://www.onetonline.org/
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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3.2.2 Methodology  

The construction of the final occupation impact framework follows a three-step 

methodology. Each step builds upon and extends the established methodologies analysed 

in the previous chapter. 

 

First, I derive a general measure of exposure to AI across occupations using semantic 

similarity between different AI domains capabilities. Specifically, I consider four key AI 

Domains discussed in Chapter 1—Natural Language Processing, Computer Vision, Data 

Mining, Planning and Decision System— and compute a cosine similarity score between 

their functional description derived from existing literature and textbooks, and the 52 

abilities descriptors provided in the O*NET database. These scores contribute to each 

occupational score ϵ by an importance and level weighted average. This step provides a 

general measure of the extent to which AI can perform the core cognitive, physical, 

psychomotor, and sensory functions required by each job. 

 

Unlike prior studies such as Tolan et al. (2021) or Martínez-Plumed et al. (2021), which 

focus exclusively on cognitive abilities when measuring AI occupational exposure, my 

approach deliberately includes the full range of O*NET abilities—cognitive, sensory, 

physical, and psychomotor. This broader scope reflects the increasing capacity of AI 

systems, especially when integrated with robotics or advanced control technologies, to 

perform not only reasoning or language-based tasks but also perception-driven and 

embodied interactions with the physical environment. Incorporating these additional 

ability domains enables a more comprehensive assessment of potential AI impact across 

the entire occupational spectrum. 

 

Secondly, I incorporate a measure of complementarity following the approach of 

Pizzinelli (2023) to differentiate between the substitution and the augmentation potential 

of AI. This dimension, denoted 𝜃, is derived from two occupation-level features in the 

O*NET database: 

(i) Job Zones: classify occupations in 5 categories based on the level of 

education, training and experience needed. Categories with a higher score are 
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typically more complex and abstract, thus not easily substitutable by AI, but 

rather complemented.  

(ii) Work Contexts: describe aspects under which the work is carried out, such as 

communication, responsibility, physical conditions and others.  

Combining these measures, the derived complementarity score distinguishes between 

roles likely to be enhanced by AI (high 𝜃) and those at higher risk of automation (low 𝜃).  

 

Finally, I integrate the two measures in a bivariate scatter plot. 

This allows for a typology of occupations along two axes: high vs. low exposure and high 

vs. low complementarity. Occupations are thus categorized into four quadrants 

representing distinct AI impact profiles to visualize the heterogeneity of AI’s potential 

effects across the labour market.  

 

I then compare the results of this classification with those obtained by Pizzinelli (2023), 

as well as with other relevant contributions in the literature. 

 

3.2.3 Exposure Score 

3.2.3.1 Preliminary Steps 

As a first step in the analysis, I compute an AI exposure score for each occupation. This 

score reflects the extent to which AI systems can potentially perform the core abilities 

required by a given occupation, based on semantic similarity between AI domain 

capabilities and occupational abilities. 

 

To start constructing the exposure index, I collected and organized the relevant textual 

descriptors for both occupational abilities and AI capabilities. I began by extracting and 

unifying ability descriptions from the O*NET database, focusing on the 52 abilities 

categorized into four main groups: cognitive, physical, psychomotor, and sensory. For 

each ability, I retained the official definition provided by O*NET, ensuring consistency 

and comparability across occupations. 

 

In parallel, I defined textual descriptions for a selected set of AI functional domains—

namely, Natural Language Processing, Computer Vision, Data Mining, and Planning and 
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Decision-Making Systems. These descriptions were constructed using a combination of 

authoritative academic sources, textbooks, and international standards. Specifically, the 

main references included: 

 

o Russell & Norvig (2016) Artificial Intelligence: A Modern Approach 

o Hand et al, (2001), Principles of Data Mining 

o Han et al, (2012), Data Mining: Concepts and Techniques 

o Ghallab et al. (2004), Automated Planning: Theory and Practice 

o Information Technology — Artificial Intelligence —— Artificial Intelligence 

Concepts and Terminology, (2022) 

o Mandi et al. (2024) Decision-Focused Learning: Foundations, State of the Art, 

Benchmark and Future Opportunities 

 

These sources were carefully reviewed to synthesize concise yet semantically rich 

descriptions for each AI domain, capturing their functional focus and core capabilities. 

 

Once the textual descriptors were refined, I proceeded to compute semantic similarity 

scores using a sentence transformer model.10  

The degree of similarity is measured using cosine similarity, assessing how similar the 

text meanings are withing a high-dimensional space. This yielded a score 𝜖!,# ∈ [−1,1], 

representing the semantic alignment between ability 𝑗 and AI domain 𝑛. The result was a 

matrix of exposure scores spanning all 52 abilities and four AI domains. 

In the intermediate steps of the calculation, I chose to retain the disaggregation by both 

ability category and AI domain, to ensure interpretability and analytical flexibility before 

aggregating the results per occupation. This decision enables a more granular and 

differentiated assessment of how various AI capabilities relate to specific categories of 

human abilities, and how their effects may vary across different types of occupations. It 

 
10 Specifically, I employed the pre-trained all-mpnet-base-v2 model from HuggingFace, which belongs to 
a family of models known as sentence transformers. These models are designed to understand and represent 
the meaning of sentences or short texts in a way that allows for meaningful comparisons between them. A 
sentence transformer works by converting each sentence or phrase into a vector embedding—a fixed-length 
numerical representation that captures the semantic content of the text. https://huggingface.co/sentence-
transformers/all-mpnet-base-v2  

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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also facilitates domain- and ability-specific analyses, allowing for more nuanced insights 

into the heterogeneity of AI’s potential impact across the labour market. 

 

3.2.3.2 Computation 

After obtaining the exposure scores of each ability 𝑗 to each AI domain 𝑛, denoted as 𝜖!,#, 

I proceeded to compute their impact at the occupational level. The first step was to 

determine the relative weight of each ability within each occupation 𝑘, based on O*NET’s 

“Importance” and “Level” indicators. These two scores jointly reflect how central an 

ability is within an occupation and to what degree it must be mastered. 

 

For each ability 𝑗 and occupation 𝑘, I computed the raw ability weight: 

 

𝑊𝑒𝑖𝑔ℎ𝑡!,$ = 𝐼!,$ ⋅ 𝐿!,$ 

 

where 𝐼!,$ is the importance score and 𝐿!,$ is the level score of ability 𝑗 in occupation 𝑘. 

The values were then scaled to ensure comparability across abilities within each 

occupation: 

 

𝑤!,$ =
RawWeight𝑗, 𝑘
∑ 𝐼!,$%&
!'( ⋅ 𝐿!,$

 

 

This gives a set of weights 𝑤!,$ summing to 1 for each occupation 𝑘, representing the 

relative contribution of each ability to the overall skill profile of the occupation. 

 

Next, I computed the impact of each AI domain 𝑛 on each O*NET ability category 𝑐 (i.e., 

cognitive, physical, psychomotor, sensory) by aggregating the weighted exposure scores 

within each category: 

𝜀$,#,) =;𝑤!,$
!∈)

⋅ 𝜖!,# 

This yields a set of disaggregated exposure scores for each occupation 𝑘, AI domain 𝑛, 

and ability category 𝑐. This intermediate step allows for a detailed understanding of how 
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each domain of AI capability is aligned with different human ability types, and how this 

varies across occupations. 

 

After calculating 𝜀$,#,) for all occupations, ability categories, and AI domains, I 

proceeded to two levels of aggregation: 

1. Category-level aggregation by AI domain: For each occupation 𝑘, I computed the 

total exposure to each AI domain 𝑛 by summing across all ability categories: 

 

𝜀$,#total =;𝜀$,#,)
)

 

 

2. Overall AI exposure: Finally, I computed the total AI exposure score for each 

occupation 𝑘, aggregating across all AI domains: 

 

𝜀$AI =;𝜀$,#total
+

#'(

 

 

This final score 𝜀$AI, subsequently normalized, reflects the overall exposure of occupation 

𝑘 to AI technologies, incorporating both the structure of required abilities and their 

semantic alignment with AI functional domains. By preserving domain-specific and 

ability-specific detail throughout the process, this method provides a highly granular and 

interpretable measure of AI exposure at the occupational level. 

 

3.2.4 Complementarity Effect 

To complement the exposure score and reflect the heterogeneity in how AI may interact 

with different types of work, I construct a complementarity index, building on the 

framework developed by Pizzinelli (2023). This index assesses whether an occupation is 

more likely to be augmented or substituted by AI, based on contextual and skill-based 

features extracted from the O*NET database. 

 

3.2.4.1 Variables 
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As in Pizzinelli (2023), I rely on a set of Work Contexts and the Job Zones classification, 

which capture relevant non-task-specific job characteristics. Work Contexts describe the 

physical, interpersonal, and organizational conditions of work, while Job Zones indicate 

the level of education, experience, and training required for a given occupation. 

 

Following the same framework, I group these features into six thematic components as: 

1. Communication: Includes face-to-face interaction and public speaking, reflecting 

the importance of both spoken and written interpersonal communication. 

2. Responsibility: Includes responsibility for outcomes and responsibility for others’ 

health. 

3. Physical Conditions: Includes exposure to outdoor environments and physical 

proximity to others. 

4. Criticality: Includes consequence of errors, frequency of decision-making, and 

freedom to make decisions. 

5. Routine: Includes degree of automation and—unlike Pizzinelli (2023)—

importance of repeating the same tasks, capturing the level of task repetition and 

routineness (which correlates negatively with complementarity). 

6. Skills: Based on Job Zones, which I re-scale by multiplying the original values by 

20 to ensure consistency with the broader scale of the Work Context variables. 

 

3.2.4.2 Computation 

For each of the six thematic groups, I calculated a group-specific score for each 

occupation based on the selected Work Context variables (or Job Zone score, in the case 

of Group 6), as described above. For each group 𝑔, I computed the average of the 

standardized values of the relevant variables for each occupation 𝑘. This approach 

captures the intensity of each group’s characteristics while giving equal weight to each 

component. 

Mathematically, for a group 𝑔 composed of 𝑚 variables 𝑣(, 𝑣&, … , 𝑣,, the group score 

for occupation 𝑘 is calculated as: 

Group	Score$ =
1
𝑚;𝑣-,$

,

-'(
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where 𝑣-,$ is the value of variable 𝑣- for occupation 𝑘.  

 

As noted earlier, for Group 5 (Routine)—which conceptually works in the opposite 

direction (higher scores imply lower complementarity)—I apply a flipping transformation 

around the median to align its direction with the other groups: 

 

Adjusted	𝑣-,% = 𝑣-,% + 2JMedian% − 𝑣-,%K 

 

Finally, the complementarity score for each occupation 𝑘, denoted 𝜃$, is computed as the 

sum of the six group scores: 

 

𝜃$ = ;Group Score$,.

/

.'(

 

 

This unweighted sum represents the overall potential of AI to complement human labour 

in occupation 𝑘, based on a range of contextual and skill-based dimensions. I chose not 

to normalize the final scores, maintaining their raw scale to preserve interpretability and 

comparability with the exposure scores. 
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3.3 Results 
3.3.1 General Review of Results 

 
Figure 2 

The bi-dimensional indicator developed in this thesis offers a structured and intuitive 

representation of how different occupations are positioned in relation to two core 

dimensions of the current wave of artificial intelligence: Exposure (𝜀), which captures the 

share of tasks likely to be performed by contemporary AI systems, and Potential 

Complementarity (𝜃), which measures the share of tasks rooted in human-specific skills 

that resist substitution. By assigning each of the 879 occupations a position in the 𝜀– 𝜃 

space, I aim toward a richer understanding of how the composition of work interacts with 

machine capabilities. 

 

The exposure index (𝜀) ranges from highly negative values (e.g., –2.3 for Dancers) to 

strongly positive ones (e.g., +1.4 for Actuaries), reflecting a wide variation in the presence 

of AI-performable tasks. The complementarity index (𝜃) displays a narrower range of 

values compared to the exposure index (𝜀), with most occupations falling between 0.33 
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and 0.78. This more limited variation stems from how the index is built: it combines 

standardized measures of occupational features such as education requirements, decision-

making frequency, and interpersonal interaction, all of which are bounded by design. 

Unlike exposure, which reflects the degree to which AI systems can technically perform 

a task, complementarity captures how much human input remains essential despite AI 

capabilities. Because nearly all jobs include some repetitive or structured elements, even 

highly interpersonal or judgment-based roles cannot reach the maximum possible 

complementarity score. As a result, the index is naturally compressed within a moderate 

range of values, reflecting both the structure of the underlying data and the economic 

reality that few occupations are entirely resistant to automation. 

 

Graphically, the occupations do not distribute uniformly across the 𝜀– 𝜃 plane. Rather, 

they cluster within a central region—approximately between 𝜀	 ∈ 	 [– 0.5, +0.5] and 𝜃	 ∈

	[0.45, 0.65]—suggesting that most occupations involve a moderate mix of both AI-

exposed and human-centric tasks. However, splitting the space at the median values of 

each axis (𝜀	 = 	0; 𝜃	 = 	0.55) reveals four distinct typologies of work that reflect 

fundamentally different interactions with AI. 

 

I. High Exposure – High Complementarity (𝜺	 > 	𝟎; 𝜽	 > 	𝟎. 𝟓𝟓):  

This quadrant includes Lawyers, Judges, Flight Engineers, and Medical Specialists. These 

occupations are characterized by a substantial presence of tasks that AI can already 

perform—such as document review, data mining, or diagnostic support—yet they 

simultaneously feature a high concentration of tasks requiring interpretative judgment, 

ethical reasoning, interpersonal communication, and trust-building. These are core 

features of high-cognitive, high-stakes professions. 

 

Such results confirm the insight of Acemoglu & Restrepo (2019), who argue that AI 

differs from past technological waves (e.g., robotics) by extending automation into non-

routine cognitive occupations. However, rather than signalling direct displacement, high-

𝜀, high-𝜃 occupations represent spaces where AI is more likely to augment rather than 

substitute human labor. These workers might experience productivity gains, but the task 

structure remains resistant to full automation. 
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II. Low Exposure – High Complementarity (𝜺	 < 	𝟎; 	𝜽	 > 	𝟎. 𝟓𝟓):  

This group includes occupations such as Early Childhood Educators, Social Workers, 

Psychotherapists, and Creative Artists. These roles are dominated by non-routinized tasks 

deeply embedded in emotional intelligence, context sensitivity, creativity, and social 

interaction. Their low 𝜀 scores reflect the current limitations of AI in replicating such 

capabilities. The high 𝜃 scores reinforce the resilience of these professions in the face of 

automation. 

 

These results align with the broader literature on the limits of algorithmic replication of 

emotional labour, confirming that complementarity is not a generic defence against AI, 

but is domain-specific, particularly strong in the caring, cultural, and educational 

professions. 

 

III. Low Exposure – Low Complementarity (𝜺	 < 	𝟎; 	𝜽	 < 	𝟎. 𝟓𝟓):  

Occupations in this quadrant, such as Maids and Housekeeping Cleaners, Dishwashers, 

and Elementary Production Workers, are currently unexposed to AI systems—often due 

to the physical nature of the tasks or the low economic returns to automation—but they 

also lack strong human-centred features. Their low 𝜃 scores signal that the tasks are 

largely repetitive, low-discretion, and do not require higher-order cognitive skills. 

 

IV. High Exposure – Low Complementarity (𝜺	 > 	𝟎; 	𝜽	 < 	𝟎. 𝟓𝟓):  

This is the quadrant where occupations face the greatest short-term risk of disruption. 

Examples include Telemarketers, Receptionists, Data Entry Clerks, and Routine 

Diagnostic Technicians. These jobs involve a high share of tasks that can already be 

handled by AI tools—such as form-filling, transcription, or scripted interactions—but 

offer little in terms of creativity, discretion, or person-sensitive judgment. 

 

The high 𝜀 and low 𝜃 scores place these occupations at the core of the ongoing automation 

process. These are jobs where AI is not only able to perform a large number of tasks but 

can do so without significant loss in quality, because the complementarity with human 

skills is minimal. This is the segment where substitution is most advanced. 
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A key empirical insight from the distribution of 𝜀 and 𝜃 is that high exposure does not 

imply low complementarity, nor does low exposure guarantee high complementarity. The 

correlation between the two dimensions is modestly negative (around –0.2), indicating 

that many occupations contain a complex blend of replaceable and irreplaceable tasks. 

This suggests that future labour market adjustments will not be uniform: some jobs will 

be transformed, some displaced, and some reinforced, depending on their position in the 

𝜀– 𝜃	space. 

 

In addition, cognitive intensity plays a critical role. Occupations involving high levels of 

information processing, problem-solving, and language comprehension tend to score 

higher on exposure (𝜀), while those that also involve high levels of discretion, decision-

making under uncertainty, and social interaction score higher on complementarity (𝜃). 

This confirms that task-level analysis, rather than occupation-level typologies, is essential 

to capturing the true nature of AI's economic effects. 

 

3.4 Comparison with existing indicators  
The results produced by the exposure (𝜀) and complementarity (𝜃) analysis developed in 

this thesis exhibit broad consistency with recent contributions—most notably the 

Complementarity-Adjusted AI Occupational Exposure (C-AIOE) index proposed by 

Pizzinelli (2023)—but reveal several important empirical distinctions. In both 

frameworks, highly exposed occupations are concentrated in knowledge-intensive 

domains such as ICT, finance, law, and analytics, where core tasks include language use, 

information retrieval, decision-making, and planning. This shared result is expected given 

the alignment between these tasks and current capabilities of language-based AI systems. 
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Figure 3 

However, when analysing my results (Figure 2), the distribution of occupations appears 

more dispersed and polarized than the pattern found in Pizzinelli (2023) (Figure 3). High-

exposure/high-complementarity occupations such as oral surgeons, legal arbitrators, and 

university professors form a clear upper-right cluster, indicating roles that, while exposed, 

are more likely to be augmented by AI. This result contrasts with the C-AIOE, which 

merges exposure and complementarity into a single scalar and produces a more 

compressed occupational cloud, limiting the capacity to distinguish between occupations 

with similar exposure but differing AI interaction profiles. 

 

The distinction is particularly salient among mid-level occupations. For example, 

administrative support and clerical roles display greater variation in my indicators, with 

some appearing moderately complementary due to contextual features like decision-

making autonomy or interpersonal responsibility. In the C-AIOE index, such variation is 

less evident, as complementarity is fixed across five standardized dimensions and 

combined early in the aggregation process. 

 



 31 

3.4.1 Comparison with Other Indicators 

It is informative to contrast the results produced by the present framework with those 

emerging from other earlier and alternative indicators, focusing specifically on how 

occupations are classified in terms of exposure and potential impact. 

 

The most widely cited benchmark, Frey & Osborne (2017), assigns high automation 

probabilities to a large share of middle- and even high-skill jobs, including legal clerks, 

diagnostic technicians, and some healthcare professionals. These classifications rely on 

expert assessments of task characteristics and machine learning models trained on binary 

“automatable” labels. However, when matched to my 𝜀 − 𝜃index, many of these same 

occupations appear as high-exposure but also high-complementarity—indicating that 

they involve complex, judgment-intensive tasks not easily reduced to deterministic 

substitution. This discrepancy is especially visible for physicians and legal professionals, 

who appear highly exposed in both models, but are assigned much greater 

complementarity in my framework due to contextual factors like ethical responsibility 

and decision-making autonomy. Thus, while Frey & Osborne (2017) approach broadly 

anticipates exposure, it tends to overestimate displacement. 

 

The Suitability for Machine Learning (SML) index by Brynjolfsson, Mitchell, et al. 

(2018)  shifts the focus to task suitability rather than entire occupations. It classifies tasks 

as more or less amenable to machine learning, relying on expert ratings. In my results, 

occupations composed of such tasks—e.g., financial analysts or insurance underwriters—

do indeed rank as highly exposed. However, my complementarity scores show greater 

dispersion within these roles, again highlighting heterogeneity in how AI may affect task 

bundles within jobs. Moreover, the SML scores are fixed in time and technological scope, 

while my semantic similarity model allows for dynamic reassessment as AI capabilities 

evolve, including emerging domains like multimodal systems and planning agents. 

 

Tolan et al. (2021) introduce a benchmark-task alignment approach using AI system 

performance scores on cognitive tasks. While this method provides quantitative precision, 

it is limited to a narrow subset of abilities, often omitting embodied or social tasks. 

Accordingly, my results diverge most in low-exposure occupations: my indicator assigns 
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uniformly low 𝜀 scores to roles involving physical movement, dexterity, and sensory 

feedback (e.g., janitors, machine operators), whereas Tolan’s index lacks coverage of 

these dimensions. The 𝜃 index, by including interpersonal and physical work context 

variables, captures more clearly the non-cognitive barriers to substitution in such 

occupations. 

 

Finally, Eloundou et al. (2023) present a novel approach based on the performance of 

GPT-4 across thousands of tasks, estimating task completion acceleration. Their measure 

equates time savings with exposure but does not differentiate between productivity-

enhancing augmentation and displacement. My results clarify this ambiguity. 

Occupations flagged as exposed in Eloundou’s analysis—such as customer service agents 

or content creators—are confirmed in my 𝜀 scores but diverge in 𝜃 depending on whether 

the role involves human interaction, unpredictability, or emotional labour. This adds 

interpretive value and avoids conflating acceleration with substitution. 

 

Therefore, the framework developed in this thesis produces results that are more granular, 

structurally flexible, and sensitive to contextual nuance. By explicitly separating exposure 

from complementarity, and grounding both in semantic alignment and occupational 

metadata, my results provide a differentiated map of risk and opportunity that better 

reflects the multi-dimensional nature of AI–human interaction in the workplace. 

 

3.5 Aggregation  
To analyse the potential macroeconomic impact of artificial intelligence on labour 

productivity, the occupation-level indicators of AI exposure and complementarity must 

be mapped onto a structure compatible with Italy’s economic statistics. This section 

details how occupational-level scores were aligned with the Italian labour market and 

translated into sectoral indicators, enabling empirical analysis at the macro-sector level. 

 

Occupational characteristics determine how AI interacts with work, but productivity—

the main outcome of interest—is measured at the sectoral level. As highlighted in 

Bonfiglioli et al. (2024), task-based indicators must be adapted to sector-level data to 

support empirical modelling of productivity. Aggregation is also necessary to match 
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other economic variables such as R&D intensity, capital investment, and value added, 

which are typically published by national statistical agencies using sectoral taxonomies. 

 

Moreover, given Italy’s diverse economic structure—characterized by a large services 

sector, strong manufacturing base, and highly fragmented employment patterns—

aggregating exposure and complementarity to ATECO macro-sectors (A–R) is essential 

for interpreting how AI might affect the broader economy. 

 

3.5.1 Mapping to the Italian Classification System 

The first step involved mapping the original AI exposure and complementarity scores—

computed for 879 SOC-2019 occupations—onto the Italian CP2021 classification 

system at the 4-digit level. This mapping was conducted manually and cross-referenced 

using ISTAT documentation to ensure the closest possible correspondence between 

U.S. and Italian occupations. Where multiple SOC occupations corresponded to a single 

CP2021 code, values were harmonized through simple averaging, due to the lack of 

high-resolution occupational employment data for every match. 

 

Once occupation-level scores were assigned to CP2021 codes, a crosswalk between 

occupations and sectors was used to assign them to ATECO macro-sectors. This mapping 

was informed by publicly available employment data and documentation on occupational 

distribution by sector. For each sector, the corresponding scores were obtained by taking 

the arithmetic mean of the AI exposure and complementarity values of the associated 

occupations. 

 

This method ensures that sectoral indicators remain empirically tractable and 

conceptually grounded. Importantly, the aggregation preserves the conceptual distinction 

between exposure (how AI-capable the occupational content is) and complementarity 

(how amenable the tasks are to human–AI collaboration) 
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3.5.2 Sectoral Patterns in the Italian Economy 

The aggregated sector-level indicators highlight meaningful heterogeneity across the 

Italian economy. 

 

High-Exposure and High-Complementarity Sectors include Information and 

Communication (J), Financial and Insurance Activities (K), and Professional and 

Scientific Activities (M). These sectors are composed of occupations that align closely 

with AI’s functional domains, especially in areas like data analysis, planning, and 

language processing. Their high complementarity suggests that AI may serve an 

augmentative role, rather than a substitutive one, potentially reinforcing productivity 

dynamics when paired with adequate investment and institutional readiness. 

 

Low-Exposure, Low-Complementarity Sectors such as Agriculture (A), Construction 

(F), and Accommodation and Food Services (I) remain less affected by cognitive AI 

technologies. These sectors typically involve manual, embodied tasks or spatial 

interactions that current AI systems cannot easily replicate. Consequently, both the 

exposure and potential for augmentation are limited, echoing international findings that 

embodied labour remains relatively insulated from AI-driven disruption.11 

 

Intermediate or Ambiguous Sectors, such as Wholesale and Retail Trade (G) and 

Transport and Storage (H), show moderate exposure but low complementarity. These 

sectors may face productivity challenges without organizational transformation or 

workforce reskilling, as AI could replace some routine tasks without substantially 

enhancing human roles. 

 

3.6 Link to the Empirical Framework 
These sectoral exposure and complementarity scores form the core variables in the 

empirical model introduced in the next chapter. By interacting them with lagged R&D 

intensity—a proxy for sector-level AI adoption—the model explores how AI’s labour 

market potential translates into actual productivity performance. This structure aligns 

 
11 (Francesca Borgonovi, Flavio Calvino, Chiara Criscuolo, Julia Nania, Julia Nitschke, Layla O’Kane, 
Lea Samek, Helke, 2023) 
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with findings from Dalla Zuanna et al. (2024), who stress the importance of connecting 

micro-level exposure indicators with macro-level economic outcomes. 

 

The aggregation strategy adopted in this thesis is therefore a conceptual bridge between 

task-based labour market insights and macroeconomic measurement—allowing AI’s 

sectoral impact to be studied in a way that is both empirically feasible and economically 

meaningful. 
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4. The Effect on Productivity 
Chapter 3 established two task-level indicators that capture how Italian occupations relate 

to current artificial-intelligence capabilities. AI exposure (𝜀) measures the share of core 

abilities that can in principle be automated by existing systems, while task 

complementarity (𝜃) proxies the scope for AI to augment rather than substitute human 

effort.  

 

The central objective of Chapter 4 is to determine whether this job structure helps explain 

the persistent heterogeneity in sectoral labour-productivity growth observed since the 

mid-1990s (Syverson, 2010). Despite successive waves of digitalisation—and the recent 

popularity gained by large-language models—Italy, like most OECD economies, has 

witnessed sluggish aggregate productivity (Calligaris et al., 2018). A growing literature 

suggests that general-purpose technologies (GPTs) such as AI raise output only when 

three conditions coincide: 

(i) the technology can be technically deployed in the tasks performed (high 𝜀); 

(ii) those tasks possess characteristics—autonomy, problem-solving, 

interpersonal interaction—that make AI a complement rather than a substitute 

(high 𝜃);  

and 

(iii) firms invest in the intangible assets needed to absorb the technology (R&D, 

re-organisation, data infrastructure). 

These arguments are formalised by (Acemoglu & Restrepo, 2019) and echoed in recent 

firm-level evidence (Babina et al., 2024) and sectoral analyses of absorptive capacity 

(Aghion et al., 2017). 

To test these ideas, the chapter estimates a semi-parametric panel model in which 

standardised log labour-productivity is regressed on the interaction of 𝜀 and 𝜃 with lagged 

R&D intensity (a proxy for realised AI adoption). A penalised-spline term captures non-

linear returns to capital deepening, while sector and year fixed effects control for time-

invariant heterogeneity and common shocks. Full variable definitions and transformations 

appear in Appendix A – Variable Distributions and Transformations; the regression 

equations and diagnostic graphs are reported in Appendix B – Model Diagnostics. 
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By moving from micro-level task indicators to macro-sectoral outcomes, this chapter 

aims to provide new evidence on the structural pre-conditions under which AI adoption 

translates into productivity gains. 

 

The empirical analysis proceeds as follows. Section 4.1 develops the conceptual 

framework and states the hypotheses. Section 4.2 presents the econometric model. 

Section 4.3 describes the data assembly. In Section 4.4, I highlight the chapter’s analytical 

contributions. Section 4.5 reports the estimation results, and Section 4.6 examines 

robustness checks and discusses key limitations. Section 4.7 concludes with policy 

implications. 

 

4.1 Conceptual Framework and Hypotheses 
The link between artificial intelligence and aggregate performance is best understood 

through task-based models of technological change. In this setting, each occupation is 

viewed as a bundle of granular tasks, some of which are automatable by current AI, while 

others rely on skills that machines cannot easily replicate and may even amplify when 

combined with software (Acemoglu & Restrepo, 2019; Autor et al., 2018).  

 

4.1.1 From task structure to productivity 

In Acemoglu (2025), aggregate labour productivity rises when two conditions hold 

simultaneously: (i) the stock of effective tasks performed per worker expands, and (ii) the 

technology that contributes those tasks diffuses widely. Condition (i) depends on 𝜀 and 

𝜃; condition (ii) on firms’ absorptive capacity, proxied in this research by R&D intensity 

(Cohen & Levinthal, 1990). Without investment in complementary assets (data 

infrastructure, process re-design, worker training) exposure merely displaces labour 

without increasing output (Babina et al., 2024). 

 

Capital deepening offers a third channel, with diminishing returns to physical capital once 

intangible assets are scarce (Andrews et al., 2016). Section 4.5 therefore models capital 

intensity with a non-parametric spline. 
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4.1.2 Hypotheses 

The framework yields two propositions: 

(i) H1 Conditional exposure effect. In sectors with above-average R&D intensity, 

a one-standard-deviation increase in 𝜀 is associated with a positive change in 

subsequent labour productivity. 

(ii) H2 Conditional complementarity effect. Conditional on R&D, sectors scoring 

higher on 𝜃 enjoy higher productivity growth, even if their exposure is 

moderate. 

Together, H1 and H2 imply that AI-induced productivity gains are neither automatic nor 

uniform: they materialise only where technical feasibility, human-task complementarity 

and absorptive investment intersect. 

4.2 Model Specification  
The model is estimated using both fixed-effects panel regressions and a Generalized 

Additive Model (GAM) to allow for nonlinear relationships. The core regression equation 

is: 

log_Productivity-,0
= β(Exposure_RD-,01( + β&Complementarity_RD-,01(

+ 𝑠JCapital	Intensity-,0K + α- + δ0 + ϵ-,0 

Where: 

- log_Productivity-,0 is the log of value added per employee in sector 𝑖, year 𝑡, 

standardized. 

- Exposure_RD-,01( is the lagged interaction between AI exposure and log R&D intensity 

in sector 𝑖. 

- Complementarity_RD-,01( is the corresponding lagged interaction between AI 

complementarity and log R&D. 

- 𝑠JCapital	Intensity-,0K is a smooth function (penalized spline) of log capital-to-labour 

ratio. 

- α- and δ0 are sector and year fixed effects, respectively. 

- ϵ-,0 is the residual error term. 
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Exposure and complementarity enter the model as standardised indices to facilitate the 

economic interpretation of coefficients. They are interacted with the one-year-lagged 

logarithm of R&D intensity to reflect the diffusion lag documented by Guarascio et al. 

(2023).  

The lag structure reflects the notion that the benefits of AI adoption, like those of any 

general-purpose technology, are not instantaneous but require time to diffuse through 

firms and institutions. 

By lagging the interaction terms, this model improves temporal ordering and addresses 

potential concerns over simultaneity bias, although endogeneity cannot be fully ruled out 

due to the observational nature of the data. 

 

The use of R&D intensity as a proxy for AI adoption follows the precedent of Calvino 

and Fontanelli (2023), which find that firms in R&D-intensive sectors are significantly 

more likely to implement AI technologies and restructure tasks accordingly. R&D thus 

serves as a credible and measurable proxy for latent adoption dynamics. 

 

To control for unobserved heterogeneity, the model includes: 

— Sector fixed effects (𝛼-), capturing time-invariant characteristics such as 

regulatory frameworks, institutional setups, or typical capital–labor structures; 

— Year fixed effects (𝛿0), which absorb macroeconomic fluctuations, technological 

shocks, and common policy shifts across the economy. 

 

4.2.1 Estimation and Diagnostics 

The model was estimated in multiple stages: 

(i)  Fixed Effects Model (FE): the baseline included standardized interaction 

terms and a linear capital control. Initial results showed good fit, but residual 

plots and LOESS diagnostics revealed nonlinearities in capital intensity, 

prompting a transition to a semi-parametric model. 

(ii) Quadratic Model: Including squared terms improved fit marginally but 

introduced multicollinearity and reduced interpretability. 

(iii) Generalized Additive Model (GAM): The final model included a penalized 

spline for log capital intensity and lagged interaction terms. Residuals passed 
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normality tests (Shapiro–Wilk), and no major heteroskedasticity or 

misspecification was detected. 

The next section (§ 4.3) details the construction of the dataset, variable transformations 

and descriptive patterns. 

 

4.3 Data and Sample Construction  
To empirically examine the relationship between AI-related occupational structures and 

productivity, a balanced panel dataset was constructed covering 21 Italian macro-sectors 

(ATECO A–R) over the period 1996–2022. The dataset integrates occupational exposure 

and complementarity indicators with sector-level data on productivity, R&D investment, 

and capital accumulation. 

 

4.3.1 Data Sources, Cleaning, Diagnostics, and Validation 

The occupational indicators for AI exposure and complementarity were computed as 

detailed in Aggregation (§ 3.5), ensuring that the final indicators represent the average 

occupational structure within each sector. 

 

Sector-level economic variables—labour productivity, capital stock, employment, and 

R&D expenditure—were sourced from ISTAT12 and the OECD STAN database13.  

 

All datasets were reshaped, merged on consistent sector-year identifiers, and harmonized 

to ensure alignment across classification systems. Observations with missing values in 

any core variable were excluded. R&D intensity reporting was incomplete in early years, 

leading to the removal of a small number of pre-2000 observations. 

 
12 
https://esploradati.istat.it/databrowser/#/it/dw/categories/IT1,DATAWAREHOUSE,1.0/UP_ACC_MISP
RO/IT1,98_197_DF_DCCN_PRODUTTIVITA_4,1.0  
13 https://data-
explorer.oecd.org/vis?fs[0]=Topic%2C1%7CScience%252C%20technology%20and%20innovation%23I
NT%23%7CResearch%20and%20development%20%28R%26D%29%23INT_RD%23&fs[1]=Reference
%20area%2C0%7CItaly%23ITA%23&pg=0&fc=Reference%20area&snb=19&vw=tb&df[ds]=dsDissem
inateFinalDMZ&df[id]=DSD_ANBERD%40DF_ANBERDi4&df[ag]=OECD.STI.STP&df[vs]=1.0&dq=
ITA.A...XDC.V.&pd=%2C&to[TIME_PERIOD]=false  

https://esploradati.istat.it/databrowser/#/it/dw/categories/IT1,DATAWAREHOUSE,1.0/UP_ACC_MISPRO/IT1,98_197_DF_DCCN_PRODUTTIVITA_4,1.0
https://esploradati.istat.it/databrowser/#/it/dw/categories/IT1,DATAWAREHOUSE,1.0/UP_ACC_MISPRO/IT1,98_197_DF_DCCN_PRODUTTIVITA_4,1.0
https://data-explorer.oecd.org/vis?fs%5b0%5d=Topic%2C1%7CScience%252C%20technology%20and%20innovation%23INT%23%7CResearch%20and%20development%20%28R%26D%29%23INT_RD%23&fs%5b1%5d=Reference%20area%2C0%7CItaly%23ITA%23&pg=0&fc=Reference%20area&snb=19&vw=tb&df%5bds%5d=dsDisseminateFinalDMZ&df%5bid%5d=DSD_ANBERD%40DF_ANBERDi4&df%5bag%5d=OECD.STI.STP&df%5bvs%5d=1.0&dq=ITA.A...XDC.V.&pd=%2C&to%5bTIME_PERIOD%5d=false
https://data-explorer.oecd.org/vis?fs%5b0%5d=Topic%2C1%7CScience%252C%20technology%20and%20innovation%23INT%23%7CResearch%20and%20development%20%28R%26D%29%23INT_RD%23&fs%5b1%5d=Reference%20area%2C0%7CItaly%23ITA%23&pg=0&fc=Reference%20area&snb=19&vw=tb&df%5bds%5d=dsDisseminateFinalDMZ&df%5bid%5d=DSD_ANBERD%40DF_ANBERDi4&df%5bag%5d=OECD.STI.STP&df%5bvs%5d=1.0&dq=ITA.A...XDC.V.&pd=%2C&to%5bTIME_PERIOD%5d=false
https://data-explorer.oecd.org/vis?fs%5b0%5d=Topic%2C1%7CScience%252C%20technology%20and%20innovation%23INT%23%7CResearch%20and%20development%20%28R%26D%29%23INT_RD%23&fs%5b1%5d=Reference%20area%2C0%7CItaly%23ITA%23&pg=0&fc=Reference%20area&snb=19&vw=tb&df%5bds%5d=dsDisseminateFinalDMZ&df%5bid%5d=DSD_ANBERD%40DF_ANBERDi4&df%5bag%5d=OECD.STI.STP&df%5bvs%5d=1.0&dq=ITA.A...XDC.V.&pd=%2C&to%5bTIME_PERIOD%5d=false
https://data-explorer.oecd.org/vis?fs%5b0%5d=Topic%2C1%7CScience%252C%20technology%20and%20innovation%23INT%23%7CResearch%20and%20development%20%28R%26D%29%23INT_RD%23&fs%5b1%5d=Reference%20area%2C0%7CItaly%23ITA%23&pg=0&fc=Reference%20area&snb=19&vw=tb&df%5bds%5d=dsDisseminateFinalDMZ&df%5bid%5d=DSD_ANBERD%40DF_ANBERDi4&df%5bag%5d=OECD.STI.STP&df%5bvs%5d=1.0&dq=ITA.A...XDC.V.&pd=%2C&to%5bTIME_PERIOD%5d=false
https://data-explorer.oecd.org/vis?fs%5b0%5d=Topic%2C1%7CScience%252C%20technology%20and%20innovation%23INT%23%7CResearch%20and%20development%20%28R%26D%29%23INT_RD%23&fs%5b1%5d=Reference%20area%2C0%7CItaly%23ITA%23&pg=0&fc=Reference%20area&snb=19&vw=tb&df%5bds%5d=dsDisseminateFinalDMZ&df%5bid%5d=DSD_ANBERD%40DF_ANBERDi4&df%5bag%5d=OECD.STI.STP&df%5bvs%5d=1.0&dq=ITA.A...XDC.V.&pd=%2C&to%5bTIME_PERIOD%5d=false
https://data-explorer.oecd.org/vis?fs%5b0%5d=Topic%2C1%7CScience%252C%20technology%20and%20innovation%23INT%23%7CResearch%20and%20development%20%28R%26D%29%23INT_RD%23&fs%5b1%5d=Reference%20area%2C0%7CItaly%23ITA%23&pg=0&fc=Reference%20area&snb=19&vw=tb&df%5bds%5d=dsDisseminateFinalDMZ&df%5bid%5d=DSD_ANBERD%40DF_ANBERDi4&df%5bag%5d=OECD.STI.STP&df%5bvs%5d=1.0&dq=ITA.A...XDC.V.&pd=%2C&to%5bTIME_PERIOD%5d=false
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Variable transformations were motivated by visual diagnostics: Figure A. 5 and Figure A. 

6 show a correction of skewness after log-transformation; Figure A. 7 reveals 

normalization after log-scaling R&D. 

Standardization was necessary for Exposure × R&D and Complementarity × R&D due to 

dispersion observed in Figure A. 8 and Figure A. 9. 

 

4.4 Analytical Contribution 
This model specification makes four novel contributions to the AI–productivity debate: 

 

(i) It incorporates a dual indicator structure for AI exposure and 

complementarity, building on task-based and semantic AI mapping 

frameworks. 

(ii) It tests whether productivity effects arise conditionally on adoption, using 

R&D as a credible proxy. 

(iii) It models capital intensity flexibly, capturing threshold and diminishing 

returns that are missed in linear models. 

(iv) It combines these elements within a semi-parametric fixed-effects framework, 

integrating both structural theory and empirical diagnostics. 

 

By capturing the structural, temporal, and nonlinear dynamics of AI adoption, the model 

enhances the understanding of when and where AI delivers productivity gains—and, 

crucially, where it does not. This has direct implications for policies targeting sectoral 

R&D incentives, workforce reskilling, and AI integration strategies. 

 

4.5 Estimation Results 
The estimation results presented in this section aim to assess whether sectors 

characterized by higher occupational exposure to AI—and to AI complementarity in 

particular—tend to exhibit systematically higher levels of productivity. The results of the 

Generalized Additive Model (GAM) incorporating sector and year fixed effects show that 

both AI exposure and complementarity, when interacted with R&D intensity as a proxy 

for actual AI adoption, are positively associated with labour productivity. 
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Variable Coefficient Std. 
Error 

t-
value Significance 

Lagged Exposure × R&D Intensity 3.15 0.66 4.77 *** 
Lagged Complementarity × R&D 
Intensity 0.43 0.16 3.98 *** 

s(log(Capital Intensity)) EDF ≈ 8.09 F ≈ 28.7  *** 
Sector Fixed Effects Included    

Year Fixed Effects Included    

Adjusted R² 0.818    

Deviance Explained 84.6%    

 Significance codes: *** p < 0.001, ** p < 0.01, * p < 0.05 

Table C.4 – GAM with Lagged Regressors and Fixed Effects 

 

Both lagged interaction terms—lagged Exposure_RD_z and lagged 

Complementarity_RD_z—are positive and highly significant. The coefficient for lagged 

AI exposure (β  ≈  3.15, 𝑝  <  0.001) indicates that sectors whose workforce is more 

functionally aligned with AI capabilities, and where AI adoption is higher, are 

systematically associated with higher levels of labour productivity in the following year. 

Similarly, the coefficient for lagged complementarity (𝛽	 ≈ 	0.43, 𝑝	 < 	0.001) suggests 

that productivity benefits are stronger when AI exposure is coupled with high potential 

for augmentation, as captured by occupational context and job complexity.  

 

The smooth term for capital intensity is also highly significant (𝐹	 ≈ 	28.7, 𝑝	 < 	0.001), 

confirming the presence of nonlinear effects. The estimated spline reveals a concave 

relationship: productivity gains increase steeply with early capital accumulation but 

plateau beyond a certain threshold. This pattern is consistent with prior findings on 

capital-skill complementarity and diminishing returns in capital-intensive industries 

(Bartel et al., 2005), where capital deployment must be matched by organizational and 

skill-based adaptation to yield sustainable gains.  

 

The adjusted R² of the model exceeds 0.8, and the deviance explained is above 84%, 

indicating high explanatory power. These values suggest that occupational AI exposure 

and complementarity—when weighted by sectoral AI investment—explain a substantial 
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share of the variation in productivity across sectors, even after accounting for unobserved 

heterogeneity. The robustness of these results is reinforced by the diagnostic figures in 

Appendix B – Model Diagnostics, which confirm model adequacy in terms of residual 

behaviour, variable interactions, and multicollinearity 

 

Notably, the results highlight the asymmetric nature of AI’s productivity effects. Sectors 

with low exposure and low complementarity, such as traditional manual services and low-

tech manufacturing, appear less likely to benefit from AI in the near term. This echoes 

conclusions from the report from EY, ManPower Group, Sanoma Italia, Il Futuro delle 

competenze nell’era dell’Intelligenza Artificiale (2023), which emphasizes that many 

low-qualification or procedural office roles are increasingly vulnerable to stagnating 

demand and automation exposure. 

 

Conversely, sectors such as information and communication technologies, finance, and 

professional services exhibit both high AI exposure and high complementarity, 

suggesting that they are ideally positioned to absorb AI productively. These findings 

confirm earlier macro-level insights from Acemoglu (2025), who emphasizes that 

productivity-enhancing gains from AI will depend heavily on sectoral context and the 

nature of human–machine interaction, with long-run TFP impacts only partially 

manifesting within a decade . 

 

From a substantive perspective, these findings support the hypothesis that AI does not 

exert uniform effects across the labour market. Instead, productivity gains are most 

pronounced in sectors where: 

 

(i) AI capabilities are aligned with task profiles (high exposure), 

(ii) Work conditions enable human–AI collaboration (high complementarity), 

(iii) Sufficient capital is available to integrate and scale new technologies. 

 

The joint inclusion of exposure and complementarity also reveals an important 

distinction: exposure alone, while necessary, may be insufficient to yield productivity 
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benefits unless occupations are structured in ways that allow for effective augmentation 

(Acemoglu & Restrepo, 2019). 

The results highlight not only where AI is likely to have the strongest economic impact, 

but under what conditions—offering important implications for sector-specific 

investment, workforce training, and policy prioritization. Although derived from a sector-

level labour productivity model, these findings have broader relevance beyond their 

immediate empirical scope. In particular, they raise important considerations for the 

macroeconomic interpretation of AI-driven growth patterns. 

 

A possible extension of this work concerns the connection between the empirical findings 

and the broader macroeconomic debate on the aggregate productivity impact of artificial 

intelligence. While this thesis focuses on sector-level productivity and does not directly 

model total factor productivity (TFP) growth or long-run dynamics, the evidence 

presented—namely when conditions (i) to (iii) coincide—is highly relevant to recent 

theoretical contributions. In particular, (Filippucci et al., 2025) show that, even in the 

presence of strong task-level productivity gains, the aggregate effect on TFP can be 

severely limited by structural constraints such as low factor mobility or inelastic sectoral 

demand (Baumol effect)14. Although these general equilibrium channels are beyond the 

scope of the present model, the results obtained here provide microeconomic conditions 

that can inform such macro calibrations: productivity gains from AI are not automatic, 

but conditional on the alignment of technological capabilities with the sectoral capacity 

to absorb and complement them. This suggests that the labour market structure—

specifically, the distribution of tasks and skills—plays a critical mediating role in 

translating AI potential into realized productivity growth. 

 

4.6 Robustness and Limitations 
A series of sensitivity checks confirms that the headline finding—productivity rises only 

where AI-exposed tasks coincide with high complementarity and substantive R&D 

effort—does not rest on a particular functional form. 

 

 
14 (Baqaee & Farhi, 2019)  
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I first re-estimated the benchmark with a conventional two-ways fixed-effects regression 

in which capital intensity enters linearly (Table C. 1).  The coefficients on the lagged 

Exposure × R&D and Complementarity × R&D terms remain virtually unchanged in 

magnitude and significance, indicating that the semi-parametric treatment of capital is not 

driving the interaction effects.  Adding quadratic terms for each regressor (Table C. 2) 

likewise leaves the core estimates intact, although the extra curvature slightly inflates 

standard errors and raises variance-inflation factors toward—but never beyond—two. 

 

A preferred specification (Table C. 3) replaces the linear capital term with a penalized 

thin-plate spline, capturing the well-documented concave relationship between capital 

deepening and productivity once intangible complements become scarce.  This 

adjustment lifts the adjusted R² to roughly 0.81 and increases the share of deviance 

explained to more than 84 %, yet the two interaction coefficients continue to be positive 

and highly significant.  Alternative lag structures, reported in Table C. 4, show that a one-

year delay between R&D effort and productivity response delivers the best fit—consistent 

with the diffusion lag observed in Italian manufacturing by Guarascio et al. (2023). 

Diagnostic evidence collected in Appendix B – Model Diagnostics supports the 

statistical soundness of these specifications.  Variance-inflation factors for all 

covariates—including the spline basis—stay below 2 (Table B. 1), ruling out 

multicollinearity.  Residual-versus-fitted plots and Q–Q diagrams (Figure B. 1 and Figure 

B. 2) reveal no material departures from homoskedasticity or normality, while the 

Shapiro–Wilk statistics confirm well-behaved errors.  Finally, the smooth-term graph in 

Figure B. 9 displays the expected diminishing-returns pattern in capital intensity without 

signs of over-fitting, validating the choice of spline complexity. 

 

These robustness checks notwithstanding, two caveats deserve emphasis.  First, the 

fixed-effects framework cannot fully purge contemporaneous, sector-specific shocks—

such as sudden regulatory changes or regionally targeted digital-infrastructure 

programmes—that might correlate with both R&D spending and productivity.  Future 

work could incorporate explicit policy dummies or difference-in-difference designs to 

sharpen identification.  Second, using R&D spending as a proxy for AI adoption 

remains an indirect measure of absorptive capacity.  Sector-wide surveys that record the 
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share of firms actively deploying machine-learning systems would offer a more granular 

view of diffusion intensity. 

 

Recognising these limitations clarifies the contribution of the present analysis: it shows 

that the productivity dividend from AI is conditional, emerging only where technical 

feasibility (high 𝜀), human-task complementarity (high 𝜃) and sustained intangible 

investment intersect. 

 

4.7 Policy Implications 
The empirical exercise shows that labour-productivity gains materialize only where three 

ingredients overlap: a large bundle of AI-performable tasks (high 𝜀), work organisation 

that lets human skills complement those tasks (high 𝜃), and sustained intangible 

investment (high, lagged R&D intensity).  Because those conditions are satisfied in only 

a handful of Italian sectors—chiefly ICT, finance and professional services—the 

aggregate productivity effect of AI is small and uneven.  Two broad policy priorities 

follow. 

 

First, government should concentrate on raising absorptive capacity in the “middle” of 

the economy, not simply subsidizing frontier adopters.  The evidence that 𝜀 and 𝜃 yield 

economic payoffs only when paired with R&D implies that tax credits (or direct grants) 

for intangible capital—data pipelines, process redesign, training time—can unlock 

dormant productivity potential in otherwise exposed sectors such as machinery, transport 

equipment and high-end retail.  The results presented justify extending incentives to 

organisational AI projects that embed large-language models or predictive maintenance 

tools in existing task flows.  Crucially, evaluation criteria should privilege projects that 

redeploy workers into judgement or interaction-intensive tasks rather than merely 

automating headcount. 

 

Second, task-level complementarity must be cultivated directly inside firms and local 

labour markets.  For sectors sitting on high exposure but low complementarity—personal 

services, hospitality, traditional back-office activities—the risk is displacement without 

productivity gain.  Active labour-market policies therefore need to move toward teaching 
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specific hybrid competences that raise 𝜃: prompt engineering, human-AI supervisory 

skills and domain-specific data stewardship.  

 

The results also caution against relying on AI to revive productivity unless 

complementary reforms accompany technological rollout.  Without deeper product-

market competition and faster reallocation of capital toward high-𝜃 establishments, the 

sectors that already sit on the steep part of the 𝜀 − 𝜃 − 𝑅&𝐷 surface will keep pulling 

ahead, widening the dual economy.  Conversely, a coordinated package of intangible-

investment incentives, targeted up-skilling, and competition-enhancing regulation can 

move more sectors onto a shared productive frontier, translating AI’s technical promise 

into broad-based growth.  
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5. Conclusions 
This thesis has investigated the impact of artificial intelligence on productivity and 

economic growth from a labour market perspective, focusing on the occupational 

structure of the Italian economy. By constructing novel indicators of AI exposure and 

complementarity and matching them to detailed Italian sectoral data, the analysis aimed 

to shed light on the channels through which AI interacts with the labour force and 

contributes to productivity dynamics. 

 

The findings suggest that AI exposure alone is not a sufficient condition for productivity 

gains. Rather, sectors characterized by high complementarity—where AI systems are 

more likely to augment rather than replace human labour—tend to experience stronger 

productivity performance, particularly when matched with sustained R&D investment. 

These results support the growing body of literature emphasizing that the macroeconomic 

effects of AI depend not only on technical feasibility, but also on the structure of tasks, 

the adoption environment, and the potential for human–AI collaboration. 

 

By focusing on Italy, the thesis adds empirical evidence to a context marked by digital 

transformation challenges, persistent productivity stagnation, and heterogeneous sectoral 

performance. The country’s structural features make it an important case for 

understanding the conditions under which AI adoption can yield macroeconomic benefits. 

 

While the model does not intend to establish causal relationships, it provides a robust 

empirical framework for identifying patterns that are consistent with the theoretical 

literature. The exposure and complementarity indicators developed here may serve as 

useful tools for future research aiming to study AI’s impact on labour and growth across 

different national contexts. 

 

Future work could extend this analysis by incorporating firm-level data, refining 

measures of AI adoption, or modelling general equilibrium effects. Nonetheless, this 

thesis contributes to the ongoing effort to quantify and understand the economic 

consequences of AI, offering a labour market lens on one of the most transformative 

technologies of our time. 



 49 

Appendix A – Variable Distributions and Transformations 

This appendix presents the distributional properties and transformation choices for the 

main variables included in the empirical analysis.  

 

 
Figure A. 1—Histogram of Sectoral Capital Values 

 

 
Figure A. 2 — Histogram of Sectoral Labor Input 
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Figure A. 3 — Histogram of Capital Intensity (Capital per Labor) 

 

 
Figure A. 4 — Histogram of Log-Transformed Capital Intensity (z-scored) 

 

 
Figure A. 5 – Histogram of Raw Productivity 
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Figure A. 6 – Histogram of Log-Transformed Productivity (z-scored) 

 

 
Figure A. 7 – Histogram of Log R&D Intensity 

 

 
Figure A. 8 – Histogram of Exposure_RD_z 
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Figure A. 9 – Histogram of Complementarity_RD_z 

These distributions show that transformations (especially log and standardization) were 

necessary to address skewness and heteroscedasticity, improving comparability across 

sectors and time. 
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Appendix B – Model Diagnostics 
This appendix provides graphical and statistical diagnostics to assess the robustness and 

validity of the estimated models. 

 
Figure B. 1 – Residuals vs Fitted Values (GAM) 

 

 
Figure B. 2 – Q-Q Plot of Residuals (GAM) 
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Figure B. 3– Histogram of Residuals 

 

 
Figure B. 4 – Residuals vs Linear Predictor (FE Model) 

 

 
Figure B. 5 – Deviance Residuals vs Quantiles (GAM) 
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Figure B. 6 – LOESS Fit: log_productivity_z ~ Exposure_RD_z 

 

 
Figure B. 7 – LOESS Fit: log_productivity_z ~ Complementarity_RD_z 

 

 
Figure B. 8 – LOESS Fit: log_productivity_z ~ log_capital_intensity_z 
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Figure B. 9 – Smooth Terms in GAM: s(Exposure_RD_z) and s(log_capital_intensity_z) 

 

Variable VIF 

Exposure × R&D Intensity 1.12 

𝐂𝐨𝐦𝐩𝐥𝐞𝐦𝐞𝐧𝐭𝐚𝐫𝐢𝐭𝐲 × R&D Intensity 1.09 

log(Capital Intensity) 1.18 

 
Table B. 1 – Variance Inflation Factors (VIF) for Main Regressors 

 

Note: Multicollinearity tests show all VIF values < 1.2, confirming low correlation among 

predictors.  
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Appendix C – Extended Estimation Results 
This appendix reports the full output of the alternative model specifications discussed in 

Section 4.6. 

Variable Coefficient Std. Error Significance 

Exposure × R&D (z) 4.026 0.762 (***) 
Complementarity × R&D (z) 0.574 0.119 (***) 
log(Capital Intensity) (z) 0.643 0.058 (***) 
Sector Fixed Effects Included    

Year Fixed Effects Included    

Adjusted R² 0.249    

Note: Standard linear fixed effects model. All continuous variables z-standardized. 
Significance codes: *** p < 0.001, ** p < 0.01, * p < 0.05 

Table C. 1 – Fixed Effects Model Estimates 

 

Variable Coefficient Std. Error t-value Significance 
Exposure × R&D Intensity 3.592 0.792 4.54 *** 
(Exposure × R&D)² –0.707 0.400 –1.76 . 
Complementarity × R&D Intensity 0.647 0.130 4.97 *** 
(Complementarity × R&D)² –0.02 0.046 –0.43  

log(Capital Intensity) 0.437 0.101 4.34 *** 
(log(Capital Intensity))² –0.067 0.027 –2.46 * 
Sector Fixed Effects Included    

Year Fixed Effects Included    

Adjusted R² 0.270    

Note: Inclusion of quadratic terms leads to modest improvement in fit but introduces 
multicollinearity, as reflected in VIF values approaching 2.  
Significance codes: *** p < 0.001, ** p < 0.01, * p < 0.05 

Table C. 2 – Quadratic Fixed Effects Model Estimates 
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Variable Coefficient Std. Error t-value Significance 
Exposure × R&D Intensity 3.176 0.68 4.44 *** 
Complementarity × R&D Intensity 0.435 0.17 4.02 *** 
s(log(Capital Intensity)) EDF ≈ 7.839 F ≈ 26.5  *** 
Sector Fixed Effects Included    

Year Fixed Effects Included    

Adjusted R² 0.805    

Deviance Explained 83.2%    

Note: Penalized spline applied to log capital intensity. GAM estimated using REML. 
All predictors standardized. 
Significance codes: *** p < 0.001, ** p < 0.01, * p < 0.05 

Table C. 3 – Generalized Additive Model (GAM) Estimates 

 

Variable Coefficient Std. 
Error 

t-
value Significance 

Lagged Exposure × R&D Intensity 3.15 0.66 4.77 *** 
Lagged Complementarity × R&D 
Intensity 0.43 0.16 3.98 *** 

s(log(Capital Intensity)) EDF ≈ 8.09 F ≈ 28.7  *** 
Sector Fixed Effects Included    

Year Fixed Effects Included    

Adjusted R² 0.818    

Deviance Explained 84.6%    

Note: This is the final model specification used in the thesis. Lag structure reflects 
delayed impact of AI adoption. Splines allow nonlinear capital effects. Model 
diagnostics reported in Appendix B. 
Significance codes: *** p < 0.001, ** p < 0.01, * p < 0.05 

Table C. 4 – GAM with Lagged Regressors and Fixed Effects 

 

All models confirm the significance of the interaction terms between AI 

exposure/complementarity and R\&D intensity. The spline term for capital intensity is 

statistically significant and displays a concave shape, consistent with non-linear capital 

returns. 

Together, these tables and diagnostics provide evidence of model stability and robustness 

across specifications. 
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